
SOFTWARE ENGINEERING LABORATORY SERIES SEL-85-002

ADA TRAINING EVALUATION
AND RECOMMENDATIONS
FROM THE GAMMA RAY

OBSERVATORY ADA
DEVELOPMENT TEAM

INASA-TM-88593) Ada T B A I N I N G E V A L U A T I O N AND N86-J9S82
R E C O M M E N D A T I O N S FBCM THE G A M M A BAY "
(IBSERVATOBY Ada D E V E L O P M E N T T E A M (N A S A)
-2 p HC A03/MF ft01 CSC1 09B Onclas

G3/61 05493

OCTOBER 1985

f\JASA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt Maryland 20771

https://ntrs.nasa.gov/search.jsp?R=19860010511 2020-03-20T15:10:42+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42842002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SOFTWARE ENGINEERING LABORATORY SERIES SEL-85-002

ADA TRAINING EVALUATION
AND RECOMMENDATIONS
FROM THE GAMMA RAY

OBSERVATORY ADA
DEVELOPMENT TEAM

OCTOBER 1985

NASA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administration/

Goddard Space Flight Center (NASA/GSFC) and created for the

purpose of investigating the effectiveness of software engi-

neering technologies when applied to the development of ap-

plications software. The SEL was created in 1977 and has

three primary organization members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of re-

ports that includes this document.

Contributors to this document include

Bob Murphy (Goddard Space Flight Center)
Mike Stark (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 552
NASA/GSFC
Greenbelt, Maryland 20771

11

0064

ABSTRACT

The Ada training experiences of the Gamma Ray Observatory

Ada development team are related, and recommendations are

made concerning future Ada training for software devel-

opers. Training methods are evaluated; deficiencies in the

training program are noted; and a recommended approach, in-

cluding course outline, time allocation, and reference

materials, is offered.

0064

TABLE OF CONTENTS

Executive Summary v

Section 1 - Introduction 1-1

Section, 2 - Training Method Evaluation 2-1

2.1 Grady Booch Textbook 2-1
2.2 Alsys Videotapes 2-2
2.3 Process Abstraction Method Seminar 2-4
2.4 Computer Thought Corporation Tutorial 2-6
2.5 Ada Syntax Seminar 2-8

Section 3 - Conclusions From GRO Project Training. . . . 3-1

Section 4 - Recommended Approach to Ada Training 4-1

4.1 Course Outline 4-1
4.2 Time Allocation 4-3
4.3 Training References 4-4

Appendix A - Contents of Sottware Engineering With Ada by
Graay Booch

Appendix B - Alsys Inc., Videotape Topics

Appendix C - Computer Thought Corporation Disk
Series Topics

References

Standard Bibliography of SEL Literature

IV

0064

EXECUTIVE SUMMARY

This report documents the experiences of the Gamma Ray Ob-

servatory (GRO) Ada development team regarding Ada training

for software developers. The conclusions can be summarized

as follows:

• Alsys, Inc., has prepared excellent training ma-

terial both on videotape and for computer-aided

instruction.

• Sufficient initial training can be given in 2 man-

months. Expert support would still be needed as

projects get underway. Less than 2 man-months may

be inadequate.

• Intensive courses are less useful than spreading

the same effort over a longer period of time. It

is recommended that 24 hours be devoted solely to

lecture, allocated over a 2-month period. This

will allow sufficient time for studying and prac-

ticing with a compiler.

• Lectures should be arranged into five main parts:

Introduction--Provides, in a single lecture,

background on why and how Ada was developed

Language Basics—Teaches enough of the Ada

language features to enable the trainee to

write nontrivial programs; provides the neces-

sary background for discussing the software

development process

Software Structure and Compilation—Examines

the use of program libraries and separate com-

pilation units; shows how the DEC Ada Compila-

tion System can be used for configuration

control

0064

Software Engineering in Ada—Introduces design

methodologies and shows how Ada is used to

support software engineering concepts

Advanced Ada Features—Teaches the remaining

language features, with special attention to

generics, exceptions, tasking, land input/output

Ada training requires hands-on practice in conjunc-

tion with any lecture course.

A practice problem is a useful reinforcement imme-

diately following a course because it allows devel-

opers to integrate the concepts that they have been

taught. This practice problem should be done as a

team project with each team member's effort being 1

to 2 man-months.

VI

0064

SECTION 1 - INTRODUCTION

Ada is a software tool with the potential to reduce software

life-cycle costs substantially. To exploit this potential

to the fullest, it is extremely important that programmers

receive the best possible training in use of the language.

This document presents the views and recommendations of the

Gamma Ray Observatory (GRO) Ada development team on the

various training methods available during their training

program. It also presents a final recommendation on an op-

timal training program to ensure the proper use of the Ada

programming language.

The GRO Ada development team consists of four National Aero-

nautics and Space Administration (NASA) employees and three

employees of Computer Sciences Corporation (CSC). Two of

the NASA members are in the Data Systems Technology Division

(Code 520), and two are in the Flight Dynamics Division

(Code 550). The University of Maryland is also involved

wich the project in an advisory capacity.

The training program consisted of four main training

methods. None of the team members had previous experience

with Ada, so first on the agenda was Grady Booch's booK

Software Engineering With Ada (Reference 1). Videotaped

tutorials made by Alsys, Inc. (Reference 2) were then viewed

over a 40-hour period in a classroom environment in which

there was opportunity for discussion. The videotapes were

followed by a 24-hour seminar on a design methodology called

the Process Abstraction Method (Reference 3) presented by

George Cherry of Language Automation 'Associates. The last

step was hands-on coding using Dec's Ada compiler.

Ada is a registered trademark of the U.S. Government (Ada
Joint Program Office).

1-1

0064

The coding was an implementation of an Electronic Message

System (EMS) that was required to maintain a data base of

valid users and a data base of groups of users, allow a

valid user to log on and read mail, allow mail to be sent to

a single user or to each user in a group, and allow an

authorized user to modify the data bases. The program was

about 5706 source lines of code, 1400 of which were execut-

able, and required a total of 1336 hours of effort to com-

plete.

In addition to this training, several team members made use

of other training methods such as Computer Thought Corpora-

tion's tutorial series (Reference 4) for the IBM PC and a

course on Ada syntax taught by George Cherry (Reference 5).

This document is based primarily on a survey of the seven

team members; however, several other NASA employees took

part in the survey when it applied to training methods with

which they were familiar.

1-2

0064

SECTION 2 - TRAINING METHOD EVALUATION

This section reviews each of the training methods that were

available to the GRO Ada development team. A description of

each training method is presented, followed by a summary of

its strengths and weaknesses, and concluding with a recom-

mendation for its use.

2.1 GRADY BOOCH TEXTBOOK

Description

Software Engineering With Ada, by Grady Booch is a compre-

hensive, 500-page textbook covering Ada syntax and an intro-

duction to object-oriented design. Grady Booch, an Ada

expert, has published many articles on Ada and software de-

sign methodologies. The book's main topics are listed in

Appendix A.

Strengths

This textbook received favorable reviews from all seven team

members. The book covers most aspects of Ada syntax well

and was considered by all but one person to be a good intro-

duction to object-oriented design with Ada. All but one

person also found it to be a good reference after training

was complete. This one person found it too wordy to be used

as a reference. Packaging, abstraction, and types were the

topics most survey members found were covered well.

Weaknesses

Two people felt that a shortcoming was an emphasis on design

examples at the expense of more concrete examples using in-

dividual features. Generics, input/output (I/O), and con-

current processing were topics mentioned as not being well

covered.

2-1

0064

Recommendation

The group was split on the question of the level of complex-

ity of this book. Half thought it introductory, whereas

half though it intermediate. The book could really be used

either way. This book was the team's first serious exposure

to Ada and was very useful in that capacity. The structure

of the book makes it easy to follow, the syntax of the lan-

guage is covered well, and the book also provides an intro-

duction to object-oriented design. At the same time, its

deptn of coverage, especially of syntax issues, makes it

very useful to someone already familiar with Ada who is

looking for a review or a better understanding of the lan-

guage. As mentioned earlier, the book could also be used

successfully as a reference.

2.2 ALSYS VIDEOTAPES

Description

The 27 Alsys, Inc., videotapes (and disk) tutorials cover

all facets of Ada syntax. The lessons are taught by Jean

Ichbiah, Robert Firth, and John Barnes, who were on the

original Ada design team. The tapes average about 39 min-

utes each, ranging from 25 to 52 minutes. Appendix B lists

the topics covered. A three-volume transcript of the tapes

is available from Alsys as either preparatory or review

material. Alsys also produces a course of computer-aided

instruction on Ada (Reference 6) that is available for the

DEC VAX or as a series of disks for the IBM PC. This course

can be used as a companion to the videotapes or as a sep-

arate training method.

Strengths

These tapes, which received excellent reviews from the eight

persons surveyed, are a very good method for learning Ada

syntax. Ichbiah, Firth, and Barnes possess a thorough

2-2

0064

Knowledge of Ada, and this is evident in the tapes. Their

examples are clear and appropriate to the topic at hand, and

their witty remarks liven up what could otherwise be dry

subjects. Almost all of those surveyed felt that all of the

topics were well covered. Singled out as especially good

lessons were the tapes on the various data types and on

tasking.

Weaknesses

The main area of concern about the tapes was the coverage of

the organization of large projects into packages and tasks.

Several people felt that more time could have been spent on

library units and the overall structure of how a large Ada

project is coded. The tapes use small examples to illus-

trate individual features, which is good for the sake of

simplicity; however, one large example should have been de-

veloped as well.

A second area of concern was the lack of interaction in-

herent in the medium in which the lessons are presented.

Although the speakers try to anticipate any questions, es-

pecially in the last two tapes, other questions are bound to

arise. Some of these questions can be answered by rewinding

the tapes and reviewing the area in question; however, an-

swering the remaining questions requires the presence of a

person who is experienced in Ada.

A lack of interaction can also cause a viewer to lose in-

terest in what he or she is watching. The Alsys course for

the PC or the VAX is a possible solution to this. Only a

demonstration disk of this series of 27 lessons was avail-

able to the development team, but it did appear to be of the

same high quality as the videotapes, with the added feature

of interactive exercises. At various locations in this

series, the user is prompted to type in answers varying in

length from one line of code to a whole section of code.

2-3

0064

Incorrect answers or parts of answers are then highlighted

in red, and the user is prompted to correct these errors.

If, after several tries, the user is still unable to answer

correctly, the computer will furnish the correct answer and

an explanation. This course would seem to be very useful as

a companion to the videotapes. The one drawback of the

series is the price: $6000 for the PC version and $9800 for

the VAX 11/780 version. The VAX version also requires the

use of a VT240 or VT241.

Recommendations

The Alsys videotapes should definitely be used in an Ada

training program as a method of learning Ada syntax. The

GRO Ada development team viewed them in a classroom setting

over a 1-week period, with a person experienced in Ada pres-

ent to answer questions. Although the opportunity for dis-

cussing problems with the rest of the class and with an Ada

expert was very helpful, the time period allotted to view

the tapes was much too short, and a lack of hands-on exer-

cises was detrimental. It would be better if a day of tape

viewing was alternated with a day of hands-on exercises

emphasizing the tapes seen the previous day. It may also be

necessary to extend the amount of time for viewing the

tapes. The team averaged about five or six tapes each day,

which was too much to be absorbed in that period.

The Alsys course for the PC or the VAX seems very good, and

the interactive aspect is beneficial. The course may be

useful as a source of exercises on the days between video-

tape viewings.

2.3 PROCESS ABSTRACTION METHOD SEMINAR

Description

The Language Automation Associates Advanced Ada Course is a

3-day seminar in a classroom environment. The course is

2-4

0064

taught by George Cherry and covers his Process Abstraction

Method (PAM) of design and three examples using this

method, it assumes a good knowledge of Ada syntax.

Strengths

PAM is an excellent method of design for programs using a

large number of concurrent processes. It presents a simple

yet comprehensive way of breaking down large problems into a

manageable design that uses tasking correctly and effi-

ciently.

Weaknesses^

The team members had several complaints about the way in

which PAM was presented. One complaint was that the course

was very narrow in scope, covering only one design methodol-

ogy; however/ that is all the course is intended to cover.

On the other hand, considering its scope, the course is

spread out over too long a period of time; it could easily

have been taught in 1 day. If more time were needed, it

should have been spent doing an interactive example using

PAM, developed by the class under the instructor's supervi-

sion. Instead, the instructor spent the last 2 days review-

ing three examples that had already been developed. This

was very tedious, and not very beneficial.

Several people also felt that the environment of the class-

room was not conducive to interaction between students and

the teacher. This severely reduced the benefits of learning

in a classroom setting.

2-5

0064

Recommendation

Despite its shortcomings, this course should be attended by

Ada trainees. It is very helpful in learning the complex

and crucial issues of tasking in Ada. However, the length

of the course, which should include an interactive example,

should be a maximum of 2 days. (The format of the course

has recently been changed to 2 days of lecture on PAM after

3 days of lecturing on Ada syntax.)

2.4 COMPUTER THOUGHT CORPORATION TUTORIAL

Description

Computer Thought Corporation's disk series of Graphics En-

hanced Ada Tutorials (GREAT) consists of computer-aided in-

struction for the IBM PC, using color graphics. The

five-disk, menu-driven course provides the background of Ada

and a general outline of Ada syntax. It would take approxi-

mately 40 to 50 hours of use to complete these tutorials. A

list of the topics covered in the series is presented in

Appendix C.

Strengths

Most topics on these disks were capably covered, and a few

lessons were presented noticeably well. A broad outline of

the history of Ada and its key features, the majority of the

first disk, was put forth in a very clear and interesting

manner. The same could also be said for the coverage of the

flow of control in such things as "if" statements, "case"

statements, and loops. The dynamic nature of the graphics

provides an excellent method for presenting this subject.

However, the "if" statement and the loop are language con-

structs that are not particular to Ada, and most people who

have had any training in computer science would already have

a good understanding of these concepts. The benefits from

2-6

0064

these lessons would therefore be limited to those with mini-

mal training in computer languages.

Weaknesses

The development team had several complaints about this

training method. The biggest was that it was not interac-

tive. It would have been much more beneficial if the user

had to type in answers occasionally instead of merely step-

ping through examples. An interactive approach to this

training method would keep the user more involved and,

therefore, more attentive to the subject being taught. The

tutorial basically involves reading a book via the PC, and

actually just reading the book without the computer would be

preferable. Not only is a book less expensive, but it is

also easier to access and requires less effort to refer back

to earlier lessons.

The use of only one large, complex example throughout much

of the tutorial was another complaint. Different sections

of a message switch problem are used to exemplify most of

the Ada concepts. Although this problem uses all of the

unique aspects of Ada (such as generics and tasking) and

provides an example of developing a large-scale program, it

would have been better to use many different, smaller ex-

amples, for two reasons: First, a variety of examples is

more interesting. Second, given the nature of the course's

medium, it is quite possible that a user will view one disk

and not see the following disk for several days. The user

becomes annoyed at having to go back 'and review the explana-

tion of the only available example every time he/she

starts. Using smaller, self-contained examples, as well as

the message switch example, would remedy this problem.

The last major complaint about this training method is that,

because of the medium, some topics are so fragmented that

2-7

0064

they become confusing. The best example of this is the cov-

erage of objects. Because only a limited number of words

can fit on the screen at one time, ideas that should be in

one place end up on several different screens. Although it

is possible to move back and forth between screens, this can

become confusing and cumbersome.

Recommendation

The development team does not recommend that the Computer

Thought Corporation Ada tutorial be used as a main method of

training Ada programmers. It could, however, be useful as a

general overview for a person with no experience in Ada.

2.5 ADA SYNTAX SEMINAR

Description

The Language Automation Associates Introduction to Ada

Course is a 4-day seminar in a classroom environment. The

course is taught by George Cherry and covers all aspects of

Ada syntax.

Strengths

The classroom setting of this method is its strongest fea-

ture. The ability to ask questions of an experienced Ada

programmer while learning Ada is essential. Dr. Cherry com-

petently teaches a good introduction to Ada syntax and is

very enthusiastic about the subject. He uses many good ex-

amples illustrating almost all of the language's attributes.

Weaknesses

Although the examples are probably one of the course's

biggest plusses, they are also one of its biggest draw-

backs. Dr. Cherry spends too much time on examples. If he

were to cut out some of the unnecessary examples, the course

would be reduced to 3 days at most. (It should be noted

that, at GSFC, this course has in fact been reduced to

2-8

0064

3 days. It is now being taught as part of a 5-day course

that includes an introduction to Dr. Cherry's Process Ab-

straction Method.)

A second problem with the course was its coverage of

generics. The lesson was found to be too shallow for such a

new and important topic.

Recommendation

Although this course is good, the team feels that a training

program based on the Alsys videotapes would be better, pro-

viding they were taught in a classroom environment and aug-

mented by an Ada expert to answer questions. The videotapes

are just as good in content as the seminar and have two

other good features: first, they are cheaper; once they are

bought, there are no further expenses, whereas Dr. Cherry's

course must be paid for every time it is taught. Second,

providing an Ada expert is available on site to supervise

the class, it is much easier to schedule a class featuring

the videotapes, which are available at any time.

2-9

0064

SECTION 3 - CONCLUSIONS FROM GRO PROJECT TRAINING

The GRO Ada development team found the most helpful aspects

of the training in understanding Ada were (1) the discus-

sions in the training classes and in team meetings and

(2) the EMS practice problem. The chief drawback to the EMS

was the size of the practice problem. What is needed is a

smaller problem, but one that is not so trivial that con-

cepts such as packages and data abstraction are no longer

useful. The team designed the EMS with a user interface, a

name interface to control the user and group data bases, and

a mailbox interface to handle message traffic. The value of

the EMS as a training exercise would have been improved if

the group concept was eliminated. It would have simplified

both the name interface and the user interface, while pre-

serving the need to use packages and data abstraction.

The team found the following .aspects of Ada to be either

difficult or not sufficiently covered in the training:

• Input/Output (I/O)--Every training resource re-

viewed in Section 2 is sketchy on the working of I/O. This

is mainly because Ada was designed to be as machine inde-

pendent as possible, and efficient I/O is machine depend-

ent. I/O needs a better explanation than provided by any of

the classes or textbooks. Even the Ada Language Reference

Manual (Reference 7) does not cover everything that can

happen when differenc I/O packages are used together in the

same compilation unit. The best approach to learning I/O is

to practice as many operations in as many different combina-

tions as possible.

• Tasking--Tasking is covered in detail in all of the

training resources, but there are details that are left open

by the language standard that have to be tested by actually

running tasking applications. The select statement is an

3-1

0064

example. if there are multiple conditions, some compilers

will always handle the first one reached in the code,

whereas others will attempt to handle the selection process

fairly. The point is that these things need to be tried on

a computer. The tasking operations are, however, generally

presented more clearly than tne I/O, especially by

George Cherry.

• Generics—Generics are pretty straightforward in

theory but caused many problems in implementing the EMS.

These problems may disappear when the DEC production com-

piler is used rather then the test version. Generic pack-

ages have been instantiated to handle I/O, but generic

packages using all the different forms of generic parameters

have not actually been written.

• Data Types--Data typing presented no real problems

during the implementation of the EMS, wit the exception of

using the type "Name," which conflicted with the I/O proce-

dure "NAME." This, however, is an area that is not familiar

to people without a computer science background. Typing

supports software engineering concepts such as information

hiding (private types) and provides a protection mechanism

against unwanted operations. Types such as access types,

variant and discriminated records, and the unconstrained

array allow flexibility in implementation. In short, this

area needs special attention, not because it is overly dif-

ficult, but because there are a lot of important details and

benefits.

• Library Units and Library Structures—The concepts

of separate compilation and program libraries were covered

in the videotapes. The tapes did not, however, present the

actual implementation of a liorary structure and how it

would be used to support a large project. The DEC library

3-2

0064

structure is very sound; is straightforward and well de-

signed to support the configuration of large projects. Team

members therefore plan to prepare lectures and notes on the

DEC ACS system to supplement the videotapes.

3-3

0064

SECTION 4 - RECOMMENDED APPROACH TO ADA TRAINING

It is the opinion of the GRO Ada development team that the

Alsys videotapes were excellent, with the major drawbacks

being the short timespan spent viewing them and the lack of

practice using a compiler. It is therefore recommended that

a course be taught in a classroom environment and that it

consist of viewing the videotapes, discussing the tapes and

program problems, and listening to lectures covering meth-

odologies and DEC's Ada environment. The course should

finish with a larger problem that would allow the student to

use Ada's features on an application program rather than on

contrived examples. Group teaching is preferable to self

study.

4.1 COURSE OUTLINE

The development team feels that software engineering issues

should be discussed as soon as possible in the context of

Ada training. Only about half of the material should be

taught before software engineering issues are addressed.

The recommended training course can be summarized as follows;

Part 1 - Introduction

a. Purpose and history of Ada

b Lexical elements

Part 2 - Language Basics

a. Overview

b. Declarations and typing

1. Scalar types

2. Declarations

3. Array and record types

4. Derived types, subtypes, and operations

4-1

0064

c. Coding elements

1. Names

2. Expressions

3. Statements

d. Basics of program units

1. Subprograms

2. Packages
3. Tasks
4. The package TEXT_IO

Part 3 - Software Structure and Compilation

a. Overloading, scope, and visibility

b. Use of Ada libraries

1. Bottom-up construction from program li-

brary

2. Top-down construction using separate com-

pilation units

c. Use of DEC program libraries

Part 4 - Software Engineering in Ada

a. Introduction to design methodologies

1. Compilable design

2. Design methodologies

(a) Traditional methods

(b) Process abstraction

(c) Object-oriented design

D. Data abstraction and information hiding

1. Private and limited types

2. Sample problems using software engineer-

ing concepts and Ada

4-2

0064

Part 5 - Advanced Ada Features

a. Exceptions

b. Generic program units

c. Types and expressions

1. Review of types

2. Real-type modeling

3. Access types and allocators

4. Expressions

d. Tasking

1. Rendezvous mechanism

2. Implementation of task bodies

3. Task types

4. Example using PAM

e. Input/Output

1. DIRECT_IO

2. SEQUENTIAL_IO

f. Representation- and implementation-dependent

features including LOW_LEVEL_IO

4.2 TIME ALLOCATION

The amount of time needed to cover this material in lecture

is approximately 24 hours. This estimate is based on the

18-hour length of the Alsys videotapes plus 6 hours for the

material on methodologies and the DEC compiler.

The development team recommends that the material be spread

over a 2-montn period. Two 1.5-hour lectures per week will

satisfy this recommendation and will allow time for trainees

to study and to practice using the compiler between lectures.

4-3

0064

The five parts of the training course can then be divided

into lectures as follows:

Part 1 - Introduction 1 lecture

Part 2 - Language Basics 4 lectures

Part 3 - Software Structure and Compilation 3 lectures

Part 4 - Software Engineering in Ada 4 lectures

Part 5 - Advanced Ada Features 4 lectures

The last stage of training should be a practice project such

as the EMS. The project should be developed by a small

group of three or four people and should take from 4 to

8 weeks to complete. This allows the trainees to integrate

concepts that have been presented as separate topics.

4.3 TRAINING REFERENCES

The development team recommends that the following resources

oe used in Ada training:

• Software Engineering in Ada by Grady Booch (Refer-

ence 1)

• Alsys Inc., videotapes (Reference 2)

• Ada Language Reference Manual (LRM) (Reference 7)

These references should be used as follows throughout the

training course:

Part 1 - Introduction

Booch Ch. 1-4

Tape 1

LRM Ch. 1-2.9

Part 2 - Language Basics

Booch Ch. 6, 15

Tapes 2-8, 10-12

LRM Cn. 3.1-3.7, 4.1-4.7, 5, 6.1-6.5, 7.1-7.3, 14.3

4-4

0064

Part 3 - Software Structure and Compilation

Tape 14

LRM Ch. 6.6-6. 8, 10

Lecture notes

DEC documentation

Part 4 - Software Engineering in Ada

Booch Ch. 5, 20

Tape 13

LRM Ch. 7.4-7.6

Lecture notes

Part 5 - Advanced Ada Features

Booch Ch. 11, 14r 16, 17, 19

Tapes 9, 10, 15-24

LRM 3.2-3.4, 3.8, 4.5.7-4.10, 9, 11-14

"Booch1s textbook is a good reference as well as a good

teaching text. The chapters cited in the above outline are

especially useful, but the entire book is helpful as a ref-

erence.

Lecture notes need to be prepared on two major subject

areas. The first is the use of the DEC Ada Environment

(ACS); the second is methodologies. Members of the GRO Ada

development team and members of other Ada project teams at

GSFC have enough experience with the ACS to prepare lecture

material. In-house expertise is also available for prepar-

ing lectures on methodologies, but to give a wide enough

view here would be beyond the scope of this document.

George Cherry's process abstraction method is copyrighted,

so it is recommended that a one-half to full day course be

arranged with Dr. Cherry to give an overview of PAM. Uni-

versity of Maryland personnel could prepare lessons on soft-

ware engineering in general, with members of the GRO Ada

development team presenting what they have actually used on

4-5

0064

trie project. Outside sources should be used only when they

are necessary to fill in the gaps.

The end of initial training is not the end of learning about

Ada. When Ada is being introduced into an environment, it

is recommended that expert support be available to those who

have completed the initial training and are working on Ada

projects. This support can be provided by members of the

GRO Ada development team or by Adasoft, Inc., experts under

contract to Code 520.

4-6

0064

APPENDIX A - CONTENTS OF SOFTWARE ENGINEERING WITH ADA BY
GRADY BOOCH (REFERENCE 1)

Chapter 1 - The Problem Domain

• Introduction

• Software Crisis

• History of Ada's Development

Chapter 2 - Introducing Ada

• Software Development Methodologies

• Object-Oriented Design

• Ada Overview

Chapter 3 - Data Structures

• Design Problem #1

• Data Abstraction

• Design Problem #2

Chapter 4 - Algorithms and Control

• Subprograms

• Expressions and Statements

• Design Problem #2 (Continued)

Chapter 5 - Packaging Concepts

• Packages

• Generics

• Design Problem #3

Chapter 6 - Concurrent Real-Time Processing

• Tasks

• Exceptions and Low-Level I/O

• Design Problem #4

Chapter 7 - Systems Development

• I/O

• Programming in the Large

• Design Problem #5

A-l

0064

Chapter 8 - Programming Into Ada

• Ada Programming Support Environment

• Software Life Cycle

• Trends and Conclusions

Chapter 9 - Appendices

• Syntax Charts

• Style Guide

• Predefined Language Environment

• Attributes and Pragmas

A-2

0064

APPENDIX B - ALSYS INC.f VIDEOTAPE TOPICS

Tape 1 - Introduction

Tape 2 - A Simple Program

Tape 3 - Types A: Introduction to Types

Tape 4 - Types B: Types and Subtypes

Tape 5 - Composite Types A: Arrays and Records

Tape 6 - Composite Types B: Discriminants

Tape 7 - Classical Programming A: Names, Expressions, and

Statements

Tape 8 - Classical Programming B: Subprograms

Tape 9 - Access and Derived Types

Tape 10 - Numeric Types

Tape 11 - Program structure A: Visibility Rules

Tape 12 - Program Structure B: Packages

Tape 13 - Program Structure C: Private Types, Clauses

Tape 14 - Program Structure D: Separate Compilation

Tape 15 - Tasking A: Parallelism and Rendezvous

Tape 16 - Tasking B: The Select Statement

Tape 17 - Tasking C: Scheduling

Tape 18 - System-Dependent Programming A: Control of

Representation

Tape 19 - System-Dependent Programming B: Access to

Low-Level Features

Tape 20 - Exceptions A: Exception Handling

Tape 21 - Exceptions B: Programming With Exceptions

Tape 22 - Generic Units A: Introduction

B-l

0064

Tape 23 - Generic Units B: Programming With Generic Units

Tape 24 - Input/Output

Tape 25 - Conclusions

Tape 26 - Technical Questions

Tape 27 - General Questions

B-2

0064

APPENDIX C - COMPUTER THOUGHT CORPORATION DISK SERIES TOPICS

Disk 1 - Overview of Ada

• Example Overview

• Ada History

• Key Features

Disk 2 - Building and Using Ada Packages

• Package Structure

• Objects

• Types

• Subprogram Declarations

Disk 3 - Classical Programming in Ada

• Statements

• Control

• Exceptions

• Generics

• I/O Processing

Disk 4 - Concurrent Processing Using Ada Tasks

• Concurrency

• Tasking

• Termination

• Interrupts

• Pitfalls

Disk 5 - Summary of Advanced Ada Features

• Representation

• Low-Level I/O

• Other Languages

• Summary

C-l

0064

REFERENCES

1. G. Booch, Software Engineering With Ada, Menlo Park,
California: Benjamin/Cumraings Publishing Co., Inc., 1983

2. J. Ichbiah, J. Barnes, and R. Firth, "Ichbiah, Barnes,
and Firth on Ada," Alsys, Inc., Waltham, Massachusetts,
1983

3. G. rt. Cherry, "Advanced Software Engineering With Ada--
Process Abstraction Method for Embedded Large Applica-
tions," Language Automation Associates, Reston,
Virginia, 1985

4. Computer Thought Corporation, "Graphics Enhanced Ada
Training," Piano, Texas, 1985

5. G. W. Cherry, "Introduction to Ada for Software Engi-
neers," Language Automation Associates, Reston, Virginia
1984

6. Alsys, Inc., "Lessons on Ada," Waltham, Massachusetts,
1985

7. MIL-STD 1815A-1983, Ada Language Reference Manual (LRM)

R-l

0064

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second Summer Software En-
gineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study., P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design
and Module Descriptions, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson and B. Chu, September
1978

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SB-1

0064

SEL-78-202, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 2), W. J. Decker and
W. A. Taylor, April 1985

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

I
SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caige, Farber, and Gordon Pro-
gram Design Language (PPL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
A. L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer SysEems/
Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL-80-104, Configuration Analysis Tool (CAT) System De-
scription and User's Guide (Revision 1), W.Decker and
W. Taylor, December 1982

SB-2

0064

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. 0.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Software Engineering Laboratory (SEL) Document
Library (DQCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W, J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo, June 1984

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SB-3

0064

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers; Vol-
ume 1, July 1982 '

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes; The Data From the Software Engineering Laboratory,
V. R. Basil! and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program
(SAP) System Description (Revision 1), W. A. Taylor and
W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-306, Annotated Bibliography of Software Engineering
Laboratory Literature, D. N. Card, Q. L. Jordan, and
F. E. McGarry, November 1985

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers; Vol-
ume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

SEL-83-104, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) User's Guide, T. A. Babst,
W. J. Decker, P. Lo, and W. Miller, August 1984

SB-4

0064

SEL-83-105, Software Engineering Laboratory (3EL) Data Base
Retrieval System (DARES) System Description, P. Lo,
W. J. Decker, and W. Miller, August 1984

SEL-84-001, Manager's Hand&ook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Configuration Management and Control; Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the
Software Engineering Laboratory (SEL), W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Engi-
neering Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-
niques, D. N. Card, R. vi. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From
the Gamma Ray Ooservatory Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers;
Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing,
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

^Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation and Pro-
gramming Environments. New York: Springer-Verlag, 1984

3Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.
New York:Computer Societies Press,1981

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical Mem-
orandum, October 1979

SB-5

0064

V. R. , "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R. , Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

^•Basili, V. R. , "A Quantitative Evaluation of Software
Methodology," Proceedings of the First Pan-Pacific Computer
Conference, September 1985

3Basili, V. R. , and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. I

^Basili, V. R. , and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laooratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

•'•Basili, V. R. , and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL," Pro-
ceedings of the International Computer Software and
Applications Conference, October 1985

2Basili, V. R. , and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications of
the ACM, January 1984, vol. 27, no. 1

i, V. R. , and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/
Workshop; Quality Metrics, March 1981

V. R. , and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"
Proceedings of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

l-Basili, V. R. , and J. Ramsey, "Analyzing the Test Process
Using Structural Coverage," Proceedings of the Eighth Inter
national Conference on Software Engineering, August 1985

Basili, V. R. , and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

SB-6

0064

2Basili, v. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineering, November 1983

1Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"
Proceedings of the Eighth International Conference on Soft-
ware Engineering, August 1985

Basili, V. R., and R. W. Seloy, Jr., Comparing the Effective-
ness of Software Testing Strategies, University of Maryland
Technical Report, TR-1501, May 1985

2Basili, V.R., and D. M. Weiss, A Methodology for Collect-
ing Valid Software Engineering Data,University of Maryland,
Technical Report TR-1235, December 1982

1Basili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data," IEEE Transactions on
Software Engineering, November 1984

3Basili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

3Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second Soft-
ware Life Cycle Management Workshop, August 1978

3Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press, 1978

1-Card, D. N., "A Software Technology Evaluation Program,"
Annais do XVIII Congresso Nacional de Informatica,
Sao Paulo, Brasil, October 1985

1-Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedings of the Eighth Interna-
tional Conference on Software Engineering, August 1985

SB-7

0064

3Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
ings of the Fifth International Conference on Software
Engineering. New York: Computer Societies Press, 1981
T

^Doerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedings of the
Seventh International Computer Software and Applications
Conference. New York: Computer Societies Press, 1983

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

•kvicGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-
ment Process and Product," Proceedings of the Hawaiian Inter-
national Conference on System Sciences, January 1985

•'•Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

^Weiss, D. M., and V. R. Basili, "Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEEE Transactions on Software
Engineering, February 1985

3Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science.
New York: Computer Societies Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings),
November 1982

SB-8

0064

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

1This article also appears in SEL-85-003, Collected Soft-
ware Engineering Papers; Volume III, November 1985.

2This article also appears in SEL-83-003, Collected Soft-
ware Engineering Papers; Volume II, November 1983.

3This article also appears in SEL-82-004, Collected Soft-
ware Engineering Papers; Volume I, July 1982.

SB-9

0064

