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ABSTRACT 

A wind-tunnel inves t iga t ion  o f  concepts t o  improve the  high angle-of-attack 

s t a b i l i t y  and control c h a r a c t e r i s t i c s  o f  a h i g h  performance ai  rcrsft has been 

conducted. The e f f e c t  of ver t ica l  t a i l  geometry on s t a b i l i t y  and the effcc-  

tiveness of several  conventional and unusual control concepts has been deter-  

mined. 

found t h a t  v e r t i c a l  t a i l  locat ion,  cdnt angle  and leading edge sweep could 

i n f l  uence both 1 ongi t u d i  nal and 1 a t e r a l  -d i  rect ional  s tab i  1 i t y  . 
cepts  t e s t e d  were found t o  be e f f e c t i v e  and t o  provide control in to  the post- 

s t a l l  angle-of-attack region. 

These results were obtained over a la rge  angle-of-attack range. I t  was 

The  control con- 
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CHAPTER 1 

I NTROBUCTION 

The emphasis an sustained nonafterburning supersonic cruise makes aircraf t  

w i t h  h igh - f  ineness-ratio fuselages, \OH-aspect-ratio, highly-swept wings and 

highly-integrated control surfaces attractive because of low cruise drag 

(Reference 1) .  These sane features, however, make the a i rc raf t  more susceptible 

t o  the development and sudden breakdovrn of strong vortical flowfields a t  angles 

of attack and speeds encountered dur ing  maneuvering. 

above 15" angle of attack where the vortical flowfields can produce r~onlineari- 

t i e r  and regions of unstable behavior i n  the longitudinal, lateral ana direc- 

t i o n a l  aerodynamics. In a d d i t i o n  s t rong  spanwise flowfields ar ise  which reduce 

T h i s  i s  especially true 

the effectiveness of conventional control devices. Such aerodynamic charac- 

t e r i s t i c s  complicate control system design especially for unstable a i r c r a f t  

where powerful control surfaces are the key t o  a sirccessfcrl active f l i g h t  

control system. 

As i l lust ratzd conceptually i n  figure 1, maneuverability aecreases w i t h  

increasing angle of attack such t h a t  very l i t t l e  capability i s  available a t  and 

above the s ta l l .  

t i b i l i t y  t o  loss of control and spins. 

On some configurations, limiters are imposed t o  avoid suscep 

Provid ing  controls t h a t  m a i n t a i n  a h i g h  

level of effectiveness wi l l  allow future h i g h  performance a i r c r a f t  t o  exploit a 

much larger angle-of-attack envelope, i n c l u d i n g  brief excursions i n t o  post  s ta l l  

f l i g h t  conditions. A major potential payoff i s  configuration opt imiza t ion  

f lexjbi l i ty  which results frov the fac t  that the h i s h  levels o f  conzrol effec- 

tiveness combined w i  t h  appropriate con t ro l  1 dws and fly-by-w i re technology W S  1 1  

allow increased reliance on s t & i l i t y  and control augmentation. T h i s  wil l  allow 

the designer greater freedom i n  o p t i m i z i n g  the configuration t o  meet other 

requirements such as minimum drag  a t  cruise condi t ions  (figure 2 ) .  Typically, 
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designs t h a t  have or ig i  n a i l y  been optfmlzed for supersonic cruise. performance 

have had to be modified to o b t a i n  acceptable low-speed characteristics a t  tfie 

expense o f  crui se performance (2eference 2)  . Advanced contro? s technology can 

minimize this required compromise i n  future h i g h  performance alrcref t .  

As p a r t  of a NASA Langley Research Center F l i g h t  Dynamics Branch and McDon- 

ne1 1 Aircraft Company cooperative research program, an inveitigation of  advanced 

control concepts for h i g h  performance aircraf t  applications has been pertorm2d. 

The primary objectives were: 

main ta in  desired level o f  effectiveness t h r o u g h o u t  the maneuvering angle-of- 

attack range, including s ta l l  and post-stall  conditions; and ( 2 )  t o  stiidy the 

impact t h a t  these advances will have on aircrdf t  maneuverability and the assc- 

(11 t o  develop aerodynamic control devices t h a t  

c i  ated fl  i g h t  dynamics. The generic configuration o f  t h i  s study has emerged 

front a nUmb%!i- o f  s t u d i e s  aimed a t  developing design yuidelincs far providing 

eff ic ient  supersonic cruise, transonjc rcancvzjering capability cowparable to 

current h i g h  performance a i r c r a f t  a ~ d  g m d  i w - s p e e d h i g h  angle-ot-attack s tab i -  

1 i t y  and control (Reference 3 ) .  This thesis presents the results of the l a t e s t  

phase of tnis group of studies to develop and evaluate conventional an4 unusual 

control concepts for advanced aircraf t .  T h i s  work. includes an eva;uatian o f  the 

effects o f  t a i l  geometry on s tabi l i ty  as well as  an evalrratior: of control effec- 

tiveness. Compari sons of manebgerabi 1 i ty  H i  t h  a h i  ghly-maneuverabl e a i  rcraf t 

are a l so  presented. 

The tes t  program was conducted i n  the Langley Research Center's IP-Foot 

Low-Speed Wind Tunnet using a strut supporreci sca le  mode? o f  t i e  generic COR- 

figuration. Data viers taken cwr a large a n g l e - o f - a t t a c k  range a t  several 

s i  des1 5 p angi es . 

- 2 -  



CHAPTER 2 

MODEL AND APPARATUS 

The basic model and i t s  support system are shown i n  Figure 3 .  Details o f  

the model forebody, vertical t a i l s ,  control surfaces, and horizontal t a i l s  and 

canards are shown i n  figures 4 ,  5,  6 ,  and 7 ,  respectively. 

65" swept leading edge w i t h  an aspect ratio of 1.95. 

canards al l  had t h i n  f lat-plate cross-sections ( f o r  simplicity) w i t h  beveled 

leading and t ra i l ing edgzs. The wing leading edge was divided i n t o  three f l a p  

segments and the t r a i l i n g  edge had two different flap/aileron configurations 

along w i t h  f l a p s  on the inboard t r a i l i n g  edge extension. 

The arro:: wing had a 

The wings ,  t a i l s  and 
1 

I t  was also possible 

t o  deflect the wing t ips  as ailerons. 

and could be replaced by hor izonta l  tcsils. 

t o  use canards. 

The t r a i l i n g  edge extension was removable 

The fuse lage could also be adapted 

The rnadel could be conf igured with three di  Fferent vertlca'l 

t a i l  arrangements: 

edge extensions) and a single centerline t a i l .  The vertical t a i l s  a l so  had 

several fore and a f t  positions as well. as  the abi!ity t o  cant either inboard  o r  

outboard. The fuselage, w i t h  f low through ducts, was s t ru t  mounted t o  minimize 

unfaverable effects on vortex bursting as described i n  Reference 4. 

forward and a f t  svrept W i n  t a i l s  (mounted on the traiiing 

F3rce and moment da ta  were obtained using a six component strain-gage 

balance mwnted inside the model fuselage. The voltage outputs o f  the 

strain-gage balance were converted t o  d i g i t a l  s i g n a l s  by a MEFF 620 

amp1 i fier/mul tiplexor. The NEFF 620 providea the required signal processing for 

use M i t h  the HP-98458 microco.+pt t ter  tcsed f e r  data reduct iors  and storage. The 

d a t a  acquisition system r,amp!<d each balance o u t p u t  100 times over 10 seconds 

dqd averaged the da ta .  Non-diinensional coefficients were then calculated and 

stored on magnetic discs. 

- 3 -  



CHAPTER 3 

WIND TUNNEL TESTS 

S t a t i c  

Low W e d  W 

i n  figure 8 

force tes t s  were conducted in the Langley Research Center's 1 2 4 o o t  

nd Tunnel. X pho tograph  of the model in the tes t  section i s  presented 

The tes t s  were conducted a t  a freestream dynamic pressure o f  4 psf 

(M = . 05) which corresponds to  a Reynolds number of 0.62 x lo6 based on wing 

mean aerodynamic chord. 

0" t o  GO" a t  angles of  sideslip of 0" and 25". 

wall effects were made t o  the da ta .  

both angle of a t t a c k  and angle of sideslip. 

Data were obtained over an angle of attack range from 

No corrections for  base drag or  

F?ow angularity corrections were made fo r  

In  the f i r s t  p a r t  of the  tes t  program, studies were made of the effect  o f  

spanwise loca t ion  for the a f t  wept t a i l s  and t a i l  can t  (from 30" inboard co 30" 

outboard) f o r  the  forward and a f t  swept w i n  vertical ta-ils. Once an optimm 

cant angle was obtained, rudder effectiveness was determined, An a l l  moving 

centerline ta i l  was a l s o  investigated. Various pitch control devices were exa- 

mined includins horizontal t a i l s ,  canards, t r a i l i n g  edge extension flaps and 

ailerons deflected symmetrically. 

unswept hinge1 ine ailerons and constant chord ailerons. 

were a l so  investigated for roll control. 

Two types of ailerons were investigated: 

Deflected wing t ips  

All d a t a  were in i t ia l ly  obtaired a b o u t  the body axes (figure 9 ) .  All 

lateral-directional da ta  are presented abou t  the body axes, b u t  a l l  the longitu- 

d i n a l  d a t a  are presented a b o u t  the s tabi l i ty  axes. 

- 4 -  



CHAPTER 4 

AIJALY SI S TECHNIQUES 

A calculated paramter which i s  useful f a r  the  ana lys i s  tlf high angle-of- 

attack lateral-directional s tabi l i ty  i s  C"g,dyn (Reference 5 )  , defined as 

Negative values o f  this parameter indicate a susceptibility t o  a divergence 

(nose s l ice) .  T h i s  term i s  derived from one o f  the coefficients of the lateral  

open-loop characteristic equation i n  Hhich A ,  6 ,  C ,  0 and E are constants. 

Ax4 + B x 3  + CA' + Dx f E = 0 (1) 

This eqlratian w i l l  have unstable roats i f  any of che coefficients or Routh' s 

discriminant ( B D C  - AD2 - B2E3  becon:es nega t i ve .  

coefficient becomes negative a directional divergence usually occurs. 

Neglecting the products o f  inertia the C-coefficient i s  given by: 

In particular, i f  t h e  C- 

where 

a nd 
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Neglecting products of derivatives (which i n  general are <<1) 

Y = 4 2  L K ~ C , ~  cos a- K ~ c , ~  sin a 1 ( 3 )  

* *.. 
A ' . ?  i5y removing the common terms and d i v i d i n g  equation 3 c y  . x ,  

obtained Normally, this equation is reduced further by assuming cos a = 1, b u t  

fo r  t h i s  study the cosine term was retained for exactness because o f  the large 

angles o a t t a c k  involved. The work i n  Reference 6 h as shown t h a t  these assump 

tions have very l i t t l e  effect on the results. 

Another type o f  divergence results when lateral control response to  pilot  

inputs i s  reversed. In t h i s  case, the lateral  control divergence parameter 

( L C D P )  is used. 

transfer f u n c t i o n  h eference 7 1 

T h i s  parameter i s  derived from an approximation of the +/&a 

where f ( s )  i s  the  approximated lateral open-loop characteristic equation. 

For t h i i  derivation only the steady s ta te  terms ( f ( o ) )  are considered. 

For normal r o l l  response, $/&a < 0. 

neglected rind the transfer func t ion  becmes 

Since Cysa i s  generafly <<1 i t can be 

M u l t i p l y i n g  byl.!?)2f (0) ( a  p,sf:ive value) eqtiation 5 reduces Lo 
' C  
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For almost a1 1 configurations the control derivative C e d a  i s  negative, therefore 

dividinq by i t  d l 1  reverse the inequality and yield the final result  

where positive values indicate normal response t o  roll control and negative 

values indicate a reversed response. I f  an aileron-rudder interconnect (ARI) 

system i s  used then equation 6 becomes 

where K i s  the ARI gain. 

The equations used for calculating 6 ,  +, and i, come from the rncmment 

equations of the eqtiirtions of motion. By neglecting a?’ of  the ra te  terms and 

assuming t l ; a t  the moments are generated entirely by colitrsf deflection, the 

following relationships can be obtained: 

Because of inertia coupling the maximum roll  rate ( a b o u t  the s tabi l i ty  axis) 

a1 1 cwabl e i s  detemii ned by the i c r n a ~ n t  of a v a i  1 ab1 e p i  tcii contrcl . 
about the velocity vectGr, cspeci6lly a t  h i g h  angles-of-attack, a typically 

fuselage-heavy fighter a i rcraf t  wi l l  experience a nosed p pitching moment 

When rol l  i ry 

- 7 -  



(Xeference 81. 

assumption i s  made that  the only source of pitching moment is from control 

d e f l e c t i o n ,  the steady s ta te  pitching moment equation becomes 

For an a i rc raf t  symmetrical about the X-2 plane, and i f  again the 

( I ~  - I,) pr +-q s C kae 5@ = o (11) 

S ubs  t i t u t i  ng 

i, = p COS a 
S 

and 

r = p, sin a 

(12) 

(13) 

Using nose-down control deflections it  i s  possible to determine the maximum sta- 

b i l i t y  a x i s  roll rate allowable without incurring an uncontroll ible p i t c h  p .  

This  relationship i s  given by 

- 8 -  



CHAPTER 5 

RESULTS AND DISCUSSION 

S t a t i c  S t a b i l i t y  and Contro l  

V e r t i c a l  T a i l  Geometry.- F igure  10 shows the  e f f e c t  of the c e n t e r l i n e  and 

twin t a i l s  on l o n g i t u d i n a l  c h a r a c t e r i s t i c s .  The c e n t e r l i n e  t a i l  has no e f f e c t  on 

l i f t  or p i t c h i n g  moment b u t  the  t w i n  t a i l s  reduce C L ~ ~ ~  and a l so  i ~ c r e a s e  the  

magnitude o f  the  p i t c h i n g  imnent;. 

(Reference i )  i n d i c a t e d  t h d t  t h i s  decrease i n  l i f t  and the  r e l a t e d  increase i n  

E a r l i e r  work w i t h  a s i m i l a r  con f igu ra t i on  

p i t c h i n g  moment were duc t o  e a r l y  vor tex  b u r s t i n g  caused by the  t w i n  t a i l s .  

A comparison of the  e f f e c t  o f  the c e n t e r l i n e  t a i l  and the t w i n  t a i l s  on 

l a t e r a l - d i r e c t i o n a l  c h a r a c t e r i s t i c s  i s  made i n  f i g u r e  11. The c e n t e r l i n e  t a i l  

ma in ta ins  djre(:t iGnal statjjljty IC, ) un:il n = 25" and cont jnoxs  t o  provide 

s t a b i l i z i n g  increment u n t i l  3 = 30'. With r'urtl-ier increases i n  angle o f  a t t ack  

t h e  cer r te r l inc  t a i l  i s  d e s t a n i f i r i n g .  P a s t  u = 53" t i l e  r ;B" iabi l iz ing e f f e c t s  o f  

t he  forebody (Reference 1) dominate. The t w i n  t a i l s  have a s t a b i l i z i n g  e f f e c t  

throughout the ang le-o f -a t tack  range tested.  

t i o n a l  s t a b i l i t y ,  however, between a = 15" and 2 ? O .  Adverse sidewash from the  

a 

Th!re i s  a sharp l o s s  o f  d i rec -  

vring lead ing  edge vor tex  zystem i s  the most probable cause o f  t n i s  reduced sta- 

b i l i t y  region. 

Dihedra l  e f f e c t  ( - C L  ) i s  a lso  a f f e c t e d  by the  t a i l  geometry. A t  low 
9 

angles o f  a t tack  bo th  t a i l  con f i gu ra t i ons  produced an increase i n  e f f e c t i v e  

d ihed ra l .  

o f  the  adverse s ide  f o r c e  on the t a i l  which i s  well above tne aircr3f.C center  of 

g r a v i t y .  k'hen t h i s  d e s t a b i l i z i n g  r o l l i n g  mcment i s  added t o  the ?o,.r s t a b i l i t y  

Between a = 30' and 50" the  c e n t e r l i n e  t a i l  i s  d e s t a b i l i z i n g  because 

caused by asymmetric vor tex b u r s t i n g  on the  d n g  a region of i n s t a b i l i t y  r e s u l t s  

- 9 -  



from a = 35" t o  40". The twin vertical t a i l s  force the wing vortices to burst 

symmetrically, which greatly increases the effective dihedral betwezn a = 25" 

and 40". 

A comparison o f  the longitudinal chardcteristics f o r  the a f t  and forward 

swept t w i n  t a i l s  i s  made in figure 12.  The forward swept t a i l s  had a sl ight 

e f fec t  on l i f t  between a = 16" and 19" causing a more abrupt break i n  the 

pitching moment curve. T h e  longitudinal position of  the forward s w p t  t a i l  had 

very l i t t l e  effect  on either l i f t  or pitching moment. 

Figure 13 shows the effect  of forwawl and a f t  swept vertical t a i l s  dn 

lateral-directional characteristics. The forward swept t a i l s  show improvement 

i n  directional s tabi l i ty  over the a f t  swept t a i l s  i n  the region from a = 15" t o  

20". Above cs = Z O O ,  however, the a f t  swept t a i l s  provide much more directional 

s tab i l i ty .  N i t h  the forward swept t a i l s  i n  the a f t  position ( th i r ;  positiotl 

g i l i es  the forward %ept t a i l s  approximately t h e  same t a i l  vrjltirne 65 the a f t  

sviept t a i l s )  directional s tabi l i ty  i s  increased t o  match the a f t  wept t a i l s  st 

the lower angles of attack. 

quate levels o f  stabi l i ty  with minimal differences between them except between u 

= 10" and 20" wkere the a f t  swept t a i l s  exhibits less effective dihedral. 

Laterally, all three configurations m a i n t a i n  ade- 

The effect  o f  spartwise location o f  the twin vertica; t a i l s  on longitudinal 

and  lateral-di rectional characteristics Mas a1 SO investigated and the results 

are shown i n  figures 14 a n d  15, respectively. 

edge extecsion was reinoved and the a f t  swept t a i l s  used. 

no change excep t  f o r  a s l i yn t  increase i n  maxirntlm l i f t  for the outbot i rd  t a i l  

position. 

inboard position ( a  = 12').  

effect on dihedral. ?here Was an improvement, however, i n  directional s tabi l i ty  

For b o t h  positions the trail ing 

The l i f t  curve showed 

T h i s  p o s i t i o n  elso czused the p i t c b - u p  t3 occur 2' earlier thm t he  

SpanPtise loca t ion  of the vertical t a i l s  had no 
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by moving the t a i l s  outboard. Directional s t a b i l i t y  is maintained w i t h  the  out- 

board t a i l s  through the region from CL = 15" t o  25" where the inboard t a i l s  exhi- 

b i t  a reduction i n  s t a b i l i t y .  

O f  a l l  the ver t ica l  t a i l  parameters varied,  t a i l  cant  angle had the rnost 

impact on both the longitudinal and l a t e r a l - d i r e c t i o n a l  c h a r a c t e r i s t i c s .  The 

longi tudinal  c h a r a c t e r i s t i c s  a re  presented i n  f igure  16. Cant angle has l i t t l e  

e f f e c t  on l i f t  w i t h  the exception o f  the 30" outboard cant.  T h i s  configuration 

e x h i b i t e d  an increase i n  maximum l i f t .  T h i s  can be a t t r i b u t e d  t o  the addi t ional  

l i f t i n g  surface c rea t ed  w i t h  surh an extreme outboard cant.  Vertical  t a i l  cant  

angle  a l s o  had a not iceable  e f f e c t  on the pi tching moment. For a l l  cases the 

i n i t i a l  p i t c h u p  occurred a t  about a = 8". 

c a n t s  affected p i t c h i n g  moaent more than either 15" cant .  The  30" outboard cant  

increased the sever i ty  o f  the  pitch-^! p'  and caused a stab1 c p i  iclri ng moment S I  ape 

Both the inboard and outboard 30" 

past: CI = 15". The 30" inboard cant ,  hawever, dr?cr.eazed the p i t c h  p b u t  delayed 

a s t a b l e  pitching moment slope u n t i l  a I- 20" as d i d  t h e  other con:'igiirittiC:ns. 

In Reference 1 ,  which showed this same trend, i t  was found t h a t  the cant  angle,  

no t  the spanwise loca t ion  o f  the ver t ica l  t a i l  t i p ,  a f fec ted  the pitching moment 

c h a r a c t e r i s t i c s .  

understand the f l u i d  mechanics involved. 

Extensive flow v isua l iza t ion  s tudies  will  t ? needed t o  Fully 

Figure 17 shows the e f f e c t  o f  ver t ica l  t a i l  can t  angle  on the l a t e r a l -  

d i rec t iona l  s tab i  7 i ty of t h i s  configuration. ael ow 14" angle  of a t t a c k ,  can t  

angle  has l i t t l e  e f f e c t  on direct ional  s t a b i l i t y .  Pas t  a = 14", canting the 

t a i l s  outboard, much l ike  moving the ver t ica l  t a i l s  spanwise more outboard, 

increased rli recticinal s t a b i l  i t y .  Effect ive dihedral was a']. SQ intre2sed, siioS+'ir;g 

the  saw trends as shom by the t e s t s  o f  Reference 1 .  C a n t i r g  the t a i l s  inboard 

had the oppos i te  e f f e c t .  That i s  both l a t e r a l  and directJondl  s t a b i l i t y  were 
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decreased. 

n o t  su rp r i s ing  t h a t  inboard can t ing  o f  the  t a i l s  p laces the  v e r t i c a l  t a i l s  i n  an 

unfavorable f1o.d f i e l d .  

Since i n  s i d e s l i p  the  windward wing vor tex moves more, inboard i t  i s  

Leading Edge Flaps.- The de f l ec t i on  o f  a three-segmented lead ing  edge f l a p  

was inves t i ga ted  p r i m a r i l y  t o  reduce the p i  t c h u  p tendencies. 

t h e  p i t c h i n g  moment data f o r  the  var ious f l a p  s e t t i n g s  tested. 

f i g u r a t i o n s ,  t he  s t a t i c  margin increased a t  low angles o f  a t tack,  and the  p i t ch -  

up was delayed and the  seve r i t y  o f  the  p i t c h  p reduced. The data i n d i c a t e  t h a t  

t he  inboard-most sec t i on  o f  f l a p  con t r i bu tes  most t o  t h i s  improvement i n  

p i t c h i n g  moment c h a r a c t e r i s t i c s  apparent ly  by reducing t h e  s t rength  o f  the  wing 

vor tex.  

f l a p s  ( t h a t  i s ,  us ing  a d i f f e r e n t  f l a p  d e f l e c t i o n  a t  each angle o f  a t tack )  i t  i s  

F igu re  l a  shows 

For a l l  con- 

The datd o f  f i g u r e  19 i n d i c a t e  t h a t  by schedul ing the l ead ing  edge 

poss i  b l  e t o  reduce the s e v e r i t y  of the pi  tch-u p signi f i csr r t l  y w5 tkaut  sacr i -  

F icf  ng d i r e c t i o n a l  s t a b i l  i t y .  

dul i ng f7 dp d e f l e c t i o n  would reduce t he  a:ii9uni crf n o s e - d & ~  crJntrol needed between 

Decreasing the' w v e r i t y  o f  the pi tch4.i p by sche- 

a = 8" t o  15" and a l l ow  t,he c lean con f igu ra t i on  t o  be f lown i n  the angle-of- 

a t tack  range used f o r  supersonic c r u i s ?  f l i g h t  ( a  : - 6 ' ) .  

Langi t ud ina l  Contro l  .- F c x  methods f o r  obta,nincj adequate p i t c h  con t ro l  

were tested:  

f l aps ,  ho r i zon ta l  t a i l s ,  and canards. 

sented i n  f i gu res  20 through 26. 

f l a p s  on the  t r a i l i n g  edge extensions, use o f  the a i l e r o n s  as  

The data OR these con f igu ra t i ons  are pre- 

The t r a i l i n g  edge extensiovl cou ld  utilize e i t h e r  

f l a p ,  both capable of d e f l e c t i n g  ttp and down. Figure  

power ava i l ab le  f o r  the s l o t t e c  f l a p  &r i l e  F igure 20 

a p l a i n  f i a p  o r  a s l o t t e d  

23 ( a )  shows the con t ro l  

b )  snows the  same Gala for- 

t h e  p1aiR f l ap .  

rnomcint, a? lowing the Conf igura t ion  t o  be triinrned t o  , tbout  40' angle o f  a t tack.  

The two concepts prov ide the  Sdme amount of nose-up p i t c h i n g  
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The plain flap, however, provides slightly mwe nose-down n o w n t  t h a n  the 

slotted f l a p  a t  the lower angles of a t t ack  and maintains this advantage until 

'LMAX 

Itre use o f  ailerons defl cted symmetrically was investigated as  J primary 

source of pitch control and a so as an augmentation of the trail ing edge extension 

f l a p s .  

ha1 f the p i t c h i n g  moment t h a t  the p l a i n  t ra i  1 i n g  edge extension f l a p  produced. 

T h i s  coupled w i t h  rapid loss i n  effectiveness past a = 15" makes the ailerons 

unacceptable for primary p i t c h  cont ro l .  However, i n  conjunction w i t h  the flaps, 

The d a t a  of figure 2 1  show t h a t  the ailerons produce a l i t t l e  more t h a n  

the ailerotis increase the available p i t c h  power in the lower angle-of- attack 

range where add i t iona l  p i t c h  control Has needed. The ailerons also extended 

the trim angle of  attack to 42" ,  approximately 7' beyond the s t a l l .  

By removing the t r a i l i n g  edge exteiisions, i t  is  possible t o  add harizontal 

t a i l s  t o  the confjgaration. A clear benefit u f  t h e  horizontral t a i l  con- 

f i g u r a t i o n  ' s  t h a t  i t  reduces the severity of the p i t c h u p  around o = 15" 

(figure 22 . The available control power using the horizontal  t a i l  i s  cam- 

parable t o  t h a t  of the f lapai leron combination and the maximum trim angle of 

a t t a c k  i s  ncreGsed t o  44" .  Unfortunately, on this configuration the use of 

hor izonta ' l  t a i l s  requires either fuselage mounted t w i n  vertical ta i ls  or a 

single centerline vertical t a i l ,  b o t h  of which have poor lateral-directional 

s tab i l i ty  characteristics (Reference I ) .  

The use of canards required the a d d i t i o n  of a f a i r i n g  along the upper sur- 

face o f  the in le t  area. The effects of th is  Fairing on t he  l o n g i t u d i n a l  and 

latcral-directional characteristic; Here examinerf before the canards-*ere adderr, 

T h e  l o n g i t u d i n a l  d a t a  (figure 2 3 )  show a sl ight Increase i n  l i f t  around C L ~ ~ ~ ,  

b u t  a much greater change i n  p i t c h i n g  moment. The a d d i t i o n  of the f a i r i n g  
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decreases l o n g i t u d i n a l  s tabi l i ty  below a = 12", delays the stable break i n  the 

pitching moment curve t o  a higher angle o f  attack (ct = 38") and increases the 

nose-u p pitching moment considerably. 

m a k i n g  adequate nose-down control a problem and h i g h  angle-of-attack s tabi l i ty  

A l l  of these results are undesirable, 

poor .  

24). Directional s tabi l i ty  is dnchanged and effective dihedral i s  actually 

The f a i r i n g  had fa r  less effect on lateral-directional stabilfty (figure 

increased i n  some regions. 

Figure 25 5 hows t h a t  when the canards arc deflected t o  -40' t o  produce a 

nose-down moment, Cn, becomes negative a t  a lo@er angle of attack t h a n  for  a 0' 

deflection. While there i s  some effect on Ceg, the changes are no! significant. 

The da ta  of figure 26 indicate t h a t  even r J i i h  a deflection of -40" the canard i s  

unable t o  produce a nose-down moment past a = 12'. 

Directional control - .- Adequate rudder power, especially a t  h i g h  angles of 

attack, i s  a'lways a coficern w i t h  hic,h performance a i rc raf t ,  

directional contrca? were evalua't?d as part o f  th i s  investigation: an clll moving 

Four concepts f o r  

centerline t a i l ,  a conv~ntional rudder, a rudder w i t h  a forward swept hinge 

l ine ,  dnd t i p  rudders. 

cepts t o  be very effective a t  h i g h  angles of attack. 

The work o f  Reference 9 has shown these l a s t  two con- 

The a l l  moving centerline t a i l ,  as was expected, was extremely powerful a t  

low angles of attack (figure 27)  w i t h  more t h a n  adequate yaw control from 13" 

o f  deflection. More y a d n g  moment can be generated w i t h  a 30" deflection, b u t  

the effectiveness drops o f f  sharp ly  past a = 25' as the ta i l  becomes shielded by 

the wing  and fuselage. For angles of a t t ack  above 30" the larger deflection 

provides only as much yawing rnoincnt as the 10' deflectfen. A l l  rudder Dower 

w i t h  either deflection i s  l o s t  by 3 = 45". 

A comparison of the conventional rudder on t h e  a f t  swept t a i l  and the 

forward swept redder on the forward swept t a i l  i s  presented i n  f i gu re  28. The 
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forward position of forrJard swept t a i l  (FST) coincided w i t h  the position of the 

a f t  swept t a i l  (AST) while the rearward position of the FST was designed t o  have 

approximately the same t a i l  volume as the AST. 

o f  rudder power between the RST and the FST is a result  o f  the larger rudder 

area of the FST. The conventional rudder s t a r t s  to  lose effectiveness a t  a = 

15" because the flow becomes increasingly parallel t o  the rudder hingeiine u n t i l  

by a = 40' a l l  rudder power i s  lost .  The forward swept rudders, however, are 

designed t o  keep the flow more perpendicular t o  the rudder hingeline a t  h i g h  

angles o f  a t t a c k  and are therefore able to  maintain adequate dirzctional control 

well past 

The difference i n  the magnitude 

T i p  rudders (figure 5 1  were also studied for  obtaining h i g h  angle-of-attack 

directional control. As angle o f  attack increase; the hingeline of the t i p  rud- 

ders becomes more ycrpendicular t o  t h e  frcestrearn. A s  ai result  of t h i s ,  the t i p  

rudders s t a r t  t o  becone e f f e c t i v e  a t  % 25" (figure 291 as the rrrdder ofi the 

AST s ta r t s  t u  lose i t s  e f fec t i veness .  

control u n t i l  the s ta l l  where, l ike the FST rudders, effectiveness i s  reduced. 

Wi th  a larger rudder on the AST, i t  should be possible to achieve good levels of 

yaw control by using the AST rudders and the t i p  rudders i n  conjunction w i t h  

each other. 

The t i p s  rgddcrs nieintairi good yaw 

Lateral Control .- Two basic concepts were evaluated for  r o l l  control : 

ailerons and deflectable wing t ips .  

d i t h  unswept hingellnes were tested and the results are p r e s e n t e d  i n  figure 30. 

Both constant chord ailerons and ailerons 

There i s  very l i t t l e  difference between the tlrc concepts. 

effectiveness p a s t  3 = 15" because of spanijise f l a w  on ',ne wiiig, and by a = 30" 

neither are very effective. ':p u n t i l  t h i s  p o i n t ,  however, the constant chord 

ailerons supply s l i g h t l y  more r o l l i n g  moment. 

acth start  l o s ing  
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I n  order t o  take advantage of the spanwise flow on the wing ,  deflectable 

wing  t ips  w i t h  a hingeline t h a t  is abou t  45" t o  the w i n g  chord were tested. Selow 

a =  20" these deflectable wing t ips provided s l i g h t l y  le5s r o l l i n g  moment t h a n  the 

constant chord ailerons (figure 31). After a small drop i n  effectivenesc jus t  

past a = Z O O ,  however, the deflectable wing tips mainta in  an  almost constaflt anount 

of  roll control to  an angle of attack of GO" while the ailerons continue t o  lose 

effectiveness. By combining these two concepts ft i s  possible t o  provide suf- 

f ic ien t  rolling moment throughout the angle-of-attack range. 

Estimated F1 i g h t  Dynamics 

The l a s t  three sections of this chapter deal w i t h  the f l i g h t  dynamics and 

The configuration used to  obtafn maneuverability predicted using the s ta t ic  da ta .  

these r e w l t r  was t h e  forward swept t a i l s  u s i n g  buth aiierom and t r a i l i n g  edge 

extensiori flaps f o r  p i t c h  control  and b o t h  ailerons and deflectable w'ing t ips  

f o r  roll control ( table  1). Data 3n the current a i rcraf t  used For cofnptrison of 

rnaneuverabil i ty  were obtained from Reference 10. 

Departure Resistance.- The d a t a  of tigure 32 show t h a t  t h i s  configuration 

should be very resistant t o  yaw departur - (nose s l ice) .  Positive valuer cf  

c n  fhdyn 

c n  5, dy n 

are maintained t h r o u g h o u t  the angle-of-attack range tested. 

becomes more positive w i t h  increasing angle of a t t a c k  except between 

1i1 general, 

= 16" and 24" and i n  the pos,t-stall region ( a  > 35'1. Even t h o u g h  C n 5  i s  neW- 
tive or very small f o r  t h i s  configuration between a = 20" and 4 6 O ,  the stable 

values Of C t 3  f r o m  a = 0" t o  GO" shculd be cnotigh t o  preveot a n05e s l ice  f r m  

occurring. 
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Control Reversal .- When adverse yawing moment due to aileron deflection 

becomes too high, too much sideslip is generated and control response t o  a 

p i l o t  roll i n p u t  will be reversed. This control reversal i s  predicted when LCDP 

(as defined i n  Chapter 3 )  becomes negatide. FGr. ailerons only,  t h i s  con- 

f i g u r a t i o n  will experience a reversed response to rol l  inputs past a = 20". I n  

order to prevent 'chis, i t  i s  necessary t o  use rudder deflection t o  offset  the 

adverse yaw dlre t o  aileron deflection. 

p i l o t  o r  by using an aileron-rudder interconnect (ARI) system. The ARI system 

T h i s  can be accomplished manually by the 

provides a prJportiona1 amount of yaw control for  a given roll  i n p l r t  i n  order t o  

ensure proper control response. W i t h  the proper A R I  g a i n  (K = 0.351, correct 

response to p i l o t  roll commands can be maintained u n t i l  a = 45" (figure 3 3 ) .  

Maneuverabil i 9. The maneuverability of an a i rc raf t  i s  generally measured 

by how fas t  i t  can t u r n  a b o u t  i t s  three axes. This requires a complete d a t a  

base, such as t h a t  used i n  s i rnula t ion  str;dies, and knokledgi? of restrictions 

t h a t  could  l imf t  the maximum allowable rates and accelerations. A less  exact 

method is  t o  use the equations presented i n  Chapter 4 t o  calculate the maximum 

rate  accelerations t h a t  can be commanded using a constant velocity and  altitude. 

T h i s  gives an i n d i c a t i o n  o f  how fas t  an a i rc raf t  can in i t ia te  a t u r n .  Figdre 34 

presents the  rate accelerations t h a t  can be commanded for  a ctirrent h i g h l y  

maneuverable a i rc raf t  (Aircraft A )  and the configuration of this study (Aircraft 

B) . 
The p i t c h  rate acceleration data of figure 3 4 ( a )  show t h a t  belovr the s ta l l  

( b o t h  a i rcraf t  s t a l l  a t  a = 35") Aircraft A can i n i t i a t e  2 p f t c h  a t t i tude change 

faster t h a n  Aircraft B. Aircraf t  B ,  hcwever, is capable of higher p i t c h  rate 

acceleration beyond the s t a l l .  Also, Aircraft B shows l i t t l e  change i n  p i t c h  

rate acceleration w i t h  chang ing  angle o f  attack. This will provide the p i l o t  
P 
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w i t h  v i r t u a l l y  the same longi tudinal  respsnse t o  his p i t c h  control i n p u t s  

throughout t h i s  angle-of- a t tack  range. 

The  r e s u l t s  of the yaw r a t e  acce lera t ion  ca l cu la t ions  a re  presented i n  

f i g u r e  3 4 ( b ) .  The data ind ica te  t h a t  A i rc ra f t  A is capable of generating higher 

yaH r a t e  acce lera t ions  than Ai rc ra f t  5 thrcughout the angle-of-attack range 

tested. A consequence o f  lower a t t a inab le  yaw r a t e  acce lera t ion  f o r  A i rc ra f t  8 

wil l  be lower e f fec t iveness  of a s t a b i l i t y  augmentation system & A S )  i n  the  yaw 

a x i s .  Exactly how important t h i s  i s  depends upon the basic airframe s t a t i c  and 

dynamic s t a b i l i t y  c h a r a c t e r i s t i c s .  

Figure 3 4 ( c )  shows the roll r a t e  acce lera t ion  c a p a b i l i t i e s  of the two 

a i r c r a f t .  A i r c r a f t  A i s  capable of i n i t i a t i n g  a r o l l  r a t e  quicker than Ai rc ra f t  

B below the s t n l l  whereas the opposite i s  true above the s t a i l .  

the region approaching the s t a l l  and above f o r  a i r c r a f t  v l i t h  highly swept w i n g s  

t o  exh ib i t  plring rock. tendencies. 

I t  i s  comrmn i n  

The higher 1-37] r a t s  acce lera t ion  capabi’i i t y  

o f  Airc ra f t  5 i n  th i s  angle-of-at tack range wil l  allow more e f f e c t i v e  use of 

a r t i f i c i a l  s t a b i l i z a t i o n  t o  prevent t h i s  d i n g  rock. 

H i g h  performance a i r c r a f t ,  vthich a re  typ ica l ly  fuselage heavy, tend t o  

p i t c h  p when r o l l i n g  about the a i r c r a f t  ve loc i ty  vector  ( s t a b i l i t y  axes) 

because of i n e r t i a  coupling. T h i s  places a l i m i t a t i o n  on the maximum s t a b i l i t y  

axes r o l l  r a t e  t h a t  can be maintained. T h i s  maximum ro l l  r a t e ,  as  shown i n  

equation 15,  is  r e l a t ed  t o  the amount of nosedown longi tudinal  control power 

ava i l  able  t o  overcome the pi  t chu  p caused by i n e r t i a  coup1 ing. 

descr ip t ion  of i t i e r t i a  coupling can be found i n  Reference 8. 

the  r e s u l t s  o f  this evaluat ion fo r  the t e s t  configurat ion and cur ren t  a i r c r a f t .  

aelow the s t a l l ,  A i rc ra f t  A i s  limiteO less by i n e r t i a  coupling than Aircraf t  3 ,  

allowing Ai rc ra f t  4 t o  make quicker r o l l s  about the ve loc i ty  vector. 

A deta i led  

F i g u r e  3 5  shows 

I n  the 
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p o s t - s t a l l  region, however, A i rc ra f t  B i s  ab le  t o  sus t a in  a higher r o l l  r a t e  

t h a t  i s  almost cons tan t  throughout the remainder of the angle-of- a t t ack  range. 
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CHAPTER 6 

SUMMARY OF RESULTS 

The results o f  this inves t iga t ion  t o  evaluate  conventional and unusual 

control  concepts and t o  study the e f f e c t  of t a i l  geometry on s t a b i l i t y  and 

coritrol may be summarized a s  follows: 

1. A t w i n  v e r t i c a l  t a i l  configuration offered the best overal l  s t a b i l i t y  

c h a r a c t e r i s t i c s  based on s t a t i c  data.  

2 .  I t  was found t h a t  spanwise loca t ion  and c a n t  angle of the v e r t i c a l  

t a i l s  could be used t o  t a i l o r  longitudinal and l a t e ra l -d i r ec t iona l  s t a b i l i t y .  

3. I t  was possible  t o  use schedul ing of leading edge f l a p s  t o  rcdtrce the 

severity of the pi  t c h u  p without s ac r i  f i c i n g  supersonic c r u i s e  performance. 

4.  A combination o f  t r a i l i n g  edge extens ion f l a p s  and symmetric ailero:i 

d e f l e c t i o n  provided good pi tch corttrol past the s t a l l  angle of a L m k .  

5 .  Rudders on forward swept t z i l s  provided the sin ip lest  method of 

obtaining h i g h  angle-of-attack yaw control .  

could be possible  t o  achieve the same amount of yaw control  w i t h  an a f t  swept 

t a i l  rudder  plus a t i p  rudder. 

Results a l s o  ind ica t e  t h a t  i t  

6. Deflectable  iring t i p s ,  which t a i e  advantage of wing spanwise flow, were 

found t o  provide good rn!l control when used i n  conjunction w i t h  a i l e rons .  

7 .  S t a t i c  s t a b i l i t y  levels indicated t h a t  the forward swept t a i l  con- 

f igu ra t ion  shoul d be highly departure resi s t a n t .  

8. I t  was shown t h a t  proper aileron-rudder interconnect  gains cauld post- 

pone r o l l  control reversal  f i *$m 51 = 20" t:, = 45" and preLent: a control induced 

departure .  
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10. Based on a t t a inab le  r a t e  accelerat ions and taking in to  account l imita- 

t i o n s  resu l t ing  from i n e r t i a  coup1 i q ,  the rnaneuverabil i ty  of the forward swept 

t a i l  configuration was close t o  t h a t  of a h ighly  maneuverable a i r c r a f t  below the 

s t a l l  and exceeded t h a t  of the cur ren t  a i r c r a f t  i n  the pos t - s t a l l  region. 
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Table I Mass and geometr ic  c h a r a c t e r i s t i c s  o f  t h e  a i r p l a n e  

Weight (Est imated) :  
TOGW. 1 bs ...................................................... 44. 000 

Moments o f  I t x r t i a  (Est imated) :  
‘ x .  Slugs . t t  ................................................. 19312 
Iy. s l u y s  . ft2 ................................................ 163899 
Iz. s l u g s  . f t  ................................................ 176171 

O v e r a l l  Fuselage Length.  f t  ........................................ 66.67 

Wing: 
Span. ft ......................................................... 36.7 
Area. f t  ........................................................ 691.9 
Mean aerodynamic chord.  f t  ....................................... 23.1 
Aspect r a t i o  ..................................................... 1.95 
Lead ing  edge sweep. deg ............................................ 65 
Swept A i  1 eron: 

Area (one s i d e ) .  f t 2  .......................................... 15.3 
Unswept A! 1 eron: 

Area (one s i d e ) .  ft2 .......................................... 10.1 
D e f l e c t a b l e  W i n g t i p :  

Area (one s i d e ) .  ft2,., ........................................ 7.6 

A f t  Swept V e r t i c a l  T a i l :  
Area (each).  f t 2  ................................................. 79.6 
Span. f t  .......................................................... 9.2 
Root chord. f t  ................................................... 14.0 
T i p  chord. f t  ..................................................... 3.2 
Aspect r a t i o  ..................................................... 1.06 
Leadjng edge sweep. deg .......................................... 62.8 
Convent ional  ?udder area. ft2 ..................................... 7.6 
T i p  rudder  area. ft2.+. .......................................... 11.7 

Forward Swept V e r t i c a l  Ta i  1:  
Area  (each) .  f t 2  ................................................. 83.7 
Span. f t  ........................................................ 10.4 
Roo i cho-d .  f t  .................................................. 11.2 
T i p  chord.  f t  ..................................................... 4.8 
Aspect r a t j o  ..................................................... 1.29 
Lead ing  edge sweep. dey ........................................... -30 
Rudde” a r e a s  ft2 ................................................. 18.4 
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Table 1 Concluded 

Horizontal Tail f a l l  moving): 
Area ( each) .  f t 2 .  ............................................... 47.67 
Span. f t  ......................................................... 8.67 

Leading edge sweep. deg .......................................... 42.5 
Aspect rat io  ..................................................... 1.58 

Trailing Edge Extension: 
Length. f t  ....................................................... 15.7 
Width. f t  ......................................................... 4.7 
Flap area (each) .  f t 2  ............................................ 23.0 

Canard: 
Area. f t  ......................................................... 28.8 
Span.  f t  .......................................................... 5.98 
Root chorJ. f t  .................................................... 7 . 6 3  
T i p  chord. f t  ..................................................... 2.08 
Aspect ra t io  ...................................................... 1 .24  
Leading edge weep .  deg ............................................. 50 
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Figure 1. Effec t  o f  improved control power on c a n e u v e r a b i  1 i t y .  
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Figure 2. E f f e c t  o f  improved cont ro l  power on c o n f i s u r a t i o n  
o j t i i,i i z a t i o n . 
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Figure 5. V e r t i c a l  tail geometry. 
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Figure 6. Longitudinal and lateral control sur faces.  
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Figure 12. E f f e c t  of vertical t a i l  sweep on longitudinal characteristics. 



Tail weep Position 

0 Af t  
0 Forward Fowa rd 
0 Forward Aft 

- 

0 

B 

0 

-10 0 10 20 30 40 50 . 60 

Figure 13. Effect of vertical tail sweep on lateral-directional characleristics. 
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Figure 16. E f f e c t  o f  v e r t i c a l  t a i l  cant angle on longitudjnal characteristics, 
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F i g u r e  17. E f f e c t  o f  vertical tail cant  ang le  on lateral-d<rectionat 
c h a r a c t e r i s t i c s .  
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Figure 35. Effect  o f  iner t id  coupling on maximum -011  r a t e .  


