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EXCITATION OF THE EARTH'S CHANDLER WOBBLE

BY SOUTHERN OSCILLATION / EL NINO, 1900-1979

ABSTRACT

The southern oscillation / El Nino (ENSO) is the single most prominent interannual signal

in global atmospheric/oceanic fluctuations. This paper addresses the following question: how

important is the angular momentum carried by ENSO in exciting the Earth's Cahndler wobble?

The question is attacked through a statistical analysis of the coherence spectra (correlation as

a function of frequency) between two data sets spanning 1900-1979—the southern oscillation

index (SOI) time series and the excitation function \j/ (with x-component Vx and y-component

TJI ) of the Chandler wobble derived from the homogeneous ILS (International Latitude Service)

polar motion data. The coherence power and phase in the Chandler frequency band (~ 0.79-

0.89 cpy) are studied. It is found that, during 1900-1979 the coherence between SOI and #x

is significant well over the 95% cofidence threshold whereas that between SOI and \fr is prac-

tically nil. Quantitatively, the coherence study shows that ENSO provides some 20% of the

observed Chandler wobble excitation power. Since earlier investigations have shown that the

total atmospheric/oceanic variation can account for the Chandler wobble excitation at about

20% level, the implication is that ENSO may be an important (interannual) part of the atmos-

pheric/oceanic variation that is responsible for the Chandler wobble excitation during 1900-1979.
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EXCITATION OF THE EARTH'S CHANDLER WOBBLE

BY SOUTHERN OSCILLATION / EL NINO, 1900-1979

1. INTRODUCTION

The southern oscillation (SO) is the single most prominent signal in interannual, global-

scale atmospheric fluctuations It is characterized by an irregular seesawing of air mass between

the Eastern and Western Hemispheres in the tropical Pacific-Indian Ocean region. For some as

yet unknown reasons, every once in a few years the SO wind field will collapse and, through

ocean-atmosphere interactions, cause extensive meteorological disruptions—a phenomenon known

as an El Nino event. In keeping with meteorological terminology, the whole southern oscilla-

tion / El Nino system will be referred to as ENSO

The Earth's rotation axis does not remain fixed relative to the body of the Earth. Instead,

it traces out on the surface of the Earth a quasi-periodic path about some slowly drifting mean

position near the Poles This motion is known as the polar motion. The Chandler wobble is

a major component in the polar motion. It is a free oscillation of the Earth (corresponding to

the Eulenan free nutation) and has a period of about 14 months. From decades of observation

we know that the Chandler wobble has been continually excited. The major mechanism of

excitation, however, is presently unknown despite a great deal of effort by many investigators

over the years

The present paper studies the importance of the great amount of atmospheric angular momen-

tum carried by ENSO in the excitation of the Chandler wobble. Through the conservation of

angular momentum, any atmospheric angular momentum change is coupled to the rotation of

the solid Earth, resulting in changes in length-of-day and polar motion In fact, the atmospheric

angular momentum associated with ENSO has been shown to have a major influence on the

interannual length-of-day variations over the last 3 decades since accurate measurements were

available (Chao, 1984), the most dramatic example being the extraordinarily strong 1982-1983



ENSO event (see also Rosen et al., 1984; Eubanks et al., 1985). As for polar motion, the lat-

ter event has been demonstrated by Gross & Qiao (1985) to have a good temporal correlation

with the y-component of the excitation function of the Chandler wobble, suggesting that this

event is also a major excitation mechanism for the Chandler wobble during 1982-1983. Now

the question arises: what about earlier El Nino events? More precisely, how important, as far

as we can tell from available data, is ENSO in the excitation of Chandler wobble?

The nature of the question suggests a statistical correlation study. Following Munk & Has-

san (1961) and Wilson & Haubrich (1976), this paper studies the correlation in the frequency

domain (i.e. the coherence spectra) and concentrate only on the Chandler band which can be

loosely defined as the frequency band centered at 0.84 cycles per year (cpy), corresponding to

a period of about 14 months, with a bandwidth of about 0.1 cpy. This is because the Chand-

ler band is where the excitation energy of the Chandler wobble resides. It, along with the an-

nual frequency band, is also where the polar motion observations have the highest signal-to-noise

ratio. If any correlation between ENSO and Chandler wobble exists, it should show up in the

coherence spectra within the Chandler band.

In order to secure statistical stability and, at the same time, achieve reasonable frequency

resolution, we need data records as long as we can get. This paper uses polar motion and SO

time series spanning the period 1900-1979. They are described in the next section.



2. DATA PREPARATION

The strength of SO is customarily measured by the (dimensionless) SO Index (SOI), de-

fined as

SOI(Yr, Mo) = [SLP(Yr, Mo)]Tahiti - [SLP(Yr, Mo)]^^ (1)

where SOI(Yr, Mo) is the SOI at month Mo of year Yr; and SLP(Yr, Mo) is the atmospheric

pressure at sea level normalized by its standard deviation for month Mo obtained from many

decades of observation at a given station, after removal of the corresponding mean value for

month Mo. The SOI thus defined is a zero-mean, monthly time series devoid of seasonal and

geographical effects at the two stations which represent the eastern and western centers of the

(seasawing) SO system. The observation of SLP at Darwin has been available since 1882, but

did not start at Tahiti until 1935. .Fortunately, the SLP (especially the low-frequency variations

therein) at Tahiti and at Darwin are highly correlated— they are virtually mirror images of each

other (see, e.g., Rasmusson & Wallace, 1983). Therefore, I simply substitute into Equation (1)

the relation (SLP>pahiti = - (SLP)Darwm to obtain pre-1935 SOI values. I then pass the entire

1900-1979 SOI time series thus constructed through a moderate low-pass filter with corner

frequency at 2.5 cpy. The result is presented as Figure l(c). During this period there are

some 30 El Nino events (see, e.g., Qumn et al., 1978). Although not indicated in the Figure,

they are in general associated with pronounced drops in the SOI value.

The polar motion data set used is the homogeneous ILS (International Latitude Service)

data set reduced by Yumi & Yokoyama (1980). It consists of two monthly time series: the

x-component along the Greenwich meridian and the y-component along the 90°E longitude.

Spanning 80 years from 1900 to 1979, it is the longest homogeneous polar motion data set in

existence.

The polar motion and the SOI time series are not, as yet, directly comparable for the

following reasons, (i) The polar motion is in fact the temporal convolution of the excitation



function i// with the free Chandler wobble, and (ii) the excitation function \ji of the polar mo-

tion contains components that are absent in the SOI and are of no interest as far as ENSO is

concerned. These components include a mean value, a linear trend, and a strong annual term.

Therefore, I first remove these components from both x- and y-series of the ILS polar motion

using linear least-squares. Then I pass the resultant through a Backus-Gilbert deconvolution fil-

ter devised by Gross & Chao (1985), using a trade-off coefficient of 1.0. The end result is

the observed excitation function <// of the Chandler wobble, with x- and y-components, i// and

^ , as shown in Figures l(a) and l(b), respectively. Note that as long as the Chandler band

remains our sole interest, it does not matter what type of deconvolution scheme is actually

used. Any "raw" deconvolution, such as employed by Wilson & Haubrich (1976) or Wahr

(1983), will yield the same coherence in the Chandler band. The main reason we use Backus-

Gilbert deconvolution is that it greatly suppresses high-frequency noise in i// and hence allows:

(i) i// to be at all presentable (Figure 1), and (n) time-domain comparison to be possible (but

see Section 4).
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Figure 1. (a) The x-component, and (b) the y-component of the Chandler wobble
excitation function derived from ILS data, (c) The southern oscillation
index (SOI), 1900-1979.



3. COHERENCE STUDY AND RESULTS

The thesis of the present study is to search for linear correlation (in the form of coher-

ence) between the x- and y-components (or "equatorial" components) of the (interannual) ang-

ular momentum (call them MX and M^, respectively) carried by ENSO on the one hand, and

the excitation function V of the observed Chandler wobble on the other. In lack of observa-

tions for MX and M^ I am actually using SOI as a proxy, with the hope that it represents MX

and My in a linear fashion:

SOI = Lx (M )
(2)

SOI - Ly (My)

where LX and Ly are some linear operators. Equation (2) is a crucial assumption and will be

discussed further in Section 4.

Before delving into numerical computations, I shall discuss qualitatively some facts that

may be favorable for ENSO to be of importance in the excitation of Chandler wobble. First

of all, unlike other geophysical events (such as earthquakes, core-mantle interactions, or solar

wind bombardment), ENSO appears to carry sufficient angular momentum to excite Chandler

wobble to an observable level. This is argued to be so by Gross & Chao (1985) in an order-

of-magnitude assessment. Note, incidentally, that here the angular momentum includes contri-

butions from both velocity and mass redistribution of air masses (see, e.g., Gross & Chao, 1985,

Equation 4.4). Secondly, Wilson & Haubrich (1976) and Wahr (1983) have concluded that the at-

mospheric variation may account for a significant fraction (about 20%) of the total Chandler wob-

ble excitation. Since it is actually the atmospheric energy in the Chandler band (rather than the

dominant seasonal energy) which is ultimately responsible, we should look for atmospheric excita-

tion mechanisms of interannual time scale, among which ENSO is undoubtedly a strongest candi-

date. In fact, a typical El Nino event has a life span of about 14 to 16 months (Wyrtki, 1982).

The whole situation is highlighted by the Fourier power spectrum of the SOI time series (Figure 2),

which shows a prominent spectral peak at around 447 days, straddling the Chandler band.
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The coherence spectrum of two random signals Xj(t) and x2(t) is here defined as

G12(0
712(0 = . (3)

n(f) G22(f)

where f is frequency, G12(0 is the (complex-valued) cross-power spectrum of Xj(t) and x2(t),

Gn(0 and G22(0 are the (real-valued) auto-power spectra of Xj(t) and x2(t), respectively.

7l2(f), as defined, is a complex-valued function of frequency and can be expressed as l712(f)l

exp[iri2(f)],.where l7|2(f)| and ri2(f) are called, respectively, the coherence magnitude and

the coherence phase. Because we are usually more interested in high coherence magnitudes, it

is convenient (and customary) to display the square of l712(f)l, or the coherence power, rather

than I7j2(f)l itself. The coherence phase r12(f) gives the phase difference between x,(t) and

x2(t) as a function of frequency; and the coherence power J7|2(OI2 is a normalized measure of

correlation between Xj(t) and x2(t)— its value, ranging from 0 to 1, indicates the squared cor-

relation coefficient between Xj( t ) and x2(t) at any given frequency.

The power spectra are usually estimated by the discrete Fourier transform (DFT) in the

following way: G12(f) = Xj(f) X2(f)*, Gn(f) - IX^f)!2, G22(f) = |X2(f)l2, where X, and X2

are the DFT of Xj and x2, respectively. However, DFT being an unstable spectral estimate,

this practice results, according to definition (3), in a value of 1 for l712(f)l regardless of its

true value. In order to produce a more accurate (and hence useful) estimate for 7,2(f)> it is

necessary to do spectral averaging. A common practice in the present situation is a moving

average of the DFT power spectrum estimates:

1 " ^
G(f,) = - 2 G(fi + j) (4)

N j=-n

where N = 2n + 1 is the averaging window length. Note that procedure (4) reduces the fre-

quency resolution by a factor of N. Thus, the spectral averaging stabilizes the estimate for the

coherence 7| 2(f) at the expense of frequency resolution; and the choice of N should represent

a reasonable compromise. Following Bloomfield (1976), the coherence power threshold at, say,

95% confidence level after N-point spectral averaging is

8



1

cf^N) = 1 - 20~ N-I (5)

Only observed value of |712(OI2 greater than a2 can be regarded as significantly different from

0. For these values, the 95% confidence interval for I7l2(f)l is given approximately by (tanhZj,

tanhz2) where Zj and z2 are

1 1 + l712(0! 1.96
— In ± -— , (6)
2 1 - l712(OI X/2N

and the 95% confidence interval for the phase r12(f) is approximately (Bloomfield, 1976)

1.96 / 1
r12(f) ± -— */ i (?)

V2N f r7i2(OI2

For our 80-year long time series under study, I choose N = 7. This yields a frequency

resolution of 7/80 cpy, somewhat higher than the bandwidth of the Chandler band we defined

earlier (and hence is desirable). Equation (5) then, gives a2(7) = 0.39 as the theshold at 95%

confidence level.

Figure 3 shows the computed power l712(f)l2 for the pair (SOI, i|/x) and the pair (SOI, i// ),

up to the Nyquist frequency of 6 cpy The Chandler frequency is indicated by the vertical

dashed line and the 95% threshold by the horizontal dashed line. The low-frequency portion,

0-1.5 cpy, of Figure 3 are reproduced in Figures 4(a) and 5(a). Figures 4(b) and 5(b) show

the corresponding coherence phase spectra. The most striking feature is the peak near the

Chandler frequency in l712(OI2 spectrum for (SOI, i/>x) (Figure 4a). Although its maximum

lies some 0.04 cpy off the Chandler frequency, it peaks through the 95% threshold decisively

and has most of its energy in the Chandler band. This strongly suggests a considerable corre-

lation between SOI and <£x.

The assertion that SOI and V/x are correlated in the Chandler band is further supported
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Figure 3. The coherence power for the pair (a) (SOI, t//x), and (b) (SOI, \j/ ), up to
the Nyquist frequency. The Chandler frequency and the 95% confidence
threshold are indicated by dashed lines
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by their coherence phase spectrum (Figure 4b). Theoretically, a necessary condition of this as-

sertion is that the phase be fairly constant in the Chandler band. In the present case, we

should expect SOI and i//x to be in phase, or, their phase difference in the Chandler band to

be zero. This is exactly what Figure 4(b) shows The fact that maximum coherence power

coincides with zero coherence phase boosts our confidence in the relationship well over the

95% level

Using Equations (6) and (7), we can now put statistical bounds on the coherence estimates

in the Chandler band Since these bounds are themselves functions of the magnitude l712(f)|,

let us simply choose a representative estimated value for I7j2(f)| in the Chandler band: l712(f)l

= \J 0.45 = 0.67 (see Figure 4a) Then, the 95% confidence interval for l712(f)l is found to

be (0 28, 0.87), and the 95% confidence interval for the phase r i 2(f) to be 0° ± 33°. The

implication of these values will be discussed in the next section.

Interestingly enough, the situation with (SOI, i// ) is quite the opposite—the coherence

power between SOI and i// reaches a minimum and approaches zero in the Chandler band (Fig-

ure 5a) The lack of correlation is further evidenced by an erratic fluctuation of the coherence

phase in the Chandler band (Figure 5b)
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4. DISCUSSION AND CONCLUSION

The ILS data are known to contain serious systematic as well as random errors. That is

the reason why a time-domain study of the correlation between SOI and $ (which I also con-

ducted) proved to be unfruitful—the overall (temporal) correlation coefficients found [~ 0.10

for (SOI, \^x) and ~ 0.15 for (SOI, ^y)] fall well below the level of significance. I have also

compared SOI with both tfr and #„ in the time domain (c.f. Figure 1) for each individual
x y

El Nino period; these comparisons, ranging from "remarkable" to "awful", show no consistent

pattern whatsoever. Indeed, it is when we enter the frequency domain that we see something

meaningful. This is because the Fourier transformation concentrates a periodic signal (the

Chandler wobble in this case) into a narrow frequency band (the Chandler band), while it

spreads the noise over the whole spectrum. A corollary of this statement is that the ILS signal

in the Chandler band (as well as the annual band in which we are not interested) has a signal-

to-noise ratio of as high as 20-30 dB whereas any other frequency contains practically nothing

but noise. Therefore, for example, we should ignore the coherence outside the Chandler band

even if its power exceeds the 95% threshold (see Figure 3). At any rate, since we are here

only interested in the Chandler band it is fair to say that the noise in the ILS data does not

pose a serious problem to the present study.

A more serious problem (in a philosophical sense at least) is associated with the linearity

assumption (2), the need for which, as stated earlier, arises because the coherence study only

looks for linear relationships. There are indications that SOI is essentially linearly related to

the z- (or "axial") component of the atmospheric angular momentum carried by ENSO (see

Chao, 1984, Figure 4). But there has been no telling of its validity with respect to the x-

and y-components. Any nonlinearity can result in biases in the coherence spectra. This might

explain the (unexpected) total lack of coherence between SOI and ^ and the fact that the

coherence maximum for (SOI, #x) lies somewhat off the Chandler frequency. In any event,

the a postereori finding that (SOI, #x) coherence shows zero phase offset and large magnitude

in the Chandler band does suggest linearity to a large extent.

14



So far we have ignored the ~ 30-year oscillation in the ILS Jala, which can be clearly

seen in Figures l(a) and Kb). This oscillation is known as the Markowitz wobble although its

origin is largely unknown (see Dickman, 1983). The presence of Markowitz wobble does not

affect our results, however, because its associated energy is concentrated in the extreme low-

frequency end of the spectrum. This is confirmed by a numerical experiment which shows

that the differences in coherence spectra resulting from the removal of the Markowitz wobble

are strictly confined to frequencies lower than 0.05 cpy. Furthermore, since at these low fre-

quencies the coherence between SOI and ^ (with or without Markowitz wobble) is not signifi-

cant, we conclude that Markowitz wobble is not linearly correlated with ENSO.

The conclusion of this study, thus, is that ENSO is correlated with the excitation of the

Chandler wobble to a significant degree during 1900-1979 in the following sense. The correla-

tion seems to be all concentrated in the pair (SOI, $v); that between SOI and \bv is practically
X y

nil. The correlation between SOI and 0X is in the neighborhood of 0.67, with the 95% con-

fidence interval of ~ (0.28. 0.87) (see Section 3). Since physically ENSO and Chandler wobble

are involved here in a cause-and-effect relationship (ENSO being the "input" and Chandler wob-

ble being the "output" of the Earth filter), this, in terms of power, means that ENSO accounts

for 45% of the x-component of the excitation power for the Chandler wobble, or, since the

excitation powers for x- and y-components are nearly the same (c.f. Figure 1), some 20% of

the total excitation power. Although the associated 95% confidence interval, (4%. 38%), is not

as severe a constraint as we like it to be, 20% agrees well with the amount of Chandler wobble

excitation due to the entire atmosphere/ocean system determined by Wahr (1983). The impli-

cation here is that ENSO is indeed an important (interannual) part of the atmospheric/oceanic

variation that is responsible for the excitation of Chandler wobble during 1900-1979. Note

that the finding here is a far cry from the pessimistic view I held in an earlier, preliminary re-

port on this study (Chao, 1984). The latter came about primarily because in computing the

coherence phase spectra I had adopted Wilson & Haubrich's (1976) algorithm which does with-

15



out spectral averaging. That yielded extremely unstable raw estimates which, in turn, completely

obscured the true coherence and made the interpretation difficult.

One final note deserves discussion. Using accurate LAGEOS polar motion data, Gross &

Chao (1985) claim that the strong 1982-1983 ENSO episode has left its signature in the y-

component $ of the excitation function of Chandler wobble, but not in the x-component » / / •y *

This is opposite to what 1900-1979 data show in this study, and seems surprising at first.

However, if we take a close look at the anomalous behavior of the 1982-1983 ENSO event,

this x-y reverse situation may not be surprising after all. It is well-known (see, e.g., Rasmusson

& Wallace. 1983) that the 1982-1983 ENSO event, apart from being the strongest on record,

has an unusual timing relative to the climatological annual cycle—it was delayed by about half

a year compared with usual ENSO events. Spatially, it also appears that the 1982-1983 weak-

ening of SO was due to high air pressure at Darwin and the pattern of warm water moving

eastward, in contrast to a typical ENSO episode where the SO weakening is caused by low air

pressure at Tahiti and the warm water pattern moving westward. Clearly these differences in

behavior are immaterial as far as the effect on the z-component of the atmospheric angular

momentum (and hence on the length-of-day) is concerned. However, their effect on thd x-

and y-components of the atmospheric angular momentum (and hence on Chandler wobble) is

a much subtler problem. The said half-cycle offset in the timing and the reversal in the spatial

pattern may provide the explanation for the above observed x-y reverse situation. It is worth-

while to note that, if this is the case, the Earth's polar motion is providing us with a clear

gross indication on a meteorological variable. The previous known ENSO event that has a sim-

ilar unusual timing is that of 1940-1941, which, interestingly enough, is probably the strongest

event on record before the 1982-1983 event (Rasmusson & Wallace, 1983) (but obviously one

single event cannot produce any significant coherence to be observed in the spectrum). The time-

domain comparison between SOI and ^ time series (mentioned above) for the period 1940-1941

does show a better comparison for (SOI, \l> ) than for (SOI, i/> ). Furthermore, during 1940-y *•

16



1941, like in 1982-1983 (see Gross & Chao, 1985), <|/x was relatively quiescent (c.f. Figure 1).

But these should not be considered conclusive because, again, the noise in ILS data is too high

to render any detailed time-domain comparison meaningful. If the above argument is valid then,

in light of the findings in Gross & Chao (1985) and in this study, it seems that the conventional

geographical coordinate system (which is purely artificial) coincides (luckily) with an "optimum"

designation of the x and y axes as far as the ENSO effect is concerned. The reason may lie

in the fact that the southern oscillation is largely anti-symmetric with respect to the dateline

(in the negative x direction) although the ENSO effect is felt globally.
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nal in global atmospheric/oceanic fluctuations. This paper addresses the following question:
how important is the angular momentum earned by ENSO in exciting the Earth's Chandler
Wobble? The question is attacked through a statistical analysis of the coherence spectra
(correlation as a function of frequency) between two data sets spanning 1900-1979-the
southern oscillation index (SOI) time series and the excitation function $ (with x-compon-
ent \ftx and y-component \liy) of the Chandler wobble derived from the homogeneous ILS
(International Latitude Service) polar motion data. The coherence power and phase in the
Chandler frequency band (~ 0.79-0.89 cpy) are studied. It is found that, during 1900-
1979 the coherence between SOI and i//x is significant well over the 95% confidence thres-
hold whereas that between SOI and i// is practically nil. Quantitatively, the coherence
study shows that ENSO provides some 20% of the observed Chandler wobble excitation
power. Since earlier investigations have shown that the total atmospheric/oceanic variation'
can account for the Chandler wobble excitation at about 20% level, the implication is that
ENSO may be an important (interannual) part of the atmospheric/oceanic variation that is
responsible for the Chandler wobble excitation during 1900-1979.
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