-

View metadata, citation and similar papers at core.ac.uk brought to you by . CORE

provided by NASA Technical Reports Server

NASA
Technical
Memorandum

NASA TM-86535

A PROCESS ACTIVITY MONITOR FOR AOS/VS

By R. A. McKosky, S. W. Lindley, and J. S. Chapman

Management Systems Office
Shuttle Projects Office

January 1986

{NASA-TM-86535) a PROCESS ACTIVIT
Y MONITOR
FOR AOS/VS (Nas2) 30 P HC AOZ/MF a01

CSCL 09B

N86-19959

Unclas
G3/60 05511

NANASAN

National Aeronautics and
Space Administration

George C. Marshall Space Flight Center

MSFC - Form 3190 (Rev. May 1983)

https://core.ac.uk/display/42842007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT’S CATALOG NO.
NASA TM - 86535
4, TITLE AND SUBTITLE S REPORT DATE
. . January 1986
A Process Activity Monitor for AOS/VS S FERFORMING ORGANIZATION CODE
7. AUTHOR(S}) 8.PERFORMING ORGANIZATION REPORT #
R. A. McKosky,* S. W. Lindley,* and J. S. Chapman
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.
George C. Marshall Space Flight Center 11, CONTRACT OR GRANT NO.
Marshall Space Flight Center, Alabama 35812
13. TYPE OF REPORT & PERIOD COVERED
12 SPONSORING AGENCY NAME AND ADDRESS
Technical Memorandum
National Aeronautics and Space Administration
Washington, D.C. 20546 14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

Prepared by Management Systems Office, MSFC Shuttle Projects Office and
*Rockwell International

16, ABSTRACT

With the ever increasing concern for computer security, users of computer
systems are becoming more sensitive to unauthorized access. One of the initial
security concerns for the Shuttle Management Information System was the problem of
users leaving their workstations unattended while still connected to the system.

This common habit was a concern for two reasons: it ties up resources unneces-
sarily and it opens the way for unauthorized access to the system. The Data
General MV /10000 does not come equipped with an automatic time-out option on inter-
active peripherals. The purpose of this memorandum is to describe a system which
monitors process activity on the system and disconnects those users who show no
activity for some time quantum.

17. KEY WORDS 18. DISTRIBUTION STATEMENT
Elapsed Time, CPU. Process Activity,
PID, Threshold, Process Termination Unclassified — Unlimited
19 SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO. OF PAGES | 22, PRICE
Unclassified Unclassified 29 NTIS

MSFC - Form 3292 (May 1969) v
For sale by National Technical Intormation Service, Spnngfield, Virgima 221 51

I1.

I111.

Iv.

VI.

TABLE OF CONTENTS

INTRODUCTION ¢ ivvteiietienenencnsnnnonnns Ceeneasaseteantoanns Ceeenee
SYSTEM DESCRIPTIONicvivenrenrconacnsananns Cetaseresenaeen Ceeenee
PROBLEM OVERVIEW e et eesa st esenserssseettaseaatetenarenanas
SOLUTION OVERVIEW ... itititiiereetneerencorenononcsonsoansnssoonas
APPLICATIONS .. itiiiitiieietnronenasenssnssncnnns Chereseeraansaans ces
A. Process Activity Monitor.......cccvevveiiienne. Ceesasiesesavaen cene
B. Process Terminator.......cceeeeeenccecccccnnes Ceereseneneaenn coven
CONCLUSION....civovitenennnnns Ceeereressesaananes Cesesetesenianaas .
APPENDIX A ... iiiiiiiiiiiiinnens L et seseceeiacttcet et anneanas
PRECEDING PAGE BLANK NOT FULMED

il

LIST OF ILLUSTRATIONS

Figure . Title Page
1. Process tree for OP tecrseresnans concae ceeeens ceeeee cen 2
2. PIDACT screen.......... ceearen cescestestaaneaas Ceeeeriseeseeneanan 4
3. ERP log........ Cheeseesiaateresasasteanans N 5

iv

TECHNICAL MEMORANDUM

A PROCESS ACTIVITY MONITOR FOR AOS/VS

I. INTRODUCTION

Managers of computer systems are becoming increasingly aware of the necessity
to guard against unauthorized access. A primary security concern for any system is
an active terminal left unattended by the user. Some systems are equipped with an
automatic time-out option. The Data General MV /10000, however, is not. When
selecting the MV /10000 to drive the Shuttle Management Information System (SMIS)
for the Marshall Space Flight Center's Shuttle Prcjects Office, analysts and managers
agreed that a time-out feature would need to be incorporated into the system. Such
a feature would decrease the chance of unauthorized access to the system and free
limited system resources. It is the purpose of this memorandum to describe the
process activity monitor and process terminator tasks developed for SMIS, by which
users registering no CPU activity for some time quantum are disconnected from the
system.

II. SYSTEM DESCRIPTION

The Data General ECLIPSE MV /10000 runs under Advanced Operating System/
Virtual Storage (AOS/VS), a multitasking, multiprogramming, demand-paged, virtual
storage operating system. It can support users on a time-sharing basis, run batch
jobs, or perform control applications on a real-time basis. The user communicates
with AOS/VS from the console via Command Line Interpreter (CLI) commands. AOS/
VS is unique to 32-bit ECLIPSE MV computers, and has the capacity to run up to
256 processes at a time.

The MV /10000 process tree begins with AOS/VS, designated as Process Identi-
fication number (PID) 0. AOS/VS assigns a PID to each other process. AOS/VS
has two sons, PMGR, PID 1, and OP, PID 2. PMGR is the peripheral manager. OP
is the "master process" because it is operable only from the master console.

EXEC, a son of OP, runs as PID 3. All user processes and the printer queues
are sons of EXEC. Most system processes are sons of OP. System processes include
peripheral controllers, data base management systems, communication packages and
Comprehensive Electronic Office (CEO) office automation software. Figure 1 shows a
typical process tree for PID 2 (OP).

III. PROBLEM OVERVIEW

The goal was to develop a task to monitor CPU activity and terminate any inac-
tive user process. During development it was decided to design two tasks which
could run independently, the monitor, and the process terminator. The monitor
would provide a quick and easy reference to system activity. The process ter-
minator, when activated, would warn the user, then terminate the process after the
threshold of inactivity had been passed.

op
2 (OP:0P).iviveecnennenanennsnsseosas:LOCK_CLI
3 (OP:EXEC).veveeeeenseaeaansaase iUTIL:EXEC
19 (OP:LPB)....ivveeeeeceaeaas sUTIL:XLPT
20 (OP:LPE1)..iveeveneeeeeaae s sUTIL:XLPT
21 (OP:LPE).....cvevveeeeees. o ;UTIL:XLPT
22 (OP:CONU4O) . veveeeveeeeeees tUTIL:XLPT

33 (OP:CON41).... eeeees tUTIL:XLPT

eeeeee tUTIL:XLPT

eeeess tINFOS:INFOS_II
eeeososeses :LANG:ORACLE:IOR
eeoeeses tLANG:ORACLE :BWR
weoeeoso tLANG:ORACLE:BIW

32 (OP+CON89) . vvwwvvnvvnnwvnn tUTIL:XLPT
114 (OP:CONST) oo vmvvnnns
4 (OP:INFOS_II).....
9 (OP:009).......)
12 (OP:CORBWR)ovou.

13 (OP:CORBIW)..
14 (OP:CORCLN)..
15 (OP:CORARH)..

eeeoee LANG:ORACLE:CLN
eesese LANG:ORACLE:ARH
116 (OP:NETOP)....... ceesesee tNET:NETOP

24 (OP:X25_LMGR) veueeeeeoeeeass :NET:X25_LMGR
117 (OP:SVTA) v v veeeeeaeaoesess tNET:SVTA

154 (OP:RMA)....ccveveveeeee. . :NET:RMA
157 (OP:FTA) c.ivieverneeeeaes . :NETIFTA

Figure 1. Process tree for OP.

However, three basic problems needed to be solved. First, a process was
required by which only process trees with inactive terminal sons would be terminated.
Second, the updates registered by the CEO clock indicate that the process tree of a
CEO user is active, when, in fact, it is not. Therefore, it was necessary to deter-
mine the inactivity threshold and terminate only those processes below that limit.

The third problem concerned exceptions to the rule, that is, certain users who for
various reasons would never be terminated.

IV. SOLUTION OVERVIEW

The two tasks developed were PIDACT, the process monitor, and ERP, the
process terminator. PIDACT provides a visual display of the status of each PID.
ERP can be activated or deactivated at any time. If it is determined that a user is
inactive, then the user is warned. After a specified number of warnings, the process
tree is terminated. A "VIP Table" was developed to ensure that certain users are not
subject to termination.

Together PIDACT and ERP solve the three problems mentioned in the above
section. To ensure that only inactive process trees are terminated, the process tree
is traversed using the ?PSTAT system call. This traversal enables the task to find
the terminal son and father process of the tree. Next, to ensure that inactive CEO
processes are terminated, a threshold of CPU time was needed. This was determined
by observing and testing of processes. It was found that active processes typically
use more than five milliseconds of CPU time per block minute. For example, pressing
a NEW LINE takes about 6 milliseconds. The VIP table, called VIP.DAT, which can be

modified by a text editor, was designed to ensure that selected users are not ter-
minated.

The remaining system calls needed for PIDACT and ERP are: ?SEND, used to
send messages to an inactive PID; ?RUNTM, used to get the run time ticks of a
process; ?GPRNM, used to get the program path name of a process; and ?GUNM, used
to get the owner, username of the father process. ?TERM, used to terminate the
process tree, is the only privileged system call, and requires Superprocess privileges.

V. APPLICATIONS

A. Process Activity Monitor

The task which monitors system activity is called PIDACT. PIDACT divides
processes into four groups:

1) Father process or OP
2) Active process

3) Inactive terminal son
4) Unassigned PID.

These divisions allow the system manager to easily monitor system activity.
On the screen, the father process or OP is displayed in normal video; active pro-
cesses are blinking; inactive terminal sons are shown in reverse video; and the
unassigned PIDS are shown as zeros. Figure 2 shows a typical PIDACT display.
The PIDs and usernames of those users logged on are shown on the right. The
numbers in square brackets are scales, and help locate a PID quickly. PIDACT up-
dates the screen once a minute, and is date and time stamped. To execute PIDACT
requires no special privileges.

To illustrate how PIDACT works, the three process trees shown in Figure 2
shall be examined. First consider PID 44, a father process with an inactive terminal
son process at PID 40. This process tree is subject to the process termination task,
ERP. Now consider PID 102. PID 102 is a father process with a son process at 114,
which is also a father process. PID 114 has two sons, at PID 116 and PID 32. Both
son processes are active, therefore this process tree is active and would not be ter-
minated by ERP. Lastly, consider PID 72. PID 72 is a father process with two sons,
PID 73 and PID 78. PID 73 is active, PID 78 is an inactive terminal son. This
process tree would be subject to termination.

B. Process Terminator

The task which terminates processes is called ERP. Approximately once every
eight minutes PIDACT determines the CPU activity of all the processes on the system.
If activity is below the threshold, the user is warned. If no significant activity is
observed after two successive warnings, the process is terminated by ERP. Superprocess
privileges are required to terminate the process. Upon warning a user or terminating
a process, ERP records the action in a log. Figure 3 shows an example of an ERP
log.

The following is a list of criteria ERP uses to terminate a process:

SKIS3M (01
1079 901
SITUA £01
R LR
SAIONBA 10
NOLA3N 6
ST 16
NERJHO 16
TH 06
43K 8
1SST9 93
KXY S8
THRRIE 78
NOSKH 03
R U
NERDT 8¢
SINNAD UL
N 1
1S4H 0
SN 83
NOSKI1 89
HLIKS 13

Sng S5
ONYBEY 1
AL RYA

EJEamTAl
(5O 811
&0 011
M 601

ssaua

B T 9 08I0eI0gzI0iIrel

(80 1S 050 65T
(a0 %0 St I
W ot s 8l (1
S0 $0C S0 OC 10T
000 631 881 (&1 98I
iy 0 69
LT B 1 B
11 S S Y

$5N0 03
ST 6
IBE1 S
N1 15
mils
MY 6
SIMH (¢
MHH 5t
WD S
ATONDD #F
JIYRH
mmu
A0 1t
TBRY &
031 &
K3 5t
BT
KDL ££

STLH §

1

ik 1

S5 1060

95
0k
(/A
80
£l
%l
091
yy
74
)

ur

08
i
8
i
A

Sl
A
/A
(0
/A
Al
65l
iy
(i
il
5

(

gt

(h

A

l

bSC
80
w
50
10
Al
gl

u
]
S
l
4

It
601 8 (I 90

‘udaJaos LOVdId

I al

-—

| X ar]

[

i 16 08

8 9 € U
B R 6 6

1
¢ L U 1
¢ U 0 1

CCTO8I0SI0PI0ETI0TI0TI00]

>~
o

-

*z aandig

SB2

L) -
]

B2
ot et vt —t — (N NN O

CIY L) ~— [
™~ OO ™ ™~ M

 nagd

St et St Gt et bt b et et et Bt bt et bt bt s

L B e B e I e I e I e B e B e B e I e B e I e B et B e B e B e]
€ =

O LM

i
e
]t
00
1]
631

r wr
-—t L)
ham Al & <o I 2v- T cane |
—

[

TR RS

Ly O o0y LD

g
b
l
{

(01d 03NDISSENN

NOS THNTHYAL 3ATLIGNI
553004 3AILJ

dl 40 SS3004d d3HLYA

COYTYTISTIOeITEILII0T110]

S0 Bl WU UL I
6 B (L T SU
AR ATAREN | VA | VA
(61 861 S61 61 g6l
1’1 081 6 8
S 191 81 281 18l
o1 &1 4T ST S

e % 1

00w & ar

mo% oK
o5 3 n
©oLB
B4 B
Lo :
L
L

o=

—r
tsy T~

-

1 ca
-

CCYO9MIS IR IIEI 0 Ii]i0]

-
o~

— N LY T O OO
—r ——t ot et et et (]
St bl Sl et et Rt et et ed et bt s bl el bl bt

Ry T D 0O O

Lo Bl Bl o B i B annt B o B o B s B o B o B e B e B o B e B oo]
-—

— T) LX) L) et T T) LD e T)) LD e

PID: 36 1ST WARNING LINDLEY 13:55:06 02/25/85
PID: 39 1ST WARNING MCKOSKY 13:55:07 02/25/85
PID: 43 1ST WARNING WEAVER 13:55:07 02/25/85
PID: 51 1ST WARNING ADAMS 13:55:07 02/25/85
PID: 16 1ST WARNING CARTER 13:55:07 02/25/85
PID: 46 1ST WARNING BUSH 14:00:09 02/25/85
PID: 36 2ND WARNING LINDLEY 14:00:09 02/25/85
PID: 39 2ND WARNING MCKOSKY 14:00:09 02/25/85
PID: 43 2ND WARNING WEAVER 14:00:09 02/25/85
PID: 51 2ND WARNING ADAMS 14:00:09 02/25/85
PID: 16 2ND WARNING CARTER 14:00:09 02/25/85
PID:103 1ST WARNING NAFUS 14:00:09 02/25/85
PID: 90 13T WARNING SHOTTS 14:00:09 02/25/85
PID: 36 TERMINATION LINDLEY 14:05:10 02/25/85
PID: 39 TERMINATION MCKOSKY 14:05:10 02/25/85

14:05:10 02/25/85
14:05:10 02/25/85
14:05:10 02/25/85

PID: 43 TERMINATION WEAVER
PID: 51 TERMINATION ADAMS
PID: 57 1ST WARNING SMITH

Figure 3. ERP log.

1) Current CPU time < old CPU time + threshold
2) Current CPU time >= old CPU time

3) USERNAME not in VIP table

4) PID >3

5) Program name <> OP

6) Father process resolves to EXEC.

ERP was designed specifically to terminate processes based upon inactive leaf
nodes in the process tree. Since CEO leaves an inactive CEO word processing
(CEO WP) when completing word processing yet not exiting the CEO control program
(CEO CP), the active CEO CP will be terminated. This feature could be changed by
modifying ERP or writing an additional task to monitor and terminate CEO_WP pro-
cesses only. In addition, if a user initiates co-processes where they are both leaf
nodes in the process tree and only one is active, the process tree is terminated. If
the user intends to have an inactive co-process as a leaf node, then he should request
that the System Manager place his name in the VIP table.

VI. CONCLUSION

The PIDACT and ERP tasks are part of the SMIS security system. Though
security is the primary consideration, the termination of idle processes also frees
limited system resources: terminals, memory, and process capacity. The CPU
utilization involved in running ERP is an average 0.2 percent. Each idle process
utilizes an average of 0.2 percent. Therefore, for SMIS, the overhead for running
ERP is well justified.

APPENDIX A

COMMENT PIDACT - PID ACTIVITY MACRO

WRITE [!ASCII 214]

WRITE TO END DISPLAY PERFORM A ~C"B

WRITE

STRING [!READ press NEW LINE begin PID ACTIVITY DISPLAY]
WIDE

X/1=IGN/2=IGN PIDACT

NORM

WRITE [!ASCII 214]

COMMENT PROC_ERP
COMMENT MACRO TO PROC UP THE ERP PID
COMMENT TERMINATION PROCESS

DEL/1=IGN/2=1IGN SAVE.ERP.LOG
REN/1=1GN/2=IGN ERP.LOG SAVE.ERP.LOG

CRE ERP.LOG
PROC/NOBL/INP=@NULL/OUT=2NULL/LIST=ERP.LOG/SUPERP ERP

COMMENT WIDE
COMMENT MACRO TO PUT DG 460 TERMINAL
COMMENT INTO WIDE MODE

CHAR/CPL=134
WRITE [!ASCII 236 306 330 260 260 270 265]

WRITE [!ASCII 236 306 313]

COMMENT NORM
COMMENT MACRO TO PUT DG 460 TERMINAL INTO
COMMENT 80 COLUMN MODE

CHAR/CPL=80
WRITE [!ASCII 236 306 330 260 260 264 277])
WRITE [tASCII 236 306 312}

PRECEDING PAGE BLANK NOT FULNED

LEEEE SR SRR SRR R L R R R R R S R R IR R R TR R 2

SUBROUTINE CURPOS (N1, N2, IBLK)

THIS SUBROUTINE WILL PERFORM

CURSOR POSITIONING FOR THE

DATA GENERAL 410 AND 460 TERMINALS

WERE N1 [S THE ROW AND N2 IS THE COLUMN

THE VALUE IBLK IS A FLAG WHICH INDICATES
THAT THE SCREEN IS TO BE ERASED BEFORE
THE CURSOR IS TO BE POSITIONED

CALLING PROGRAM SHCULD OUTPUT AFTER CALL
IN THE FOLLOWING FORM:

FORMAT ('#',
THIS WILL SUPRESS THEN NEXT FORMAT FROM
OUTPUTTING A CR

annonaononNnNNnNnNn ann

CHARACTER N*1(4)
INTEGER N1, N2, ITMP1l, ITMP2, IBLK, I

C
o N - ARRAY TO CONTAIN ASCIT TERM, COMMANDS
C N1l - ROW
C N2 - COLUMN
C ITMP1 - INTERUM CALCULATION FOR ROW
C ITMP2 - INTERUM CALCULATION FOR COLUMN
C IBLK - ERASE SCREEN FLAG (1=YES)
C 1 - LOCAL INDEX
C
C CHECK IF SCREEN IS TO BE BLANKED 1ST
C
IF (IBLK.EQ.l1) THEN
WRITE (*, 101) { ERASE SCREEN
101 FORMAT (1X,'<036><106><105>")
ENDIF
C
C PERFORM INITIAL CALCULATIONS
C
ITMP1=N1/16 IMOD 16 ROW
ITMP2=N2/16 t{MOD 16 COLUMN
C
C CALCULATE COLUMN POSITION
C
N(1)=CHAR(ITMP2+48) !COLUMN 18T
N(2)=CHAR(N2-(ITMP2*16)+48) ! IN TWO DIGITS
C
C CALCULATE ROW POSITION
C
N(3)=CHAR(ITMP1+48) 'ROW 2ND
N(4)=CHAR(N1-{ITMP1*16)+48) ! IN NEXT TWO DIGITS
Cc
c OUTPUT THE POSITION
C
WRITE (*,102) (N(I),I=1,4) 'OUTPUT THE FOUR CHAR
102 FORMAT (1X, '<036><106><120>"',4Al1,$) !SUPRESS CR
C
RETURN
END

(@] aOonn

2XeXe!

100

nonon 000N

aoaon aonn

N0 N

(@]

o0 0O OO nnon

PROGRAM ERP

WARNS AND THEN TERMINATES
INACTIVE PID'S

INTEGER*¢ ITIM(256), ICPU(256), IDIS(256)
INTEGER*4 ETIME, CPUTIM, IERR

DATA ITIM/256*0/ 'ELAPSED TIME ARRAY
DATA ICPU/256*0/ !CPU TIME ARRAY
DATA IDIS/256*0/ !PID ARRAY

SET PROGRAM LIMITS AND FLAGS

IMIN=8 IMINUTE UPDATE TIME
IFIRST=0 !INITIALIZE FIRST LOOP FLAG
IMINCPU=5*IMIN !SET CPU MINIMUM CPU ACTIVITY

PERFORM FOR ALL POSSIBLE PIDS

DO 1=1,256

GET ELAPSED TIME AND CPU TIME FOR
THE SELECTED PID

K=1
CALL RUNTM (K, ETIME, CPUTIM, IERR)

CHECK IF PID IS IN USE
IF (IERR.NE.0) THEN

PID IS NOT IN USE

IDIS(I)=I tUSE ACTUAL PID NO.
ICPU{(I)=0 !{ZERO OUT CPU TIME
ITIM(I)=0 tZERO OUT ELAPS TIME
ELSE
PID IS IN USE GET THE FATHER'S PID
WHICH IS CLOSEST TO OP.EXEC
K=1

CALL PDAD (K, IDIS(1))

IF (ICPU(I)+IMINCPU.LT.CPUTIM .OR.
CPUTIM.LT.ICPU(1I) .OR.
ICPU(I1).EQ.0) THEN

A CHANGE IN CPU TIME HAS OCCURED

OR A NEW PROCESS HAS TAKEN THIS PID
OR THIS IS THE INITIAL RUN

UPDATE ELAPSED TIME, CPU TIME

AND DISPLAY FIELD

ITIM(I)=ETIME 'UPDATE ELAPSED TIME

ELSE

NC CHANGE I[N CPU TIME
CHECK IFf TH!S PROCESS hAS ANY SONS

nOnNo0On

n 000 0o a o o

0 000N (@]

% INCLUDE
% INCLUDE
$INCLUDE
$INCLUDE
% INCLUDE
% INCLUDE
¥ INCLUDE
¥ INCLUDE
% INCLUDE
% INCLUDE

10

CALL PIDSON (X,
IF NC SONS
WARNING OR
IGNORE ANY

IF (IFLG.2Q.0
CALL LIMIT

INDIF

=ZND IF

ICPU(1)=CPUTIM
IND IF
END DO

IF (IFIRST.EQ.1l) THEN

SET UP TO DELAY

CALL MDELAY (IMIN)

END IF
IFIRST=1

DO FCREZIVER
GOTO 100 ’

END
"RUNTM.F77"
"PDAD.F77"
"PIDSCN.F77"
"MDELAY.F77"
"UNAME.F77"
"TERM.F77"
"LIMIT.F77"
"SEND.F77"
"VIP.F77"
"TIMDAT.F77"

CHHG"“QL Pace

at s
OF Poor QuaLmy

THAN CHECK FOR
TERXMINATION

PIDS WHICH RESCLVE LESS THAN 4
JAND., IDIS(I).GT.3) THEN
(IDIS(1), ETIME, ITIM(I), IMIN)

'UPDATSE CPU TIME

5 MINUTES

'SET INITIAL PASS DONE

SUBROUTINE LIMIT (PID, ETIME, OTIME, MIN)

C
c DETERMINES THE WARNING OR TERMINATION
C STATUS OF THE SELECTED PID
C
INTEGER*4 PID, ETIME, OTIME, DELTET, MIN
INTEGER*4 ILIMIT1, ILIMIT2, ILIMIT3
CHARACTER UNM*32, TMDT*18
c .
c INITIALIZE LIMIT VALUES
C
ILIMIT1=1*MIN*60
ILIMIT2=2*MIN*60
ILIMIT3=3*MIN*60
C
C CALCULATE DELTA ELAPSED TIME
c
DELTET=ETIME-OTIME
C
C CHECK IF IN ACTION STATE
c
IF (DELTET.GT.ILIMIT1) THEN
C
c GET USERNAME OF PID
C
CALL UNAME (PID, UNM)
C
C CHECK IF THIS PID IS EXEMPT
IFLG=0
CALL VIP (UNM, IFLG)
IF (IFLG.EQ.0) THEN
C
c PID IS NOT EXEMPT
C
C
I1F (DELTET.GT.ILIMIT1 .AND. DELTET.LE.ILIMIT2) THEN
C
C ISSUE 1ST WARNING
c
CALL SEND (PID, 1)
CALL TIMDAT (TMDT)
WRITE (12, 101) PID, UNM(1l:15), TMDT
101 FORMAT (1X,' PID:',I3,' 1ST WARNING ',6AlS5, 2X, AlS8)
END IF
C
IF (DELTET.GT.ILIMIT2 .AND. DELTET.LE.ILIMIT3) THEN
C
C ISSUE 2ND WARNING
o
CALL SEND (PID, 2)
CALL TIMDAT (TMDT)
WRITE (12, 102) PID, UNM{1:15), TMDT
102 FORMAT (1X,' PID:',I3,' 2ND WARNING ', AlS, 2X, Al8)
END IF
C
IF (DELTET.GT.ILIMIT3) THEN
C
C TERMINATE PROCESS
C

CALL SEND (PID, 3)
CALL TIMDAT (™MDT)
WRITE (12, 1)3) 2ID, UNMt1i:15), TMDT

11

END IF

C
END IF
C
END IF
C
RETURN
END
C
C**************************xt**************************k****
C
SUBROUTINE MDELAY (MIN)
C
C THIS ROUTINE WILL DELAY THE SELECTED
C NUMBER OF MINUTES BEFORE RESUMING THE PROCESS
C
INTEGER*1 MIN
C
C SET UP TO DELAY 1 MINUTE
C
IPID=179 'WDELAY CALL
IAC0=1000*60*MIN !DELAY IN MILLISECONDS
IAC1=0 !RESERVED
IAC2=0 {RESERVED

C
C PERFORM WDELAY CALL TO
C DELAY MIN MINUTES
C
IERR=1SYS (IPID, IACQ, IAC1l, IAC2)

C

RETURN

END

12

C

C***

Cc

a0 0o 0onn NN nnn nonn

n N aoonn

SUBROUTINE PDAD (PIDIN, PIDOUT)

THIS SUBROUTINE RETURNS THE HIGHEST PID
FATHER BELOW PID 3 IN PIDOUT

INTEGER*4 ISYS, IACO, IACl, IAC2

INTEGER*4 PIDIN, PIDOUT
CHARACTER UNM*32

CHECK FOR A PID LOWER THAN ¢

IF (PIDIN.GT.3) THEN

SET CALLIN PID NUMBER

IAC1=PIDIN
FIND THE FATHER

DO WHILE (IAC1.GT.3)

I=IAC1

SET UP TO MAKE FATHER PROCESS CALL
I1PID=87 ! FATHER PRCCESS CALL
IACO=1 fPID NO.
IAC1=0 {RETURN FATHER PID
IAC2=0 tRETURN LIST

THIS CALL WILL RETURN THE FATHER'S
PID IN IAC]

IERR=ISYS (IPID, IACO, IAC1l, IAC2)

END DO

IF (IAC1.LT.3) THEN
PIDOUT=IACL
ELSE
CALL UNAME(I, UNM)
IF (UNM(1:3).EQ.'OP ') THEN

PIDOUT=2
ELSE
PIDOUT=1
ENDIF
END IF
ELSE

PIDOUT=PIDIN
I[F (PIDOUT.EQ.3) PIDOUT=2

ENDIF

RETURN
END

13

anonn

non aoooonnon

eXpXe!

100

on0onn NN N0

noo0oa aonn

14

PROGRAM PIDACT

DISPLAYS ACTIVE PID NUMBERS CONTINUOUSLY
ON SCREEN BASED UPON CPU TIME

INTEGER*4 ITIM(256), ICPU(256), IDIS(256), USE{256)
INTEGER*4 ETIME, CPUTIM, IERR, CNT(4)

CHARACTER MODE*6(256), BLK*2, REV*2, DIM*2, NRM*4, NUL*2
CHARACTER UNM*32, TMDT*18

INITIALIZE THE FOLLOWING ARRAYS
ICPU - CONTAINING LAST CPU TIME
ITIM - CONTAINING LAST ELAPSED TIME
IDIS - CONTAINS PID NUMBER IF ACTIVE

DATA CNT/4*0/
DATA ICPU/256*0/, ITIM/256%*0/, IDIS/256*0/, USE/256*0/

SET PROGRAM LIMITS AND FLAGS

IMIN=1 IMINUTE UPDATE TIME
IFIRST=0 'INITIALIZE FIRST LOOP FLAG
IMINCPU=5*IMIN !SET CPU MINIMUM CPU ACTIVITY

INITIALIZE DISPLAY CHARACTERISTICS

NUL='<000><000>" INULL CHARACTERS
BLK='<216><000>" ICHARACTER BLINK ON
REV='<236><304>" {REVERSE VIDIO
DIM='<234><000>" {CHARACTER DIM ON
NRM='<217><236><305><235>" !{BLINK OFF/REVERSE OF/DIM OFF

PUT UP FORM

CALL PIDFORM

PERFORM FOR ALL POSSIBLE PIDS

DO 1=1,256

GET ELAPSED TIME AND CPU TIME FOR
THE SELECTED PID

K=1
CALL RUNTM (K, ETIME, CPUTIM, IERR)

CHECK IF PID IS IN USE
IF (IERR.NE.QO} THEN

PID IS NOT IN USE - SET DISPLAY TO
PID NO. AND SET MODE TO DIM

IDIS(I)=I 'USE ACTUAL PID NO.
MODE(I)=NRM//DIM !SET MODE TO DIM
ICPU(I)=0 ICPU TIME

ITIM(I}=0 'ELAPSED TIME
IDIS(I)=0 !DISPLAY PID
USE(I)=0 'USER NAME ARRAY
CNT(4)=CNT(4)+1 {UPDATE UNUSED CNT

0 sNeNeXe!

aonononnonn

N0 0

eNoNeNe!

0O 0 0000 0o N0 00

9!}

300

PID IS IN USE GET THE FATHER'S PID
WHICH IS CLOSEST TO OP.EXEC

K=1
CALL PDAD (X, IDIS(1))
USE(IDIS(1))=1 !UPDATE FOR USER DISP

IF (ICPU(I)+IMINCPU.LT.CPUTIM .OR.
CPUTIM.LT.ICPU(I) .OR.
ICPU(I).EQ.0) THEN

A CHANGE IN CPU TIME HAS OCCURED

OR A NEW PROCESS HAS TAKEN THIS PID
OR THIS IS THE INITIAL RUN

UPDATE ELAPSED TIME, CPU TIME

AND DISPLAY FIELD

ITIM(I)=ETIME ! UPDATE ELAPSED TIME

MODE(I)=NRM//BLK ! SET BLINK MODE ON

CNT(2)=CNT(2)+1 ' UPDATE ACTIVE COUNT
ELSE

NO CHANGE IN CPU TIME
CHECK IF THIS PROCESS HAS ANY SONS

K=1I
CALL PIDSON (K, IFLG)

IF NO SONS AND NOT OP THEN REVERSE VIDIO
ELSE MAKE DISPLAY NORMAL

IF (IFLG.EQ.0 .AND. IDIS(I).NE.2) THEN

MODE(I)=NRM//REV 'PID HAS NO SONS
CNT(3)=CNT(3)+1 ! UPDATE INACTIVE COUNT
ELSE
MODE(I)=NRM//NUL 'PID HAS SON(S)
CNT(1)=CNT(1)+1 {UPDATE FATHER COUNT
ENDIF
END IF
ICPU(1)=CPUTIM 1 UPDATE CPU TIME
END IF

END DO

DISPLAY CURRENT ACTIVE PIDS
IN MATRIX FORM ON SCREEN

DO I=1,241,16
M=1/16+1 'CALC ROW INDEX

CALL CURPOS (M,5,0) 'POSITION CURSOR
WRITE (*,300) (MODE(K),IDIS(K),K=1,1+7)

FORMAT ('#',16(A6,I4))
CALL CURPGS 'M, 43, *PCSITION CURSOR

15

oNoNe N9

400

NnOon

500

eXeke!

600

0NN

sNake!

[sNaXe!

16

END DO
DISPLAY ACTIVE USER NAMES

PRINT *,NRM

M=1 'INITIAL ROW POSITION
N=75 'INITIAL COLUMN POS
DO I=1, 256
IF (USE(I).EQ.1) THEN
K=1

CALL UNAME (K, UNM)

IF ((I.GT.2 .AND. UNM(1:3).NE.'OP ') .OR.

CALL CURPOS (M,N,0)
WRITE (*, 400) I, UNM(1l:8)
FORMAT ('#',15,1X,A8)

M=M+1

IF (M.GT.22) THEN
N=N+14
M=1

END IF

END IF
END IF
END DO

BLLANK OUT ANY UNUSED FIELDS

DO WHILE (N.LT.120)
CALL CURPOS (M, N, 0)
WRITE (*, 500)
FORMAT ('#',"' ")
M=M+1
IF (M.GT.22) THEN
N=N+14
M=1
END IF
END DO

UPDATE TIME/DATE DISPLAY
CALL TIMDAT (TMDT)
CALL CURPOS (0,96,0)
WRITE (*, 600) NRM, TMDT
FORMAT ('#',A4,Al18)

UPDATE DISPLAY COUNTS

DO 1=1,4
M=I+18
CALL CURPOS (M,32,0)
WRITE (*,FMT="("#',I3)") CNT(I)
CNT(1)=0 { RESET COUNTERS
END DO
ZERO OUT USER DISPLAY TABLE
DO I1=1,256
Use(I)=0
END DO

CHECK FOR INITIAL RUN CONDITION
DO NOT DELAY !F ONLY RUN CNCE

I1.LE.2) THEN

anNnn 0O N 0nNn

Cc

% INCLUDE
% INCLUDE
% INCLUDE
$ INCLUDE
3 INCLUDE
3 INCLUDE
$INCLUDE
% INCLUDE

IF (IFIRST.EQ.1) THEN

SET UP TO DELAY 5 MINUTES

CALL MDELAY (IMIN)

END 1IF

IFIRST=1

GOTO 100

END
"CURPOS.F77"
"RUNTM.F77"
"PDAD.F77"
"PIDSON.F77"
"MDELAY.F77"
"PIDFORM.F77"
"UNAME.F77"
"TIMDAT.F77"

DO FOREVER

!SET INITIAL PASS DONE

17

KKK KK KAR A AR KRR R KA AR AR KRR AR KARKRAKRRARKRKRAKNKR AR AR KRR T AR A AR AKX

SUBROUTINE PIDFORM

THIS SUBROUTINE WILL LAYOUT A FORM
FOR THE PID ACTIVITY REPORT

CHARACTER MODE*6(4), LEGEND*22(4)

DG 400 SERIES CONTROLL CODES
FOR:

NORMAL

BLINK ON

REVERSE VIDIO

DIM ON

000N 0n0 0NnNn Nnan

DATA MODE/'<217><236><305><235><000><000>"

& '<217><236><305><235><216><000>" ,
& '<217><236><305><235><236><304>",
& '<217><236><305><235><234><000>"/
C
C EXPLANATION LEGEND
C
DATA LEGEND/'FATHER PROCESS OR OP ',
& 'ACTIVE PROCESS ',
& "INACTIVE TERMINAL SON ',
& "UNASSIGNED PID '/
C
C OUTPUT TOP PID LEGEND
C

CALL CURPOS (0,5,1)
WRITE (*, 101)
101 FORMAT ('#',' [0} [1] (2] (31 (4] [5]) (61 [71")

CALL CURPOS (0,43,0)
WRITE (*, 101)

c
C OUTPUT SIDE PID LEGENDS
C
DO I=1, 256,16
J=1+8
WRITE (*, 201)I, J
201 FORMAT (1X,'[',13,']',33x,'(',13,'1")
END DO
c
C OUTPUT BOTTOM PID LEGEND
C
CALL CURPOS (17,5,0)
WRITE (*, 101)
C
CALL CURPOS (17,43,0)
WRITE (*, 101)
C
Cc OUTPUT EXPLANATION LEGENDS
C
DO I=1,4
K=1+18
CALL CURPOS (K,10,0)
WRITE (*, 301) MODE(I), LEGEND{1I)
201 FPORMAT ('4',6A6,A22)

END DO

18

END

C
C**********k******************k********************k*********
Cc

SUBROUTINE PIDSON (PID, FLAG)
C
C THIS ROUTINE DETERMINES IF THIS PID
C HAS ANY SONS
C IF YES THEN FLAG=1
C ELSE FLAG=0
(of

INTEGER*4 ISYS, IACO, IACl, IAC2

INTEGER*4 PID, FLAG

INTEGER*2 STAT(200)
c
Cc PERFORM PSTAT CALL TO DETERMINE
c IF SELECTED PID HAS ANY SONS
Cc

IPID=5

IACO=PID

IAC1=0

IAC2=WORDADDR (STAT)
c

IERR=ISYS(IPID, IACO, IACl, IAC2)
c
C CHECX BIT PATTERN FOR ANY SONS
c

FLAG=0

Do J=2,17

FLAG=FLAG+STAT(J)

END DO
Cc
C IF SONS EXIST THEN MAKE FLAG = 1
C

IF (FLAG.NE.O) FLAG=1
C

RETURN

END

19

LEE R R R P R T TR L T T R TR S T

SUBROUTINE RUNTM (PID, ETIME, CPUTIM, IERR)

GETS PID NUMBER AND RETURNS ELAPSED TIME
IN SECONDS AND CPU TIME IN MILLISECONDS

aoOnon oo

INTEGER*4 1ISYS, IACO, IACl, IAC2

INTEGER*4 PAC(4)
INTEGER*4 PID, ETIME, CPUTIM, I[ERR

Cc
C SET UP TO MAKE SYSTEM RUN TIME CALL
c
IPID=24 {RUNTIME CALL
IACO0=PID 1PID NO,
IAC1=0 IUSING PID
IAC2=WORDADDR(PAC) 'RETURN LIST
Cc
C PERFORM RUNTIME CALL TO GET
c ELAPSED TIME AND CPU TIME
C
IERR=ISYS (IPID, IACO, IACl, IAC2)
C
ETIME=PAC(1) IRETURN ELAPSED TIME
CPUTIM=PAC(2) {RETURN CPU TIME
C
RETURN
END

20

SUBROUTINE SEND (PID, NUM)

THIS SURRQUTINE RETHRNS '‘SENDS WARNING
MESSAGER TO THE SELECTED PID NQ,

UPON THE THIRD WARNING BRING BENT

THIS ROUTINE WILL CALL FQT THE TERMINATION
OF THE QRLECTED PID

INTEGER*4 1SYS, IACO, IACl, JAC2
INTEGER*4 PID, NUM
CHARACTER MESS*47, WARN*47(3)

DATA WARN/'<BEL>1ST WARNING TERMINAL INACTJVE FQR 5 MIN
& '<BEL>FINAL WARNING BEFORE LOG OFF - INACTIVE 10 MIN
& '<BEL>TERMINATION ~ INACTIVE 15 MIN

nNNnNDNOoONOOn

SET MESSAGE LENGTH
LEN=47
GET SELECTED MESSAGE
MESS=WARN (NUM)
SET UR 70 MAKE 7SEND CALL
IPID=206 , I SEND CALL
JACO=PID IRID NO.
IAC1=BYTEAPDR(MESS) IMESSAGE PQINTER
IAC2=LEN IMESSAGE LENGTH
SEND THE MESSAGE TO THE SELECTER PID
IERR=1SYS (IPID, IACQ, IAGl, IAC2)
CHECK FOR TEBMINATJON

CRrEX AR R A KRR IR AR KR RRRA KRR RN KRR RRR KRR R AR AR RN E RN ARRR AR R AN RN R

C* REMOVE COMMENTS TO ACTIVATE TERMINATION QPERATION &)

CRAh AR R AR X IR R AN AR R RRNNR AR KRR NN RARRANKN R A AR P RARR TR AR AR RNk k kN
o : ‘

Nnnon NN NNnon

non nonn

*

IF (NUM.EQ,3) THEN ! *
CALL TERM(PID) ! *
END IF' ! L
L]
C*******************t****#***q*t#**g*q*k*tgf*tﬁt*f#ﬁ*ﬁ*kt********
C .
RETURN
END

2]

ao0n 0nnon

o000 o0oonn

noon 00NN

0 Onn

22

SUBROUTINE TERM (PID)

THIS SUBROUTINE TURNS ON SUPERPROCESS AND THEN
TERMINATES THE SELECTED PID, ALL SON PROCESSES
ARE ACCORDINGLY ALSO TERMINATED

INTEGER*4 ISYS, IPID, IACO, IACl1l, IACZ2, PID

RETURN
END

SET UP TO TURN ON SUPERPROCESS

IPID=43 ! SUPROC CALL
IACO=~1 ITURN ON
IAC1=0 !UNDEFINED
IAC2=0 !UNDEFINED

TURN ON SUPERPROCESS
IERR=ISYS (IPID, IACO, IACl, IAC2)

SET UP TO MAKE ?GTERM CALL

IPID=45 !TERM CALL
IACO=PID !PID NO.
IAC1=0 'CONTAINS PID
IAC2=0 !NO MESSAGE

TERMINATE THE SELECTED PID
IERR=ISYS (IPID, IACO, IACl, IAC2)

SET UP TO TURN OFF SUPERPROCESS

IPID=43 ' SUPROC CALL
IACO=1 !TURN OFF
IAC1=0 !UNDEFINED
IAC2=0 !UNDEFINED

TERMINATE THE SELECTED PID

IERR=ISYS (IPID, IACO, IACl, IAC2)

EEAKRKK AR AR KR KKK A A R AR AR R RK AR AR KRR A AR AR AR AR A AN AN TR R kXK

SUBROUTINE TIMDAT (TMDT)

THIS SUBROUTINE WILL RETURN THE CURRENT
SYSTEM TIME AND DATE IN CHARACTER FORMAT
IN STRING TMDT (OF LENGTH 18)

ao0O0nn onn

INTEGER IDATE(3), ITIME(3), IBLD(6)
CHARACTER TMDT*18

GET SYSTEM DATE AND TIME FOR HEADER

ann

CALL DATE (IDATE)
CALL TIME (ITIME)

SET UP DATE TO BE IN MM/DD/YY FORM

nan

ITMP=IDATE(1)-1900
IDATE(1)=IDATE(2)
IDATE(2)=1DATE(3)
IDATE(3)=ITMP

Do I1=1,3
IBLD(I)=ITIME(1I)
IBLD{(I+3)=IDATE(I)

END DO

DO 1=1,6
M=(I-1)*3+1
N=M+1
ITMP=1IBLD(1)/10
IBLD(I)=IBLD(I)-(ITMP*10)
TMDT (M:M)=CHAR(ITMP+48)
TMDT(N:N)=CHAR(IBLD(I)+48)
END DO

TMDT(3:3)="
TMDT(6:6)="'
TMDT(9:9)="
T™MDT(12:12)
TMDT{15:15)
TMDT(18:18)

—

RETURN
END

23

eXeNeNesNeXe'

[aNeNeXe)

NnnOo OO0

24

SUBROUTINE UNAME (PID, UNM)

THIS SUBROUTINE WILL RETURN THE USERNAME OF
THE CURRENT PROCESS IN THE CHARACTER
STRING UNM, THE STRING WILL BE TERMINATED

WITH A <NULL>

CHARACTER UNM*32
INTEGER*4 ISYS, IACO, IACl, IAC2, IFLG, PID

DETERMINE [F THIS IS TO BE THE
CALLING TASK'S PID

IF (PID.LT.0) THEN

IFLG=1
ELSE

IFLG=0
ENDIF
IPID=58 ! ?GUNM CALL
IACO=PID 'PID NO. OR -1
IAC1=IFLG '{USING PID OR -1
IAC2=BYTEADDR(UNM) {RETURN LIST

PERFORM SYSTEM CALL TO GET USERNAME

IERR=ISYS (IPID, IACO, IACl, IAC2)
BLANK THE STRING AFTER THE USERNAME

IFLG=0

DC I=1,32
IF (UNM(I:I).EQ.'<000>') IFLG=l
IF (IFLG.EQ.1l) UNM(I:I)=' "'

END DO

RETURN
END

SUBROUTINE VIP (UNAME, IFLG)

C
C THIS ROUTINE WILL DETERMINE IF THE
c USERNAME PASSED TO IT EXIST IN THE
C VIP.DAT FILE, IF YES THEN IFLG=1
C ELSE IFLG=0
C
CHARACTER UNAME*32, VNAME*32
C
C INITIALIZE RETURN FLAG TO 0
C
IFLG=0
C
C OPEN VIP FILE
C
OPEN (UNIT=21, STATUS='OLD
& FILE='VIP.DAT',
& IOSTAT=IERR]l, RECFM='DS', FORM='FORMATTED',6PAD='YES',
& ERR=999)
C
Cc READ ONE (1) LINE
c

100 READ (21,FMT=101, I[OSTAT=IERR2, ERR=999, RETURNRECL=IL) VNAME
101 FORMAT (A32)

C
C CHECK FOR ZERO RECORD LENGTH
C
IF (IL.EQ.0) GOTO 999
C
C CHECK IF NAME'S MATCH
C
IF (VNAME.NE.UNAME) GOTO 100
C
(o} A MATCH HAS BEEN FOUND
C SET IFLG TO 1
C
IFLG=1
o
C CLOSE THE VIP FILE AND RETURN TO CALLER
C
999 CLOSE (UNIT=21)
(o

RETURN
END

APPROVAL

A PROCESS ACTIVITY MONITOR FOR AOS/VS

By R. A. McKosky, S. W. Lindley, and J. S. Chapman

The information in this report has been reviewed for technical content. Review
of any information concerning Department of Defense or nuclear energy activities or
programs has been made by the MSFC Security Classification Officer. This report,
in its entirety, has been determined to be unclassified.

S. R. REINARTZ
Manager, Shuttle Projects Off¥¢e

YU S. GOVERNMENT PRINTING OFFICE 1986—631-058/20077

26

