Partitioning and Packing Mathematical Simulation Models for Calculation on Parallel Computers

Daie J. Arpasi and Edward J. Milner
Lewis Research Center
Cleveland, Ohio

LANGLEY RESEARCA CENTEP:
LIERARY, NASA
Handon, virgina
Prepared for the
1986 International Conference on Parallel Processing cosponsored by Pennsylvania State University and the IEEE Computer Society St. Charles, Illinois, August 19-22, 1986

[^0]
PARTITIONING AND PACKING MATHEMATICAL SIMULATION MODELS

FOR CALCULATION ON PARALLEL COMPUTERS

Dale J. Arpasi and Edward J. Milner National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

This paper deals with the development of multiprocessor simulations from a serial set of ordinary differential equations describing a physical system. Degrees of parallelism (i.e., coupling between the equations) and their impact on parallel processing are discussed. The problem of identifying computational parallelism within sets of closely coupled equations that require the exchange of current values of variables is described.

A technique is presented for identifying this parallelism and for partitioning the equations for parallel solution on a multiprocessor. An algorithm which packs the equations into a minimum number of processors is also described. The results of the packing algorithm when applied to a turbojet engine model are presented in terms of processor utilization.

INTRODUCTION

Multiple processors, operating together to solve a single problem, can, in many cases, decrease the time of calculation. This is important in timecritical applications, such as real-time simulation, where this technique can provide computational rates unachievable on a single processor or allow the use of lower cost hardware to provide the necessary computational capabilities. For certain classes of problems it is possible to configure a network of microcomputers to achieve the same throughput rate as a large mainframe computer at a lower initial and ongoing maintenance cost.

The parallel processing concept has opened new areas of research and development in hardware, software and theory. Some efforts sponsored by NASA Lewis are described in references 1 to 4 . Techniques for developing mathematical models that can be solved efficiently on parallel processors is a key area of study. The first step in developing these multiprocessor models. is to identify parallelism within the mathematical formulation of the problem. This requires a data flow analysis of the problem's equations and will identify the "critical path" and the minimum achievable calculation time. The next step is to arrange, or "pack" the noncritical path computations on the minimum number of processors so as to make maximum use of the available computing resources.

This paper presents a method of partitioning equations for multiprocessor solution. The method, when applied to models containing inherent parallelism, will produce segmented sets of equations that can be solved in parallel. A brief discussion of computational parallelism is presented in terms of the degree of coupling between subsets of the model equations. The identification of parallel paths in closely coupled sets of equations is then discussed, followed by the description of a packing algorithm for assignment of the paths
to a minimum number of processors. Finally, the results of the algorithm applied to the mathematical model of a helicopter engine are used to demonstrate the algorithm's capabilities.

COMPUTATIONAL PARALLELISM

A mathematical model of a physical system consists of a set of equations which describe, to some degree of accuracy, the response of that system to external influences (driving functions) over a limited range of operation. This range is defined in terms of the maximum and minimum values of the driving functions and, if time dependent, the maximum frequency or maximum rate of change of these functions. Generally, the object of this modeling effort is to provide a simulation of the physical system.

Whenever a simulation must interface to the real world (e.g., with control hardware), the mathematical model must be computed at a rate sufficient to make the simulation look like the real physical process to the real-world components. This is termed real-time computation. To test a piece of control hardware, the simulation response to control inputs must dynamically match the response of the physical system. This real-time requirement establishes a maximum allowable calculation time for a digital simulation. The maximum allowable calculation time may be further reduced by internal numerical stability requirements. The maximum calculation time necessary to meet all of these real-time requirements is termed the required update time (ΔT). The simulation will meet all real-time requirements if the mathematical model is computed every ΔT sec.

Once the simulation update time has been established, the model must be programmed and executed on a computer. Both the efficiency of the programming language and the capabilities of the computer hardware will determine the achievable calculation time of the model. If the model can be divided into parts which can be computed in parallel, then the efficiency requirements of the language and the computational capabilities of the hardware may be relaxed by assigning each path to a separate computer and computing these paths in parallel (assuming appropriate data transfer takes place between the computers.) If a model can be computed serially in the required update time on a single computer, parallel processing may allow the use of a number of lower cost computers to do the job. This could be a more cost effective approach to simulation.

The prerequisite to developing parallel processor simulations is to be able to identify the parallel computational paths contained in the model. In general, a dynamic model can be programmed on a digital computer as a set of N computationally sequential equations of the form

$$
x_{K}(i n)=f_{K}\left[x_{m}(i n), x_{m}((1-1) h), \ldots, u(i h)\right]
$$

where $X_{K}(i h)$ is the result of the $K^{\text {th }}$ equation at time ih. Here, h denotes the simulation time step or update interval of the model calculations. The arguments $X_{m}(i h)$ are the current values of the results of preceding equations in the model (i.e., $m=1$ to $k-1)$, and $x_{m}(1-1) h$) are the past values of the results of all equations in the model. The argument u represents values obtained from sources external to the model which are always available at the start of the model computation sequence. The functional
relationship between X_{K} and its arguments is represented by f_{K}. Assuming an equation is an indivisible computational unit, then the parallelism in the model is determined by the arguments of each equation. That is, two equations, or sets of equations, can be computed in parallel within an update interval if their arguments are independent of the results of the others computed in that interval.

For example, a model of the form

$$
\begin{gathered}
x_{1}(i h)=f_{1}\left[x_{3}((i-1) h)\right] \\
x_{2}(i h)=f_{2}\left[x_{1}((i h))\right] \\
x_{3}(i h)=f_{3}\left[x_{2}((i h)), x_{3}((i-1) h)\right]
\end{gathered}
$$

contains no parallelism since $X_{3}(i h)$ requires $X_{2}(i h)$ and X_{2} (ih) requires $X_{p}(i h)$. These calculations must be done serially. However, the model

$$
\begin{gathered}
x_{1}(i h)=f_{1}\left[x_{3}((i-1) h)\right] \\
x_{2}(i h)=f_{2}[u(i h)] \\
x_{3}(i h)=f_{3}\left[x_{1}(i h), x_{2}(i h), x_{3}((i-1) h]\right.
\end{gathered}
$$

does contain parallelism since X_{1} can be computed at the same time as X_{2}.
Many times, parallelism is obvious from the physical nature of the system which is modeled. For example, to test a control system designed to balance the load on two generators, the generators could be formulated in a model containing two sets of decoupled equations. That is, there are no result values transferred between the sets. Both, however, provide results to an external piece of hardware (the controller). It is obvious that the simulation of the generators can at least be implemented on two computers operating in parallel (fig. 1(a)). Each equation set (generator) may, of course, contain additional computational parallelism.

Another example of physically detectable parallelism occurs when two or more sets of equations have significantly different dynamic characteristics. For example, suppose a simulation of a single engine aircraft is desired. The mathematical model would consist of a set of engine equations and a set of airframe equations. The airframe dynamics are generally an order of magnitude slower than the engine dynamics. Therefore, these equation sets can be computed using different update times. If the update times differ by a factor of 5 or more (rule of thumb), then results transferred between the airframe and engine can be past values without introducing dynamic errors. In this case, the equation sets are considered loosely coupled and each can be placed on a separate computer. As shown in figure 1(b), because the airframe equations (A) use only results of engine equations (E) computed in a previous calculation (update interval) and vice-versa, these arguments can be computed in parallel. As is the case of decoupled equation sets, loosely coupled equation sets may each contain additional computational parallelism.

Parallelism due to decoupled or loosely coupled equation sets is easily identified from the physical nature of the model. A more difficult task is the identification of parallelism in a set of closely coupled equations, where the process dynamics dictate the use of current arguments in solving for equation results. For instance, suppose a model contains the following set of equations:

$$
\begin{gathered}
x_{1}(i h)=f_{1}\left[x_{5}((i-1) h), u(i h)\right] \\
x_{2}(i h)=f_{2}\left[x_{5}((i-1) h)\right] \\
x_{3}(i h)=f_{3}\left[x_{2}(i h)\right] \\
x_{4}(i h)=f_{4}\left[x_{1}(i h), x_{2}(i h)\right] \\
x_{5}(i h)=f_{5}\left[x_{3}(i h), x_{4}(i h), x_{5}((i-1) h)\right]
\end{gathered}
$$

The variable X_{1} can be computed at the start of the calculation interval, since it is a function of the past value of X_{5} and the external variable u. X_{2} may also be computed at the start of the interval. However, the calculation of x_{3} must be delayed until x_{2} has been determined, the calculation of x_{4} must be delayed until both x_{1} and x_{2} are determined, and the calculation of X_{5} must be delayed until both X_{3} and X_{4} have been determined. As shown in figure 2(a), three computational paths can be identified which can be assigned to three different computers in the simulation. Note that "wait states" have been inserted to insure the currency of the arguments. That is, equation calculation is delayed until current argument values become available. The X_{3} calculation is shown to be delayed slightly for the transfer of X_{2}. The shaded areas (time slots) indicate the time available for result transfer to computer number 1. The calculation of X_{1} and X_{3} can take place anywhere in the time slot.

The detection of this type of computational parallelism can become burdensome when the equation set becomes large. The technique, however, can be automated. Related to this problem of partitioning is the problem of allocation (i.e., packing these paths into a minimum number of computers without extending the update time). Figure $2(b)$ demonstrates packing of the paths defined in figure 2(a). Arbitrary calculation times of $T X_{1}, T X_{2}, T X_{3}, T X_{4}$ and $T X_{5}$ have been assigned to the equations producing results X_{1} through X_{5}, respectively. The time $T X_{1}$ includes the time required to obtain the value of u. Note in figure 2(b), that, because of the calculation times, the $x_{2}-X_{4}-X_{5}$ path is critical in that it contains no idle states. This path, therefore, dictates the minimum possible update time ($\Delta T=T X_{2}+T X_{4}+T X_{5}$). The paths X_{7} and x_{3} are assigned to separate computers. Packing in this example is a trivial task, since the X_{3} calculation can be moved onto the computer number 2 to be calculated during the idle period.

In many cases, efficient packing requires shifting equations in their time slots. This causes a ripple effect on the time slots of other equations which can complicate the packing problem. Because of the nature of the packing problem, a unique solution to the development of a packing algorithm does not exist. There are many ways to pack most parallel models. The optimum approach may be model-dependent.

In the following sections partitioning and packing algorithms that have been developed at NASA Lewis are discussed. These algorithms were tested with a model of a jet engine and the results are presented.

PARTITIONING

To begin the discussion of the partitioning algorithm, certain terms should be defined. A mathematical model is a set of equations, written to define the characteristics of a physical system to some desired degree of accuracy. A program is a sequential set of digital equations and supporting information (e.g., variable and constant definition) which define the mathematical model within the constructs of a programming language. A path is a subset of these equations which, because of interrelationships between arguments and results, contains no parallelism. Partitioning is the transformation of the program equations into a number of paths which may be calculated in parallel. Packing is the combination of paths into a minimum number of processors (computers) which, provide computation of the model within a prescribed update interval. The critical path is the longest path and the prescribed update interval must be greater than or equal to the calculation time of the critical path.

In this discussion of partitioning it is assumed that a program is given. That is, these equations, when executed serially, provide the required results. No assumptions are made concerning the parallelism of computational units (operations) contained in the program equations. The equation

$$
x=a * y+b_{*} z
$$

contains parallelism (i.e., a*y can be calculated in parallel with $b * z$) which will be ignored since we are concerned with partitioning at the equation level and not parsing. For purposes of this discussion, the above equation will be considered as

$$
x=f(a, y, b, z)
$$

where f is some single operation. Therefore, equations will be assigned to paths in their entirely and not broken up into more primitive result-argument relationships.

As indicated in the last section, partitioning requires the establishment of result-argument relationships for the serial set of equations in order to develop computational paths. It is also necessary to know the calculation time of each equation. The program must be processed to provide this information. For this effort, the result-argument relationships and the calculation time information are outputs of the multiprocessor programming utility RTMPL (refs. 2 and 3). The primary function of this utility is to translate a structured program of the mathematical model into assembly language for the simulation processor(s). As an option, the utility also provides information on the result and arguments of each equation, the processor operations necessary to obtain the result, and the processor calculation time for each operation. For example, the utility-generated information for the equation

$$
x=y+z
$$

might be as shown in table I. Each equation has a label (programmer or RTMPL defined). In this case, $\mathrm{S} \$ 12$ is used to indicate that this information concerns the twelfth equation in the program. The processor operations to compute the equation are: load register R1 with z (requires 8 time units), add variable y to R1 (16 time units) and store R1 as the value of variable X (8 time units). This type of information is generated for each equation in the program.

The first step in the partitioning process is to convert the utility generated information into the form needed for partitioning. This form is shown in table II for the close-coupled example in the previous section. To simplify the discussion, the equation label has been replaced by the name of the result variable. Dependent arguments are those which are the results of previous program equations calculations in the update interval (e.g., X_{1} is a dependent argument of X_{4}). These are the drivers for partitioning since their current values are required before the computation sequence can continue. The independent arguments u and x_{5} do not affect partitioning since only past. values are used. The calculation time for each equation is determined by adding the calculation times of the given processor operations. For example, the calculation time of equation X_{1} is determined to be 32 from table. I.

The time at which an equation can start is determined by the arguments and calculation time of each equation. The first equation of a set only has independent arguments and thus, can always start at time 0 (measured from the beginning of the calculation update interval). It can never require results from calculations in the current update interval since none are yet avallable. An equation can end at the time obtained by adding its calculation time to the time it can start. The general formula for obtaining this time is

$$
\begin{aligned}
& \text { CANSTART(RESULT) }=\operatorname{MAX}(\operatorname{CANEND}(\operatorname{ARG} 1), \operatorname{CANEND}(\operatorname{ARG} 2), \ldots, 0) \\
& \text { CANEND}(R E S U L T)=\operatorname{CANSTART}(R E S U L T)+\operatorname{CALCTIME}(R E S U L T)
\end{aligned}
$$

where ARG1 is the first dependent argument, etc. This formula is applied sequentially to each equation in the program (see table II).

Once these attributes have been established for each program equation, the identification of computational paths contained in the program can begin. The algorithm used for path identification is shown in figure 3. Its purpose is to identify all sequences of equations which contain no parallelism and which must be computed serially. These paths are organized into a linked list called PATHLIST. The paths in PATHLIST are ordered in terms of decreasing path calculation time. Therefore. the first path in PATHLIST is the critical path. To form a path, the algorithm selects the program equation, having the maximum CANEND time, and which has not already been assigned to a path. This is the result equation of the path. The next equation selected is the one which produces a result used as a dependent argument of the result equation. If more than one equation result is used as a dependent argument, then the one with maximum CANEND time is selected. The selected equation then is inserted in front of the result equation in the path. The path formation process continues until an equation is inserted which has no dependent arguments equations which are not already assigned to a path. Paths are formed until all program equations have been assigned.

Partitioning has been discussed in terms of equations that produce values of variables. Often, mathematical models contain statements that do not produce values. Two common examples are conditional statements (e.g., IF ... THEN ... ELSE) and command statements (e.g., I/O operations). The calculation time of such a statement must be combined with a preceeding or following equation. This could impose limitations on program structure and is a subject for future study.

PACKING

The partitioning process produces a number of paths consisting of equations which must be computed serially and a table of information on each equation (described in table II). The final task in the process of formulating a multiprocessor model is to pack the paths for assignment to a minimum number of processors. The first path in our list has the largest calculation time due to the partitioning algorithm. This is called the critical path and its calculation time is the minimum time in which the model can be computed no matter how many processors are used. The number of paths identified through partitioning is usually greater than the minimum number of processors necessary.

The minimum number of processers necessary to implement a multiprocessor simulation depends on how fast the simulation must be computed. This update time must be specified prior to packing. The simulation time step h is usually based on stability and dynamic accuracy requirements. For real-time applications, the update time ΔT must be equal to h. The update time also specifies when the computations must end. The first step in packing is to determine when each equation must end using the specified update time. By doing so the last column of information is added to table II.

To determine when an equation must end, we begin with the state variables (defined here as those variables whose current values are not used as arguments in the model, but appear as results of model equations). The state variable computations will be the last computations performed, and thus must will end at the prescribed update intervals. The calculation of equations which are dependent arguments of these variables must end no later than the time at which the state variable calculations must start. The times when subsequent equations in the result/argument string must end is similarly determined. Since a variable can be used as a dependent argument in more than one equation, care must be taken that the earliest time, arrived at after all paths are analyzed, is used to specify when that equation must end. The numbers given in table II were arrived at by specifying an update time equal to the time at which the state variable equation x_{5} can end. Note that both x_{3} and x_{4} use x_{2} as a dependent argument. The time at which X_{2} must end, as determined from X_{3} requirements, is

$$
\operatorname{MUSTEND}\left(X_{2}\right)=112-32=80
$$

and, from X_{4}, is

$$
\operatorname{MUSTEND}\left(X_{2}\right)=112-48=64
$$

The minimum is selected.

We now have determined when an equation can start, can end, and must end. These are termed equation attributes. Since the paths are serial they can also be assigned these attributes: A path can start when its first equation can start, a path can end when its last equation can end, a path must end when its last equation must end, and additionally, the calculation time of a path is the summation of the calculation times of its equations. This is sufficient information to pack the paths.

The solution to the packing problem is not unique in that many arrangements of paths in processors can result in a satisfactory solution. The requirements placed on a general packing algorithm are not strict, however, from the point of view of efficiency of processor utilization. For example, it does not matter if the last processor that is packed performs its calculations in 5 or 95 percent of the update time if there is insufficient time to calculate all of its equations on the other processors used in the simulation. From a processor utilization point of view, both packing arrangements are satisfactory since the same number of processors are used in the simulation.

The packing algorithm, shown in figure 4, was designed to achieve the minimum number of processors. Other requirements which may be imposed, such as memory size limitations and inter-processor data transfer limitations were not imposed on the algorithm.

As input, the algorithm requires: 1) that all paths be specified in a linked list called PATHLIST in order of decreasing calculation time; 2) that the required update time of the simulation, ΔT, is specified and that the attributes of each equation and path (CANSTART, CANEND, MUSTEND, CALCTIME.) have been determined as described above.

The packing algorithm creates processors as needed and inserts paths from PATHLIST according to a hierarchy of relationships between existing equations in a processor and the equations in the unpacked paths. When a processor is created, the path with the longest calculation time in PATHLIST is inserted. Next, the paths which are related to paths already in a processor are tested to see if they fit (see discussion of TESTFIT algorithm below). If so, they are inserted, if not, they are placed in a carry-over list.

Then, paths in PATHLIST which are unrelated to the equations in the processor are tested. If one of these is inserted, unrelational testing is ended and relational testing begins again. When no other paths can be inserted into a processor, another processor is created. This process continues until all paths in PATHLIST are inserted into a processor.

Relational testing is prioritized. All unpacked paths which provide critical arguments are tested first. (A path is considered to provide a critical argument if the result of the last equation in the path (EL) is an argument of a processor equation (EP) and
MUSTEND (EL) = MUSTEND (EP) - CALCTIME (EP)

Next, other related paths are tested. Then paths in the carry over list (which was formed from paths which were related to equations packed into previously formed processors, but not yet packed) are tested.

Paths are tested for insertion on an equation by equation basis using the test fit algorithm shown in figure 5 . First the attributes (CANSTART, CANEND, CALCTIME, and MUSTEND) of all program equations are saved. This is necessary because inserting an equation into a processor can cause a ripple effect on the attributes of other equations. If the whole path does not fit, any equation of the path, inserted into the processor, must be removed and the attributes of affected equations restored.

The ripple effect is illustrated in figure 6. Assume a processor contains two equations (A and B) and that it has been determined that equation (C) can be inserted between them. The calculation time of each equation is shown as the shaded areas. For packing purposes, the calculation of each equation can take place anytime between its CANSTART time and its MUSTEND time.

The space available for C is the difference between the time at which B must end and A can end minus the calculation time of B. Equation C will be inserted to start directly after A can end. The calculation of B will be delayed until C can end. Note that the difference between the MUSTEND and CANEND times of A and B have been reduced to zero by the positioning of C, and that the time difference for C has been reduced. The primary impact of these changes is to reduce the space in the processor available for packing other paths. There is also a secondary impact of equal importance. By increasing the times at which C and B can end, any unpacked equations which use these equations as arguments have their starting times delayed. Similarly, by reducing the MUSTEND times of A and C, the MUSTEND times of any unpacked arguments of these equations are moved up. These effects tend to reduce the slot sizes of unpacked equations restricting the range of time into which they can be packed into a procesṣor. Also, these ripple effects may introduce computational gaps within unpacked paths.

After the attributes are saved (fig. 5), the path equations are ordered in terms of decreasing CANEND times for insertion testing. That is, the latest equation will be tested first and the earliest last.

The processor equations are arranged in sequential order where $E P(1)$ is the earliest equation and $E P(n)$ is the latest equation. Testing to determine if a path equation ($E(i)$) can be inserted into the processor involves the identification of all slots between any two processor equations (EP(j - 1), $E P(j)$) where the equation fits. The processor end points (i.e., $E P(j)=E P(1)$ and $E P(j-1)=E P(n))$ must also be considered. Because of the argument and result relationships between $E(i)$ and the processor equations it is required that the range of processor equations be limited for testing purposes. Let the end points of the range be designated by EPE and EPL (the earliest and latest processor equations respectively, before which $E(i)$ may be inserted). This range is established as follows: If $E(i)$ is an argument of a processor equation, then EPL is the earliest processor equation of which $E(i)$ is an argument ($E P E=E P(1)$); if any processor equation is an argument of $E(i)$, then EPE is the one following the latest of these and EPL is the last processor equation plus one (end point); if $E(i)$ is unrelated to any processor equation, then $E P E=E P(1)$ and $E P L$ is the last processor equation plus one.

Once the range of testing has been established, all slots within that range are tested to determine if $E(1)$ fits. The fit criterion is as follows:

1. If $E P(j)=E P(1)$ then CANEND* $(E(i))=\operatorname{CALCTIME~(E(i))}$ else CANEND* $(E(i))=\operatorname{CANEND}(E P(j-1))+\operatorname{CALCTIME}(E(i))$;
2. If CANEND* (E(i)) < CANEND (E(i)) then CANEND* (E(i)) = CANEND (E(i));
3. If $E P(j-1)=E P(n)$ then $M U S T E N D^{*}(E(i))=\Delta T$ else MUSTEND* (E(i)) = MUSTEND (EP(j)) - CALCTIME (EP(j));
4. If MUSTEND* (E(i)) > MUSTEND (E(i)) then

MUSTEND* $(E(i))=$ MUSTEND (E(i))
5. IF [[CANEND* (E(i)) < = MUSTEND (E(i))] and
[CANEND* $(E(i))<=\operatorname{MUSTEND*}(E(i))]$] then $E(i)$ fits.
The asterisk indicates the attributes of $E(i)$ if it were inserted into the slot between $E P(j-1)$ and $E P(j)$.

If it is established that $E(i)$ can fit in more than one slot, the testfit algorithm proceeds to select the slot into which $E(i)$ best fits. The best fit criterion is as follows:

If a slot exists such that
CANEND* (E(i)) - CALCTIME (E(i)) - CANEND (EP(j - 1$)$) $=0$
then this slot is selected. Otherwise, the latest slot which maximizes
[MUSTEND* (E(1)) - CANEND* (E(1))]
is selected.
This criterion provides for efficient packing by eliminating processor idle time if possible, and if not, then the ripple effect from insertion is minimized.

Once a slot is selected, the equation is inserted and the attributes of all program equations are updated to reflect the insertion. If any path equation cannot be inserted into the processor, path equations which have already been inserted are removed from the processor, the original attributes are restored to the program equations and the Test Fit algorithm ends.

RESULTS

The packing algorithm was programmed in Pascal, along with the partitioning algorithm. It was then tested on a helicopter engine model. The appendix contains a complete listing and description of the output. The results, in terms of percent processor utilization, are presented in table III. This first column is the update time ΔT specified prior to packing. It is given in terms of machine cycles. The second column gives the number of processors required for packing. The remaining columns show the percent utilization of the update time in calculating each processor's assigned equations. The first specified update time (5666 cycles) was the minimum possible time and corresponds to the critical path calculation time. In this case, four processors
were required. The second update time selection (10000 cycles) required two processors. Note that the percent utilization of the last processor in each case exceeds the summation of time available on the other processor(s). The algorithm, therefore, functioned satisfactorily.

Since the packing algorithm does not account for data transfer times, it is possible that the available time between when a variable is computed on one processor and when its value is required for computation on another processor will be less than the time required to transfer the variable between the processors. The effect of this will be to increase the effective calculation time of the packed simulation, and therefore, to increase the minimum achievable update time. Data transfer effects may be significant for multiprocessor systems with inefficient data transfer mechanisms or for simulations that require large volumes of data transfer between processors. Future work in the development of a packing algorithm should include a study of the effects of data transfer. While these effects will increase the critical path time, and therefore, the minimum update time, proper consideration of data transfer will minimize this increase and provide for more efficient packing.

CONCLUDING REMARKS

The algorithms and considerations presented for partitioning and packing mathematical models for calculation on parallel processors has simplified the development of multiprocessor simulations at NASA Lewis. Evaluation of the packing algorithm will continue as other multiprocessor simulations are developed. Work on a completely automated programming package is in progress, which will take a structured serial statement of a mathematical model, detect its parallelism, and provide ioad modules for the required number of processors.

The authors welcome discussions of the techniques presented in the paper, related techniques, and developments in the many other aspects of multiprocessor simulation.

The following listing is a result of partitioning and packing the program equations describing a helicopter engine. An update interval equal to the critical path time was specified. All times are given in terms of machine cycle time of the Motorola 68000 microprocessor.

Listing pages 1 to 3 list the program equations in terms of result variables. For each equation, the calculation time (EXTIME) and the CANSTART and MUSTEND attributes are given. The "RELATED EQUATION" column identifies the relationships between the equation and other equations. If the equation is an argument of other equations it is so indicated by an "UB" entry. Constant arguments of the equation are designated by "CN" followed by the name of the constant. An "SV" entry designates those equations whose past values are arguments of the equation. Current value or dependent argument equations are indicated by a "RQ" entry.

The paths generated by the partitioning algorithm are shown at the top of listing page 4. Nineteen paths were found. The attributes of each path are given, followed by the equations contained in each path. Path number 1 is the critical path.

The packing sequence beginning in the middle of listing page 4 and ending on page 11 is an optional diagnostic listing which can be selected by the user. It details the operation of the packing algorithm in processing the paths. Each step is preceded by asterisks. The step is then defined and the operable equations identified. The number preceding the equation list is the appropriate path number, if applicable. The number zero implies that the equations are contained in a temporary working list. The last comment on listing page 11 indicates whether or not the processors were successfully packed. If the smallest path (processor) execution time is less than the unused time on the other paths (processors) then the packing is successful.

Listing pages 12 to 14 define the equations packed into each processor. The processors are identified by number (in this case 1 to 4) and the percent utilization of the prescribed update interval is given. The calculation time (CALC), the time (relative to the start of the update interval) at which the equation starts and ends its computation, and the time computation must end (MAX) in order to meet data transfer requirements is listed. These requirements are also listed for each equation. The processors ("PR") and their equations which use an equation as a dependent argument are shown in the "SENT TO" column. The time at which the value is required to arrive at the destination processor (REQ) is also provided. The "NEEDS" column indicates those processors and equations which supply dependent argument values to an equation. The time at which these values are available (AVAIL) is also included.

－14．1．	118	2016	3238
TORO4 1	590	2854	4894
Tamer	134	560	4066
Tes	11.6	702	4.186
125	11.4	820	4300
H_{2}	126	0	4300
romac：	594	4300	4894
H 44	54	21.34	3292
H45	114	2168	3706
「4F	122	2302	3528
F4905	230	0	305%
$W 4 \mathrm{EC}$	598	250	3650
THMAE	1.2%	24824	3650
W4S	854	2546	4504
DHETHE	610	230	4386
DHAE	118	2546	4504
TORO45	390	3400	489\％
H99	42	2669	5666
NGDT	566	4894	5460
NFDT	566	3790	5460
FALDT	312	2854	5460
FAEDT	470	4136	5460
T3DT	494	1300	5460
WGSDT	130	4300	5460
NO	206	5460	\％666
NF＇	206	4356	5666
4.	206	31.66	5666

CN：XEGETMFGCT－7DHOTC
RO；DHOTH年THTA4D
UE：TOFQ91
Fin：wallobryy
UE：NGOT
玉U：NG
FO：F630
FQ：TzER2．
CNF TE
FO T T 2
Us：TOFOC
UE：TOFOC：
CN：T突
FOt H2
GU：MC

WO H44
UF：H49
R（S：Ha？
UE：F F－4らDT
UE：\％WATC
CN：Fis9
SU： F 45
FO：FF49Q\％
UE：W45
CN：XFWFTMNFWTM－ZW45C
FW

UE：F－4WDT
SU：F4菏

UF：DH4E
CN：XFWFT－NFFFTMBHFTC
FE：DHOTHE－THTA名
UE：TOROAF
FO：W4：
SV：NF
FO：HAE …N．
FO：TOROAJ．．．TORQC

CN：TOFMLD

F0：以×0
$\mathrm{FO} \ddagger \mathrm{TBO}$
SV：T3
KQ：WAB－WMA－WEG
FO：NEDT
CN：DELTAT
SU：NG
EO：NWD
CN：DETKMT
SU：MF
EO：F4tat
CN：DELTAT

FAE	206	4606	5666	G0: Fid
				Ea: F\%ET
				CN: DEITAT
T3	206	1794	5666	gu: ए9\%
				EQ: TBer
				CN: DEETAT
W63	206		5606	gu: 13
		4490		E0: W5SbT
				CN: DEETAT
				GU: 1,53

$F \cdot$	ExTMME：	CANSTET	Mustend	Comturatronal fathe	
1.	5666	0	5666	－NedT…Ne	
2	$4 \mathrm{4} \%$	0	6666	 	
3	1708	242	5666		
4	1356	2016	6666	W41－FADETFM土	
8	1.278	55	5606	Wスaz－F4EDT－FAE	
6	840	0	4386	Fk49QE－DHTHE	
7	c2e	0	3120	FEAEOL－－bHatha	
6	99	1402	41.48	E1	
9	59	230	3650	W45C	
10	990	2654	4894	TORQ4．	
11	366	569	4900	Te502－T\％Hes	
12	336	4300	6666	WSSDT－WSO	
1.3	292	556	41.46	WAR	
1.4	218	0	3856	DEI2	
1.5	21.4	0	231.6	W｜：	
16	1.60	2946	5666	DH45－H49	
17	1.42	0	2540	13	
18	130	4136	5330	WES	
1.9	126	0	4300	12	

FACKING SEQUENCE

＊＊＊＊FलCkING FnOCESGOR 1

कжжж सELATIONAL ERUATIONS ABE：

＊＊＊＊＊FACFTNG REIATTOMA EQUATXONG
жжжж\％ORDEFED EDUATTONS TO EE FACRED：

жжжжж NOT FATH ENDFOINT：FSSQz
＊＊＊＊＊ORDEEED EOUATIDNS TO EFE FACKED：

жжжж\％TEYTNG TO TNGEET FATH E
E．W又O2…FAETT－F4E
жжжжж FATH DOES NOT FIT，ADDED TO CAEFYOVER FOR NEXT FROCESSOR
жжжж ORDEFED EQUATTONS TO EE FACRED：

жжжжж TFYTNG TO TNEEKT FATH 6
8． EH
жжжжж FATH DOES NOT FIT，ADDED TO CAREYOUER FOR NEXT FROCESSOR
жжжжж OFDEEED EQUATIONS TO EE FACKED：

कжж\％TRYTNG TO TREEFT FATH 1.0 1．0．Tones 1.
 ＊x＊＊ORDEFED EOUATIONS TO EE FACKED：

wकw＊TFYTNG TO TMEEET FATH 11

wकw OROEFED FOUATXONS TO EE FAOGE：


```
**ж% TE\XNG TG XNSENT FATH IN
    1%, HिबDT-..NSO
***** FATH DOFS NOT FIT, ADDED TO CAFWYOUEF FOF NEXT FFOCESQOK
жж%%ж OFDEFED ERUATMONS TO EE FAC&ED:
    0, WA2-H%-H2
***** TF\YNG TO TNSEFT FATH 1.%
    1.3. WAR
#%*%% FATH DOES NOT FTT, ADDED TO CAEGYOUEF FOF NEXT FGCOESSOF
жжжжж OFDEFED EOUATGONE TO EE FACKED:
    0. H3-H2
жжжжж FACKTNG DELAYED, NOT ERTTTCAL,HO
****及 OFDEFED FOUATXONS TO EE FACKED:
    0. H2
ж**%% TFYINQ TO TNSEFT F%NTH I.9
    1.9. H%
#%%%% FATH DOFS NOT FIT, AOOED TO CABFYOUEF FOF NEXT FFOCESGOF
```



```
    0. H3
**жжж TFYGNG TO XNSEFT F'ATH 1%
    1%. HS
жжжжж FATH DOFS NOT FIT, ADDED TO CABFYOUEF FOF NEXT FFOCFEGOF
жжжжж FACKING FHOCESSOF 2
```



```
        ...rN:'
***** FELAMTONAL. EWUATMONE AEF:
```



```
    **** CAWFYOUEF FRUATXONS ARE:
```



```
***** FAOKTNO FFEMATYONAL..ENUATTONS
```



```
****% TFYKNG TG TNSEFT FATH 3
```



```
        ...NFDT...NF:
```

 ․ . , 以-
 ‥NFDTMNF'

…TFTA\% - NFDT…NF

жжж\%ж FATH DOES NOT FTT, ADOED TO CAFWYOUEF FOF NEXT FKOCFEGOF

жжжжж TEYTNG TO TNSERT FGTH 4
4 , 以

- WWDTN..

жッжжж NOT FATH ENDFOXNT:FADT

жжжжж OFDEFED EDUATTONS TO EE FACKED：

жжжж NOT FATH ENDFDIMT：FッチDT
※жжжж ORDEFED EQUATTONS TO EE FACKED：

жжжжж TRYING TO TNGEFT FATH 7
7 • 以HGTHA FFKAGOI
 －NFWT－NF

жжжжж FaTH ADDED

$17+13 ; 10 \cdot 123 ; 19+12$
жжж\％\％OFOEFED FQUATIONS TO EF FACFED：

$$
9+1480
$$

※жж世木 FATH DOFS NOT FIT，ADDED TO CAF世YOUEF FOF NEXT FFOCESSOF

жжжжж THYTNG TO WNSERT FATH IO
10．TOFO4．
жжжжж FATH DOES NOT FIT：ADDED TO CAFGYOUEF FOF WFXT FFOCESBOF
ж世жжж OFDEFED ERUATIONS TO EE FACKED：

wक世世 TFYTNG TO TNSEFT FATH I2
1． 2. WS3DT－－4S3
天。 －－TOFOAE NFDT WSSDT NW
жжжж FATH DOES NOT FIT：ADDFD TO CAFएYOUEF FOF NEXT FFOCFESOF
жжжжж OWDERED EOUATYONS TO EE FACKED：

жжжжж TFYYNG TO TNSEFT FATH IE
1．5．WF

※世木жж F口TH ADDED

$18 \cdot$ WE3； $19+H 2$
жжжжж OFDEFED EOUATCOMS TO EW FACKEW：
0．DH4F－H49－H3
жжжЖ世 TFYING TO TNGEFT FATH IG 1．6．DH45ㅍ․ 149

жжжж\％FATH DOES NOT FTT，ADDFD TO CAEXYOUEF FOF NEXT FFOCESBOF
жжжж OWDEFED EOUATIONS TO EFE FACKED：
0 ． $146 \cdots+43$
жжжж世 TFYYTG TO TNGENT FATH 1.6
1．6：HAG…HMG
 …

жжжжж 口以上FED EOUATTONS TO EF FACKED：

$$
0: H 3
$$

《жжж TEYTNG TO MNSEFT FATH 17
1．7，H3

жжж世ж FACKTNG CAFTYOUER ERUATXDNS

жжжжж TRYTNG TO TMSEFT FATH

жжжжж FATH DOFG NOT FTT，ADDED TO GAFWYOUEF FOF NEXT FFOCFCSOF

жжжж TFYTNG TO TMSERT FATH 8
E．EI
жжжжж FATH DOFS NOT FITY ADOED TO CAFFYOUEF FOF NEXT FFOCESSOF жжжжж 口FDEFUD EOUATTONS TO EE FACKFD：

жжжжж TFYTNG TO TNSEKT FATH IO
10．TOFPTA
жжжжж FATH DOFS NOT FIT，ADDED TO CAKHYOUEF FOF NEXT FGOCESSOF： жッж＊＊OFDEFWD ERUATMONS TO EE FACNED：

0．H2
жжжжж TFYTNG TO TNEEET FATH II
1． $1 . \mathrm{H}_{2} \mathrm{~F}$
※жжж FATH，DOES NOT FTT，ADDED TO CAFFYOUFF FOF NEXT FFOCFSSOF W世W\％OFDEFED ERUATTONS TO EE FACKED：

ж世жж TFYXNG TO TNSEFT FATH 12
12．以SS
 ж\％＊＊＊OWDEED FQUATRONS TO BF FACRED：

жжжжж TFYTNG TO TNSEFT FATH 1.3
1．3，NA？
※жжж FATH DOES NOT FIT，ARDED TO CAFFYOUFF FOK NFXT FFOCESSOR ж世及\％ORDEFED EOUATMONS TO EF FACKED：

0．H3 $+H_{2}$

17.13

жжжжж FATH DOES NOT FIT，ADOED TO CAFFYOUEF FOF NEXT FFOCESSOF

0 ， H_{2}^{2}
жжжжж THYTNG TO TNSEFT FATH 19
1．9． 12

※ж＊＊＊FACKMNG FFOCFSGOF 3

0．T\％以＂？

 ．．．F\％

жжжж O以WFFED EOUATYONS TO EE FOCKED：

FACE ठ
0 － 720
жжжжж TFiYING TO INEEFT FATH II

3＋FS3－F630及－T＜
※世世жж F゙ATH ADDED

※жжж\％FACKTNE CAFFYOVEF EQUATIONS
жжжжж OFDEFED EDUATMONS TO EE FACKED：

жжжжж FATH ADDED
жжжж＊FEEIATTONOL EOUATXONS AEE：

жжжжж OFDEFED EOUATTONS TO EFE FACKED：
0．FАЕDT
※жw世\％NOT FATH FNDFOTNT：F4GDT
жжжжж OFDEFIE EQUATIONG，TO EFE F＇ACKED：
0 ＋TOFO4
世жжжж TFYYNG TO TNSEFT FATH 1.0
1．0．T0FO4．

жж世世K FATH ADDED

※स＊＊O ODEFED EQUATHONS TG EE FACKED：

жжжжж TEYING TO TNSEFT FATH

 －-F 4 4
 …F－45
жжжжж FATM ADDED
жжжж FEWATMONAI．EOUATTONG AFE：
0．Wha－WH：

0．Wh
жжж世ж FACFTNE DELAYED，NOT CFITTCALIWAZ
※жжжж ONOFFLD ERUATKDNS TO EE FACKED：
$0+1 \mathrm{~B}$
wकw THYTNG TO TNSEFT FATH IG
$10+4 \%$

жжжжж FATH ADDED
कжжжж FELATTONAL EOUATMONG ARE:
0 - WAO-WESDT

жжжжж ORDEFED EOUATIONS TO EEE FACKED:
0. WS30T - Wh2

सж*** TEYING TO INGEET FATH 1.2
12. WSODT-WGO
 … 4 GDT WS
жжжжж FATH DOES NOT FIT, ADDED TO CABYOUEF FOR NEXT FROCESGOF
жж*** ORDEEED ERUATIONS TO EE FACKED:
0. 4ω

жжжжж FACKING DELAYED NOT CRTTICALBWAZ
\% \% ※ж ORDEFED ERUATIONS TO EE FACKED:

**ж* TEYTNG TO TNSERT FATH 8
©. E 1
Wकжж FATH DOES NOT FIY, ADOED TO CAEMYOWF FOR NEXT FROCESSOF
жжжж OFDEEED EDUATIONS TO EE FACKED:

жжжжж TRYTNG TO MNSERT FATH 9
9. W4 4 C
※कж** FATH DOES NOT FIT, ADDED TO CAFRYOVER FOR NEXT FROCESSOR
\%жжж\% ORDEEED EOUATIONS TO EE FACKIED:
0. WS3DT-WA2-DH45-H49 - H3-H2

ッжжжж TEYING TO TNGEFT FATH 12
1.2. W53-453DT
 FAEDT-WSSDT-F4S
жжжжж FATH DOES NOT FIT, ADDED TO CABRYOUER FOR NEXT FEOCESSOR
жжжжж ORDEEED EQUATIONS TO EE FACKED:
0 , WA2 - $\mathrm{DH} 4 \mathrm{H}-\mathrm{H} 49-\mathrm{H} 3-\mathrm{Hz}$
жжжж TBYING TO TNSEET FATH 1.3
13. Na?
※कж世\% FATH DOES NOT FIT, ADDED TO CAFFYOUEFE FOF NEXT FFOCESSOR
жжжжж OFDERED EOUATIONS TO EE FACKED:
0 . $1+445-H 49+H 3-H 2$
жжжж TKYTNG TO TASEET FATH 16
16. $1497-1048$
 …FAEDT - FAEM- H49
***** FATH DOES NOT FTT, ADDED TO CABRYOVEF FOR NEXT FROCESSOR,
жжжжж ORDEFED EQUATTONS TO EE FACKED:
$0.149+43 \cdots+12$
жжжжж TEYYNG TO TNSEEG FATH 16
1.6. H49 -WH4E

***** FATH DOES NOT FIT, ADDED TO CAFRYOUEF FOF NEXT FFOCESSOF
***** ORDEFED EOUATIONS TO EE FACKED:
0 . $\mathrm{HB}+\mathrm{Hz}$
**** TRYTNG TO TNEEET FATH 17
$17 \cdot H 3$


```
        -WES-F4EDT FF45
※%*%% FATHH ADDEDD
```



```
        14.DE12%16.H49%19.12
%ж%%% ORDEFEDD EQUATTONS TO EE FPCKEDD:
        0. H2
жжж%ж TRFTNG TO TNEEET FATH 1.9
    19. 12%
        3. H3-H2-FS3-FG3R2-T%ER2-T25-H25-T3Q2-T3C-T3DT-T3-W41-TORG41-FF\1DT-F41
            -WXO2-WES-F4%EDT-F4S
*N%%% FATH ADDED
```



```
        1.4.DEI.2)16.H49
```

жжжж* FACKTNC FROCESSDR \{

wकwжж FEELATTONAL ERUATIONS AFE:
0. W4EC- -BHE
жжжжж CAERYOUER ERUATIONS ARE:

w w w \because FACKTNG FELATTONAL.. ERUATIONS
※жж\% ORDEFED ERUATYONS TO EE FACKED:
0 . W45c-0445
жжж** TFYTNG TO TVEEFT FATH 9
9. W4EC
4. FFAgQE-WAEC-DHATHE
жжжжж FATH ADDED

\% $\%$ OK ORDEFED EOUATTONS TO-EE FACKED:
0. DH45
ж*** TRYYNG TO TVEEET PATH 16
16. $12445-H 9$
4. FE4905 Wame - WHOTHE-DH45
4. FHA490 WhEC-DHOTHE-DHAE-H49
жжжжж FATH ADDED

wxжж\% FACKING CAFRYOVEF EGUATIONS
жжжжж OFDEFED EOUATIDNS TO EE FACKID:
0. E1-WGSDT Whz
w**** TRYING TO TNEEET FATH Θ
e. El

** \% \% F FATH ADDED

※жжжж ORDEFED EQUATTONS TO EE FACKED:
0 . WESDT-WAZ
жжж\% TFYTNG TO TNSEET FATH 12
12. $453-14530 T$
4. FRAgQE-W4EC-WHOTH-EI-DH45-H49-W63

※※刃жж PATH ADDED
w w \% \% UNFACLED FATHE: 13.WA2F14.DEL?
wwsж\% OFDEEED EDUATTONS TO EE FACRED
0. Wh2
**жж TEYTNG TO INEEFT FATH 13
13. Whe

※жжжж FATH ADDED

O, DEL2
жжжжж UNFMCKED FATMS: $14, D E L$
жхжжж OFDEFED EOUATXONS TO EF FACFED:
0. DEL_?

жжжжж TFYTNG TG IASEFT FATH 1.4
1.4, DEEZ

※жжжж F゙ATH ADDFD

※ SMALIEST FATH EXECUTTON TKME: 30AZ, UNUSED TIME ON OTHEF FATHE:1O6 FACKTNG SEOLIENCE COMFIETE

RESUL..T	CAll C	STAFT	ENO	MAX	FF EQUATION	FE EO	FR EQUATIOM
H3	1.42	0	1.472	266	$\begin{aligned} & 1 . \operatorname{ToFOC} \\ & 2 \mathrm{H} 1 \end{aligned}$	$\begin{aligned} & 4300 \\ & 1650 \end{aligned}$	
H.	1.26	1.42.	268	39\%	1. TOFAC	4300	
F63	122	268	390	514			$2 \mathrm{~F} \cdot 3$
$1-5302$	204	390	594	71.8	1. W $\mathrm{A}^{2} \mathrm{C}$ C	1.402	
T250\%	134	98	728	85\%			
T25	1.1. 8	728	846	970			
$\mathrm{H}_{2} \mathrm{~F}$	1. 1.4	846	960	1084	1. TOFQC	4300	
T302	598	960	1560	1682			
130	134	1.56	169%	1816			
T30T	49%	1.692	21.06	2310			
7 O	206	21186	2992	2016			
. 41.	8,	239%	3230	3354			2 THTAAL

FKTETFLI LISTING : M68000 02/19/85 14:34:1.6 FPCE 1.4

REFERENCES

1 Blech, R.A.; and Arpasi, D.J.: Hardware for a Real-Time Multiprocessor Simulator. NASA TM-83805, 1984.
2. Arpasi, D.J.: RTMPL - A Structured Programming and Documentation Utility for Real-Time Multiprocessor Simulations. NASA TM-83606, 1985.
3. Arpasi, Dale J.: Real-Time Multiprocessor Programming Language, (RTMPL) Users Manual. NASA TP-2422, 1985.
4. Cole, G.L.: Operating System for a Real-Time Multiprocessor Propulsion System Simulator. NASA TM-83605, 1985.

TABLE I. - RTMPL - GENERATED INFORMATION

Label	Operation	Result	Arguments	Calcu1- ation time
$\mathrm{S} \$ 12$	LOAD	R1	2	8
	ADD	R1	R1,y	16
	STORE	X	R 1	8

TABLE II. - PARTITIONING INFORMATION

Equation label	Dependent arguments	Independent arguments	Calcul- ation time	Can start	Can end	Must enda
X_{1}	(none)	U, X_{5}	32	0	32	64
X_{2}	(none)	x_{5}	64	0	64	64
X_{3}	X_{2}	(none)	32	64	96	112
X_{4}	x_{1}, x_{2}	(none)	48	64	112	112
x_{5}	x_{3}, x_{4}	x_{5}	48	112	160	160

aInformation used for packing only.
table ilì. - packing algorithm results for turbojet model

Update time	Processors required	Processor percent utilization			
		P number 1	P number 2	P number 3	P number 4
5666	4	100	98	97	53
10000	2	99	98	--	--
19568	1	100	-	-	-

(a) Decoupled computational paths.

(b) Loosely coupled computational paths.

Figure 1. - Physical parallelism.

(a) Closely coupled paths.

(b) Packing.

Figure 2 - Partitioning and packing closely coupled equations.

Figure 3. - Path identification Algorithm.

Figure 4. - Packing Algorithm.

Figure 4. - Continued.

Figure 4-Concluded.

Figure 5. - Test fit Algorithm.

Figure 6. - The affect of insertion on equation attributes.

End of Document

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

