
NASA
Technical
Memorandum

NASA TM-86535

A PROCESS ACTIVITY MONITOR FOR AOS/VS

By R. A. McKosky, S. W. Lindley, and J. S. Chapman

Management Systems Office
Shuttle Projects Office

January 1986

tHASA-Tfl-86535) A PROCESS AC2IVI7Y MOWITOB
FOB AOS/VS (MAS A) 30 p HC A03/HP"0?

CSCL 09B

N86-19950

Unclas
G3/60 05511

NASA
National Aeronautics and
Space Administration

George C. Marshall Space Flight Center

MSFC - Form 3190 (Rev. May 1983)

https://ntrs.nasa.gov/search.jsp?R=19860010479 2020-03-20T15:10:30+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42842007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TECHNICAL REPORT STANDARD TITLE PAGE
1. REPORT NO. 2 GOVERNMENT ACCESSION NO.
NASA TM - 86535

4. TITLE AND SUBTITLE

A Process Activity Monitor for AOS/VS

7. AUTHOR(S)

R. A. McKosky,* S. W. Lindley,* and J. S. Chapman
9. PERFORMING ORGANIZATION NAME AND ADDRESS

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

12 SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration
Washington, B.C. 20546

3.

5

6.

8.

10.

11.

13.

14

RECIPIENT'S CATALOG NO.

REPORT DATE

January 1986
PERFORMING ORGANIZATION CODE

PERFORMING ORGANIZATION REPORT tf

WORK UNIT NO.

CONTRACT OR GRANT NO.

TYPE OF REPOR'i & PERIOD COVERED

Technical Memorandum

SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

Prepared by Management Systems Office, MSFC Shuttle Projects Office and
*Rockwell International

16. ABSTRACT

With the ever increasing concern for computer security, users of computer
systems are becoming more sensitive to unauthorized access. One of the initial
security concerns for the Shuttle Management Information System was the problem of
users leaving their workstations unattended while still connected to the system.
This common habit was a concern for two reasons: it ties up resources unneces-
sarily and it opens the way for unauthorized access to the system. The Data
General MV/10000 does not come equipped with an automatic time-out option on inter-
active peripherals. The purpose of this memorandum is to describe a system which
monitors process activity on the system and disconnects those users who show no
activity for some time quantum.

17. KEV WORDS

Elapsed Time, CPU. Process Activity,
PID, Threshold, Process Termination

19

18. DISTRIBUTION STATEMENT

Unclassified — Unlimited

SECURITY CLASSIF. (ofthl»i»pem 20. SECURITY CLASSIF. (of thli p«g.) 21. NO. OF PAGES 22. PRICE

Unclassified Unclassified 29 NTIS
MSFC - Form 3292 (May 1969)

For fale by National Technical Information Service. Springfield. Virginia 22161

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. SYSTEM DESCRIPTION 1

III. PROBLEM OVERVIEW 1

IV. SOLUTION OVERVIEW 2

V. APPLICATIONS 3

A. Process Activity Monitor 3
B. Process Terminator 3

VI. CONCLUSION,

APPENDIX A .

fVECEDMB PAGE BLANK I9QT nLNED

iii

LIST OF ILLUSTRATIONS

Figure . Title Page

1. Process tree for OP 2

2. PIDACT screen 4

3. ERP log 5

IV

TECHNICAL MEMORANDUM

A PROCESS ACTIVITY MONITOR FOR AOS/VS

I. INTRODUCTION

Managers of computer systems are becoming increasingly aware of the necessity
to guard against unauthorized access. A primary security concern for any system is
an active terminal left unattended by the user. Some systems are equipped with an
automatic time-out option. The Data General MV/10000, however, is not. When
selecting the MV/10000 to drive the Shuttle Management Information System (SMIS)
for the Marshall Space Flight Center's Shuttle Projects Office, analysts and managers
agreed that a time-out feature would need to be incorporated into the system. Such
a feature would decrease the chance of unauthorized access to the system and free
limited system resources. It is the purpose of this memorandum to describe the
process activity monitor and process terminator tasks developed for SMIS, by which
users registering no CPU activity for some time quantum are disconnected from the
system.

II. SYSTEM DESCRIPTION

The Data General ECLIPSE MV/10000 runs under Advanced Operating System/
Virtual Storage (AOS/VS), a multitasking, multiprogramming, demand-paged, virtual
storage operating system. It can support users on a time-sharing basis, run batch
jobs, or perform control applications on a real-time basis. The user communicates
with AOS/VS from the console via Command Line Interpreter (CLI) commands. AOS/
VS is unique to 32-bit ECLIPSE MV computers, and has the capacity to run up to
256 processes at a time.

The MV/10000 process tree begins with AOS/VS, designated as Process Identi-
fication number (PID) 0. AOS/VS assigns a PID to each other process. AOS/VS
has two sons, PMGR, PID 1, and OP, PID 2. PMGR is the peripheral manager. OP
is the "master process" because it is operable only from the master console.

EXEC, a son of OP, runs as PID 3. All user processes and the printer queues
are sons of EXEC. Most system processes are sons of OP. System processes include
peripheral controllers, data base management systems, communication packages and
Comprehensive Electronic Office (CEO) office automation software. Figure 1 shows a
typical process tree for PID 2 (OP).

III. PROBLEM OVERVIEW

The goal was to develop a task to monitor CPU activity and terminate any inac-
tive user process. During development it was decided to design two tasks which
could run independently, the monitor, and the process terminator. The monitor
would provide a quick and easy reference to system activity. The process ter-
minator, when activated, would warn the user, then terminate the process after the
threshold of inactivity had been passed.

OP
2 (OP:OP) :LOCK_CLI

3 (OP:EXEC) :UTIL:EXEC
19 (OP:LPB) :UTIL:XLPT
20 (OP:LPE1) :UTIL:XLPT
21 (OP:LPE) :UTIL:XLPT
22 (OP:CON40) :UTIL:XLPT
32 (OP:CON89) :UTIL:XLPT
33 (OP:CON41) :UTIL:XLPT
114 (OP:CON57) :UTIL:XLPT

4 (OP:INFOS_II) :INFOS:INFOS_II
9 (OP: 009) : LANG: ORACLE :IOR
12 (OP:CORBWR) :LANG.-ORACLE:BWR
13 (OP:CORBIW) :LANG:ORACLE:BIW
14 (OP.-CORCLN) :LANG:ORACLE:CLN
15 (OP:CORARH) :LANG:ORACLE:ARH

116 (O P : N E T O P) : N E T : N E T O P
24 (O P : X 2 5 _ L M G R) : N E T : X 2 5 _ L M G R
117 (O P : S V T A) :NET:SVTA
1 5 4 (O P : R M A) : N E T : R M A
157 (O P : F T A) :NET:FTA

Figure 1. Process tree for OP.

However, three basic problems needed to be solved. First, a process was
required by which only process trees with inactive terminal sons would be terminated.
Second, the updates registered by the CEO clock indicate that the process tree of a
CEO user is active, when, in fact, it is not. Therefore, it was necessary to deter-
mine the inactivity threshold and terminate only those processes below that limit.
The third problem concerned exceptions to the rule, that is, certain users who for
various reasons would never be terminated.

IV. SOLUTION OVERVIEW

The two tasks developed were PIDACT, the process monitor, and ERP, the
process terminator. PIDACT provides a visual display of the status of each PID.
ERP can be activated or deactivated at any time. If it is determined that a user is
inactive, then the user is warned. After a specified number of warnings, the process
tree is terminated. A "VIP Table" was developed to ensure that certain users are not
subject to termination.

Together PIDACT and ERP solve the three problems mentioned in the above
section. To ensure that only inactive process trees are terminated, the process tree
is traversed using the ?PSTAT system call. This traversal enables the task to find
the terminal son and father process of the tree. Next, to ensure that inactive CEO
processes are terminated, a threshold of CPU time was needed. This was determined
by observing and testing of processes. It was found that active processes typically
use more than five milliseconds of CPU time per block minute. For example, pressing
a NEW LINE takes about 6 milliseconds. The VIP table, called VIP.DAT, which can be
modified by a text editor, was designed to ensure that selected users are not ter-
minated .

The remaining system calls needed for PIDACT and ERP are: 7SEND, used to
send messages to an inactive PID; 7RUNTM, used to get the run time ticks of a
process; 7GPRNM, used to get the program path name of a process; and 7GUNM, used
to get the owner, username of the father process. ?TERM, used to terminate the
process tree, is the only privileged system call, and requires Superprocess privileges.

V. APPLICATIONS

A. Process Activity Monitor

The task which monitors system activity is called PIDACT. PIDACT divides
processes into four groups:

1) Father process or OP

2) Active process

3) Inactive terminal son

4) Unassigned PID.

These divisions allow the system manager to easily monitor system activity.
On the screen, the father process or OP is displayed in normal video; active pro-
cesses are blinking; inactive terminal sons are shown in reverse video; and the
unassigned PIDS are shown as zeros. Figure 2 shows a typical PIDACT display.
The PIDs and usernames of those users logged on are shown on the right. The
numbers in square brackets are scales, and help locate a PID quickly. PIDACT up-
dates the screen once a minute, and is date and time stamped. To execute PIDACT
requires no special privileges.

To illustrate how PIDACT works, the three process trees shown in Figure 2
shall be examined. First consider PID 44, a father process with an inactive terminal
son process at PID 40. This process tree is subject to the process termination task,
ERP. Now consider PID 102. PID 102 is a father process with a son process at 114,
which is also a father process. PID 114 has two sons, at PID 116 and PID 32. Both
son processes are active, therefore this process tree is active and would not be ter-
minated by ERP. Lastly, consider PID 72. PID 72 is a father process with two sons,
PID 73 and PID 78. PID 73 is active, PID 78 is an inactive terminal son. This
process tree would be subject to termination.

B. Process Terminator

The task which terminates processes is called ERP. Approximately once every
eight minutes PIDACT determines the CPU activity of all the processes on the system.
If activity is below the threshold, the user is warned. If no significant activity is
observed after two successive warnings, the process is terminated by ERP. Superprocess
privileges are required to terminate the process. Upon warning a user or terminating
a process, ERP records the action in a log. Figure 3 shows an example of an ERP
log.

The following is a list of criteria ERP uses to terminate a process:

tn asi rr;?c*

g 15 K3 c; ̂ si
—•- co oo era •—i e—4 co c^ era
lo co co r̂ . r—* I—* r~^ H^

^m fej gy> r-t* ypj ^»

i —^ tr» *—i <*^ r^» c^ n^
C7> C79 C=3 C=3 C=3 C=3 C=3

rf^fCO

er» * — t

OO

co c=j oo

»- ~ »
=5 c->i — T- Lrt r--^ c=s e=s « — i

—• to C-~l 00
c=a ' — » e>j r^o
C-J C~-I C — I t — I

crj «r»-
oo c=s

LTJ
oo

un •— « oo
LTJ r~-. oo

c — i e-vi n — i
•

co i — . —< — T- ' — 'en c*~j -=r ur> r̂ ^ oo

o i — « c — -i r* ,̂ ur>
j Lrj

,
bc> CD c -̂i

CT? «*g^ * — « r̂ ** r^P
CD oo <=» »— • h ĵ

"*

1.0 —. r~-. r«-> o-j LJ-J — r~x r-«o cr>
—> c—4 r-"̂ Lr> cc> oo '̂ -̂ ^—• r*~> ^*"

(1)

H
O

(M

be

cen r—-j en «•»• era co
" ~

~ -
oo = oo r»-> !̂ ri~*

era C~-J to rjCT —
I • > —r- ex

C~-̂ C^*' CC3 LT7 CO C
r--7 r - > —t- 'f i -

oo co era r^ c^ op

•.—. «=r 01 LO —« I—.
"~^ f-^7 ~ J f <*^ O^7 ' * *

C i CT7 OO -=T- <= CO C~~J OOera r<-3 T- ••»"' oo o~> •—• c>j

r-̂ ^ CT> 1.̂ 7 •—•
CD r~^ o-> -̂

co c~~j oo -=t- c=i co

0_

—

co cr-j •—• (=1
if) CJ—3 ^~. •—i

0-3

-1 f^ CT7

PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:
PID:

36
39
43
51
16
46
36
39
43
51
16

103
90
36
39
43
51
57

1ST WARNING
1ST WARNING
1ST WARNING
1ST WARNING
1ST WARNING
1ST WARNING
2ND WARNING
2ND WARNING
2ND WARNING
2ND WARNING
2ND WARNING
1ST WARNING
1ST WARNING
TERMINATION
TERMINATION
TERMINATION
TERMINATION
1ST WARNING

LINDLEY
MCKOSKY
WEAVER
ADAMS
CARTER
BUSH
LINDLEY
MCKOSKY
WEAVER
ADAMS
CARTER
NAFUS
SHOTTS
LINDLEY
MCKOSKY
WEAVER
ADAMS
SMITH

13:
13:
13:
13:
13:
14;
14:
14;
14;
14;
14;
14:
14;
14;
14;
14;
14;
14;

55
55
55
55
55
00
00
00
00
00
00
00
00
05
05
05
05
05

:06
:07
:07
:07
:07
:09
:09
:09
;09
:09
;09
:09
:09

02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85
02/25/85

Figure 3. ERP log.

1) Current CPU time < old CPU time + threshold

2) Current CPU time >= old CPU time

3) USERNAME not in VIP table

4) PID > 3

5) Program name < > OP

6) Father process resolves to EXEC.

ERP was designed specifically to terminate processes based upon inactive leaf
nodes in the process tree. Since CEO leaves an inactive CEO word processing
(CEO_WP) when completing word processing yet not exiting the CEO control program
(CEO~CP), the active CEO_CP will be terminated. This feature could be changed by
modifying ERP or writing an additional task to monitor and terminate CEO_WP pro-
cesses only. In addition, if a user initiates co-processes where they are "both leaf
nodes in the process tree and only one is active, the process tree is terminated. If
the user intends to have an inactive co-process as a leaf node, then he should request
that the System Manager place his name in the VIP table.

VI. CONCLUSION

The PIDACT and ERP tasks are part of the SMIS security system. Though
security is the primary consideration, the termination of idle processes also frees
limited system resources: terminals, memory, and process capacity. The CPU
utilization involved in running ERP is an average 0.2 percent. Each idle process
utilizes an average of 0.2 percent. Therefore, for SMIS, the overhead for running
ERP is well justified.

APPENDIX A

COMMENT PIDACT - PID ACTIVITY MACRO

WRITE [!ASCI I 214]
WRITE TO END DISPLAY PERFORM A ^C^B
WRITE
STRING [JREAD press NEW LINE begin PID ACTIVITY DISPLAY]
WIDE
X/1=IGN/2=IGN PIDACT
NORM
WRITE [JASCII 214]

COMMENT ?ROC_ERP
COMMENT MACRO TO PROC UP THE SRP PID
COMMENT TERMINATION PROCESS

DEL/1=IGN/2=IGN SAVE.ERP.LOG
REN/1=IGN/2=IGN ERP.LOG SAVE.ERP.LOG
CRE ERP.LOG
PROC/NOBL/INP=@NULL/OUT='3NULL/LIST=ERP.LOG/SUPERP ERP

COMMENT WIDE
COMMENT MACRO TO PUT DG 460 TERMINAL
COMMENT INTO WIDE MODE

CHAR/CPL=134
WRITE [JASCII 236 306 330 260 260 270 265]
WRITE [JASCII 236 306 313]

COMMENT NORM
COMMENT MACRO TO PUT DG 460 TERMINAL INTO
COMMENT 80 COLUMN MODE

CHAR/CPL=80
WRITE [JASCII 236 306 330 260 260 264 277]
WRITE [JASCII 236 306 312]

PRECEDING PAGE BUNK NOT FILMED

I ***
c

SUBROUTINE CURPOS (Nl, N2, IBLK)
C
C THIS SUBROUTINE WILL PERFORM
C CURSOR POSITIONING FOR THE
C DATA GENERAL 410 AND 460 TERMINALS
C WERE Nl IS THE ROW AND N2 IS THE COLUMN
C
C THE VALUE IBLK IS A FLAG WHICH INDICATES
C THAT THE SCREEN IS TO BE ERASED BEFORE
C THE CURSOR IS TO BE POSITIONED
C
C CALLING PROGRAM SHOULD OUTPUT AFTER CALL
C IN THE FOLLOWING FORM:
C FORMAT ('#',
C THIS WILL SUPRESS THEN NEXT FORMAT FROM
C OUTPUTTING A CR
C

CHARACTER N*l(4)
INTEGER Nl, N2, ITMP1, ITMP2, IBLK, I

C
C N - ARRAY TO CONTAIN ASCII TERM. COMMANDS
C Nl ROW
C N2 - COLUMN
C ITMP1 - INTERUM CALCULATION FOR ROW
C ITMP2 - INTERUM CALCULATION FOR COLUMN
C IBLK - ERASE SCREEN FLAG (1=YES)
C I - LOCAL INDEX
C
C CHECK IF SCREEN IS TO BE BLANKED 1ST
C

IF (IBLK.EQ.1) THEN
WRITE (*, 101) [ERASE SCREEN

101 FORMAT (IX,'<036><106><105>')
END IF

C
C PERFORM INITIAL CALCULATIONS
C

ITMP1=N1/16 !MOD 16 ROW
ITMP2=N2/16 !MOD 16 COLUMN

C
C CALCULATE COLUMN POSITION
C

N(1)=CHAR(ITMP2+48) ICOLUMN 1ST
N(2)=CHAR(N2-(lTMP2*16)+48) ! IN TWO DIGITS

C
C CALCULATE ROW POSITION
C

N(3)=CHAR(ITMPl+48) !ROW 2ND
N(4)=CHAR(Nl-(ITMPl*16)+48) ! IN NEXT TWO DIGITS

C
C OUTPUT THE POSITION
C

WRITE (*,102) (N(I),I=1,4) IOUTPUT THE FOUR CHAR
102 FORMAT (IX,'<036><106><120>',4A1,$) !SUPRESS CR

C
RETURN
END

PROGRAM ERP
C
C WARNS AND THEN TERMINATES
C INACTIVE PID'S
C

INTEGER*4 ITIM(256), ICPU(256), IDIS(256)
INTEGER*4 ETIME, CPUTIM, IERR

C
DATA ITIM/256W ! ELAPSED TIME ARRAY
DATA ICPU/256*0/ !CPU TIME ARRAY
DATA IDIS/256*0/ !PID ARRAY

C
C SET PROGRAM LIMITS AND FLAGS
C

IMIN=8 !MINUTE UPDATE TIME
IFIRST=0 UNITIALIZE FIRST LOOP FLAG
IMINCPU=5*IMIN !SET CPU MINIMUM CPU ACTIVITY

C
C PERFORM FOR ALL POSSIBLE PIDS
C
100 DO 1=1,256

C
C GET ELAPSED TIME AND CPU TIME FOR
C THE SELECTED PID
C

K=I
CALL RUNTM (K, ETIME, CPUTIM, IERR)

C
C CHECK IF PID IS IN USE
C

IF (IERR.NE.O) THEN
C
C PID IS MOT IN USE
C

IDIS(I)=I !USE ACTUAL PID NO.
ICPU(I)=0 IZERO OUT CPU TIME
ITIM(I)=0 'ZERO OUT ELAPS TIME

C
ELSE

C
C PID IS IN USE GET THE FATHER'S PID
C WHICH IS CLOSEST TO OP.EXEC
C

K=I
CALL PDAD (K, IDIS(I))

C
IF (ICPU(I J-MMINCPU.LT. CPUTIM .OR.

& CPUTIM.LT.ICPU(I) .OR.
& ICPU(I).EQ.O) THEN

C
C A CHANGE IN CPU TIME HAS OCCURED
C OR A NEW PROCESS HAS TAKEN THIS PID
C OR THIS IS THE INITIAL RUN
C UPDATE ELAPSED TIME, CPU TIME
C AND DISPLAY FIELD
C

ITIM(I)=ETIME [UPDATE ELAPSED TIME
C

ELSE
C
C NO CHANGE IN CPU TIME
C CHECK I? THIS PROCESS HAS ANY SONS

c
c
c
c
c

c

c

c

c

c

c
c
c

c

c

c
c
c

.•\=I
CALL PIDSOM U<, I?LG)

IF N'C SCNS TH\N CHECK FOR
WARNING OR TERMINATION
IGNORE ANY PIDS WHICH RESOLVE LESS THAN 4

IF (IFLG.EO..O .AND. I DIS (I) . GT . 3) THEN
CALL LIMIT UDIS(I), ETIME, ITIM(I), IMIN)

END IF

2ND IF

ICPU(I)=CPUTIM

END IF

END DO

IF (IFIRST.SQ.l) THEN

SET UP TO DELAY 5 MIMUTSS

CALL MDELAY (IMIN)

END IF

'UPDATE CPU TIME

IFIRST=1

GOTO 100

END
% INCLUDE "RUNTM.F77"
% INCLUDE "PDAD.F77"
%INCLUDE "PIDSON.F77"
% INCLUDE "MDELAY.F77"
% INCLUDE "UNAME.F77"
%INCLUDE "TERM.F77"
%INCLUDE "LIMIT.F77"
% INCLUDE "SEND.F77"
%INCLUDE "VIP.F77"
%INCLUDE "TIMDAT.F77"

SET INITIAL PASS DONE

DO FOREVER

10

SUBROUTINE LIMIT (PID, ETIME, OTIME, MIN)
C
C DETERMINES THE WARNING OR TERMINATION
C STATUS OF THE SELECTED PID
C

INTEGERM PID, ETIME, OTIME, DELTET, MIN
INTEGER*4 ILIMIT1, ILIMIT2, ILIMIT3
CHARACTER UNM*32, TMDT*18

C
C INITIALIZE LIMIT VALUES
C

ILIMIT1=1*MIN*60
IHMIT2 = 2*MIN*60
ILIMIT3=3*MIN*60

C
C CALCULATE DELTA ELAPSED TIME
C

DELTET=ETIME-OTIME
C
C CHECK IF IN ACTION STATE
C

IF (DELTET.GT.ILIMIT1) THEN
C
C GET USERNAME OF PID
C

CALL UNAME (PID, UNM)
C
C CHECK IF THIS PID IS EXEMPT

IFLG=0
CALL VIP (UNM, IFLG)
IF (IFLG.EQ.O) THEN

C
C PID IS NOT EXEMPT
C
C

IF (DELTET.GT.ILIMIT1 .AND. DELTET.LE.ILIMIT2) THEN
C
C ISSUE 1ST WARNING
C

CALL SEND (PID, 1)
CALL TIMDAT (TMDT)
WRITE (12, 101) PID, UNM(1:15), TMDT

101 FORMAT (IX,1 PID:1,13,' 1ST WARNING ',A15, 2X, A18)
END IF

C
IF (DELTET.GT.ILIMIT2 .AND. DECTET.LE.ILIMIT3) THEN

C
C ISSUE 2ND WARNING
C

CALL SEND (PID, 2)
CALL TIMDAT (TMDT)
WRITE (12, 102) PID, UNM(1:15), TMDT

102 FORMAT (IX,1 PID:',13,' 2ND WARNING ',A15, 2X, A18)
END IF

C
IF (DELTET.GT.ILIMIT3) THEN

C
C TERMINATE PROCESS
C

CALL SEND (PID, 3)
CALL TIMDAT (TMDT)
WRITE (12, 1):) PID, l'NMii:15), TMDT

11

END IF
C

END IF
C

END IF
C

RETURN
END

r***********************************l

SUBROUTINE MDELAY (MIN)
C
C THIS ROUTINE WILL DELAY THE SELECTED
C NUMBER OF MINUTES BEFORE RESUMING THE PROCESS
C

INTEGER*4 MIN
C
C SET UP TO DELAY 1 MINUTE
C

IPID=179 iWDELAY CALL
IACO=1000*60*MIN JDELAY IN MILLISECONDS
IAC1=0 !RESERVED
IAC2=0 "RESERVED

C
C PERFORM WDELAY CALL TO
C DELAY MIN MINUTES
C

IERR=ISYS (IPID, IACO, IAC1, IAC2)
C

RETURN
END

12

• ** * ;

SUBROUTINE PDAD (PIDIN, PIDOUT)
C
C THIS SUBROUTINE RETURNS THE HIGHEST PID
C FATHER BELOW PID 3 IN PIDOUT
C

INTEGER*4 ISYS, IAGO, IAC1, IAC2
INTEGER*4 PIDIN, PIDOUT
CHARACTER UNM*32

C
C CHECK FOR A PID LOWER THAN 4
C

IF (PIDIN.GT.3) THEN
C
C SET CALLIN PID NUMBER
C

IAC1=PIDIN
C
C FIND THE FATHER
C

DO WHILE (IAC1.GT.3)
C

I=IAC1
C
C SET UP TO MAKE FATHER PROCESS CALL
C

IPID=87 !FATHER PROCESS CALL
IACO=I !PID NO.
IAC1=0 !RETURN FATHER PID
IAC2=0 !RETURN LIST

C
C THIS CALL WILL RETURN THE FATHER'S
C PID IN IAC1
C

IERR=ISYS (IPID, IACO, IAC1, IAC2)
C

END DO
C

IF (IAC1.LT.3) THEN
PIDOUT=IAC1

ELSE
CALL UNAME(I, UNM)
IF (UNM(1:3).EQ.'OP ') THEN

PIDOUT=2
ELSE

PIDOUT=I
END IF

END IF
C

ELSE
C

PIDOUT=PIDIN
IF (PIDOUT.EQ.3) PIDOUT=2

C
ENDIF

C
RETURN
END

13

c
c
c
c

c
c
c
c
c
c

c
c
c

c
c
c

c
c
c

c
c
c
c

J
c
c
c
c

c
c
c

c
c
c
c

100

PROGRAM PIDACT

DISPLAYS ACTIVE PID NUMBERS CONTINUOUSLY
ON SCREEN BASED UPON CPU TIME

INTEGER*4 ITIM(256), ICPU(256), IDIS(256), USE(256)
INTEGER*4 ETIME, CPUTIM, IERR, CNT(4)
CHARACTER MODE*6(256), BLK*2, REV*2, DIM*2, NRM*4, NUL*2
CHARACTER UNM*32, TMDT*18

INITIALIZE THE FOLLOWING ARRAYS
ICPU - CONTAINING LAST CPU TIME
ITIM - CONTAINING LAST ELAPSED TIME
IDIS - CONTAINS PID NUMBER IF ACTIVE

DATA CNT/4*0/
DATA ICPU/256*0/, ITIM/256*0/, IDIS/256*0/, USE/256*0/

SET PROGRAM LIMITS AND FLAGS

IMIN=1
IFIRST=0
IMINCPU=5*IMIN

!MINUTE UPDATE TIME
!INITIALIZE FIRST LOOP FLAG
!SET CPU MINIMUM CPU ACTIVITY

INITIALIZE DISPLAY CHARACTERISTICS

N U L = ' < 0 0 0 > < 0 0 0 > '
BLK='<216xOOO>'
R E V = ' < 2 3 6 > < 3 0 4 > '
D I M = ' < 2 3 4 > < 0 0 0 > '
NRM='<217><236><305><235> '

.'NULL CHARACTERS
[CHARACTER BLINK ON
[REVERSE VIDIO
[CHARACTER DIM ON
!BLINK OFF/REVERSE OF/DIM OFF

PUT UP FORM

CALL PIDFORM

DO 1=1,256

K=J

PERFORM FOR ALL POSSIBLE PIDS

GET ELAPSED TIME AND CPU TIME FOR
THE SELECTED PID

CALL RUNTM (K, ETIME, CPUTIM, IERR)

CHECK IF PID IS IN USE

IF (IERR.NE.O) THEN

PID IS NOT IN USE - SET DISPLAY TO
PID NO. AND SET MODE TO DIM

IDIS(I)=I
MODE(I)=NRM//DIM
ICPU(I)=0
ITIM(D=0
IDIS(I)=0
USE(I)=0
CMT(4)=CNT(4)+1

!USE ACTUAL PID NO.
!SET MODE TO DIM
!CPU TIME
!ELAPSED TIME
[DISPLAY PID
[USER NAME ARRAY
[UPDATE UNUSED CNT

14

c
C PID IS IN USE GET THE FATHER'S PID
C WHICH IS CLOSEST TO OP.EXEC
C

K=I
CALL PDAD (K, IDIS(D)
USE(IDIS(I))=1 [UPDATE FOR USER DISP

C
IF (ICPU(I)-HMINCPU.LT.CPUTIM .OR.

& CPUTIM.LT.ICPU(I) .OR.
& ICPU(I).EQ.O) THEN

C
C A CHANGE IN CPU TIME HAS OCCURED
C OR A NEW PROCESS HAS TAKEN THIS PID
C OR THIS IS THE INITIAL RUN
C UPDATE ELAPSED TIME, CPU TIME
C AND DISPLAY FIELD
C

ITIM(I)=ETIME [UPDATE ELAPSED TIME
MODE(I)=NRM//BLK !SET BLINK MODE ON
CNT(2)=CNT(2)+1 [UPDATE ACTIVE COUNT

C
ELSE

C
C NO CHANGE IN CPU TIME
C CHECK IF THIS PROCESS HAS ANY SONS
C

K=I
CALL PIDSON (K, IFLG)

C
C IF NO SONS AND NOT OP THEN REVERSE VIDIO
C ELSE MAKE DISPLAY NORMAL
C

IF (IFLG.EQ.O .AND. IDIS(I).NE.2) THEN
MODE(I)=NRM//REV !PID HAS NO SONS
CNT(3)=CNT(3)+1 [UPDATE INACTIVE COUNT

ELSE
MODE(I)=NRM//NUL [PID HAS SON(S)
CNT(1)=CNT(1)-H [UPDATE FATHER COUNT

END IF
C

END IF
C

ICPU(I)=CPUTIM [UPDATE CPU TIME
C

END IF
C

END DO
C
C DISPLAY CURRENT ACTIVE PIDS
C IN MATRIX FORM ON SCREEN
C

DO 1=1,241,16
C

M=I/16+1 'CALC ROW INDEX
C

CALL CURPOS (M,5,0) .'POSITION CURSOR
WRITE (*,300) (MODE(K) , IDIS(K) ,K=I ,I-t-7)

C
300 FORMAT ('»',16(A6,14))

C
CALL CURPOS 'M,43,3i 'POSITION CURSOR

15

END DO
C
C DISPLAY ACTIVE USER NAMES
C

PRINT *,NRM
M=l !INITIAL ROW POSITION
N=75 !INITIAL COLUMN POS
DO 1=1, 256

IF (USE(I).EQ.I) THEN
K=I
CALL UNAME (K, UNM)
IF ((I.GT.2 .AND. UNM(1:3).NE.'OP ') .OR. I.LE.2) THEN

CALL CURPOS (M,N,0)
WRITE (*, 400) I, UNM(1:8)

400 FORMAT ('#' ,I 5,IX,A8)
M=M+1
IF (M.GT.22) THEN

N=N+14
M=l

END IF
END IF

END IF
END DO

C
C BLANK OUT ANY UNUSED FIELDS
C

DO WHILE (N.LT.120)
CALL CURPOS (M, N, 0)
WRITE (*, 500)

500 FORMAT ('#',' ')
M=M+1
IF (M.GT.22) THEN

N=N+14
M=l

END IF
END DO

C
C UPDATE TIME/DATE DISPLAY
C

CALL TIMDAT (TMDT)
CALL CURPOS (0,96,0)
WRITE (*, 600) NRM, TMDT

600 FORMAT ('#',A4,A18)
C
C UPDATE DISPLAY COUNTS
C

DO 1=1,4
M=H-18
CALL CURPOS (M,32,0)
WRITE (*,FMT="('#' , 13)") CNT(I)
CNT(I)=0 !RESET COUNTERS

END DO
C
C ZERO OUT USER DISPLAY TABLE
C

DO 1=1,256
USE(I)=0

END DO
C
C CHECK FOR INITIAL R'JN CONDITION
C DO NOT DELAY IF ONLY R'JN ONCE

16

c
c
c

c

c

c
c
c

IF (IFIRST.EQ.1) THEN

SET UP TO DELAY 5 MINUTES

CALL MDELAY (IMIN)

END IF

IFIRST=1 !SET INITIAL PASS DONE

DO FOREVER

GOTO 100

END
% INCLUDE "CURPOS.F77"
%INCLUDE "RUNTM.F77"
%INCLUDE "PDAD.F77"
% INCLUDE "PIDSON.F77"
%INCLUDE "MDELAY.F77"
% INCLUDE "PIDFORM.F77"
%INCLUDE "UNAME.F77"
% INCLUDE "TIMDAT.F77"

17

c

c
SUBROUTINE PIDFORM

C
C THIS SUBROUTINE WILL LAYOUT A FORM
C FOR THE PID ACTIVITY REPORT
C

CHARACTER MODE*6(4), LEGEND*22(4)
C
C DG 400 SERIES CONTROLL CODES
C FOR:
C NORMAL
C BLINK ON
C REVERSE VIDIO
C DIM ON
C

DATA MODE/'<217><236><305><235><000><000>1,
& '<217><236><305><235><216><000>' ,
& '<217><236><305><235><236><304>1,
& '<217><236><305><235><234><000>1/

C
C EXPLANATION LEGEND
C

DATA LEGEND/'FATHER PROCESS OR OP ',
& 'ACTIVE PROCESS
& 'INACTIVE TERMINAL SON ',
& 'UNASSIGNED PID '/

C
C OUTPUT TOP PID LEGEND
C

CALL CURPOS (0,5,1)
WRITE (*, 101)

101 FORMAT ('#',' [0] [1] [2] [3] [4] [5] [6] [7]')
C

CALL CURPOS (0,43,0)
WRITE (*, 101)

C
C OUTPUT SIDE PID LEGENDS
C

DO 1=1, 256,16
J=I+8
WRITE (*, 201)1, J

201 FORMAT (IX,'[',13,']',33X,'[',I 3,'] ')
END DO

C
C OUTPUT BOTTOM PID LEGEND
C

CALL CURPOS (17,5,0)
WRITE (*, 101)

C
CALL CURPOS (17,43,0)
WRITE (*, 101)

C
C OUTPUT EXPLANATION LEGENDS
C

DO 1=1,4
K=I+18
CALL CURPOS (K,10,0)
WRITE (*, 301) MODE(I), LEGEND!I)

301 FORMAT (' }',A6,A22)
END DO

18

END

SUBROUTINE PIDSON (PID, FLAG)
C
C THIS ROUTINE DETERMINES IF THIS PID
C HAS ANY SONS
C IF YES THEN FLAG=1
C ELSE FLAG=0
C

INTEGER*4 ISYS, IACO, IAC1, IAC2
INTEGER*4 PID, FLAG
INTEGER*2 STAT(200)

C
C PERFORM PSTAT CALL TO DETERMINE
C IF SELECTED PID HAS ANY SONS
C

IPID=5
IACO=PID
IAC1=0
IAC2=WORDADDR(STAT)

C
IERR=ISYS(IPID, IACO, IAC1, IAC2)

C
C CHECK BIT PATTERN FOR ANY SONS
C

FLAG=0
DO J=2,17

FLAG=FLAG-t-STAT(J)
END DO

C
C IF SONS EXIST THEN MAKE FLAG = 1
C

IF (FLAG.NE.O) FLAG=1
C

RETURN
END

19

:******

c
SUBROUTINE RUNTM (PID, ETIME, CPUTIM, IERR)

C
C GETS PID NUMBER AND RETURNS ELAPSED TIME
C IN SECONDS AND CPU TIME IN MILLISECONDS
C

INTEGER*4 I SYS, IACO, IAC1, IAC2
INTEGER*4 PACU)
INTEGER*4 PID, ETIME, CPUTIM, IERR

C
C SET UP TO MAKE SYSTEM RUN TIME CALL
C

IPID=24 !RUNTIME CALL
IACO=PID !PID NO.
IAC1=0 1USING PID
IAC2=WORDADDR(PAC) !RETURN LIST

C
C PERFORM RUNTIME CALL TO GET
C ELAPSED TIME AND CPU TIME
C

IERR=ISYS (IPID, IACO, IAC1, IAC2)
C

ETIME=PAC(1) !RETURN ELAPSED TIME
CPUTIM=PAC(2) !RETURN CPU TIME

C
RETURN
END

20

SUBROUTINE SEND (PID,
C
C THIS SUBROUTINE RETy^S 'S^NDS WARNING.
C MESSAGE^' TO THfi SEPEQTEP PIP NQ,
q UPON THH) THIRD WARNING PRING, §EN.T
q THIS ROUTINE WJLL CAL,k POT THE. TERMINATION
q PF THE. SELECTED pjp
G

INTEQER*4 I SYS, I AGO, I API,
INTEGER*4 PID, NUM
CHARACTER HESS*47,

DATA WARN/ '<BEL> 1ST WARNING TERMINAL JNACTJVE FQR 5
S. '<PEL>FINAL WARNINQ 9EFORp: {..QQ OFF - INACTIVE }P MIN
& '<BEL>TERMI'NATION - INACTIVE is

c ' '
c SET MESSAGE; LENGTH
c

LEN=47
C
q GET SE.PEJCTED MESSAGE,

HESS= WARN (NUM)
C
C SET UP TO MAftE f^EINP
C '

IPID=206 1S.ENP CALL
IACO=PID ' JPID NO. ''
IACi=BYTEApDR(MESS)'

C
C SEND THE MSSSAfiE, TO TH,E, SELEpTEp Pip
C

IERR,= ISYS (IPIP, IACQ, lAfil, IAC2)

C CHECK FQR TERMINATION
C ' • ''

C* REMOVE COMMEJNT5 TO ACTIVATE TERMINATION OPERATION

IF (NUM.EQf3) THEN !
CALL TERM(PJD) I

E,ND IF ' I
C

C
RETURN
END

SUBROUTINE TERM (PID)
C
C THIS SUBROUTINE TURNS ON SUPERPROCESS AND THEN
C TERMINATES THE SELECTED PID, ALL SON PROCESSES
C ARE ACCORDINGLY ALSO TERMINATED
C

INTEGERM ISYS, IPID, IACO, IAC1, IAC2, PID
C
C SET UP TO TURN ON SUPERPROCESS
C

IPID=43 .'SUPROC CALL
IACO=-1 [TURN ON
IAC1=0 !UNDEFINED
IAC2=0 !UNDEFINED

C
C TURN ON SUPERPROCESS
C

IERR=ISYS (IPID, IACO, IAC1, IAC2)
C
C SET UP TO MAKE 7GTERM CALL
C

IPID=45 1TERM CALL
IACO=PID !PID NO.
IAC1=0 !CONTAINS PID
IAC2=0 !NO MESSAGE

C
C TERMINATE THE SELECTED PID
C

IERR=ISYS (IPID, IACO, IAC1, IAC2)
C
C SET UP TO TURN OFF SUPERPROCESS
C

IPID=43 'SUPROC CALL
IACO=1 1TURN OFF
IAC1=0 !UNDEFINED
IAC2=0 !UNDEFINED

C
C TERMINATE THE SELECTED PID
C

IERR=ISYS (IPID, IACO, IAC1, IAC2)
C

RETURN
END

22

SUBROUTINE TIMDAT (TMDT)
C
C
C
C
C

C
C
C

C
C
C

THIS SUBROUTINE WILL RETURN THE CURRENT
SYSTEM TIME AND DATE IN CHARACTER FORMAT
IN STRING TMDT (OF LENGTH 18)

INTEGER IDATE(3), ITIME(3), IBLD(6)
CHARACTER TMDT*18

GET SYSTEM DATE AND TIME FOR HEADER

CALL
CALL

DATE
TIME

(IDATE)
(ITIME)

SET UP DATE TO BE IN MM/DD/YY FORM

ITMP=IDATE(1)-1900
IDATE(1)=IDATE(2)
IDATE(2)=IDATE(3)
IDATE(3)=ITMP

DO 1=1,3
IBLD(I)=ITIME(I)
IBLD(H-3) = IDATE(I)

END DO

DO 1=1,6
M=(I-1)*3+1
N=M+1
ITMP=IBLD(I)/10
IBLD(I)=IBLD(I)-(!TMP*10)
TMDT(M:M)=CHAR(ITMP-i-48)
TMDT(N:N)=CHAR(IBLD(I)+48)

END DO

TMDT(3:3)=':
TMDT(6:6)=':
TMDT(9:9)='
TMDT(12:12)=
TMDT(15:15)=
TMDT(18:18)=

RETURN
END

23

SUBROUTINE UNAME (PID, UNM)
C
C THIS SUBROUTINE WILL RETURN THE USERNAME OF
C THE CURRENT PROCESS IN THE CHARACTER
C STRING UNM, THE STRING WILL BE TERMINATED
C WITH A <NULL>
C

CHARACTER UNM*32
INTEGER*4 ISYS, IACO, IAC1, IAC2, IFLG, PID

C
C DETERMINE IF THIS IS TO BE THE
C CALLING TASK'S PID
C

IF (PID.LT.O) THEN
IFLG=1

ELSE
IFLG=0

END IF
C

IPID=58 !?GUNM CALL
IACO=PID !PID NO. OR -1
IAC1=IFLG 1USING PID OR -1
IAC2=BYTEADDR(UNM) 'RETURN LIST

C
C PERFORM SYSTEM CALL TO GET USERNAME
C

IERR=ISYS (IPID, IACO, IAC1, IAC2)
C
C BLANK THE STRING AFTER THE USERNAME
C

IFLG=0
DO 1=1,32

IF (UNM(I:I).EQ.'<000>') IFLG=1
IF (IFLG.EQ.l) UNM(I:I)=' '

END DO
C

RETURN
END

24

SUBROUTINE VIP (UNAME, IFLG)
C
C THIS ROUTINE WILL DETERMINE IF THE
C USERNAME PASSED TO IT EXIST IN THE
C VIP.DAT FILE, IF YES THEN IFLG=1
C ELSE IFLG=0
C

CHARACTER UNAME*32, VNAME*32
C
C INITIALIZE RETURN FLAG TO 0
C

IFLG=0
C
C OPEN VIP FILE
C

OPEN (UNIT=21, STATUS='OLD
S. FILE='VIP.DAT',
& IOSTAT=IERR1, RECFM='DS', FORM='FORMATTED',PAD='YES',
& ERR=999)

C
C READ ONE (1) LINE
C
100 READ (21,FMT=101, IOSTAT=IERR2, ERR=999, RETURNRECL=IL) VNAME
101 FORMAT (A32)
C
C CHECK FOR ZERO RECORD LENGTH
C

IF (IL.EQ.O) GOTO 999
C
C CHECK IF NAME'S MATCH
C

IF (VNAME.NE.UNAME) GOTO 100
C
C A MATCH HAS BEEN FOUND
C SET IFLG TO 1
C

IFLG=1
C
C CLOSE THE VIP FILE AND RETURN TO CALLER
C
999 CLOSE (UNIT=21)
C

RETURN
END

25

APPROVAL

A PROCESS ACTIVITY MONITOR FOR AOS/VS

By R. A. McKosky, S. W. Lindley, and J. S. Chapman

The information in this report has been reviewed for technical content. Review
of any information concerning Department of Defense or nuclear energy activities or
programs has been made by the MSFC Security Classification Officer. This report,
in its entirety, has been determined to be unclassified.

.e
S. R. REINARTZ
Manager, Shuttle Projects Off

•&U S. GOVERNMENT PRINTING OFFICE 1986-631-058/20077

26

