
SOFTWARE ENGINEERING LABORATORY SEL-84-004

(NASA-TM-S6594) PROCEEDINGS O£' THE NINTH
1NNUAL SOF~WARE ENGINEERING WORKSHOP (NASA)
!61 P HC A16/MF ACl CSCL 09B

G3/61

SEL-84-004

N86-19967
THRD
NS6-19980
Unclas
05491

PROCEEDINGS OF THE
NINTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

, ,

https://ntrs.nasa.gov/search.jsp?R=19860010496 2020-03-20T15:10:26+00:00Z

PROCEEDINGS

OF

NINTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engmeering Laboratory
GSFC

November 28, 1984

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

CONTENTS

AGENDA

SUMMARY OF THE SESSIONS:

NInth Annual Software Engineering Workshop

SESSION I'

An Approach to Developing SpecIfication Measures

EvaluatIng Software Testing Strategies

Software Development in ADA . "

SESSION 2:

A Large Scale Experiment in N-VersJOn Programming

DesIgn Metncs for Maintenance.

An Approach to Operating System Testing ...

The Cognitive Connection: Software Maintenance and Documentation

SESSION 3:

An Evaluation of Programmer/Analyst WorkstatIons

A Model for the Prediction of Latent Errors Using Data ObtaIned During
the Development Process

The Independence of Software Metrics Taken at Different LIfe-Cycle Stages

SESSION 4:

An InteractIve Program for Software Reliability Modeling

A~sessIng the ProficIency of Software Developers

Tailoring a Software Production EnvIronment for a Large ProJect.

Attendance

Bibliography of Sel Literature

11

Page

iv

14

42

65

86

100

136

168

178

196

213

231

264

313

A-I

B-1

FOREWARD

The Software Engineering Laboratory (SEL) is an orgamzation sponsored by the NatIOnal Aeronautics
and Space Administration Goddard Space Flight Center (NASA/GSFC) and created for the purpose of
investigating the effectiveness of software engineenng technologies when applied to the development
of applications software. The SEL was created in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer SCiences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software development process in the GSFC environ
ment; (2) to measure the effect of vanous methodologies, tools, and models on this process; and (3)
to identify and then to apply successful development practices. The activities, findings, and recom
mendations of the SEL are recorded in the Software Engineenng Laboratory Series, a continuing senes
of reports that includes this document.

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 552
NASA/GSFC

Greenbelt, Maryland 20771

.1~l

8:00 a.m.

8:45 a.m.

9:00 a.m.

10:30 a.m.

II :00 a.m.

12:30 p.m.

AGENDA

NINTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER

BUILDING 3 AUDITORIUM
NOVEMBER 28, 1984

Registration - 'Sign In'
Coffee, Donuts

INTRODUCTORY REMARKS

Session No. I

"An Approach to Developing
Specification Measures"

"Evaluating Software Testing
Strategies' ,

"Analysis of Software Development
in Ada"

BREAK

Session No. 2

"A Large Scale Experiment In
N-Version Programmmg"

"DesIgn Metrics for Maintenance"

, 'An Approach to Operating System
Testing"

LUNCH

IV

J. J. Quann, Deputy Director
(NASA/GSFC)

Topic: Current Research in the
Software Engineering Laboratory
(SEL)

Discussant: F. E. McGarry
(NASA/GSFC)

W. Agresti (CSC)

R. Selby (Univ. of Maryland)

V. Baslli (Univ. of Maryland)

Topic: Software Error Studies

Discussant: M. Zelkowitz
(Univ. of Maryland)

J. Knight (Univ. of Virginia)

H. Rombach (Univ. of Maryland)

R. Sum (Univ. of Illinois)

1:30 p.m. SessIOn No. 3 Topic: Experiments with Software
Development

Discussant: J. Page (CSC)

"Implementation and Evaluation of
Programmer/ Analyst Workstations" K. Koerner (CSC)

"A Model for the Prediction of Latent
Errors Using Data Obtamed Dunng J. Gaffney (IBM)
the Development Process" S. Martello (IBM)

"The Independence of Software
Metrics Taken at Different Life-Cycle
Stages" D. Kafura (Virginia

Poly technical Institute)

3:00 p.m. BREAK

3:30 p.m. Session No.4 TopIc: Software Tools

Discussant: K. Tasaki (GSFC)

"An Interactive Program for Software
Reliability Modeling" W. Farr (NSWC)

"Measunng Proficiency of Software
Developers' , L. Putnam (QSM)

"TaIloring A Software Production
Environment of a Large Project" D. Levine (Intennetrics)

5:00 p.m. ADJOURN

v

NINTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

ABOUT THE WORKSHOP

The Ninth Annual Software Engineering Workshop was held on Nov 28, 1984, at Goddard Space
Flight Center in Greenbelt, MD. Nearly 300 people, representing 7 universities, 26 agencies of the
federal government, and 56 pnvate organizations, attending the meeting.

As in the past 8 years, the major emphasis for this meeting was the reporting and discussion of ex
periences in the identification, utilization, and evaluation of software methodologies, models, and
tools. Twelve speakers, making up four separate sessions, participated in the meeting with each ses
sion havmg a panel format with heavy participation from the audience.

The workshop is organized by the Software Engineering Laboratory (SEL), whose members represent
the NASA/GSFC, University of Maryland, and Computer Sciences Corporation (CSC). The meeting
has been an annual event for the past 8 years (1976 to 1984), and there are plans to continue those
yearly meetings as long as they are productive.

The record of the meeting is generated by members of the SEL and is printed and distributed by the
Goddard Space Flight Center. All persons who are registered on the mail list of the SEL receive
copies of the proceedings at no charge.

Additional information about the workshop or about the SEL may be obtained by contacting:

Mr. Frank McGarry
Code 552
NASA/GSFC
Greenbelt, MD 20771

301-344-6846

VI

SUMMARY OF THE SESSIONS: NINTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

Prepared for the

NASA/GSFC

NINTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

By

Q. L. Jordan

COMPUTER SCIENCES CORPORATION

and

THE GODDARD SPACE FLIGHT CENTER

SOFTWARE ENGINEERING LABORATORY

The Ninth Annual Software Engineering Workshop was held on

November 28, 1984, at the National Aeronautics and Space
Administration (NASA)/Goddard Space Flight Center (GSFC) in

Greenbelt, Maryland. This annual fair is held for the pur
pose of reporting and discussing experiences in measurement,

utilization, and evaluation of software methodologies, mod

els, and tools. John J. Quann, Deputy Director of NASA/
GSFC, indicated in his opening remarks that NASA's involve
ment in ever larger and more complex systems, like the space

station project, provides a motive for the support of soft
ware engineering research and the exchange of ideas in

forums such as this workshop. The workshop was organized by
the Software Engineering Laboratory (SEL), whose members
represent NASA/GSFC, the University of Maryland (UM), and

Computer Sciences Corporation (CSC). The workshop was con

ducted in four sessions that addressed the topics of current
SEL research, software error studies, experiments with soft
ware development, and software tools. Twelve papers, three
for each topic, were presented, with the audience actively

participating in all discussions through general commentary,

questions, and interaction with speakers.

Approximately 300 persons representing 56 private companies,

7 universities, and 26 agencies of the Federal Government
attended the workshop.

One of the major themes of the day pertained to the devel

opment, assessment, and verification of software measures

applicable to the requirements and design phases of the

software life cycle. This theme was addressed by

Dr. William Agresti, Dr. Dennis Kafura, Dr. Dieter Rombach,

and Mr. John Gaffney. Dr. William Agresti of CSC (An

Approach to Developing Specification Measures) discussed the

application of a Composite Specifications Model (CSM) that

describes specifications from several representative

2

aspects. The basic purpose of his project was to provide,

early in the development process, appropriate information to

the diverse groups of managers, analysts, developers, and
customers. This information should be provided by objective
measures derived from the requirements specification. His

paper described one attempt to accomplish this by extracting

29 explicit measures such as number of pages, constraints,
and input/output (I/O) requirements from existing require

ments specification documents for five NASA/GSFC projects.

He showed that, while these measures were extractable, they
were not useful. He defined a CSM representing specifica

tions from three aspects: functional (data flow), contex
tual (entity/relationship), and dynamic (state/transition).

Fifty-eight explicit and analytic (i.e., derived from the
explicit) measures were defined and extracted from a NASA

project that was part of the ground system for a recent

shuttle-launched satellite and consisted of 11,000 lines of

code. This experiment showed that the CSM is feasible and

can provide predictive quantitative information early in

development. Since this attempt with the CSM represents

only one data point, the CSM must also be applied to other

projects. In response to questions, Dr. Agresti indicated
that the CSM did not represent performance, so that the tra~

ditional specification is not completely replaced. He also

noted that tracking changes through several versions is a

configuration management problem, but it should be easier

with the CSM than the traditional representation.

In another experiment related to the software measures,

Dr. Dennis Kafura of Virginia Polytechnic Institute (The
Independence of Software Metrics Taken at Different Life

Cycle Stages) discussed an effort to define a complete and
minimal set of metrics--complete in the sense that all forms

3

of complexity are represented, and minimal in the sense that

no redundant (i.e., highly correlated) measures appear.

Thre~ projects, an operating system, a data base system, and
a ground support system, were chosen to represent different

applications and environments. Metrics considered in the

study were broadly classed as code, structure, and hybrid

metrics. Code metrics, defined in terms of the implemented
code, include Halstead's software science measures and

McCabe's cyclomatic complexity. _Structure metrics, defined

in terms of the relationship between major system components,

include Henry and Kafura's information flow complexity and
McClure's invocation complexity. Hybrid metrics, combining

elements of both code and structure metrics, include

Woodfield's syntactic interconnection measure (combining

control and data relationships between components with

Halstead's effort measure) and Yau and Collofello's stabil

ity measure. Study results indicate that the code metrics

all seem to be highly correlated. The structure metrics

appear to be distinct among themselves and different from

code metrics. The relationship of the hybrid to the code
and structure metrics is less straightforward. During the

following discussion, Dr. Kafura noted that information flow
metrics were expensive to obtain, since this involved input

ting source code to a tool and working backward. The struc
ture and hybrid metrics might be obtained more easily at
design time.

In another effort to assess the utility of measures,

Dr. Dieter Rombach of UM (Design Metrics for Maintenance)

presented a study to determine the impact of system design

characteristics on maintenance behavior. Three timesharing
and three process control systems were chosen for the study.

The software was characterized by the number of modules and
the number of explicit and implicit data structures. The

4

structure of a module was characterized by exteri~r com
plexity (control, data, and information control) and
interior complexity (control flow, length, and interface

intensity). Dr. Rombach extracted these measures from de
sign documents and then seeded each system with 25 faults.
Nine programmers simulated a maintenance environment by re

sponding to the seeded faults, environment changes, and

requirements changes. Complexity, stability, and modifi

ability were compared for different module types, and the

results showed that the maintenance behavior of a system can

be predicted by an examination of design documents: the best

prediction can be obtained from a system that has exterior

complexity characterized by integrated information flow.

In yet another effort targeted toward the area of measures,

Mr. John Gaffney, Jr., of IBM (A Model for the Prediction of

Latent Errors Using Data Obtained During the Development
Process) discussed a model implemented on an IBM personal
computer that estimates latent (postship) errors on the

basis of the count of errors found during each stage of the
software life cycle. This technique has proved effective in

predicting software errors during late phases of development

as well as after system delivery. Model input consists

mainly of error counts during each stage of the life cycle,

which includes an error discovery process. This process
includes high-level design inspections, low-level design

inspections, code inspections, unit test, integration test,

and system test. A discrete form of the Rayleigh curve is
used in the model to represent the number of errors removed

per thousand lines of source code (KSLOC) as the inde
pendent variable expressed as a function of the error

discovery process. This model can be used to aid the man

agement and control of the development process by providing
estimates of error counts found during successive stages of
the development process. For example, if early error

5

discovery rates are not as high as predicted, some manage

ment action such as additional inspections or test hours may
be indicated for later stages to produce an acceptable

latent error content. The error discovery histories of dif

ferent software products and different stages in the devel

opment of a single product. can be compared.

The second major theme for the day pertained to experimenta
tion with and evaluation of software development methodolo
gies. This theme was addressed by Dr. Richard Selby,

Dr. Victor Basili, Ms. Kathy Koerner, and Dr. John Knight.
Dr. Richard Selby of OM (Evaluating Software Testing

Strategies) described an experiment conducted to compare

some common software testing techniques: code reading,

functional testing, and structural testing. Thirty-two pro

grammers from NASA/GSFC and CSC participated in the experi

ment to test three programs. The results of this experiment

showed that code reading is more effective in uncovering

faults (3.3 errors per hour versus 1.8 errors per hour for

the other two methods) and less expensive to utilize than is

either functional or structural testing. In the ensuing

discussion, Dr. Selby said that no previously unknown errors

were found, though some problems reported as errors were
cleared up by clarifying requirements or driver programs.

He also pointed out that it was not yet clear that the re

sults of this experiment can be generalized to larger pro
grams.

In a second experiment dealing with methodology assessment,

Dr. Victor Basili of OM (Analysis of Software Development in
Ada*) discussed a project to develop and analyze an Ada

*Ada is a registered trademark of the U. S. Government (Ada
Joint program Office) •

6

product in terms of effort and errors. The goals of this

project were to evaluate the effect of using Ada for the
development methodology, to develop a set of metrics for
Ada, and to establish a baseline for future projects using

Ada. The experiment task was to redesign and implement in
Ada a satellite ground support system that was initially
developed in FORTRAN. Four programmers with no prior Ada
experience were involved in the redesign and implementation
after 1 month of training. Errors were classified as lan

guage related (syntax~ semantics - i.e., the meaning of an
Ada feature; and concept - i.e., how an Ada feature should

be used), misunderstanding of the problem or environment,
and simple clerical or typographical errors. Dr. Basili

noted that the majority of errors found in this project were
syntax errors, which led him to conclude that a syntax

directed editor is almost a must with Ada. Programmers

tended not to think at a high enough level of abstraction

but rather at the FORTRAN code level. Ada features were
used, but conservatively, and there was little information
hiding. He concluded that training in Ada-based methodology

is not only extremely important but also requires a much
larger effort than he had originally anticipated. Examples
from the area of the given application are needed to under

stand appropriate data abstraction. Because a higher level
of abstraction is required to apply Ada to coding, the de

velopment methodology must begin at a higher level early in
the development process. In the discussion following

Dr. Basili's presentation, the point was made that, if used

properly, Ada should result in very high productivity. If,

however, Ada is used with the traditional FORTRAN

methodology or "mind-set," then developers would do better

to stick to FORTRAN.

7

Ms. Kathy Koerner of CSC (An Evaluation of Programmer/

Analyst Workstations) reported the results of an experiment

to evaluate programmer/analyst workstations to automate re

quirements and design activities. Automation of require

ments and design activities promises substantial gains in

productivity and quality. CSC and GSFC are conducting a

three-step evaluation of proqrammer/ana1yst workstations

that provides requirements analysis and design tools. The

steps are: (1) an assessment of available workstation tech

nology, (2) a controlled experiment utilizing selected work

stations, and (3) a long-term study of the effects of

workstation use on development. Steps 1 and 2 were com

pleted recently. The industry survey identified four micro

processor implementations of workstations that provided most

of the required capabilities. The NASTEC CASE 2000 and

Index Technology EXCELERATOR were selected for the in-house

evaluation. Both a collection of general users and a divi

sion evaluation team participated in the evaluation. The

general users rated the EXCELERATOR high with respect to

ease of learning and use but otherwise rated the two systems

about equ~lly. The division evaluation team rated the

CASE 2000 high in terms of overall support. Both systems

offer improvements in productivity and quality r~lative to

the manual approach. Differences between the general user

and division team evaluations reflect different perspectives

on workstation support needs. The EXCELERATOR appears to be

better suited for sma1l- to medium-scale projects, while

some of the special capabilities of the CASE 2000 make it

more attractive for large projects. During Step 3 of the

evaluation process, both workstations will be applied to

different production projects, and their effects on produc

tivity and quality will be measured objectively. In the

following discussion, an estimate was offered for one case

8

of a 40 percent cost reduction for design and specification

in the use of these tools for reworking drawings.

In yet another area of development methodology experimenta

tion, Dr. John Knight of the University of virginia (~

Large-Scale Experiment in N-Version Programming) described a

method in which several versions of a program are independ

ently prepared from a single requirements specification, to

produce fault-tolerant software. The execution results of

all versions which are run with identical input are com

pared, and a decision is made or output is chosen by vote.

Use of the technique implicitly assumes that failures among

the several versions are independent. This assumption was

tested in an experiment using senior undergraduate and grad

uate students at the universities of virginia and California

Irvine. The problem chosen was the development in Pascal of

a radar data processor that provided missile friend/foe

identification. Twenty-seven Pascal versions of the com

pleted software were subjected to one million tests. Ten

versions demonstrated no failures, and most were 99 percent

reliable. There were a number of multiple failures. The

bugs shared among versions were usually obscure and seemed

to result from flaws in problem understanding. The computed

probability of multiple failure was 0.000126. However, the

observed probability was 0.001255. The independence hypo

thesis was rejected at the 99 percent confidence level. In

response to questions, Dr. Knight added that test data was

generated by uniformly distributed random number sequences

and that, where a parameter had a range, the value was

varied throughout the range. No testing of real-time capa

bilities was done.

The third group of presenters covered a potpourri of topics

ranging from productivity to configuration management. The

presenters were Mr. Larry Putnam, Mr. David Levine,

Mr. R. N. Sum, Mr. William Farr, and Mr. Oliver Smith.

9

Specific topics were empirical studies to model productivity

and other development characteristics as functions of staff
ing profiles, the impact of formalized and automated con
figuration tools for large-scale development projects, a
heuristic method for testing an operating system, and an

interactive tool to support software reliability modeling.

Mr. Larry Putnam of Quantitative Software Management, Inc.
(QSM) (Measuring Proficiency of Software Developers) pre-

sented the results of empirical studies he has performed to
model productivity and other software development character
istics in terms of staffing profiles, and he pointed out

sharp differences between development in the United States
and Japan. An algorithm from the Software Lifecycle Manage
ment Model (SLIM) was used to develop a productivity index

to measure the proficiency of software developers. This

productivity index has been computed for each of the
800 systems in the QSM data base. Comparisons of the devel
oper performance were made with development time and effort,

project staffing, and productivity. From this analysis, it
was possible to determine the developers' style for building

software. One style was characterized by fast buildup of

resources, high staffing levels, and quick product delivery.
Another style was characterized by slower buildup, lower

staffing levels, and slower product delivery. Three Japanese

companies exhibiting the former style were contrasted with
three American companies exhibiting the latter style. The

Japanese cost was higher and productivity was lower than the

U.S. companies. The implication is that scheduling and
staffing, controlled by management, have a significant im
pact on productivity. During the following discussion,

Mr. Putnam said that the slower buildup development style

produced higher quality code. One U.s. manufacturer got five

times better code.

10

Mr. David Levine of Intermetrics, Inc. (Tailoring a Software

Environment for a Large Project) described the impact of

utilizing automated and formalized configuration control

tools in the suppo~t of disciplined development for large

scale projects. A software production environment was con

structed to meet the goals of a specific large programming

project (100 KSLOC and 700 modules). A method was developed

to automatically maintain the version identification of each

module in a form that was easily visible and checkable by

standard tools, especially by the linker. The version num

ber was also appended to a module when copied into the pro

grammer's private library. The version number was then

frozen and was carried into the object code and load mod

ules. The development language supported separate compila

tion. This capability required good management to maintain

correctness and to control recompilation. A system was

developed in which the interface definitions were provided

in the same files as the functions they described. They

could then be extracted for inclusion by other units. Other

systems were developed to meet the needs imposed on the

project by continuous integration to maintain a stable of

ficial baseline configuration while developers were adding

and modifying code. The environment was implemented on UNIX

to support development by up to 20 programmers. The project

took 2 years and involved 9200 versions. A project of this

size seems to require a less strong interconnection and less

changeable interface than a smaller project. This has major

implications for the support system.

Mr. R. N. Sum, Jr., of the University of Illinois (An Ap

proach to Operating System Testing) discussed a heuristic

method used to test an operating system. The results of

applying this method to the IBM System 9000 XENIX operating

system test and the development of a UNIX test suite were

presented. System specifications were used to divide the

II

system into manageable ?ieces to test, and user's manuals

were used to develop the specific tests. The system was

divided into high-level commands available to users, library

and utility subroutines, and system calls used by the system

programmers and drivers. Testing methods applied were ex

haustive (every possible value in the input range), random

(values randomly selected from the input range), special

(specific values of input that have specific or unusual

results), explicit (values explicitly used or suggested in

the manuals), and exception (illegal input values to test

error handling). A Problem Tracking Memorandum (PTM) was

used to document errors. Commands, being the largest cate

gory, were the most error prone (51.9 percent of PTMs), with

documentation accounting for 19.6 percent of the PTMs. A

surprising 15.4 percent of PTMs were accounted for by system

calls. Results were also presented by test type, error

severity level, and manpower profile. The method exhibits

many of the characteristics of a good system test, and even

though the System 9000 is considered a small system, the

system test used approximately 30 research-assistant months.

It therefore appears that hardware advancements are blurring

the concept of size so that siz~ must be carefully consid

ered in system development.

Mr. William Farr and Mr. Oliver Smith of the Naval Surface

Weapons Center (An Interactive Program for Software Relia

bility Modeling) described an interactive tool that has been

developed in support of the use of several well-known soft

ware reliability models for the estimation and analysis of

errors. They implemented a Statistical Modeling and Estima

tion of Reliability Functions for Software (SMERFS) to fa

cilitate the application of reliability analysis. The

program includes eight well-known models, four based on

error interarrival time and four based on the count of er

rors per testing period. Development qoals of the SMERFS

12

program were maintainability, providing a complete reliabil

ity environment, interactive capability, error detection

capability, and machine transportability. The use of the

program was illu·strated with a sample data analysis. The

user may, by menu selection, input, edit, or transform data,

obtain statistics and plots of input data, run a model from

the choice of eight, obtain goodness-of-fit results, and
generate plots of original and predicted data and plots of

residual data. In the discussion that followed the pres

entation, Mr. Farr said that the program has been used by
two large-scale Navy projects with very good results. Pre

dicted error rates using some of these models were within
10 percent of actual.

13

PANEL #1

THE SOFTWARE ENGINEERING LABORATORY (SEL)

W. Agresti, Computer Sciences Corp
R. Selby. Universitv of Marvhmc't
V. Basili. Umverslty of Maryland

YI
N86-19968

AN APPROACH TO DEVELOPING SPECIFICATION MEASURES l

William W. Agresti 2
Computer Sciences Corporation

ABSTRACT

An approach to developing specification measures is de
scribed. A key feature of the approach is the introduction
of a new requirements representation, the Composite Specifi
cation Model (CSM). Results are reported from an experiment
in which the requirements for d real system are recast using
the CSM. Specification measures are then extracted from the
CSM representation of the system.

Iproceedings, Ninth Annual Software Engineering Workshop,
National Aeronautics and Space Administration, Goddard
Space Flight Center, November 1984

2Author's Address: System Sciences Division, Computer
Sciences Corporation, 8728 Colesville Road, Silver Spring,
Maryland 20910

14

· i

INTRODUCTION

The first objective of the Software Engineering Laboratory
(SEL) (Reference 1) is to understand the software develop
ment process in the flight dynamics environment of the
National Aeronautics and Space Administration (NASA) Goddard
Space Flight Center (GSFC). To meet this objective, many
SEL studies (e.g., References 2 through 4) have followed
Lord Kelvin's admonition (Reference 5) that "satisfactory"
understanding comes through measurement. However, aspects
of the software development process and product accommodate
measurement to vastly different degrees. Coding and test
ing, for example, lead to familiar measures such as lines of
code and fault rate. But if we want measures that will help
us estimate and plan, these measures become available too
late in the software development life cycle to be of use.
In earlier phases, measurement grows increasingly more dif
ficult. As the target of measurement shifts from coding to
design and, ultimately, to requirements, we find that the
familiar measures depend on infcrmation that is no longer
available. Despite this expected difficulty, this study
sought to extend the SEL's measurement horizon to the re
quirements phase.

THE MEASUREMENT OF REQUIREMENTS SPECIFICATIONS

One way to account for the difficulty in measuring require
ments is to recognize the needs of the various audiences who
use requirements specifications.

People who fulfill four different roles--analyst, manager,
developer and customer--Iook to the requirements for differ
ent reasons. While it is axiomatic to say that all four
groups want a "good" specification, closer inspection re
veals tne "goodness" taking many forms. Figure 2* implies
that a good specification possesses certain desirable prop
erties e.g., consistency, completeness, and understanda
bility.

*AII figures are grouped together at the end of the paper.

15

Figure 2 also suggests that a good specification facilitates
assessment and estimation:

• How complex are the requirements?

• How much will it cost to develop software that sat
isfies the requirements?

• How familiar is this application to our development
staff?

The measurement goal is to encase the requirements in a
shell (Figure 3) so that anyone referring to the specifica
tion may now obtain a measure of his/her property of inter
est. Clearly the requirements specification will need to be
processed in some fashion to generate such property measures.

THE INITIAL APPROACH

The approach (Figure 4) to providing specification measures
was driven by a preference for objective measures instead of
questionnaires or other subjective ratings (Reference 6).
Requirements specifications from the flight dynamics area
were examined for the purpose of identifying measurable at
tributes. A total of 29 measures'were defined (Reference 7).

Because of the interest in objectivity, the resulting meas
ures were explicit counts--number of pages, number of con
straints, etc.--that were believed to be unaffected by the
analyst extracting the measures.

As an experiment, the measures were extracted from several
requirements specifications. Being explicit counts, the
measures were easy to extract. However, examination of the
metric values led to the conclusion that they were not use
ful for quantitatively characterizing the requirements.

This conclusion is not a judgment on the contents of the
requirements documents. Rather, it finds that the require
ments specifications do not facilitate objective measure
ment. Such a result is not unexpected. Boehm has observed
(Reference 8) that "Some work has been done to correlate the
amount of software development effort to the number of spec
ification elements. • • • These attempts have run into the
same sort of definitional and normalization problems as have
the 'number of routines, reports, etc.' •••• "

Figure 5 is an example of the extracted data that led to the
conclusion. Five flight dynamics projects were selected

16

because all involved spacecraft attitude determination.
Furthermore, their requirements documents contained identi
cal section headings, indicative of parallel organization.
Because of the commonality in the documents' structure, the
measures might be more apt to exhibit some pattern that can
be exploited to advantage for estimation or property detec
tion.

Figure 5 depicts, for the five projects, the number of new
source lines of code in the delivered system plotted against
the number of pages in the system's requirements document.
The intuition is simple: if it takes more pages to specify
the requirements for one system than another, then we would
expect the first system to be larger than the second because
both systems were built to satisfy their requirements speci
fications.

The scatter in Figure 5 shows that our expected pattern did
not materialize. The requirements documents for projects D
and E, for example, were nearly the same size, but project E
had five times the number of new source lines as project D.
Other evidence that the extracted metric values were not
true indicators of the requirements was not easy to display
graphically. Measures such as "number of constraints" were
difficult to enumerate fairly when aspects of the require
ments were expressed at different levels of detail.

The lesson learned from this initial excursion into require
ments specification metrics was that "representation is
everything!" The simple counts we extrdcted were not useful
measures because they reflect the variability that is found
in the representation of requirements.

THE REVISED APPROACH

The message was clear: get the process of representing re
quirements under control. Only then would we have confi
dence that our extracted measures were indicative of the
underlying requirements and not an artifact of their textual
representation.

Our revised approach centered on the development of a dif
ferent requirements representation, one that would enable.
the definition and extraction of objective measures. We
proposed a five-step plan (Figure 6) that included an exper
iment of applying the new model to a real system.

17

The first step the revised procedure was to propose a new
representation. We sought a representation that would ac
commodate the varying sized projects that are found in the
flight dynamics environment. Requirements statement lan
guages were an alternative. However, previous SEL experi
ence (Reference 9) with such languages suggested their use
only for larger projects, rather than those common to our
environment (Reference 1).

We developed a representation called the Composite Specifi
cation Model, or CSM. It seemed both realistic and valuable
as a template for specifying requirements. CSM is motivated
by the work of DeMarco and others (References 10 and 11) in
expressing the benefits of multiple views of requirements.
The inherent complex behavior of large software and the mul
tiple audiences for requirements specifications (Figure 2)
support the observation that no single view of the requi~e
ments will be satisfactory. DeMarco (Reference 10) suggests
an analogy to this situation is a three-dimensional object
presented in a two-dimensional medium: an illustration
would show the orthogonal projections of the object onto
each plane.

Another analogy is the representation of a building. The
architect may use a scale model to show the planning commis
sion and a set of blueprints to show the electricians. More
than one representation of a complex object may exist at any
time. The obJect's features that are highlighted depend on
the needs of the audience.

STEP 1: THE COMPOSITE SPECIFICATIONS MODEL

The CSM is a composite of different viewpoints, each with
its own notation (Figure 7). Currently, the CSM is com
prised of three views--functional, contextual, and dynamic-
but more could be added. The decision was made to advocate
distinct "pure" views as opposed to embellishing an existing
notation (e.g., data flow diagrams) with new symbols and
associated- semantics. Generating the CSM would impose a
healthy discipline on the analyst to briefly restrict his or
her attention, for example, to functional issues. The ana
lyst would capture that understanding of functional require
ments in a notation before moving on to consider, in turn,
the contextual and dynamic views.

Certain properties of the CSM are significant. First, the
number of views is not fixed at three~ more may be added.
Second, the viewpoint is not ultimately connected to one
specific notation. If a better notation were found for the
dynamic view, for example, it could be introduced. In this
sense, the CSM can grow and adjust to new developments.

18

The current notations for the CSM are

• Data flow analysis (for functional view)

• Entity-relationship (ER) approach (for contextual
view)

• State-transition analysis (for dynamic view)

All three notations may be expressed using diagrams, making
the CSM more accessible because of its nonnarrative style.

Examples of the three views are presented in Figures 8, 9,
and 10.

Figure 8 represents a data flow diagram of processes, data
flows, and data stores in accordance with the guidelines in
Reference 12. A data dictionary would accompany the dia
grams to provide definitions of the data items, data rec
ords, external entities, processes, data flows, and data
stores. Because data flow analysis is generally well known,
it will not be discussed further; References 12 may be con
sulted for a detailed introduction.

While functional processing is a predictable component of
most specification models, the contextual view is not so
obvious a choice. Hence, the motivation for its use will be
discussed. The environment or information space in which
the system will reside is of immediate concern. Capturing
the context of a system has been relatively undervalued as a
tool for requirements engineering. A partial explanation
may be that, for small programming exercises (e.g., sorting
numbers or solving an equation), the background environment
is either nonexistent or not a major concern, and therefore
needs no representation. Many of the guidelines for
addressing large system development have begun as attempts
to "scale-up" the approaches (e.g., structured techniques)
that were successful with small prog~ams. Because the con
text is not important in understanding small programs, it
has not been one of the techniques that investigators pur
sued in this scaling-up process.

Witn larger systems, the context 0r environment is a signif
icant element in understanding the system's behavior. The
software system is modeling some portion of an environment.
The system, when it is completed, will be taking its place
in that environment, interacting with other objects (e.g.,
hardware, sensors, other software) that are producing behav
ior in the environment. To describe its behavior relative
to these other objects, the system must refer to specific
attributes of the objects, for example, the mean radius of

19

the Earth or the size of fuel tanks. Likewise, events in
the environment (e.g., loss of signal, thruster on-time) may
trigger behavior by the system. Not all of the attributes
or events in the environment are modeled by the system. In
this sense, the model of the environment is not complete,
nor is it ever intended to be complete. An individual at
tempting to understand the functioning and behavior of the
software will be aided by seeing a representation of pre
cisely those objects, attributes, and events that the system
needs to know about in its environment.

The representation of the environment is not the same as a
data dictionary. Data items in the dictionary may have no
counterpart in the breakdown of objects, attributes, and
events in the environment. Conversely, descriptors in the
environment (e.g., Earth, gyro) will not always correspond
to data items.

Because of the increase in complexity, it is much more dif
ficult to specify the requirements for large systems than
for small programs. Simon (Reference 13) sees the origin of
the added complexity in a rough analogy between large sys
tems and humans as decisionmaking, behavior-producing en
tities:

"A man, viewed as a behaving system is quite simple.
The apparent complexity of his behavior over time is
largely a reflection of the complexity of the environ
ment in which he finds himself."

The implication is that a large system is more complex be
cause it is modeling more of a complex environment. In this
sense, representing the environment in the CSM requires fo
cusing properly on the source of the complexity.

Capturing the information space or context will be extremely
valuable in making decisions about the reusability of sys
tems. From this representation, the particular environment
of an existing system will be visible. An analyst or devel
oper will thus be able to assess ~he degree of reusability
based on the new system's similarity to the objects, attri
butes, and events characterizin~ the environment of an ex
isting system.

Modifiability or designing for change is a desirable attri
bute of a system. Its embodiment earlier in the life cycle
is to "specify for change." Many of the changes to a system
are responses to changes in the environment. When the spec
ification includes a representation of the environment, the
effects of such changes are easier to assess, because both
the change and the specification being changed are expressed

20

in the same terms in the domain of the application and the
user.

The form used in the CSM for representing the contextual
view of a system is the ER approach (Reference 14). Four
terms are useo in the ER approach: entities, relationships,
attributes, and value sets. Figure 9 is an example of an ER
diagram that is a useful visual aid when a small number of
oojects are being displayed.

Entities are identifiable objects in the environment. Some
examples are a momentum wheel, a user, a CRT display, a fuel
tank, Earth, and a spacecraft. Events (e.g., start of ma
neuver, end of integration step) are considered to be enti
ties in the ER approach. In the CSM, the entities that
correspond to events can be identified separately but share
all of the properties of entities. In the following dis
cussion, entities may includes events.

Relationships are associations among entities and are de
fined as are relations in discrete mathematics (Refer
ence 15). Examples of relations in Figure 9 are T/S for
thruster-spacecraft and F/T/S for fuel-thruster-spacecraft.

Information about entities and relationships is expressed by
a set by attribute-value pairs. An attribute is a property
or feature of the entity or relationship. For example, the
entity "fuel tank" have an attribute of volume.

ValUe sets combine the concepts of the units of measure with
ranges and types of acceptable values for attributes. Fig
ure 9 shows the value set for the attribute "center of
gravity."

A valuable conceptual feature of the ER approach is the
ability to associate attributes with relationships as well
as entities. The attribute, thruster position, in Figure 9
is properly associated with the thruster-spacecraft rela
tion. It would be inaccurate to associate it with either of
the entities "thruster" or "spacecraft" alone.

Figure 10 shows an example of the CSM's dynamic view, repre
sent1ng the benavior of the system over time. The notation
used is the state transition diagram, a directed graph in
which the nooes correspond to states of the system and the
directed arcs show the possible changes in state. Events in
the environment (e.g., a user selects a menu option) provide
the stimuli to tr1gger a state change.

21

STEP 2: THE DEFINITION OF MEASURES

As the second step in the revised procedure (Figure ll),
58 measures were defined using the CSM as a basis. Because
of the CSM's graphical style, there existed many opportuni
ties to use basic counts of the objects in the diagrams.
From the functional view, some obvious explicit measures
were counts of tne constituents of data flow diagrams:
functional primitives, data flows, data stores, and external
entities. From the contextual view, the explicit measures
were counts of entities, events, relations, value sets, and
attributes. The dynamic view generated counts of states and
transitions.

To these explicit counts were added a host of analytic meas
ures. Some were derived from applying various normalization
factors to the explicit counts to obtain measures like arc
weignt or relation density. Other analytic measures were
based on suggestions of other investigators, for example,
weighted function and derivation set complexity. The com
plete definitions of all 58 measures are given in Refer
ence 7.

STEP 3: THE CSM APPLICATION

Step 3 (Figure l2) involved applying the CSM to a real sys
tem. The selected system was the Yaw Maneuver Control
utility (YMCU) of the Earth Radiation Budget Satellite
(ERES). Although identified as a utility, the system was
not a trivial one. It consisted of 85 modules comprising
11,200 del1vered source lines of FORTRAN.

The requirements for YMCU were recast in the form of the
CSM, producing a new document (Reference 16).

STEP 4: THE EXTRACTION OF MEASURES

using the CSM representation, the recommended measures were
extracted as Step 4 in the revised approach (Figure 13).
Some of the extracted metric values are shown in Figure 13,
organized according to the three views of the CSM. Details
of the matrices extraction procedure are found in Refer
ence 17.

STEP 5: THE ASSESSMENT OF THE EXPERIMENT

Step 5 (Figure 14) required assessing the process and the
resulting measures. The process was demonstrated to be fea
sible through the experiment of extracting the measures from
the YMCU. A consequence of the process was the production
of a recast requirements document using the CSM. The CSM

22

version appeared to be clearer, more accessible, and more
informative through its nonnarrative style featuring dia
grams, lists, and tables. We will want to obtain many
comments from users of requirements documents to determine
if this optimistic assessment is justified.

A characteristic of the metrics extraction experiment from
the outset was the collection of effort data in an attempt
to understand the cost of obtaining the CSM representation.
The data revealed that 1.7 staff months were spent con
structing the CSM representation of the YMCU. Standard SEL
effort data on the YMCU software development project showed
that 2.1 staff months were charged to traditional require
ments analysis. Many factors should be covered in a thor
ough discussion of the relative effort required to build the
CSM representation. Without reproducing that discussion,
whiCh is purs~ed in References 7 and 17, one conclusion is
clear: both effort fi~ures are of the same order of magni
tude. That is, 10 or 20 times more effort was not required
to bUild the CSM model when compared to traditional require
ments analysis. If the CSM is clear and more understandable
as it seems to be, the effort in successive phases may be
reduced.

Two observations are clear regarding the assessment of meas
ures. First, the collection of measures constitutes only a
single datum in any attempt to draw inferences from the
measures. More projects would need to be measured before
any patterns might begin to emerge. One superficial rela
tionship standS out. The 39 functional primitives are ap
proximately one half of the number of modules (85) in the
delivered product. Whether any such relation persists is
open to speculation.

The second observation is that human judgment continues to
play a role in these specification measures. Our preference
for objective measures is no assurance that we have elimi
nated subjective considerations. The superficial relation
noted above provides a ready example. The identification of
functional primitives is sensitive to the procedure for de
composing processes in data flow analysis. At least four
guidelines exist in DeMarco's books alone for determining
when functional decomposition should be ceased (Refer-
ences 10 ana 12).

Although the CSM has not eliminated the subjective component
in specification measurement, it has, we believe, reduced
its effect dramatically when compared to measures drawn from
narrative statements of requirements. The enumerative style

23

of the CSM and its reliance on notations that have some in
ternal consistency give us reason to believe the CSM has
made progress toward objective specification measurement.

CONCLUSIONS

This investigation has confirmed that objective specifica
tion measures need a disciplined representation of require
ments (Figure 15). The CSM has been advanced as a framework
for capturing software requirements. The CSM fulfills its
original purpose by enabling the definition of objective
specification measures. Its multiple views are more reveal
ing than any single perspective on requirements. The CSM is
a new product of the software development process, available
early, and therefore able to assist later stages. The non
narrative CSM style affords visibility at a life cycle phase
in which the identification of configuration control items
is extremely difficult through traditional means. The CSM,
being more accessible and modular, facilitates reusability.
Other investigators have recognized the benefits of achiev
ing reusability during the earliest life cycle phases (Ref
erences 18 and 19).

By representing the context of the software system, the CSM
is capturing valuable information. The environment of the
system is the starting point for object-oriented design.

The goal of this study was portrayed in Figure 3 as develop
ing a measurement shell that would encase the requirements
and supply measures of the properties of interest. Through
the CSM representation, measures have been defined and ex
tracted. These measures serve as early indicators of prop
erties like size and complexity. For other properties,
although no direct measures were defined, the CSM represen
tation will make it easier to detect, for example, incon
sistency and incompleteness.

This study has contributed to our understanding of the role
tnat specification measures might fulfill in the flight dy
namics environment. We intend to consider the CSM and its
derived measures for application on new software projects.

ACKNOWLEDGMENTS

This study of specification measures has benefited from the
comments and suggestions of many SEL colleagues, especially
V. Church, F. McGarry, D. Card, L. Jordan, W. Decker, and
V. Basili.

24

REFERENCES

1. Software Engineering Laboratory, SEL-81-104, The Soft
ware Engineering Laboratory, D. N. Card, F. E. McGarry,
G. Page, et al., February 1982

2. W. W. Agresti, F. E. McGarry, D. N. Card, et al., "Meas
uring Software Technology," program Transformation and
Programming Environments. New York: Springer-Verlog,
1984

3. V. R. Bas11i and K. Freburger, "programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2,
no. 1

4. Software Engineering Laboratory, SEL-82-001, Evaluation
of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1
and 2

5. R. S. Pressman, Software Engineering: A Practitioner's
Approach. New York: McGraw-Hill, 1982

6. W. W. Agresti, "Measuring Program Maintainability,"
Journal of Systems Management, vol. 33, no. 3, 1982

7. Software Engineering Laboratory, SEL-84-003, Investiga
tion of Specification Measures for the Software Engi
neering Laboratory, W. W. Agresti, V. Church, and
F. E. McGarry, December 1984

8. B. W. Boehm, Software Engineering Economics. Englewood
Cliffs, N.J.: prentice-Hall, 1981

9. Software Engineering Laboratory, SEL-78-006, GSFC Soft
ware Engineering Research Requirements Analysis Study,
P. Scheffer and T. Velez, November 1978

10. T. DeMarco, Controlling Software projects. New York:
Yourdon Press, 1982

11. R. T. Yeh and P. Zave, "Specifying Software Require
ments, "Proceedings of the IEEE, vol. 68, no. 9, 1980

12. T. DeMarco, Structured Analysis and System Specifica
tion. New York: Yourdon, Inc., 1978

13. H. Simon, The Sciences of the Artificial. Cambridge,
Mass.: M.I.T. Press, 1970

25

14. P. Chen, "The Entity-Relationship Model--Toward a Uni
fied View of Data," ACM Transactions on Data Base Sys
tems, March 1976

15. C. L. Liu, Elements of Discrete Mathematics. New York:
McGraw-Hill, 1977

16. Computer Sciences Corporation, Informational Memorandum,
"Case Study in Recasting Flight Dynamics Software Re
quirements using the Composite Specification Model
(CSM)," W. Agresti, December 1984

17. --, Informational Memorandum, "Extracting Specification
Measures From Flight Dynamics Software Requirements,"
W. Agresti, December 1984

18. Y. Matsumoto and K. Matsumura, "A Specification Analysis
and Documentation System for Process Control Software,"
Proceedings, IEEE COMPSAC, 1981

19. S. J. Greenspan, J. Mylopoulos, and A. Borgida, "Captur
ing More World Knowledge in the Requirements Specifica
tion," Proceedings, Sixth International Conference on
Software Engineering, New York: Computer Societies
Press, 1982

26

THE VIEWGRAPH MATERIALS

for the

W. AGRESTI PRESENTATION FOLLOW

I"Ij
1-'.
lQ

N C
-..I Ii

CD

I-'

AN APPROACH TO DEVELOPING
SPECIFICATION MEASURES

w. AGRESTI

714·AGR-1891

N
00

t-rj
1-'

I.Q
C
Ii
CD

N

ANALYST

• SIZE
• FEASIBILITY

• COMPLETENESS

WHO USES REQUIREMENTS?

MANAGER

• COMPLEXITY

• FAMILIARITY

• COST

DEVELOPER

• UNDERSTANDABILITY

• MAINTAINABILITY

• STABILITY

CUSTOMER

• CORRECTNESS'

• CONSISTENCY

• TESTABILITY

hj
1-'.

NlQ
\0 s::

ti
ro
w

WHO USES REQUIREMENTS?

MANAGER

• COMPLEXITY MEASURE

• FAMILIARITY MEASURE

• COST MEASURE

ANALYST DEVELOPER

• SIZE MEASURE • UNDERSTANDABILITY MEASURE

• FEASIBILITY MEASURE • MAINTAINABILITY MEASURE

• COMPLETENESS MEASURE • STABILITY MEASURE

CUSTOMER

• CORRECTNESS MEASURE

• CONSISTENCY MEASURE

• TESTABILITY MEASURE

w

I-zj
1-'.

LQ
~
Ii
(])

o .1:>0

OUR APPROACH

FOCUS: OBJECTIVE MEASURES

PROCEDURE: DEFINED 29 EXPLICIT MEASURES BASED ON
EXISTING REQUIREMENTS SPECIFICATIONS

RESULT:

NUMBER OF PAGES

NUMBER OF CONSTRAINTS

NUMBER OF I/O REQUIREMENTS
•
•
•
MEASURES WERE EXTRACTABLE
BUT NOT USEFUL

~
\fl
C
ti
CD

U1

w

en w
i2 -...I
W
U
a:
:J
0

"" Q
w
a:
w
> -...I
W
Q

3: w
i2

FIVE FLIGHT DYNAMICS SOFTWARE PROJECTS
NEW SOURCE LINES VS. PAGES OF REQUIREMENTS

-E
100K

50KT A C - •

B •

I- .D

100 200 300

PAGES IN REQUIREMENTS DOCUMENT

LESSON: TO DEVELOP OBJECTIVE SPECIFICATION
MEASURES, REPRESENTATION IS EVERYTHING!

I-Tj
......

tQ
c::
ti
CD

W N 0"1

OUR REVISED APPROACH

STEP 1: PROPOSE A NEW REPRESENTATION

STEP 2: DEFINE SPECIFICATION MEASURES
BASED ON IT

STEP 3: APPL V IT TO A REAL SYSTEM

STEP 4: EXTRACT THE MEASURES

STEP 5: ASSESS THE PROCESS AND THE
RESULTING MEASURES

\.;J
\.;J

hj
1-'

\.Q
C
i"i
(1)

-....J

STEP 1:
PROPOSE A NEW REPRESENTATION

COMPOSITE SPECIFICATION MODEL (CSM)

RATIONALE: REQUIREMENTS FOI;l COMPLEX SOFTWARE
NEED TO BE SPECIFIED FROM MULTIPLE
VIEWPOINTS

VIEWPOINT NOTATION

• FUNCTIONAL • DATA FLOW

• CONTEXTUAL • ENTITY /RELATIONSHIP

• DYNAMIC • STATE/TRANSITION

VJ
+>-

hj
f-J

l.Q
c:
t-i
(])

co

EXAMPLE OF FUNCTIONAL VIEW

EMPTY
~S/CMOI

FUEL WEIGHT ---+t
- AND DENSITY

----FUEL WEIGHT
AND DENSITY

TANKCO~

~

EMPTY SIC COG
TANK POSITION

I

SIC
COG

SIC MOl

SIC COG

w
VI

EXAMPLE OF CONTEXTUAL VIEW

I(EY

t-rj
1-'.

I.Q
C
i'i
CD

~

DENTITY <> RELATIONSHIP

• ATTRIBUTE

• THRUST TORQUE VECTOR

FUEL

• DENSITY

SPACECRAFT

• COOLING CURVE

• FUEL FLOW RATE

• MASS

• CENTER OF
GRAVITY (EMPTY)

THRUSTER

VALUE SET

TYPE: REAL

STRUCTURE: VECTOR

SIZE: 3

RANGE: -,0, +
COORDINATE SYSTEM: SIC BODY

UNITS: METERS

• THRUSTER POSITION

• THRUST DIRECTION

W
0\

>Tj
1-'"
\Q
c:
t1
(1)

I-'
o

EXAMPLE OF DYNAMIC VIEW
(STATES AND TRANSITIONS)

YAW RATE
EXCEEDS CUTOFF

VALUE

MAX PITCH OR
ROLL ANGLES

EXCEEDED

PITCH AND ROLL
ANGLES O.K.

/ MAX NO. CORRECTION
BURNS REACHED

TARGET YAW
ANGLE REACHED

I"!j
1-'
lQ
C
ti

w (J)
-..J

~
~

STEP 2: DEFII\IE MEASURES BASED
ON THE COMPOSITE SPECIFICATION

MODEL

58 MEASURES DEFINED

EXPLICIT

NUMBER OF FUNCTIONAL
PRIMITIVES

NUMBER OF DATA ITEMS

NUMBER OF STATES

• • •

ANALYTIC

WEIGHTED FUNCTION

RELATION DENSITY

ARC WEIGHT

• • •

I-Ij
~.

lO
c:
Ii

w CD
00

t-'
tv

STEP 3: APPLY THE COMPOSITE
SPECIFICATION MODEL TO A REAL

SYSTEM

• YAW MANEUVER CONTROL UTILITY OF
EARTH RADIATION BUDGET SATELLITE
(ERBS)

• FORTRAN

• 11,200 DELIVERED SOURCE LINES

• 85 MODULES

STEP 4 EXTRACT THE MEASURES
MEASURE VALUE

FUNCTIONAL VIEW

• FUNCTIONAL PRIMITIVES 39
• INTERFACE COUNT 3
• INTERNAL ARCS 60

I-Ij

• INTERNAL DATA ITEMS f-'o 42 to
c
Ii • SYSTEM IN/OUT DATA ITEMS 67 CD

I--'

• FILE IN/OUT DATA ITEMS 74 wW
1.0

• WEIGHTED FUNCTION 688
CONTEXTUAL VIEW

• ENTITIES 11
• EVENTS 14
• RELATIONS 19
• ATTRIBUTES 91
• VALUE SETS 29

DYNAMIC VIEW

• STATES 7
• TRANSITIONS 11

STEP 5: ASSESS THE PROCESS
AND RESULTING MEASURES

PROCESS

;1 • EFFORT REQUIRED FOR CSM MAY REDUCE EFFORT
~ IN LATER PHASES
CD

~ ~ - 2.1 STAFF MONTHS FOR TRADITIONAL
REQUIREMENTS ANALYSIS

- 1.7 STAFF MONTHS FOR BUILDING CSM

RESULTING MEASURES

• HUMAN JUDGMENT STILL IS A FACTOR

• NEED TO MEASURE MORE PROJECTS

I-Ij
f-Jo
\.0
C
Ii
CD

.j:>. 1--'
U1

CONCLUSIONS

• OBJECTIVE SPECIFICATION MEASURES NEED
DISCIPLINED REPRESENTATION OF REQUIREMENTS

• BUILDING THE CSM IS FEASIBLE

- YIELDS OBJECTIVE SPECIFICATION MEASURES

- MULTIPLE VIEWS ARE MORE REVEALING

- MORE EFFECTIVE REPRESENTATION TO BEGIN
DESIGN

• CAPTURING THE CONTEXT OF A SYSTEM IS BENEFICIAL

- SOURCE OF CHANGES TO THE SYSTEM

:- LOGICAL PREDECESSOR OF OBJECT-ORIENTED
DESIGN

N86-19969
~~

Evaluating Software Testing Strategies

RIchard W. Selby, Jr. and VIctor R. Baslll
Department of Computer ScIence

UnIversIty of Maryland
College Park, Maryland 20742

(301) 454-4247

Jerry Page
Computer ScIences Corp., SIlver SprIng, MD

Frank E. McGarry
NASA/GSFC, Greenbelt, MD

ABSTRACT

ThIs study compares the strategIes of code readIng, functIonal testIng, and struc
tural testIng In three aspects of software testIng: fault detectIon effectIveness, fault
detectIon cost, and classes of faults detected. ThIrty two professIonal programmers
applled the three technIques to three unIt-sIzed programs In a fractIonal factorIal experI
mental desIgn. The major results of thIs study so far are the followIng. 1) Code readers
detected more faults than dId those usIng the other technIques, whIle functIonal testers
detected more faults than dId structural testers. 2) Code readernhad a hIgher fault

/' ,
detectIon rate than dId those usIng the other methods, whiJe' there was no dIfference
between functIonal testers and structural testers. 3) Subjects testIng the abstract data

/ type detected the most faults and had the hIghest fault detectIon rate, whIle IndIvIduals
testIng the database maIntaIner found the fewest faults and spent the most effort test-"
Ing. 4) Subjects of IntermedIate and junIor expertIse were not dIfferent In number or
percentage of faults found, fault detectIon rate, or fault detectIon effort; subjects of
advanced expertIse found a greater number of faults than dId the others, found a
greater percentage of faults than dId just those of junIor expertlse, and were not
dIfferent from the others In eIther fault detectIon rate or effort. 5) Code readers and
functIonal testers both detected more omIssIon faults and more control faults than dId
structural testers, whIle code readers detected more Interface faults than dId those usIng
the other methods.

Research supported In part by the National Aeronautics and Space Administration Grant NSG-S123 and the Air Force Office
or Sclentlnc Research Contract AFOSR-F49620-So-C-OOl to the University or Maryland. Computer support provided In part by the
raclllties or NASA/Goddard Space Flight Center and the Computer Science Center at the University or Maryland.

42

...

1. Introduction

The processes of software testIng and defect detectIon contInue to challenge the
software community. Even though the software testIng and defect detectIon actIvities
are Inexact and Inadequately understood, they are crucIal to the success of a software
proJect. The controlled study presented addresses the uncertainty of how to test soft
ware effectively. In thIs InvestigatIon, common testIng techniques were applled to
different types of software by a representatIve group of programming professIonals.
This work Is Intended to characterize how testing effectiveness relates ~o several factors:
testIng technique, software type, fault type, tester experience, and any InteractIons
among these factors.

ThIs paper gIves an overview of the testIng technIques examIned, Investigation
goals, experimental design, and data analysis. The results presented are from a prellm
Inary analysIs of the data; a more complete analysis appears elsewhere [Selby 84, Baslll
& Selby 85].

2. Testing Techniques

To demonstrate that a partIcular program actually meets Its specIfications, profes
sional software developers currently utlllze many different testing methods. In func
tional testIng, which Is a "black box" approach [Howden 80], a programmer constructs
test data from the program's specificatIon through methods such as equivalence partI
tIonIng and boundary,; value analysis [Myers 79]. The programmer then executes the

I program and contrasts Its actual behavIor wIth that IndIcated In the specificatIon. In
I

structural testIng, which Is a "whIte box" approach [Howden 78, Howden 81], a pro-
grammer Inspects the source code and then devises and executes test cases based on the
percentage of the program's statements or expressions executed (the "test set coverage")
[Stucki 77]. The structural coverage criteria used In this study was 100% statement
coverage. In code readIng by stepwIse abstractIon, a person Identifies prime subpro
grams In the software, determines their functions, and composes these functions to
determIne a functIon for the entire program [MIlls 72, Linger, Mills &, WItt 79]. The
code reader then compares this derived function and the specIfications (the Intended
functIon).

2.1. Investigation Goals

The goals for thIs study are to compare the three common testing technIques of
code readIng, functIonal testIng, and structural testing In terms of 1) fault detection
effectIveness, 2) fault detectIon cost, and 3) classes of faults detected. An example
research questIon In each of these goal areas Is as follows. WhIch testIng technique
(code readIng, functIonal testIng, or structural testIng) leads to the detection of the most
faults? WhIch testIng technIque leads to the hIghest fault detectIon rate
(#faults/effort)? Which testIng technIques capture whIch classes of faults?

3. Empirical Study

AdmIttedly, the goals for thIs study are quIte ambItIous. In no way Is It Implled
that thIs study can definItlvely answer all of these questIons for all enVironments. It Is

43

Intended, however, that the statistically significant analysis undertaken lends Insights
Into their answers and Into the merit and appropriateness of each of the techniques.

A primary consideration In this study was to use a reallstlc testing environment to
assess the:- effectiveness of these different testing strategies, as opposed to creating a best
possible testing situation [Hetzel 76]. Thus, 1) the subjects chosen for the study were
professional programmers with a wide range of experience, 2) the programs tested
correspond to different types of software and reflect common programming style, and 3)
the faults In the programs were representative of those frequently occurring In software.
Sampllng the subjects, programs, and faults In this manner Is Intended to provide a rea
sonable evaluation of the testing methods, and to facllltate the generallzatlon of the
results to other environments. Note that prior to this experiment, we conducted a simI
lar testing study Involving 42 advanced students from the University of Maryland [Baslll
& Selby 85].

The following sections describe the empirical study undertaken, Including the selec
tion of subjects, programs, and experimental design, and the operatIon of the study.

3.1. Subjects

The 32 subjects In the study were programming professionals from NASA and
Computer Sciences Corporation. These IndivIduals were mathematicians, physicists,
and engineers that developed ground support software for satellltes. They had famlllar
Ity with all three testing techniques, but used functional testIng prImarily. R. W. Selby
conducted a three hour tutorial on the testing techniques for the subjects. The subjects
were selected to be representative of three different levels of computer science expertise:
advanced, Intermediate, and junior. Several crIteria were considered In the association
of a subject with an expertIse level, Including years of profeSSional experience, degree
background, and their manager's suggested assignment. The Individuals examined
Included eight advanced, eleven Intermediate, and thirteen JunIor subjects; these groups
had an average of 15.0, 10.9, and 6.1 years of professional experience, respectively, with
an overall average of 10.0 (SD = 5.7) years.

3.2. Programs

The three FORTRAN programs used In the Investigation were chosen to be
representative of several different software types: a text formatter, a numeric abstract
data type, and a database maintainer. The programs are summarized In Figure 1. The
specifications for the programs and their source code appear In [Selby 84].

44

Figure 1. The programs tested.
source executable cyclomatlc # routines #faults

program llnes statments comJ2.lexl~

text 169 55 18 3 9
formatter

numeric data 147 48 18 9 7
abstraction

database 365 144 57 7 12
maintainer

There exists some differentiation In size among the programs, and they are a realls
tic size for unit testing. The first program Is a text formatting program, which also
appeared In [Myers 78]. A version of this program, originally written by [Naur 69] using
techniques of program correctness proofs, was analyzed In [Goodenough & Gerhart 75].
The second program Is a numeric data abstrar::tlon consisting of a set of llst processing
utlllties. This program was submitted for a class project by a member of an Intermedi
ate level programming course at the University of Maryland [McMullln & Gannon 80].
The third program Is a maintainer for a database of blbllographlc references. This pro
gram was analyzed In [Hetzel 76], and was written by a systems programmer at the
University of North Carolina Computation Center.

3.3. Faults

The 28 faults In the programs comprise a reasonable distribution of faults that
commonly occur In software [Baslll &, Weiss 82, BasUl &, Perricone 84]. All the faults In
the database maintainer and the "numeric abstract data type were made during the
actual development of the programs. The text formatter contains a mix of faults made
by the original programmer and faults seeded In the code. Note that this Investigation
Involves only those types of faults occurring In the source code, not other types such as
those In the requirements or speCifications. . ,

Two abstract classification schemes characterize the faults In the programs. One
\

fault categorization method separates faults of b;mlsslon from faults of commission. A
second fault categorization scheme partitions soft~are faults Into the six classes of 1)
Inltlallzatlon, 2) computation, 3) control, 4) Interfa~e, 5) data, and 6) cosmetic. An
explanation of these clasSification schemes appeared In [BasUl &, Perricone 84], and the
faults themselves are described In [Selby 84]. These~wo classification schemes are
Intended to distinguish among different reasons that prog-rammers make faults In soft-,
ware development. The consistent appllcatlon of the two schemes to the faults In the
programs resulted In a mutually exclusive and exhaustive categorization; It Is certainly
possible that another analyst could have a different Interpretation (see Figure 2).

45

Flgure 2. DIstrlbutlon of faults in the pro~ rams.

Omlssion Commission Total

Initiallzation 0 2 2
Computation 2 2 4
Control 2 4 6
Interface 2 11 13

Data 2 0 2
CosmetIc 0 1 1

Total 8 20 28

3.4. Experimental Design

The experlmental desIgn applled was a fractional factorIal desIgn [Cochran &, Cox
50, Box, Hunter, &, Hunter 78]. All of the subjects tested each of the three programs
and used each of the three techniques. Of course, no one tested a given program more
than once. The order of presentatIon of the testIng techniques was randomIzed among
the subjects in each level of expertIse. A factorial analysis of varIance (AN OVA) model
supports the analysIs of both the maln effects (testlng technIque, software type, pro
grammer expertIse) and any interactlons among the main effects.

The subjects examIned in the study were random samples of programmers from the
large populatIon of programmers at each of the levels of expertise. If the samples exam
ined are truly representative of the population of programmers at each expertise level,
the inferences from the analysis can then be generallzed across the whole population of
lndividuais at each expertlse level, not just across the partIcular subjects In the sample
chosen.

3.5. Experimental Operation

The controlled study Included five phases: traIning, three testing sesslons, and a
follow-up sessIon. All groups of subjects were exposed to a simllar amount of trainIng
on the testIng technIques before the study began. In the testlng sesslons, the IndIviduals
were requested to use the testing technIques to the best of theIr ablllty. The subjects'
desIre for the study's outcome to Improve thelr software testIng environment ensured
reasonable effort on theIr part. Note that when the subjects were applyIng eIther func
tional or structural testlng, they generated and executed theIr own test data; no test
data sets were provlded. At the end of each of the testing sessIons, the subjects
estimated the amount of tIme spent detecting faults and the percentage of the faults in
the program that they thought were uncovered. The study concluded wIth a debrlefing
session for discussIng the prellmlnary results and the subjects' observations.

4. Data Analysis

ThIs section presents the data analYSis accordlng to the three goal areas discussed
earller.

46

4.1. Fault Detection Effectiveness

The flrst goal area examines the factors contributing to fault detection effectiveness.
The following sections present the relationship of fault detection effectlveness to testing
technique, software type, programmer expertise, and self-estimate of faults detected.

4.1.1. Testing Technique

The subjects applying code reading detected an average of 5.09 (SD = 1.92) faults
per program, persons using functional testing found 4.47 (SD = 1.34), and those apply
Ing structural testing uncovered 3.25 (SD = 1.80); the subjects detected an overall aver
age of 4.27 (SD = 1.86) faults per program. Subjects using code reading detected 1.24
more faults per program than did subjects using either functional or structural testing

(a<.OOOl, 95% c.l. 0.73 - 1.75).1 Subjects using functional testing detected 1.11 more
faults per program than did those using structural testing (a< .0007, 95% c.l. 0.52 -
1.70). Since the programs each had a different number of faults, an alternate Interpreta
tion compares the percentage of the programs' faults detected by the techniques. The
techniques performed In the same order when percentages are compared: subjects apply
Ing code reading detected 16.0% more faults per program than did subjects using the
other techniques (a < .0001, c.l. 9.9 - 22.1 %), and subjects applying functional testing
detected 11.2% more faults than did those using structural testing (a< .003, c.l. 4.1 -
18.3%). Thus comparing either the number or percentage of faults detected, Individuals
using code reading observed the most faults, persons applying functional testing found

the second most, and those doIng structural testIng uncovered the fewest. 2

4.1.2. Software Type

The subjects testing the abstract data type detected an average of 5.22 (SD =
1.75) faults, persons testing the text formatter found' 4.19 (SD = 1.73), and those test
Ing the database maintainer uncovered 3.41 (SD = 1.66). The appllcatlon of Tukey's
multiple comparison reveals that subjects detected the most faults In the abstract data
type, the second most In the text formatter, and the fewest faults In the database main
tainer (simultaneous a<.05). This ordering Is the same for both number and percen
tage of faults detected.

4.1.3. Programmer Expertise

Subjects of advanced expertise detected an average of 5.00 (SD = 1.53) faults, per
sons of Intermediate expertise found 4.18 (SD = 1.99), and those of Junior expertise
uncovered 3.90 (SD = 1.83). Subjects of Intermediate and junior expertise were not sta
tistically different In terms of either number or percentage of faults observed (a> .05).

1 The probably of Type I error Is reported, the probablllty of erroneously rejecting
I

the null hypotheSiS. The abbreviation "c.l." stands for confldence Interval. The Inter-
vals reported are all 95% confldence Intervals.

2 Recall that the Individuals used the follqwlng techniques: code reading by stepwise
abstraction, functional testing using equivalence partitioning and boundary value
analysiS, and structural testing with 100% statement coverage criteria.

47

IndIvIduals of advanced expertIse detected both a greater number and percentage of
faults than dId those of junIor expertIse (a< .05). Persons of advanced expertIse
detected a greater number of faults that dId those of intermediate expertise (a< .05),

but the advanced and IntermedIate groups were not statIstIcally dIfferent In percentage
of faults detected (a> .05).

4.1.4. Self-Estimate of Faults Detected

At the completIon of a testIng sessIon, the subjects estImated the percentage of a
program's faults they thought they had uncovered. ThIs estImatIon of the number of
faults uncovered correlated reasonably well wIth the actual percentage of faults detected
(R = .57, a< .0001). Further InvestIgatIon shows that IndIvIduals usIng certaIn tech
nIques gave better estImates: code readers gave the best estImates (Pearson R = .79,
a< .0001), structural testers gave the second best estimates (R = .57, a< .0007), and
functIonal testers gave the worst estImates (no correlatIon, a> .05). ThIs observatIon
suggests that the code readers were more certain of the effectIveness they had In reveal
Ing faults in the programs.

4.2. Fault Detection Cost

The second goal area examInes the factors contrIbutIng to fault detectIon cost. The
followIng sections present the relatIonshIp of fault detectIon cost to testIng technique,
software type, and programmer expertise.

4.2.1. Testing Technique

The subjects applyIng code reading detected faults at an average rate of 3.33 (SD
= 3.42) faults per hour, persons usIng functIonal testIng found faults at 1.84 (SD =
1.06) faults per hour, and those applyIng structural testIng uncovered faults at a rate of
1.82 (SD = 1.24) faults per hour; the subjects detected faults at an overall average rate
of 2.33 (SD = 2.28) faults per hour. Subjects usIng code readIng detected 1.49 more
faults per hour than dId subjects usIng eIther functional or structural testing (a< .0003,

c.l. 0.75 - 2.23). Subjects usIng functional and structural testIng were not statIstIcally
different In fault detectIon rate (a> .05). The subjects spent an average of 2.75 (SD =
1.57) hours per program detecting faults. Comparing the total tIme spent In fault detec
tIon, the technIques were not statIstIcally dIfferent (a> .05). Thus, subjects usIng code
readIng detected faults at a higher rate than dId those applyIng functIonal or structural
testIng, whlle the total fault detectIon effort was not dIfferent among the methods.

4.2.2. Software Type

The subjects testIng the abstract data type detected faults at an average rate of
3.70 (SD = 3.26) faults per hour, persons testIng the text formatter found faults at 2.15
(SD = 1.10) faults per hour, and those testlng the database maIntaIner uncovered faults
at a rate of 1.14 (SD = 0.79) faults per hour. Applying Tukey's multiple comparIsons,
the fault detectIon rate was hIgher In the abstract data type than It was for either the
text formatter or the database maIntaIner, whlle the text formatter and the database
maintaIner were not statIstIcally different (sImultaneous a< .05). The overall time spent
in fault detectIon also dIffered among the programs. Subjects spent more time testIng

48

the database maintainer than they spent on either the text formatter or the abstract
data type, whlle the time spent on the text formatter and the abstract data type was
not statistically different (simultaneous a< .05). Thus, subjects uncovered faults at the
fastest rate In the abstract data type, and spent the most time testing the database
maintainer.

4.2.3. Programmer Expertise

Subjects of advanced expertise detected faults at an average rat~,of 2.36 (SD -
1.61) faults per hour, subjects of Intermediate expertise found faults at 2.53 (SD = 2.48)
faults per hour, and subjects of junior expertise uncovered faults at a rate of 2.14 (SD
= 2.48) faults per hour. Programmer expertise level had no relation to either fault
detection rate or total effort spent In fault detection (both a> .05).

4.3. Characterization of Faults Detected

_ The third goal area focuses on de~ermlI?-lng what classes of faults are detected by
the different techniques. An earlier section characterized the faults In the programs by
two different classification schemes: omission or commission, and Initialization, control,
data, computatIon, Interface, or cosmetIc.

When the faults are partitioned according to the omission/commission scheme, a
distinction surfaces among the techniques. Subjects using eIther code reading or func
tional testing observed more omission faults than did IndIvIduals applyIng structural
testing, whlle there was no difference between code reading and functIonal testing.
Since a fault of omission occurs as a result of some segment of code beIng left out
("omitted"), you would not expect structurally generated test data to find such a fault.

Dividing the faults according to the second fault classification scheme reveals a few
distinctions among the methods. Subjects using code reading detected more Interface
faults than dId those applying eIther of the other methods, whlle there was no difference
between functional and structural testing. This suggests that code reading by abstract
Ing and composing program functions across modules must be an effective technique for
finding Interface faults. IndIvIduals usIng eIther code reading or functional testing
detected more control faults than did persons applying structural testing. Recall that
subjects applying structural testing determIned the executIon paths In a program and
then generated test data that executed 100% of the program's statements. One would
expect that more control path faults would be found by such an approach. However,
structural testing dId not do as well as the others In thIs fault class, suggestIng the
Inadequacy of statement coverage criteria.

5. Preliminary Conclusions

This study compares the strategies of code reading, functional testing, and struc
tural testing In three different aspects of software testing: fault detection effectiveness,
fault detection cost, and classes of faults detected. Each of the three testing techniques
showed merit In this evaluation. The Investigation was Intended to compare the
different testIng strategies In a representative testIng sItuatIon, usIng professIonal pro
grammers, dIfferent software types, and common software faults.

49

The major results of this study so far are the followIng. 1) Code readers detected
more faults than did those usIng the other techniques, whlle functional testers detected
more faults than did structural testers. 2) Code readers had a higher fault detection
rate than did those using the other methods, whlle there was no difference between func
tional testers and structural testers. 3) Subjects testIng the abstract data type detected
the most faults and had the highest fault detection rate, whlle IndivIduals testIng the
database maIntainer found the fewest faults and spent the most effort testing. 4) Sub
jects of Intermediate and junIor expertIse were not dIfferent In number or percentage of
faults found, fault detectIon rate, or fault detection effort; subjects of advanced exper
tise found a greater number of faults than did the others, found a greater percentage of
faults than dId just those of junIor expertIse, and were not dIfferent from the others In
eIther fault detection rate or effort. 5) Code readers and functIonal testers both
detected more omIssion faults and more control faults than dId structural testers, whlle
code readers detected more Interface faults than did those usIng the other methods.

A comparIson of professional programmers usIng code reading with novice and
junior programmers using the technique suggests a possIble learning curve. In a testIng
study simllar to this one, using a group of advanced students, code readers and func
tIonal testers were equally effective In fault detection whlle structural testers were eIther
equally effective or Inferior [Baslll & Selby 85]. Also, the three techniques were not
different In fault detection rate. Further comparison of this study with other testIng
studIes, Including [Hetzel 76, Myers 78, Hwang 81], appears In [Baslll & Selby 85].

InvestIgatIons related to this work Include studIes of fault classIfication [Baslll &
WeIss 82, Johnson, Draper & Soloway 83, Ostrand & Weyuker 83, Baslll & Perricone 84]
and Cleanroom software development [Selby, Baslll & Baker 84]. In the Cleanroom soft
ware development approach, technIques such as code readIng are used In the develop
ment of software completely off-llne. In the above study, systems developed usIng
Cleanroom met system requIrements more completely and had a hIgher percentage of
successful operational test cases than dId systems developed wIth a more tradItIonal
approach.

ThIs empIrIcal study Is Intended to advance the understandIng of how varIous soft
ware testIng strategIes contrIbute to the software development process and to one
another. The results gIven were calculated from a set of IndIvIduals applyIng the three
technIques to unIt-sized programs - the dIrect extrapolation of the findIngs to other test
Ing envIronments Is not Implled. However, valuable Insights have been gaIned and addI
tIonal areas of analysIs and InterpretatIon appear In [Selby 84, Baslll & Selby 85].

6. Acknowledgement

The authors are grateful to the subjects from Computer ScIences CorporatIon and
NASA Goddard for theIr enthusIastIc partIcIpation In thIs study.

50

7. References

[Baslll & WeIss 82]
V. R. Baslll and D. M. WeIss, EvaluatIng Software Development by AnalysIs
of Changes: The Data from the Software EngIneerIng Laboratory*, Dept.
Com. ScI., Unlv. Maryland, College Park, Tech. Rep. TR-1236, Dec. 1982 ..

[Baslll & PerrIcone 84]
V. R. Baslll and B. T. PerrIcone, Software Errors and ComplexIty: An Em
pIrIcal InvestIgatIon, Communications of the ACM 27, I, pp. 42-52, Jan.
1984.

[Baslll & Selby 85]
V. R. Baslll and R. W. Selby, Jr., ComparIng the EffectIveness of Software
TestIng StrategIes, Dept. Com. ScI., Un Iv. Maryland, College Park, Tech.
Rep., 1985.

[Box, Hunter, & Hunter 78]
G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters,
John Wiley & Sons, New York, 1978.

[Cochran .& COX 50J
W. G. Cochran and G. M. Cox, Experimental Designs, John Wlley & Sons,
New York, 1950.

[GOOdenough & Gerhart 75J

[Hetzel 76J

J. B. Goodenough and S. L. Gerhart, Toward a Theory of Test Data Selec
tIon, IEEE Trans. Software Engr., pp. 156-173, June 1975.

W. C. Hetzel, An Expermental AnalysIs of Program VerIficatIon Methods,
Ph.D. ThesIs, Unlv. of North Carollna, Chapel Hlll, 1976.

[HOWden 78]
W. E. Howden, AlgebraIc Program Testing, Acta Informatica 10, 1978.

[HOWden 80]
W. E. Howden, FunctIonal Program TestIng, IEEE Trans. Software Engr.
SE-6, pp. 162-169, Mar. 1980.

[HOWden 81]
W. E. Howden, A Survey of DynamIc AnalysIs Methods, pp. 209-231 In Tu
torial: Software Testing 8 Validation Techniques, 2nd Ed., ed. E. Mlller and
W. E. Howden, 1981.

51

[Hwang 81J
S-S. V. Hwang, An Empirical Study In Functional Testing, Structural Test
Ing, and Code Readlng/Inspectlon*, Dept. Com. ScI., Unlv. of Maryland,
College Park, Scholarly Paper 362, Dec. 1981.

[Johnson, Draper & Soloway 83J
W. L. Johnson, S. Draper, and E. Soloway, An Effective Bug Classification
Scheme Must Take the Programmer Into Account, Proc. Workshop High
Level Debugging, Palo Alto, CA, 1983.

[LInger, Mllls & WItt 79J
R. C. Linger, H. D. Mllls, and B. 1. WItt, Structured Programming: Theory
and Practice, Addison-Wesley, ReadIng, MA, 1979.

[McMullln & Gannon 80J

[Mllls 72J

[Myers 78J

[Myers 79J

[Naur 69J

P. R. McMullln and J. D. Gannon, Evaluating a Data Abstraction TestIng
System Based on Formal Specifications, Dept. Com. ScI., Unlv. of Maryland,
College Park, Tech. Rep. TR-993, Dec. 1980.

H. D. Mllls, Mathematical Foundations for Structural Programming, IBM
Report FSL 72-6021, 1972.

G. J. Myers, A Controlled Experiment In Program TestIng and Code
Walkthroughs/Inspections, Communications of the ACM, pp. 760-768, Sept.
1978.

G. J. Myers, The Art of Software Testing, John WIley & Sons, New York,
1979.

P. Naur, Programming by Action Clusters, BIT g, 3, pp. 250-258, 1969.

[Ostrand & Weyuker 83J

[Selby 84J

T. J. Ostrand and E. J. Weyuker, CollectIng and CategorIzIng Software Er
ror Data In an Industrial EnVironment, Dept. Com. ScI., Courant Inst. Math.
ScI., New York UnIv., NY, Tech. Rep. 47, August 1982 (RevIsed May 1983).

R. W. Selby, Jr., A Quantitative Approach for Evaluating Software Techno
logIes, Dept. Com. ScI., Univ. Maryland, College Park, Ph. D. Dissertation,
1984.

52

[Selby, Baslll & Baker 84]

[Stucki 77]

R. W. Selby, Jr., V. R. Baslll, and F. T. Baker, CLEANROOM Software De
velopment: An EmpIrIcal Evaluation, Dept. Com. ScI., Unlv. Maryland, Col
lege Park, Tech. Rep. TR-1415, July lQ84. (submltted to the IEEE Trans.
Software Engr.)

L. G. Stucki, New Directions In Automated Tools for Improving Software
Quallty, In Current Trends in Programming Methodology, ed. R. T. Yeh,
Prentice Hall, Englewood CUffs, NJ, lQ77.

53

THE VIEWGRAPH MATERIALS

for the

R. SELBY PRESENTATION FOLLOW

Evaluating Software Testing Strategies

Richard W. Selby, Jr. and Victor R. Basili
University of Maryland

Jerry Page
Computer Sciences Corporation

Frank McGarry
NASA/Goddard Space Flight Center

54

Overview

• Problem: The software community is uncertain
of how to effectively test software

• Idea: Conduct a controlled study in which
common testing techniques are applied to different
types of software by a representative group of
programming professionals.

• Benefits: Characterize how testing effectiveness
relates to

different testing techniques
type of software being tested
type of faults in the software
interactions among testing techniques and

type of fault or type of software

• Action: Organize and run controlled study (Oct. 1984)

55

Goals

Compare code re~ding, functional test.ing, and structural

testing w. r. t.

• # faults detected

• cost-effectiveness

• classes of faults uncovered

56

Controlled Study

• Testing techniques: code reading, functional
testing, and structural testing (stmt. cov.)

• Representative testing environment

- 32 professional subjects from NASA/CSC (10 yrs.)

- 3 programs (350, 170, 160 LOC)

- faults (12, 9, 7)

• Iterative experimentation

• Fractional factorial design

57

Fractional Factorial Design

Code Functional Structural
Reading Testinz Testing

P1 Pe Ps P1 Pe Ps P1 Pe Ps

81 X -X- X
Advanced 8e -X- X X
Subjects · · . .

· · . .
88 X X -x-
89 -X- X X

Inter- 810 X -X- X

mediate · · . .
Subjects · · . .

819 X X -X-

820 -X- X X

Junior 821 X X -X-

Subjects · · . .
· · . .

832 X -X- X

• Blocking according -to experience level and program
tested

• Each subject uses each technique and tests each program
58

Number of Faults Detected

Reading Functiona1 Structural

5.1

4.5

3.3

• Reading > others; Functional > Structural (0: < .005)

• Different # faults detected in each program

• Samc relationships for % faults detected

• Advanced > others (n < .05); Intermediate ~ Junior

• % detectcd correlates \vith % felt uncovered:
H. == .57 (0: < .001)

59

Cost-Effectiveness (#Faults Detected / Effort)

Reading Functional Structural

3.3

1.8 1.8

• Reading > others (0: < .005, Est. + 1.5(.4));
Functional ~ Structural

• Differen t overall detection rate for one program

• 1"cchniques not different in total detection time

• Technique-program interaction (0 < .005)

60

Fault Characterization

• enission (8) vs. commission (20)

--
Reading Functional Structural

100% ecce cee
ee c
c cc c

e~e ~

75% ftC c
e

ecce ~ccc ecce

ec e
50% e c

cc
c ce eee
e ec
ec

25% c cc
t)c c ec
e e ece --

0% _ce cetc ~c

• Reading and functional stronger for omission raults
61

Fault Characterization

• Initialization (2-A), computation (4-P), control (6-C),
data (2-D), interface (13-1), cosmetic (1-8)

Reading Functional Structural

100% IIIP AlP
II C
P IT C

AIlC IP

75% CP I
A

CPCC CACPC PIIC

IC A
50% C C

PI
I II All
S II

IC
25% I IC

DI S CI
I - D

lID CI

0% PIID IIDP SDPIII

• Reading and functional stronger for control faults

• Reading stronger for interface faults
62

(Pr eliminary) Resl.tlt Summary

Code Functional Structural
R,eadine- 1\~sting Testing

Detection ••• •• • Effectiveness
Detection ••• • * •• Rate

Total
Detection
Effort ,

Omission ••• ••• • • Faults

Control ••• ••• * • Fau1ts

Interface ••• • • * • Faults

63

Conclusions

• Each of the testing techniques showed merits in this
representative evaluation

• Code reading performed well overall; functional testing
similar in detection effectiveness

• Code reading learning curve (UMD studies)

• Related work

- Hetzel
- Myers
- UMD studies
- error studies
- Cleanroom off-line development

• Use of these results

• Valuable insights into problems in software development
and modification can be gained by controlled study

64

C"

~3
N86-19970

SOFTWARE DEVELOPMENT IN ADA

1. Introduction

Victor R. Basili
Elizabeth E. Katz

University of Maryland

Ada wlll soon become a part of systems developed for the US Department of
Defense. NASA must determine whether It wlll become part of Its environment and
particularly whether It wlll become a part of the Space Station development. How
ever, there are several Issues about Ada which should be considered before this deci
sion Is made. What Information Is needed to make that deciSion? What are the
training needs for Ada? How should the llfe cycle be modified to use Ada most
effectively? What other Issues should management consider before making a deci
sion? These are but a few of the Issues that should be considered.

One means of considering these Issues Is the examInatIon of other developments
In Ada. Unfortunately, few full-scale developments have been completed or made
publlcly avallable for observation. Therefore, It wlll probably be necessary to study
an Ada development In a NASA envIronment.

Another means related to the first Is the development of Ada metrlcs which can
be used to characterize and evaluate Ada developments. These metrics need not be
confined to full-scale developments and could be used to evaluate on-going projects
as well.

The remainder of thIs paper describes an early development In Ada, some
observations from that development, metrlcs which have been developed for use
with Ada, and future directions for research Into the use of Ada In software develop
ment In general and In the NASA Goddard environment In particular.

2. Overview of a Previous Project

In a previous project conducted by the University of Maryland and General
ElectriC, we monitored a software development project wrItten In Ada by Integrat
Ing measurement Into the software development process. Our goal was to Identify
areas of success and difficulty In learning and using Ada as a design and coding
language. The underlyIng process and the evolving product were measured, and the
resulting information characterized this project's successes and fallures. Observa
tions from the project might be used to make recommendations about training,
methodology, and metrlcs to the Ada users community. This experience with data
collection and metrlcs also wlll aid In the selection of a general set of measures and
measurement procedures for any software development project.

This work Is supported In part by the Office of Naval Research and the Ada JOint Program Office under grant NOO014-
82-0225 I

Ada Is a registered trademark of the US Department of Defense - AJPO

65
PRECEDING"PAGE ~ .. F FI.-n

, "

~, u , "

The project studied Involved the redesign and relmplementatlon of a portion of
a satelllte ground control system originally written In FORTRAN. Four program
mers were chosen for their diverse backgrounds and were given a month of training
In Ada and software development methodology. They designed the project using an
Ada-like PDL although a processor for the PDL was not avallable at that time. The
design evolved Into Ada code which was processed by the NYU Ada/Ed Interpreter.
The design and coding phases of the project extended from Aprll 1982 to December
1982. Some unit testing of the project was done during the summer of 1983 using
the ROLM complIer; however, the entire system has not been tested.

We used a goal-directed data collection approach from the beginning. Goals
and objectives for the study were defined. Specific question and hypotheses were
associated with each goal. Data collection forms and procedures were developed to
address these questions. The forms and procedures were Integrated Into the
software development methodology. The final step of this approach Involved
analyzing the data In order to answer the questions and either accept or reject the
hypotheses.

Most recently, the data have been analyzed. All the data from the forms were
entered In a database as were the data gathered by a processor which parses the
design and code, checking for correct syntax and taking various measurements. Our
observations are summarized below and elaborated upon In [2] and [3].

3. Observations from that Project

Although the project studied ended part way through development, the results
Indicate what might happen In early stages of development In other projects. The
data can be compared with the corresponding stages of other projects. The results
from this project may prevent others from making costly management mistakes.

Learning Ada takes time. In this project It consumed 20% of the total effort.
That time must be Included In any estimate of effort for early projects using Ada.
Training wlll probably have to be a continuing process as the team members learn
the finer pOints of the language.

Ada Is more than syntax and simple examples. The underlying software
engineering concepts must be taught In conjunction with the support Ada provides
for those concepts. Most programmers are not famUlar with the methodologies
developed In the seventies that Ada supports. Training In software engineering
methodology and how to use It In the environment of a particular appllcatlon Is an
absolute necessity for the proper use of Ada.

We do not know how Ada should be used. Ideally, our understanding of the
software engineering concepts Ada supports would make the use of Ada natural.
However, many people learn by example, and we do not have many good examples
of how Ada should be used. We do not know how and when to use exceptions,
tasks, and generiCS. We need to study various alternatives and show how they work
with examples from various environments.

Design alternatives must be Investigated. The design for this project was func
tlonal and more like than unlike the earlier FORTRAN design. This may be the

66
<t'

best design, but a group at General Electric developed an object-oriented design for
the same project [4]. It Is 'not clear which design, If either, Is most appropriate.
Just as a combination of top-down and bottom-up development Is appropriate to
many appllcatlons, a combination of functional and object-oriented design might
well be most appropriate. Only after we know which type of design, or combination
thereof, Is best suited to the particular appllcatlon can we teach people which design
approach to use. Without such training, programmers wlll rely on their experience
with other languages and will probably produce functional designs.

Proper tool support Is mandatory. This project was done without a
production-quality valldated complIer. In addition to that very necessary tool, a
language-oriented editor, which could have ellmlnated 60% of the observed errors,
would have been desirable. This would have allowed the programmers to focus
their attention on the logic errors that undoubtedly remain In the design and code.
Data dictionaries, call structure and complIatlon dependency tools, cross references,
and other means of obtaining multiple views of the system would have helped. A
PDL processor with Interface checks, definition and use relation llsts, and various
metrlcs would also be helpful.

Some methodology must be followed for a project to be successful. The metho
dology and tools to be used should be understood before the project begins. The
effect of the lack of good tools Is mentioned above. In addltlon, the PDL was
loosely defined untll after design began. Effective design reading might have caught
many of the errors. Even If we wanted to test this project after a complIer became
avaUable, we would have needed to create a test plan after the requirements were
completed. However, that aspect of the methodology was deemed unimportant.
The language Is only one aspect of the environment and methodology. It cannot
save a project In which the rest of the methodology Is Ignored.

We belleve that this project Is atypIcal In that It was done before a compller
was avaUable and was not finished. However, It Is typical In that training consumed
an enormous amount of effort and the programmers were not famlllar with the
underlying software engineering concepts of Ada and that' it might look Uke the
beginning of many projects. The learning curve In methodology Is quite large. As
we study more projects that use Ada, we will learn how to teach It, how to use It,
and where we might make mistakes. Untll then, we need to study Ada and Its use
further.

4. Metrics for Ada

In cOnjunction with the project described above, a number of metrlcs speCific to
Ada have been developed. Some of these have been used to evaluate the use of
packages on that project and the other deSign presented In [4]. Two of the package
metrlcs characterize the vlslblllty of packages and the use of data hiding via pack
ages. These and other metrlcs for packages are further described In [5].

Other aspects of Ada might also be measured. Although we have not studied
these In detail at this time, metrlcs for tasking might characterize the shared code
and evaluate the use of concurrency. Metrics for exception handllng might measure

67

the locallty of the exception handlers or the complexity of those handlers. However,
we must determine how these aspects of Ada should be used before we try to assign
qualitative values to these measures.

In addition, we are developing a taxonomy of evaluative, predictive, and
characteristic metrlcs that might be used for Ada projects In particular but also
non-Ada software developments. MetriCS are placed In eight categories which fall
roughly Into two groups. The first group contains the process categories such as
resource use, changes, and environment. The second group contains the product
categories such as size, control, data, language, and operation. This Is but one
example of a categorization, and determining which categories are most pertinent to
one's environment Is a dlftlcult task. However, we attempt to provide a set of
metrlcs which can be used In conjunctIon wIth the data collection paradIgm
described above.

In addition to the categorization, the taxonomy also contains a formalization
for descrIbIng metrlcs vIa formula generators. ThIs Is a notatIon for descrIbIng sets
of metrlcs so that the myriad of combinations of metrlcs can be dIscussed wIthout
enumeratIng them. An earlIer versIon of thIs work appeared In [1], but a better for
malization Is being developed.

5. Future Work

Ada Is a new language and It Is only starting to be used. We do not know how
to teach people to use Ada correctly. We do not even know how Ada should be
used. However, we plan some further research Into Ada In order to answer some of
the questions above.

We plan to continue our work with Ada-speclflc metrlcs. We would like to
apply these metrlcs to various projects and compare the measures to our perceptions
of the projects. Also In this area, we would like to develop more elaborate metric
tools.

Also In the area of tools, we plan to categorize tools and technIques by the
faults they will prevent, the faults they will detect, the faults they might detect,
and the faults they wlll not detect. If we know the types of faults code developed In
this envIronment usually contaIns, we might be able to apply the approprIate tools
or techniques to best discover those faults.

There were many drawbacks to the project presented above. The training
should have contained specific and more detaIled examples. A clearly defined
methodology, Incorporating Ada, should have been used. Finally, the project should
have been taken to completion. We plan to monitor other large projects In which
these problems have been corrected. At least one of these will probably be done In
the NASA environment to determine how Ada fits Into that environment.

In addition, we would like to study various design alternatives. Comparisons of
when to use an object-oriented versus a functional design would probably help In
Ada training. However, we currently do not know when each type of design should
be used. We need to determIne some means of comparIng desIgns and evaluatIng
the various alternatives. Controlled experiments would be one vehicle, along with

68

the larger projects, for these studies of design.

There many interesting problems associated with Ada. We are addressing only
some of those problems. We welcome any comments on our research and encourage
others to lnvestlgate these and other aspects of Ada.

6. Acknowledgements

We wish to thank John Balley, Shih Chang, John Gannon, Ellzabeth Kruesi,
Nora Monina Panllllo-Yap, Connie Loggia Ramsey, Sylvia Sheppard, and Marvin
Zelkowitz for their contributions as the other monitors of the GE project.

7. References

[1] Victor R. Baslll and Ellzabeth E. Katz, "Metrics of Interest in an Ada Develop
ment," IEEE Workshop on Software Engineering Technology Transfer,
Miami, FL, Aprll 1983, pp. 22-29.

[2] Victor R. Baslll, Nora Monina Panlllio-Yap, Connie Loggia Ramsey, Shih
Chang, and Ellzabeth E. Katz, "A Quantitative Analysls of a Software
Development in Ada," University of Maryland Computer Science Techni
cal Report, UOM-1403, May 1984.

[3] Victor R. Baslll, Ellzabeth E. Katz, Nora Monlna Panllllo-Yap, Connie Loggia
Ramsey, and Shih Chang, "A Quantitative Characterization and Evalua
tion of a Software Development In Ada," submitted to IEEE Computer.

[4] A.G. Duncan, J.S. Hutchison, J.W. Balley, T.M. Chapman, A. Fregly, E.E.
Kruesl, D. Merrlll, T. McDonald, and S.B. Sheppard, "Communications
System Design Using Ada," Proc. 7th IntI. Conf. on Software Engineer
ing, Orlando, FL, March 11)84, pp. 31)8-407.

[5J John D. Gannon, Ellzabeth E. Katz, and Victor R. Baslll, "Metrics for Charac
terizing Ada Packages" under draft.

69

THE VIEWGRAPH MATERIALS

for the

V. BASILI PRESENTATION FOLLOW

SOFTWARE DEVELOPMENT IN ADA

Victor R. Basili
University of Maryland

with
Elizabeth Katz

Nora Monina Panlilio- Yap
Connie Loggia Ramsey

Shih Chang

and
other project members

John Bailey
John Gannon

Elizabeth Kruesi
Sylvia Sheppard

Marvin Zelkowitz

* ThIs work Is supported by the Office of Naval Research and the
Ada JoInt Program Office under grant N00014-82-0225.

+ Ada Is a regIstered trademark of the UnIted States Department of
Defense - Ada Joint Program Office.

70

::

MOTNATION

* Importance of studying Ada

- NASA needs to make a decision about
using Ada with the Space Station

- How should people be trained?

- How does background affect the
learning and use of Ada?

- How cost effective is the use of Ada?

* Look at other developments for suggestions

* Look at related projects for support in metrics
and tools

71

UNIVERSITY OF MARYLAND / GENERAL ELECTRIC
ADA PROJECT

* Redesign portion of satellite ground control

* Goal to make recommendations on training and tools

* Data collected according to paradigm

* Extensive training spread over a month

- class, videotapes, practice project,

- methodology then and during project

- could have been more effective

* Used Ada-like PDL for design

* NYU Ada/Ed interpreter used for processing

* Project not completed and only partially tested
due to lack of compiler

72

GOAL-QUESTION-METRIC
PARADIGM FOR DATA COLLECTION

* Generate set of goals based on needs or organization

* Derive set of questions of Interest or hypotheses
which quantify those goals

* Develop a set of data metrics or distributions which
provide the information needed to answer the questions

* Define a mechanism for collecting accurate data

* Validate the data

* Analyze the collected data to answer the questions

73

FOUR AREAS OF GOALS

* Characterize the effort, changes, errors,
and Ada errors

* Evaluate the use of Ada, the effect of
using an Ada-like PDL, the effect of
programmer background on the use of Ada,
and how much of Ada is used

* Evaluate the data collection and validation

* Develop a set of metrics for Ada and
provide a data base for future Ada projects
to predict some properties of those projects

74

PROGRAMMERS

Years of
Programmer Exper- Education Languages Known

lence
Lead 9 B.S. FORTRAN, Assembler

Senlor 7 M.S. FORTRAN, Assembler,
SNOBOL, PL/t, LISP

Junlor 0 B.S. FORTRAN, Assembler,
Pascal, PL/t, LISP

Librarian 0 High FORTRAN
School

* Had no experience with Ada

* Lead and senior programmer had some experience
with the application but not with current
software engineering techniques

* Junior programmer had most experience with newer
software engineering techniques, and he created
the made Ada-like code

* Each used the model of programming he knew best

75

PRODUCT CHARACTERISTICS

Ada and Programmer
nonexpanded PDL Lead Senior Junior Librarian Total

nonblank nnes 1633 3611 4307 396 9899
text Hnes 857 1904 2159 274 5154
executable stmts. 378 718 866 127 2089
compUatlon units 9 20 36 2 67

* Senior and junior programmers wrote most of the code

* Senior programmer expanded all of his design

* Librarian wrote very little code

* Some PDL was never expanded

* Design looked more like the original FORTRAN design
than unlike it

76

MAKE TillS SIDEWAYS AT NASA
+ data analysis should look like it continues
+ half month is granularity
+ last row is hours (none for data analysis)

Date require- train- design code test data Activity
ments ing analysis

Jan 82 *
Feb

*
March * *

'" *
April * *

* *
May * .. *

*
June * ..
July *

* *
Aug * *

* *
Sept * *

~ Calendar
Oct .. Time ..
Nov *

*
Dec ..

*
Jan 83 *

*
Feb *

*
March * ..
April ..

*
May .. * .. *
June * *
July .. *

* *
Aug * ...

'"
684 849 714 381 332 Hours

77

CHANGES AND ERRORS

* Study changes and errors to determine problem
areas and effectiveness of training

* Difficult to compare with completed projects

* 332 changes -- 57% were error corrections

* 192 errors

* Most errors were syntax errors and trivial

- 90% affected only one component

- 80% were isolated and corrected in less
than half an hour

* .091 errors per executable statement

* Reading focussed on syntax errors rather
than on more serious ones

78

OMISSION VS. COMMISSION ERRORS

* Compare with Basili & Perricone SEL study

BUT

Errors Percentage
Involved Omission Commission

This study
w /0 compiler 52% 48%

faults
Basili & Perricone

New module 45% 55%
errors

* All Ada modules were new

* All SEL modules had at least clean
compiles before error reporting began

* We don't consider those faults that could
have been detected by a compiler

79

LANGUAGE-PROBLEM-CLERICAL ERRORS

* Subjective in that the monitors must try to
determine what the programmer was thinking

* LANGUAGE - related to the use of Ada

- SYNTAX - misunderstanding or mjsuse
of the syntax of a feature

- SEMANTICS - misunderstanding of the
meaning of a feature in that language

- CONCEPT - involves the general idea
of how the feature should be used

* PROBLEM - misunderstanding of the problem
domain or the environment

* CLERICAL - due to carelessness, e.g. typos

Number of Errors
Category All w / 0 Compiler

Errors Faults
Language 160 18

Concept 8 8
Semantics 44 10
Syntax 108 0

Problem 26 26
Clerical 6 0

Total 192 62

* Language errors are rare for NASA projects

80

USE OF ADA FEATURES

* Most features were used, but not together

- Generics were instantiated once

- Some simple exception handling

- Several tasks

- No new abstract data types defined

* Little information hiding

- Little private data

- Representation of structures was shared

- Changes to representation would be
disastrous in some cases

* No attempt to limit visibilIty of data

* Packages for device drivers

* Ada-specific features were more error-prone

81

RECOMMENDATIONS FROM THIS STUDY

* Ada is more than syntax and simple examples

- Learning Ada takes time

- Need examples from application area

- Ada should be used with some methodology

- Need training in methodology

* Lessons in tool support

- Must evaluate quality and availability
of compilers and other tools

- Language-oriented editor would alleviate
the problems with syntax errors

* Design alternatives should be investigated '

* Study how Ada features should be used

82

METRIC DEVELOPMENT

* Look for metrics to evaluate methodology

* Metrics to evaluate Ada use

- Package metrics (Gannon, Katz, and Basili)

+ Visibility
+ Implementation hiding

- Tasking metrics

+ Shared code
+ Concurrency

- Exception metrics

+ Locality of handlers
+ Complexity of handlers

83

* General metrics are available for evaluating
other aspects of the development

* Metric taxonomy of evaluative, predictive, and
characteristic metrics (Basili and Katz)

- Eight categories in two groups

PROCESS

resource use
changes

environmen t

PRODUCT

size
control

data
language
operation

- Formalization via formula generators

84

FUTURE WORK

* Continue work on Ada-specific metrics

* Develop more elaborate metric tools

* Categorize tools and techniques by the
faults they prevent, will detect, might
detect, or will not detect

* Monitor other large projects, e.g. NASA

_ Training with specific examples

_ Clearly defined methodology

_ Taken to completion

* Study design alternatives

-
_ When to use object-oriented vs.

functional design

_ How to evaluate alternatives

_ Controlled experiments

85

PANEL #2

SOFTWARE ERROR STUDIES

J. Knight, University of Virginia
H. Rombach, University of Maryland
R. Sum, University of Illinois
E. Soloway, Yale University

N86-19971

A LARGE SCALE EXPERIMENT IN N-VERSION PROGRAMMING

John C. Knight
Department of Computer Science

U ni v ersi ty of Virginia
Charlottesville, Virginia.

Nancy Leveson
Department of Computer Science

University of California
Irvine, California.

A Summary

Submitted To The Ninth Annual Software Engineering Workshop
Goddard Space Flight Center

Green belt, Maryland.

86

~-ve.rsto~ prog,r~~wing has been proposed as a method of providing fault tolerance in
. ~ . ' '':: . ".

software. The approach requires the mdependent preparation of several (I.e. AN") versions

of a piece of software for some apphcation from the same requirements specifications.

These verSIOns are executed in parallel m the application enVlfonment; each receIves

identical inputs and each produces Its verSIon of the required outputs. The outputs are

collected by a voter and, in prmciple, they should all be the same. In practIce there may be

some disagreement. If thIS occurs, the results of the majorIty are assumed to be the correct

output and this is the one used by the system.

The great benefit that N-version programmIng is mtended to provide is a substantial

improvement in reliability. It is assumed In the analysIs of the techmque that the N

different verSIOns will fail independently; that is faults In the different versions occur at

random and are unrelated. Thus the probabIlIty of two or more verSIOns failIng on the

same input IS very small. Under this assumptIOn, the probability of faIlure of an N-

version system, to a first approXImatIOn, IS proportional to the N'th power of the

probabilIty of failure of the independent verSIOns. If the assumptIon IS true. systems WIth

extremely hIgh levels of rehabllty could be built WIth components that are indiVidually of

only average quality.

We are concerned that thIS assumptIon might be false. Our Intuition indicates that

when solVIng a difficult Intellectual problem tsuch as WrIting a computer program), people

tend to make the same mIstakes even when they are working Independently. If the

assumption of Independence IS not born out in practIce, It would cause the analysIs of the

relIabilIty to overestimate the reliability of an N-version system. This could be an

Important practIcal problem SlDce N-version programming IS being used in existing crucial

systems and IS planned for others.

To test this underlymg assumption of independence, we have carried out a large scale

experiment In N-versIOn programming. A statistically rigorous test of mdependence was

87

J

the major goal of the expenment and all of the desIgn declSlons that were taken were

dominated by this goal.

In graduate classes m computer SCIence at the UmVeTSIty of Virgmia (UVA) and the

Untversity of CalIfornta at Irvine (UC!), students were asked to wnte programs from a

smgle requirements specification. The result was a total of twenty seven programs (mne

from UV A and eIghteen from ucI) all of WhiCh should have produced the same output

from the same input. Each of these programs was then subjected to one milhon randomly

generated test cases.

The problem that was selected for programmmg is a SImple SImulatIOn of an anti

missile system. The program IS requITed to read some data that IS supposed to represent

radar reflections. Using a collection of conditions, the program has to dende whether the

radar reflections come from an ohJect that IS a threat or otherWIse. If the decIsIon IS made

that the object is a threat, a sIgnal to launch an mterceptor has to be generated. The

problem is known as the "launch mterceptor" problem and the vanous condItions upon

which the deCIsion depends are referred to as "launch mterceptor conditions" (LIC's). The

various conditIons are heavIly parametenzed. For example, one condition asks whether a

set of reflections can be con tamed withm a circle of gIven radIus; the radius IS a parameter.

The students were gIven a brief explanatIOn of the goals of the experiment and the

prmciples of N-verslOn programming. The need for independent development was stressed

and students were carefully instructed not to discuss the project amongst themselves.

However, we did not impose any restnction on theIr reference sources. Smce the

applicatIon requires some knowledge of geometry, it is to be expected that the students

would consult reference texts and perhaps mathematicIans in order to develop the necessary

algorithms. We felt that the possibility of two students using the same reference material

was no different from two separate orgamzatlOns using the same reference sources in a

commercial development environment.

88

As would be expected dunng development, questIOns arose about the meaning of the

requirements (surprismgly few questions we are pleased to say). In order the prevent any

possibility of mformation being inadvertently transmItted by an 1Oformal verbal response,

these questions were submitted and answered by electronic mail. If a questIon revealed a

general flaw 10 the speCIfications, the response was broadcast to all the programmers.

Each student was supplied with twelve input data sets and the expected outputs for

use in debugging. Once a program was debugged using these tests and any other tests the

student developed, it was subJected to an acceptance test. The acceptance test was a set of

two hundred randomly-generated test cases: a different set of two hundred tests were

generated for each program. This procedure was used to prevent a general "filtering" of

common faults by the use of a common acceptance test. Once a program passed Its

acceptance test, It was considered complete and entered mto the collection of versions.

Once all the versIOns had passed theu acceptance tests. program development was

stopped and the versions were tested. A test dnver was built which generated random

radar reflectIons and random values for all the parameters in the problem. All twent:.

seven programs were executed on these test cases and the determmation of success was mad"

by comparing theu output with a twenty-eighth version, referred to as the gold program.

The gold program had been tested extensively m other experiments and had been the

subject of an extensive walkthrough. It was thought to be correct but each disagreement

between the gold versIOn and one of the others was 10vestlgated to ensure that the gold

versIOn was not at fault. A total of one mIllIon tests were run on these twenty eight

verSIons.

For the partIcular problem that was programmed for this expenment, we have

concluded, based on the results on the million tests, that the assumptlOn of independence

that is fundamental to the analYSIS of N-version programming does not hold. Using a

fairly simple probability model of mdependence, our data indIcates that the hypotheSIS of

89

mdependence has to be rejected at the 99% confidence level.

It lS lmportant to understand the meanmg of thls statement. Fust, it is conditional on

the application that we used. The result mayor may not extend to other programs, we do

not know. Other experiments must be carned out to gather data sImilar to ours in order to

be able to draw general conclUSIOns. Second, the statement above does not mean that N

version programming does not work or should not be used. It means that the reliability of

an N-verslOn system may not be as high as theory predIcts under the assumption of

mdependence. If the lmplementatlOn issues can be resolved for a particular N-version

system, the required rellablllty might be achleved by usmg a larger value for N.

90

THE VIEWGRAPH MATERIALS

for the

J. KNIGHT PRESENTATION FOLLOW

A LARGE-SCALE EXPERIMENT IN N-VERSION PROGRAMMING

John C. Knight
Department of Computer Science

University of Virginia
Charlottesville, Virginia, 22903

(804) 924-7605

91

Nancy G. Leveson
Department of Computer Science

University of California
Irvine, California, 9271 7

(714) 856-5517

LARGE-SCALE EXPERIMENT IN N-VERSION PROGRAMMING

• Fault-Tolerant Software By N-Version Programming

• Currently Being Applied (A310 AIRBUS)

• Examination of Assumption of Independence

• Statistically Rigorous Analysis

• Two Universities - UV A and VCI

• Graduate and Senior Classes in Software Engineering
Provided Programmers

92

EXPERIMENT OVERVIEW

• Specifications Rewritten at UV A Based on RTI Experience

• RTI Gold Program Rewritten in Pascal

• Twenty Seven Versions Written

• Each Required To Pass 200 Test Cases Before Acceptance

• Satisfactory Versions Subjected to One Million Tests

• Intermediate Computations Checked

• 7 VAX's, 5 Primes, 2 Cyber 170's, Cyber 730

93

PROGRAM OVERVIEW

• Processing of Simulated Radar Data

• Considerable Geometric Knowledge Required

• Written in Pascal

• Final Versions Turned Out To Be 500 - 800 Lines

• Versions Written as Procedures

• All I/O Through the Parameters

• Fixed Precision Real-Compare Function

94

I,C)
VI

Version

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Failures

2
0

2297
0
0

1149
71

323
53

0
554
427

4
1368

VERSION FAILURE DATA

Reliability Version Failures Reliability

0.999998 15 0 1.000000
1.000000 16 62 0.999938
0.997703 17 269 0.999731
1.000000 18 115 0.999885
1.000000 19 264 0.999736
0.998851 20 936 0.999064
0.999929 21 92 0.999908
0.999677 22 9656 0.990344
0.999947 23 80 0.999920
1.000000 24 260 0.999740
0.999446 25 97 0.999903
0.999573 26 883 0.999117 1

0.999996 27 .0 1.000000·
0.998632

MULTIPLE FAILURES

Number Probability Occurrences

2 0.00055100 551

3 0.00034300 343

4 0.00024200 242

5 0.00007300 73

6 0.00003200 32

7 0.00001200 12

8 0.00000200 2

96

\0
-l

UCI
Versions

CORRELATED FAILURES - VCI AND UVA

UV A Versions

1 2 3 4 5 6 7

10 0 0 0 0 0 0 0
11 0 0 58 0 0 2 1
12 0 0 1 0 0 0 71
13 0 0 0 0 0 0 0
14 0 0 28 0 0 3 71
15 0 0 0 0 0 0 0
16 0 0 0 0 0 1 0
17 2 0 95 0 0 0 1
18 0 0 2 0 0 1 0
19 0 0 1 0 0 0 0
20 0 0 325 0 0 3 2
21 0 0 0 0 0 0 0
22 0 0 52 0 0 15 0
23 0 0 72 0 0 0 0
24 0 0 0 0 0 0 0
25 0 0 94 0 0 0 1
26 0 0 115 0 0 5 0
27 0 0 0 0 0 0 0

I

8 9

0 0
58 0

1 0
0 0

26 0
0 0
0 0

29 0
0 0
1 0

323 0
0 0

36 2
71 0
0 0

94 0
110 0

0 0

FAULTS DETECTED DURING TESTING

Version Faults Version Faults

1 1 15 0
2 0 16 2
3 4 17 2
4 0 18 2
5 0 19 I
6 3 20 2
7 3 21 2
8 2 22 3
9 2 23 2

10 0 24 1
II 1 25 3
12 2 26 8
13 1 27 0
14 2

• Bug (a) Shared By 1,18(twice)

• Bug (b) Shared By 3(twice), 8(twice), 20, 25(twice)

• Bug (e) Shared By 7, 12,14, 17(twice)

• Bug (d) Shared By 9, 11,20, 22(3 times), 26Ctwice)

• Bug (e) Shared By 13, 16, 21

98

DISCUSSION

• Student Programmers Are Realistic Subjects

• Million Tests Represent Reasonable Lifetime

• Conclusions

Computed Probability of Multiple Failures - 0.000126

Observed Probability of Multiple Failures - 0.001255

Hypothesis of Independence Rejected at the' 990/0 Level

N-Version Programming Needs to be Used CAREFULL Y

Many More Experiments Are Needed

99

N86-19972
J)~

DESIGN METRICS FOR MAINTENANCE +

H. DIeter Rombach *

Department of Computer ScIence
UnIversIty of Maryland
College Park MD 20742

(301) 454-4251

Abstract
This paper describes results of a study to develop maintenance metrics based on struc

tural software design characteristics. The intent of the study was to define a characteris
tic metric set, suited to explain and predict software maintenance behavior. The maintenance
aspects investigated in this study are stability and modifiability. While stability addresses the
average number of modules affected per change cause, modifiability characterizes the ease with
which changes can be made within each of these modules. Additional interest is dedicated to the
difference between characteristic design and implementation metric sets, and to the difference
between change behavior during development and maintenance. This study examines the

development of six software systems and controlled maintenance experiments using these systems.

* Some of these results are contaIned In my Ph.D. thesIs [Rombach 841 wrItten at the Dept. of Computer Science,
UnIversIty of Kalserslautern, Fed. Rep. of Germany.

+ Research for thIs study was supported In part by the ministry of research and technology of the Fed. Rep. of
Germany (Project on DISTributed Operating Systems at the University of Kalserslautern, Fed. Rep. of Germany).

100

.. --; ,;-

Motivation

The study presented In this paper was part of a project to design and Imple

ment a new LAnguage for Distributed sYstems (LADY [Nehmer et al. 82]),

started at the Computer Science Department at the University of Kalserslautern,

Federal Republlc of Germany, In lQ80.

The overall goals of this project were to Improve the behavior of software for

distributed systems with respect to comprehenslblllty, maintainablllty, and reusa

blllty. To achieve these goals, the following language features were Included:

1) A hierachy of two expllcit levels to structure a system: A system Is character

Ized as a set of teams (functIonal units of dIstribution), each team as a set of

modules (unIts of separate compIlatIon).

2) Strong typing, even of structural unIts.

3) Formal Interface parameters.

To determIne the degree to whIch these goals were met, quantitative estima

tIon of the behavIor of systems was developed. The behavIor of a number of sys

tems Implemented In LADY were compared wIth a number of systems Imple

mented In a 'conventional' language wIthout these features. The behavIor of

software Is Influenced by varIous factors [Baslll 81]. In order to attrIbute dIfferent

behavior to system structure, It was necessary to keep all factors not of Interest

as constant as possIble. One way to achIeve thIs Is to use restrictIve development

and documentatIon guidellnes, If possIble supported by tools. One of the tools

[Rombach, Wegener 84] was used to assIst In developIng consistent, semiformal

design documents based on Ideas In [DeRemer, Kron 76]. On the other side, thIs

Increase of formallsm of desIgn documents was the presupposItion to extend

research about the Influence of measurable structural software characterIstIcs on

software behavIor from code to design documents.

101

This paper focuses on the quallty characterlstlc maintainablllty and Its pred

Ictablllty by structural desIgn characterIstIcs. Data for thIs study were collected

from sIx systems, all desIgned and Implemented usIng the above mentIoned 'con

ventIonal' moduiarization concept.

Goals

The overall goal of this study is to determine the impact of struc

tural software design characteristics on maintenance behavior. Before

statIng the questIons of Interest, a few terms have to be Introduced: Each fallure,

change of envIronment, or change of requIrements Is called a change cause.

Each change cause can result In a number of changes In dIfferent modules.

Analogously, two dIfferent maintenance aspects, stability and modifiability, are

of interest. Whlle stablllty addresses the Impact of each change cause on the

whole system, e.g., number of affected modules, modiftablllty characterizes the

ease with whIch changes can be made wIthIn each of these sIngle modules. For

each module, the effort spent to change thIs unit Is called Its internal change

effort. The effort spent In all other unIts because- of the same change cause Is

called Its external change effort.

The questions of interest are:

(~1) Is it possible to explain or predict stability in terms of 'number of

changed units per change cause during maintenance' by analysis of

the system structure as available from design documents?

(Q_2) Is it possible to explain or predict stability in terms of 'external

change effort in staff_hours per change cause during maintenance'

by analysis of the system structure as available from design docu

ments?

(Q_3) Is it possible to explain or predict modifiability in terms of 'inter-

102

nal change effort in staff_hours per change during maintenance' by

analysis of the system structure as available from design docu

ments?

Two additional questions address the Impact of the terms 'desIgn document' and

'maIntenance' In the three questIons above:

(Q_4) Are questions (~1) to (~3) answered differently, if software

characteristic data to characterize system structure are collected

from code instead of design documents?

(Q_5) Are questions (Q_l) to (Q_3) answered differently, if changes are

analyzed during development instead of maintenance?

Software Model

Very different models as abstractions of software dependIng on the aspect of

Interest [Harrison 82], [Henry, Kafura 81]. An information_flow based model

seems to be most sensitive regarding all Inter_module aspects, as specified by the

type of design document used In this study (see chapter 'Experimental

Approach'). Based on a model presented In [Henry, Kafura 81], a software sys

tem Is modelled as a set of algorithmIc unIts (modules) and global data, and varI

ous InformatIon flows between these modules.

An InformatIon flow from module A to module B Is of type

1) Explicit Global, If "A has write_access and B has read_access to the same

global varIable" .

2) Implicit Global, If "B uses InformatIon from module A, not expllcitly avaIl

able as data In code" .

ThIs Impllcit global InformatIon flow Is added to the orIgInal model because It

seems to be a very Important aspect, especIally (but not only) In dIstrIbuted

103

systems. Examples of such flows are shared assumptIons about envIronment

parameters such as number of termInals or assumptIons about buffer sIzes. In

most cases, these Impllclt dependencIes are the result of desIgn decIsIons not

speclfled at all or lost by transformIng desIgns to code. ThIs undocumented

informatIon can be expected to cause problems, If personnel not Involved In the

development of a system have to change thIs system.

3) Local Direct, If "A calls or uses B".

4) Local Indirect, If eIther a) "B receIves data from A, caused by a call_ or

use_relatIon from B to A", or b) "A Is connected by local IndIrect flow of type

a) to a thIrd module C, and C calls or uses B wIth the same data receIved from

A".

In thIs study, one of the Important aspects wIth regard to the practIcal usa

bUlty of metrics Is, whether possIble metrlcs are determIned by automatIcally

measurable data, or whether addItIonal data are needed, whIch have to be

analyzed or even determIned by IntuItIon.

RegardIng thIs, a groupIng of the above mentIoned flows In 3), 1) + 4), and 2)

seems to be adequate. Further In thIs study, the followIng sIgnIficant terms wlll

be used to classIfy metrics as based on:

- Control Flow, If only flows of type 3) are consIdered.

- Data Flow, If flows of type 1) and/or 4) are needed In addItIon to flows of type

3).

- Information Flow, If flows of type 2) are needed In addItIon to flows of type

1), 3), 4).

In the gIven order, the number of structural aspects taken In consIderatIon

Increases, and the ease~ of collectIng the necessary data decreases.

104

Experimental Approach

3 TIme SharIng Systems (TSS), all ImplementIng IdentIcal requIrements,

and 3 Process Control Systems (peS), all Implementing Identical requirements,

were developed and maintained to collect data In order to answer the questions

(Q_l) to (Q_5) .

• Experimental Design

The experiments were carrIed out In 2 subsequent steps.

Step_I, the development of these systems, was done by three graduate stu

dents (assisted by a number of student research asslstents) writing theIr

diploma (master) theses. These developments took about 18 months. The

developed systems are characterIzed In Table 1.

Step_2, a number of controlled maIntenance experIments, (as) Identical (as

possIble) for all six systems developed In step_I, was done by student research

assistents over about 6 months. FIrst, the systems were seeded wIth 25 faults

of dIfferent types whIch the students had to Isolate and correct.

The selectIon crIterIon for all faults was to choose a distribution pattern of

fault types (control flow, data flow, data structure, computatIon, etc.)

correspondIng to the average one determIned for all systems durIng develop

ment. All the faults to be Isolated and corrected were spec1fled by a system

specIflc fallure descrIptIon. Second, the students had to adapt the systems to

10 changes of environment, e.g., new Interface to devices .. , Third, the stu

dents had to carry, out 15 changes of system requirements. None of the

students Involved In step_2 of the experiments for a speclflc system was

Involved In step_l for this speclflc system. So, maintenance experiments were

carried out for each system by students getting all their knowledge about the

systems exclusively from existing documents.

105

• Experimental Environment

The design language used, forces all decIsIons to be descrIbed expllcltly. It Is

based on a module_InterconnectIon_language presented In [DeRemer, Kron 76].

That means not only one final desIgn versIon Is descrIbed, but a number

(dependIng of the developer's capablllty to handle the problem) of (dIfferent

abstract) desIgn vIews are descrIbed. Therefore, the whole desIgn documenta

tion consIsts of a hIerarchy of, single_level_descriptions (see Figure 1). Figure

2 outllnes the scheme of the complete module design document. Such a

module desIgn description (= descrIption of level_n In Figure 1) contains for

mal specIficatIon of the module Interface (EXPORT, IMPORT in FIgure 2) and

the algorIthmIc desIgn (DYNAMICS In FIgure 2) at least. DescrIptIons of

different levels In FIgure 1 usually consIst of a dIfferent portIon of formal Infor

matIon. DescrIptIons of level_1 to _n-1 dIffer In the sense from level_n descrIp

tIons, in that the complete implementatIon part doesn't exIst yet. The

specIficatIon part already exIsts, perhaps In a more abstract vIew dependIng on

the level of the desIgn document wIthIn the hIerarchy of Figure 1.

The implementation language used Is an extensIon of PASCAL (plus con

current processes and communIcatIon prImItIves), called C-TIP, whIch consIsts

of 2 structurIng levels:

- system level (specIficatIon), describIng a system as a set of modules (processes,

classes, procedures), processes only communIcatIng by exchangIng messages

- module level (algorIthmIc), llke PASCAL (plus communIcatIon prImItIves)

• Data Collection

Data were collected both to characterIze the software structure and to charac

terIze the software maIntenance behavIor.

A llst of Structural software desIgn CharacterIstIcs (SC_I), for whIch data were

106

collected per module, Is:

SC_l) Number of exported functions

SC_2) Number of parameters per exported function

SC_3) Number of Imported functions

SC_4) Number of parameters per Imported function

SC_5) Number of exported functions with output parameters

SC_6) Number of Imported functions with output parameters

SC_7) Number of exported Impllclt Informations (= fiow of type 2))

SC_8) Number of Imported Implicit Informations (= fiow of type 2))

SC_Q) Number of other modules 'using' exported functions

SC_IO) Number of other modules Implementing the Imported functions

SC_ll) Number of other modules 'using' exported functions with output

parameters

SC_12) Number of other modules Implementing Imported functions with out

put parameters

SC_13) Number of other modules establishing Implicit Information to be used

SC_14) Number of other modules to which the observed module has Informa

tion fiow relations

These structural software design characteristics data were collected after

development (characterIzIng the structure of the final versIon of a system).

A list of Quality CharacterIstIcs (QC_I), characterizing the maintenance

behavior, Is:

QC_l) Number of modules changed per change cause

QC_2) Effort In staff_hours to Isolate per change cause

QC_3) Effort In staff_hours to correct or change In each module per change

cause

107

These quallty characterIstIc data were collected during all phases of develop

ment (startIng wIth desIgn) and durIng maIntenance experIments wIth a

separate form for each change cause .

• Data Validation

Vall datIon of collected data was carried out by the author meeting with all

developers at the beginning of each week .

• Data Evaluation

Although the study concentrates on the Inter module aspect of system struc

ture, the metrlcs under InvestIgatIon combine this exterior complexity (cou

pllng [Myers 75], programmlng_ln_the_large [DeRemer, Kron 76]) wIth the

interior complexIty (strength or cohesIon [Myers 75],

programmIng_ln_the_small [DeRemer, Kron 76]).

Therefore, for each module these complexIty metrics K are of type

The exterior complexity Is composed of two vIews:

- integrated view, that considers the module embedded In an concrete sys

tem. Actual flows between this speclflc module and Its environment are con

sidered. Software characteristics 9) - 14) especially contribute to this aspect.

Depending on whIch type of flow Is of Interest, the exterior complexity Is

represented by one of the followIng combinatIons of structural software

design characteristics: .. SC_9 + SC_IO", .. SC_ll + SC_12", .. SC_13 +
SC_14" , etc ..

- isolated view, that consIders the module Isolated (llbrary module for future

and dIfferent use). PossIble flows between thIs specIflc module and Its

environment are consIdered. Software characterIstiCS 1) - 8) especially contri

bute to thIs aspect. DependIng on whIch type of flow Is of Interest, the

108

exterIor complexIty Is represented by one of the followIng combInatIons of

structural software desIgn characterIstics: .. (SC_l * SC_2) + (SC_3 *
SC_4)", "SC_l + SC_3", etc ..

The interior complexity Is composed of three measures:

- Structure "v (G)" (llke Cyclomatlc Complexity [McCabe 76])

- Design Length "L" In terms of the number of llnear Internal program

sequences.

A program Is represented by a graph as In [McCabe 76], except that nodes

are not only nonllnear control constructs, but also Interface accesses

(export_, Import_functions). L Is the number of edges of the correspondIng

graph.

- Number of Interfstce Accesses "IA" In terms of number of calls of Import

functions (see Figure 2) plus number of exported functions.

In order to answer the questions of Interest (Q_I), data were evaluated In the

followIng way:

- DetermIne for all modules of each system the correlations between the

module complexIty and the module-specIfic quallty characterIstIc data

(QC_i) for all faults durIng development.

- DetermIne for all modules of each system the correlations between the

module complexIty and the module-specIfic quallty characterIstIc data

(QC_i) for all maIntenance experiments, IncludIng faults, envIronment adap

tions, requIrement changes (dangerous, because number and type of changes

were fixed by IntuItIon!)

The correlatIon between structural desIgn characterIstIcs and quantItatIve qual

Ity characterIstIcs Is determIned by using the Spearman correlation

coefficient together wIth Its level of significance.

109

Data Analyses Results

All analysis results are presented according to the questions of Interest:

• Answers to question (CLI):

For all modules of each system, the correlations between different types of

'module complexity' and the 'average number of modules changed be<;ause of

all change causes, the corresponding module was changed too' are presented.

All the results are supported by the data In Table 2, row 3 and 4, for two

representative systems.

- The overall correlations are sufficiently good for analyzing not the completely

Implemented system but only design documents. The best correlation

coefficients for each type of metrlcs are between 0.7128 and 0.8200

(significance < 0.01 at least).

- The best metrlcs to explain this stablllty aspect are using 'Integrated Informa

tion fiow' to characterize the exterior complexity and the 'number of Inter

face accesses lA' to characterize the Interior complexity. The very best

correlation coefficient Is 0.8200 with significance level 0.001.

- The best metric using the 'Integrated data fiow' Is not significantly worse

than the best metric based on 'Integrated InformatIon fiow'.

- MetrIcs using the 'Isolated data or Information fiow' show worse correlations

than metrlcs using 'Integrated data or Information fiow'.

- Metrics not using any characterization of the Interior complexity are In the

range between 0.5494 and 0.7180 (significance In most cases 0.05 at least).

- Conventional metrics, using the Interior complexity such as 'v(G)' and 'L',

show no sufficient correlation. Only 'lA', the characterization of the Intensity

of Interface access, has a sufficiently good correlation -With number of

changes. This fact Is refiected In the fact that all metrlcs which characterize

the Interior complexity by 'lA' result In the highest correlation coefficients.

110

• Answers to question (<L2):

For all modules of each system, the correlatIons between dIfferent types of

'module complexIty' and the 'average external change effort In staff_hours per

change cause' are presented.

All the results are supported by the data In Table 2, row 5 and 6, for two

representative systems.

The results overall are comparable to those corresponding to question (Q_l).

The same pattern can be recognized, which says that for each exterior com

plexity class the metric using the 'number of Interface accesses IA' shows the

best correlation.

- The overall correlations were suIDclently good for analyzing not the com

pletely Implemented system but only design documents. The best correla

tion coeIDclents for each type of metrlcs are between 0.6643 and .8065

(slgnlflcance < 0.05 at least).

- The best metrlcs to explain this stablllty aspect are using only the 'Integrated

Information flow' to characterize the exterior complexity. The very best

correlation coeIDclent Is 0.8065 with slgnlflcance level 0.001.

- The best metric using the 'Integrated data floW' Is not much worse than the

best metric based on 'Integrated Information flow' (0.7780).

- MetriCS using the 'Isolated data or Information flow' show worse correlations

than metrlcs using 'Integrated data or Information flow'.

- Conventional metrics, using the Interior complexity such as 'v(G)' and 'L',

show no correlation. Only 'IA', the characterization of the Intensity of Inter

face access, has a suIDclent correlation with number of changes. This fact Is

reflected In the fact that all metrlcs which characterize the Interior complex

Ity by 'IA' result In a higher correlation coeIDclent than those using 'v (G)'

or'L'.

III

• Answers to question (~3):

For all modules of each system, the correlatIons between dIfferent types of

'module complexIty' and the 'average Internal change effort In these modules

per change cause' are presented.

All the results are supported by the data In Table 3 for four representatIve sys

tems.

- The overall correlatIons were sufficIently good for analyzIng not the com

pletely Implemented system but only desIgn documents. The best correla

tIon coefficIents for each type of metrics are between 0.6QOI and 0.8230

(sIgnIficance < 0.05 at least).

- The best metrics to explaIn thIs stabmty aspect are usIng the 'Integrated

InformatIon flow' to characterIze the exterIor complexIty and the 'length L'

to characterIze the InterIor complexIty. The very best correlatIon coefficIent

Is 0.8230 wIth sIgnIficance level 0.001.

- The best metrics usIng the 'Integrated data flow' stUl show sufficIently good

correlatIons (0.6Q84 to 0.7Q62).

- MetrIcs usIng the 'Isolated data or InformatIon flow' show no worse correla

tions than metrics usIng 'Integrated data or InformatIon flow'.

- MetrIcs not usIng any characterIzatIon of the InterIor complexIty are In the

range between 0.6QOI and 0.7870 (sIgnIficance In most cases 0.05 at least).

- ConventIonal metrIcs, usIng the InterIor complexity such as 'v(G)' and espe

cIally 'L' show sufficIently good correlatIon. 'lA', the characterIzatIon of the

IntensIty of Interface access, doesn't correlate wIth number of changes at all.

ThIs fact Is refiected In the fact that all metrics whIch characterIze the Inte

rIor complexlty by 'L' result In the hIghest correlatIon coefficIents.

All results correspondIng to questIons (Q_I) to (Q_3) are supported by results

about change behavIor of the systems durIng development. These results are

112

presented In detall In [Rombach 84]. The following data analysis results

corresponding to questions (Q_4) and (Q_5) are not supported by data presented

In this paper but by data In [Rombach 84]. Nevertheless, the results are presented

briefly because It might help to put the results about design metrlcs for malnte-

nance In perspective .

• Answers to question (<L-4):

The same correlation pattern exists for metrlcs using structural data from code

documents as for those using structural data from design documents.

- The correlation coefficients using data from code are about 0.1 higher.

It always must be remembered that the reported good results for design

metrlcs depend very much on the formal way of documenting designs used In

this study .

• Answers to question (Q_5):

Correlation coefficients show a slmmar pattern for all change causes during

development as for maintenance experiments.

- The total change effort for maintenance experiments was about twice as high

as for the same changes during development.

- The ratio 'Isolation effort/change effort' was about 1:1 during development

and about 3:1 for maintenance experiments.

Use of Analyses Results

Fortunately, design metrics characterized only by explicitly measurable

or analyzable structure data show sufficiently high correlation with stability

and modifiability. The best complexity metrlcs of this type explain stability of

a module by Its data flows with other modules (Integrated data tlow), and the

number of internal interface accesses ('calls') appearing in its module

design. Modifiability Is explained by the same integrated data flow as

113

stablllty and by the design length of the algorithmic module design. These

metrics can be completely automated and used at the end of module design

asa

- development tool, to decide between design alternatIves In a ordInal way, or

- management or quality assurance tool, to plan module specIfic testing

effort according to complexIty, or to consider redesIgn if module complexIty

exceeds tolerable complexity bounds.

The fact that complexIty metrics only characterized by exterior aspects llke

integrated data flow stlll show sufficIently good correlations encourages the use

of these design metrics for maintenance not only at the end of module design but

much earller during design. They should be used as soon as a system design,

which describes the module interactions in some formal way, exists.

The main result of this study can be summarized as follows: Software

structure proved to be a reliable base to explain maintenance behavior.

The result can be improved if the amount of implicit information in

design documents can be decreased by forcing the principle of explicit

documentation of all design decisions. This is true because the conversion of

ImpUcit global data to expUclt global data makes thIs information expllcltely

measurable so that no difference exists between data flow metrics and informa

tion flow metrics in Table 2 and 3. This result has been vall dated by controlled

experiments under the described experimental environment. Especially, the

necessary requirements for formal deSign documents have to be reminded.

All results are only transferable into other environments if formal deSign docu

mentation of the required type (formal description of interfaces and algorithmic

design) is used.

114

Open Questions

Research In this field usually trIes to answer a few questIons but results In creat-

Ing more unanswered questions. Some of these unanswered questions are:

• What Is an upper bound of module complexity - as measured by complexity

metrlcs - causIng no problems to deal with?

• How can the ratio between exterIor and Interior complexIty (balancing aspect)

be Integrated In or added to metrlcs?

• How can the ratio between system complexity and average module complexity

(balancing aspect) be Integrated In or added to metrlcs?

• How can the answers for the balancing problems be used to determine some-

thing llke an optimal design (relative to some requirements)?

• What aspects should be added to these ordinal metrlcs In order to obtain

metrlcs Interpretable with respect to Interval scales?

• Can these results be transferred to dIfferent development environments?

• Do these results hold under reallstlc maintenance conditions?

References
[Basili 81]

Victor R. Basili, "Data Collection, Validation, and Analysis," in Tutorial on 'Models and
Metrics for Software Management and Engineering, IEEE Catalog No. EHO-167-7, 1981, pp.
31~313.

[DeRemer, Kron 76]
F. DeRemer and H. H. Kron, "Programming-in-the-Iarge versus Programming-in-the-Small,"
IEEE Transactions on SE, Vol. SE-2, No.2, June 1976, pp. 8~86.

[Harrison et al. 82]
W. Harrison, K. Magel, R. Kluczny, A. DeKock, "Applying Software Complexity Metrics to
Program Maintenance," IEEE Computer, Sept. 1982, pp. 65-79.

[Henry, Kafma 81]
S. Henry, D. Kafura, "Software Structure Metrics based on Information Flow," IEEE Tran
sactions on SE, Vol. SE-7, No.5, Sept. 1981, pp. 510-518.

[McCabe 76]
T. McCabe, "A Complexity Measure," IEEE Transactions on SE, Vol. SE-2, No.6, Dec.
1976, pp. 308-320.

[Myers 75]
G. J. Myers, "Reliable Software through Composite Design," van Nostrand Reinhold Co.,

115

New York, 1975.

[Nehmer et al. 82)
J. Nehmer, R. Massar, W.-F. Racke, H. D. Rombach, R. Schrapel, "DISTOS - A Methodol
ogy to construct Distributed Operating Systems," Technical Report, Computer Science
Department, University of Kaiserslautern, April 1982, in German.

[Rombach 84)
H. Dieter Rombach, "Quantitative Estimation of Software Quality Characteristics based on
Structural Complexity," Ph.D. dissertation, Computer Science Department, University of
Kaiserslautern, Fed. Rep. of Germany, 1984, in German.

[Rombach, Wegener 84)
H. Dieter Rombach, K. Wegener, "Experiences with a MIL design tool," Proc. 8th ConCer
ence on Programming Languages and Program Development, Zurich, Switzerland, March
1984.

116

Figure 1: Hierarchy of Design Descriptions

117

Figure 2: Example or a Module Design

MODULE < name>

SPECIFICATION:
AUTHOR: < name of designer>
DEADLINE: < date of completion>
DATE: < date of last change>
VERSION: < version number I to be increased with each

'logical' change>
PROBLEM: < This part contains an informal (textual)

description of the function of the whole
module. Although it is informal, all information
is to be ordered in a uniform way.
EspeCially all the information, that can't be
formalized in this stage of development, but
already exists, should be documented in this
section>

EXPORT: < All functions with parameters and types,
offered by the module like:
function_l (A : A_type, B : B_type ---> C : C_type) >

IMPORT: < All functions with parameters and types,
used from other modules like:
module_name.function_2 (A : A_type --- > B : B_type) >

END SPECIFICATION

IMPLEMENTATION:
STATICS: < The meaning, parameters, etc., of each

exported function can be described in a
informal way.
These function speciflc parts are comparable
to the PROBLEM part for the whole module
in the SPECIFICATION above. >

DYNAMICS: < PASCAL-like description of a flow-graph.
The nodes of this flow graph are
nonlinear control flow operators like
'if', 'while', 'for', 'case', etc.
AND all accesses to the export
or import interface. All edges (= linear
parts without interface access) are represented
by comments, later to be transfered into the
code as comments. >

END IMPLEMENTATION

END MODULE < name>

Underlined key_words mark segments of formal representation of design information.

118

Table 1: Characteristics of developed systems

Developed Systems
SW -Characteristics TSS 1 TSS 2 TSS 3

No.of MODULES
- all objects/types 53/26 29/14 42/21
- processes (obj/types) 21/11 20/11 17/10

LINES OF CODE+ 11000 10200 10800

DEVELOPMENT
EFFORT (in h)* 269.76 332.85 308.43

- system design 26.7 62.15 42.0
- module design 89.86 155.0 110.18
- system impl. 1.6 2.8 3.2
- module impl. 151.6 112.0 153.05

TEST EFFORT (in h)** 147.1 143.65 127.7
- module test 95.1 108.25 82.1
- system test 52.0 35.4 45.6

No.of CHANGES++ 72 90 85

No.of LOGIC ERRORS 49 50 59

NO. OF CHANGES
OCCURED IN PHASE
(with average
change effort (h»

- system design 2 6 3
(10.2) (5.1) (7.0)

- module design 13 33 25
(3.1) (1.8) (1.2)

- system impl. 0 2 4
(-) (2.0) (0.9)

- module impl. 35 24 33
(0.8) (0.92) (0.78)

- module test 18 19 17
(1.2) (1.6) (1.26)

- system test 4 6 3
(3.5) (2.1) (6.05)

NO.OF CHANGES WITH
EARLIEST DOCUMENT
CHANGED

- system design 11 22 14
- module design 24 28 22
- system impl. 0 2 3
- module impl. 37 38 46

AVERAGE No.of UNITS
CHANGED PER REASON 3.04 1.9 2.47

- system 0.37 0.32 0.38
- modules 2.67 1.58 2.09

+ All lines except pure comment lines
* All development effort (no unit test) except time for compilation
** All test effort (module test, system test)
++ All types of changes except clerical errors

119

PCS 1

23/13
12/6

1500

71.75
21.45
16.2

1.5
32.6

78.8
52.75
26.05

28

20

2
(9.5)
7

(3.2)
1

(2.1)
9

(1.2)
7

(1.38)
2

(3.8)

10
7
1

10

3.14
0.66
2.48

PCS 2 PCS 3

10/6 16/10
10/6 11/8

1460 1450

103.45 95.2
42.25 32.0
33.5 25.0

2.0 1.6
25.7 36.6

70.16 87.75
50.16 46.35
20.0 41.4

37 31

16 22

2 2
(7.15) (6.1)
16 5
(2.12) (2.8)
0 2
(-) (4.2)

10 6
(1.6) (2.2)
8 12

(1.5) (1.05)
4 4

(2.6) (4.0)

3 3
16 11

0 1
18 16

1.81 2.43
0.55 0.54
1.26 1.89

Table 2: STABILITY aspect

Spearman correlation coefficients between different types
of 'module complexity' and 'relative number of <;hanged modules

per change cause during maintenance' respectively 'relative external
change effort in staff_hours per change cause during maintenance'

(separate for modules of two selected systems)

Types of Complexity No. Changed Modules for External Effort for
exterior Compl. interior Compi. TSS 1

ISOLATED
- control --- .5585+
- control v (G) .5020+
- control L .5262+
- control IA .7222

- data --- .6126
- data v (G) .5262+
- data L .5376+
- data IA .7418

- information --- .6214
- information v (G) .5384+
- information L .5510+
- information IA .7522

INTEGRATED
- control --- .6440
- control v (G) .6020+
- control L .6102
- control IA .7736

- data --- .6458
- data v (G) .6180
- data L .6303
- data IA .7855

- information --- .7180
- information v (G) .6412
- information L .6584
- information IA .8200

---- v (G) .4010*
---- L .4609*
---- IA .6828

- : significance > = .05, *: significance < .05,
otherwise: significance < .001

120

PCS 1 TSS 1 PCS 1

.5494- .6812 .6728·

.4972- .4819* .4777-

.5182- .4865* .4807-

.7128+ .6373 .6301·

.6084· .6718 .6658·

.5182- .4685* .4612-

.5275- .4710* .4572-
• 7381+ .6537 .6510 •

.6125+ .6704 .6643·

.5290- .4646* .4599-

.5392- .4689* .4564-

.7500+ .6498 .6473·

.6382· .7363 .7270·

.5933* .5028+ .4982-

.6071* .5090+ .4998-

.7602+ .7298 .7250·

.6412· .7780 .7729·

.6106* .5401+ .5385-

.6228* .5454+ .5407-

.7810+ .7709 .7684·

.7148+ .8065 .8005+

.6364* .5660+ .5609-

.6507* .5678+ .5633-

.8168 .8008 .7978·

.3801- -- --

.4562- -- --

.6709· .6518 .6382·

+ : significance < .01,

Table 3: MODIFIABILITY aspect

Spearman correlation coefficients between different types
of 'module complexity' and 'relative internal change effort

in staff_hours per change cause during maintenance'
(separate for modules of four selected systems)

Types of Complexity Relative Change Effort for
exterior CompI. interior Com~.

ISOLATED
- control ---
- control v (G)
- control L
- control IA

- data ---
- data v (G)
- data L
- data IA

- information ---
- information v (G)
- information L
- information IA

INTEGRATED
- control ---
- control v (G)
- control L
- control IA

- data ---
- data v (G)
- data L
- data IA

- information ---
- information v (G)
- information L
- information IA

---- v (G)
----- L
---- IA

- : significance > = .05, *: significance < .05,

otherwise: significance < .001

TSS 1 TSS 3 PCS 1

.7870 .7718 .7268+

.7005 .6922 .6846*

.7668 .7426 .6902+

.5820+ .5765+ .5650*

.7352 .7308 .7014+

.7021 .6931 .6690*

.7468 .7344 .6744*

.5550+ .5488+ .5402-

.7554 .7498 .7112+

.7216 .7155 .6740*

.7716 .7632 .6521*

.6064 .6008+ .5253-

.7221 .7172 .6925+

.6918 .6808 .6704*

.7723 .7678 .6788*

.6100 .601l+ .5512-

.6956 .6902 .7012+

.7042 .7008 .6840*

.7962 .7916 .7024+

.6244 .6196+ .5813*

.7312 .7265 .7318+

.7496 .7440 .7182+

.8230 .8196 .7344+

.6506 .6466+ .6071*

.5619+ .5572+ .5846*

.7049 .7010 .6038*
--- - ---

+ : significance < .01,

121

PCS 3

.7203*

.6811*

.6872*

.5601-

.7002*

.6618*

.6688*

.5365-

.7082*

.6706*

.6480*

.5213-

.6901*

.6672*

.6734*

.5498-

.6999*

.6790*

.6984*

.5776-

.7300*

.7172*

.7289*

.6040-

.5802-

.5965-

THE VIEWGRAPH MATERIALS

for the

H. ROMBACH PRESENTATION

DESIGN METRICS
for

MAINTENANCE

H. Dieter Rombach *
Computer Science Department

University of Maryland

November 1984

* Research for thIs study was supported In part by the mInIstry of
research and technology of the Federal RepubUc of Germany (DIS
TOS project).

122

OBJECTIVES

• Study the impact of system structure
on software quality!

• Use design documents to measure
system structure!

• Find design metrics

- easy to automate

- usable early

123

DESIGN DOCUMENTS

• The following design information is re
quired in a formal, measurable way for each
unit (system, subsystems, modules):

- the functional interface of the unit
(exported, imported functions)

- internal realization of the unit functions
(algorithm control flow)

• The concrete type of design documentation
used in this study, is an extension of the module
interconnection language (DeRemer & Kron):

- Hierarchy of unit design documents

- Each unit design document contains a

* List of exported functions
* list of imported functions

* PDL-like description of control flow

124

GOAL - QUESTIONS

• GOAL: Determine the impact of structural software
design characteristics on maintenance behavior!

The two maintenance aspects of interest are,
according to two import.ant activities:

- Stability < ---> isolate

- Modifiability < --- > change

• Question_I: Can software structure as available from
design documents, be used to explain or pre
dict STABILITY (number of changed units
per change cause)?

• Question_2: Can software structure as available from
design documents, be used to explain or pre
dict MODIFIABILITY (change effort per unit
and per change cause)?

125

SOFTWARE MODEL

• Number of algorithmic units (modules)
• Number of data structures

- explicit
- implicit

• Structure of each module is characterized by its

- Exterior complexity
(how the module is, or can be embedded
in its environment)

* control flow

* data flow

* information flow

- Interior complexity
(how the module functions are implemented)

* control flow

* Length

* Intensity of interface access

126

EXPERIMENTAL APPROACH

OBJECTS:

• 3 Timesharing Systems (TSS)
I"'..J 41 modules (20 module types)
I"'..J 10,500 LoC

• 3 Process Control Systems (PCS)
I"'..J 20 modules (10 module types)
I"'..J 1,500 LoC

CONTROLLED MAINTENANCE EXPERIMENTS:

• 25 Failures
- Faults identical for each system type
- Fault types (control flow, data flow, data structure,

interface, computation) with same distribution as
during development

• 10 Environment Changes
• 15 Requirements Changes

SUBJECTS:

• 9 1-person teams

- each team worked on one TSS and one PCS

127

DATA COLLECTION

• The following maintenance data were collected per change
cause:

- Number of changed modules
- Effort In staff_hours per change cause to Isolate faults
- Effort In staff hours per change cause to change

• The following structure data were collected per unit:

- Number of exported functIons
- Number of parameters per exported functions
- Number of Imported functIons
- Number of parameters per Imported functIons

- Number of exported functions wIth output parameter
- Number of Imported functions wIth output parameter

- Number of exported Impllcit InformatIons
- Number of Imported Impllcit InformatIons

- Number of unIts usIng exported functions
- Number of unIts from whIch functions are Imported

- etc.

- Number of Independent paths - ··v (Gt
- Number of sequences wIthout nonsequentlal control flow

operator and Interface access - .. L··
- Number of accesses (calls) to the unIt Interface - ··lA"

DATA VALIDATION

• weekly meetings

128

DATA EVALUATION

• Spearman (R) correlation coefficients between

- different types of module complexity

and
- number of changed modules per change cause

(STABILITY)
- effort in staff_hours per change cause

(MODIFIABILITY)

• Hypothesis about relevant design metrics:

- Exterior Complexity
* Isolated Exterior Complexity

Possible control flow
Possible data flow
Possible information flow

* Integrated Exterior Complexity
Actual control flow
Actual data flow
Actual information flow

- Interior Complexity
Structure v (G)
Length L
Intensity of interface access IA

129

DATA ANALYSES RESULTS

• Question_l (No. of changed modules f"'-..I structure):
Spearman correlation coefficients (R) between "dlfferent

types of module complexity" and ""number of changed modules
per change cause"" for one representative system TSS_l:

Types of Complexity
exterior Interior TSS 1

ISOLATED
control --- .55+
control v (G) .50+

control L .52+
control IA .72

data --- .61
data v (G) .52+
data L .53+
data IA .74

Information --- .62
Information v (G) .53+
Information L .55+
Information IA .75

INTEGRATED
control -- .64

control v (G) .60+
control L .61

control IA .77

data --- .64
data v (G) .61
data L .63
data IA .78

Information --- .71
Information v (G) .64
Information L .65
Information IA .82

-- v (G) .40*
--- L .46*
-- IA .68

*: significance < .05, +: significance < .01, otherwise: significance < .001

130

DATA ANALYSES RESULTS

QUESTION_l (No. of changed modules per
change cause ~ structure):

• Overall good correlations: 0.5 to 0.82

• Best correlation (0.82) for metric using
- (integrated information flow,

number of interface accesses IA)

• Sufficiently good correlations (0.78) for metric using
- (integrated data flow,

number of interface accesses)

• Sufficiently good correlations (0.64) for metric
using

- only integrated data flow

• Bad correlations (f".J 0.4) for metrics using
- only structure v(G), or
- only length L

• Sufficiently good correlation (0.68) for metric
using

- only the number of interface accesses IA

• General correlation pattern:

(Kexterior,IA) > (Kexterior'-) > (Kexterior'v(G)orL)

131

DATA ANALYSES RESULTS

QUESTION_2 (Change effort per change
cause r---I structure):

• Overall good correlations: 0.6 to 0.82

• Best correlation (0.82) for metric using
- (integrated information flow, length L)

• Sufficiently good correlations (0.79) for metric
using

- (integrated data flow, length L)

• Sufficiently good correlations (0.69) for metric
using

- only integrated data flow

• No correlations for metrics using
- number of interface accesses IA

• Sufficiently good correlations (0.56 to 0.70)
for metrics using

- only length v (G), or
- only structure L

• General correlation pattern:

(Kexterior'--) > (Kexterior,L) > (Kexterior' v(G)) > (Kexterior,IA)

132

PRACTICAL USE OF RESULTS

Use

• stability metrics of type
(integrated data flow, IA)

• modifiability metrics of type
(integrated data flow, L)

to
- decide between design alternatives

(! ordinal !)

- plan testing effort

- check lower, upper bounds
at different milestones

133

CONCLUSION

• It is possible to explain software main
tenance behavior (MODIFIABILITY, STA
BILITY)by analyses of software structure
as available from design documents.

• Best theoretical explanation:
exterior complexity characterized by
integrated information flow

• Best practical explanation:
exterior complexity characterized by
integrated data flow (EASY to AUTOMATE)

• Metrics without using any interior com
plexity show sufficiently good correlation.
===> VERY EARLY design documents
(without any algorithmic design) can be
used, to explain or predict maintenance
behavior.

134

• These results are
- drawn from formal design documents
- validated by controlled experiments

• Unsolved problems are:

- no sufficiently good linear regression
between complexity metrics and main
tenance data could be identified.

- these results have to be validated for
larger projects and realistic maintenance
data.

- the influence of the ratio 'exterior com
plexity /interior complexity' or 'system com
plexity / average module complexity' is not
evident.

135

N86-19973

An Approach to Operating System Testing

R. N. Sum, Jr.
R. H. Campbell

W. J. Kubitz
Department of Computer Science

University of Illinois
1304 W. Springfield Av.

Urbana, IL 61801

ABSTRACT

To ensure the reliability and performance of a new system, it must be
verified or validated in some manner. Currently, testing is the only reason
able technique available for doing this. Part of this testing process is the
high-level system test. This paper considers system testing with respect to
operating systems and in particular UNIX. This consideration results in
the development and presentation of a good method for performing the
system test. The method includes derivations from the system
specifications and ideas for management of the system testing project.
Results of applying the method to the IBM System/gOOO XENIX operating
system test and the development of a UNIX test suite are presented.

136

l l' ~l·' to •

I - .)0 it.. :'7~
-::' 1. Introduction-

Every new system must be evaluated before delivery to ensure proper functioning and

reliability _ One part of this evaluation is the system test. A system test validates the high-

level functionality of a system. In the context of a general purpose computer operating sys-

tern, a system test verifies that the user interfaces conform to the system's specifications.

Verification, in the form of program proofs, would eliminate the need for system test-

ing. However, the current proof techniques are not yet adequate. Therefore, a systematic

approach to system testing is needed. This paper describes a heuristic approach to a

software system test that derives its tests from the system specifications. The approach

includes individual tests embedded. in a comprehensive testing framework. This paper

describes the application of this approach to the system test ofaXENIX@ operating system

for the IBM Instruments, Inc. System 9000.

1.1. System Test Overview

The goal of system testing is to show that a system does not meet its speclficatluns

[Myers79J. For a system test, two classes of specification must be considered. The first class

is provided by an overview of the components of the system which is often called the "f,Jr-

mal system specification" [Beeru83J. The second class is the user documentation which

includes user's manuals, operator manuals, and hardware manuals [IBMln84a, IBMIn84b,

IBMIn84cJ_ With these two classes of specification, a hierarchical testing framework can be

designed in a top down manner for the system test.

The list of user interfaces provided by the formal system specification can be used to

organize the test suite into a hierarchical framework. Each listed interface is tested by a

corresponding component of the test suite. Although this approach may not be appropriate

XENIX IS a trademarlc of MIcrosoft

137

for all systems, for UNIX@ we found it provided a natural decomposition of the test suite.

Each component can take advantage of particular properties of the system interrace (for

example, whether the interface is programmable or is interactive) while the decomposition

organizes the particular testing methods and ensures that all the interfaces are tested.

Here we describe the decomposition of the test suite into components, the specific test

ing techniques used in the components, and the results of applying the test suite. We

present several testing strategies which were required because of the particular properties of

the user interface. We then summarize the errors discovered in the system test and the

manpower effort required to generate the test results. The XENIX system tested is a port of

a commercially available software system and required the programming of new device

drivers and machine dependent code. In our conclusions, we attempt to identify to what

extent the errors we discovered could be associated with the components of the system

which were rewritten for the port. Our analysis reveals that there is only a small correlation

between the rewritten software and the errors that were identified.

2. Development or a UNIX Test Suite

The XENlX operating system test sUite is organized according to the structure of the

interfaces specified in the system specification. Examples of tests in the System 9000 test

suite will be used to exemplify our testing methods and methodology.

2.1. The Test Suite Structure

The formal specification of the System 9000 described four major user interfaces and

these were adopted as the major components of the test suite. They are:

1. Commands - the high-level commands available to every user,

2. Subroutines - the subroutine libraries designed for use in application programs,

UNIX 13 a trademark of Bell Laboratone3

138

3. System Calls - the subroutines designed for use in systems programs that directly

invoke opera.ting system (unctions.

4. Device Drivers - the interface designed (or use in systems programs that request

access to hardware devices attached to the System 9000.

The four interfaces provided a useful global organization for the test suite. Each component

of the test suite had different testing concerns and required different testing techniques

2.2. The Components

Each component of the test suite includes programs, test plans, and documentation for

each function to be tested. The design of the tests is based upon the usage specified by the

manuals th,at make up the second class o(system specifications. The major issues that arise

in the design of a test involve test style and test coverage.

Test style refers to the manner in which the test is performed. There are three

approaches used in the test suite: interactive procedures, guided programs, and automated

programs. The test style selected for a test is determined by the properties of the interface

being tested. For example, many interactive user commands are tested by a user following

an interactive procedure which yields reproducible results. However, most programming

libraries are tested using automated programs.

Test coverage concerns the development of a sufficient number of tests to ensure that

all of the functions provided by an interface are tested. The manuals describe the functions

provided by the manual's interfa.ce and how they are expected to interact. For, exa.mple,

coverage of a math subroutine library includes determining that all the functions exist, and

that they take the specified number and types of parameters. Notice that coverage for a

system test may differ from coverage for a function test that is used to test the isolated

function before system integration. Although it is desirable to test every valid parameter,

this is orten too time consuming in a system test and would duplicate work performed in the

139

function test.

Due to the variety of interfaces contained in the system, each test suite component

employs different test styles, test descriptions (documentation), and test derivations. Some

of the test styles, descriptions, and derivations encountered in the UNIX test suite are

described below.

2.2.1. 1Lest Styles

As a consequence or the rorm or the interraces in UNIX, the most common testing

styles used in the test suite are interactive procedures, guided programs, and automated pro

grams. When testing an interactive environment, intuition suggests the use or an interactive

procedure style. For example, text editors such as "vi" provide an interactive environment

in which user commands are executed. An interactive procedure may be the only means to

ensure easily that the editor commands correctly update the screen of a terminal. Conse

quently, most of the tests in the commands sub-suite are interactive procedures. A guided

program is a small, interactive, test program and is a hybrid of an interactive procedure and

an automated program. Guided programs are used ir an interactive procedure is undesirable

or tedious but the expected response cannot be easily calculated within an automated pro

gram. For example, guided program tests are used in the test suite for high level terminal

input/output subroutine packages such as "termlib", "termcap", and "curses" and allow a

person to examine the effect or a long sequence or operations on the display or a terminJ.1 by

comparing the resulting output with a standard pattern. An automated program is used

when a program can easily calculate the expected response and check its correctness. This

approach was taken ror most low level programming interfaces including system calls.

The different forms of user interrace also produce different rorms or test descriptions as

well as test styles.

140

2.2.2. Test Descriptions

Corresponding to each testing style is a particular (orm o(low level documentation

that describes the test and its execution. The documentation used in the test suite ror

automated program tests consists or a standardized header that is prepended to the program

code and describes the test, its use, and any dependencies. When a group or related tests (ror

example, the system calls) all use automated programs, a common logging system is used to

record the test results. Separate documentation ror the logging system is provided. The

documentation ror guided programs and interactive procedures must supply a precise script

ror the user as well as describing the test. A Test Definition Form (see Appendix) is used in

the test suite to supply this inrormation. The Test Definition Form contains a standardized

header that is similar to the one used for automlted programs and a procedures section con

taining an enumeration or the commands to perrorm and the responses to expect. Although

the Test Definition Form is not quite as exact as a program, it provides a means of defining

reproducible tests that could be reliably executed by any member or the testing team.

2.2.3. Test Derivation

Individual tests in the test suite are designed by studying the manuals relevant to each

function. The number of tests and the test data ror each runction are dependent upon the

size and complexity of the runction and include exception testing and stress testing. Excep

tion testing involves the erroneous use or the runction and the subsequent error handling

used by the system. Stress testing explores whether the system will support the extremes

specified in its documentation.

In most cases, because the manuals are written in imprecise English, the mechanical

derivation or test data ror a system test is impossible. This placed most or the burden ror

choosing test data ror the test suite on the individual test developer. A test data design

methodology was developed that involved examining the input and output specifications

141

found in the manuals and applying a set of simple test data derivation techniques including:

1. Exhaustive testing - the use of every possible data value,

2. Random testing - the use of values chosen randomly throughout all of the

input ranges of the function being tested,

3. Special case testing - the use of particular values that are chosen because they

exercise the function at the limits of its range and domain,

4. Explicit case testing

also

- the use of values explicitly used or suggested in the manu-

In general, functions with a very small (less than 10) input range were tested exhaustively

while functions with a larger input range used a composite of random, special, and explicit

data values. The "abort routine" of UNIX is an example of a function that is easy to test

exhaustively because it requires no parameters. The system call "write" is an example of a

function that has many possible parameters (including file descriptors and buffer interfaces)

for which a composite test data derivation technique is appropriate.

Exception tests and stress tests are employed in the test suite whenever possible.

Exception tests included test data for error conditions described in the user manuals for

which error handling was defined as well as test data that would obviously correspond to an

error but would not correspond to a documented error condition. An example of an excep

tion test is a program that writes to a file that is open for read only access. Stress tests were

applied to determine system response when its limits were reached. Stress tests were used to

exercise device drivers, memory management routines, and file allocation and deaUocation.

Test data used in the stress tests included requests involving maximum program and file

sizes. One example of a stress test used in the test suite is a program that requests as much

memory as the system has available.

142

3. Results at Testing the System 9000 XENIX

We now describe some of the results obtained in applying the test suite developed

above to the system test of a pre-released version of the System 9000 XENIX operating sys

tem. Most of the bugs that were discovered in the system test described have since been

fixed or documented as restrictions in the user manuals. A terse description of the system is

followed by some general results and discussion of problems of particular interest. Each bug

found was documented in a Problem Tracking Memorandum (PTM). The documentation

describes the error found and the likely software component that contains the software fault

that generated the error.

3.1. System gOOD XENIX

The System 9000 is a small MC68000-based system designed for use as a workstation.

The System 9000 XENIX operating system is a port of the Microsoft's Version 7 UNIX-based

XENIX operating system and supports multiple users and processes. The entire operating

system occupies approximately 7Mbytes of hard disk storage including all binaries and sys

tem data files. The memory resident part of the system occupies approximately 144Kbytes

of memory. The source code of XENIX is proprietary and was not available to the test

team. This has made it difficult to estimate the number of faults found relative to the

number of lines of code tested.

3.2. General Results

Table I, PTM8 by Te8t Area, shows how the software system faults are distributed

within the interfaces and specifications (user documentation.) Without any detailed

knowledge of the implementation of XENIX on the System 9000, one might expect the larg

est number of bugs to be present in the commands since these represent the largest amount

of code. However, the System 9000 has a ported operating system and based on this

knowledge, one might expect that a greater number of software faults would be found in the

143

Table I.
PTMs by Test Area

Test Area Number Percentage

Commands 81 5l.92

Drivers 5 3.21

System Calls 24 15.38

Subroutines 15 9.62

Specifications 29 18.59

Incomplete Data 2 1.28

device drivers and machine specific parts or the operating system. Most Caults were round

within the commands.

The prop?rtion of the bugs found in the system calls is more serious than other bugs

because these reflect failures in direct requests for operating system services. These bugs

and hardware bugs occasionally interrupted the system test schedule while they were fixed.

Documentation errors were expected since both the documents and the system were

developed simultaneously. (The Incomplete Data category indicates that a couple or PTM

(orms were not filled in completely.)

Table 11, PTMs by Test Type, is a summary or where the bugs where round based on

whether the test tested normal usage or error-handling (excertioD testing). While exception

testing in general did not display any unusual trends, it did discover significant system bugs,

particularly in the system calls and subroutines.

Table III, the Severity Level Summary, compares the number or bugs against their

impact on the system. Severity level 1 bugs are the most severe and cause the system to

Table II.
PTMs by Test Type

Test Tvpe Number Percentage
Exception 17 10.90

Normal 137 87.82

Incomplete Data 2 1.28

144

Table III.
Severity Level Summary

Level Number Percentage

1 10 6.41

2 22 14.10

3 90 57.69
·4 34 21.79

crash no matter how the command is used. Level 2 bugs cause a runction not to work or a

part or a runction to crash the system. Level 3 bugs cause part-or-a-runction not to work.

Level 4 bugs are documentation errors or cause an "annoyance" rorm or error. Based on

the description or the severity levels, it is not surprising that level 3 has the biggest percen-

tage or the total. The distribution or bugs appears to be what one would expect in a

software system test.

Table IV, Univ. 0/ Illinois Man-Power Summary, corresponds to a typical curve ror

project manpower usage. The productivity in the early months reflect the design or the test

suite. (Some delay in November was incurred due to a problem with shipping the systems.)

In January 1984, the bulk or the tests were coded and the number or bugs discovered

peaked. Finally, as the number or test cases increased, the bugs round decreased, and the

manpower devoted to testing was reduced. It was round that several or the test cases were

difficult to rormalize and code. Because or the desirability or generating results, the difficult

Table IV.
University or Illinois Manpower Summary

Month RA-months Number or PTMs

Oct. 83 1.5 0

Nov. 3.0 0

Dec. 30 14

Jan. 84 60 23

Feb. 6.0 19

Mar. 6.0 19

Apr. 30 6
May 20 2

145

tests were often deferred until later in the testing period. This also contributed to the

decline in reported bugs since the difficult tests took longer to design and code. (One RA-

month is approximately one-half or a man-month.)

3.3. Fur-.;}jer Analysis

The test results revealed several interesting Caults related to the hardware, the C com-

piler, the file system, and commands.

Nine bugs were found in the hardware during the software system test. Many of these

were. discovered as a result oC the stress put on the hardware system by the software system

testing activity. It was somewhat unexpected to have the software test discover some timing

errors in the hardware.

The C compiler was round to have at least three bugs directly traceable to the origins ,

oC an early portable C compiler that was several years old. This was discovered through

previous testing oC other C compilers at the University. At first, a complete test oC the C

compiler could not be accomplished because it would not compile the C test suite programs.

Based on the earlier testing of other C compilers, a list oC suspected as well as confirmed

bugs was dispatched to the developers. Because the operating system is written in C, the

defects in the C compiler are potentially very serious. However, we believe that a cross com-

piler was used for the port, not the system's C compiler. We were unable to test the C com-

piler used for the port but suspect that it too may have contained some bugs that showed

up as faults in system software.

Table V, Faults Distributed by Function, displays the distribution oC Caults over the

various subsystems within XENIX. File system bugs when collected across the various inter-

faces amounted to 15 per cent oC all bugs Cound. This could mean that many of the file sys-

tern bugs were dependent on a Cew oC the device driver bugs or that there may have been

some latent design flaws remaining in the file system. Unfortunately, we have too little

146

Table V.
Faults Distributed by Function

Function Number Percentage

File System 23 14.74

Hardware 9 5.76

C Compiler 5 3.2

Memory Mngmt. 2 1.28

Other Kernel 6 3.84

Other Sortware 111 71.1

inrormation to allow us to draw a conclusion.

Twenty three or the bugs we discovered (the C compiler's bugs were counted as one

bug ror this purpose) appeared to be attributable to the XENIX system rather than to the

port. These bugs included a read and write system call that railed to provide appropriate

error handling when invoked with a null buffer pointer parameter. A stress test also

revealed that the file system would allow more links to be made to a tile than the docu-

men ted limit. In this case, the documentation was correct and the error checking within

XENIX was inadequate.

Finally, a couple or command bugs proved rather disquieting. The first occurred in the

system shutdown command and causeti the system to hang rather than clean itselr up

correctly. The second, which caused much amusement, occurred in the XENIX "remove

user" command and always caused the removal or every user in the system as well as the

requested user. This obviously rendered the system unusable arter everyone logged out.

4. System Test Management

This section describes some or the management aids that were used during the develop-

ment or the test suite and during testing. The aids supported test development, reporting

bugs, organizing man power, and providing maintenance tests.

147

4.1. Guiding Test Development

To guide the system test, a system test plan IMorri83\ was drawn up by a small test

design team. This system test plan included objectives for the system test, outlines of the

testing to be done, naming conventions for the tests, and a very loose estimate of the size of

the project, Essentially, the system test plan was an informal requirements and specification

document for the test suite.

To ensure system test coverage in the components of the test suite, a set of matrices

was used that cross-listed the proposed tests with the functions to be tested. At least one

matrix was used for each interface and some large interfaces required several matrices.

Although these matrices tended to be sparse, they did provide a convenient way to check

coverage o(the tests. For the final presentation in the test suite ISum841 documentation,

the matrices were compressed into a more compact tabular form.

4.2. Reporting Bugs

To manage bug reports, a Problem Tracking Memorandum (PTM) was used. The

PTM form included information about its originator, place of origin, severity level, date of

origin, test number, the operating system release, the hardware configuration, and botil a

short synopsis and detailed description of the problem. (A sample PTM is included in the

Appendix.) These forms were filled out by a test team member upon discovery of a bug.

The forms were then relayed from the test team to the developers responsible for the prob

lem area. After the bugs were fixed, a response to the PTM was returned and the test

repeated. If the retest was successful, the PTM was closed, that is, the bug was considered

fixed.

4.3. Organizing Manpower

The allocatIOn of manpower to system test development appears in retrospect to have

followed a similar pattern to software development. This is 'attributable to the close

148

similarity to the processes involved. Initially, a few people were assigned to design and

develop the test plan. After testing began, people were added to develop and code tests and

to execute the tests. Finally, as the discovery of new bugs decreased and the test suite

neared completion, the number of people was decreased.

•••• Communications

A problem that was solved during the project was a method ror exchanging PTMs (bug

reports) between the test team and development group at IBM Instruments in Danbury,

Connecticut and the test team at the University of Illinois. This problem was solved by using

a dedicated notesfile IEssic82, Essic84\ on one or the University of Illinois computers. A

notesfile is a news/bulletin board system that allows notes and responses to be appropriately

grouped and managed on-line. The PTM notesfile was checked daily by the team in Dan

bury by logging in over long distance phone lines. This rorm or communication proved to be

raster and more effective than using the U. S. mail service or reporting the bugs by tele

phone. The scheme resulted in an rapid exchange or bugs and fixes and permitted quick

qualification or ambiguous descriptions in the PTMs.

4.5. Maintenance Provisions

A key reason for developing the test suite is to help (acilitate regression testing of

future operating system releases. The test suite organization was instrumental in providing

this ability. The hierarchical framework used (or the test suite, together with the UNIX file

system, provided an easy way to store the test suite on line. The UNIX text processing facil

Ities encouraged full documentation.

5. Conclusion

Construction or the test suite was, we believe, valuable to both IBM and to the stu

dents who participated in the project. We believe that twenty three bugs originated in the

149

XENIX software. This demonstrated the benefits of a systematic system test. The large

number of bugs discovered in the XENIX commands compared with the small number

discovered by testing the device drivers, memory management, and system calls would

appear to suggest that many of the machine dependent, port generated faults could be more

easily discovered in a system test than in an isolated function test of a system component.

However, we have been unable to verify this for lack of information concerning the nature of

the fixes that were made to the system and for lack of access to the source of XENIX. We

were intrigued that we could identify the C compiler used in the System 9000 XENIX by the

errors it contained and somewhat dismayed at how such errors could be tolerated in com

mercial software for such long periods of time. Finally, although the construction of the test

suite was tedious at times, it did provide a significant learning experience for the students

and many of them have continued on to become very knowledgeable UNIX users.

6. Acknowledgements

The authors wish to acknowledge the help and cooperation of the entire Professional

Workstation Research Group of the University of Illinois at Urbana-Champaign. Also

appreciated was the cooperation of John Morris and his staff at IBM Instruments, Inc. in

Danbury, CT and the funding from IBM which made the project possible.

7. References

IBeeru83jl

IEssic82j

\Essic84\

Beerup, Carl, CS 9000 XENIX System Programming Functional

Specification, IBM Instruments, Inc., November 1983.

Essick, Raymond B. IV and Rob Kolstad, Notesfile Reference Afanual.

Technical Report UIUCDCS-R-82-1081, 1982.

Essick, Raymond, S., Notesfiles, M.S. Thesis, Technical Report, UIUCDCS

R-84-1165, 1984.

~bls document IS IDternal to IBM and not aViLllable to the general public

150

[IBMIn84a/

[IBMIn84bJ

[IBMIn84c/

[Morri83J2

[Myers79/

[Sum84/

IBM Instruments, Inc., XENIX System Device Driver Manual, March 1984.

IBM Instruments, Inc., XENIX System Operations Manual, March 1984.

IBM Instruments, Inc., XENIX System Reference Manual, March 1984.

Morris, John D., CS 9000 XENIX System Test Plan, IBM Instruments, Inc.,

November 1983.

Myers, Glenford J., The Art of Software Testing, John Wiley & Sons, Inc.,

1979.

Sum, Robert N., Jr., et aI., UNIX/XENIX Test Suite - IBM S9000 System

Test, Report of the Professional Workstation Research Group, Dept. of

Computer Science, University of Illinois, June 1984.

~hl~ document IS Intern&1 to IBM and not &vallable to the genu&1 public

151

8. Appendix: Test Definition Form .

This is a sample Test Definition Form as used for defining and executing the interac-

tive and guided program tests.

Test Definition Form

Testcase Id: UXCMDI03
Date Written: 2/9/84
Modified By: Robert Sum

Function:

Author: Robert Sum

Date: 2/15/84

Mkuser is the usual way to add users to the XENL",{ system.

Description:

Use mkuser to create a new user for the system.

Dependencies:

Tester must be a super-user.

Restrictions:

Copyright (C) 1984
Robert Sum
IBM Workstation Research Project
Department of Computer Science
University of Illinois

Procedure:

1. Enter-

a) do: mkuser

b) when prompted enter 'mktester' as the user name.

c) when prompted enter 'mkpasswd' as the user passwd.

d) when prompted enter 'Make User Test' as the user comment.

152

e) when asked if everything is ok, check it out and respond accordingly.

f) when everything IS ok, ~nswer affirmatively and wait.

System Response

a) The program will pause for you to check once more.

b) Then it will create the user passwd file entry, home directory, mail file, his

introductory mail, and his '.profile' file.

2. Enter-

a) do: more /etc/default/mkuser

b) Remember the default home directory and shell.

c) Change directory to the home directory, i.e. 'default home

directorY'/mktester.

d) do: I

e) do: cmp .profile /usr/lib/mkuser.prof

f) do: more /usr/lib/mkuser.mail

System Response

a) Changing directory should act silently.

b) I should list just the profile.

c) cmp should not return anything, i.e run silently.

d) Remember what the mail is.

153

3. Enter-

a) do: logout

b) Login in as mk tester.

c) do: printenv

d) do: more .profile

e) do: mail

f) do: q

g) do: logout

System Response

a) Login should be successful.

b) Result of printenv should agree with .things set in '.profile'. NOTE: This is

true only if the default shell is the Bourne shell (sh).

c) mail should mail the output of the more in part 2 with an added header.

d) q just exits mail.

e) Logout should be successful.

Comments:

This test should be chained with UXCMDI05 which tests rmuser.

154

., ..
:~

9. Appendix: Problem Tracking Memorandum

This is a sample Problem Tracking Memorandum as used to report bugs during the

testing. It is filled in as if the bug has just been discovered.

Problem Tracking Memorandum

SYS-2003

Severity Level: 2
Problem Summary: C compiler error: expression causes compiler loop.
Originator: R. Sum Department: UIPWG Extension: (217)333-8741
Regression Test:

Opened: 12/1/83 Answered: / / Verified: / I Closed: I I
Test Case Number: UXCMD801

Publication Title: N.A. Draft Date: / /
Software Level: Driver 2Hardware Level: N.A.AppUcatlon Level: N.A.

Problem Description: This compiler error message is generated by moderately long expres-

sions, particularly when doing some type casting. The following generated the error:

ir((int)c != 26 ~ (int)s != 26

II {int)1 != 2611 (int)u != 26

~ (int)r != 26 II (int)d != 26) Irc = lrc+4;

where

c is a char variable,

s short

long

u unsigned

r float

d double.

Ire is an integer local return code.

155

THE VIEWGRAPH MATERIALS

for the

R. SUM PRESENTATION FOLLOW

/556,..,

An Approach
to

Operating System Testing

Robert N. Sum, Jr
Roy H. Campbell
William J. Kubitz

Department of Computer Science
University of Illinois
Urbana-Champaign

28 November 1984

156

System Test Objective

Goal: Show that the system does not meet its
specifications.

Ideal: Program and System Proofs, but ...

Reality: Use a Good Heuristic Approach

Example: System/gOO~ System Test

157

System Interfaces: High-Level Testing Structure

Idea: Decompose the system into its user interfaces
and test each one.

Example: XENlX on the System/gOOD has:

1. Commands - day-to-day user commands
2. Subroutines - high-level programming
3. Systemcalls - low-level system programming
4. Drivers - low-level hardware programming

158

Test Styles

• Interactive Procedures

• Guided Programs

• Automated Programs

159

Test Derivations

• Exhaustive Testing

• Random Testing

• Special Case Testing

• Explicit Testing

• Exception Testing

160

Test Results

1 PTMs by Test Area 1
r---�

~----I~~t A~e~ _____ ~--~l!.m.!>-e.!--~--}~~~c~tag~--1
L_ C_o_~!I!~I.!~s _______ ~-----8-1------1-----§1.:~2 ____ I
I Drivers I 5 I 3.21 I r---I
L_§ys~~m~~11~ _______ ~-----2~-----:-----1§.:=!!!---J
~_ § ~ .!>!.9~ J;il!. e~ ______ L ____ }_5 ______ L _____ !l.: fl ~ ____ :
~-§p~£ifi<:..~ti~~~-----~-----29------:-----1§.:~~----1
L_ I,!~~'.!l pl~~~ Q. a~a ___ L ______ 2 ______ '- ____ _ 1.: 2~ ____ I

161

Test Results

----------------------~----------------------

I Severity Level Summary I r---I
1-__ ~~~eL ___ ~---- ~u~~~ ____ ~----Rer-centage ___ I
1 1 10 6.41 1
-----------~---------------~-----------------
I 2 1 22 I 14.10 ,
r---I

3 1 90 1 57.69 L - - - - - - - - - - -t - - - - - - - - - - - - - - - -1- - - - - - - - - - - - - - - __ I
L ___ ~ ______ l _______ ~'! _______ L ______ 2!:?_9 ______ 1

Description of Severity Levels:

1 Very Severe - function causes system crash
2 Severe - part of a function does not work,

may cause crash
3 Usual - part of a function does not work, lit

tle system impact
4 Annoyances - Documentation and micellane-.

ous mInor errors

162

Test Results

I Faults Distributed by Function , r---,
1--___ y~~~~i.9.!l ______ ~--~u~b~---~--~ercentag-e--1
_I F1I~ Sy~~el!l _______ ~-----~.?-----~----14.:I1----1
I Hardware I 9 I 5.76 1 r---I
L-~SJorn2jL~r _______ ~------§-----~-----3~2-----1
~~erno!y-~~g~Y~--1------~-----L-----J~2~----:
1--~~~~_~er.!l~1 _____ ~------§-----~-----3~81----1
L ~~~~F_ S~f~~~r~ ___ l ____ lll _____ L ____ Jl.:! _____ 1

163

Test Results

1 Univ. of Illinois Man-Power Summary r---
Month 1 RA-months 1 Number of PTMs

~--------l---------------r-------------------

__ I Q~~~§~ __ ~------l~~------~----------O---------
1 Nov. 1 3.0 1 0 r---
L Dec. 1 3.0 1 14

--------1---------------r-------------------
~~a~~8~--J------~~~------L--------J~--------

Feb. 1 6.0 1 19
~--------l---------------r-------------------

__ I ~~~ ____ ~------2~~------~--------J~--------
I Apr. I 3.0 I 6 r---
L-~~y ____ J ______ ~~~ ______ L __________ ~ _______ _

164

Management Problems

Error Tracking

Man-power Allocation

Coordination of Test Teams

Regression Testing

165

Management Solutions

Problem Tracking Memorandum (PTM) form used
to keep all information together.

Man-power followed a standard project team
method with increases and decreases as testing pro
ceded.

Distance between in-house and out-of-house test
teams was bridged by keeping PTMs on line and
having the in-house group check it at least daily.

The Tests were organized into the UNIX/XENIX
Test Suite which includes the code and documenta
tion for running the tests.

166

Conclusions

• The Value of System Tests.

• The Difficulty of Fault Location.

• Fingerprinting Software by its Bugs.

• Bug Survivability.

• Testing as a Learning Experience.

167

The Cognitive Connection:
Software Maintenance and Documentation l

Elliot Soloway·
• Stan Letovsky

Be . Loe' •• atrlce rmc
Z . Ib ••• Art ygIe 8um

·Department of Computer Science
Yale Universit.y

New Haven, Connectic:ut 06520

N86-19974
\)1

··Department o(Statistics and Computer Information Systems
Baruch College - CUNY

New York, New York 10010

... Jet Propulsion Laboratory
California Institute of Technology

Pasadena, Calif.

Abstract

With the goal of trying to understand what software maintainers do, we conducted talking

aloud, video-taped protocols with four expert maintainers as they were actively engaged in the

process of enhancing a relatively small, interactive database program. Our subjects exhibited a

number of different types of information gathering strategies. Underlying these patterns of

behavior, however, was the use of expectation8 about what should be seen in the program under

examination. These expectations were generated on the basis of knowledge previously acquired as

to the the goals and programming plans that are typically employed in realizing interactive

database programs. Thus, while the experts seemed to possess adequate programming

knowledge, their actual code patches violated a basic principle of program structure. We

attribute this failure by the programmers, at least in part, to ineffective program documentation.

We conclude with suggestions for changes in the content of program documentation that should

better facilitate software maintenance.

1. Introduction: Motivation and Goals
Our colIective consciousnesses are in the process of being raised to the important problem of

software maintenance: it is clear that program maintainers need new tools to aid them in their

significant chore. The approach we take to the development of such tools i3 one that we have

lResearch described in this paper was carried out in part at the the Jet Propulsion Laboratory, and in addition was
supported by the Jet Propulsion Laboratory, California Institute of Technology under contract with the National
Aeronautics and Space Administration. 168 •

Soloway, Letovsk;y,' Loerinc, Zygielbaum

taken in a number of other similar software engineering situations [2]:

we first try to understand how the maintainer does (and fails to do) the task or program
maintenance; we are then in a better position to suggest tools/methods that can aid him in the
specific areas in which he is having the most dirriculty.

Towards this end we have carried out a video-taped study with actual program maintainers at

JPL. In this paper we present first, some observations of what the maintainers did --- and most

importantly, did not do --- and second, recommendations for changing the content of software

documentation that we feel should facilitate the maintainers doing a better job of maintaining

software. We hasten to point out the work reported here is only a beginning: the conjectures we

make based on this work cry out for further experimental studies, which we in fact plan to carry

out. Nonetheless, we feel the result~ gathered so far are already intriguing enough to justify

presentation.

2. Detalls of the Study
We video-taped 6 professional programmers "talking aloud" as they were engaged in the task

of adding a new feature to an existing program. The talking aloud methodology

allows us to better view the process of software maintenance; this type of data

IS an important source from which to develop a cognitive theory of software maintenance.

Subjects in our study were 4 expert level program maintainers and 2 junior level program

maintainers;2 the rormer had between 3 and 20 years of professional programming experience,

while the latter had less than 3 years of professional experience.

We presented each of the subjects with a Fortran 77 program that managed a small,

interactive database of personnel information, henceforth referred to as the POB program. The

program contained 15 routines, for a total of approximately 500 lines of code. Figure

2-1 presents an overview of this system. In fact, this exact overview was provided to the subjects

as part of the documentation of the program. In addition to the brief Overview, the

documentation contained the following (in this order):

• Program Module Descriptions: each moduJe was described III terms of its specific
function and its use of variables;

• HierarchfJ Chart: the calling structure of the modules was given;

• File Description: the structure of database file was given;

• Sample Ses8ion: a trace of the use of the POB was given.

Our intention was to make the documentation of the POB reflect generic standards for program

documentation.

21n this paper we will not analyze in detail the behavior of the junior level subjects; rather we will focus on the
experts.

169

Soloway, Letovsky, Loerinc, Zygielbaum

The personnel data base system provides online personnel inrormation. As the sample session
below illustrates, the user can issue various commands to view or make modirications to the
entries in the database. SHOW allows the user to see the contents or an already existing record.
CREATE allows the user to create a new record. DELETE will delete an existing record and
UPDATE wiD allow any field or the record to be changed. A session ends when the user issues the
EXIT command.

Figure 2-1: Personnel Data Base System: Overview

The Personnel Data Base System provides online personnel inrormation. Today, we ask you to
increase the functional capability of this system by making the following enhancement:

Allow the user to restore a record that was deleted during the current session. For example,
assume that the user deleted the rollowing record during a session with the Personnel Data Base
System:

Soloway,Elllot,M
177 Howa rd Ave
New Haven. Ct 06519
203 562-4151
Dunham Labs 322C
436-0606

Deleting a record makes that record unavailable ror subsequent access. The enhancement we are
asking you to make would allow the user to restore a deleted record to the data base, during the
same session that it was deleted it. For example, a user who had deleted the above record could
then restore it during the same session. The record is thus returned to active status and is
available ror subsequent access.

Figure 2-2: Enhancement Task

Figure 2-2 describes the enhancement task that our subjects were asked to perform. Briefly,

they were asked to add a function to the PDB that would allow users to restore a record that was

deleted in the current session. Three of the 6 subjects completed the task in the alloi,ted 90

minutes.

3. Recurrent Behaviors
While there was considerable variability in the details of how our subjects performed, we were

still quite able to abstract a number of behaviors that essentially all of our expert subjects

exhibited. In what follows we identify and describe these key strategies .

• Model-directed program under8tanding: While the experts had apparently never
designed a program exactly like the one we gave them to modify, they nonetheless
had considerable experience with programs similar to the PDB. Not surprisingly, the
expert subjects employed this experience in coming to understand the given program.
In particular, experts were continually drawing on their knowledge of similar systems
to set up expectation8 about what they should see in the program at hand. These
expectations guided subsequent program analysis.

The expectations formed and used by our subjects dealt with identifying the goal8
and programming plan8 in the code. That is, our subjects drew on their knowledge of

170

Soloway, Letovsky, Loerinc, Zygielbaum

d~tabase systems in general in order to predict that certain goal8 would need to be
achieved in the program in order to achieve the higher level objectives stated in the
Overview. Moreover, our subjects drew on their knowledge o(generic programming
techniques --- which we have called programming pltJn8 - in order to predict the
manner in which the goals would be realized. Previously, we have presented
arguments, plus supporting empirical data, that programmers do in (act have and use
this type o(knowledge in comprehending programs [1].

For example, the quotes given below, taken (rom the video-taped protocols with the
experts that, illustrate these claims. In the first quote, one expert assumes that the
routine called GETDB will accomplish the goal o(inputting the database:

Subject: ... Ok. It would cal I GETDB.
We don't know what that Is yet -
we won't worry about that.

Experimenter: Ok. You're not going to worry about that?

Subject: Well, I'm going to assume that
it gets the fi Ie Into memory.

In the next quote, we see an expert predict,ing the standard, alternative ways that a
database array will be searched (or a record key:

Experimenter: So what does this tel I you?
What are you thinking about?

Subject: Just trying to figure out
how you step down [through the array] .
If this thing is by number
or by last name or how it's
basically indexed in the array.
They use pointers I suppose.

In the (onowing quote, we see an expert making a prediction and then going to the
code to veriry that prediction.

Subject: Ok. I'm down to GET DB here [in the code].
Now, the 8ubject turned back to GEI'DB in the documentation.

Experimenter: Why?

Subject: Just to make sure that what I understand
it to do here is the
same thing as it says it's going to do there.
And if not; why not.

We call this inrormation gathering strategy model-directed since the experts were
employing an abstract characterization or database programs, expressed in terms or
goals and plans, to direct the process or understanding the speciric database program
given to them. As described more (uny below, the model-directed strategy was used

171

Soloway, Letovsky, Loerinc, Zygielbaum

in two dirrerent ways by the experts .

• S,,8tematic Peru8al 0/ the Program: Several of our experts spent considerable time
(approximately 35% of their 00 minutes) trying to understand much of the PDB
program be/ore they attempted to carry out the spec:ific modification. They used, of
C01lJ'8e, expectations to guide their understanding; however, they were attempting to
understand more about the program than would 8eemin,l" be required in order to
eorrectly make the desired enhancement. We have several possible interpretations of
this behavior:

1. the subjects who employed this strategy explicitly voiced their concern that
undocumented interactions between parts of the program that could impa,4t in
some way on their subsequent enhancement

2. while the PDB program was written using, what we believe to be, standard
programming plans and rules of programming discourse, subjects may have
been less confident that the program was in fact going to conform to their
expectations; in other words, programmers may not have trusted the program
to be written in a standard manner -- Le., one that would be in accord with
their expectations.

It is entirely reasonable to suppose that in fact both interpretations are correct.

• A8-needed in/ormation gatherin, 8tratew: Several subjects did not employ a
systematic strategy, but rather after a very brief examination of the progra.m a.nd
documentation, started right in on the actual enhancement. However, questions arose
about aspects of the rDB program that they needed to know -- which they didn't
then know -- in order to insure that their enhancement would indeed fit correctly in
the existing program. In these situations, subjects would then go back to the program
and to the documentation in order to find answers to these questions. It is important
to note that by and large the searching for information was very focused; there were
no real fishing expeditions. Rather, guided by their expectations, again, they were to
able to pose specific questions about what they needed to know, and they were able to
predict where in the code answers to those questions were to be found.

For example, in the quote given below taken from one expert we see him deciding to
look back at the code in order to answer a specific question. Notice that the expert
had already begun the modification.

Subject: I'd say I've got the big picture on ~hat it
[the program]
does. Of course, there's some of these
searching mechanisms I
haven't looked at that but ...
That may be complex, I don't kno~. I don't
rea I I Y ca re .

Experimenter: Why not?

Sub j ect: Ah. We I I, to do th i s one [this modification]
--it assumes that
this thing can go out and search.
Although I probably should look to
see ... Good thought. Maybe it won't find a

172

Soloway, Letovsky, Loerinc, Zygielbaum

record that's deleted. 1'1 I
take a look at SEARCH. Ok.

It is interesting to speculate as to why subjects would employ this latter strategy. One
suggestion, consistent with our observation that expectations played a key role is this:
after the brief perusal of the code, subjects (ouild that the code met their
expectations, and thus became confident that the rest of the code would also meet
their expectations. In other words subjects employing the a8-needed 8trategy felt that
there would be no surprises, and that therefore they could safely assume that there
were not any nasty hidden interactions.

In sum, then, the one behavior common to all our expert subjects that we observed was the

experts' repeated use of expectations: they constantly were making conjectures about what they

should see in the program, based on what is normallJl in an interactive database programs. We

have previously argued that know ledge about "what is normal" is represented in terms of

programming plans and rules of programming discourse [11. The expectations, therefore, were

derived from these types of know ledge. Given that the experts thus demonstrated their

knowledge of what would count as standard programming practices, the reader may be quite

surprised at the code patch that was actually produced by these experts.

4. Analyzing the Aetual Code Changes
Before turning to an analysis of how our subjects modified the PDB program, let us first

analyze the unmodified program. The key issue is the decomposition of the modules: i.e., what is

the calling structure of the modules, and why is that an appropriate decomposition! In Figure

4-1 we present a portion of the hierarchy chart (given as part of the documentation) that

represents the actual calling sequence o(the routines. The chain of routines, GETNME - SRCH

- SRCH2, which retrieves a record (rom the database array, reports back to the main routine; the

main routine in turn passes the record to the particular operation, e.g., SHOW. The standard

programming principle that was used to structure the code in this way can be phrased as:

General Principle: Systematic Grouping Of Functions

Specific Appl ication:
Code which is independent of each user command (e.g .. SHOW.
UPDATE). should be factored out and attached to the
routine that cal Is the individual command routines.

Thus, since the (unctions o(GETNME, SRCH, and SRCH2, routines to get a record name from

the user and then find it in database, are used by all the command routines and contain no

reference to anJi of the 8pecific command8 them8e1ve8, they hang off of the main calling routine,

and are not called by each of the command routines.

With the above analysis in mind, consider the hierarchy chart and code fragment ID Figure

173

c-~

Soloway, Letovsky, Loerinc, Zygielbaum

4-2 that was generated by 2 or our subjects (2 or the 3 that actually completed the assignment).

In contrast to the original situation where the search routines (SRCH and SRCH2) needed to

simply retch an active record (or no record), these routines need to be modified to search ror an

ACTIVE or DELETED record, depending on the specific user command. The patch generated

by these subjects was to simply pass the name or the command (in CMD) down through

GETNME and SRCH to SRCH2. SRCH2 then tailors its search to the particular command, e.g.,

ir the command is RESTORE then it looks ror a DELETED record; ir the command is not a

RESTORE, then it looks ror an ACTIVE record. The retrieval or a record, then, is a runction or

the the command being acted upon.

The problem or with this method is that it violates the general principle that organized the

original modules:

General Principle: Systematic Grouping Of Functions

General Principle: VIOLATED I I
Command is passed down from MAIN to SRCH2;
command specific information is located in SRCH2
as well as in the command routines.

In other words, inrormation about the command has been distributed outside of the specific

command module. Moreover, the structure of the code does not reflect this new functionality: it

still appears as if GETNME, SRCH and SRCH2 are independent of the specific commands. Such

code structuring can only cause a program reader considerable confusion: since the code appears

to be structured according to the modularity principle described above, then one would not

expect to find command specific information in routines that were supposed to be command

independent. In fact, a program reader using expectations to understand this modified program

might easily miss the fact that SRCH2 contains command specific information. On t.he other

hand, an experienced programmer who does notice the distribution of information to SRCH2

might then become quite skeptical of the rest of the program: if a programmer could do that,

then what else might he do! Finally, given that the programmers exhibited their knowledge of

good programming practices in coming to understand the PDB program, one would be quite

surprised if, given the task of writing the PDB program from scratch that included the

RESTORE command, they would have constructed a program that included their style of patch.

Almost certainly a good programmer would have constructed the program using a code structure

that is indicated in the patch ~ ~,yle given below.

A better coding technique would be to obey the original structuring principle, and restructure

the calling hierarchy, as is done in Figure 4-3. Since the retrieval of a record is based on the

command, therefore the retrieval should be subordinate to the command thus clearly indicating

the functional relationship.
174

Soloway, Letovsky, Loerinc, Zygielbaum

General Principle: Systematic Grouping Of Functions

Specific Application:
Since the search routines nov need to knov about specific commands.
these search routines should be called by the commands themselves.

Eath tommand module now passes a flag to SRCH2 to tell it to search for an ACTIVE or

DELETED record. Unfortunately, the little change in the search routines requires a major

change to the calling hierarchy. However, the resultant program would be more in keeping with

accepted good programming practice and would facilitate the generation of appropriate

expectations.

We can summarIze the behavior of our subjects with respect to the style of their patch as

follows:

Broadly speaking, there were two constraints on programmers making the enhancement .

• First, there was the code structuring principle that was only implicit in the code and
documentation .

• Second, there was a calling hierarchy embodied explicitly in the hierarchy chart included in
the documentation.

Apparently, our subjects tried to remain consistent to the explicit criteria or the calling sequence
renected in the hierarchy chart, rather than be consistent with the implicit constraint of the code
structuring principle.

The obvious implications of this claim are described below.

6. Implications for Documentation
In order to facilitate what we have described as a model-directed style of program

comprehension, we would suggest that documentation should explicitly contain references to the

goals and programming plans in a program, and to the rationale for the choice of those goals and

plans. For instance, in the fragment of the PDB program given in the hierarchy chart in Figure

4-1, we must be told something like the following:

GOAL: retrieve named record
PLAN: standard item search loop plan

data structure: array containing database
SUBROUTINE: SRCH2

GOAL:
PLAN:
SUBROUTINE:

GOAL/PLAN STRUCTURING POLICY:
General Principle: Systematic Grouping Of Functions

Specific Application:
Code which is independent of each user command (e.g .• SHOW.
UPDATE). should be factored out and attached to the

175

Soloway, Letovsky, Loerinc, Zygielbaum

MAIN ROUTINE

I \ \ \ \
I \ \ \

GETtIIE SHOW CREATE DELETE
I

SRCH
I

SRCH2

Figure "-1: Part of Hierarchy Chart of Original Program

MAIN RaJTINE

I \ \ \ \ \
I \ \ \ \

GETNIIE RESTORE SHOW CREATE DELETE

I
SRCH
I

SRCH2

SUBROUTINE srch2(db~se, Iflnal, Iptr, nale, cmd)

DO 700 1=1, Iflnal
IF (nalt(1 IPOS-l) EQ dbase(, 1)(1 IP05-1)

END

AND «cmd .NEQ. 'r' .AND. dba.e(i,7).EQ.'active')
.OR. (cmcl .EQ. 'r' .AND. dbaoe(i,7) .EQ. 'deleted')

THEN
I ptr = I

NOTE the bold typeface IndIcates addItIons to the code lade by the lalntalners

I
I

GETtIIE

MAIN ROUTINE

\
\

\
\

Figure 4-2: Subjects' Modification

\ \ \
\ \

RESTORE SHOW CREATE DELETE
\ I

\ I
\ I

I I
I I
I I

SRCH
I

SRCH2

SUBROUTINE srch2(dbase, Iflnal nae "as Iptr)

00 700 1=1. If I na I
IF (nalt(1 IP05-1) EQ dbase(1 1)(1 IPOS-l)

AND dbase(1,7) EQ "as) THEN
I ptr = I

END

Figure 4-3: A Better Modification

176

Soloway, Letovsky, Loerinc, Zygielbaum

routine that calls the individual command routines.

This type of documentation makes explicit what the experts are doing anyways: they are

searching in the code to verify if the goals they expected are implemented in the manner they

expected. Such documentation should enable the program reader to better understand the

program.

While that claim may be mildly contentious, consider the following claim: documentation that

contain8 the goal/plan8 and their rationale should facilitate hetter code patche8 too! That is, the

maintainers will have in front or them explicit reasons why the code is structured in the way it is.

Thus, their goal will be to preserve the structuring principles, or at least, be quite clear that they

are modifying or violating those principles. When documentation doesn't include that rationale,

as we saw in the previous section, subjects were trying to preserve the 8ur face results or those

deep structuring principles.

8. Concluding Remarks
In this paper we have presented an analysis of the behavior of several expert software

maintainers. We have described that behavior in terms of strategies, e.g., model-directed,

systematic, and as-needed, that the experts employed in coming to understand the program they

were given to modify. We have also presented an analysis of the actual code modification

produced by our subjects. The link between these two descriptions can be summarized as follows:

In making the actual program modification, the maintaint'rs violated their own good principles of
software construction, which was unfortunately only implicit in the documentation, and instead
remained consistent with a structuring constraint (the hierarchy chart) that was explicit in the
documentation.

Based on this link, we have suggested how documentation should be changed so as to facilitate

the generation of better code patches. We look forward to reporting on subsequent experiments

in which we attempt to evaluate the implications of the claims drawn from this first experiment.

ACKNOWLEDGEMENT

The authors would like thank Ed Ng, who smoothed out the logistical bumps we encountered

as we conducted this research. Finally, we would like to thank JPL for providing us with the

resources to pursue this research.

References

[I] :)oloway, E., Ehrlich, K.
Empirical Studies of Programming Knowledge.
IEEE Tran8actions on Software Engineering SE-IO(S):S95-609, 1984.

[2] Soloway, E.
A Cognitively-Based Methodology for Designing Languages/Environments/Methodologies.
In Proc. of then Symp08ium on Practical Software Development Environments. ACM

SIGSOFT/SIGPLAN, Pittsburgh, Pa., 1984.

177

PANEL #3

EXPERIMENTS WITH SOFTWARE DEVELOPMENT

K. Koerner, Computer Sciences Corporation
J. GaffllJeY and S. Martello, IBM Corporation
D. Kafura, Virginia Poly technical Institute

N86-19975
~t

An Evaluation of Programmer/Analyst Workstations

K. Koerner, R. Mita1, and D. Card

Computer Sciences Corporation

A. Maione

National Aeronautics and Space Administration

Computer Sciences Corporation (eSC) and the National Aeronau

tics and Space Administration (NASA) are striving for improve

ments in the quality and productivity of software development

efforts. Until recently, very few automated tools were

available to support software requirements analysis and

design even though improvements in quality during these

phases appear to offer the greatest leverage for improving

the quality and productivity of the overall software develop

ment process (Reference 1). Recently, however, some such tools

have appeared on the market. This paper documents an effort

to evaluate the effectiveness of these tools, specifically

programmer/analyst workstations.

As a first step, CSC and NASA studied commerical1y available

products through an industry survey. Next, an in-house eval

uation of two commercial products by programmers and analysts

was undertaken to determine which tool is the best to support

programmers and analysts through life cycle development.

Finally, a tool was selected for full implementation on a

CSC project, where complete analysis of software statistics

,over the system life cycle will determine whether or not

quality and productivity improvements have actually occurred.

This paper summarizes the results of the industry survey and

in-house evaluation. Reference 2 describes this study fully.

178

< ' . ,

OBJECTIVES

CSC has adopted a structured software development methodology,

summarized in Digital System Development Methodology (DSDM I)

Reference 3. Part of CSC's commitment to DSDM involves

the providing of programmer/analyst workstations that allow

this methodology to be implemented easily, thereby permitting

programmers and anlaysts to concentrate on technical solutions

to problems.

Automated tools can replace the current mode of developing

paper models for data flow diagrams, data dictionaries,

function specifications, structure charts, and so on. To

support the interactive process of analysis and design, the

workstations must be able to supply information graphically

as well as in text form. Given the iterative nature of

anlaysis and design, automation and simplification of the

process of generating and refining paper models should increase

efficiency. Workstations are the first step in implementing

the software factory concept (Reference 4).

To best support DSDM during software development, the analysis

and design tools need to automate the basic steps of this

methodology. The automated tools ultimately sought should

be able to:

• Implement the DeMarco (Reference 5) structured analysis

methodology, providing the programmer/analyst with

the capabilities to interactively

Create and modify data flow diagrams

Create and maintain an analysis data dictionary

for data flow diagrams.

Create and modify process descriptions.

• Implement the Yourdon (Reference 6) structured design

methodology, providing the capabities to interactively

Create and modify structure charts

IDSDM is a trademark of Computer Sciences Corporation.

179

Create and maintain a structured design data

dictionary.

Describe a module's design, including a standard

format for a prolog in text and a process flow in

program design language (PDL).

Construct a template for a unit test matrix based

on the module design.

• Provide these facilities on a microcomputer based

workstation A basic concept for the programmer/analyst

workstation is to be able to implement the tools and

techniques of DSDM on a microcomputer workstation.

The microcomputer provides the capabilities to

Maintain a constant development environment

regardless of the project's host computer.

Make the tool available to different projects

without adding\the cost of conversion and

ret~aining.

Ensure access at all times -- The project host

computer avaiability is eliminated as an issue.

Maintain information in a standard format from one

project to another -- A project's design is thus

maintained on a data base and can be accessed for

use on another project.

An effective programmer analyst workstation should

reduce the cost and improve the quality of require

ments analysis and system design activities. Con

sequently, the overall productivity and reliability

of the operational system will increase.

180

INDUSTRY SURVEY

The industry survey during March-May of 1984, consisted of

a two-level screening of commercially available products.

This survey phase began with attending conferences, reviewing

current literature on the subject, and consulting with technical

experts in order to identify feasible resources. Next, sources

were screened via telephone discussions and written corres

pondence. During this initial screening, CSC found that

most commercially available products support code generation

and report writing. Products or tools that support the develop

ment of analysis and design products are fairly new. Many

companies indicated that they are pursuing development of

these tools on a microcomputer; however, relatively few

products are available and supported today. Initially, eight

vendors were contacted whose products are currently available

in this area. These eight products and their current status

as analysis and design tools are listed below.

• Yourdon

• Tektronix

• PROMOD (GEl)

• Excelerator

(Index Technology)

• CASE 2000 (NASTEC)

• Boeing Argus

-Not available

-Being developed for IBM PC

-Earliest demonstration in

January 1985

-Available for BETA test site

-LSI or VAX based

-U.S. Availability unknown

-IBM PC/XT or VAX based

-Available for IBM PC/XT

-Available on CTEC 8086

-Package and nonsupported source

available

181

• Symbolics

• SOFTOOL CCC and PE

-New enhanced and supported product

available in January 1985

-Available on Symbolics 3600

-No requirements analysis tools

-Configuration control and

programming environment tools

-IBM PC implementation in late 1984

-Design environment tools in

1985

The initial screening determined that four

products met the key criteria of providing requirements

analysis and design tools and microcomputer implementation.

These were the Tektronix, PROMOD, Excelerator, and CASE 2000.

The second level of the industry survey was to determine which

products that met the basic criteria provided the most benefits.

CSC had already decided that only an in-house evaluation could

provide a sufficiently thorough analysis of benefits. However,

further information was needed to determine which products

provide sufficient improvements over the current manual

approach to warrant the costs associated with an in-house

evaluation. Vendor demonstrations were used to determine

the availability of the nine major desired feasures at this

level of the evaluation. Table 1 shows the desired features

and CSC's evaluation of the availablility of each feature

for each product.

182

TABLE 1 - RESUL TS OF INDUSTRY SURVEY

FEATURES TEKTRONIX PROMOD EXCELERATOR CASE 2000

1. USER fRIENDLINESS • 0

2. GRAPHIC AND TEXTUAL DATA • • • • MANIPULATION

3. CAPABLE INTERACTIVE REQUIREMENTS • • • • ANALYSIS TOOLS

4. CAPABLE INTERACTIVE DESIGN TOOLS 0 0 • ~

5. USABILITY AS A DEVELOPMENT • • • • TERMINAL ON HOST

6. LIBRARY CAPABILITY TO SUPPORT ~ ~ • • - SOFTWARE REQUIREMENTS AND DESIGN
00

TOOLS w

7. MANAGEMENT SUPPORT TOOLS 0 ~ ~ •
8. WORKSTATION NETWORKING • 0 0 •

CAPABILITIES

9. MICROPROCESSOR IMPLEMENTATION • • • •
o FEATURE NOT CURRENTLY AVAILABLE

~ FEATURE PARTIAl-LY AVAILABLE

• FEATURE AVAILABLE

687-MIT-(59a·)

esc COMPUTER SCIENCES CORPORATION

IN-HOUSE EVALUATION

Based on the results of the industry survey the Index

Technology Excelerator (Reference 7) and the NASTEC CASE

2000 (Reference 8) workstations were selected for the in-house

evaluation. Figure 1 shows the logical configurations of

the two systems as implemented for this evaluation. The

Excelerator system consisted of two independent workstations

(IBM PC/XTs), with individual data bases, and controlled

through a mouse interface. The CASE 2000 system consisted

of three workstations (CTEC 8086s), connected to a central

data base, and controlled through a set of programmed

function keys.

The in-house evaluation included two parts: a general survey of

workstation users and a detailed evaluation by a team of

experts. Both parts were completed within a three month

trial ~eriod.

184

FIGURE I. CONFIGURATION

EXCELERATOR

~ ~
CVCTTIII'~ Qi'!IH I I , BUS'. -00

VI [- .-.-~.] [=----- ... J

CASE 2000

• .
~

IBM PC/XT CTEC 8086

INDEPENDENT WORKSTATIONS

INDIVIDUAL DATA BASES

MOUSE INTERFACE

esc COMPUTER SCIENCES COHPOHATION
SYSTEM SCIENCES DIVISION

UP TO 16 WORI(STATIONS

CENTRAL DATA BASE

PROGRAMMED FUNCTION KEYS

712-MIT-189'

User Evaluation

During the three month trial period, the Index Technology

Excelerator and NASTEC CASE 2000 workstations were made

available to personnel from five different operations. The

evaluation organizers did not assign specific problems or

times for workstations use., Participants in the evaluation

effort generally attempted to apply the workstations to an

ongoing task. Relatively few users of either the Excelerator

or the CASE 2000 achieved more than 20 hours of contact time.

Users provided their reactions via a questionnaire (reproduced

in Reference 2). The questions on this form deal with user

background, specific workstation capabilities, overall

effectiveness, and the manner in which workstations were

used. A total of 34 persons responded to the survey: 22

rated the Excelerator: 29 rated the CASE 2000. Survey

respondents represented a wide range of professional

experience (from 1 to 20 years). However, most were

programmers and/or analysts. Consequently, the requirements

analysis and system design capabilities were most carefully

explored in this phase of the evaluation.

Survey respondents rated 13 specific tool capabilities as

well as the overall effectiveness of each workstation. Table

2 summarizes the respondents' evaluations of the specific

tool capabilities. Respondents rated each c'apabili ty on

a scale from one (poor) to five (excellent). Chi-square

tests (Reference 9) determined whether or not significant

differences (P<.OS) existed between the workstations with

respect to the ratings of each capability.

The Excelerator was rated significantly higher for ease of

learning and user friendliness. No substantial differences

exist between the two workstations with respect to ratings

of requirements analysis and design capabilities. The

differences in ease of learning and user friendliness account
for the difference in the total ratings shown in Table 2.

186

.-
00
-.J

TABLE 2 - RESUL TS OF USER SURVEYS
MEDIAN RATING8

CAPABILITY EXCELERATOR CASE 2000

GRAPHICS SUPPORT 4 4

EASY TO LEARN 4b 2

FAST RESPONSE 3 4

DSDM REQ. ANALYSIS 3 3

DATA FLOW DIAGRAMS 3 3

DSDM DESIGN 3 3

STRUCTURE CHARTS 3 4

DATA DICTIONARY 4 3

USER FRIENDLINESS 4b 2

PROJECT MANAGEMENT 3c

QUALITY ASSURANCE 3 3

CHECK REQUIREMENTS 4 3

CHECK DESIGN 3 3

TOTAL RATING 41 37

NUMBER OF EVALUATORS 22 29

8RATING: 5 = GOOD, 1 = POOR.

bpROBABILITY < 0.05 THAT THIS DIFFERENCE IN RATINGS IS
DUE TO CHANCE.

cVALUE NOT INCLUDED IN TOTAL RATING BECAUSE CAPABI·
LlTY WAS NOT RATED FOR BOTH WORKSTATIONS.

esc COMPUTER SCIENCES CORPOHATION
SYSTEM SCIENCES OIVISION

712-MIT-I68-a'

Quality assurance and project management capabilities

were not fully explored by survey respondents. Users

frequently complained of the lack of capabilities for

verifying the consistency of requirements and design.

Consequently, most survey respondents did not rate these

capabilities.

Survey respondents also evaluated the overall effectiveness

of the workstations with respect to three key attributes:

quality of product, time to generate, and effort to produce.

Figure 2 summarizes the responses obtained. These ratings

are sUbjective assessments, not objective measures of

actual quality, time and effort. Tests of proportions

,(Reference 9) determined whether or not the percent of

favorable responses was significant (P< .05).

Both workstations were judged to be improvements over existing

manual procedures, as shown in Figure 2. A significant pro

portion of respondents rated the Excelerator positively with

respect to all three key attributes in spite of frequent

complaints about the printer. The CASE 2000 received

significant positive ratings for quality and effort only.

The lower rating for total time may have been due to the

substantial learning time required for operation of the

CASE 2000.

In summary, although the Excelerator was rated significantly

higher in terms of ease of learning and user friendliness, the

two systems were not rated very differently in terms of

support for requirements analysis and design. Both systems

appeared to offer improvements with respect to the key

attributes of quality, time, and effort. However, those

individuals who exercised both systems generally stated a

preference for the Excelerator.

188

FIGURE 2 -
USER EVALUATION OF OVERALL EFFECTIVENESS

00
\C)

0/0 YES
0/0 NO

IMPROVES
QUALITY?

~fi"-i·

EXCELERATOR

93

CASE
2000

REDUCES
TIME?

71

EXCELERATOR CASE
2000

esc COMPUTER SCIENCES CORPORATION
sYs' EM SCIENCES OIVISION

REDUCES
EFFORT?

EXCELERATOR

85

712-MIT-IB91

Detailed Evaluation

A detailed comparison of features available on the Excelerator

and the CASE 2000 to support requirements analysis and

design was undertaken to determine the relative strengths

and weaknesses of the two systems. The following paragraphs

summarize the approach used, results obtained and conclusions

derived from this exercise.

Eight major categories of relevant features were identified:

• Data flow diagrams

• Structure charts

• Data dictionary

• Function specifications

• Data flow diagram validation

• Structure chart validation

• Report/display generation

• General/other

The eight categories were assigned relative weights adding

up to 100. Each major category was further divided into

specific features. Each feature was assigned a weight of

either 1 (desirable) or 2 (mandatroy). Four groups of senior

programmers and analysts who had used both the Excelerator

and the CASE 2000 fairly extensively during the evaluation

period were asked to assess the two systems feature by

feature. The input was in the form of both a qualitative

assessment as well as a numerical score on a scale of 0 to 5

(0 = not available, 1 = low, 5 = high) for each feature.

An informal Delphi method was used to arrive at the ratings

on which the results are based.

A final score for each workstation was computed as follows:

Let w. = weight of ith feature in a major category (value =
1

1 or 2)

r. = raw score for ith feature (range = 0 to 5)
1

190

W. = weight of jth major category (W. = 100)
J J

R. = overall raw scor-e of j th major category
J

Then, final score = L:W.R.
. J J

LW,
J

The range of final scores is 0 to 5.

'"'w. r.
L.J 1. 1.

(=----
LWi

Table 3 shows the computation of final scores from overall

raw scores. In summary, the Excelerator and the CASE 2000

scored as follows:

Excelerator

CASE 2000

2.01

2.82

A listing of specific features within the eight major categories

and the computation of the overall raw scores for each can be

found in Reference 2. One of the major differences between

the two systems was the provision for a multi-user centralized

data base on the CASE 2000. The evaluation team made two

general observations about the workstations:

• Neither the Excelerator nor the CASE 2000 scored

very high. This indicates that both systems lack

many of the desired features.

• Feature for feature, the CASE 2000 provides more

support than the Excelerator.

191

TABLE 3 - RESULTS OF DETAILED EVALUATIOM

OVERALL RAW SCORE OVERALL WEIGHTED SCORE
MAJOR CATEGORY WEIGHT

EXCELERATOR CASE 2000 EXCELERATOR CASE 2000

DATA FLOW DIAGRAMS 15 2.5 2.8 37.5 42.0

STRUCTURE CHARTS 15 1.7 3.6 25.5 54.0

DATA DICTIONARY 15 2.5 2.1 37.5 31.5

fUNCTION SPECIFICA- 5 3.0 5.0 15.0 25.0
TIONS

DATA FLOW DIAGRAM 15 1.9 2.7 28.5 40.4 -\0
N VALIDATION

STRUCTURE CHART 5 0.0 0.7 0.0 3.5
VALIDATION

REPORT IDISPLA Y 15 1.9 3.1 28.5 46.5
GENERATION

GENERAL/OTHER 15 1.9 2.6 28.5 39.0

TOTAL 100 201 282

FINAL SCORE 2.01 2.82
-- -- - - ----- ---- ---- - - --

712-MIT-159c·)

esc COMPUTER SCIENCES CORPORATION
SVSTI'M SCIENCES OlVI,10N

CONCLUSIONS

The ease and benefit of integrating either workstation into an

existing requirements/design environment depend on its match

to that environment. The evaluation experience indicated that

the Excelerator and CASE 2000 are optimized for different

environments. The former targets the environment in which many

unrelated, small-to medium-scale requirements/design problems

are being solved simultaneously. The latter targets the enviro

nment in which the solution to a single large requirements/

design problem is developed over a relatively long period of

time.

The Excelerator's ease of learning and operation (via a

mouse) makes the system cost effective in those situations

in which one or two individuals spend a few months producing

a formal requirements/design specification (possibly based

on input from a larger team). These individuals spend the

rest of their time on other activities (e.g., mathematical

analysis or programming). The provision for individual

diskettes allows the system to be shared by many users with

different problems. Furthermore, the computer can be used

to run other software when no requirements/design activity

is in progress.

The CASE 2000's central disk and data dictionary support the

situation in which many individuals are working on different

aspects of the same requirements/design problem. This system

simplifies configuration management for large projects and

enhances analyst communication. The additional cost imposed by

the lengthy training and phase-in period are recovered during

the relatively long development period; function keys move the

user through the system faster than does a mouse. Furthermore,

the function keys can be programmed to satisfy project-specific

needs. However, "difficult to learn" implies "easy to forget,"

so this system is not suited to non-full-time users.

193

The results of the in-house evaluation indicated that

both systems offer improvements in the productivity and

quality of requirements analysis and design, relative to

the existing manual procedures. These benefits should

compound throughout the software life cycle. This is

consistent with another recent study (Reference 10) that

showed that the availability of workstation support for

requirements and design improved overall productivity.

The next step in esc's evaluation process is to apply

these two workstation systems to different production

projects of the appropriate sizes. Objective measures of

productivity, reliability, and maintainability collected

during the development process will enable a quantitative

determination of the benefits of workstation usage to be

made.

194

REFERENCES

1. B. W. Boehm, "Software Engineering R&D Trends

and Defense Needs." Research Directions in Software

Technology. MIT Press: Massachusetts, 1979

2. R. Mital, et al., Programmer/Analyst Workstation

Evaluation Report, CSC/TM-84/6l38, Computer Sciences

Corporation, November 1984
. ,.

3. Computer Sciences Corporation, Digital System

Development Methodology, Version 2.0, March 1984

4. J. H. Manley, "Computer Aided Software Engineering

(CASE) Foundation for Software Factories", Proceedings

of the Twenty-Ninth International Computer Conference

pp 84-91, September 1984

5. T. DeMarco, Structured Analysis and Sy~tem Specification,

Yourdon Press, 1978

6. E. Yourdon and L. Constantine, Structured Design,

Yourdon Press 1978

7. Index Technology Corporation, Excelerator Reference

Guide, 1984

8. NASTEC Corporation, CASE 2000 Workstation Reference

Manual, Release 3.0, July 1984

9. H. M. Blalock, Social Statistics, McGraw-Hill:

New York, 1972

10. B. W. Boehm, et al., "A Software Development

Environment for Improving Productivity" IEEE Computer,

pp 30-42, June 1984

195

N.86 -19976

A MODEL FOR THE PREDICTION OF LATENT.

ERRORS USING DATA OBTAINED DURING THE DEVELOPMENT PROCESS

Presentat i.on Atnhe 9.th Annual Software
Engineering Workshop,
NASA,Goddard, Nov. 28,1984

John E. Gaffney,Jr.
IBM Corporation

Federal Systems Division
Advanced Technology Dep't.

Gaithersburg,Maryland

Steven J. Martello

IBM Corporation

Kingston, New York

196

-'

SUMMARY

This paper presents a model implemented in a program that runs on

the IBM PC for estimating the latent (or post ship) content of a body of

software upon its initial release to the user. The model employs the

cOURt of errors discovered at one or more of the error discovery pro-

cesses during development, such as a design inspection,

as the input data for a process which provides estimates of the total

life-timet injected)error content and of the latent (or post ship) error

content--the errors remaining at delivery.

The software development process may be considered to consist of a

sequence of activities. One set is that used in the IBM, Federal Systems

Division, (1, 2) which is: system definition, software design, software

development (codin5 and unit test), software system test, and system/

acceptance test. Included in these major activities are error discovery

processes. A set of them is:

1. High level design inspections

2. Low Level design inspections

3. Code inspections

4. Unit test

5. Integration test

6. System test

The model presented here presumes that these activities cover all of the

opportunities during the software development process for error discovery

(and removal). Data will, typically, not be available in all of them for

any particular project. The model might be expanded to cover some

additional software error discovery activities, such as a "requirements/

objectives inspection"; that possibility will not be considered further

here, however.

197

Analysis of the number of errors discovered at the successive stages of

the software development process suggest that the profile of defect

discovery during the software development process, when taken on a

phase-by-phase basis, at first increases and then decreases as a function

of phase (e.g., high level design inspection, low-level design inspec

tion, etc.). Thus, errors per KSLOe (thousands of source lines of code)

may be plotted as a-function of each error discovery phase or activity

as shown in Figure 1.

The model employs a discrete form of the Rayleigh curve to represent the

errors/KSLOe removed as a function of defect removal process. It is of

interest to note that the Rayleigh curve has been used widely to model

the "proper" application of manpower to develop processes in general

(3) and the software development process more particularly (4) as well

as the entire software development life cycle. (S)The model presented

here does not presume any given "level" of the SLOe to which it is

applied (e.g., JOVIAL vs. assembly "level" code). A recent paper by

Gaffney (6) presents an analysis of some software data that suggests

that the error content of a body of software is strongly a function of

the number of SLOe and not of the "level" of the language in which they

are written. The cumulative form of the Rayleigh model, as applied to

the defect discovery process model presented here, is:

where;

Vt = total number of errors (or errors per KSLOe)

discovered through development phase (or activity

no. "t").

E = total lifetime defect content or "injected" error.

b = 1 t = "error discovery phase constant,"

2td2; d

the point at which 39% of "E" errors has been

discovered.
198

\0
\0

EARONS/
KSLOC

PSA PI//JSE

HIGH LEVEl.
~ESI6N IA/SP,

LoW

A V ... AVt

FIGURE I-ERROR DISCOVERY PROFILE

I
~V3 ~V .. AVS AV6 I

2 3 4 5
6 L INJI~£AlrILATENr

a~oll
ro/)~ I/AlJ'r "- ~V,. ... ~.~ r~~.,.

~E.sIGN INS!'. INSP. n:sr INfEGIlAT10Al resT

RAYLEIGH CURVE FIT: AV.t = £[e-IJ(.t-I): e -6iJ
£ = TOT/IL. LI'FErlI1E £~£ol(~ArE.

I
/J = ~ 2 J ~ = PEFEcr PISCOV£('Y ,oHM'£ CONJ"TANr

P6V6t.()PMENr
PIIASE :I

The independent variable, "t", represents error discovery activity

indices as follows:

t Error Discovery Activities I

1 High level design inspections

2 Low level design inspections

3 Code Inspections

4 Unit Test

5 Integration Test

6 System Test

6-+00 Field Potential or Latent Errors

The Rayleigh curve may be expressed so that it can be used to model

discrete data groupings (corresponding to the discrete activities of the

software development process) as follows:

Let Ut be the actual number of errors discovered, defects per KSLOC

noted, PTR's per KSLOC written, or other convenient measures of

defect removal during phase t (which extends from "time" or "activi

ty index value" (t-l) to t). The "idealized" equivalent to this

value, given by the discrete Rayleigh model is ~Vt' where:

The idea of the model is to estimate "b" and E from data obtained during

one or more of the error discovery processes listed above, and then use

the equation for ~Vt to estimate the error discovery rates (errors/KSLOC)

for the remaining error discovery processes.

The software error discovery profile model presented here can be used to

aid in the management and control of the software development process by

providing projections of the number of errors that will be found at

later stages of the development process, based upon discovery data from

earlier stages. If the error discovery rates are not as high as earlier

200

projected, this may suggest that some management action is appropriate,

such as scheduling additional inspections, extending the number of test

hours, etc.

The approach taken in the model offers a number of advantages relative

to various possible alternatives to the software developer in gaining an

understanding of the error creation and removal processes associated

with his software product. The model would facilitate an early estimate

of error content; the developer need not wait until the software is

actually coded and is running in a processor. He can use data obtained

during inspections to gain knowledge about the probable error content of

his software upon its release. If he is not pleased, he has time to

take actions that will, hopefully, counter that situation. Data about

different segments of a software product can be combined, and/or compared,

as appropriate, since a time base is not directly involved. This feature

of the model also facilitates the comparison of different software

products' error discovery histories to be made more easily than might

otherwise be possible if the error data were time-based oriented.

The excellent work of Mr. Rick Qualters of IBM,Gaithersburg in implementing
the model to run on the IBM PC is gratefully acknowledged.

201

REFERENCES

1. Quinnan, R.E., "The Management of Software Engineering, Part V,"
"ImrSystems Journal," Vol. 19, No.4, 1980; pg. 466.

2. Gaffney, J. E., Jr., "Approaches to Estimating And Controlling
Software Costs"; CMG XIV Proceedings, op cit, pg. 335.

3. Norden, P.V., "Useful Tools for Project Management," in M. K.
Storr, Ed., "Management of Production," Penguin Books, New York,
1970.

4. Gaffney, J. E., Jr., "A Macroanalysis Methodology for Assessment of
Software Development Costs," in "The Economics of Information
Processing," Volume 2, pg. 177, John Wiley and Sons, New York,
1982, edited by R. Goldberg and H. Lorin~

5. Putnam, L. H. ,"A General Empirical Solution to the Macro Software
Sizing and Estimating Problem," "IEEE Transactions on Software
Engineering"; SE-4 (4); July, 1978, pg. 345.

6. Gaffney, J. E., Jr., "Estimating the Number of Faults in Code,"
"IEEE Transactions on Software Engineering," Vol. SE-lO, No.4,
July 1984, pg. 459.

202

THE VIEWGRAPH MATERIALS

for the

J. GAFFNEY/S. MARTELLO PRESENTATION FOLLOW

A MODEL FOR THE PREDICTION OF LATENT

ERRORS USING DATA OBTAINED DURING THE DEv~LOPMENT PROCESS

Presentatiort At~The 9lh Annual Software
Engineering Workshop,
NASA,Goddard, Nov. 28,1984

John E. Gaffney,Jr.
IBM Corporation

Federal Systems Division
Advanced Technology Dep't.

Gaithersburg,Maryland

Steven J. Martello

IBM Corporation

Kingston~ New York

203

PLEASE NOTE:

VARIOUS NUMBERS PRESENTED SUBSEQUENTLY SHOULD NOT BE
INTERPRETED AS ACTUAL IBM WORKING DATA, BUT ARE PRO
VIDED FOR ILLUSTRATION ONLY.

2~

THIS TALK PRESENTS:

A METHOD/MODEL FOR ESTIMATING:

THE LIKELY ERROR CONTENT OF A BODY OF SOFTWARE
UPON ITS DELIVERY TO A USER, BASED ON DATA OB
TAINED DURING THE DEVELOPMENT CYCLE.

WHY: AN ESTIMATE, EARLY IN THE DEVELOPMENT CYCLE, OF
ERROR CONTENT/SYSTEM UNAVAILABILITY CAN BE A VERY
IMPORTANT INPUT TO THOSE CONTROLLING THE SYSTEM
DEVELOPMENT PROCESS.

205

SOFTWARE DEVELOPME~T CYCLE

DEVELOPMErn I rJCLUDED ERROR DISCOVERY /
ACTIVITIES REMOVAL ACTIVITIES

SYSTEM DEFINITIOU -

SOFTWARE DESIGN HIGH LEVEL DESIGN IrlSPECTION
LOW LEVEL DES I GrJ INSPECTION

SOFTWARE DEVELOPMENT CODE INSPECTION
(COD1I-IG & urllT TEST) UNIT TEST

SOFTWARE SYSTEM TEST SOFTWARE INTEGRATION TEST

SYSTEM & ACCEPTANCE SYSTEM TEST
TEST

206

£f?RO,qS/

KsI.oC
p£q PIIASE

HIGH /.EVEL
PESIGN IA/SI> .

.AV.L AVz.

-1 1

LO~ V LeVEL-

ERROR DISCOVERY PROFILE

I
~V3 ~V., IlVS AV6 I

2 3 4 5 6
l'NN£fEAlr/LATENT

a~o~

CO[)6 lINlr '- SYSrEM TESr
DEsiGN INS!! INS;' n:sr L-

RAYLEIGII Cl//?VE FIT: AV,t = E [e -9(./-1)2._ e -G.tJ
£ = Tori'lL L/RI//1.C" £~£t)1(A>ATE

I
~= 27d2 J Z. = PErccr PISCOI/£fY ~H#E COtfl.rTANT

RAYLEIGH CURVE,CUMULATIVE FORM:

Vt =E*(1_e- Bt2)

~ATENT ERROR CONTENT:

L=E*e-36B
207

PEVELOf'NENT
P//,1SE X

RANGE OF ERROR DISCOVERY/REMOVAL ACTIVITY
DEVELOPMENT PHASE INDEX (;t)

0-1 HIGH LEVEL DESIGf'l rr~SPECTIOrJ

1-2 LOW LEVEL DES I Gtl INSPECTIor~

2-3 CODE INSPECTION

3-4 UNIT TEST

4-5 INTEGRATlor~ TEST

5-6 SYSTEM TEST

6~OO LATENT/POST-SHIP ERROR

208

'BASELIIlE' ERROR DISCOVERY PROFILE(l)

PERCENT OF LIFETIME
ERROR CONTErn

7.69

19.70

23.93

20.88

14.27

7.92

5.61

ERROR DISCOVERY/REMOVAL ACTIVITY

HIGH LEVEL DESIGN INSPECTION

LOW LEVEL DESIGN INSPECTION

CODE IrISPECTION

UNIT TEST

INTEGRATIOn TEST

SYSTEM TEST

LATENT/POST-SHIP ERROR

rlOTE (1): FOR'i'n = 2.5i B = .08

209

ESTIMATION OF
TOTAL LIFETIME ERROR RATE, E

o BOTH E & B (THE PEAK LOCATION CONSTANT) ARE ESTIMATED BY
OBTAINING A 'BEST FiT' TO THE DATA, THE USER-ENTERED
VALUES,

E.G.: US 1 = HIGH LEVEL DES. IHSPEC. ERRORS/KSLOC.

BEST FIT <=) °E & B SUCH THAT

D = MIN Ir1UM

o THEN, FOR EXAMPLE:
IF HIGH LEVEL DES. INSPECTIOtJ AIm CODE INSPECTION

DATA ARE AVAILABLE:

E = US 1 + US 3

(l - e-B + e-4B _ e-9B)

USING THE VALUE B = .08 FOR THE BASELINE ERROR
DISCOVERY PROFILE, WE WOULD HAVE:

A US 1 + US3 E = -----=------=:..----
(1 - e-· 08 + e-· 32 _ e-· 72)

210

o

o

SAMPLE ESTIMATE USING PUBLISHED DATA

GAFFNEy(l) (USING LIPOW(2) DATA) SUGGESTED 22.7 ERRORS
PER KSLOC AFTER CODE COMPILATION

IMPLIES: E = 22.7 = 46.6 ERRORS/KSLOC
.4868

A
L = 46.6 X .0561 = 2.62 ERRORS/KSLOC

SCHNEIDER(3) 'SUGGESTED A FIGURE OF 20 ERRORS/KSLOC
COMMENCING WITH UNIT TEST

IMPLIES: ~ = 20.0 = 41.1 ERRORS/KSLOC
.4868

A

L = 41.1 X .0561 = 2.3 ERRORS/KSLOC

THESE FIGURES ARE RELATIVELY CLOSE.

NOTES: (1): IEEE SOFTWARE ENG. TRANSACTIONS; JULY, 1984
(2): IEEE SOFT\vARE ENG. TRANSACTIONS; JULY, 1982
(3): ACM/SIGMETRICS PER, SPRING, 1981

211

SOME OVERALL OBSERVATIONS

o DATA ANALYZED BY PRINCIPAL DEVELOPMENT ACTIVITY, RATHER
THAN BY TIME AS INDEPENDEllT VARIABLE.

o AVOIDS DETERMINING 'EQUIVALENCE' OF TIME BASES IN
INSPECTIONS, SWIT, ETC.

o FACILITATES EARLY ESTIMATE OF DEFECT CONTENT.

o AVOIDS MANAGEMENT PROBLEM OF ASKING DEBUGGERS TO NOTE
PRECISE TIMES OF DEFECT DETECTIONS.

o ErJABLES (STATISTICAL) ADVANTAGE TO BE TAKErJ OF GROUPING
DEFECT DETECTIorJS - MINIMIZES EFFECT OF 'NOISE' Ir~ DATA.

o ENABLES COMPARISON OF DIFFEREIlT PROJECTS' ERROR DETECTIOlJ
HISTORY TO BE MADE WITHOUT REGARD TO SCHEDULE DIFFERENCES.

212

N86-19977
p({)

THE INDEPENDENCE or SOfTWARE METRICS

TAKEN AT DIFfERENT tIlE-CYCLE STAGES

by

Dennis Kafura

James Canning

Gereddy Reddy

Computer Science Department
Virginia Polytechnic Institute

Blacksburg, VA 24061

ABSTRACT

Over the past few years a large number of software metrics have been proposed and,

in varying degrees, a number of these metrics have been subjected to empirical validation
which demonstrated the utility of the metrics in the software development process. In

this paper we will report on our attempts to classify these metrics and to determine if the
metrics in these different classes appear to be measuring distinct attributes of the software

product. Statistical analysis is used to determine the degree of relationship among the
metrics.

213

I. INTRODUCTION

Underlying our effort to determine an operational classification of the metrics is the

belief that software products exhibit different forms of "complexity" in a number of "in

dependent" dimensions. That there are a number of different forms of "complexity" is

attested to by the large number of different complexity metrics and also by a number

of prior studies of programmer performance. That these complexities are "independent"

is evidenced by the common practice of trading one form of complexity for another in

the design and implementation processes. For example, the global relationships between

components can often be simplified by combining several together. However, this simpli

fication of the global relationships results in greater complexity within the newly created
component.

A proper classification of software metrics is important for two reasons. First, it reduces

the number of metrics which must be employed. The costs associated with redundant
metrics include not only the price of extracting, storing and displaying the metric but

also, and perhaps more importantly, the price to an analyst of viewing and attempting to

evaluate the significance of these additional metrics. Second, the elimination of redundant

metrics focusses our attention fundamental factors which affect software complexity, leads

more directly to the discovery of other independent metrics, and simplifies the processes

of investigating and modeling of the software development process and its products.

The study which we report in this paper is also of interest because of it uniquely
combines the following features. First, a variety of software metrics are used including

metrics of low-level code details as well as measures of general relationships between com

ponents. Second, only realistic software systems are used. Realisitic systems to us are
those that have been developed by several individuals over more than a year of calendar

time in some demanding application area. Third, evidence from different application area

and different development environments is presented. The three systems presented in this

paper are an operating system, a database system, and ground-support software systems.

Fourth, because of the size of the systems considered and the number of metrics evaluated

it was important to develop automated metric tools. Fifth, and finally, we have applied

the metrics to the same collection of software systems making it possible to compare these

metrics.

The metrics which we considered may be group into three broad classes based on the
features of the software product which must be known in order to compute the metric.

The metrics in one class, referred to as code metrics, are defined in terms of the features
of the implemented code. Metrics in this class include Haltead's software science measures

[1] and McCabe's cyclomatic complexity measure [2]. A second class of metrics, termed
structure metrics, is based on more global features of the software system. Typically,

214

structure metrics are defined in terms of some relationship between major components of

the system without regard for the details of the components themselves. This class includes

Henry and Kafura's information flow complexity measure [3-5] and McClure's invocation

complexity measure [6]. Hybrid metrics, the third major class, combines elements of both
code and structure metrics. A member of this class, Woodfield's syntactic interconnection
measure [7], combines control and data relationships between components with Halstead's

effort measure to produce a composite measure for each component. Yau and Collofello's

stability measure [8] is also in this class.

D. COMPARISON OP METRICS

The results of this study are briefly: (1) the code metrics studied all appear to be
high associated, and (2) the structure and hybrid metrics appear to be distinct among

themselves and different from the code metrics.

The first of three sets of data is shown in Table 1. This data is based on an analysis of

the kernel of the UNIX operating system and has appeared previously [9]. This table shows
a comparison between only one of the structure metrics, the information flow complexity,

and a variety of code metrics. The code metrics used in this study included several of the

Halstead software science measures and McCabe's cyclomatic complexity. The last column

in this table shows that a low correlation exists between the information flow metric and

any of the code metrics. The range of correlations is 0.20 to 0.38. On the other hand,

very strong relationships appear among the code metrics themselves. The correlations

among the code metrics ranges from 0.84 to 0.99. This study was the first evidence that

a classification of software metrics was both possible and necessary.

The second set of data is presented in Tables 2 and 3. The metrics used in this study

were derived from an automated analysis of a database management system constructed at

Virginia Tech [10]. This system has undergone 4 major revisions over a period of approx
imately five years. The code metrics used in these tables include only one of the Halstead

measures, the effort measure, along with the length (lines of code) and McCabe's cyclo
matic complexity. In contrast to the first study, however, all of the structure and hybrid

metrics have been included in this experiment. An additional factor in this experiment

is the use of two different types of statistical measures, the Pearson parametric measure

and the Spearman non-parametric measure. As can be seen by comparing Tables 2 and

3 the essential results are the same regardless of the statistical measure used. It may be

observed in this two tables that the code metrics are again highly associated. the Pearson

correlations range between 0.79 and 0.97 while the Spearman correlations range between

0.81 and 0.95. Also apparent from these tables is the marked lack of association between
the code metrics and the structure or hyrbid metrics. The range of Pearson correlations in

215

this case is from 0.15 to 0.49 while the Spearman correlations range between 0.05 and 0~28.

Also it should be noticed that the associations among the structure and hybrid metrics is
weak. Except in the case of the correlation of 0.60 between the information flow metric

and McClure's metric, the range of Pearson correlations for these two groups of metrics is
from -0.06 to 0.36 while the Spearman correlation lie between -0.05 and 0.43.

The study of the data1?ase management system strengthen our conviction that a clear

distinction exists between measures based on code details and measures based on more

global relationships among components. Furthermore, this study also leads one to believe
that the measures of global relationships ~re measuring different properties of the software

system. Confirmation of these results is sought in the last of the three studies presented
in this paper.

The final set of data was derived from a study of several ground support software sys

tems developed by the Computer Sciences Corporation for NASA Goddard in cooperation
with the Software Engineering Laboratory. A typical set of data from this extensive study

is shown in Table 4.

An examination of Table 4 shows that, once again, a strong association exists among
the code metrics. Somewhat in contrast to the previous data, however, we observe a higher
level of association between the code metrics and the information flow metric. This one
aside, the range of correlations between the code and structure metrics is from 0.16 to 0.51.

With regard to the information flow metric is should be observed that even though higher
corr~lation were seen in this study than in the two previous ones, the level of correlations
(0.55 to 0.63) is still significantly lower than the correlations among the code metrics (0.85

to 0.96). Furthermore, if Pearson correlation coefficients are used, the level of correlation
between the code metrics and the information flow metric falls into the range of 0.26 to

0.45 - certainly comparable to the previous data. Finally, the relationship between the
structure and hybrid metrics has one anomalous point - a 0.71 correlation between the

information flow metric and the Yau and Colofello stability measure. Aside from this one
point, the range of correlations between these two classes of metrics is from 0.20 to 0.47 .

. para For the most part, the study of the Goddard systems is consistent with the results
seen in the prior two studies. Only one metric, the information flow metric, exhibited a
somewhat different pattern than had appear earlier.

216

m. CONCLUSIONS

Based on the data presented in the paper we feel confident in concluding that: (1)
the code metrics considered in this study are measuring essentially the same properties of
software systems; and (2) the structure and hybrid metrics considered in this study are
measuring properties of the software system distinct from the code metrics and also from
each other. These two conclusions are advanced with some confidence since the same results
have been observed in software systems which were written in two different languages (C
and Fortran), were developed in different time frames for different application areas and
in different development environments with different personnel.

Based on these results we would argue that less work needs to be done in inventing
new metrics based on code details and that more work must be done to establish a more
complete set of "independent" metrics. It is by no means to be implied by our study that
the set of structure and hybrid metrics which we have used is in any sense complete.

IV. REPERENCES

[I] Halstead, M.H. Elements of Software Science, Elsevier, New York, 1977.

[2] McCabe, T.J. "A Complexity Measure," IEEE Transactions on Software Engineering,
SE-2, December 1976.

[3] Henry, S.M. and Kafura, D.G. "Software Structure Metrics Based on Information
Flow," IEEE Transactions on Software Engineering, SE-7, September 1981.

[4] Kafura, D.G. and Henry, S.M. "Software Quality Metrics Based on Interconnectivity,"
The Journal of Systems and Software" 2, 1981.

[5] Henry, S.M. and Kafura, D.G. "The Evaluation of Software Systems' Structure Using
Quantitative Software Metrics," Software- Practice and Experience, Vol. 14(6), June

1984.

[6} McClure, C. "A Model for Program Complexity Analysis," Proceedings: 3rd Interna
tional Conference on Software Engineering, Atlanta, Georgia, May 1978.

[7] Woodfield, S.N. "Enhanced Effort Estimation by Extending Basic Programming Mod
els to Include Modularity Factors," Ph.D. Thesis, Purdue University, 1980.

[8] Yau, S. and Collofello, J. "Some Stability Measures for Software Maintenance," IEEE
Transactions on Software Engineering, Vol. SE-6, l\{o. 6, November 1980.

217

[9] Kafura, D.G., Henry, S.M., and Harris K. "On the Relationship Among Three Software
Metrics," 1981 ACM Symposium on Measurement and Evaluation of Software Quality,
University of Maryland, March 25-27, 1981.

[10] Reddy, G.R. "Application of Software Quality Metrics to a Relational Data Base Sys

tem," Master's Thesis, Virginia Polytechnic Institute, May 1984.

218

N N(est.) Volume Effort McCabe In.Flow

N 1.0 .94 .99 .92 .91 .32

N(est.) 1.0 .94 .81 .84 .20

Volume loU .94 .91 .31

Effort 1.0 .84 .38

McCabe 1.0 .34

In.Flow 1.0

Table 1. UNIX Study (Pearson Correlations)

219

Length Effort McCabe In.Flow Wood. Yau McClure

Length 1.0 .97 .79 .49 .26 .17 .49

Effort 1.0 .87 .39 .26 .24 .43

McCabe 1.0 .15 .24 .24 .26

In.Flow 1.0 .19 - .06 .60

Wood. 1.0 .00 .36

Yau 1.0 .07

McClure 1.0

Table 2. DataBase Management System Study (Pearson Correlations)

220

Length Effort McCabe In.FloW' Wood. Yau McClure

Length 1.0 .95 .81 .26 .04 .33 .26

Effort 1.0 .82 .36 .08 .37 .23

McCabe 1.0 .21 .05 .39 .28

In.FloW' 1.0 .39 .43 .14

Wood. 1.0 - .05 .29

Yau 1.0 .11

McClure 1.0

Table 3. DataBase Management System Study (Spearman Correlations)

221

Length Effort McCabe In.Flow Wood. Yau McClure

Length 1.0 .96 .86 .62 .20 .49 .46

Effort 1.0 .85 .63 .18 .51 .44

McCabe 1.0 .55 .16 .46 .40

In.Flow 1.0 .38 .7: .46

Wood. 1.0 .26 .20

Yau 1.0 .47

McClure 1.0

Table 4. NASA Goddard Study (Spearman Correlations)

222

THE VIEWGRAPH MATERIALS

for the

D. KAFURA PRESENTATION FOLLOW

THE INDEPENDENCE OF SOFTWARE METRICS
TAKEN AT DIFFERENT LIFE-CYCLE STAGES

Dennis Ka/ura
James Canning
Gereddy Reddy

Virginia Polytechnic Institute
B lacks burg, Virginia

223

HYPOTHESES ABOUT SOJTWAR.E METRICS

• Software Systems are c:omplex eDtities with a
number of "independent" dimensions of "com
plexity" •

• Many kinds of -eomplexity" haTe tangible at
tributes whkh (an be quantified (i.e., mea
sured).

224

GOAL

lind a "c:omplete" and "minimal" set of metrks

Complete : all forms of c:omplelxity are measured

Minimal : no redundant metric:s

QUESTION

Are metric:s c:urrently in use "independent" of eac:h other 1

225

APPROACH

• Use automated tools to obtain metrics of real
istic software systems

• Indude a variety of metrics

- code (Halstead,McCabe, etc.)

- structure (information 8ow, McClure)

- hybrid (Yau, Woodfield)

• Study statistical relationship among metrics

226

N N(est.) Volume Effort McCabe In.Flow

N 1.0 .94 .99 .92 .91 .32

N (est.) 1.0 .94 .81 .84 .20

Volume 1.0 .94 .91 .31

Effort 1.0 .84 .38

McCabe 1.0 .34

In.F1ow 1.0

Table 1. UNIX Study (Pearson Correlations)

227

Length Effort McCabe In.Flow Wood. Yau McClure

Length 1.0 .97 .79 .49 .26 .17 .49

Effort 1.0 .87 .39 .26 .24 .43

McCabe 1.0 .15 .24 .24 .26

In.Flow 1.0 .19 - .06 .60

Wood. 1.0 .00 .36

Yau 1.0 .07

McClure 1.0

Table 2. DataBase Management System Study (Pearson Correlations)

228

Length Effort McCabe In.Flow Wood. Yau McClure

Length 1.0 .95 .81 .26 .04 .33 .26

Effort 1.0 .82 .36 .08 .37 .23

McCabe 1.0 .21 .05 .39 .28

In.Flow 1.0 .39 .43 .14

Wood. 1.0 - .05 .29

Yau 1.0 .11

McClure 1.0

Table 3. DataBase Management System Study (Spearman Correlatio~s)

229

Length Effort McCabe In.Flow Wood. Yau McClure

Length 1.0 .96 .86 .62 .20 .49 .46

Effort 1.0 .85 .63 .18 .51 .44

McCabe 1.0 .55 .16 .46 .40

In.Flow 1.0 .38 .71 .46

Wood. 1.0 .26 .20

Yau 1.0 .47

McClure 1.0

Table 4. NASA Goddard Study (Spearman Correlations)

230

PANEL #4

SOFTWARE TOOLS

W. Farr, NSWC
L. Putnam, QSM
D. Levine, Intermetrics

N86-19978
)) I(

AN INTERACTIVE PROGRAM FOR SOFTWARE RELIABILITY MODELING

by

William H. Farr

and

Oliver D. Smith

231

· ' "

ABSTRACT

With the tremendous growth in computer software, the demand has arisen for

producing cost-effective reliable software. Over the last 10 years an area of

research has developed which attempts to address this problem by estimating a

program's current reliability by modeling either the times between error detec

tions or the error counts in past testing periods. This paper describes a new

tool for interactive software reliability analysis using the computer. This

computer program allows the user to perform a complete reliability analysis using

any of eight well-known models appearing in the literature. The paper illus-

trates some of the capabilities of the program by means of an analysis of a set

of simulated error data.

232

INTRODUCTION

SMERFS' GOALS AND DESIGN
MAINTAINABILITY . .

CONTENTS

COMPLETE RELIABILITY ANALYSIS ENVIRONMENT
INTERACTIVE IN NATURE
ERROR DETECTION CAPABILITIES
MACHINE TRANSPORTABILITY

SAMPLE DATA ANALYSIS

SUMMARY

REFERENCES

ILLUSTRATIONS

Figure

1 PROGRAM STRUCTURE

2 PROGRAM MENU

3 DATA INPUT .

4 SUMMARY STATISTICS

5 PLOTS OF RAW DATA

6 SELECTING A MODEL

7 MODEL ESTIMATION PROCEDURES

8 GOODNESS-OF-FIT

9 MODEL FIT OF DATA

10 PLOT OF RESIDUALS

233

1

3
3
4
4
6
6

6

18

19

Page

5

8

9

10

11

13

14

15

16

17

INTRODUCTION

Over the last decade there has been a tremendous growth in the applications

of computer software. Part of this growth has been due to the development of

microprocessors and distributed processing and networking. Every day new and

innovative ideas on how the computer can be applied in business, education,

industry, and government are being proposed. This "computer revolution" has

spurred the dramatic growth in the number, size, and comple~ty of the accompany

ing computer software. In 1977 the costs of just the software to the entire U.S.

economy ranged from 10 to 19 billion dollars (Reference 1).

This increasing role for software has also meant the emergence of the problem

of developing "error-free" programs. For large, complex programs the number of

conceivable logic paths through the code is astronomical, making it impossible to

check every path for correctness. Researchers and practitioners of software

code development have therefore looked for ways of minimizing the chances of error

introduction in the program design and development stages. Various tools and

approaches used to accomplish this include: structured code, "top-down" design,

and the development of a number of automated verification and validation (V&V)

tools for program checkout. Another area of research, which attempts to quantify

the degree to which a section of code is "error-free," is software reliability

estimation. Software reliability is defined as "the probability that a given

software program will operate without failure for a specified time in a specified

environment." A software failure is defined as "any occurrence attributable to

software in which the system did not meet its performance requirements." If one

were to have an idea of a program's current reliability, a more rational judgment

could be made on when that software should be released to the user. Moreover,

knowing the reliability of the various components of a program could aid the

testing team in making determinations for allocations of testing personnel and

time to those sections of the code in which the indicated reliability is low.

234

Over the last 15 years many models and estimation procedures have been pro

posed to quantify a program's reliability. References 2 through 6 are excellent

reviews of the various approaches. The approach that has received the greatest

emphasis in the literature centers upon modeling either the times between error

detections [measured either by elapsed wall clock time or Central Processing Unit

(CPU) time] or the number of errors detected per testing period. In addition to

estimates of a program's reliability, these models usually estimate the total

number of errors in the code and the expected time (or number of errors) until

the next error detection (in the next testing period).

Many of these models

between errors follows an

are either based upon the assumption that the time

Exponential distribution or the number of detected

errors per testing period follows a Poisson distribution. The parameters of these

distributions are taken as functions of up to three unknowns. The unknowns are

estimated using either a maximum likelihood or least squares procedure. The

estimates are then used to estimate the reliability measures of the program. A

major problem with these models is the difficulty in obtaining the estimates.

Many of these models are nonlinear in the unknowns, thus requiring sophisticated

numerical techniques to obtain the estimates. This necessitates the use of the

computer and thus the primary reason for developing an interactive computer pro

gram for software reliability modeling. Different starting points for the numer

ical procedures can be input allowing the user to investigate the optimality of

the achieved estimates. Once the user is satisfied that the appropriate estimates

have been obtained, various reliability estimates are provided along with the

associated precision of the estimates.

The Statistical Modeling and Estimation of Reliability Functions for Software

(SMERFS) program incorporates eight different models; four using as input data the

times between error occurrences and four using the number of detected errors per

testing period. The former include: Littlewood and Verrall's Model (Reference

7), Moranda' s Geometric Model (Reference 8), John Musa' s Execution Time Model

(Reference 9), and an adaptation of Goel's Non-Homogenous Poisson Process (NHPP)

Model to time between error data (Reference 10). The latter models include: the

Generalized Poisson Model (Reference 3), Goel's NHPP Model (Reference 10), Brooks

and Motley's Model (Reference 11), and Norman Schneidewind's Model (Reference 12).

235

These models were chosen from among the many proposed for their performance in

comparative studies and their adaptability to handle data collected from various

testing environments.

In the next section the program's goals are described, along with how the

program has been structured to accomplish these goals. Using a sample data set,

the last section of the paper demonstrates some of the capabilities of the program

by demonstrating how one would perform a reliability analysis.

SMERFS' GOALS AND DESIGN

During the development stage of the SMERFS program, certain goals were esta

blished to increase the benefit of this software reliability program. These goals

touch on both the maintenance and the anticipated use of the program, and can be

summarized as follows:

1. Maintainability,

2. Providing a complete reliability analysis environment,

3. Interactive in nature,

4. Error detection capabilities, and

5. Machine transportability.

MAINTAINABILITY

Software reliability is a relatively new field and therefore subject to

change. Because the field is still growing, the SMERFS code was required to be in

an easily maintained and fully documented state. To satisfy the established goal

for ease in code understanding and alterations, all coding was performed in adher

ence to a Naval Surface Weapons Center (NSWC) publication on structured program

ming standards (Reference 13). This document directs code generation toward

top-down design, indentations around loops and conditionals, and extensive in-line

documentation. Additionally, the document requires that each routine of a program

236

contain prologue information of headings intended to provide routine understand

ing. These headings include: author, purpose, description, restrictions, com

munications (files, globals, and parameters), local glossary, errors, associated

subprograms, references, language, declarations, and formats.

COMPLETE RELIABILITY ANALYSIS ENVIRONMENT

The second established goal addressed the completeness of the obtainable

output from the SMERFS program. Besides the program including the eight models

mentioned in the previous section, additional modules included: data input, data

editing, transformations of the data, general summary statistics of the data,

plots of the originally collected data, plots of the original and predicted values

according to the fitted model, and a goodness-of-fit module to aid in determining

the model adequacy (Figure 1). These various options are illustrated in the

next section when a software reliability analysis is performed.

INTERACTIVE IN NATURE

The SMERFS program is designed to be flexible in execution. The program is

made up of eight main modules (Figure 1). All but one of these modules have

secondary modules or varying modes of execution. Because of the program's flexi

bility, the third established goal was that the program had to be utilized under

an interactive mode. Under this method of execution, the program supplies the

user with various menus and questions and the user inputs a response via the

terminal keyboard. Free-format

potential operational errors.

input of user responses was elected to reduce

This established goal generated other considera-

tions in the program's design. The first was that the user should have complete

control in the direction of the program. Reexecution of modules or omission of

modules is directed solely by user responses. A second consideration was that the

program had to load into a Control Data Corporation (CDC) 6700 computer in a

reduced field length of 60K. This is a restriction imposed upon terminal executed

programs at NSWC. This restriction was challenging to meet due to the massiveness

of the error collection data base and the software package utilized for the graph

generations. To satisfy this load length, the SMERFS program was written utili

zing the CDC OVERLAY capability with one common data results vector and one

temporary storage file.

237

N
u..l
00

GG
• FlU • CHANGE OAT A

• KEYBOARO • ounE DATA
• RnURN TO MAIN • INSUT DATA

• COMBINE OAT A.

• CHANGE FATALITY
(TIME enWEEN)

• UST DATA

• R£TUAN TO MAIN

Non THAo' THERE ARE NO
'RETuRN TO MAIN' OPTIONS

UNOER THOSE MOOULES
WHICH ARE NOT CYCLIC IN
rHEIR (XECUTION

TRANS
FORMATIONS

• lOG (A. X(I)+ 8}

• EX' (A. X(I) + II)
• XA

•)(+ A

• X • A

• RESTORE DATA
• RETURN fa MAIN

STATISTICS

TIME UTWlEN

• MEDIAN

• HINGE

• MINIMAX

• " ENTRIES
• MEAN

• OEVIVAR
• SKW/KR'

ERROR COUNT

WITH EQUAL LENGTHS

• 'OIALS
• MEDIAN

• HINGE

• MIN'MAX

• (1 ENTRIES

• MEAN

• O(VIVAR

• SKW/KRT

_~I.!~ ~~~~~~E.!4~~H~

• TOTALS

• RATIO

• " ENTRIU

• HINGE

• MINIMAX

• MEOIAN

MODULE
MENU

PLOTS
RAW DATA

TIME BETWEEN

• PLOT OF ERROR
OCCURRENCE
(C'UOR WAll
ClOCK) VERSUS
ERROR INDEX

UROR COUNT

• PLOT Of ERROR
COUNTS AND
TES flNG PERIOD
lENGTHS VERSUS
PERIOD INDEX

B I GOODNESS-I
OF-FIT TESTS

TIME BETWUN TIME UTWUN

• LITTLEWOOD AND • UST OF THE
VERRAll'S oesUVED PREDICTED.

• MUSA. S
AND THE RESIDUALS

• GEOMURIC

• NHPP
• RETURN TO MAIN

ERROR COUNT ERROR COUNT

• GENERALIZED • LIST OF THE
POISSON OBSERVED PREDICTED

• NHPP
AND THE RESIDUALS

• BROOKS AND • CHI SQUARE TEST
MOTlEy S

• SCHNEIDEWINO 5

• RETURN TO MAIN

FIGURE 1. PROGRAM STRUCTURE

I PLOTS I
RAW/FinED

TIME BETWEEN

• PlOT Of THE
ORIGINAL AND
PREDICTED DATA
VERSUS ERIOR
INDEX

ERROR COUNT

• PLOT OF THE
ORIGINAL AJ'40
'REDICTED OAT ...
VUSUS PERIOD
INDEX

PLOTS
RESIDUALS

TIME BETWEEN

• PlOT Of THE
RESIDUAlS VERSUS
THE ElROtl INDEX

ERROR COUNT

• PlOT Of THE
RESIDUAlS VERSUS
THI PERIOD IHOiX

END
EXECUTION

• PIOG.AM
TERMINATION

~~

~i
,o~
C:~
>~
r"'ffl

~~

ERROR DETECTION CAPABILITIES

The third established goal was that the program had to have complete error

detection code in ·place. This meant it was designed with the capability to is

sue an informative error message and continue execution in a direction specified

by the user, if either the user input an illegal response to a prompt or the

numerical procedure to find the estimates of the model became unstable.

MACHINE TRANSPORTABILITY

The fifth and final goal addressed the potential for complete machine trans

portability of the code. The code of the software was developed in strict adher

ence to ANSI approved FORTRAN IV statements, with the exception of the following

three areas: the CDC program card of file management, the use of free-format

input, and the use of CDC OVERLAYS. The complete software operates on a CDC 6700

computer with a SCOPE 3.4 operating system. To allow for more machine transport-

ability,

library.

the actual processing code of the software was removed and placed in a

This created library is comprised completely of ANSI approved FORTRAN

statements and therefore almost all facilities can utilize this library through

simple CALL statements. The remaining portion of the program, known as the

"DRIVER," consists of the input and output portions having the non-ANSI approved

FORTRAN statements. Users with different computer systems, therefore, may only

have to alter (or rewrite) this section of the program. However, full use of the

software reliability library can be made.

SAMPLE DATA ANALYSIS

This section illustrates the use of the program in performing a reliability

analysis on a set of data. The data were simulated on a computer and represent

the number of errors detected per testing period. Each testing period was stan

dardized to be one unit of length (1 day, 1 week, 1 month, etc.). The data were

simulated to follow a non-homogenous Poisson process which satisfies the assump

tions of Goel's NHPP Model. Since error count data are used in this example, none

of the features of the program as applied to time between error detections are

illustrated. Also, not all of the options provided by the program are illustrated,

including aspects of data entry, data transformations, model fitting, and error

detection within the program itself.
239

Figure 2 shows the menu that is provided to the user when the program is

first executed. The various module options are listed in the order in which an

analysis would be performed. The first chosen option would be DATA INPUT. The

program then provides a menu showing the various input options (Figure 3). The

program allows a preexisting data file to be entered (FILE INPUT), the data

to be entered via a terminal keyboard (KEYBOARD INPUT), or a combination of both

(FILE INPUT followed by KEYBOARD INPUT). If the KEYBOARD option is chosen, the

program then asks for the type of data to be entered. The various options reflect

the different data requirements of the various models (time between error occur

rences as measured by elapsed wall clock and/or CPU time or error counts per

testing interval). Since our example is error counts, the program prompts the

user for the number of errors detected per period and the length of the period

until the user is finished with data entry. This is indicated to the program with

the entry of any negative numbers for the count and length. The user can then

return to the main menu to pick the next module option.

If an error had been made in the data entry or a software error was subse

quently analyzed not to be a programming error (e.g., an operator error), this

necessitates a change to the error counts. The DATA EDIT option can be used to

accomplish the required modifications. If the data need to be transformed in

some manner, the DATA TRANSFORMATIONS option provides the user with a large selec

tion of available transformations.

The user can next obtain various summary statistics pertaining to the entered

data. These include: the median error count, the mean, the variance and standard

deviation, the skewness and kurtosis measures for the data, and the number of

errors discovered up to this point (Figure 4).

Module option 5 (PLOTS OF THE DATA) can be selected to provide either a plot

of the raw data or a smoothed version of it. Figure 5 shows the plots provided

for the sample data. The top plot is the raw error counts per testing period

plotted against the testing period number. The smaller bottom plot represents

testing period length versus period number. Notice the general downward trend

exhibited by the data in the top plot. This indicates that fewer errors are being

detected as testing progresses, thus indicating increasing reliability of the

program.

240

SMERFS OUTPUT. DATE: 10/04/84 l[MEI 08.51.19.

PLEASE ENTER MODULE OPTION. ZERO FOR LIST=~
THE AVAILABLE MODULE OPTIONS ARE

I DATA INPUT
2 DATA EDIT
3 DATA TRANSFORMATIONS
4 STATISTICS OF THE DATA
5 PLOT IS) OF THE RAW DATA
6 EXECUTION OF THE MODELS
7 COODNESS-OF-FIT TESTS
8 PLOT OF ORICINAL AND PREDICTED DATA
9 PLOT OF RESIDUAL DATA

10 STOP EXECUTION OF SMERFS
PLEASE ENTER MODULE OPT JON: OJ

NOTE: Blocked entries represent user input.

FIGURE 2. PROGRAM MENU

241

PLEASE ENTER INPUT OPTION. ZERO FOR LIST:~
THE AVAILABLE INPUT OPTIONS ARE

I FILE INPUT
2 ~EYBOARD INPUT
3 RETURN TO THE MAIN PROG~

PLEASE ENTER INPUT OPTION=~
PLEASE ENTER ~EYBOARD OPTION, ZERO FOR LIST:~
THE AVAILABLE ~EY80ARD INPUT OPTIONS ARE

1 VALL CLOC~ TIME-BETVEEN-ERROR (WC TBE)
2 CENTRAL PROCESSING UNITS 'CPU) T8E
3 WC T8E AND CPU TBE
4 INTERVAL COUNTS AND LENGTHS
5 RETURN TO THE INPUT ROUTINE

PLEASE ENTER ~EYBOARD INPUT OPTION:[1J
A RESPONSE OF NEGATIVE VALUES FOR THE PROMPT
"PLEASE ENTER ERROR COUNT AND TEST LENGTH: h

WILL STOP PROCESSING

PLEASE ENTER ERROR COUNT AND TEST LENGTH:
PLEASE ENTER ERROR COUNT AND TEST LENGTH:
PLEASE ENTER ERROR COUNT AND TEST LENGTH:
PLEASE ENTER ERROR COUNT AND TEST LENGTH:
PLEASE ENTER ERROR COUNT AND TEST LENGTH:

•
•
•

PLEASE ENTER ERROR COUNT AND TEST LENGTH=
PLEASE ENTER ERROR COUNT AND TEST LENGTH:

9
15
1r
13
9

3
3
3
5

I
I
1
1
1

I
1
1 , PLEASE ENTER ERROR COUNT AND TEST LENGTH=

PLEASE ENTER ERROR COUNT AND TEST LENGTH=
PLEASE ENTER ERROR COUNT AND TEST LENGTH: -I -I

PLEASE ENTER INPUT OPTION. ZERO FOR LIST=[!]

NOTE: Blocked entries represent user input.

FIGURE 3. DATA INPUT

242

PLEASE ENTER MODULE OPTION. ZERO FOR LIST=~
THE AVAILABLE MODULE OPTIONS ARE

I DATA INPUT
2 DATA EDIT
3 DATA TRANSFORMATIONS
4 STATISTICS OF THE DATA
5 PLOTtS) OF THE RAW DATA
6 EXECUTION OF THE MODELS
7 GOODNESS-OF-FIT TESTS
8 PLOT OF ORIGINAL AND PREDICTED DATA
g PLOT OF RESIDUAL DATA

10 STOP EXECUTION OF SMERFS
PLEASE ENTER MODULE OPTION=~

INTERVAL DATA WITH EQUAL LENGTHS
STATISTICS FOR ERROR COUNTS TOTALING TO 189

MEDIAN
HINGE
MINIMAX
• ENTRIES
MEAN
DEV/VAR
S~W/~RT

****'**'***""*""*'****'**'***"'*'* * . 60000000E+01 *
, . 40000000E+01 .90000000(+01 *
, . 20000000E+01 . 1 5000000E+02 * * 28 , * . 67500000E+01 ,
, . 34278273E+01 .11750000E+02 ,
, .53692710E+00 -.45801780E+00 *
""""""""""""""",""""

PLEASE ENTER MODULE OPTION. ZERO FOR LIST=~

NOTE: Blocked entries represent user input.

FIGURE 4. SUMMARY STATISTICS

243

TEST DATA
15

" ,
" 10 " " c .. " " " 0

u
" .. " N

T " " " " 5 " " " " .. ,
0

0 5 10 15 20 25 30
INTERVAL

INTERVAL LENGTH-I MONTH
L 2
E
N " " " , " " " " " " " " " " " .. " " " " G
T
H

0

" 5 10 15 20 25 30
INTERVAL

FIGURE 5. PLOTS OF RAW DATA

244

Module option 6 (EXECUTION OF THE MODELS) is next chosen for the actual model

fitting. As Figure 6 indicates, a menu appropriate to the type of data entered is

provided. The choice for this example execution is to fit the Non-Homogeneous

Poisson Model. If the user desires, a list of the model assumptions and data

requirements is provided to allow the user to make a judgment on the applicability

of the model. If the user decides to continue with the candidate model, the

program will request the nwnber of iterations to be used in the numerical pro

cedure and a starting value for that procedure. If the optimization procedure is

successful, the various reliability estimates and corresponding precision of those

estimates will be provided. In addition, the program will allow the user to

iterate again to investigate the optimality of the derived estimates. In Figure

7, after 2 iterations, the maximum likelihood estimate of the proportionality

constant in the NHPP Model was obtained as .043 with an associated 95% confidence

interval of (.025, .061) and an estimate of the total number of errors residing in

the code being 270 with a 95% confidence interval of (200, 340). The actual

underlying parameters used to generate this data set were .05 and 250. The pro

gram for this particular model will allow the user, if desired, to estimate the

number of errors expected in the next testing period. In this example, for an

additional unit of testing, an additional four errors will be detected. Least

squares estimates are also provided. These estimates (.043 and 269) are very

close to the maximum likelihood ones.

After fitting a candidate model, the user can make a determination of the

adequacy of the model by using options 7 (GOODNESS-OF-FIT TESTS), 8 (PLOT OF ORIG

INAL AND PREDICTED DATA), and 9 (PLOT OF RESIDUAL DATA). Option 7 will perform a

chi-square goodness-of-fit test as well as show a table of observed counts, pre

dicted counts using the model, and the difference between the observed and the

predicted (the residuals). For our example (Figure 8), the value of the chi

square statistic was 25.1 with an associated degrees-of-freedom of 25. If a test

of hypothesis is made that the data set follows the candidate model, using an

a-level of .05, the hypothesis would be accepted. Using option 8, the user can

observe the raw and fitted model together (Figure 9). Option 9 (Figure 10) al

lows a plot of the residuals to aid in discovering any inadequacies in the model.

Based upon the results of options 7 through 9, it appears that the NHPP Model can

be used to estimate the reliability of the given program.

245

PLEASE ENTER MODULE OPTION, ZERO FOR LIST=~
THE AVAILABLE MODULE OPTIONS ARE

I DATA INPUT
2 DATA EDIT
3 DATA TRANSFORMATIONS
~ STATISTICS OF THE DATA
5 PLOT(SI OF THE RAW DATA
6 EXECUTION OF THE MODELS
7 GOODNESS-OF-FIT TESTS
8 PLOT OF ORICINAL AND PREDICTED DATA
9 PLOT OF RESIDUAL DATA

10 STOP EXECUTION OF SMERFS
PLEASE ENTER MODULE OPTION=~

PLEASE ENTER COUNT MODEL OPTION, ZERO FOR LIST=~
THE AVAILA8LE ERROR COUNT MODELS ARE

1 GENERALIZED POISSON MODEL
2 NON-HOMOGENEOUS POISSON MODEL
3 BROOKS AND MOTLEY'S MODEL
4 SCHNEIDEWIND'S MODEL
5 RETURN TO THE MAIN PROC~

PLEASE ENTER MODEL OPTION=UU

NOTE: Blocked entries represent user input.

FIGURE 6. SELECTING A MODEL

246

P~EASE ENTER A 1 FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST
SQUARES, OR A 3 TO TERMINATE MODEL EXECUTION:[O
p~EASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY CONSTANT

fA NUMBER BETWEEN ZERO AND ONE): ~
PLE~SE ENTER THE M~xtMUM NUMBER O~Ail0NS: \\00\

ML MODEL ESTIMATES AFTER 2 ITERATIONS ARE.
PROPORTIONALITY CONSTANT OF THE MODEL IS .431405S3E-01

WITH APP. 95% C.I. OF f .24941S91E-01, .SI339435E-011
THE TOTAL NUMBER OF ERRORS IS .2S95431IE+03

WITH APP. 95% C. I. OF f .199S3048E+03, .33945575E+03)

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
EXPECTED IN THE NEXT TESTING PERIOD; ELSE ZERO=[O

PLEASE ENTER THE PROJECTED LENGTH OF THE TESTING PERIOD: [0
THE EXPECTED NUMBER OF ERRORS IS .34007917E+01

PLEASE ENTER A I FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST
S~UARES, OR A 3 iO lERMINAiE MODEL EXECUiION:UU
PLEASE ENTER AN INITIAL ESTIMATE FOR THE PROPORTIONALITY CONSTANT

fA NUMBER BETWEEN ZERO AND ONE): 10 0431
PLEASE ENTER THE MAXIMUM NUMBER OF ITERATIONS: 11001

LS MODEL ESTIMATES AFTER 2 ITERATIONS ARE:
PROPORTIONALITY CONSTANT OF THE MODEL IS .43315840E-01
THE TOTAL NUMBER OF ERRORS IS .2S890859E+03

PLEASE ENTER 1 FOR AN ESTIMATE OF THE NUMBER OF ERRORS
E~PECTED IN THE NEXT TESTING PERIOD, ELSE ZERO=nn

PLEASE ENTER THE PROJLCTED LENGTH OF THE TESTING PERIOD= [il
THE EXPECTED NUMBER OF ERRORS IS .3389598IE+01

PLEASE ENTER A 1 FOR MAXIMUM LIKELIHOOD, A 2 FOR LEAST
SaUARES, OR A 3 TO TERMINATE MODEL EXECUTION= DU

NOTE: Blocked entries represent user input.

FIGURE~ 7. MODEL ESTIMATION PROCEDURES

247

PLEASE ENTER MODULE OPTION. ZERO FOR LIST:[ZJ

PLEASE ENTER THE CELL COMBINATION FREOUENCY (THE STANDARD ~
IS A FIVE); OR A MINUS I TO INDICATE NO CELL COMBINATIONS: ~

THE CHI-SOUARE STATISTIC IS . 25055379E+02
WITH 25 DECREES-OF-FREEDOM
PLEASE ENTER I TO TRY ANOTHER COMBINATION FREOUENCY; ELSE ZERO=~

PLEASE ENTER \ FOR THE DATA LISTINC; ELSE ZERO:[IJ

NUM8ER ORICINAL DATA PREDICTED DATA RESIDUAL DATA
====== =========:==== =========::=== ==============

1 . 90000000E+01
2 . 15000000E+02
3 . 90000000E+01
4 . 13000000E+02
5 . 90000000E+01
6 . 70000000E+01
7 . 10000000E+02
8 . 60000000E+01
9 . 60000000E+01

10 . I 1 000000E+02
11 . 70000000E+01
12 .40000000E+01
13 .60000000E+01
14 . 30000000E+01
.5 . 90000000E+0'
16 . 11000000E+02
'7 .'0000000E+02
18 . 60000000E+01
19 .20000000E+01
20 . 40000000E+01
21 . 20000000E+01
22 . 70000000E+01
23 . 40000000E+01
24 . 50000000E+01
25 . 30000000E+01
26 . 30000000E+01
27 . 30000000E+01
28 . 50000000E+01

PLEASE ENTER MODULE OPTION.

.11380985£+02 -.23909854E+01

.10900443£+02 . 40995567E+01

.10440'9IE+02 -.14401912E+01

.99993724£+01 . 30006276E+01

.95771664£+01 -.57716642E+00

.91727874£+01 -.21727874E+01

.87854825£+01 .12145175E+01

.84145309£+01 -.24145309E+01

.80592421£+01 -.20592421E+01

.77189547£+01 .32810453£+01

.73930354£+01 -.39303536E+00

. 70808774E+01 -.30808774E+01
67818998£+01 -.78189976E+00

.64955459E+01 -.34955459E+01

.62212829E+01 .27787171E+01

.5958600IE+01 .50413999E+01

.57070087£+01 .42929913E+01

.54660402E+01 . 53395976E+00

.52352463E+01 -.32352463E+01

.50141972E+01 -.10141972E+01

.48024815E+01 -.28024815E+01

.4599705IE+01 .24002949E+01

.44054906E+01 -.40549063E+00

.42194765E+01 .78052349£+00

.40413165E+01 -.10413165£+01

. 38706790E+01 -.87067900£+00

. 37072464E+01 -.70724637E+00

.35507144E+01 . 14492856E+01

ZERO FOR LIST= ~

NOTE: Blocked entries represent user input.

FIGURE 8. GOODNESS-OF-FIT

248

TEST DATA-NHPP NODEl FITTED
15.0~--~--~

c
o

12.5

10.0

U 7.5
N
T

5.0

2.5

o 5 10 15

INTERVAL

, ,

20

FIGURE 9. MODEL FIT OF DATA

249

25 30

RESIDUAL PLOT or NHPP FIT
s

- •
" 4-

..
- ,

2-
C
0
U -
N

, ,
T

0-

.. ,
" ' - , ,

..
-2- ,

- .. ,
* -4 I I I I I I I I I I J I I I I I I I I I I I I I I

0 5 10 15 20 25 30

INTERVAL

FIGURE 10. PLOT OF RESIDUALS

250

If the model was inadequate the user could have tried an alternative model,

and/or transformed the data before fitting the model. The interactive capability

of the program allows the user to dynamically create the best model for the given

set of data.

SUMMARY

With the rapid growth of computer software, researchers have been developing

tools and techniques which will aid in developing reliable software. One such

area has been the estimation of a program's reliability using past error discovery

data. Many different models have been proposed using these data to estimate vari

ous measures of reliability (total number of errors, expected time until the next

error, etc.). These models, however, require sophisticated numerical procedures

to obtain the estimates, necessitating the use of the computer. An interactive

computer program, SMERFS, has been developed which allows the user to enter a set

of data, modify it if necessary, fit an appropriate model, and determine the

adequacy of the fitted model. This tool allows rapid assessment of a program's

reliability during the testing phase. This, in turn, helps in addressing the age

old question, "How do I know when the software should be released?".

251

REFERENCES

1. M. Shooman, "Software ~eliability: Analysis and Prediction," Integrity in

Electronic Flight Control Systems, AGARDograph No. 224, Advisory Group for

Aerospace Research and Development, Part II, p. 7, 1977.

2. L. S. Gephart, C. M. Greenwald, M. M. Hoffman, and D. H. Osterfeld, Soft

ware Reliability: Determination and Prediction, Air Force Flight Dynamics

Laboratory Technical Report, AFFDL-TR-78-UU, June 1978.

3. R. E. Schafer, J. F. Alten, J. E. Angus, and S. E. Emota, Validation of Soft

ware Reliability Models, Rome Air Development Center Technical Report, RADC

TR-79-147, 1979.

4. George J. Shick and Ray W. Wolverton, "An Analysis of Competing Software

Reliability Models," IEEE Transactions on Software Engineering, Vol. SE-4,

No.2, March 1978, pp. 104-120.

5. C. V. Ramamoorthy and F. B. Bastani, "Software Reliability - Status and

Perspectives," IEEE Transactions on Software Engineering, Vol. SE-8, No.4,

July 1982, pp. 354-371.

6. W. H. Farr, A Survey of Software Reliability Modeling and Estimation, Naval

Surface Weapons Center Technical Report, NSWC TR 82-171, June 1983.

7. B. Littlewood and J. Verrall, "A Bayesian Reliability Growth Model for Com

puter Software," The Journal of the Royal Statistical Society, Series C,

Vol. 22, No.3, 1973, pp. 332-346.

8. P. Moranda, "Predictions of Software Reliability During Debugging," 1975

Proceedings of the Annual Reliability and Maintainability Symposium, Washing

ton, DC, 1975.

9. J. Musa, "A Theory of Software Reliability and Its Applications," IEEE Trans

actions on Software Engineering, Vol. SE-1, No.3, September 1975, pp. 312-
327.

252

REFERENCES (Cont.)

10. A. Goel and K. Okumoto, "Time-Dependent Error-Detection Rate Model for Soft

ware Reliability and Other Performance Measures," IEEE Transactions on Re

liability, Vol. R-28, No.3, August 1979, pp. 206-211.

11. W. D. Brooks and R. W. Motley, Analysis of Discrete Software Reliability

Models, Rome Air Development Center Technical Report, RADC-TR-80-84, April

1980.

12. N. F. Schneidewind, "Analysis of Error Processes in Computer Software,"

Sigslan Not., Vol. 10, No.6, 1975, pp. 337-346.

13. R. T. Bevan and J. H. Reynolds, Computer Programming and Coding Standards for

the FORTRAN and SIMSCR1PT 1I.5 Programming Languages, Naval Surface Weapons

Center Technical Report, NSWC TR-3878, December 1981.

253

THE VIEWGRAPH MATERIALS

for the

W. FARR PRESENTATION FOLLOW

AEI3c.13

tv
VI
~

AN INTERACTIVE PROGRAM FOR
SOFTWARE RELIABILITY MODELING

WILLIAM FARR - NSWC

OLIVER SMITH - EG&G

2 0
:2

-I
-

t!J
<C

-en

I
-

w

2
c

en
-

LJ.J
C

en

en
:2

>

-
-
-
I

LJ.J
<C

<C

C

l:
en

2
:

c..
...J

<C

u

..
<C

<C

en

0
0

t!J
t
-

2
:

<C

0
LJ.J

:?!
c

-en
2

<C

w

:::J
-

c:
-
-
I

-
-
I

....J
t!J

c..
c:..,:)

I
-

0
:?!

2
:

::::l
c:

<C

0
0

c..
en

c:..,:)

255

AEGB.G PROGRAM GOALS AND DESIGN

N
Ul
0'\

MAINTAINABILITY
- STATE-OF-THE-ART PROGRAMMING CONVENTIONS AND STRUCTURES

COMPLETE RELIABILITY ANALYSIS
- INTERACTIVE IN EXECUTION WITH ERROR DETECTION AND CORRECTION

MACHINE TRANSPORTABILITY
- DRIVER - CONTAINING 1/0

- LIBRARY - CONTAINING COMPUTATIONS

257

AEGB.G

IV
VI
00

MODULE MENU

DATA INPUT

DATA EDIT

DATA TRANSFORMATIONS

STATISTICS OF THE DATA

PLOT(S) OF THE RAW DATA

EXECUTION OF THE MODELS

GOODNESS-OF-FIT TESTS

PLOT OF ORIGINAL AND PREDICTED DATA

PLOT OF RESIDUAL DATA

AEGgG

IV
VI
\0

INPUT MODULE

TYPES OF INPUT
FILE
KEYBOARD

TYPES OF DATA
TIME BETWEEN ERROR

WALL CLOCK UNITS (24 HRJ
CPU

ERROR COUNTS
ERROR COUNTS PER TESTING PERIOD
TESTING PERIOD LENGTHS

AEGt:.G

IV

~

MODELS MODULE

TIME BETWEEN ERROR MODELS
L1TIlEWOOD AND VERRAll'S BAYESIAN MODEL

MUSA'S EXECUTION· TIME MODEL

GEOMETRIC MODEL

NON-HOMOGENEOUS POISSON EXECUTION TIME MODEL

ERROR COUNT MODELS
GENERALIZED POISSON MODEL

NON-HOMOGENEOUS POISSON INTERVAL DATA MODEL

BROOKS AND MOTLEY'S DISCRETE MODEL

SCHNEIDEWIND'S MAXIMUM LIKELIHOOD MODEL

n

-C

AEGs.G RESULTS OF THE NHPP MODEL FIT

N
0\

TOTAL NUMBER OF ERRORS

PROPORTIONALITY CONSTANT

PREDICTED NUMBER OF ERRORS
IN THE NEXT PERIOD

MAXIMUM LIKELIHOOD LEAST SQUARES

269.5 (199.6,339.5)

0.043 (0.025, 0.061)

3.4

268.9

0.043

3.4

r
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~

c:::t
......

I
-

L
U

c:::c

0
c

0

s:
~

<C

0
c:t

a
:

LJ.J
~

....I

t
-

c:t
~

L
L

l
-

e
a:::
w

0
-

t
-

t
-

L
L

en

~

L
J.J

l
-

t
-

0
0

;
2

......
c..

c::(

~

-

262

C
I)

-C
I)

~

<
C

Z

c::(

Z

>
-

C
!:)

C
I).r

-
C

I--

C
I)

2
-

w

W

.....I
C

I--

-
0

co
:2

-

<
C

Z

w

C

I)

-
-

::2E
.....I

::::J
w

>-

:::l

--J

c
:

I--
c...l

U

-
0

w

c
:

2
tLi

<
C

C

0

.....I

>-
.....I

:::l
U

c..

......
c

......
::2E

0
:::l

0
~

u
..

c...l

--
263

'\

In
explained
equation.

N86-19979 '1>1"-
ASSESSING THE PROFICIENCY OF SOFTWARE

DEVELOPERS

by

Lawrence H. Putnam
Douglas T~ Putnam
Lauren P. Thayer

the mid 1970's Lawrence Putnam
the behavior of software systems.
It is written in the form:

developed a equation that
He called it the software

S5 = Ck x K1/3 x Td 4 / 3 • Subject to K/Td 3 S G

Notice that there are only four terms in the basic equation. The
components are defined as:

5s - The total number of DDE5LOC ••
Ck - An overall efficiency-complexity measure
K - Total Ufe-cycle effort
Td - The development time
G - maximum manpower acceleration possible

for a class of system

Thus, a given product can be developed in Td amount of time, for K
amount of effort, at C

k
efficiency level.

The software equation can be thought of as a powerful trade-off
law. A given product developed in a fixed environment, could be
developed with many different time-effort combinations, all of which
would satisfy the equation. However, because of the time and effort
exponents, the equation gives dramatic results. With these exponents
small changes in time produce substantial changes in effort. In
practical use the software equation has demostrated it can be a high
leverage software management function.

Over the past 5 years we have analysed data from over 2000
software projects. Our intention was to independently validate the
software equation. Of those 2000 projects some 80) had complete data
and have been entered into our database. With this data we have been
able to prove that the exponents are very close to the true behavior.

.. DDESLOC is the notation use for Delivered, Developed, Executable,
Source Unes of Code.

(C) Copyright by Quantitative Software Management. Inc. April 1984

264

In late 1982 we established regression trend lines for our
database. Regression lines were developed for the measures listed
below.

Productivity (Ss/MM) vs DDESLOC
Schedule vs DDESLOC
Effort vs DDESLOC
Average Manpower (MM/MOS) vs DDESLOC

In the initial analysis we observed clusterings in the values of
Ck. The cluster patterns were related to application type. It was
thought that the trend lines might be correlated to Ck. Each
application type should have it's own family of trend lines that would
shift up or down according to the range of Ck values present.

By mid 1983 the database was large enough to stratify according to
application type. The major categories identifed were:

Real time Embedded systems
Avionics systems
Management Information systems
Scienti fic systems
Command and Control systems
Systems software
Microcode and Firmware systems

The curve fitting exercise confirmed our thoughts. The trend lines did
shift. Micro-code and firmware were located at the low end of the
spectrum. This software had low values for Ck, low productivity, took
a long time, was quite expensive and demanded more people relative to
similar sized projects. The MIS application were at the high end of
the spectrum. These systems had high values for Ck, high productivity,
shorter schedules, were less expensive and used fewer people relative
to their size.

Variability around the average trend lines was still a concern.
Could the software equation explain that variability? There is a ratio
that effectively measures the application of effort over time. This
measure is called the Manpower Buildup Gradient. It is defined as
K/Td'"3. It discloses the style of the software development
organization. High values (generally larger than 20) are present when
parallel effort is possible and management is willing to commit what
ever resources are necessary to get a system built fast. Low values
are more typical of sequential efforts (design intensive processes) or
a management constrainted situation (limited available manpower).

New data was analyzed using the new trend lines as a basis for
comparison. We found that it told a consistent and unambigious story.
The typical behavior pattern for systems with a steep manpower buildup
rate is: modest schedule compression, lower productivity (Ss/MM),
higher average code production (Ss/Mos), requiring more effort and more
people. Conversely, systems with a gradual manpower buildup rate had
slightly longer schedules, much higher productivit), lower average code

265

production rates, requiring less effort and fewer people.

CASE STUDY (A Major Computer Vendor)

An independent data set from a major U.S. computer manufacturer
illustrates these points. The systems used in this analysis come from
a manufacturing facility dedicated to building smart IBM compatible
mainframe terminals. The software that drives the most recent family
of terminals is written primarily in C language with a small portion of
assembly code. The primary system functions are diagnostics, memory
management, and communication. This family of products has a limited
market share. The costs associated with product development are high
but can be recovered along with a profit if the manufacturer can
deliver the product within a narrow market window. The software is the
guts of the product and therefore critically important. Company
management is willing to dedicate large software development staffs to
get whatever schedule compression is needed to meet the market demands
(regardless of whether the schedule is realistic or not).

The data from three systems developed recently at this plant is
summarized in the top portion of Table 1. Notice that two systems are
RAM based. Due to a hardware constraint the third system had to be
written so that it could reside in ROM. The unique problems present on
the ROM development include severely limited memory and very high
performance specifications. High quality was essential on the ROM
system because it involved a manufacturing process and would be costly
to replace once it was in the field.

The bottom portion of Table 1 summarizes important calculations
made on the input data. The column titled Productivity Index uses a
linear sequence of numbers that relate to the actual Ck values in
parenthesis. likewise the Manpower Buildup Index corresponds to the
Manpower Buildup Gradient values in parenthesis. Notice that there is
a big difference between the Ck values of the RAM and ROM based
systems.

The Manpower Buildup Gradient for all three systems are high. The
value calculated from RAM 112 is more than double that of RAM Ill.
According to the software trade-off law there should be a noticable
difference between the two systems for the time and effort required to
complete these projects. The other measures summarized in Table 1 are
dependent on system size. Taken out of . this context they are not
meaningful. However, if we compare them against a baseline for their
own size and application then they will be meaningful.

GRAPHICAL ANALYSIS (QSM System Software Database)

Figure 1 is a frequency graph of the Manpower Buildup Index for
the three systems. Two observations can be made from this chart. The
development style of this company is to staff up quickly and use alot

266

by the market
The RAM based

of people. This management practice can be explained
environment. A second observation is worthy of notice.
systems have different manpower buildup index measures.
RAM III calculates a 3. RAM 112 calculates a 4.
trade-off decisions that produced these systems should
of time and effort according to the software equation.

The data from
The management

show exchanges

Figure 2 show the distribution of Ck. The graph utilizes an index
whic}l the Ck values fall within. It is immediately obvious that there
is a big difference between the two types of software implementations.
The difference can not be attributed to the function that the software
performs. They are quite similar. Rather, it is in the way the code
has to be designed and written for the particular implementation which
is quite different. The ROM software is more difficult because it
requires designing tricky code overlays to meet memory restriction and
needs constant performance tuning. It must be bug free before it is
burned into ROM. RAM 112 has a higher Ck than RAM Ill. With a higher Ck
RAM 112 utilized less overall effort. The higher efficency of RAM 112
will counteract the nonlinear effort increase attributed to the steeper
Manpower Buildup Rate that RAM 112 had.

In Figure 3, the data is superimposed on the average manpower
trend lines for the System software database. Notice that the scales
are logrithmic. The log scales turn the non-linear trends into
straight lines. The absissa (X axis) represents the total number of
Delivered Developed Executable Source Lines of Code. The ordinate (y
axis) is the average number of people (MM!T d). There are three trend
lines drawn on the graph. The middle line is the best regression fit
for all the data contained in the Systems software' database. The high
and low lines are the plus and minus one standard deviation bounds.
Each cross represents the calculated average manpower plotted at the
reported size.

The ROM system required significantly more people than other
comparably sized systems software projects. On the other hand, the RAM
based systems are very economic in their use of manpower compared to
the industry average for their size. In a relative sense RAM III has a
lower manpower utilization compared to RAM 112. This can be attributed
to the more gradual manpower buildup rate.

Figure 4 is a similar portrayal of the database. In this case we
will compare Total Manmonths against the system size. Since manmonths
are proportional to cost, this graph compares these systems for cost
effectiveness. The ROM system is significantly more expensive. The
RAM systems are well below the industry average. RAM HI appears to be
a little less expensive compared to RAM 112.

Figure 5 compares the data against the productivity trend lines.
The ROM system is close to two standard deviations lower than the
average for that sized project. The RAM based systems again are better
than the industry average. Notice that RAM III has a better relative
postion compared to it's size.

Figure 6 starts to disclose the trade-off situation. This figure
compares the data against the trend lines for average project

267

duration. It is no surprise that the ROM system took signi ficantly
longer than the average. The RAM systems are interesting. RAM 112 is
somewhat shorter than the average. In constrast RAM III is a little
longer than the average. The pattern seems to coming together. RAM 112
as you recall had the steeper manpower buildup rate. The objective
must have been to get the system built fast. The sy,stem was built in a
shorter time but in a relative sense it required a lot more effort and
people. The difference would be more pronounced if the values of Ck
were the same. The non-linearities present in software equation are
still powerful enough counteract the lower efficency of RAM Ill.

The pattern continues in Figure 7. The ROM system is again below
the industry average. The Ck for the ROM system was' well below the
Systems software average and explains why it compares in such a
unfavorable way. RAM 112 experienced a rapid manpower buildup and
therefore had a higher code production rate. RAM III had a more gradual
manpower buildup and a lower relative code production rate.

CONCLUSION

The trend lines presented in this paper can be useful in a number
of ways. They provide a baseline of comparision from which software
developers can compare their performance against a large database of
similar projects. This will often identify a, organizational style. In
this case study it was possible to quantify the organizational style
using the Manpower Buildup Gradient. Additionally we were able to show
that the developer was a better than average producer on RAM based
systems. The Ck associated with the ROM system suggests that it is a
different class of work. When this system is compared against the
Firmware database it is very creditable.

It is important to recognize that there are non-Iinearities
present in the software process. The non-linearities are tied to
system size. For comparative purposes we must always make judgements
based on similar sizes. In the past the tendency has been to calculate
a few ratios on several projects and then compare them without any
regard to amount of functonality that was created. This practice can
be very misleading and dangerous. The method describe in this paper
used in a thoughtful analytic manner can be very helpful.

There are some problems associated with curve fitting that should
be pointed out. With the non-linearities present in software, small
data sets will often produce wide variations in slope. Any effort (MM)
dependent ratios are particularly troublesome. Productivity has
consistently proven to be the most sensitive. Of all fits on
productivity (Ss/MM) that we have made we have never been able to get a
r squared value better than (.02). The nonlinearities in the terms
productivity is composed of are responsible for this. To work around
this situation we have chosen to combine a theoretical slope tuned by
the actual data.

268

It is possible to extend this approach. The present plans include
providing for a reliability comparision. Right now the error database
is not Jarge enough to get totally reJiabJe statistics but before too
long we hope to establish those trend lines as well. The database will
be analyzed to determine the improvement that is being made in each of
the application areas over time. Some preliminary work in this area
has been done and it Jooks very promising.

269

N
-...l o

(, t C", rt":~\'1

H~"l[-:

F:t:I:'.t!'1 ::::nFTl·jHF~E ~ 1

;;'HI"I SC1FTW?,F::? #:'

r'C11" ~30F T l,J(\F:[~~ 1

~:; ' :~ T E:-I-l
iJt-WiE

~'11j"'l ' "."!f- Tvi.~RE ~t 1

F,' ,~l j .. j .-~IJ;:' HI;\F,E H:'

f~lli-1 SClI::.-nJAPE # 1

f)I/[-

ISS)

~::~(\(ll:1

.. l C7 (-~I-Jl)

1 '1 (":It:'

r'R(JDl Ie r I 'v' T T ~
INDE,'.

- ,- ---- -~\,{--

C HL (f:F,t; n::: I 1'Jr-'U r ~lli'1t'l'~ll"\ 'y

r 1 r'fL
(1,-10:-.1(3 !

- ~ -- - --

::40 f)

J .:'" t:,

l L.l. t:.

EFFORT
(t°1t1)

---- ----

869

1 ':'-=-

l78

f-WF'L I Lt:l r I UN

TYF'E:

S'y 5 fEl"l S(JF H-J,-)F:E

S y STF't'f S'-,F n·lt-\f,'F

':'n' ~-:) 1 E 1"1 ~3(JI" r W 1:'1 -:r-

I It-,j ,I(It ,t. i'IE-- 1'1 r i"1f'TR I C S

MANPOWER PRODUCTTVIfV
BU t LDLJP (SS 11"11"1)

INDEX G

F'EI:I~

i"i?-INF'("JWf:."
(F'E:DF'I_E J

I~T (15,976) -' (23)

(53)

(39)

2,";'4 :),!)

f,·f (20,348)

'3 (2,100)

4

-'

Table 1

374 1 CJ

79 1 7

" ::'E :-'f-\ r r (JI'~ tiL
DtITt:

(~I.J(:, ,.'elDF:

FF,[I[-U"J r IiJN

F'f-l rE ',SS/i11])

Lj54 ~

-FiB'-'

875

.!il ~

~J
~i
~CiJ

LJ
Ul
([
(D
([

r ([

[
t
~

o Q
>

Z

L
J

W
Q

>

 (L

[t:J

W
Q

r
~

:J
H

(L

:J

~
(
D

o U
(J

Z

H

LL
LL
C

[

r Ul

lalI~..l~d I...la"

l
a
l
l
~
.
.
I
~
d

lall~..l~d
I.lal~..Iapow

.-
a
l
~
.
.
l
a
p
o
w

=-z ~

IV
!luanba$ I.llSapow

I
~
J
l
u
a
n
b
a
S
 I...la"

I
I

I

(\J

271

-

IJ1

N

><
=-=

~

U
J

Q

2
:

z:
;§

-0
..

:::;)
Q

-
J

U
J

-
0

::
:::;)

S
a
l

-
.-=-

(T
)

tD

1.1-
Z

-
z

1.1-

~

1.1-

~

(,/)

(\J

-

1

--<

(Bt>£O
Z =

 'IJ
)

Z
I W

W

(9L
6S

l =
 'IJ

)
l. W

W

~VIU..:JOS W
31S.\S

-
39W

3A
V

 A
H

lS
O

O
N

I
..

(O
O

lZ
 =

 'IJ
)

"
W

OH

I

I
I

I
I

(T
)

C
\J

272

2
2

I-

0
2

 ffi - u - I.i.. I.i..
8

1

U
J

U
J

0::

i
9

1

v
I

21

0
1

8
I
-Z

L.U

- u
9 - LA-LA-

L.U

V
')

V
')

V

U
J

....I

2

><
U

J
C

Z

-
N

>-
I
-

U
J

-
0::

>

~

- I
-

-
U

I.i..

::;)
c 0 0::
0

-

W
.-J
CL
0
W
CL

N
=#=

....J
\.oJ

W
LJ
IT:
~
W
>
([

SYSTEM SF TN RVERRGE # OF PEOPLE
Vs. ss

>
~
~

10000= r--,,~ ---
- foo'ore People

t
1000= ---

I
Fewer People

100= ---

10= ---

I I I I I I II
--0 DJ CSl

--0 CSl
--0

Ss (X

I I I I-I I II T I
CSl
CSl
CSl
.-.

1000) DDESlOC

FIGURE 3

~
~ -

I I I I I II

+

>
II)
~

~
~
~ -,

CSl
CSl
(SJ
(SJ
.-.

:L
:L

IV ~
-...) cr::
""'" r-

0
r-

SYSTEM SFTH TOTRL MRNMONTHS
VS. Ss

>
+1 ~td dey ~

r---~~~=-~~~7r---:?7~--~7~~1~ 100000=
~I Hore Expensive

t
-I

10000= -
J --

- less Expensive

1000=
--

100= --

10- ~~ -

I I I I I I r I II I - CSl -
Ss

I I I I I II I I I I IfIl-
CSl CSl
CSl CSl - CSl -

(X 1000) DDESlOC

FIGURE 4

I

..
~ -I

I I 1\ III
(S)
(S)
(S)

CSl
......

.,.........

~
~

'" V')
lf1
'-/

>-
tv

~
-....I
VI ~

>
H

r-
U
:=J
~
0
rx:
[L

SYSTEM SFTN PRODUCTIVITY

10000

1000=

100=1 Higher
Producti vi ty

10=

t

J
lower
Productivity

VSD Ss

RAM 112
(49800, 374)

+
ROM '1

(14000. 79)

>
G)
."

."
co

>
G)

'"0

'"0
co

1-
...

I I
~--~--~~~~~----~~~~.~.~.~.~.~.~.----~~~.~.~.~. ~'~"----~--~~I~I~I~I~I~II --

I I I " " I I I I I I I I II I I I I /I /I
....... ~ ~

....... ~
.......

Ss (X 1000)
FIGURE 5

~
~
~
.......

DDESlOC

~
~
~
~
.......

,.........

(I)

0
L
'-../

Z
IV

0 -...I
0'1

H

f--
CL
CK:
:=J
Q

SYSTEM SFTH

10000=
~I longer Schedule

t
1000= -- , -

- Shorter Schedule

100=
--

ROM '1
(14000.16)

+
10=

--

I-I I I I I I III I
--' (S)

--'

PROJECT DURRTION CMos)
VS. Ss

RAM '1
(229000. 24)

I I I I I II I I I I I III I
(S) (S)
(S) CSl
--' CSl

--'

I I I I I II

>
IU

-0

-0
+'
~ -+

>
IU

'"D

'"D
+'
~ -I

(S)

CSl
CSl
CSl
--'

Ss (X 1 0 0 0) DDESlOC

FIGURE 6

N
-....I
-....I

f'.

o
L
"'
(/)

(J)
"-/

z
0
H

f-
U
=-"J
Q
0
~
(L

W
~
0
U

SYSTEM SFTH - CODE PRODUCTION
VS. ss

1000000=,~--~
Higher Average
Code Production Rate

t
100000=

J
10000= Lower Average

Code Production Rate

1000=

100-I I I I I I III I (S)
......

Ss

I I I I III I I I I I III
CSl (S)
(S) (S)
...... (S)

(X 1(00) DDESLOC

FIGURE 7

I

>
CD

"'0

"'0
~ -

I I I I I II

+

>
CD

"'0

"0
~ -I

(S)
(S)
(S)
(S)

THE VIEWGRAPH MATERIALS

for the

L. PUTNAM PRESENTATION FOLLOW

MEASURING THE PROFICIENCY

AND THE STYLE

OF
SOFTWARE DEVELOPERS

Lawrence H. Putnam
Quantitative Software Management, Inc.

1 057 Waverl~y Way
McLean, Virginio 22101

(703) 790-0055

278

EVALUATION MEASURES TO
DETERMINE REAL PRODUCTIVITY IN

SOFTWARE DEVELOPMENT.

279

DEVELOPMENT ENVIRONMENT MEASURE

lNCLUDES:

Management
Methodologies
Techniques
Computer based aids
Experience
Machine service
Type of application

SIMPLE SCALE

1, 2, 3, 11, 12, 18, 19, 20, 21

Special
systems

Telecom,.
Systems
Software

280

Advanced
Commercial

S
'J
S
T
E
M
S

QSM SOFTWARE DATA BASE
(AS OF JAN 84)

PRODUCTIVITY INDEX

281

A MEASURE OF STYLE -
THE MANPOWER BUILDUP INDEX

A SIMPLE SCALE BUILD UP
RATE

1 Slow

2 Mod. slow

3 Moderate

4 Rapid

5 Very rapid

6 Extremely rapid

282

PROBLEM
lYPE

Sequential
All new design

Mod. Seq.
Mostly new design

Mod. parallel
Some new design

Parallel
Uttle new design

Very parallel
Almost no new design

Totally parallel
No new design

s
y
S
T
E
M
S

QSM SOFTWARE DATA BASE
(AS OF JAN 84)

__ ------------------------~00
159

MANPOWER BUILDUP INDE~

283

SOME DATA-BASED MEASURES

* AVERAGE MANPOWER vs. SIZE
* EFFORT vs. SIZE
* DURATION vs. SIZE
* AVERAGE CODE PRODUCTION RATE'

vs. SIZE
* AVERAGE PRODUCTIVITY vs. SIZE

284

,...
L
t-

It

" o:-r ~ -
1-....
LU
-I
0-
0

y

·1
L&J 10 _
0- .
I.&..

~O

:1
VI

Cl!
LU

~
=:l
:z t_ .

~
~

a:

"" ~ q.
.1 _

AVERAGE NUMBER OF PE~PLE VS DSLOC
+a

t

... ...
tt -a

...
I

++

T ... 1- f 1- h 1"',"'" 't-T.,. U'.JY 't

JY 1'V ... T+ ... V t

... T /1" .Yr't_ ' .. /.

//";;V- +:";
't ... LEOST S~UARES BEST fIT ~. 't +.

/~ y = .01'17511 PC t. 0067611

R = .803R6a

111111 111111 111111 111111 111111 11111('-
X

10 100 " 10(100(I" 1M
o

DSLDC IUl.Y./l:i I S Oll~· ·/u ·(JII

CALIBRATE INPUT SUMMARY

SYSTEM SIZE tIME EfFORT APPLI CAtI ON OPERATIONAL
NAME (SS) (MOS) (MM) TYPE DATE

---------------- -----------
CIMSA4 19849 19.9 38 REAL TIME 9383
CIMSA5 11999 12.9 18 COMMAND AHJ) CONTROL 0383
CIMSA6 12294 12.9 22 COHMAHJ) AN» CONTROL 9383
CIMSA7 13998 12.9 31 COMMAND Ali» CONTROL, 9383
CIMSA8 17824 22.8 34 REAL TIME 9383
CIMSA9 36999 24.9 76 COMMAND AN» CONTROL 9383

MAHACOOHT HETRI CS

SYSTEM PRODUCTIUIty MAHPOWD PRODUCTIUIty AUG AUG CODE
NAME UfDEX BUILDUP (sSIHM) MANPOWER PRODUCTION

INDEX (IWHO) RATE (SSIMO)
------------ --------- ------------ -------- ------------

CIMSA4 5 1 285 2 571
CIMSA5 9 1 611 2 917
CIMSA6 9 2 559 2 1025
CIMSA7 9 2 419 3 1083
CIMSA8 7 1 591 2 774
CIMSA9 9 1 486 3 IS38

286

FRENCH DEFENSE CONTRACTOR
SOFTWARE DATA BASE

PROJ)lJCTIUITY INJ>EX

OS" SOFTWARE DATA BASE
CAS OF .JAN 84)

PROJ>UCTJUITY IHJ>EX

287

I

I

'MENcH DEFENSE CONTRACTOR
SOFTWARE J>ATA BASE

..,.HPOWER BUI LJ>UP I HJ>EX

OS" SOFTWARE DATA BASE
CAS OF .JAN 84)

..,.HPOWElI BUILJ>UP IHDEX

PRODUCTJUrTY
Co~d a Control SysteMs

r-----------------------------.~eeelil

i -=::::---..:111... + ---- --/ ---=::::--------- ---a -------::-----------.:

1

Is)(leee
- H STI) I)E\! - AUERAGE - -1 srI) I)E\!

DURArJOH
Co~d a Control SysteMs

UJIII

1111

~----------------------------~'eea

ProM
COMMAnd a Control SysteMs

Ss)(1880
-.1 srI) I)E\! -AUERAGE --1 srI) I)E\!

288

AVERACE MANPOWER
COMMand a Control SysteMS

r-------------------------~~~~~lQ9

Is X 1988
-.~ srI) I>EU -AUEMGE - -~ srI) I>EU

Ss)(1999
-.1 srI) I)EU - AUERAGE - -~ STI) I)EU

CALIBRATE INPUT SUMMARY

SYSTEM SIZE TIME EFFORT APPLICATION OPERATIONAL
NAME (55) (MOS) (MM) TYPE DATE

------ ------ ------ ---------------- -----------

JAPAN VENDOR 1 390000 24.0 1003 BUSINESS 0879

JAPAN VENDOR 1 224000 16.0 472 BUSINESS 0881

JAPAN VENDOR 2 400000 18.0 1324 BUSINESS 0381

PARTS NUMBER 108000 21.0 25 BUSINESS 0182

RFM 100000 21.0 48 BUSINESS 1082

MATERIALS M6MT 700000 38.0 384 BUSINESS 0183

MANAGEMENT METRICS

SYSTEM PRODUCTIVITY MANPOWER PRODUCTIVITY AV6 AV6 CODE
NAME INDEX BUILDUP (SS/MM) MANPOWER PRODUCTION

INDEX (MMIMO) RATE (SS/MO)
------ ------------ --------- ------------ -------- ------------

JAPAN VENDOR 1 16 ~ 389 42 16250

JAPAN VENDOR 1 17 3 475 30 14000

JAPAN VENDOR 2 17 5 302 74 22222

PARTS NUMBER 16 1 4320 1 5143

RFM 15 1 2083 2 4762

MATERIALS M6MT 17 1 1823 10 19421

289

PROI)UCTIUITY
Bu.ln ••• SII.t

;-~-_~_~ __ -__ --------------------------~19gee

! -~~-::=-->
A

1

s. x 1808
-'1 SYI) I)E'-' - AUERAGE - -1 SYI) I)EU

I>URATJOH
Bu.lne •• SII.t

ute

111

r-----------------------------------~1888

S5 x 1808
-'1 SYI) I)EV - AVERAGE - -1 SYI) I)EU

IUFOR1
Bu.lne •• Sy.t.~.

r-------------------~r_~--~__rI8888

Uta

S5 x 1999
-'1 SYI) I)EV -AUKRACE --1 STJ) J)EU

290

a
/

" i

AUERACE MANPONER
Bu.ln ••• SII.t

S5 x 1998
- +1 srI) I)EU - AVERAGE - -1 SYI) I)Ii'\I

AUC CODE PRODUCTION RATE
Bu.ln ••• SII.t

~_---- _A 100000

i _~-+-:.::-------:.:--..J
___ --"---::-----:---- tl0900

/ ------<---~---- ~

I~ !:::-
1

1

S5 x 1999
- +1 $1'1) I)EV - AVERAGE - -1 SYI) I)Ii'\I

BUsrHESS SVSTDfS
SOFTWARE DATA BASE

PROPUCTJUJTY JNPE)!

OSM SOFTWARE DArA !MSE
(AS or .JAN 84)

PROPUCTJUJTY JNPJP(

291

I

BUSINESS SVSTEMS
SOFTWARE DATA BASE

MANPOWER BU J LPUP J NJ)EX

OSM SOFTWARE DATA BASE
(AS OF JAN 84)

MNPOWER IlUJLllUP JNPEX

CALIBRATE INPUT SUMMARY - -

SYSTEM SIZE TIME EFFORT APPLICATION OPERATIONAL
NAME (SS) (MOS) (MM) TYPE DATE

------ ------ ------ ---------------- -----------

DIGITAL SWITCH 46900 15.0 270 TELECOM&MSG SWITCH 0283

0700 SWITCH 210000 26.0 2185 TELECOM&MSG SWITCH 0883

US SWITCH 308000 27.0 3860 TELECOM&MSG SWITCH 0682

~ANAGEMENT METRICS

SYSTEM PRODUCTIVITY MANPOWER PRODUCTIVITY AV6 AVG CODE
NAME INDEX BUILDUP (SS/MM) MANPOWER PRODUCTION

INDEX (MM/MO) RATE (SS/MO)
------ ------------ --------- ------------ -------- ------------

DIGITAL SWITCH 11 3 174 18 3127

0700 SWITCH 12 4 96 84 8077

US SWITCH 12 4 80 143 11407

292

PROI>UC1'JUITY
TelecoM SYSt .. MS

~--------------------------------~~9999

~

55)(~988
- H STI> I>EU - AUERAGE - -~ STI> I>EV

DURATION
TeleoOM SysteMs

r-------__________________________ --y1999

1

55 .. 1999
-.~ STI> I>EU -AUERAGE --1 STI> I>EV

IlY'ORT
TelecoM SysteMs

r-------------------~_?--~----_.19998

1988

1\1

55)(1988
-.1 STD DEU - AUERAGE - -1 STD DEV

293

AUERACE MANPOWER
TeleCOM SYsteMs

55)(1999
-.1 STI> DEV - AUERAGE - -1 STI> I>EV

1 1

--.1 STI> I>EU ~A{1EA:~: - -1 STI> I>EU

TELECOM SYSTEMS
SOFTWARE DATA BASE

FRODUCTJUJTY JHDEX

OSM SOFTWARE DATA BASE
(AS OF JAN 84)

PJlOOOCT J U ITY J HDEX

294

I

TELECOM SYSTEMS
SOFTWARE DATA BASE

.----------------------------------,4

HAHPOWER BU J LOOP J HDEX

OSH SOFTWARE DATA BASE
(AS OF JAN 84)

IT IS POSSIBLE TO MEASURE REAL
PRODUCTIVITY IN SOFTWARE

- THE MEASURES ARE:

* AVERAGE MANPOWER vs. SIZE
* EFFORT vs. SIZE
* DURATION vs. SIZE
* AVERAGE CODE PRODUCTION RATE

vs. SIZE
* AVERAGE PRODUCTIVITY vs. SIZE
* SOFTWARE EFFICIENCY INDEX
* MANPOWER BUILDUP INDEX

- TAKEN TOGETHER THEY TELL A
CONSISTENT STORY.

- COMPARED WITH A STRATIFIED DATA
BASE THEY TELL HOW EFFECTIVE
THE DEVELOPER IS.

295

MANAGE'MENT IMPLICATIONS

* The Productivity Index is a good overall measure
of efficiency. It is determined from size, time
and effort; therefore, it is a good measure of
a real productivity gain. It can be used to
measure improvements over time. In ideal
situations where additional project information is
available it can isolate tools, methodologies or
management practices that had a high payoff.

* The Manpower Buildup Index is a good measure
of staffing style.

* SCHEDULE and STAFFING are determined and
controlled by management. So management can
have a big impact on "effective productivity"
in software development. This means that
staffing decisions effect the BOTTOM LINE.

Quantitative Software Management, Inc.

296

A BASIC MANAGEMENT TENET IS:

"If you can't measure it,
you can't manage it."

\

Richard L. Nolan

Managing the Crisis
in Data Processing
HARVARD BUSINESS REVIEW
March-April 1979

297

"If you do things the way you
have always done theIn,
you will get what you
have always gotten before. II

Buick

&rirntifir J\.ml"rinan, .May 1984

298

In
explained
equation.

PROGRESS IN REFINING AND USING A CONSISTENT SET
OF SOFTWARE PRODUCTIVITY MEASURES

(C)Copyright by Quantitative Software Management, Inc.

by
April 1984

Lawrence H. Putnam
Douglas T. Putnam
Lauren P. Thayer

the mid 1970's Lawrence Putnam
the behavior of software systems.
It is written in the form:

developed a equation that
He called it the software

Ss = Ck x Kl / 3 x Td 4 / 3 , Subject to K/Td 3
S; G

Notice that there are only four terms in the basic equation. The
components are defined as:

Ss - The total number of DDESLOC **
Ck - An overall efficiency-complexity measure
K - Total Li fe-cycle effort
Td - The development time
G - maximum manpower acceleration possible

for a class of system

Thus, a given product can be developed in Td amount of time, for Y
amount of effort, at Z efficiency level.

The software equation can be thought of as a powerful trade-off
law. A given product developed in a fixed environment, could be
developed with many different time-effort combinations, all of which
would satisfy the equation. However, because of the time and effort
exponents, the equation gives dramatic results. With these exponents
small changes in time produce substantial changes in effort. In
practical use the software equation has demostrated it can be a high
leverage software management function.

Over the past 5 years we have analysed data from over 2000
software projects. Our intention was to independently validate the
software equatiou. Of those 2000 projects some 803 had complete data
and have been entered into our database. With this data we have been
able to prove that the exponents are very close to the true behavior.

** DDESLOC is the notation use for Delivered, Developed, Executable,
Source Lines of Code.

299

In late 1982 we established regression trend lines for our
database. Regression lines were developed for the measures listed
below.

Productivity (Ss/MM) vs DDESLOC
Schedule vs DDESLOC
Effort vs DDESLOC
Average Manpower (MM/MOS) vs DOE SLOe

In the initial analysis we observed clusterings in the values of
Ck. The cluster patterns were related to application type. It was
thought that the trend lines might be correlated to Ck. Each
application type should have it's own family of trend lines that would
shift up or down according to the range of Ck values present.

By mid 1983 the database was large enough to stratify according to
application type. The major categories identifed were:

Real time Embedded systems
Avionics systems
Management Information systems
Scientific systems
Command and Control systems
Systems software
Microcode and Firmware systems

The curve fitting exercise confirmed our thoughts. The trend lines did
shift. Micro-code and firmware were focated at the low end of the
spectrum. This software had low values for Ck, low productivity, took
a long time, was quite expensive and demanded more people relative to
similar sized projects. The MIS application were at the high end of
the spectrum. These systems had high values for Ck, high productivity,
shorter schedules, were less expensive and used fewer people relative
to their size.

Variability around the average trend lines was still a concern.
Could the software equation explain that variability? There is a ratio
that effectively measures the application of effort over time. This
measure is called the Manpower Buildup Gradient. It is defined as
K/Td A 3. It discloses the style of the software development
organization. High values (generally larger than 20) are present when
parallel effort is possible and management is willing to commit what
ever resources are necessary to get a system built fast. Low values
are more typical of sequential efforts (design intensive processes) or
a management constrainted situation (limited available manpower).

New data was analyzed using the new trend lines as a basis for
comparison. We found that it told a consistent and unambigious story.
The typical behavior pattern for systems with a steep manpower buildup
rate is: modest schedule compression, lower productivity (Ss/MM),
higher average code production (Ss/Mos), requiring more effort and more
people. Conversely, systems with a gradual manpower buildup rate had
slightly longer schedules, much higher productivit), lower average code

300

production rates, requiring less effort and fewer people.

CASE STUDY (A Major Computer Vendor)

An independent data set from a major U.S. computer manufacturer
illustrates these points. The systems used in this analysis come from
a manufacturing facility dedicated to building smart IBM compatible
mainframe terminals. The software that drives the most recent family
of terminals is written primarily in C language with a small portion of
assembly code. The primary system functions are diagnostics, memory
management, and communication. This family of products has a limited
market share. The costs associated with product development are high
but can be recovered along with a profit if the manufacturer can
deliver the product within a narrow market window. The software is the
guts of the product and therefore cri tically important. Company
management is willing to dedicate large software development staffs to
get whatever schedule compression is needed to meet the market demands
(regardless of whether the schedule is realistic or not).

The data from three systems developed recently at this plant is
summarized in the top portion of Table 1. Notice that two systems are
RAM based. Due to a hardware constraint the third system had to be
written so that it could reside in ROM. The unique problems present on
the ROM development include severely limited memory and very high
performance specifications. High quality was essential on the ROM
system because it involved a manufacturing process and would be costly
to replace once it was in the field.

The bottom portion of Table 1 summarizes important calculations
made on the input data. The column titled Productivity Index uses a
linear sequence of numbers that relate to the actual Ck values in
parenthesis. Likewise the Manpower Buildup Index corresponds to the
Manpower Buildup Gradient values in parenthesis. Notice that there is
a big difference between the Ck values of the RAM and ROM based
systems.

The Manpower Buildup Gradient for all three systems are high. The
value calculated from RAM 112 is more than double that of RAM Ill.
According to the software trade-off law there should be a noticable
difference between the two systems for the time and effort required to
complete these projects. The other measures summarized in Table 1 are
dependent on system size. Taken out of this context they are not
meaningful. However, if we compare them against a baseline for their
own size and application then they will be meaningful.

GRAPHICAL ANALYSIS (QSM System Software Database)

Figure 1 is a frequency graph of the Manpower Buildup Index for
the three systems. Two observations can be made from this chart. The
development style of this company is to staff up quickly and use alot

301

by the market
The RAM based

The data from
The management

show exchanges

of people. This management practice can be explained
environment. A second observation is worthy of notice.
systems have different manpower buildup index measures.
RAM III calculates a J. RAM 112 calculates a 4.
trade-off decisions that produced these systems should
of time and effort according to the software equation.

Figure 2 show the distribution of Ck. The graph utilizes an index
which the Ck values fall within. It is immediately obvious that there
is a 'big difference between the two types of software implementations.
The difference can not be attributed to the function that the software
performs. They are quite similar. Rather, it is in the way the code
has to be designed and written for the particular implementation which
is quite different. The ROM software is more difficult because it
requires designing tricky code overlays to meet memory restriction and
needs constant performance tuning. It must be bug free before it is
burned into ROM. RAM 112 has a higher Ck than RAM Ill. With a higher Ck
RAM 112 utilized less overall effort. The higher efficency of RAM 112
will counteract the nonlinear effort increase attributed to the steeper
Manpower Buildup Rate that RAM 112 had.

In Figure 3, the data is superimposed on the average manpower
trend lines for the System software database. Notice that the scales
are logrithmic. The log scales turn the non-linear trends into
straight lines. The absissa (X axis) represents the total number of
Delivered Developed Executable Source Lines of Code. The ordinate (y
axis) is the average number of people (MM/Td). There are three trend
lines drawn on the graph. The middle line is the best regression fit
for all the data contained in the Systems software database. The high
and low lines are the plus and minus one standard deviation bounds.
Each cross represents the calculated average manpower plotted at the
reported size.

The ROM system required significantly more people than other
comparably sized systems software projects. On the other hand, the RAM
based systems are very economic in their use of manpower compared to
the industry average for their size. In a relative sense RAM III has a
lower manpower utilization compared to RAM 112. This can be attributed
to the more gradual manpower buildup rate.

Figure 4 is a similar portrayal of the database. In this case we
will compare Total Manmonths against the system size. Since manmonths
are proportional to cost, this graph compares these systems for cost
effectiveness. The ROM system is signi ficantly more expensive. The
RAM systems are well below the industry average. RAM H1 appears to be
a little less expensive compared to RAM 112.

Figure 5 compares the data against the productivity trend lines.
The ROM system is close to two standard deviations lower than the
average for that sized project. The RAM based systems again are better
than the industry average. Notice that RAM III has a better relative
postion compared to it's size.

Figure 6 starts to disclose the trade-off situation.
compares the data against the trend lines for

302

This figure
average project

duration. It is no surprise that the ROM system took significantly
longer than the average. The RAM systems are interesting. RAM 112 is
somewhat shorter than the average. In constrast RAM III is a little
longer than the average. The pattern seems to coming together. RAM 112
as you recaJl had the steeper manpower buildup rate. The objective
must have been to get the system built fast. The system was built in a
shorter time but in a relative sense it required a lot more effort and
people. The difference would be more pronounced if the values of Ck
were the same. The non-linearities present in software equation are
still powerful enough counteract the lower efficency of RAM Ill.

The pattern continues in Figure 7. The ROM system is again below
the industry average. The Ck for the ROM system was well below the
Systems software average and explains why it compares in such a
unfavorable way. RAM 112 experienced a rapid manpower buildup and
therefore had a higher code production rate. RAM III had a more gradual
manpower buildup and a lower relative code production rate.

CONCLUSION

The trend lines presented in this paper can be useful in a number
of ways. They provide a baseline of comparision from which software
developers can compare their performance against a large database of
similar projects. This will often identify a organizational style. In
this case study it was possible to quanti fy the organizational style
using the Manpower Buildup Gradient. Additionally we were able to show
that the developer was a better than average producer on RAM based
systems. The Ck associated with the ROM system suggests that it is a
different class of work. When this system is compared against the
Firmware database it is very creditable.

It is important to recognize that there are non-linearities
present in the software process. The non-linearities are' tied to
system size. For comparative purposes we must always make judgements
based on similar sizes. In the past the tendency has been to calculate
a few ratios on several projects and then compare them without any
regard to amount of functonality that was created. This practice can
be very misleading and dangerous. The method describe in this paper
used in a thoughtful analytic manner can be very helpful.

There are some problems associated with curve fitting that should
be pointed out. With the non-linearities present in software, small
data sets will often produce wide variations in slope. Any effort (MM)
dependent ratios are particularly problematic. Productivity has
consistently proven to be the most sensitive. Of all fits on
productivity (Ss/MM) that we have made we have never been able to get a
r squared value better than (.02). The nonlinearities in the terms
productivity is composed of are responsible for this. To work around
this situation we have chosen to combine a theoretical slope tuned by
the actual data.

303

It is possible to extend this approach. The present plans include
providing for a reliability comparision. Right now the error database
is not large enough to get totally reliable statistics but before too
long we hope to establish those trend lines as well. The database will
be analyzed to determine the improvement that is being made in each of
the application areas over time. Some preliminary work in this area
has been done and -it looks very promising.

304

/'

w
~

::, y s n: r-j
I'JAt-IE

fYlt'l Sf)FnJAHE ij 1

;::;'Hf"1 ;.-ClFTW{'d::;:E #:'

f~:(lt"1 ~30F nJ{~r;:r. r./: 1

;-;Y:-1 T E-I-l
r J;-,11F

-',1"1 ','':!:- TvJt~I';:E ft t

;-"r)i'i :'IIF-n·J':',RE: W::

I;':Ot-1 sm= HJAHE # 1

CAt. (F:F(H IT I I'JF-'U r SI JI'H'lAn'r

f31 n.:· r I rolL EFFORT f-\PF'l_ I Cf4 T I CJN Clj--'a-"{~ r I lJN~'IL

i 35) (1'lllS' (t'lt1) TYPE:: iX)TE
- ---- -- ---- --- ----- ... - __ ---- -- -"--_ .. -.-- -- - -. - --- - -- -

~::::90(1\:J ~4.0 869 SYS TEI'l SOF TL>J,~~:E

.F'(:ll)o I J 0). \) l-T
--' -' S y STEt-I ~/'-'F :-l"()~-;:F

14('(Il:' 16. ':. l78 ~J'I'~-:ilE"1 ~3DF rw,~r,:r'

1'lf-liJf~\Jt_i\IEi'j r I'If:TR 11:~S

r'RDDlJcrI'v'tTr
1 NDE ,<

t'lANPOWER
BUILDUP

INDEX

F'F\oDUCT I 'I I ry F'Er"if f-1'v'G ,::ODF::

l" (15,976)

14 (20,348)

5 (2,100)

.'

4

-'

(23)

(53)

(39)

Table 1

(S5 11'11"1) l"iANF'\JW!:-_F: F'r,O['UC~ r I ON
(PEOPLE) RArE tSS/MO)

2/,4 ~)b G54',2

374 lq 498'")

79 17 875

lJ
(f1
([

m

([

l([
(tQ

o ~>

Z
lJ

l
J
~

>
 (l

(t=:J
l
J
~

l
-
~

=
:JH

(l=

:J
~
m

o U
(
j

Z

H

LL
LL
([

IUJ

(D

la
l 1~.J~d A.JaA

l
a
I
I
I
?
.
J
~
d

lall~.J~d
Alal~.Japow

a
l
~
.
.
I
a
p
o
w

I
~
J
l
u
a
n
b
a
s
 A

llSapow

I ~ q
u

an
b

as A.JaA

I
I

I

If')

306

(D

-

N

><
=11=

:E

~

U
J

C

Z

~

-Q
.
~

C

.-
...J

.-
o

r-

=--
=11=

-
U

J

i
e::
iB

(T
)

~

-
z

~

-
::E

::E
u..

~

~

u..
i5
V

')

N

-

......

1
I

N

-

(In'£02 =
)fJ)

Z# W
W

(9l6S
l =

)fJ)
l' W

W

JH
W

U
.:JO

S W
3ls.\S

-
39W

3A
V

 A
H

lSnO
N

I
•

-

(O
O

lZ
 =

)fJ)
"

woo

I

I
I

I
I

1
[1

N

2
2

0

2
 ~

.... u tt
81

...,
..., ex
i

9
1

v
I

2
1

0
1

8
.... z ..., u

9
.... I.i..
I.i..
..., en
en

V
 ..., ...J

2

>< '
...,\
c z >-

N

....
...,

....
ex

>

l3
....

....
U

IJ..

:;,
c 0 cx
Q

.

SYSTEM SFTN RVERRGE # OF PEOPLE
VS. Ss

> .,
-0

10000= -0
+' - co -

pt)re People -- + w
t -.I

CL 1000=
0 - >
W

- .,
l

-0

CL
- Fever People -=#= 100=

I
w
0 -
00 --

W
19
([

0::: 10=
W -->
([

l-r I I I I I III I II~IIIII I I I I Ill-I -- J-- I I I I I III
...-4 (S) CSl CSl CSl

...-4 CSl (S) CSl
...-4 CSl CSl

...-4 CSl
.-.

Ss (X 1000) DDESLOC

FIGURE 3

L
2:

~
w

([0
\0

~
0
~

SYSTEM SFTN - TOTRL MRNMONTHS
Vs. Ss

> +1 ~td dey ~
~--~~~~~:?7~~;7~--~7~~1~ 100000=

~I More Expensive

t
-I

10000= -
J --

- less Expensive

1000= ---

100=
--

10-I I I I II-II/ - r (S)
......

Ss

I I I II II I I I ,- I I r I
(S) (S)
(S) (S)
--< (S)

--<

(X 1000) DDESlOC

FlWRE 4

I I

....
co -I

I I ,-, 111
(S)
(S)
(S)
(S)
......

,.....
2:
L

" II)

Ul
'-./

>-
l-

\.» -0 H

>
H

l-
U
:J
~
0
0:::
0.-

10000

SYSTEM SFTN - PRODUCTIVITY
Vs. ss

RAM #12
(49800. 374)

>
I)

"'0

"'0
~ co

100=1 Higher
:: Producti v i ty +

t
-I

10=

~
lower
Producti vity

ROM '1
(14000, 79)

>
CD

"'0

"'0
co -I--

I I I I I III I I I I I I II I
I I

~--~--~~~~~----~~~.~. ~'~'~'~'~'----~~I~I~I~I~I~I~I~I----~~I~I~I~I~I~I~II - (S) (S) (S) (S) - (S) (S) (S) - (S) (S) - (S) -S s (X 1 0 0 0) DDESlOC

FIGURE 5

,-....

(/)

0
L
'\....../

Z
w 0 -- H

I-
CL
~
:=J
Q

SYSTEM SFTN

10000=
~I Longer Schedule

t
1000=

- I -

- Shorter Schedule

100=
--

ROM ill
(14000.16)

+
10=

--

1-I I I I I I III I (S)
.....

PROJECT DURRTION CMos)
VSo Ss

RAM'l
(229000. 24)

I I I I III I --TT-/ I' //
(S) (S)
(S) (S)
...... (S)

T (... / 11//1

>
IU

"'0

"'0
~
CI')

-+

>
IU

"'0

"'0
~
CI') -I

(S)
(S)
(S)
(S)
......

Ss (X 1 0 0 0) DDESLOC

FIGURE 6

t..J -N

.,-...

o
L
"
V')

(J)
'-/

z
o
H

I
U
:=J
~
o
cr
(L

w
~
o
u

SYSTEM SFTH - CODE PRODUCTION
Vs. ss

1000000 ~i --.--~ HIgher Average
Code Production Rate

t
100000=

!
t

10000=1 Lower Average
- Code Production Rate

1000=

100-I I I I I I III I (S)
......

ss

I I I I III --T I I I filii I
(S) (S)
(S) (S)
...... (S)

......

(X 1 0 0 0) DDESLOC

FIGURE 7

I I I I I II

>
CD

-a
-a
~
co -+

>
CD

-a
-a
~

"" -I

(S)
(S)
(S)
(S)
......

N86-19980 '»I'-/-

TAILORING A SOFTWARE PRODUCTION ENVIRONMENT
FOR A LARG E PRQJ ECT

(Abstract)

Dav id R. Lev ine

Intermetrics, . Inc.
733 Concord Ave.
Cambridge, Mass 02174
617: 661-1840

A software production environment was constructed to
meet the specific goals of a a particular large programming
proj ect. This paper will discuss these goals, the
specific solutions as implemented, and our experiences
on a project of over 100,000 lines of source code.

The base development environment for this project was
an ordinary FWB Unix (tm) system. Several important
aspects of the developrnent process required support not
available in the existing tool set (e.g. sces, make).

version management:

Many systems provide source library tools with version
numbering and similar support. We wanted to track the
version number of a module at all stages of the
development process: within the source libraries; as
source and object in private development directories;
and as constituents in both private and official load
modules. A method was developed to automatically maintain
the version identification of each module in a form as
to be easily visible and checkable by standard tools,
in particular by the linker.

313

In addition, the space / time balance of the source
library required evaluation. We desired fast access to
the l,ibrary, and did not anticipate the need for
reference to very old versions. Furthermore, any
number of standard tools would be applied to the text,
including both unix tools such as grep, sed, and nroff,
and other of our own devising. A library was
developed in which the text was held in clear text,
thus providing both simplicity and speed in processing.
Simple file system techniques provided version and
access control.

Separate Compilation:

The development language supported separate compilation,
but with a caveat emptor attitude towards' interface consistency.
We required a more rigorous system to maintain correctness
and control recompilation; to avoid version skew and yet
minimize unnecessary recompilation. The project was based
on a decentralized methodology, in which every module had
the responsibility of defining its own interface. A system
was developed in which the interface definitions were provided
in the same files as the functions they described, and then
extracted for inclusion by other units. Techniques similar
to those used for basic version control provided firm
checking (including linker error reports) on version skew.

Incremental Development:

Our development model is one of continuous integration.
At any point, the developer must see a stable, official
baseline configuration, plus some personally constructed
set of modules being modified. Standardized handling was
desired to facilitate sharing of experimental modules among
different developers, and to ease the transition into new
configurations. Uniform procedure would allow automatic
logging of activity, desirable for management purposes, to
allow us to pick up if a key person were absent, and to help
automate the "gate" (configuration acceptance) cycle. The
system as developed relied on the version visibility scheme
to allow private modules to coexist in public areas, and to
even obviate the absolute need for recompilation of a module
when submitted to the gate.

314

Experience:

This environment was i~plemented on Unix, originally as a
collection of shell scripts. It served to support
development by up to 20 programmers, on a large, highly
interconnected program. OVer a period of two years, over
200 gate cycles were run, as the program grew to over 700
modules and over 100,000 lines of source code.

Reflection has shown both strengths and weaknesses of the
approach. For instance, a project of this size seems to
require less strong interconnection, and less changeable
interfaces; that has major implications for the support
system. More recent systems and tools, such as RCS on Unix
and Apollo's DSEE system, offer better solutions to the
basic space/time tradeoff in the source library.

315

TAILORING A SOFTWARE PRODUCTION ENVIRONMENT

FOR A LARG E PROJ ECT

David R. Levine

Intermetrics, Inc.
733 Concord Ave.

Cambridge, Mass. 02138

This paper describes a software production environment that
we developed to support a large compiler proj ect. The host
environment was a Unix * system, with a Remote Job Entry link to
a large batch mainframe. The project size reached lOOK lines of
code in over 700 source modules, with approximately two dozen
developers at peak strength.

Figure 1 lists some of the problems involved in the design
of this environment. One of the factors unique to this project
was the particular choice of methodology and implementation
language, which mandated a high level of supplementary support
from the environment. The methodology in question includes a
heavy reI iance on data abstractions, which tends to lead to a
highly modular design. We intended to maintain this design
structure in implementation as well. In a language like Ada **,
which is designed to support this methodology, such a strategy
presents little difficulty. In our case, the implementation
language could be teased into supporting the design structure,
but at the expense of a great deal of potential complexi ty. It
was clear at the outset that additional tool support was needed
to provide the kind of consistency and configuration management
necessary to keep the methodology from getting in the way. A
specific penal ty of complexi ty is a greater need to assure
correctness, especially in regard to separate compilation; in a
system with many components, one needs more positive measures.

For a large project, we knew a good configuration management
system was necessary. We intended to use an incremental
development strategy, in which one gets the core of the system
working and then glues on more and more functionality. This
strategy places a severe strain on configuration management,
impos1ng simultaneously the requirements of development and
maintenance phases. Firm configuration management is required to

* Unix is a registered trademark of Bell Laboratories.

** Ada is a registered trademark of the United States Government,
Ada Joint Program Office.

316

Large Project
- usuaL WORRIES

- conSERVE RESOURCES

- mETHODOLOGY ISSUES

LOTS of comPILaTion UOITS
aDd

miDi maL SUPPORT from LanGUaGE

~ aOOD mamT OF SEPBRBTE comPILBTlOn

(IDTERFaCES, REcomPILaTlOn)

~ Good Configuration Mgmt
- SOURCE CODE VERSIOn mGmT

- IDCREmEnTBL DEVELopmEnT

StOLl: .natlDnaL lERSIDD»

ra£QUlnrLt uPDBtED

Figure 1.

• accounTaBILITY THRUOUT PROCESS,

nOT JUST on OFFIciaL VERSion

- LESS conFUSIOn

- saVE RESOURCES

- STROBG em SDPPORT aT
DEVELOPER LEVEL

• aUTomaTIC OR SEmi-aUTomaTIC
mETHODS PREFERRED

BUILD TOOLS

as REQUIRED

• DESIGnaTED COnFIGURaTIOn LIBRaRIan

~ InTEAmETRICS

Figure 2.

w -00

Snn;.
Lilnrg

Cgntrallad
C.fjpratign

load

.J,
CHECK DOT
. I .

pravate vers Ian
I

EDIT
I

COmPILE
I

private files
I

LInK

I
private run

I
EXECUTE

I
TEST

~ InTEAmETAICS

EJ
,abl8<t ,

load

Figure 3.

Snn;.
Lilnq

r
r

I

I-t-'

I ,j, r~
CBECK OUT 1 __ 1 . I .

pr.va~e version

EDIT
I

COmPILE
I

private files
I

LIDK
I

pflvate run
I

EXECUTE

I
TEST

,abil<t I
load

Cgntrollad
Cgnfjguratign

load

1P m II VI III lr 1K \!3 ril Ul1& ~ ill Ii' Ii' II (g 3 [ll Ib

Figure 4.

maintain at all times a good, working version; at the same
time, the flexibility required during full development must also
be provided.

Figures 3 and 4 show some of the flow of activity in such an
environment. One will note the flow of modules from the
controlled [source] library into the private workspace of
individual developers and then back again into the library to
make up a new controlled configuration.

Traditional systems often enshrine a basic dichotomy between
the str ict control of the conf iguration managed world and the
unstructured freedom of the individual developer. We felt there
were numerous advantages available if we could successfully
bridge this gap. We thus found ways to prov ide better support
for the developers, to help them systematize their activities in
a constructive manner by using the good features of the CM
system. We were able to reduce operational confusion at the
individual level. The similarity of procedures facilitated
cooperation between developers. And the CM system benefits too,
in reducing the complexity of its new-version acceptance phase.

Another of the major principles which guided us was that of
accountability. We wanted to track the pieces of the system as
they moved around in the development process. To the extent
possible, we wanted self-identification of the various components
and files in our system. We needed to create and maintain
correct interfaces, and be able to verify that necessary
recompilations had been done.

The Unix environment encourages the development and use of
tools. The library and configuration management systems that we
build saw us through over 9000 versions of the source modules,
and 200 CM acceptance cycles over a two year period. We employed
a Configuration Librarian to manage the centralized functions of
creating a new configuration; other elements of the system were
automatically handled by tools invoked by individual developers.

positive Version rdeD~iiication

Looking at a little more detail at the problem of module
identification, we notice that there is a three-dimensional space
to manage. The overall program under development consists of a
great many individual modules. For each module, several versions
may be in existence. And for each version, several forms must be
handled: source, object, and as a component of the linked
program. Figure 5 shows a simple example, with modules nAn and
nBn. Note the shaded version #23 of nAn which forms part of the
current load module.

Proven source library systems exist, with good
f uncti onal i ty.
internal; once
until val ida ted

But their tracking and control is purely
checked out, a file is essentially anonymous
either by check-in or acceptance into the

319

w
tv o

SOURCE

AV2"'~

~ V 151 ... 1 - ,

B
1/16

--un~
d&~IOPMent

OBJECT

kA21J

~A23~
kB15~

B

private

Source Library sgstems
DDlg tracl illterDBllg

~ ImERmETAICS

Figure 5.

LOAD

~·::A:';::':::'::
I: II: I 'II:

: :\ I

".23 '11

B
V 15 ??

!
IDtegritg assured

bg COil trolliolJ
build process

USB.. BDongmous
aDd suspect

SOURCE OBJECT LOAD

kA211 A
V 23

kA23 I
Bv 15~1 ~ *

B I

V 15 ??

.lln,:

~
B

v 16 B
V 16

"lila DlDlla,:

~fI3. I

BSI5.
I

B# 16.object l'
B# 16.so7rce
~ IDteliritg assured
\ bg abseDce of

PBIVBTE FILES linker diagnostics
nEVEI LOSE -- CompositioD

GLOBRL IDEDTITY call be verified

Figure 6.

controlled conf iguration. Its identi ty is suspect; system
integr i ty is assured by rigidly controll ing the build process.
(The individual developer typically exerts only modest control
here, and thus is particularly susceptible to confusion.) Figure
5 shows a typical object module which claims to be version 23 of
"A". How is that identity established? Solely by knowing how it
was constructed. If any confusion sets in, the sol ution is to
scratch everything and start over often an unacceptably
expensive alternative.

Our system maintains order in two simple but effective ways.
The first concerns file names. A private copy of a file -- "B"
in the figure -- need not be anonymous. By checking it out,
formally, the source library manager has reserved the next
highest version number. We take the obvious step and assign that
identi ty immediately, so that even in the pr ivate workspace the
file carries its correct name and version number. (Cf. figure 6)
Since that name and number combination is reserved, and unique
throughout the development environment, even the "private" object
files can be likewise tagged -- and furthermore be stored in a
canonical file system, accessible to anyone who needs them.

The other aspect of maintaining order lies in a self
identification scheme, so that a module's identity can be firmly
established independent of external artifacts such as file names.
For this purpose, we create a special variable in each module.
This variable is not part of the program logic; it is purely
part of the CM system. The name of the variable is a
concatenation of the module name and version number,
automatically adjusted when a module is checked ou~ of the source
library. (Thus within module "B" is the variable "B$16"; see
figure 6.) We use a variable, and not just a comment, so that
the version identification shows up in the compiler output.
Furthermore, the CM symbol is given external status, making it
visible -- by name -- in the object module. In particular, as an
external symbol it is processed by the linkage editor.

In addition, the configuration librarian maintains a
separate source file with a set of complementary CM symbols. The
"OEF" construct in the primary module source serves to prov ide a
def ini tion of the CM symbol in the external name space. The
configuration librarian's file has the same symbols, but using
the "REF" construct instead. "REF" (reference) requests must be
matched to corresponding definitions by the linkage editor, or an
error will be reported. This provides us with a plug-socket
positive version identification system. If the wrong version of
a module is linked in, the linker will be unable to satisfy a
"REF" request and will notify the user. This notification is not
fatal; in fact, individual developers should expect to see
messages for the particular modules for which they are creating
new versions.

321

v.J
N
N

~~~mmm~~ ~W~~B~m~BWm 

Coosumer 

Procedure F(&:· .... 8:1: 
EXTERNAL; 

Call F(- ,-); 

!lil~llll!a fiml».~V 
Pravida -EXTERDaL - daclaratian 

for caller. 
\~/naX!nli9'f1 

- bud IIJIittBD 
- glDbal dacl. fila 

or from Pravider 

Figure 7. 

Provider 

Procedure F(B:-... ,B:~; 
Begin; 

End; 

II'~ 

--~--. ... _---
PtC)ted""'e '( ... ~) 

s.., ..... ; 
,., 

Coosumer 

INCLUDE (F@I); 

Procedure P( .J; 
External; 

Call F(- ,-); 

: 
j 

/ 
.' 

IDTERFBCE DEFIDITIOD 
OWDED BY mOD OLE IT 
DESCRIBES --

DECEDTRaLIZED 

Figure 8. 

Provider 

pr~c:ed'tJfe- f(w~.): 
Extetnal: 

Proced ure F : 
Begin; 

End; 

mSDOSLL y mSIDTSIDED 

BOT PBYSICSLL Y CLOSE 

I 

I 



separate ~m~ilation 

There are two related problem areas involved in successfully 
supporting separate compilation: external interface 
specification, and recompilation. 

In a system with hundreds of independently compiled modules, 
the complexi ty of the external interface structure becomes very 
high. Its correctness is vital. 

The external interface allows the compiler to correctly 
process references which cross compilation unit boundaries. In 
order to process any procedure call, the compiler usually needs 
to see a declaration of the procedure, which will give 
inf ormation I ike the number and type of the arguments are. 
Often the procedure defini tion is "external"; 1. e., it resides 
in another, separately compiled module. In some languages, the 
compiler ducks its responsibil i ties, and simply assumes that 
calls of external procedures are correct; this level of checking 
is not adequate for a modern, strongly-typed language. In 
languages such as Ada, these external declarations are provided 
automatically through a database maintained by the compiler. 
with compilers like Pascal/VS, all procedure calls are checked 
for validity, but the programmer has to himself provide explicit 
"EXTERNAL" declarations. (See figure 7.) 

The challenge, then, is to create a semi-automated system to 
maintain the external declaration information. 

In our environment, the interface was taken from a standard 
file, part of the general configuration managed library. The name 
of the interface file is derived from the file name of the 
provider file (by adding an "@" suffix), and so is easily and 
uniformly accessible. (See figure 8.) The interface information 
itself was extracted by a simple tool from the actual file of the 
provider, thus maintaining the greatest possible degree of 
accuracy. 

It turns out that in our implementation language, it is 
val id to incl ude an "EXTERNAL" declaration in the same 
compilation as the actual procedure definition; EXTERNAL behaves 
much like FORWARD. If that's not valid, the extraction system 
must be a bi t more clever. The point is that in any case the 
external interface definition sits physically right next to the 
procedure it descr ibes. Even if it's manually maintained, the 
chances of it being correct (meaning, especially, up to date) are 
a whole lot better than if its off on another file someplace, 
combined with other such interfaces. Also a feature here that we 
have one interface file per source module. That makes for a lot 
of interface files, but gives much better management of 
recompil ation. 

323 



IoU 
N 
+>-

•.. _-_.------
,.' 

,.' .. ' 

Coosumer 

INCLUDE (F.); 

REF .... 1 
ProcOdure P( .J; 

External; 

Call F(-.-); 

'Gl 
'~: .. .. 
'~ •• '( ... ~l 

Ex ..... ; 

. 
. ,l 

/ 
! 

i 

5§ilmERmETAICS 

Figure 10. 

Provider 

W[j' F". 
.*1 
Pr«Q;.re F{ w .. J: 

erteraal: 

Proced ure F : 
Begin; 

End; 

llJ II !B iii WI lP II lL m 'il II iii 1il 

nECESSaRY ad SUFFICIEnT conDITions 
J, NOT: just to ba II1IrII 

IDTERFRCE CHROGE > REcomPILE aLL USERS 

NOT 
mODULE CaaDGE 

mw'U':: 
alg if chaga C8Jl affact thBID 

I 
Soma additioul are mOIDD to ba safe 

FIBm TRICKIDG --

usa IS agmbolll 

+ 
linter diagnosi tics 

Figure 9. 



Maintaining correct external interface files is only half of 
the battle; the other is insuring that any modules which use 
these files are recompiled when a change occurs. Por a 
collection of reasons, one cannot simply recompile all consumer 
modules every time an interface changes. The environment must, 
then, provide ways of tracking what has been done, and in 
particular of determining whether all necessary recompilations 
have taken place. A variation on the self-identification system 
provided this support. 

Interface mismatches, resulting from improper recompilation, 
cause particul arly obscure bugs. In the absence of posi tive 
accountability, one typically goes back to zero and recompiles 
every!hing when such a problem is suspected. 

As we did for version control, we added a special symbol, 
whose name captures the module name and an interface version 
number. (These ~mbols are written with a double $$ to 
distinguish them from the basic version control symbols). The 
provider file carries the "DEP" for the symbol. It also carries 
a "REP", which is si tuated in the part of the source marked as 
being external interface. The extracted file, therefore, has 
only one of the pair, the "REP", and this shows up in .!:~y 
consumer. (See figure 9.) 

These symbols are manually maintained. When the developer 
makes a change to the interface which will require recompilation 
of the consumers, slhe is required to increment the interface 

/ version ($$) symbol. (Using simple source file comparison tools, 
the configuration librarian can check whether the "$$" symbol was 
appropriately changed, providing an extra level of checking.) The 
change is made in the provider file, of course, and so only the 
new symbol will be defined at link time. If there are any object 
modules present that were compiled with the old interface, they 
will still carry the request for the old interface symbol. This 
is visible to various tools, and in particular will cause a 
linker diagnostic. 

The use of external names for version tracking, though a 
simple scheme, is very powerful. It provides, inexpensively, 
very important information and control which are missing in many 
development environments. 

Minimizing Recompiliation 

The neces§..5liY condi tion for recompilation is an interface 
change. However, not all interface changes require 
recompilation; some changes can be known to be safe. In 
particular, in our development style the interface to a 

325 



particular module tends to cons~sl: or: a large number of 
procedures. Adding another function is safe, as binding is done 
at link time. The old consumers, who don't know about the new 
function, aren't affected. (A careful choice of name conventions 
avoids the possibility of introducing name conflicts here.) As a 
resul t, we achieved a considerable resource saving, especially 
when deal ing with key modul es which are incl uded by almost 
everyone. 

we handled these benign interface changes simply by not 
changing the interface version symbol •. We did not forgo version 
skew protection, though. If the [new] consumer module were 
inadvertently linked with an old version of the provider, no 
definition would be found for the missing functions, and a linker 
diagnostic would be issued. 

~onclu.§io.D'§ 

This development environment proved a qualified success. It 
prov ided, as pI anned, very good accountabil i ty, good control of 
external interfaces and recompilation. It managed complexity 
well. But there were some loose ends, especi ally involving 
secondary interactions in the area of separate compilation. In 
addition, there was a lot more complexity present than had been 
anticipated. 

In a peaceful development process, an interface reV1S10n 
originates in the provider module. As the changes are completed, 
a new interface file is created, the consumer modules modified as 
necessary, and then all are accepted into a new overall 
configuration. Under the pressure of time and multiple parallel 
paths of development, conflicting requirements made it difficult 
to adhere to a simple, orderly procedure. 

- A consumer module may be temporarily unavailable, as some 
other developer has it signed out for other work. If 
Simple recompilation is all that is required, that can be 
done from the library copy. If editing changes are 
needed, a severe contention problem exists. It may even 
be necessary to insert a new temporary version ahead of 
the main new version of the consumer in order to achieve 
a compatable whole. 

- The revision may be driven by the consumer, which needs 
some new functionality; this may be from a module 
maintained by someone else. This leads to a situation in 
which one person is relying on temporary, private 
interface files taken from another person's development 
copy. The consumer modul e cannot, of cour se, be 
presented to the configuration librarian until the 
provider module is also ready. Our system could have 
provided better tracking of the version dependencies 
here. 

326 



The transitive nature of dependencies would 
sometimes lead to severe contention problems here. If A 
depends on B, and B on C, a change to C does not in 
general affect A. However, A might request a [trivial] 
new function from B, which B I S maintainer cheerfully 
provides. However, B - itself is in the process of 
incorporating some new functionality from C. Even though 
the A - B interface is operational, the new version of A 
has to be held up until the new C is available since 
otherwise B will be incompatible. Sometimes it becomes 
necessary to accept the new C, even though it does not 
work properly, in order that work may proceed on A and B. 

These problems are beyond the original design 
considerations. To some extent, they are inevitable with a large 
project. There were also aggravated by the existence of a large, 
distributed interface structure in the program being developed. 
The problems relate to resource utilization, which are 
essentially management issues. Thei r sol ution 1 ies, then, lies 
in providing better support for the scheduling of development so 
as to avoid the worst contention situations. The support 
environment should contribute information such as a graphical map 
of inter-module dependencies. 

327 



RILL AGRESTI 
esc 

ED ATJB~lGO 
SPF.:RRY CORP 

" •• J. ALtJEV 
tJOCKIiEEO 

TROY AMES 
NASA/GSFC 

JACQtlEt,INE AMRHEIN 
NSA 

ROA ARnOLD 
MITRE eQRPOR~TrON 

PATRtCIA ASTIL') 
NASA/GSf'C 

!:VF:RET'r AYERS 
ARtNC ~ESEARC~ cnRP 

euRTts~ RA~R~T'" 
~ASA/GSfC 

DOM '8ARRON 
HSA 

JEROME BARSKY 
RENOIX 

e. WRANOLF: BAR'fJof 
NASA/G5fC 

tJ YNN BARTON 
t'/OeKHE~D 

VIC BASIl,I 
UN1V OF MD 

JOHN BAUMERT 

ATTENDANCE LIST 1984 

SILL BELTJANO 
frce 

ROY ROND 
"'SA 

HEl,EN SOMK 
"'ASA/G~fC 

DAVIn aOON 
esc 

~lOHN B"WF.N 
HUCH{F.S- FUL LEPTON 

ROYCE RRADSHA\IJ 
SOCIAL SECURTTV ADMIN 

DAVE BRADY 
TRW 

MIMI BREDESON 
SPAC~ 'rELESCOPF. SCI TNST 

DAIlE BREMNEMAN 
tRS 

~LTZABETH BRIN~ER 
~lASA/G~FC 

NANOER BROWN 
FRF.DDl€ MAC 

nAVIl' RR'YCJof 
ANALYTTC SCIENCE CORP 

JOHN BUELL 
esc 

SPAC~ TELEscnPE SCT YNSf 
ELIZABETH RUlE 
esc 

PE'f'ER '3ELFOR" 
esc 

A-I 

CARO'J R4~NS 
lIT RESEARCH I"'ST 



ATTENDANCE LIST 1984 

"AVID CALLENOER 
JET PROPULSION LAB 

J. CAMPBELL 
!PA 

DU CAN CHAN 

J.CARL50N 
OAn CORP 

"AVID CARD 
esc 

JOHN CARrJ 

NASA/GSFC 

LLOYO CARPENTER 
NASA/GSFC 

~ARGAR~T CHASSON 
tBM 

STF.VE CHF.UVRnNT 
esc 

ANORF.W CHUNG 
FAA TECH CF.N'rER 

LEE CISNEY 
~A5A/GSfC 

,wn! TH CtJAPP 
MI't'RF. CORPORATtG~ 

~ARVtN CTJEMMnr~s 

NASA/LANGLEY 

TEn CONNELL 
f\JASA/GSF(, 

HARRY conK 
""En HOME MnR"GAGF: LUAN (;0 

TJAIJRA eOI')K 
~sc 

A-2 

PERRY COpp 
P'AA TECH CENTER 

CARL CORNWELL 
RENDTX 

CLYOF; CRAIG 
~U't'OMe:TRrc INC 

ST~WART CRAWPORD 
BELL LABS 

WILLIAM nECKER 
csc 

OICK OI!:MEESTF;R 

CHARLES DICKSON 
USI')A-ARS-COSO 

O.OILTS 
AMERICAN SYS CORP 

KEITH ~IMORI~R 
NASA/J~C 

nAV In n,ISKIN 
U 5 CEMS'JS BUREAll 

RERNARO nIXON 
NASA/GSFC 

MARYANN DOIRnN 
II" RESEARCH INS" 

FRANt< r')OUGLAS 
PROf S/W SF.RVICES 

JOHN DUKE 
non PESO 

T.lORRA I NE DflVAL 
II" Re:~EARCH INS" 

MARGARET EATON 
esc 



ATTENDANCE LIST 1984 

8ETSY ~owAROS 
NASA/GSFC 

JE~NTFF.R EfJGOT 
UNTV OP" MO 

"EAN ELLtOTT 
NASA/G~FC 

WALTER EtJJ.,IS 
TSM PSD HEAO~UARTERS 

HARRV EMERSOM 
ANALYTTC SCIENCE CORP 

W::UNICE EflYG 
"'A~A/GSFC 

MARY ANN ESTANnIAU 
NASA/GSFC 

MIKE FAGAN 
UNIV OP MARYLAND 

HOSEIN FA['LAH 
AT&T ae:LL LABS 

AI FANG 
NASA HEADQUART~RS 

WILL1Ar., PARR 
NAVAL SURfACE WEAPONS ~TR 

,'AMES FARREl"L 
WESTINGHOUSE 

RICHARD FATH 
rce 
LARRY PISHTAHLER 
esc 
CELIA FITZ,ERALF) 
nATA GENERAL CORP 

A-3 

WAVN~ PRTEDMAN 
a.p.E.C. 

JOHN GAFFl'JF.Y 
IBM CORt:» 

Jut,I A MEAOF: GAt,LIER 
NAVAL SURFACE WEAPONS CTR 

PETER GAMM 
PRC 

,10SEPH GlI"R~ER 
AOV COMP SCI GROIIP 

PAT GAPY 
NASA/GSFr 

C.H.GAUDETTE 
t8M 

RICHARn GAYLF: 
JOINT TACTTCAL COMMAND cnNTROL 
& COMMUNICATION AGENCY 

F)IETWAtD GERSTNEq 
NASA HF.AnQ"ARTF:R~ 

lJOHN GOLnEN 
EASTMA~ KODAK 

AOr:lLF GOOOSQM 
NASA/GSrC 

CAROLINE GR AP'rnN 
DEPENSF: SYST~M5 INC 

ROSER'!' GRAFTON 
OFFICE OF NAVAL qgSEARCH 

ART GREEN 
esc 



ATTENDANCE LIST 1984 

SCOTT r.:REEN 
NASA/GSFr" 

ARNOLD G~EENLAND 
tIT RESEARCH INST 

STEPHEN GREIF' 
~ENDIX 

OR.C.J.GREWE 
MARTTN MARtETTA AEROSPACE 

OICK HAI'IKINS 

MYRON H~CH"" 
SOHAR TN(,ORP 

.J.L.JoIECK 
SOHAR HH~ORP 

CARL Ht=:ISE 
"CC 

nOUGl,lAS HITJIJ""ER 
CE~SUS 8"REA 11 

RARBARA HOLMES 
GSC 

RO~ER'r f.fnL"" 
GEORGE MAsnN UNI" 

Ron JoIOltSTO'" 
lIT R~SEARCH INS"" 

ALAN Hn~"LETT 
lIT RERgARCH INS" 

LARRY HurJL 
NASA/GSFC 

NORMAN IDEtJsnl'1J 
lIT REREARCH INS"" 

A-4 

MARY ELLEN I~GHAM 
NSA 

OONAtD JENKINS 
FAA 

OAVIO JOESTING 
AFEC NAO/SM 

LEON JOROAN 
CSC 

LINDA JUN 
NASA/GSFC 

OE"'NTS KAFURA 
VA POLYTECHNTC INST 

nWF.I\I K~RnATZKE 
NASA/GSFC 

ELtZABE'l'H KATZ 
"NtV OF' MO 

FRANCER KAZL~URKI 
NSA 

·JOE KET .. LAGHER 
US DF'P"" OF C"MMERC~ 

.JOHN I<'''IGH'''' 
"NTV OF VIRGINIA 

KATH.Y KOERNER 
esc 

RICHARD KOPKA 
non/ECAC 

PATTY KRAMfR 
EPA 

THOMAS KIIRIHARA 
US DEP"" ('If' TRAMS 

nA" 1 1) "lAME 
JET PROPULSInw LAB 



ATTENDANCE LIST 1984 

OIeK,1J~NGLF.Y 
free 

NANCY l,AlIB~N'T'J;I\L 

NASA/GSFC 

MARGAR~T LAVIGME 

RAY LEBER 
GEN~RAt F.LEC'T'RIC 

GERTRUOE LE~ 
OO't'Y AssnCTA""E~ 

flAVID r,EVINE 
JNTERMF:TRICS 

RQSCf'lW L'tN 
TJOCKHEED 

JANET tJINDGRb.N 
tNFOMATlr:S 

,JEAN L1U 
CSC 

T<UEN:'SAN LIU 
esc 

PET-SH~N LO 
esc 

MICHELr,F; LOOSER 
Jr'AA TECH CF.N'T'r: P 

JANET [,UNDGREN 
INFORMATICS GENERAL CORp 

BH"L MAODQ)( 
GENERAJ. nYNAMICS 

.JOJ.fN MA N',EY 
NASTEe COHP 

THOMAS MASTERS 
N'SA 

A-5 

RAV MA?'.z,nLA 
FO~D AF.RnSPAce: 

'l'O~ ~CCARg 

MCCABE A5S0C 

S.~CCARRnN 
P\JASA/G~FC 

W. [" MCCOY 
NSWC 

rl'R~NK ~CGARRY 

NASA/GSFC 

MARY ANN MCG~RRY 
YI'T'RJ 

nA~lF.1.J MCGnV€RlIl 
Jr'AA 'T'e:r.H CEN'T'ER 

lTOHl'J MCLJ1:00 
\TE~ PRDPULSION LAB 

~DWARO f\1F:DEIROS 
r:sc 

REG ME~snN 
COMPUT~R TECHNTCAL Assnc 

MICHAEL MELCMI"RRE 
~URROUGHS CORP 

RORERT MF.MBRTNn 
SINGER cn 

VICTnRTA MENOENHALt 
NAVAL SURFACE WEAPONS CTR 

PHIL MERWART~ 
NASA/GSFC 

MARY LOU MTDOLPTON 
F'CC 



ATTENDANCE LIST 1984 

'rIM ~ILES 
U.S.DEPT OF COMMERCE 

WARREn MILLER 
esc 

RAKESH MITAL 
esc 

KAREN MOE 
~ASA/GSFC 

S. MOHAN'1'y 
"'I'l'R~ CORP 

EILEEN /liUNOAY 
esc 

ROJ:\ERT MURPHY 
NASA/GSFC 

MARY MYERS 
RURRrh.l(;HS ~ORP 

PHTLIP MYERS 
esc 

AHMEO t.1AnEEM 
MITRF. CORP 

MATT NAD~LMAN 
esc 

nAVI£) !ltAOOLNl\ 
NSA 

OEJ:\RA NAoor~jlJA 

~S~ 

.TOE NAPt<!TRI 

RU~T I-JF.WLIN 
OM5sn 

A-6 

ED NG 
JET PROPULSION LAB 

ROBERT NOONAN 
WITJLIAM & MARY 

nR.A.F.NORCID 
NAVAL RESEARCH LAB 

JANE OHLMACHER 
SOCIAL SECURITY ADMIN 

t). O'N~IL 
RELL LABS 

JERRY PAGE 
esc 
ROGER PANARA 
PAOC/COEE 

NIKKt PANLILTO-YAP 
UNIV OF' MD 

PAUL PASHBY 
~JASA/G~FC 

T€RESA PASSALACQUA 
CENSUS BUREAU 

MICHAE~ PAST~Q~AK 

NAVAL SURFAe~ WEAPONS CTR 

OEBA PAT~'AIK 
ONTV OF' "'0 

RAYMON.., PAUL 
NAVAL SEA SYST~MS eOMMANn 

'JEONIE PEI\4P.YJ:::Y 
PJ:::MNEY A5SnCTA'1'ES 



ATTENDANCE LIST 1984 

r)OIJv Y PERK HIS 
"'ASA/GSF~ 

GlnVAN"lI PERRON~ 
MARTIN MnRJeTTA AEROSPACP. 

KARJ,J PF:TP.R~ 
ftJASA/GSf'C 

B,JAMt: PF.::TERSO~T 

AUTOMETR'I':C IMC 

JOHN PtETRns 
MITRE CORP 

MICHAET. PLF.:TT 
esc 

WILL!AM P05THUMA 
NASA/GSFC 

WILLIAM. POW 

DAVID PRF:STOfl! 
tI'rRY 

OQUGLASS PUGH 
IITRI 

nOUGLAS PU'rM~N 
OSM 

LARRY PUTMAN 
OSM. 

,JOHN QlJANN 
NASA/GSf'C 

THOMAS QUINORY 
001) PESO 

CONNIE RAMSEY 
UNlV OF' MARYLA~D 

A-7 

,JAMES RAMSF:1 
fJNIV OF" \10 

OR,en RANG 
HONEVWP.LTJ 

GEORGE RATTE 
"SOA-ARS 

JOHN RP.ODI"'G 
F'EDSTI'4/CAA 

OONA110 Rf.IFER 
REIF~R CONSULTANTS INC 

PAT RINN 
FCC 

1')0'" RQRBINS 
NSA 

qI~HARn ROBINS"N 
MITRE ~ORP 

H, DEITER ROMBACH 
UHIV OF' MO 

JORGE ROMEIJ 
IITRT 

RO~ERT ROSSlfIJ 
GENERAt ELECTRTC cn 

nAN ROY 
CENTURY CQMPUTTNG 

,JOYCE RUF:'l:HGER 
MCCOHEp.J &. ASSl')C 

STEVr:: RUGALA 
F'CC 

ROMATNJ!: RUPP 
RURRour;HS CORP 

VINCfE1\lT RUPI')LO 
AA"'Kf:l:RS TRTJST co 



ATTENDANCE LIST 1984 

llOl\N SANRO~N 
NASA/G~FC 

r.ATHRYN ~AVOLAIN 
qETJL LI\BS 

qOB SCf.tW~NK 

"'ASA/G~f'C 

RICHA~n SEtd3V 
ItNtv OF' MO 

F::D SF::lr,EWITZ 
f.JASA/G«;fC 

Jl:DMO~O sr=:I\l'" 
~ASA/Lf4NGLEY 

PA"L S~RAFTN 
F.:G&G 

SlTdlA SHE1?PARr, 
CO~PUT~R TECH ASAOC 

AR~Of.JD SMITH 
MARTIN MARtETTA AEROSPAC~ 

,JOHN SMITH 
NAVAL SURFACE WEAPO~S eTR 

OLtVF'R SMITH 
EG & G 

PATRtCTA SMITH 
flJSWC 

GLF.NI\1 C;NVDER 
esc 

~ARIA SO 
NASA/G5FC 

l')AVln SOLO\1A~ 

':SC 

A-8 

nU~NE: ~OSKEY 
esc 

C.B.~P~NCE 
esc 

AL S'l'A~E"JT 
PRe SY~T~MS SE~V1CE 

"'IKE STARK 
NASA/GSF 

JOOY STEtNBACH~R 
t,lE'" PRnPtTLSlnllS LAB 

RARBARA ST'1NE 
PRC SY~TF.MS SERVICE 

RAY SUr.HY 
~SA 

STF.VE SUl')OTTH 
GSC 

,JUOIN SUKRI 
UNtV Or;' PtfD 

RORERT S.IJM 
UNIV OF' tLLINors 

STF.VE SWAR'1'Z 
F'CC 

Ptf. r .. ISA SVLLA 

OERRA ~Y"'O"T 
~JE'" PRnpnLSIOf.J LAB 

PAI1t" S7.UJ.lEWSKI 
nRAPER LABS 

N.TAMARCHENKO 
DATA GENERAL cnRP 

KE1JI TASAKI 
NASA/GSFC 



ATTENDANCE LIST 1984 

J(E"'NEr~ TOM 
ARINC 

CAROL OR! 
FCC 

,JOHN U't'Z 
EG " G 

ALAN VAN BOVEN 
GT~ SYSTEMS 

JON VAt/ETT 
"'A~A/GSFC 

~A"'CY VEILfJON 
CSC 

SUSAN VOIGT 
MASA/LANGLEY 

nOLORES WALLACF: 
NAT ~U~EAU OF STANDARDS 

DAVID W£TSS 
US HAVAL RESEARCH {JAS 

PET€R WEISS 
COMSAT 

LT.GREG WELZ 
AFSTC/vLC 

MARILEP.: WHEATON 
AEROSPACF. CORP 

A-9 

KEN WILLtAMS 
PLANNI~G RF.SF.ARC~ CORP 

~TF.VF: l}1ILLI AMS 
TRW 

RAY WOtl VF:RTO'" 
lIT ~RnGRAMMTNr. TECH CTR 

ALYCE WO~G 
FED aVIATION AOMTN 

CHARL€S YOUMAN 
~EY ENTERPRISES 

ANnREW ynUNG 
LOCKHi.:F.D 

TA:nN YOUllfG 
REIF€R CnNSULTANTS INC 

tARRY ZET.GF.N~USS 
~ASA/G~FC 

~ARV ZELKOWITZ 
tJNIV OF MARlCLAM[) 

PRANAS ZUNOE 
GEORGIA TECH UNIV 

ART ZY<;IF:LBAUM 
JET PR~PULSION LA8 



STANDARD BIBLIOGRAPHY OF SEL LITERATURE 

The technical papers, memorandums, and documents listed in 

this bibliography are organized into two groups. The first 

group is composed of documents issued by the Software Engi

neering Laboratory (SEL) during its research and development 

activities. The second group includes materials that were 

published elsewhere but pertain to SEL activities. 

SEL-ORIGINATED DOCUMENTS 

SEL-76-00l, Proceedings From the First Summer Software Engi
neering Workshop, August 1976 

SEL-77-00l, The Software Engineering Laboratory, 
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May 
1977 

SEL-77-002, Proceedings From the Second Summer Software En
gineering Workshop, September 1977 

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu 
and D. S. Wilson, September 1977 

SEL-77-004, GSFC NAVPAK Design Specifications Languages 
Study, P. A. Scheffer and C. E. Velez, October 1977 

SEL-78-00l, FORTRAN Static Source Code Analyzer (SAP) Design 
and Module Descriptions, E. M. O'Neill, S. R. Waligora, and 
C. E. Goorevich, February 1978 

SEL-78-003, Evaluation of Draper NAVPAK Software Design, 
K. Tasaki and F. E. McGarry, June 1978 

SEL-78-004, Structured FORTRAN Preprocessor (SFORT) 
PDP-ll/70 User's Guide, D. S. Wilson and B. Chu, September 
1978 

SEL-78-005, Proceedings From the Third Summer Software Engi
neering Workshop, September 1978 

SEL-78-006, GSFC Software Engineering Research Requirements 
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978 

SEL-78-007, Applicability of the Rayleigh Curve to the SEL 
Environment, T. E. Mapp, December 1976 

B-1 



SEL-7S-102, FORTRAN Static Source Code Analyzer Program 
(SAP) User's Guide (Revision 1), W. J. Decker and 

W. A. Taylor, September 1982 

SEL-79-001, SIMPL-D Data Base Reference Manual, 
M. V. Zelkowitz, July 1979 

SEL-79-002, The Software Engineering Laboratory: Relation
ship Equations, K. Freburger and V. R. Basili, May 1979 

SEL-79-003, Common Software Module Repository (CSMR) System 
Description and User's Guide, C. E. Goorevich, A. L. Green, 
and S. R. Waligora, August 1979 

S~L-79-004, Evaluation of the Caine, Farber, and Gordon Pro
gram Design Language (PDL) in the Goddard Space Flight Cen
ter (GSFC) Code S80 Software Design Environment, 
C. E. Goorevich, A. L. Green, and W. J. Decker, September 
1979 

SEL-79-00S, Proceedings From the Fourth Summer Software En
gineering Workshop, November 1979 

SEL-SO-001, Functional Requirements/Specifications for 
Code SSO Configuration Analysis Tool (CAT), F. K. Banks, 
A. L. Green, and C. E. Goorevich, February 19S0 

SEL-SO-002, Multi-Level Expression Design Language
Requirement Level (MEDL-R) snstem Evaluation, W. J. Decker 
and C. E. Goorevich, May 19S 

SEL-SO-003, Multimission Modular S acecraft Ground Su ort 
Software System (MMS GSSS) State-of-the-Art Computer Systems/ 
Compatibility Study, T. Welden, M. McClellan, and 
P. Liebertz, May 19S0 

SEL-SO-OOS, A Study of the Musa Reliability Model, 
A. M. Miller, November 19S0 

SEL-dO-006, Proceedings From the Fifth Annual Software Engi
neering Workshop, November 19S0 

SEL-SO-007, An Appraisal of Selected Cost/Resource Estima
tion Models for Software Systems, J. F. Cook and 
F. E. McGarry, December 1980 

SEL-SO-104, Configuration Analys!s Tool (CAT) System De
scription and User's Guide (Revi~ion 1), W. Decker and 
W. Taylor, December 19~2 

B-2 



SEL-81-00ti, Software Engineering Laboratory (SEL) Document 
Library (DOCLIB) System Description and User's Guide, 
W. Taylor and W. J. Decker, December 1981 

SEL-81-00b, Cost and Reliability Estimation Models (CAREM) 
User's Guide, J. F. Cook and E. Edwards, February 19B1 

SEL-81-009, Software Engineering Laboratory Programmer Work
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry, 
March 1981 

SEL-~l-Oll, Evaluating Software Development by Analysis of 
Change Data, D. M. Weiss, November 1981 

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri
bution Over the Life of Medium Scale Software Systems, G. o. 
Picasso, December 1981 

SEL-Bl-013, Proceedings From the Sixth Annual Software Engi
neering Workshop, December 1981 

SEL-81-014, Automated Collection of Software Engineering 
Data in the Software Engineering Laboratory (SEL) , 
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981 

SEL-81-101, Guide to Data Collection, V. E. Church, 
D. N. Card, F. E. McGarry, et al., August 1982 

SEL-81-102, Software Engineering Laboratory (SEL) Data Base 
Organization and User's Guide Revision 1, P. Lo and 
D. Wyckoff, July 1983 

SEL-81-104, The Software Engineering Laboratory, D. N. Card, 
F. E. McGarry, G. Page, et al., February 1982 

SEL-81-107, Software Engineering Laboratory (SEL) Compendium 
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith, 
February 1982 

SEL-81-110, Evaluation of an Independent Verification and 
Validation (IV&V) Method0109~ for Flight Dynamics, G. Page 
and F. McGarry, December 198 

SEL-81-203, Software Engineering Laboratory (SEL) Data Base 
Maintenance System (DBAM) User's Guid~ and System Descrip
tion, P. Lo, June 1984 

SEL-81-205, Recommended Approach to Software Development, 
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983 

B-3 



SEL-82-00l, Evaluation of Management Measures of Software 
Development, G. Page, D. N. Card, and F. E. McGarry, 
September 1982, vols. 1 and 2 

SEL-82-002, FORTRAN Static Source Code Analyzer Program 
(SAP) System Description, W. A. Taylor and W. J. Decker, 
August 1982 

SEL-82-003, Software Engineering Laboratory (SEL) Data Base 
Reporting Software User's Guide and System Description, 
P. Lo, September 1982 

SEL-82-004, Collected Software Engineering Papers: Vol
ume 1, July 1982 

SEL-82-007, Proceedings From the Seventh Annual Software 
Engineering Workshop, December 1982 

SEL-82-l05, Glossary of Software Engineering Laboratory 
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder, 
October 1983 

SEL-82-206, Annotated Bibliography of Software Engineering 
Laboratory Literature, D. N. Card, Q. L. Jordan, and 
F. E. McGarry, November 1984 

SEL-a3-00l, An Approach to Software Cost Estimation, 
F. E. McGarry, G. Page, D. N. Card, et al., February 1984 

SEL-83-002, Measures and Metrics for Software Development, 
D. N. Card, F. E. McGarry, G. Page, et al., March 1984 

SEL-83-003, Collected Software Engineering Papers: Vol
ume II, November 1983 

SEL-83-00G, Monitoring Software Development Through Dynamic 
Variables, C. W. Doerflinger, November 1983 

SEL-83-007, Proceedings From the Eighth Annual Software En
gineering Workshop, November 1983 

SEL-83-104, Software Engineering Laboratory (SEL) Data Base 
Retrieval System (DARES) User's Guide, T. A. Babst, 
w. J. Decker, P. Lo, and W. Miller, August 1984 

B-4 



SEL-83-l05, Software Engineering Laboratory (SELl Data Base 
Retrieval System (DARES) System Description, P. Lo, 
w. J. Decker, and W. Miller, August 1984 

SEL-84-00l, Manager's Handbook for Software Development, 
W. W. Agresti, V. E. Church, and F. E. McGarry, April 1984 

SEL-84-002, Configuration Management and Control: Policies 
and Procedures, Q. L. Jordan and E. Edwards, December 1984 

SEL-84-003, Investigation of Specification Measures for the 
Software Engineering Laboratory (SEL), W. Agresti, 
V. Church, and F. E. McGarry, December 1984 

SEL-RELATED LITERATURE 

Agresti, W. 
Computer Sciences Corpora-

t10n, CSC 

lAgresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas
uring Software Technology," Program Transformation and Pro
gramming Environments. New York: Springer-Verlag, 1984 

2Ba iley, J. W., and V. R. Basili, "A Meta-Model for Soft
ware Development Resource Expenditures," Proceedings of the 
Fifth International Conference on Software Engineering. 
New York: Computer Societies Press, 1981 

2Bas ili, V. R., "Models and Metrics for Software Manage
ment and Engineering," ASME Advances in Computer Technology, 
January 1980, vol. 1 

Basili, V. R., nSEL Relationships for programming Measure
ment and Estimation," University of Maryland, Technical Mem
orandum, October 1979 

Basili, V. R., Tutorial on Models and Metrics for Software 
Management and Engineering. New York: Computer Societies 
Press, 1980 (also designated SEL-80-008) 

2Bas ili, V. R., and J. Beane, "Can the Parr Curve Help 
With Manpower Distribution and Resource Estimation Prob
lems?", Journal of Systems and Software, February 1981, 
vol. 2, no. 1 

2Bas ili, V. R., and K. Freburger, "Programming Measurement 
and Estimation in the Software Engineering Laboratory," 
Journal of Systems and Software, February 1981, vol. 2, no. 1 

B-5 



IBasili, V. R., and B. T. Perricone, "Software Errors and 
Complexity: An Empirical Investigation,1I Communications of 
the ACM, January 1984, vol. 27, no. 1 

2Basili, V. R., and T. Phillips, IIEvaluating and Com
paring Software Metrics in the Software Engineering Labora
tory,1I Proceedings of the ACM SIGMETRICS Symposium/ 
Workshop: Quality Metrics, March 1981 

IBasili, V. R., R. W. Selby, and T. Phillips, IIMetric 
Analysis and Data Validation Across FORTRAN Projects,1I IEEE 
Transactions on Software Engineering, November 1983 

Basili, V. R., and J. Ramsey, Struc~ural Coverage of Func
tional Testing, University of Maryland, Technical Report 
TR-1442, September 1984 

Basili, V. R., and R. Reiter, IIEvaluating Automatable Meas
ures for Software Development,1I Proceedings of the Workshop 
on Quantitative Software Models for Reliability, Complexity 
and Cost, October 1979 

IBasili, V.R., and D. M. Weiss, A Methodology for Col
lecting Valid Software Engineering Data, University of 
Maryland, Technical Report TR-1235, December 1982 

Basili, V. R., and M. V. Zelkowitz, IIDesigning a Software 
Measurement Experiment,1I Proceedings of the Software Life 
Cycle Management Workshop, September 1977 

2Bas il i , V. R., and M. V. Zelkowitz, IIOperation of the 
Software Engineering Laboratory,1I Proceedings of the Second 
Software Life Cycle Management Workshop, August 1978 

2Basili, V. R., and M. V. Zelkowitz, IIMeasuring Software 
Development Characteristics in the Local Environment,1I 
Computers and Structures, August 1978, vol. 10 

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale 
Software Development,1I Proceedings of the Third Interna
tional Conference on Software Engineering. New York: Com
puter Societies Press, 1978 

2Basili, V. R., and M. V. Zelkowitz, liThe Software Engi
neering Laboratory: Objectives,1I Proceedings of the 
Fifteenth Annual Conference on Computer Personnel Research, 
August 1977 

B-6 



2Chen , E., and M. V. Zelkowitz, "Use of Cluster Analysis 
To Evaluate Software Engineering Methodologies," Proceed
ings of the Fifth International Conference on Software 
Engineering. New York: Computer Societies Press, 1981 

IDoerflinger, C. W., and V. R. Basili, "Monitoring Soft
ware Development Through Dynamic Variables," Proceedings of 
the Seventh International Computer Software and Applications 
Conference. New York: Computer Societies Press, 1983 

Higher Order Software, Inc., TR-9, A Demonstration of AXES 
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also 
designated SEL-77-005) 

Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex
perience With Independent Verification and Validation," 
Proceedings of the Eighth International Computer Software 
and Applications Conference, November 1984 

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL 
Software Development Data, Data and Analysis Center for 
Software, Special Publication, May 1981 

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen
dium, Data and Analysis Center for Software, Special Publi
cation, April 1981 

2ze lkowitz, M. V., "Resource Estimation for Medium Scale 
Software Projects," Proceedings of the Twelfth Conference on 
the Interface of Statistics and Computer Science. 
New York: Computer Societies Press, 1979 

lzelkowitz, M. V., "Data Collection and Evaluation for Ex
perimental Computer Science Research," Empirical Foundations 
for Computer and Information Science (proceedings), 
November 1982 

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of 
a Software Measurement Facility," Proceedings of the Soft
ware Life Cycle Management Workshop, September 1977 

IThis article also appears in SEL-83-003, Collected Soft
ware Engineering Papers: Volume II, November 1983. 

2This article also appears in SEL-82-004, Collected Soft
ware Engineering Papers: Volume I, July 1982. 

B-7 




