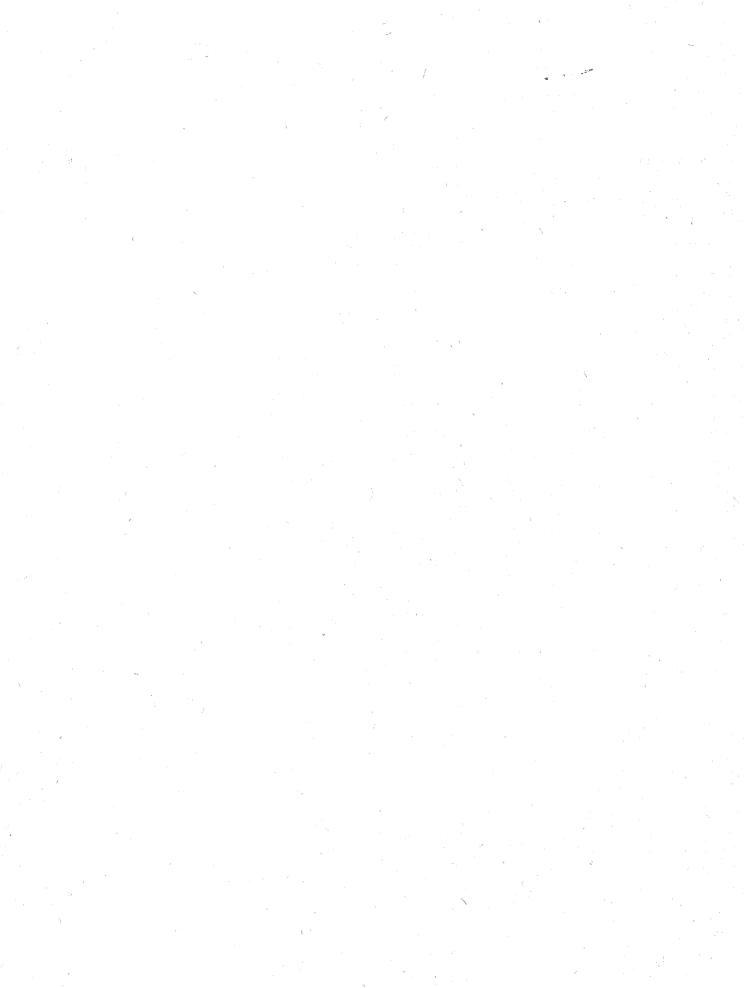
NASA-TP-2501 19860010879

NASA Technical Paper 2501

December 1985


Flight Measurements of Surface Pressures on a Flexible Supercritical Research Wing

Clinton V. Eckstrom

lingany copi

LANGLEY RESEARCH CENTER LICENTY, MASA LICENTY MILLINING

NASA Technical Paper 2501

1985

Flight Measurements of Surface Pressures on a Flexible Supercritical Research Wing

Clinton V. Eckstrom

Langley Research Center Hampton, Virginia

Scientific and Technical Information Branch

SUMMARY

A flexible supercritical research wing, used for both demonstration of activecontrol technology and evaluation of aerodynamic loads, was flight-tested as part of the NASA Drones for Aerodynamic and Structural Testing (DAST) Program. designated as ARW-1 (aeroelastic research wing), was geometrically similar to the wing of the F-8 supercritical wing (SCW) airplane but was smaller, as appropriate for the modified drone aircraft on which it was flown. The conditions for design cruise were a Mach number of 0.98 and a lift coefficient of 0.36 at an altitude of Aerodynamic loads, in the form of wing surface pressure measurements, were obtained for off-design flight test conditions during flights at altitudes of 15 000, 20 000, and 25 000 ft at Mach numbers from 0.70 to 0.91. Surface pressure coefficients determined from pressure measurements at 80 orifice locations are presented individually as a nearly continuous function of angle of attack for constant values of Mach number. Nonlinear variations of surface pressure coefficients with angle of attack (for Mach numbers ≥0.85) suggested the presence and movement of The surface pressure coefficients pressure gradients as angle of attack was varied. are also presented individually as a function of Mach number for an angle of attack of 2.0°. The nearly continuous values of the pressure coefficient clearly show details of the pressure gradient, which occurred in a rather narrow Mach number range. The effects of changes in angle of attack, Mach number, and dynamic pressure are also shown by chordwise pressure distributions for the range of test conditions experienced. Results for changes in dynamic pressure indicate the wing experienced an increase in twist (leading edge down) for the higher dynamic pressures. Reynolds numbers for the tests ranged from 5.7 to 8.4×10^6 . Limited comparisons with F-8 SCW data indicate local differences, but overall the data were reasonably close.

INTRODUCTION

The aeroelastic research wing (ARW-1) was flight-tested as part of the NASA Drones for Aerodynamic and Structural Testing (DAST) Program (refs. 1 and 2). The objectives of the ARW-1 flight test operations were to evaluate an active-control flutter suppression system (FSS) and to evaluate the effects of flexibility on wing aerodynamic loading. The ARW-1 was a supercritical wing of shape (airfoil, twist, droop, etc.) and planform similar to the wing of the F-8 supercritical wing (SCW) airplane (ref. 3) but is smaller, as appropriate for the BQM-34F drone aircraft on which it was flown. A special feature of the ARW-1 was that it was designed to flutter within the drone flight envelope, thereby providing the desired instability for active-control evaluation (refs. 4 to 7). Unfortunately, because of an improper gain setting in the FSS, uncontrolled flutter developed resulting in loss of the wing early in the flight test program (ref. 8). Although the flight tests performed did not achieve all the planned goals, data were obtained from a sufficient range of test conditions to accomplish part of the aerodynamic loads evaluation.

This paper presents results from aerodynamic loads measurements on the DAST ARW-1 at subcritical Mach numbers. The results are in the form of wing surface pressure coefficients for pressure measurements taken at four semispan stations. Sufficient data were obtained to allow presentation of the surface pressure coefficients for individual orifice locations as nearly continuous functions of angle of attack, Mach number, and dynamic pressure. Conventional chordwise pressure

distributions are also presented for a range of Mach numbers, angles of attack, and dynamic pressures. In addition, a limited comparison of these data with data for the F-8 SCW is presented.

WING AND INSTRUMENTATION

Research Wing

The ARW-1 was an early version of a supercritical wing that was designed for cruise at a high transonic speed (M = 0.98). (A list of symbols and abbreviations used in this paper appears after the references.) Photographs of the drone aircraft with the ARW-1 taken during flight testing are presented in figures 1(a) and 1(b). The general arrangement of the BQM-34F drone aircraft with the ARW-1 is presented in figure 2. The basic wing planform, which was defined by extending the straight line portions of the wing leading and trailing edges to the fuselage centerline, had (1) a reference area S of 30 ft², (2) a span b of 171.0 in., (3) a root chord length c_r of 36.99 in., (4) a taper ratio λ of 0.365, (5) a leading-edge sweep angle of 44.32° (40.0° sweep at the 50-percent-chord line), (6) an aspect ratio of 6.8, and (7) an mac of 27.06 in. In the inboard region (YF < 33 in.), the wing was modified by glove fairings designed to give the same drag rise Mach number for the wing root sections as for its outboard sections (ref. 9). For FSS test purposes there were hydraulically actuated control surfaces on the outboard wing panels, as shown in figure 2. The control-surface hinge line was at the 77-percent-chord line, with the control surface extending from $\eta = 0.788$ to 0.905.

The wing was constructed in a tooling fixture whose shape accounted for the predicted wing structural deflection due to aerodynamic loading at the cruise conditions (M = 0.98, h = 45 000 ft, q_{∞} = 207 psf, and C_L = 0.36). The wing structural deflection at cruise was estimated by applying the F-8 SCW model wind-tunnel-measured pressure distributions to the wing analytical finite-element structural model. The resulting incremental wing deflections were then subtracted from the wing cruise shape to give the tooling fixture shape. The design cruise shape was defined in reference 10, and the ordinates for the wing tooling fixture shape are presented in table I. The differences between the design cruise shape and the tooling fixture shape expressed in terms of the wing leading- and trailing-edge vertical locations z and the wing twist ϵ are presented in figures 3 and 4, respectively.

The wing structure consisted of a wing center section, the right and left wing panels, which had removable leading and trailing edges, and the wing-tip sections. The wing center section was machined from a thick aluminum plate to a configuration that provided a high degree of stiffness without consideration of minimum weight. The joining surface between the wing center section and each wing panel was in a plane normal to the 25-percent-chord line (front spar centerline) for that wing panel.

The structure of the wing panels consisted of a front spar located at the 25-percent-chord line, a rear spar located at the 60-percent-chord line, upper and lower stringers located midway between the front and rear spars, and ribs that were positioned perpendicular to the front spar and located every 12 in. along the span. A special streamwise rib located near the wing tip functioned as the outboard end fitting for the front and rear spars and as the attachment location for the removable wing-tip sections. The fiberglass skins between the front and rear spars were riveted to the spar and rib flanges to form a single-cell box beam. The fiberglass

skins that formed the leading- and trailing-edge sections and the tip section were attached to the spar and rib flanges with screws to allow for access to instrumentation and hydraulic system components. Details of the wing structural arrangement are shown in figure 5.

Measurements of the wing airfoil shape were made after wing fabrication was completed. The leading-edge and center-section surface deviations from the template airfoil shapes (tooling fixture ordinates) were generally less than ±0.020 in. The trailing-edge surface deviations from the template airfoil shapes were larger because the trailing-edge section skins had a tendency to curl (trailing edge down) as the fiberglass cured, resulting in a slight increase in camber at the cusp region of the airfoil. A listing of the deviations of the wing leading- and trailing-edge vertical locations from the tooling fixture shape are presented in table II. A comparison of airfoil ordinates at a typical wing station (YF = 37.11 in.) for both the left and right semispans is presented in table III. All screw and rivet heads and the gaps between the wing skin sections were filled with body putty and smoothed, and a final coat of paint was applied before flight-testing started.

The ARW-1 was similar in shape and planform to the wing on the F-8 super-critical wing (SCW) airplane except for a few significant differences. These were: (1) the ARW-1 had a 0° wing incidence angle (at the aircraft centerline), whereas the F-8 SCW had a 1.5° wing incidence angle; (2) in the region immediately adjacent to and overlapping the drone fuselage, the glove chord length was reduced to keep the upper surface of the glove contour from rising above the fuselage profile; (3) the drone fuselage did not have area-ruled fairings; and (4) different wing deformations were developed at flight conditions other than for cruise due to differences in the tooling fixture shape and in the structural stiffness of the two wings.

Instrumentation

The right wing panel was instrumented for measurement of chordwise surface pressures at four semispan stations. (See table IV and fig. 6.) The installation of outboard trailing-edge control surfaces, which were required for the implementation of the FSS, precluded use of orifice tubing aft of the 60-percent-chord line (rear spar location) on orifice rows 3 and 4.

The surface pressure for each orifice location was measured with a separate miniature pressure transducer. All the pressure transducers were located in two insulated, temperature-controlled compartments that were located inside the leading edge near the wing root. The transducer temperatures were controlled to help minimize measurement errors which could result from large temperature changes. Pressure transducers capable of measuring to ±3.5 psi and ±2.0 psi were used in these measurements. Each pressure transducer range was kept small to improve measurement resolution. The ± 3.5 psi pressure transducers were used to measure surface pressures at orifices located on the wing upper surface from the leading edge to the 50-percent-chord line and on the wing lower surface at the 3-percent-chord line, where the largest surface pressure measurements were expected. For the remaining orifices, the pressure transducers had a range of ±2.0 psi. The static pressure measured in the wing center section (fuselage area) was used as the reference pressure for all the surface pressure transducers. A measurement was also made of the difference between the aircraft pitot-probe static pressure and the wing reference static pressure. Surface pressure measurements were corrected through use of the measured difference in static pressure for the two locations.

Onboard pressure measurements were transmitted to the ground receiving station by means of a 9-bit pulse-code modulation (PCM) telemetry system with a main frame sampling rate of 300 samples per second. The surface pressure measurements were on subcommutated channels, with each pressure transducer being sampled at a rate of 30 samples per second. Measurements of flight conditions (aircraft angle of attack, dynamic pressure, etc.) were transmitted to the ground station by means of a separate 10-bit PCM system with a sampling rate of 500 samples per second. The flight data needed for the analyses for this report were on subcommutated channels that were sampled at either 50 or 100 samples per second. Both PCM systems transmitted data to the ground receiving station for recording on magnetic tape continuously throughout each flight test.

PRESENTATION OF RESULTS

The results of this investigation are presented in the following figures:

									Fi	gure
Test data:										
Flight-test conditions	•	•	•	•	•	•	•	•	•	7
Surface pressure coefficients:										
Variations of wing surface pressure coefficients with	ar	ഷി	6							
of attack for flight 10	•			_		_				8
Variations of wing surface pressure coefficients with	ar	าสา	e							Ü
of attack for flight 11		•	•							9
variations of wing surface pressure coefficients with										-
Mach number for flight 10	•		•					•		10
Variations of wing surface pressure coefficients with										
Mach number for selected orifice locations	٠	•	•	•	•	•		•	•	11
Variations of wing surface pressure coefficients with										
dynamic pressure	•	•	•	•	•	•	•	•	•	12
Chordwise pressure distributions:										
Chordwise pressure distributions for flight 10	_	_	_	_						12
Chordwise pressure distributions for flight 11	•		•	•	:	•	•	•	•	14
Variations of chordwise pressure distributions for		-	•	•	•	•	•	•	•	
different Mach numbers but approximately equal										
dynamic pressures			•							15
Variations of chordwise pressure distributions for										
equal Mach numbers but different dynamic pressures .	•									16
Variations of chordwise pressure distributions with										
combined changes in Mach number and dynamic pressure										
for flight 10	•	•				•				17
Variations of chordwise pressure distributions with										
combined changes in Mach number and dynamic pressure										
for flight 11	•	•			•	•		•	•	18
Variations of chordwise pressure distributions from										
flight tests of DAST ARW-1 and F-8 SCW	•	•		•	•	•	•	•	•	19
Variations of chordwise surface pressure distributions										
from DAST ARW-1 flight tests and F-8 SCW scaled-model										
wind-tunnel results					_			_	_	20

DISCUSSION OF RESULTS

Test Data

The DAST ARW-1 surface pressure measurements presented herein were obtained from two flight tests designated as flights 10 and 11. The flight-test conditions for flights 10 and 11 are presented in figure 7. Flight 10 was flown at nominal altitudes of 20 000 and 25 000 ft, and flight 11 was flown at a nominal altitude of 15 000 ft. The ranges of Mach number and dynamic pressure at which the majority of the data were acquired are shown by the rectangular symbols in figure 7. Some data were also acquired at other test conditions since the instrumentation system recorded data on a continuous basis. Eight of the test conditions were selected for the primary data analysis. The eight primary test conditions are shown in figure 7 by the closed symbols. The number of data samples, the mean Mach number and dynamic pressure and their standard deviations, and the Reynolds number for each of the eight primary test conditions are listed in table V. The number of data samples for each test condition resulted from the use of only 2 samples per second of the available 30 samples per second.

Surface Pressure Coefficients

Effects of changes in angle of attack. The variations of wing surface pressure coefficients with angle of attack are presented in figures 8 and 9 for flights 10 and 11, respectively. The data presented are for Mach numbers of 0.75, 0.80, 0.85, 0.875, and 0.90 at an altitude of 25 000 (flight 10) and for Mach numbers of 0.70, 0.75, and 0.80 at an altitude of 15 000 (flight 11). These are the primary test conditions indicated in figure 7 by the closed symbols. It should be noted that both dynamic pressure and Mach number changed when the flights were at constant altitude. The data are presented in a stacked format in figures 8 and 9, with the data set for each Mach number having a different origin point on the vertical axis. The number of data samples in each data set is listed in table V. The line (or curve) through each data set represents a least-squares second-degree polynomial equation fit to that data set.

The data in figures 8 and 9 show that the variations of pressure coefficient with angle of attack are nearly linear for Mach numbers from 0.70 to 0.80. At Mach numbers from 0.85 to 0.90, there are several pronounced nonlinear variations of pressure coefficient with angle of attack. These nonlinear variations are most noticeable on the upper surface at orifice row 1 from x/c = 0.30 to 0.61 (fig. 8(a)) and on the lower surface at orifice row 4 from x/c = 0.03 to 0.15 (fig. 8(h)). The nonlinear variations of pressure coefficient with angle of attack are attributed to the presence of weak pressure gradients which moved relative to the orifice locations as the angle of attack was changed.

The data also show that the slopes (i.e., the sensitivities) of the upper-surface pressure coefficients relative to angle of attack are generally positive and that the slopes of the lower-surface pressure coefficients relative to angle of attack are generally negative. This indicates that the respective local flow velocities increased and decreased with increasing angle of attack. The slope of the pressure coefficients relative to angle of attack is largest for the orifice locations near the wing leading edge. At the more downstream orifice locations, the sensitivity of pressure coefficients to angle of attack is reduced considerably to small or negligible values.

In general, the data of figures 8 and 9 indicate an expected variation with and sensitivity to angle of attack. Also indicated are nonlinearities which suggest the presence and movement of pressure gradients as angle of attack was varied.

Effects of changes in Mach number. Variations of wing surface pressure coefficients that occurred with changes in Mach number for flight 10 at an angle of attack of 2.0° are presented in figure 10. The data were obtained while flying at a constant altitude of 25 000 ft; therefore, both dynamic pressure and Mach number were changing as shown on figure 7. The nearly continuous form of the data results from including measurements obtained both at and between the test conditions noted in figure 7 (for M \geqslant 0.80). The surface pressure coefficients increase significantly with increasing Mach number at some orifice locations. The increases, which are most pronounced for the upper-surface orifices at row 1 (fig. 10(a)) at x/c = 0.20 to 0.70, indicate the presence and movement of a pressure gradient (recompression wave) on the wing upper surface as the Mach number was varied from about 0.82 to 0.92.

For the lower-surface orifices at row 1 (fig. 10(b)), there is evidence of a recompression wave at x/c = 0.40 for M = 0.90, and this wave moved back to x/c = 0.50 for $M \approx 0.92$. For the upper-surface orifices at row 2 (fig. 10(c)), there is evidence of a recompression wave located at x/c = 0.80 for $M \approx 0.89$. For orifice rows 3 and 4, the recompression wave effects are most clearly shown on the lower surface (figs. 10(f) and 10(h)) at x/c = 0.15.

Variations of wing surface pressure coefficients with Mach number are presented in a stacked arrangement in figure 11 for selected orifice locations on the upper surface at row 1. The data for an angle of attack of 2.0° (fig. 11(a)) are a replot of those presented in figure 10(a) for x/c = 0.20 to 0.70. Similar data for an angle of attack of 2.5° are presented in figure 11(b). These data show the significant effect that small changes in Mach number can have on the surface pressure coefficients when a recompression wave is present. The data also show that the recompression wave moved downstream as Mach number was increased. The largest change in the surface pressure coefficient was approximately 0.30, which occurred at x/c = 0.40 for Mach numbers from 0.87 to 0.89 (fig. 11(a)). The recompression wave was located farther downstream for the same Mach numbers when the angle of attack was increased from 2.0° to 2.5° (fig. 11(b)). The nearly continuous data presented in figure 11 clearly define the details of the pressure coefficient variations associated with the recompression wave that occur in a relatively narrow Mach number range.

Effects of changes in dynamic pressure. The variations of wing surface pressure coefficients that occurred with changing dynamic pressure are presented in figure 12 for a Mach number of 0.75 and an angle of attack of 2.0°. Data from flights 10 and 11 are shown on the same plot to increase the range of dynamic pressures. The data from flight 10 were acquired when the aircraft was flying initially at an altitude of 20 000 ft and then while climbing to and flying at an altitude of 25 000 ft. (See fig. 7.) The data from flight 11 were acquired while flying at an altitude of 15 000 ft. The data of figure 12 indicate that near the leading edge of the wing and outboard on the span (orifice rows 3 and 4), the upper-surface pressure coefficients become more positive as dynamic pressure was increased. Likewise, for the lower surface the pressure coefficients become more negative with increased dynamic pressure. This indicates that the local angles of attack became more negative as dynamic pressure was increased (i.e., the wing was twisted negatively along the span).

Variations in surface pressure coefficients have been presented for changes in angle of attack, in Mach number, and in dynamic pressure. In each case, as the test condition was changed the wing loading and, therefore, the twist distribution for the wing also changed. As a result the surface pressure coefficient variations presented in figures 8 to 12 represent the combined effects of test condition changes and concurrent wing-twist-distribution changes. For dynamic pressure (fig. 12), the changes in surface pressure coefficients are believed to be primarily due to wing-twist-distribution changes resulting from changes in aerodynamic loading.

Chordwise Pressure Distributions

Surface pressure coefficients used to generate chordwise pressure distributions were obtained primarily from the curves fit to the data of figures 8 and 9. The curves represent least-squares second-degree polynomial equations fit to the data sets. The equations, which represent the data sets, were also used to compute surface pressure coefficients for each orifice location at angle-of-attack increments of 0.5° within the original data range. Surface pressure data arrays were formed for each Mach number (figs. 8 and 9). Results from figures 10 and 11, which more clearly define surface pressure variations with Mach number, were then used to modify the surface pressure data arrays where there was significant scatter in the data sets of figures 8 and 9. All chordwise pressure distributions presented in the following sections are based on results listed in the surface pressure coefficient data arrays of tables VI to XIII.

Chordwise pressure distributions for flights 10 and 11 are presented in figures 13 and 14, respectively. The pressure distributions from flight 10 are for angle-of-attack increments of 0.5° from 1.5° to 4.0° for M=0.75 (fig. 13(a)) and from 2.0° to 3.0° for M=0.80 to 0.90 (figs. 13(b) to 13(c)). The pressure distributions from flight 11 are for angle-of-attack increments of 0.5° from 2.0° to 3.0° for M=0.70 to 0.80 (figs. 14(a) to 14(c)). These angles of attack are representative of the range of angles of attack for which data were acquired for each primary test condition.

The pressure distributions presented in figures 13 and 14 for orifice row 1 show that a lifting pressure developed essentially along the entire chord length for all angles of attack and Mach numbers. For orifice rows 2, 3, and 4, the pressure distributions indicate that the region near the wing leading edge experienced some down loading (the surface pressure on the wing lower surface was more negative than the surface pressure on the upper surface) for most angles of attack and Mach The down loading was largest for the lowest angles of attack shown. the airfoil shape from the leading edge to the midchord was essentially symmetric, the pressure distributions with down loading near the leading edge indicate that the local angle of attack was negative. This effect is to be expected because of the large negative twist that was built into the wing (fig. 4). The only test condition for which lifting pressures were developed along the entire span was for an angle of attack of 4.0° at a Mach number of 0.75 (fig. 13(a)). Note that the pressure distributions in the cusp region of the airfoil (aft of x/c = 0.70, measured at orifice rows 1 and 2) do not change significantly with angle of attack. In general, the chordwise pressure distributions show that the outboard portion of the wing leading edge was subjected to varying degrees of down loading for most of the test conditions evaluated.

Effects of changing Mach number. Variations of chordwise pressure distributions obtained at different Mach numbers but at essentially the same dynamic pressures are presented for comparison in figure 15. In figure 15(a), a comparison may be made of chordwise pressure distributions for M=0.70 and 0.85, for which the respective mean values of dynamic pressure were 410 and 406 psf. A similar comparison may be made in figure 15(b) for M=0.75 and 0.90, for which the respective mean values of dynamic pressure were 466 and 456 psf. Comparisons of the data show that an increase in lifting pressure occurred on the wing upper surface at row 1 (x/c = 0.20) when going from M=0.70 to 0.85 and that a larger increase in lifting pressures occurred when going from M=0.75 to 0.90 (for x/c=0.20 to 0.40). The other noticeable change occurred on the lower surface at orifice row 4 where there was an increase in down loading for the higher Mach numbers.

Effects of changing dynamic pressure. Variations of chordwise pressure distributions for equal Mach numbers but different dynamic pressures are presented for comparison in figure 16. Data are presented in figure 16(a) for a Mach number of 0.75 and dynamic pressures of 320 and 466 psf. Similar data for a Mach number of 0.80 and dynamic pressures of 360 and 533 psf are presented in figure 16(b). Section normal-force coefficients are presented in table XIV for comparison of the loadings. These data show the primary effect of increasing the flight dynamic pressure by approximately 50 percent was a reduction in loading for comparable Mach numbers and angles of attack.

The significance of the change in dynamic pressure on local wing twist can be evaluated by noting that for orifice row 4 the c' value for flight 10 at $\alpha=2.0^\circ$ was essentially the same as for flight 11 at $\alpha=3.0^\circ$. Thus, the effect of the increase in dynamic pressure was about the same as if the angle of attack at orifice row 4 decreased by 1.0°.

Combined effects of changes in Mach number and dynamic pressure. The variations in chordwise pressure distributions that occurred with combined changes in Mach number and dynamic pressure for flights 10 and 11 are presented in figures 17 and 18. The combinations of Mach number and dynamic pressure are the primary test conditions for flights 10 and 11 as noted in figure 7. The data show the combined effects of changes in both Mach number and dynamic pressure for angles of attack of 2.0° (figs. 17(a) and 18(a)) and 3.0° (figs. 17(b) and 18(b)).

The pressure distributions for orifice row 1 at an angle of 2.0° indicate the development and downstream movement of a pressure gradient on the wing upper surface as Mach number and dynamic pressure were increased. This effect was reported in the previous discussion on the effects of Mach number on the surface pressure coefficients (fig. 10(a)). The pressure distributions for orifice row 1 at an angle of attack of 3.0° (fig. 17(b)) were similar to those for 2.0° (fig. 17(a)) except that the pressure gradient was located farther downstream for equivalent Mach numbers. For orifice row 2 the pressure distributions remained relatively unchanged for both angles of attack as Mach number increased. For orifice rows 3 and 4 at an angle of attack of 2.0° the steep pressure gradient on the wing lower surface between x/c = 0.10 and 0.15 indicates that a recompression wave was located between these two orifice locations. This finding is consistent with the surface pressure coefficient data presented in figures 10(f) and 10(h). At an angle of attack of 3.0°, the large negative pressures (down loading) and the steep pressure gradients on the lower surface that were evident at 2.0° were considerably reduced. For the limited Mach number range of flight 11 (fig. 18), the measured surface pressure data are quite The most noticeable differences in pressure distributions occurred outboard on the wing at orifice rows 3 and 4. These differences were probably more a

result of wing twist due to increased dynamic pressure (i.e., increased wing torsion loadings) than a result of Mach number changes.

Comparison of DAST ARW-1 Pressure Distributions With F-8 SCW Pressure Distributions

Comparison with F-8 SCW flight-test data. The Mach numbers and angles of attack for which measured wing surface pressure data are available for the F-8 SCW airplane (ref. 9) are different than the Mach numbers and angles of attack tested with the DAST vehicle. To obtain a comparison of the pressure distributions, the results for the DAST ARW-1 (flight 10) at a Mach number of 0.80 (angle-of-attack range from 1.0° to 3.2°) were extrapolated to obtain data for an angle of attack of 3.73°, which was the lowest comparable angle of attack for which F-8 SCW results were available. The extrapolation was accomplished by means of the least-squares second-degree polynomial equations described in the section entitled "Chordwise Pressure Distributions." (Note that 1.5° must be added to the angle of attack for the F-8 SCW to account for the difference in incidence angle (wing mounting) between the DAST ARW-1 and the F-8 SCW.)

Flight-measured wing surface pressure distributions for the DAST ARW-1 and the F-8 SCW are presented for comparison in figure 19. The data indicate several areas of reasonable agreement as well as areas of differences. Pressure distributions are presented for four semispan stations η that were at slightly different locations on either wing. The semispan location of each orifice row is noted in the figure. At orifice row 1, the upper-surface pressure distributions show good agreement whereas the ARW-1 lower-surface pressure distribution is generally more positive than that for the F-8 SCW.

The comparison of pressure distributions for orifice row 2 indicates good agreement for the wing upper surface over most of the chord length except that F-8 SCW data near the trailing edge indicate a second velocity peak from about x/c = 0.60 to 0.90. The pressure coefficients for the wing lower surfaces show similar trends, but the ARW-1 pressure coefficients are again generally more positive than those of the F-8 SCW.

The F-8 SCW upper- and lower-surface pressure coefficients for orifice row 3 are nearly equal for about the first 15 percent of the wing local chord. Since the airfoil is approximately symmetrical for the leading edge of the wing, the results indicate that the local angle of attack was near 0°. In contrast, the ARW-1 results for row 3 show a large difference between the upper- and lower-surface pressure coefficients in the leading-edge region, indicating that ARW-1 experienced a positive local angle of attack at orifice row 3. The surface pressure coefficients near the leading edge of orifice row 4 indicate that there was a slightly negative local angle of attack for the F-8 SCW and a positive angle of attack for the ARW-1.

The data of figure 19 indicate that the ARW-1 and the F-8 SCW surface pressure distributions agree reasonably well. The differences that exist occurred at the two outboard orifice rows and indicate that the ARW-1 probably had slightly higher local angles of attack than the F-8 SCW at the outboard regions of the wing.

Comparison with F-8 SCW model data. Wing surface pressure distributions from the DAST ARW-1 flight test and from the F-8 SCW scaled-rigid-model wind-tunnel test are presented for comparison in figure 20 for Mach numbers of 0.80 and 0.90. The data compare reasonably well at a Mach number of 0.80 (fig. 20(a)). The most

significant difference in the two sets of data occurs at the aft end of the chord line for orifice rows 1 and 2. The difference in wing surface pressure coefficients between the upper and lower surfaces is generally greater for the ARW-1 than for the F-8 SCW model.

There are additional differences in the data for the ARW-1 and the F-8 SCW model for a Mach number of 0.90 (fig. 20(b)). The most significant difference at this Mach number is a region of higher lifting pressure on the upper surface between x/c = 0.15 and 0.60 at orifice row 1 for ARW-1. Also, the upper-surface pressures at orifice rows 1 and 2 for ARW-1 indicate a second velocity peak near the trailing edge (x/c = 0.80).

CONCLUDING REMARKS

A flexible supercritical research wing (ARW-1) was used for both active-control technology demonstration and evaluation of aerodynamic loads. The design cruise conditions for the wing were a Mach number M of 0.98 at an altitude of 45 000 ft. Aerodynamic loads, in the form of wing surface pressure measurements, were obtained for off-design conditions during flight tests at altitudes of 15 000, 20 000, and 25 000 ft at Mach numbers from 0.70 to 0.91. The wing surface pressure measurements, which were converted to coefficient form were presented for individual orifice locations and as chordwise pressure distributions. The analysis of these results indicated the following:

- 1. The variation of surface pressure coefficient with angle of attack for M \leq 0.80 was quite linear, with the largest sensitivity being near the wing leading edge. There were several nonlinear variations of surface pressure coefficient with angle of attack for M \geq 0.85; these variations suggested the presence and movement of pressure gradients as angle of attack was varied.
- 2. The nearly continuous data for variations of surface pressure coefficient with Mach number clearly showed the details of large pressure variations that were associated with a recompression wave which occurred in a relatively narrow Mach number range.
- 3. Variations of surface pressure coefficient with dynamic pressure indicated that as dynamic pressure was increased the wing twisted along the span (leading edge down).
- 4. The chordwise pressure distributions for orifice row 1 indicated that a lifting pressure was developed along the entire chord length for the range of angles of attack, Mach numbers, and dynamic pressures reported herein. The chordwise pressure distributions for orifice rows 2, 3, and 4 indicated that the region near the wing leading edge experienced some down loading for most of the test conditions evaluated.
- 5. Comparisons of chordwise pressure distributions for equal dynamic pressures and angles of attack but different Mach numbers indicated the existence and growth of a region of higher lifting pressures on the wing upper surface at orifice row 1 for the higher Mach numbers.
- 6. Comparisons of chordwise pressure distributions for equal Mach numbers and angles of attack but different dynamic pressures indicated the wing experienced an increase in twist (leading edge down) for the higher dynamic pressures.

7. A limited comparison of results from the ARW-1 flight test with the measurements from the F-8 supercritical wing (SCW) airplane flight tests and with results from the F-8 SCW model tests indicated that there were some local differences, but overall the data were reasonably close.

NASA Langley Research Center Hampton, VA 23665-5225 July 15, 1985

REFERENCES

- Murrow, H. N.; and Eckstrom, C. V.: Drones for Aerodynamic and Structural Testing (DAST) - A Status Report. J. Aircr., vol. 16, no. 8, Aug. 1979, pp. 521-526.
- Kotsabasis, Alexandros: The DAST-I Remotely Piloted Research Vehicle Development and Initial Flight Testing. NASA CR-163105, 1981.
- 3. Supercritical Wing Technology A Progress Report on Flight Evaluations. NASA SP-301, 1972.
- 4. Abel, Irving; Perry, Boyd, III; and Murrow, Harold N.: Two Synthesis Techniques Applied to Flutter Suppression on a Flight Research Wing. J. Guid. & Control, vol. 1, no. 5, Sept.-Oct. 1978, pp. 341-346.
- 5. Edwards, John W.: Flight Test Results of an Active Flutter Suppression System Installed on a Remotely Piloted Research Vehicle. AIAA/ASME/ASCE/AHS 22nd Structures, Structural Dynamics and Materials Conference and AIAA Dynamics Specialists Conference A Collection of Technical Papers, Part 2, Apr. 1981, pp. 778-789. (Available as AIAA-81-0655.)
- 6. Newsom, Jerry R.; and Pototzky, Anthony S.: Comparison of Analysis and Flight Test Data for a Drone Aircraft With Active Flutter Suppression. AIAA/ASME/ASCE/AHS 22nd Structures, Structural Dynamics and Materials Conference and AIAA Dynamics Specialists Conference A Collection of Technical Papers, Part 2, Apr. 1981, pp. 644-653. (Available as AIAA-81-0640.)
- 7. Bennett, Robert M.; and Abel, Irving: Application of a Flight Test and Data Analysis Technique to Flutter of a Drone Aircraft. AIAA/ASME/ASCE/AHS 22nd Structures, Structural Dynamics and Materials Conference and AIAA Dynamics Specialists Conference - A Collection of Technical Papers, Part 2, Apr. 1981, pp. 811-820. (Available as AIAA-81-0652.)
- 8. Murrow, Harold N.: Status and Future Plans of the Drones for Aerodynamic and Structural Testing (DAST) Program. Advanced Aerodynamics and Active Controls Selected NASA Research, NASA CP-2172, 1981, pp. 21-36.
- 9. Montoya, Lawrence C.; and Banner, Richard D.: F-8 Supercritical Wing Flight Pressure, Boundary-Layer, and Wake Measurements and Comparisons With Wind Tunnel Data. NASA TM X-3544, 1977.
- 10. Byrdsong, Thomas A.; and Hallissy, James B.: Longitudinal and Lateral Static Stability and Control Characteristics of a 1/6-Scale Model of a Remotely Piloted Research Vehicle With a Supercritical Wing. NASA TP-1360, 1979.
- 11. Harris, Charles D.: Wind-Tunnel Measurements of Aerodynamic Load Distribution on an NASA Supercritical-Wing Research Airplane Configuration. NASA TM X-2469, 1972.

SYMBOLS AND ABBREVIATIONS

- b reference wing span, in.
- c local streamwise chord length, in.
- C_{T.} lift coefficient
- c_n wing-section normal-force coefficient, full chord length,

$$\int_{0}^{1} (c_{p,1} - c_{p,u}) d(x/c)$$

c' wing-section normal-force coefficient, partial chord length,

$$\int_{0}^{.55} (c_{p,1} - c_{p,u}) d(x,c)$$

- C_p pressure coefficient, $(p p_{\infty})/q_{\infty}$
- FS fuselage station
- h altitude, ft
- LE leading edge
- M free-stream Mach number
- mean value of Mach number for test condition
- mac mean aerodynamic chord length, in.
- p local static pressure, psf
- p_∞ free-stream static pressure, psf
- q free-stream dynamic pressure, psf
- q mean value of dynamic pressure for test condition, psf
- R Reynolds number based on mac
- S wing reference area, ft²
- TE trailing edge
- x streamwise distance measured from local wing leading edge, in.
- Y_F spanwise distance measured normal to fuselage centerline, in.
- Y_W distance along wing 25-percent-chord line measured from plane of symmetry, in.
- z vertical distance from wing reference plane, in.
- a angle of attack, deg

Δ increment

angle of twist of local airfoil section (angle between wing reference plane and a line through wing leading edge and a point midway between the upper and lower surfaces at the airfoil maximum thickness), deg

 η semispan location, $Y_F/(b/2)$

 λ wing taper ratio, c_t/c_r

σ standard deviation

Subscripts:

1 lower

r wing root

t wing tip

u upper

TABLE I.- ORDINATES FOR WING TOOLING FIXTURE SHAPE

(a) $Y_F = 10.00$ in.; leading edge at FS = 210.0479 in.

		Upper-surface	Lower-surface
x/c	x, in.	z, in.	z, in.
			•
0.000000	0.0000	1.5999	1.5999
.000625	.0408	1.8503	1.3454
.001250	.0817	1.9562	1.2401
.002500	.1634	2.1018	1.0925
.003750	.2451	2.2122	.9803
.005000	.3268	2.3055	.8868
.007500	.4903	2.4608	.7302
.010000	.6537	2.5895	•5982
.015000	.9805	2.7983	.3831
.020000	1.3074	2.9702	.2100
.025000	1.6343	3.1172	.0632
.037500	2.4514	3.4158	2210
.050000	3.2685	3.6617	4411
.075000	4.9028	4.0657	7816
.100000	6.5371	4.3776	-1.0327
.150000	9.8057	4.8388	-1.3863
.175000	11.4400	5.0064	-1.5019
.200000	13.0742	5.1394	-1.5881
.250000	16.3428	5.3029	-1.6949
.300000	19.6113	5.3466	-1.7255
.350000	22.8799	5.3023	-1.6794
.400000	26.1484	5.1957	-1.5493
•450000	29.4170	5.0556	-1.3381
•500000	32.6855	4.8942	-1.0647
.550000	35.9540	4.7144	7336
.600000	39.2225	4.5199	3510
.650000	42.4910	4.2953	.0706
.700000	45.7596	4.0470	.5129
.750000	49.0281	3.7727	•9694
.800000	52.2966	3.4780	1.3867
.850000	55.5651	3.1449	1.6759
.900000	58.8337	2.7201	1.7775
.925000	60.4681	2.5138	1.7665
.950000	62.1024	2.2834	1.7092
.975000	63.7367	2.0219	1.6143
.991300	64.8023	1.8188	1.5156
1.000000	65.3711	1.4540	1.4540

TABLE I.- Continued

(b) $Y_F = 15.00 \text{ in.}$; leading edge at FS = 210.0479 in.

		Upper-surface	Lower-surface
x/c	x, in.	z, in.	z, in.
0.000000	0.0000	1.4937	1.4937
.000625	.0319	1.7011	1.2864
.001250	.0638	1.7898	1.1975
.002500	.1275	1.9148	1.0719
.003750	.1912	2.0094	.9766
.005000	.2550	2.0870	.8975
.007500	.3825	2.2154	•7667
.010000	.5100	2.3222	.6583
.015000	.7649	2.4931	.4842
.020000	1.0199	2.6277	.3432
.025000	1.2749	2.7415	.2239
.037500	1.9123	2.9738	0066
.050000	2.5497	3.1613	1803
.075000	3.8246	3.4623	4380
.100000	5.0994	3.6883	6148
.150000	7.6491	4.0092	8449
.175000	8.9239	4.1201	9194
.200000	10.1988	4.2037	9734
.250000	12.7485	4.3066	-1.0290
.300000	15.2982	4.3472	-1.0260
.350000	17.8479	4.3393	9587
.400000	20.3975	4.2980	8288
.450000	22.9472	4.2326	6469
•500000	25.4969	4.1533	4309
•550000	28.0466	4.0558	1784
•600000	30.5963	3.9273	.1046
.650000	33.1460	3.7720	.4285
.700000	35.6957	3.6022	.7724
.750000	38.2454	3.4008	1.1383
.800000	40.7951	3.1909	1.4875
.850000	43.3448	2.9667	1.7451
•900000	45.8945	2.6675	1.8708
•925000	47.1693	2.5135	1.8882
•950000	48.4441	2.3406	1.8592
•975000	49.7190	2.1567	1.7991
.991300	50.5502	2.0198	1.7325
1.000000	50.9938	1.6836	1.6836

TABLE I.- Continued (c) $Y_F = 20.00$ in.; leading edge at FS = 239.2395 in.

x/c	x, in.	Upper-surface z, in.	Lower-surface z, in.
X/C	A, 111.	۷, ۱۱۱۰	2, 111.
0.000000	0.0000	1.3261	1.3261
.000625	.0246	1.4943	1.1590
.001250	.0491	1.5673	1.0865
.002500	.0981	1.6717	.9819
.003750	.1471	1.7497	.9025
.005000	.1961	1.8132	.8375
.007500	.2941	1.9169	.7332
.010000	.3922	2.0011	.6491
.015000	•5882	2.1347	.5136
.020000	.7843	2.2343	.4053
.025000	.9804	2.3174	.3154
.037500	1.4705	2.4861	.1414
.050000	1.9607	2.6141	.0169
.075000	2.9410	2.8064	1532
.100000	3.9213	2.9533	2639
.150000	5.8820	3.1644	3870
.175000	6.8623	3.2412	4259
.200000	7.8427	3.3026	4528
.250000	9.8033	3.4036	4666
.300000	11.7640	3.4815	4323
.350000	13.7247	3.5269	3618
.400000	15.6854	3.5443	2594
.450000	17.6461	3.5314	1323
•500000	19.6069	3.4929	.0192
•550000	21.5676	3.4383	.2036
.600000	23.5283	3.3519	.4187
.650000	25.4890	3.2594	.6801
.700000	27.4498	3.1665	.9620
.750000	29.4105	3.0485	1.2635
.800000	31.3712	2.9239	1.5623
.850000	33.3319	2.7720	1.8036
•900000	35.2926	2.5880	1.9416
.925000	36.2730	2.4717	1.9671
.950000	37.2533	2.3491	1.9522
.975000	38.2336	2.2182	1.9028
.991300	38.8728	2.1278	1.8416
1.000000	39.2140	1.7985	1.7985

TABLE I.- Continued $\mbox{(d)} \quad \mbox{$Y_F$ = 25.00 in.; leading edge at FS = 248.5600 in.}$

		Upper-surface	Lower-surface
x/c	x, in.	z, in.	z, in.
0.000000	0.0000	1.0929	1.0929
.000625	.0203	1.2214	.9676
.001250	.0405	1.2776	.9111
.002500	.0811	1.3564	.8308
.003750	.1217	1.4148	.7722
.005000	.1622	1.4621	.7262
.007500	.2434	1.5371	.6533
.010000	•3245	1.5978	•5927
.015000	.4868	1.7007	•4925
.020000	.6490	1.7847	.4172
.025000	.8113	1.8560	.3558
.037500	1.2169	1,9966	.2373
.050000	1.6226	2.1056	.1493
•075000	2.4339	2,2797	.0291
.100000	3.2452	2,4135	0569
.150000	4.8680	2,6072	1732
.175000	5.6794	2.6854	2037
.200000	6.4908	2.7546	2207
.250000	8.1136	2.8649	2194
.300000	9.7366	2.9396	1884
.350000	11.3596	2.9851	1322
.400000	12.9826	3.0103	0501
.450000	14.6057	3.0135	.0513
•500000	16.2289	2,9924	.1755
•550000	17.8521	2.9624	.3293
.600000	19.4753	2.9307	.5186
•650000	21.0985	2.8900	.7505
•700000	22.7217	2.8446	1.0151
.750000	24.3449	2.7798	1.3047
.800000	25.9680	2.6998	1.5871
.850000	27.5910	2.5926	1.8098
•900000	29.2138	2.4558	1.9310
.925000	30.0252	2.3648	1.9450
•950000	30.8365	2.2599	1.9180
•975000	31.6479	2.1378	1.8456
.991300	32.1768	2.0480	1.7661
1.000000	32.4591	1.7163	1.7163

TABLE I.- Continued $(e) \quad Y_F = 30.00 \text{ in.; leading edge at FS} = 255.0596 \text{ in.}$

x/c	x, in.	Upper-surface z, in.	e Lower-surface z, in.
0.000000	0.0000	.8949	.8949
.000625	.0181	1.0134	.7789
.001250	.0363	1.0597	.7321
.002500	.0725	1.1289	.6632
.003750	.1088	1.1778	.6139
.005000	.1451	1.2167	•5753
.007500	.2176	1.2800	•5133
.010000	•2902	1.3306	•4646
.015000	.4353	1.4125	.3888
.020000	. 5804	1.4811	.3324
.025000	.7255	1.5407	.2862
.037500	1.0883	1.6613	.1966
.050000	1.4511	1.7573	.1262
.075000	2.1766	1.9109	.0224
.100000	2.9021	2.0306	0519
.150000	4.3532	2.2123	1429
.175000	5.0788	2.2842	1627
.200000	5.8043	2.3458	1741
.250000	7.2554	2.4426	1723
.300000	8.7065	2.5139	1422
.350000	10.1575	2.5641	0914
•400000	11.6086	2.5964	0178
.450000	13.0596	2.6129	.0716
•500000	14.5106	2.6195	.1852
•550000	15.9615	2.6199	.3268
.600000	17.4124	2.6171	•5050
.650000	18.8632	2.6031	.7291
•700000	20.3140	2.5782	•9954
.750000	21.7647	2.5346	1.2844
•800000	23.2153	2.4761	1.5616
.850000	24.6659	2.3964	1.7608
•900000	26.1164	2.2776	1.8527
•925000	26.8416	2.2000	1.8498
.950000	27.5668	2.1050	1.8031
.975000	28.2919	1.9867	1.7077
•991300	28.7647	1.8957	1.6154
1.000000	29.0171	1.5639	1.5639

TABLE I.- Continued $(f) \quad Y_F = 33.00 \text{ in.; leading edge at FS} = 258.1945 \text{ in.}$

x/c	x, in.	Upper-surface z, in.	Lower-surface z, in.
•		2.3 1114	2, 111.
0.000000	0.0000	.8019	.8019
.000625	•0175	.9198	.6854
.001250	.0349	•9638	.6411
.002500	.0698	1.0319	•5742
.003750	.1047	1.0791	.5262
.005000	•1396	1.1165	•4882
.007500	. 2094	1.1780	.4268
.010000	•2792	1.2270	•3804
.015000	•4188	1.3031	.3111
.020000	• 5584	1.3653	.2586
.025000	•6980	1.4196	.2152
.037500	1.0469	1.5319	.1307
.050000	1.3959	1.6212	.0645
.075000	2.0939	1.7605	0344
.100000	2.7918	1.8703	1027
.150000	4.1877	2.0414	1754
.175000	4.8857	2.1075	1897
.200000	5.5836	2.1626	1984
.250000	6.9796	2.2518	1957
.300000	8.3755	2.3245	1632
.350000	9.7714	2.3803	1124
.400000	11.1673	2.4185	0413
.450000	12.5632	2.4416	.0437
.500000	13.9591	2.4594	.1531
.550000	15.3550	2.4704	.2899
.600000	16.7509	2.4717	.4629
.650000	18.1468	2.4630	.6830
.700000	19.5427	2.4428	•9463
.750000	20.9386	2.4038	1.2296
.800000	22.3345	2.3512	1.4996
.850000	23.7304	2.2780	1.6891
.900000	25.1264	2.1647	1.7704
•925000	25.8243	2.0899	1.7622
.950000	26.5223	1.9987	1.7108
•975000	27.2202	1.8836	1.6114
.991300	27.6753	1.7946	1.5183
1.000000	27.9182	1.4675	1.4675

TABLE I.- Continued $(g) \quad Y_F = 40.00 \text{ in.; leading edge at FS} = 265.0309 \text{ in.}$

x/c	x, in.	Upper-surface z, in.	Lower-surface z, in.
λ, σ	A, 111.	2 g 111 e	۱۱۱۰ و ۲
0.000000	0.0000	•5758	•5758
.000625	.0163	.6821	•4698
.001250	.0325	.7227	.4290
.002500	.0650	.7850	.3676
.003750	.0975	.8284	.3239
.005000	.1300	.8625	.2888
.007500	.1950	•9176	.2328
.010000	.2600	.9619	.1909
.015000	.3900	1.0316	.1282
.020000	•5200	1.0888	.0801
.025000	.6499	1.1383	.0405
.037500	.9749	1.2408	0372
.050000	1.2999	1.3224	0959
.075000	1.9498	1.4488	1801
.100000	2.5997	1.5488	2377
.150000	3.8996	1.7049	2972
.175000	4.5495	1.7658	3080
.200000	5.1994	1.8177	3127
.250000	6.4993	1.9037	3030
.300000	7.7992	1.9741	2693
.350000	9.0990	2.0311	2207
•400000	10.3989	2.0746	1548
.450000	11.6987	2.1053	0752
.500000	12.9986	2.1304	.0270
•550000	14.2984	2.1467	.1536
.600000	15.5983	2.1552	.3156
•650000	16.8982	2.1543	.5191
.700000	18.1980	2.1422	.7642
.750000	19.4979	2.1127	1.0284
.800000	20.7977	2.0668	1.2743
.850000	22.0976	1.9982	1.4510
.900000	23.3975	1.8914	1.5221
.925000	24.0474	1.8193	1.5107
.950000	24.6973	1.7314	1.4609
.975000	25.3472	1.6200	1.3642
.991300	25.7710	1.5317	1.2744
1.000000	25.9972	1.2220	1.2220

TABLE I.- Continued (h) $Y_F = 50.00$ in.; leading edge at FS = 274.7971 in.

		Upper-surface	Lower-surface
x/c	x, in.	z, in.	z, in.
		·	
0.000000	0.0000	.1852	.1852
.000625	.0146	.2749	.0941
.001250	.0291	. 3106	.0583
.002500	.0582	.3645	.0049
.003750	.0872	.4026	0329
.005000	.1163	.4318	0638
.007500	.1744	.4778	1119
.010000	.2326	.5155	1474
.015000	.3488	.5763	2006
.020000	.4651	.6262	2423
.025000	.5814	.6691	2765
.037500	.8720	.7578	3444
.050000	1.1627	.8285	3922
.075000	1.7440	.9368	4550
.100000	2.3253	1.0230	4968
.150000	3.4880	1.1586	5367
.175000	4.0693	1.2125	5420
.200000	4.6506	1.2601	5408
.250000	5.8133	1.3424	5201
.300000	6.9759	1.4103	4839
.350000	8.1386	1.4701	4377
•400000	9.3012	1.5220	3783
.450000	10.4639	1.5646	3052
.500000	11.6265	1.6010	2124
•550000	12.7892	1.6260	0992
.600000	13.9518	1.6461	.0481
•650000	15.1145	1.6575	.2291
.700000	16.2771	1.6581	•4494
.750000	17.4397	1.6434	.6873
.800000	18.6024	1.6082	•9000
.850000	19.7650	1.5475	1.0599
•900000	20.9277	1.4515	1.1178
•925000	21.5090	1.3839	1.1027
.950000	22.0903	1.3015	1.0557
•975000	22.6717	1.1959	.9636
.991300	23.0507	1.1091	.8789
1.000000	23.2530	.8247	.8247

TABLE I.- Continued $\mbox{(i)} \quad \mbox{$Y_F$ = 60.00 in.; leading edge at FS = 284.5634 in.}$

		Upper-surface	Lower-surface
x/c	x, in.	z, in.	z, in.
0.000000	0.0000	2614	2614
.000625	.0128	1877	3383
.001250	.0256	1570	3690
.002500	.0512	1115	4144
.003750	.0769	0807	4462
.005000	.1025	0540	4727
.007500	.1538	0166	5130
.010000	.2051	.0148	5422
.015000	.3076	.0669	5864
.020000	•4101	.1098	6216
.025000	•5127	.1463	6504
.037500	.7690	.2218	7081
.050000	1.0254	.2822	7455
.075000	1.5381	.3736	7890
.100000	2.0508	.4472	8160
.150000	3.0763	•5639	8368
.175000	3.5890	.6113	8367
.200000	4.1017	.6547	8298
.250000	5.1271	.7332	7989
.300000	6.1526	.7989	 7598
.350000	7.1780	.8612	7147
.400000	8.2035	•9207	6600
.450000	9.2289	.9741	5920
•500000	10.2543	1.0211	5071
•550000	11.2798	1.0550	4059
.600000	12.3052	1.0863	2725
.650000	13.3306	1.1098	1126
.700000	14.3561	1.1231	.0835
•750000	15.3815	1.1233	.2947
.800000	16.4070	1.1003	.4764
.850000	17.4324	1.0500	.6206
.900000	18.4578	•9674	•6688
.925000	18.9705	•9059	.6520
.950000	19.4833	.8305	.6092
.975000	19.9956	.7326	•5234
.991300	20.3296	•6494	•4459
1.000000	20.5086	.3916	.3916

TABLE I.- Continued $(j) \quad Y_F = 70.00 \text{ in.; leading edge at FS} = 294.3296 \text{ in.}$

x/c	x, in.	Upper-surface z, in.	Lower-surface z, in.
0.000000	0.0000	7000	-
.000625	0.0000 .0111	7099	7099
.001250	.0222	6498	 7753
.002500	.0444	6245	8011
.002300		5876	8380
.005000	.0666	5601	8638
.007500	•0888	5396	8855
.010000	.1332	5086	9182
	.1776	4822	9420
.015000	.2665	4380	9788
.020000	.3553	4013	-1.0081
.025000	.4441	3704	-1.0316
.037500	.6662	3064	-1.0785
.050000	.8882	2551	-1.1088
.075000	1.3323	1775	-1.1425
.100000	1.7764	1144	-1.1604
.150000	2.6647	0138	-1.1681
.175000	3.1088	.0272	-1.1640
.200000	3.5529	.0653	-1.1543
.250000	4.4411	.1358	-1.1203
.300000	5.3294	.1963	-1.0809
•350000	6.2176	.2560	-1.0361
.400000	7.1058	.3156	9830
.450000	7.9940	.3709	9186
•500000	8.8823	.4208	8407
•550000	9.7705	.4600	7507
.600000	10.6587	•4965	6331
•650000	11.5469	•5265	4932
•700000	12.4352	.5471	3248
.750000	13.3234	•5570	1468
.800000	14.2116	•5464	.0066
.850000	15.0998	•5111	.1343
•900000	15.9881	•4460	.1805
•925000	16.4322	.3938	.1668
•950000	16.8763	.3285	.1307
•975000	17.3204	.2424	•0554
.991300	17.6100	.1695	0098
1.000000	17.7645	0578	0578

TABLE I.- Continued $(k) \quad Y_F = 80.00 \; \text{in.; leading edge at FS} = 304.0958 \; \text{in.}$

v /o		Upper-surface	
x/c	x, in.	z, in.	z, in.
0.000000	0.0000	-1.1393	-1.1393
.000625	.0094	-1.0900	-1.1963
.001250	.0188	-1.0706	-1.2174
.002500	.0376	-1.0425	-1.2453
.003750	.0563	-1.0202	-1.2650
.005000	.0751	-1.0031	-1.2814
.007500	.1127	9761	-1.3068
.010000	.1502	9532	-1.3262
.015000	.2253	9158	-1.3576
.020000	.3004	8848	-1.3814
.025000	.3755	8583	-1.3998
.037500	•5633	8038	-1.4354
.050000	.7510	7601	-1.4623
.075000	1.1265	6924	-1.4974
.100000	1.5021	6370	-1.5128
.150000	2.2531	5488	-1.5142
.175000	2.6286	5140	-1.5081
.200000	3.0041	4828	-1.4988
.250000	3.7551	4253	-1.4699
.300000	4.5061	3730	-1.4330
.350000	5.2571	3220	-1.3876
.400000	6.0081	2710	-1.3324
.450000	6.7592	2243	-1.2694
.500000	7.5102	1803	-1.1974
•550000	8.2612	1402	-1.1172
.600000	9.0122	1055	-1.0175
.650000	9.7632	0756	8963
.700000	10.5142	0538	7595
.750000	11.2653	0403	6227
.800000	12.0163	0380	4940
.850000	12.7673	0529	3837
.900000	13.5183	0953	3301
.925000	13.8938	1341	3348
.950000	14.2693	1856	3611
.975000	14.6448	2552	4212
.991300	14.8897	3098	4677
1.000000	15.0203	5018	5018

TABLE I.- Concluded $(1) \quad Y_F = 82.37 \; \text{in.; leading edge at FS} = 306.4152 \; \text{in.}$

x/c x, in. z, in. z, in. z, in. 0.000000 0.00000 -1.2362 -1.2362 -1.2362 .001250 .0180 -1.1711 -1.3118 .002500 .0359 -1.1452 -1.3375 .003750 .0539 -1.1241 -1.3557 .005000 .0718 -1.1077 -1.3708 .007500 .1078 -1.0813 -1.3944 .010000 .1437 -1.0590 -1.4130 .015000 .2155 -1.0230 -1.4434 .025000 .3592 -9675 -1.4833 .037500 .3588 -9150 -1.5160 .050000 .7184 8729 -1.5427 .075000 .7184 8729 -1.5427 .075000 .7184 8729 -1.5427 .075000 .7184 8729 -1.5427 .075000 .7184 8729 -1.5427 .075000 .1.4369 5528 -1.5996			Upper-surface	Lower-surface
0.000000 0.0000 -1.2362 -1.2362 .000625 .0090 -1.1890 -1.2917 .001250 .0180 -1.1711 -1.3118 .002500 .0359 -1.1452 -1.3375 .003750 .0539 -1.1241 -1.3557 .005000 .0718 -1.1077 -1.3708 .007500 .1078 -1.0813 -1.3944 .010000 .1437 -1.0590 -1.4130 .015000 .2155 -1.0230 -1.4434 .020000 .2874 9932 -1.4661 .025000 .3592 9675 -1.4833 .037500 .5388 9150 -1.5160 .050000 .7184 8729 -1.5427 .075000 1.0776 8068 -1.5799 .150000 2.1553 6670 -1.5969 .150000 2.1553 6670 -1.5969 .175000 2.5145 6336 -1.5906 .200000 3.5922	x/c	x, in.		
.000625		·	-,	
.000625		0.0000	-1.2362	-1,2362
.001250 .00359 .01462 .003750 .0539 .011241 .1.3375 .003750 .0539 .011241 .1.3557 .005000 .0718 .1.1077 .1.3708 .007500 .1078 .1.0813 .1.3944 .010000 .1437 .1.0590 .1.4130 .015000 .2155 .1.0230 .1.4434 .020000 .2874 .9932 .1.4661 .025000 .3592 .9675 .1.4833 .037500 .5388 .9150 .1.5160 .050000 .7184 .8729 .1.5427 .075000 1.0776 .8068 .1.5799 .100000 1.4369 .7528 .1.5959 .150000 2.1553 .6670 .1.5966 .200000 2.8737 .6643 .1.5906 .200000 2.8737 .6043 .1.5819 .250000 3.5922 .5505 .1.5555 .300000 4.3106 .5008 .1.5197 .350000 5.7474 .4053 .1.4176 .450000 6.4659 .3622 .1.3546 .500000 7.1843 .3211 .1.2837 .550000 7.1843 .3211 .1.2837 .550000 7.1843 .3211 .1.2837 .550000 7.1843 .3211 .1.2837 .550000 7.1843 .3211 .1.2837 .550000 7.1843 .3211 .1.2837 .550000 7.1843 .3211 .1.2837 .550000 7.1843 .3211 .1.2837 .550000 7.1843 .3211 .1.2837 .550000 7.9027 .2815 .1.0256 .600000 8.6212 .2483 .1.1106 .650000 9.3396 .2195 .9935 .700000 11.4949 .1795 .6157 .860000 12.2133 .1887 .5096 .900000 12.9317 .2248 .4527 .925000 13.2910 .2598 .4543 .991300 14.2436 .4212 .5744		.0090	-1.1890	
.002500		.0180	-1.1711	
.003750		.0359	-1.1452	
.005000		.0539		
.007500		.0718		
.010000		.1078	-1.0813	
.015000			-1.0590	
.020000		.2155	-1.0230	
.025000			9932	
.037500			9675	
.050000			9150	
.100000 1.4369 7528 -1.5959 .150000 2.1553 6670 -1.5969 .175000 2.5145 6336 -1.5906 .200000 2.8737 6043 -1.5819 .250000 3.5922 5505 -1.5555 .300000 4.3106 5008 -1.5197 .350000 5.0290 4528 -1.4739 .400000 5.7474 4053 -1.4176 .450000 6.4659 3622 -1.3546 .500000 7.1843 3211 -1.2837 .550000 7.9027 2815 -1.2056 .600000 8.6212 2483 -1.1106 .650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 12.2133 1887 5096 .900000 12.2133 1887 5096 .900000 13.2910 2598 4543 .950000 14.0094 3722 </td <td></td> <td></td> <td>8729</td> <td></td>			8729	
.150000 2.1553 6670 -1.5969 .175000 2.5145 6336 -1.5906 .200000 2.8737 6043 -1.5819 .250000 3.5922 5505 -1.5555 .300000 4.3106 5008 -1.5197 .350000 5.0290 4528 -1.4739 .400000 5.7474 4053 -1.4176 .450000 6.4659 3622 -1.3546 .500000 7.1843 3211 -1.2837 .550000 7.9027 2815 -1.2056 .600000 8.6212 2483 -1.1106 .650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 14.0094 3722 5335 .991300 14.2436 4212 </td <td></td> <td></td> <td>8068</td> <td>-1.5799</td>			8068	-1.5799
.175000 2.5145 6336 -1.5906 .200000 2.8737 6043 -1.5819 .250000 3.5922 5505 -1.5555 .300000 4.3106 5008 -1.5197 .350000 5.0290 4528 -1.4739 .400000 5.7474 4053 -1.4176 .450000 6.4659 3622 -1.3546 .500000 7.1843 3211 -1.2837 .550000 7.9027 2815 -1.2056 .600000 8.6212 2483 -1.1106 .650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 </td <td></td> <td></td> <td>7528</td> <td>-1.5959</td>			7528	-1.5959
.200000 2.8737 6043 -1.5819 .250000 3.5922 5505 -1.5555 .300000 4.3106 5008 -1.5197 .350000 5.0290 4528 -1.4739 .400000 5.7474 4053 -1.4176 .450000 6.4659 3622 -1.3546 .500000 7.1843 3211 -1.2837 .550000 7.9027 2815 -1.2056 .600000 8.6212 2483 -1.1106 .650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .905000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 </td <td></td> <td></td> <td>6670</td> <td></td>			6670	
.250000 3.5922 5505 -1.5555 .300000 4.3106 5008 -1.5197 .350000 5.0290 4528 -1.4739 .400000 5.7474 4053 -1.4176 .450000 6.4659 3622 -1.3546 .500000 7.1843 3211 -1.2837 .550000 7.9027 2815 -1.2056 .600000 8.6212 2483 -1.1106 .650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744			6336	-1.5906
.300000 4.3106 5008 -1.5197 .350000 5.0290 4528 -1.4739 .400000 5.7474 4053 -1.4176 .450000 6.4659 3622 -1.3546 .500000 7.1843 3211 -1.2837 .550000 7.9027 2815 -1.2056 .600000 8.6212 2483 -1.1106 .650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				-1.5819
.350000 5.0290 4528 -1.4739 .400000 5.7474 4053 -1.4176 .450000 6.4659 3622 -1.3546 .500000 7.1843 3211 -1.2837 .550000 7.9027 2815 -1.2056 .600000 8.6212 2483 -1.1106 .650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				-1.5555
.400000 5.74744053 -1.4176 .450000 6.46593622 -1.3546 .500000 7.18433211 -1.2837 .550000 7.90272815 -1.2056 .600000 8.62122483 -1.1106 .650000 9.339621959935 .700000 10.058019848648 .750000 10.776418507390 .800000 11.494917956157 .850000 12.213318875096 .900000 12.931722484527 .925000 13.291025984543 .950000 13.650230744777 .975000 14.009437225335 .991300 14.243642125744				-1.5197
.450000				-1.4739
.500000 7.1843 3211 -1.2837 .550000 7.9027 2815 -1.2056 .600000 8.6212 2483 -1.1106 .650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				-1.4176
.550000 7.9027 2815 -1.2056 .600000 8.6212 2483 -1.1106 .650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				-1.3546
.600000 8.6212 2483 -1.1106 .650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				-1.2837
.650000 9.3396 2195 9935 .700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				-1.2056
.700000 10.0580 1984 8648 .750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				
.750000 10.7764 1850 7390 .800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				
.800000 11.4949 1795 6157 .850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				
.850000 12.2133 1887 5096 .900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				7390
.900000 12.9317 2248 4527 .925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				6157
.925000 13.2910 2598 4543 .950000 13.6502 3074 4777 .975000 14.0094 3722 5335 .991300 14.2436 4212 5744				
.950000 13.650230744777 .975000 14.009437225335 .991300 14.243642125744	•			
.975000 14.009437225335 .991300 14.243642125744				
.991300 14.243642125744				
1 000000				
1.00000 14.368660406040				
	1.000000	14.3086	6040	6040

TABLE II.- DEVIATIONS OF WING LEADING- AND TRAILING-EDGE VERTICAL LOCATIONS FROM THE TOOLING FIXTURE SHAPE

	Left wing		Right wing	
Y _W , in.	$\Delta z_{ m LE}$, $\Delta z_{ m T}$		Δz _{LE} ,	$^{\Delta \mathbf{z}_{\mathrm{TE}}}$,
58.96	0.033	-0.045	-0.006	-0.009
64.96	•029	043	003	004
70.96	•019	045	005	011
76•96	•022	-•038	•006	005
82.96	•014	029	•012	018
88.96	•017	018	•011	023
94.96	•022	028	•019	033
100.96	•012	027	•008	020

TABLE III.- MEASUREMENTS OF FABRICATED AIRFOIL

 $[Y_F = 37.11 \text{ in.; } c = 26.790 \text{ in.}]$

(a) Left semispan, upper-surface location

x/c	z, in. (nominal)	z, in. (measured)	Δz, in.
0	0.6691	0•6696	-0.0005
•00125	•8222	•8219	0003
•00250	•8869	•8802	0067
•00500	•9673	•9725	•0052
•00750	1.0251	1.0326	•0075
•01000	1.0713	1.0804	•0091
•01500	1.1436	1 • 1651	•0215
•02000	1.2029	1.2202	•0173
•02500	1.2544	1.2725	•0181
•05000	1.4458	1•4586	•0128
• 10000	1.6815	1.6951	•0131
• 15000	1.8438	1•8572	•0134
•20000	1.9600	1•9683	•0083
•25000	2.0474	2.0578	•0104
•30000	2•1187	2•1231	•0044
•35000	2 • 1752	2•1802	•0050
•40000	2•2165	2 • 2147	0018
•45000	2.2441	2.2412	0029
•50000	2•2662	2 • 26 18	0044
•55000	2.2803	2•2673	 0130
•60000	2.2858	2 • 2656	0202
•65000	2•2817	2•2575	0242
•70000	2•2663	2.2366	0297
•75000	2.2329	2•1996	0333
•80000	2.1842	2•1456	0386
•85000	2•1137	2.0768	0369
•90000	2.0042	1.9542	0500
•95000	1.8417	1.7868	0549
•99130	1.6990	1.6070	0920
1.00000	1.3233	1.2599	0634

TABLE III.- Continued

(b) Left semispan, lower-surface location

x/c	z in (nominal)	z, in. (measured)	A 4
X/C	z, m. (nominal)	z, in. (measured)	∆z, in.
0	0.6691	0.6600	-0.0091
•00125	•5166	•5176	•0010
•00250	•4529	•4715	•0186
•00500	•3711	•3912	•0201
•00750	•3128	•3363	•0235
•01000	•2591	• 2951	•0360
•01500	•2037	•2246	•0209
•02000	• 1538	•1692	•0154
•02500	•1126	•1240	•0114
•05000	0296	0299	0003
• 10000	1819	-•1891	0072
• 15000	2468	2637	0169
•20000	2655	2822	0167
•25000	2586	2734	0148
•30000	2254	2472	0218
•35000	1759	2026	0267
•40000	-•1079	-•1362	0283
•45000	0266	0534	0274
•50000	•0790	•0521	0269
•55000	•2099	• 1846	0253
•60000	•3764	•3562	0202
•65000	•5667	•5637	0230
•70000	•8393	•8127	0266
•75000	1.1115	1.0790	0325
•80000	1.3673	1.3267	0406
•85000	1.5493	1.4961	0532
•90000	1.6245	1.5654	0591
•95000	1.5641	1.4916	0725
•99130	1.3751	1.2856	0895
1.00000	1•3233	1.2747	0486

TABLE III.- Continued

(c) Right semispan, upper-surface location

x/c	z, in. (nominal)	z, in. (measured)	Δz, in.
0	0.6691	0.6694	•0003
•00125	•8222	•7285	0937
•00250	•8869	•8058	0811
•00500	•9673	•9187	0486
•00750	1.0251	•9822	0429
•01000	1.0713	1.0390	0323
•01500	1.1436	1.1232	0204
•02000	1.2029	1•1883	0146
•02500	1.2544	1.2442	0102
•05000	1.4458	1.4414	0044
• 10000	1.6815	1•6885	•0076
• 15000	1.8438	1•8515	•0077
•20000	1.9600	1.9661	•0061
•25000	2.0474	2.0585	•0111
•30000	2.1187	2•1258	•0071
•35000	2.1752	2 • 1816	•0064
•40000	2.2165	2.2217	•0052
•45000	2.2441	2.2532	•0091
•50000	2.2662	2•2737	•0075
•55000	2.2803	2.2821	•0018
•60000	2.2858	2•2846	0012
•65000	2.2817	2.2772	0045
•70000	2.2663	2•2563	0100
•75000	2.2329	2.2203	0126
•80000	2.1842	2•1648	0194
•85000	2.1137	2.0874	0263
•90000	2.0042	1.9744	0298
•95000	1.8417	1.8180	0237
•99130	1.6990	1.6242	0748
1.00000	1.3233	1.3159	0074

TABLE III. - Concluded

(d) Right semispan, lower-surface location

ж/с	z, in. (nominal)	z, in. (measured)	Δz, in.	
0	0.6691	0.6793	0.0102	
•00125	•5166	•6489	•1323	
•00250	•4529	•5207	•0678	
•00500	•3711	•4000	•0289	
•00750	•3128	•3364	•0236	
•01000	•2591	•2906	•0315	
•01500	•2037	•2156	•0119	
•02000	• 1538	• 1 600	•0062	
•02500	•1126	•1156	•0030	
•05000	0296	0315	0019	
• 10000	 1819	-•1761	•0058	
•15000	2468	2406	•0062	
•20000	 2655	2638	•0017	
•25000	2586	2639	0053	
•30000	2254	2348	0094	
•35000	 1759	-•1893	0134	
•40000	 1079	1247	0168	
•45000	0260	0407	0147	
•50000	•0790	•0641	0149	
•55000	•2099	•1961	0138	
•60000	•3764	•3661	0103	
•65000	•5867	•5718	0149	
•70000	•8393	•8183	0210	
•75000	1•1115	1.0842	0273	
•80000	1.3673	1.3332	0341	
•85000	1.5493	1.5110	0383	
•90000	1.6245	1.5796	0449	
•95000	1.5641	1.5125	- ∙0516	
•99130	1.3751	1.3043	0708	
1.00000	1.3233	1.2496	0737	

TABLE IV .- SURFACE PRESSURE ORIFICE LOCATIONS ON RIGHT WING PANEL

	w 1 location on -		w 2 location on -		w 3 location on -		w 4 location on
Upper x/c	Lower x/c	Upper x/c	Lower x/c	Upper x/c	Lower x/c	Upper x/c	Lower x/c
			, 0		A, 0		*/ 0
0.01		0.01		0.01		0.01	
•03	0.03	•03	0.03	•03	0.03*	•03	0.03
• 10	•10	•10	•10	•10	.10*	•10	•10
• 15	• 15	• 15	• 15	. 15	.15	. 15	•15
•20	•20		•20		ļ		
•30*	•30	•30	•30	•30	•30*		
•40	•40	•40	.40	.40	.40	.40	•40
• 45	ĺ			.45		•45	1
•50	•50	•50	•50	•50	.50	•50	•50
•55		•55		•55		•55	1
•61	•61	•61				•33	.61*
•65	1						•••
•70	•70		•70				
•80	.80	.80	.80				
•90	.90	.90	•90				
• 90	I	• 90	Į.				
00	•95	20	•95]
•98		•98					1

^{*}Not functioning on flight 11.

TABLE V.- DATA FOR PRIMARY FLIGHT-TEST CONDITIONS

Selected Mach		Data	Mach number		Dynamic pressure, psf		R
Flight	no. conditions	samples	M	σ	\bar{q}_{∞}	σ	K
10	0.75 ± 0.01	180	0.7547	0.0040	319.8	5•49	5.7 × 10 ⁶
10	•80 ± •01	203	.8030	•0041	359.9	3.94	6.1
10	∙85 ± ∙005	358	.8521	•0019	405•2	2 • 18	6.5
10	•875 ± •005	247	•8750	•0024	429 • 4	3•13	6.7
10	•90 ± •005	203	•9018	•0021	455.6	2.07	6.9
11	•70 ± •01	206	•6982	•0046	411.4	5•81	7.3
11	•75 ± •01	234	.7451	•0035	466.3	6.48	7.8
11	•80 ± •01	256	•7964	•0041	532•8	7•08	8•4

TABLE VI.- PRESSURE COEFFICIENT DATA ARRAY FOR FLIGHT 10 AT A MACH NUMBER OF 0.75

(a) Row 1, upper surface

x/c	Pressure	coefficie	nt for ang	angle of attack, deg, of		
	1.5	2.0	2.5	3.0	3.5	4.0
.01	+.0522	0269	1120	2032	3004	4038
•03	2853	3558	~.4370	5288	6313	7443
•10	2535	3079	3637	4208	4792	5389
•15	3360	3793	4259	4759	5292	5858
•20	3026	3393	3758	4123	4486	4849
•30	3145	3413	3686	3963	4245	4531
•40	1876	2101	2320	2533	2741	2944
•45	2369	2550	2736	2925	3118	3315
•50	1481	1666	1846	2019	2186	2347
•55	1885	2038	2191	2345	2500	2655
.61	1631	1767	1904	2042	2181	2321
•65	1666	1792	1914	2031	2144	2252
.70	1494	1610	1721	1824	1922	2013
.80	2227	2340	2440	2528	2602	2664
•90	1684	1750	1802	1842	1869	1883
.98	0937	0945	0954	0963	0972	0982

(b) Row 1, lower surface

x/c	Pressur	e coeffici	ent for an	gle of att	ack, deg,	of -
	1.5	2.0	2.5	3.0	3.5	4.0
.03	2436	1710	1016	0355	+.0275	+.0873
•10	1281	0863	0438	0006	+.0434	+.0881
•15	2771	2415	2058	1702	1347	0992
•20	2234	1979	1711	1432	1141	0837
•30	1244	1067	0883	0694	0499	0297
•40	2028	1881	1717	1537	1339	1125
•50	1772	1659	1536	1403	1259	1105
•61	0884	0820	0745	0659	0562	0455
•70	+.0313	+.0343	+.0379	+.0423	+.0473	+.0529
.80	+.2305	+.2364	+.2426	+.2491	+.2558	+.2627
•90	+.3385	+.3442	+.3501	+.3563	+.3626	+.3692
•95	+.2938	+.2988	+.3036	+.3082	+.3125	+.3166

TABLE VI.- Continued

(c) Row 2, upper surface

x/c	Pressure	coefficie	nt for ang	le of atta	ck, deg, o	, of -	
	1.5	2.0	2.5	3.0	3.5	4.0	
•01	+.0008	0997	2173	3521	5041	6732	
•03	1943	2781	3747	4841	6064	7414	
.10	1479	2031	2590	3156	3730	4312	
.15	1616	2080	2503	2885	3226	3526	
•30	1620	1853	2107	2384	2682	3003	
•40	1394	1509	1684	1920	2217	2575	
•50	1687	 1785	1925	2107	2332	2599	
•55	1729	1848	1992	2161	2357	2578	
.61	1515	1730	1926	2105	2266	2409	
.80	2294	2395	2493	2590	2684	2777	
•90	3037	3063	3089	3115	3142	3169	
•98	0636	05 9 0	0557	0535	0526	0528	

(d) Row 2, lower surface

x/c	Pressure coefficient for angle of attack, deg, of -						
	1.5	2.0	2.5	3.0	3.5	4.0	
•03	6468	5422	4419	3459	2542	1669	
•10	3296	2810	2317	1816	1308	0792	
•15	2792	2437	2078	1716	1352	0984	
•20	2158	2036	1825	1525	1136	0659	
•30	1428	1210	0982	0745	0499	0244	
•40	1365	1215	1062	0908	0751	0592	
•50	1136	1038	0932	0819	0697	0568	
.70	+.1588	+.1598	+.1617	+.1646	+.1683	+.1730	
.80	+.2373	+.2471	+.2563	+.2650	+.2731	+.2806	
•90	+.3143	+.3273	+.3399	+.3521	+.3638	+.3751	
.95	+.2990	+.3060	+.3139	+.3227	+.3323	+.3429	

(e) Row 3, upper surface

x/c	Pressure coefficient for angle of attack, deg, of -						
	1.5	2.0	2.5	3.0	3.5	4.0	
•01	+.1192	+.0330	0704	1910	3289	4841	
•03	0959	1687	2549	3544	4673	5935	
•10	2236	2657	3137	3676	4273	4928	
•15	1031	1422	1826	2240	2667	3104	
•30	0916	1057	1157	1214	1228	1201	
•40	1177	1317	1472	1642	1826	2026	
•45	1128	1265	1423	1602	1801	2020	
•50	1648	1787	1932	2083	2241	2404	
•55	1309	1440	1574	1712	1853	1998	

TABLE VI.- Concluded

(f) Row 3, lower surface

x/c	Pressure	coefficie	nt for ang	le of atta	ck, deg, c	of -
	1.5	2.0	2.5	3.0	3.5	4.0
.03	6606	5522	4470	3451	2465	1511
•10	4105	3562	3022	2483	1948	1414
•15	2613	2480	2247	1912	1476	0939
•30	1698	1410	1212	1103	1084	1154
•40	1184	1077	0938	0769	0570	0340
•50	1244	1192	1115	1012	0884	0731

(g) Row 4, upper surface

x/c	Pressure coefficient for angle of attack, deg, of -						
	1.5	2.0	2.5	3.0	3.5	4.0	
•01	+.2132	+.1330	+.0344	0823	2173	3706	
.03	0605	1346	2226	3245	4402	5699	
.10	0697	1116	1591	2120	2704	3344	
•15	1242	1593	1973	2383	2823	3292	
.40	0599	0760	0911	1052	1184	1306	
•45	1414	1530	1642	1748	1848	1943	
•50	1278	1398	1524	1656	1794	1938	
•55	1513	1635	1764	1899	2041	2190	

(h) Row 4, lower surface

x/c	Pressure coefficient for angle of attack, deg, of -						
	1.5	2.0	2.5	3.0	3.5	4.0	
.03	7092	5907	4747	3613	2505	1423	
.10	3813	3302	2781	2248	1703	1148	
.15	3676	3520	3279	2954	2545	2051	
•40	1325	1225	1107	0971	0816	0644	
•50	0776	0733	0675	0603	0517	0416	
•61	0557	0507	0454	0399	0341	0281	

TABLE VII.- PRESSURE COEFFICIENT
DATA ARRAY FOR FLIGHT 10 AT A
MACH NUMBER OF 0.80

(a) Row 1, upper surface

x/c		coefficate,	
	2.0	2.5	3.0
.01	0069	0881	1749
.03	3383	4237	5193
•10	3203	3734	4249
•15	4093	4659	5197
•20	3549	3914	4233
•30	3487	3759	4003
•40	2298	2514	2699
•45	2616	2797	2952
•50	1827	2009	2146
•55	2065	2229	2389
•61	1801	1936	2073
•65	1810	1928	2045
•70	1664	1780	1881
•80	2508	2591	2649
•90	1855	1901	1924
•98	0840	0860	0874

(b) Row 1, lower surface

x/c		coefficate,	lent for deg, of -
	2.0	2.5	3.0
•03	1851	1153	0504
•10	1311	0834	0343
•15	2678	2286	1879
•20	2236	1930	1608
• 30	1292	1083	0848
•40	2206	1994	1738
•50	1841	1696	1532
•61	0979	0898	0798
•70	+.0338	+.0370	+.0421
•80	+.2303	+.2377	+.2471
•90	+.3374	+.3440	+.3514
•95	+.3011	+.3055	+.3105

TABLE VII.- Continued

(c) Row 2, upper surface

x/c		coeffici	
	2.0	2.5	3.0
•01	0798	1952	3246
•03	2660	3648	4732
•10	2043	2592	3159
•15	2036	2469	2914
•30	1806	2052	2307
•40	1619	1734	1924
•50	1802	1931	2123
•55	1781	1942	2136
•61	1700	1933	2180
.80	2575	2660	2725
•90	3251	3246	3186
•98	0537	0518	0476

(d) Row 2, lower surface

x/c		coeffici attack,	
	2.0	2.5	3.0
•03	5673	4624	3637
.10	3268	2695	2106
•15	2752	2329	1896
•20	2410	2111	1690
•30	1405	1161	0923
•40	1462	1282	1059
•50	1217	1097	0944
•70	+.1550	+.1570	+.1609
•80	+.2364	+.2474	+.2582
•90	+.3167	+.3304	+.3429
•95	+.3026	+.3085	+.3141

(e) Row 3, upper surface

x/c		coeffication	
	2.0	2.5	3.0
.01 .03 .10 .15 .30 .40	+.0627 1396 2414 1366 0973 1389 1434	0382 2283 2938 1771 1322 1622 1671	1559 3296 3521 2196 1481 1682 1701
•50 •55	1954 1660	2169 1868	2150 1793

TABLE VII.- Concluded

(f) Row 3, lower surface

x/c	Pressure angle of		
	2.0	2.5	3.0
.03	6246	5006	 3816
.10	4022	3399	2773
•15	2936	2631	2187
•30	1709	1461	1180
•40	1282	1128	0958
•50	1294	1209	1131

(g) Row 4, upper surface

.01				
.01 +.1704 +.07560375 .03098618862912 .10104015312026 .15148318732283 .40091411311222 .45164018521867 .50154516841715	x/c			
.03		2.0	2.5	3.0
.10	•01	+.1704	+.0756	0375
-15	•03	0986	1886	2912
.40	•10	1040	1531	2026
.45164018521867 .50154516841715	•15	1483	1873	2283
•50154516841715	•40	0914	1131	1222
11,13	•45	1640	1852	1867
168218061912	•50	1545	1684	1715
	•55	1682	1806	1912

(h) Row 4, lower surface

Pressure coefficient for angle of attack, deg, of -		
2.0	2.5	3.0
6980	5585	4210
3820	3337	2539
3651	3448	3375
1402	1281	1137
0809	0745	0678
0426	0379	0322
	6980 3820 3651 1402 0809	angle of attack, 2.0 2.5 6980558538203337365134481402128108090745

TABLE VIII.- PRESSURE COEFFICIENT DATA ARRAY FOR FLIGHT 10 AT A MACH NUMBER OF 0.85

(a) Row 1, upper surface

x/c	Pressure angle of		ient for deg, of -
	2.0	2.5	3.0
•01	+.0112	0628	1020
.03	3303	4193	4461
•10	3141	-,3523	3677
•15	4306	4616	4738
•20	5100	5406	5523
•30	3500	3150	3937
•40	2675	2850	2708
•45	2680	2884	2982
•50	1985	2160	2224
•55	2119	2280	2362
.61	1801	1951	2026
•65	1808	1928	1976
.70	1745	1829	1861
.80	2746	2838	2877
•90	1994	2016	2015
.98	0711	0759	0769

(b) Row 1, lower surface

x/c		coefficate,	
	2.0	2.5	3.0
•03	1977	1261	0910
•10	1801	1271	0998
•15	3064	2588	2383
•20	2537	2219	2056
•30	1520	1321	1207
•40	2687	2408	2268
•50	2080	1895	1795
.61	1197	1083	1018
•70	+.0345	+.0396	+.0444
.80	+.2220	+.2318	+.2389
•90	+.3264	+.3373	+.3448
.95	+.3007	+.3074	+.3122

TABLE VIII. - Continued

(c) Row 2, upper surface

x/c	Pressure coefficient for angle of attack, deg, of -		
	2.0	2.5	3.0
.01	0605	1738	2419
•03	2520	3577	4178
.10	2043	2658	3010
•15	2032	2504	2783
•30	1780	1964	1997
•40	1771	1820	2026
•50	1914	1940	2079
•55	1741	1881	2009
•61	1599	1870	2035
.80	2957	2937	3039
•90	3550	3449	3405
.98	0423	0414	0403

(d) Row 2, lower surface

x/c		coeffication	ient for deg, of -
	2.0	2.5	3.0
•03	6033	4907	4391
•10	3894	3171	2808
•15	3127	2607	2405
•20	2811	2364	2169
•30	1716	1390	1232
•40	1735	1512	1372
•50	1439	1295	1235
•70	+.1482	+.1514	+.1549
•80	+.2210	+.2343	+.2428
•90	+.2996	+.3157	+.3277
.95	+.2911	+.3001	+.3052

(e) Row 3, upper surface

x/c	_	coeffici attack,	ent for deg, of -
	2.0	2.5	3.0
•01	+.1003	0014	0588
•03	1029	1984	2547
•10	2147	2742	3072
•15	1271	1730	1967
•30	0451	0972	1367
•40	1080	1302	1499
•45	1196	1389	1538
•50	1684	1863	1985
•55	1412	1545	1627

TABLE VIII.- Concluded

(f) Row 3, lower surface

x/c	Pressure coefficient for angle of attack, deg, of		
	2.0	2.5	3.0
.03	7301	5762	5113
•10	4740	3904	3547
•15	3013	3038	2771
•30	2004	1692	1520
•40	1573	1358	1227
•50	1487	1358	1292

(g) Row 4, upper surface

ж/c		coefficattack,	
···	2.0	2.5	3.0
•01	+.2223	+.1270	+.0728
•03	0484	1466	2026
•10	0762	1331	1592
.15	1228	1684	1899
.40	0832	1184	1300
•45	1399	1676	1778
•50	1491	1640	1713
•55	1714	1816	1840

(h) Row 4, lower surface

x/c	Pressure angle of		
	2.0	2.5	3.0
•03	8558	6620	5722
•10	5306	4130	3579
.15	4251	3829	3574
•40	1599	1478	1389
•50	0896	0829	0772
.61	0308	0260	0171

TABLE IX.- PRESSURE COEFFICIENT DATA ARRAY FOR FLIGHT 10 AT A MACH NUMBER OF 0.875

(a) Row 1, upper surface

x/c		coefficate,	
	2.0	2.5	3.0
•01	+.0169	0472	1006
•03	3367	3968	5084
•10	2987	3287	3468
•15	4131	4346	4590
•20	4956	5181	5364
•30	5200	5500	5434
•40	2200	1850	3167
•45	2900	2500	2264
•50	2118	2087	1717
•55	2148	2240	2136
•61	1813	1930	1941
•65	1799	1899	1963
•70	1731	1807	1848
•80	2907	3023	3055
•90	2016	2055	2075
.98	0668	0670	0689

(b) Row 1, lower surface

x/c	Pressure coefficient for angle of attack, deg, of -			
	2.0	2.5	3.0	
•03	1931	1261	0747	
•10	1924	1482	0938	
•15	3373	2855	2419	
•20	3290	-:2646	1949	
•30	1557	1395	1190	
•40	3250	2989	2497	
• 50	2076	1962	1798	
•61	1246	1163	1046	
•70	+.0375	+.0422	+.0485	
.80	+.2206	+.2295	+.2398	
•90	+.3250	+.3338	+.3440	
•95	+.3017	+•3085	+.3171	

(c) Row 2, upper surface

x/c		coeffic	ient for deg, of -
	2.0	2.5	3.0
•01	0591	1651	2790
.03	2563	3524	~.4394
.10	2135	2707	3197
.15	2095	2578	3132
•30	1739	1877	1781
•40	1858	2062	2290
•50	1825	1898	2125
•55	1637	1792	1904
•61	1517	1741	~. 1972
.80	2479	2401	2739
•90	3509	3521	~.3410
.98	0346	0367	0371

(d) Row 2, lower surface

x/c	Pressure coefficient for angle of attack, deg, of -		
	2.0	2.5	3.0
.03	6091	5045	4157
.10	4104	3478	2795
•15	3342	2771	2306
•20	2846	2468	2112
•30	1841	1551	1242
•40	1875	1652	1378
•50	1549	1422	1218
•70	+.1454	+.1464	+.1520
•80	+.2120	+.2236	+.2396
•90	+.2890	+.3047	+.3228
.95	+.2825	+.2937	+.3046

(e) Row 3, upper surface

ж/с		coeffici attack,	ent for deg, of -
	2.0	2.5	3.0
•01	+.1053	+.0167	0813
.03	0985	1826	2763
.10	2132	2635	3181
•15	1283	1700	2133
•30	0404	0770	1297
•40	1043	1209	1331
•45	1158	1319	1500
•50	1645	1821	2022
•55	1411	1541	1663

TABLE IX.- Concluded

(f) Row 3, lower surface

ж/с	Pressure angle of		
	2.0	2.5	3.0
•03	7824	6204	4900
.10	5014	4132	3648
•15	3140	3210	2920
•30	2019	1782	1511
•40	1662	1512	1294
•50	1541	1450	1347

(g) Row 4, upper surface

x/c	Pressure angle of		
	2.0	2.5	3.0
.01	+.2318	+.1537	+.0598
.03	0422	1222	2150
.10	0710	1132	1849
•15	1174	1552	1942
•40	0928	1185	1407
•45	1386	1580	1714
•50	1504	1644	1689
•55	1710	1824	1890

(h) Row 4, lower surface

x/c		coefficate,	
	2.0	2.5	3.0
•03	8675	7238	5509
.10	6049	4981	3507
.15	3744	3328	3556
•40	1636	1567	1453
•50	0863	0834	0790
.61	0247	0198	0154

TABLE X.- PRESSURE COEFFICIENT
DATA ARRAY FOR FLIGHT 10 AT A
MACH NUMBER OF 0.90

(a) Row 1, upper surface

x/c		coeffication	
	2.0	2.5	3.0
•01	+.0304	0288	0990
.03	2996	3952	5030
.10	2698	2891	3196
•15	3813	4015	4249
•20	4700	4832	5089
•30	5200	5500	5808
•40	4500	4700	5058
•45	3300	4600	4900
•50	1400	3700	4200
•55	1500	2000	3500
•61	1400	1200	2000
•65	1500	1300	1400
•70	1600	1400	1250
.80	3244	2850	2475
•90	2306	2408	2231
.98	0538	0551	0641

(b) Row 1, lower surface

/ -	Pressure coefficient for angle of attack, deg, of -			
x/c	angle of	attack,	deg, or -	
	2.0	2.5	3.0	
•03	1844	1149	0691	
.10	1790	1392	1256	
•15	3470	2982	2567	
•20	3486	3057	2805	
•30	2326	2010	1710	
•40	2500	2527	3223	
•50	2242	1953	1784	
•61	1270	1197	1170	
•70	+.0417	+.0480	+.0482	
.80	+.2152	+.2259	+.2305	
•90	+.3169	+.3290	+.3353	
.95	+.2997	+.3104	+.3120	

TABLE X.- Continued

(c) Row 2, upper surface

	Pressure	coefficient for	
x/c	angle of	attack,	deg, of -
	2.0	2.5	3.0
•01	0598	1655	3284
.03	2613	3496	5054
•10	2174	2550	2603
•15	2212	2690	2990
•30	1686	2341	2618
•40	1648	1758	1970
•50	2084	1982	3040
•55	1508	1635	2307
•61	1370	1417	1438
.80	4159	4131	4305
•90	2652	2524	2540
•98	 0269	0255	0288

(d) Row 2, lower surface

x/c	Pressure coefficient for angle of attack, deg, of -		
	2.0	2.5	3.0
.03	6234	4858	3920
.10	4095	3640	3195
•15	3878	3189	2122
•20	3346	2708	1716
•30	1857	1593	1568
•40	1884	1723	1686
•50	1605	1459	1374
.70	+.1377	+.1425	+.1429
•80	+.1907	+.2102	+.2143
•90	+.2646	+.2881	+.2907
•95	+.2649	+.2839	+.2846

(e) Row 3, upper surface

x/c		coefficiattack,	
	2.0	2.5	3.0
•01	+.1085	+.0203	0908
•03	0953	1790	2910
•10	2072	2541	3169
•15	1278	1657	2098
•30	0363	0695	1040
•40	0993	1239	1561
•45	1078	1231	1431
•50	1621	1845	2008
•55	1237	1536	1752

TABLE X.- Concluded

(f) Row 3, lower surface

ж/с	Pressure angle of		
	2.0	2.5	3.0
•03	8003	6413	4872
.10	6004	4356	3707
•15	2346	2870	3296
•30	2488	1980	1432
•40	1745	1550	1559
•50	1672	1567	1594

(g) Row 4, upper surface

x/c		coeffici	
	2.0	2.5	3.0
•01	+.2416	+.1649	+.0699
•03	0309	1103	2094
•10	0666	1164	1769
•15	1074	1447	1915
•40	1205	1310	1425
•45	1742	1994	2130
•50	~. 1665	2180	2310
•55	1731	1663	1728

(h) Row 4, lower surface

x/c		coeffici attack,	
	2.0	2.5	3.0
.03 .10 .15 .40	8499 6631 2778 1874 0744	7379 5487 3478 1858 0749	5897 4397 3365 1661 0783
.61	0108	0099	0084

TABLE XI.- PRESSURE COEFFICIENT
DATA ARRAY FOR FLIGHT 11 AT A
MACH NUMBER OF 0.70

(a) Row 1, upper surface

	Pressure	coeffic	ient for
x/c	angle of	attack,	deg, of -
	2.0	2.5	3.0
•01	0446	1295	2290
.03	3368	4137	5006
.10	3109	3598	4142
.15	3410	3804	4251
.20	3222	3535	3854
•40	2222	2412	2630
•45	2183	2343	2533
•50	1783	1932	2117
•55	1950	2086	2242
.61	1692	1808	1944
•65	1814	1917	2045
.70	1467	1567	1697
•80	2370	2443	2535
•90	1790	1829	1898
.98	1057	1064	1101

(b) Row 1, lower surface

x/c		coeffici	lent for deg, of -
	2.0	2.5	3.0
•03	2047	1371	0738
.10	2720	2290	1881
.15	2494	2140	1801
•20	2084	1823	1568
.30	1814	1600	1405
•40	1932	1766	1598
•50	1766	1636	1522
•61	1066	0977	0904
.70	+.0029	+.0084	+.0116
.80	+.1951	+.2010	+.2050
.9 0	+.3050	+.3103	+.3142
•95	+.2543	+.2595	+.2614

TABLE XI.- Continued

(c) Row 2, upper surface

x/c	Pressure coefficient for angle of attack, deg, of -		
	2.0	2.5	3.0
•01	1039	2087	3329
•03	2568	3424	4402
.10	2113	2574	3104
•15	2083	2458	2841
•30	1952	2183	2468
•40	1552	1657	1928
•50	1323	1463	1688
•55	1834	2011	2217
•61	1741	1919	2120
•80	2057	2145	2271
•90	2990	3013	3064
.98	1062	0994	0947

(d) Row 2, lower surface

x/c	Pressure angle of		ient for deg, of -
	2.0	2.5	3.0
•03	6120	5195	4327
•10	3133	2657	2185
•15	3038	2672	2300
•20	2260	2129	1835
.30	1692	1808	1944
•40	1425	1249	1079
•50	1437	1315	1202
•70	+.1062	+.1091	+.1097
.80	+.2156	+.2240	+.2297
•90	+.2733	+.2822	+.2908
•95	+.2728	+.2778	+.2832

(e) Row 3, upper surface

x/c	Pressure angle of		lent for deg, of -
	2.0	2.5	3.0
.01 .03 .10 .15 .30 .40 .45	+.044113991745150310501481155021341663	0452 2177 2199 1844 1425 1694 1735 2302 1797	1524 3065 2702 2237 1417 1622 1665 2239

TABLE XI.- Concluded

(f) Row 3, lower surface

x/c		coeffic attack,	- -
	2.0	2.5	3.0
•15	2606	2513	2240
•40	1400	1253	1119
•50	1172	1199	 1355

(g) Row 4, upper surface

x/c		coefficate,	
	2.0	2.5	3.0
•01	+.1582	+.0727	0289
•03	0709	1508	2391
•10	1126	1537	2001
.15	1301	1625	1983
• 40	0978	1169	1339
•45	1307	1465	1618
• 50	1524	1665	1797
•55	1568	1687	1798

(h) Row 4, lower surface

x/c Pressure coefficient for angle of attack, deg, of - 2.0 2.5 3.0 .03663054774417 .10346631122627 .15293726542595 .40145613841314 .50119111441117				
.03	x/c			
.10		2.0	2.5	3.0
.15293726542595 .40145613841314	•03	6630	 5477	4417
•40 -•1456 -•1384 -•1314	•10	3466	3112	2627
72.30	•15	2937	2654	2595
<u>1191</u> 11441117	•40	1456	1384	1314
	•50	1191	1144	1117

TABLE XII.- PRESSURE COEFFICIENT
DATA ARRAY FOR FLIGHT 11 AT A
MACH NUMBER OF 0.75

(a) Row 1, upper surface

x/c		coefficate,	
	2.0	2.5	3.0
•01	0305	1101	1905
.03	3298	4019	4750
.10	3255	3717	4184
•15	3557	3955	4359
•20	3254	3569	3861
•40	2352	2521	2668
•45	2231	2384	2516
•50	1875	2009	2146
•55	1936	2067	2181
•61	1667	1788	1886
•65	1787	1892	1987
•70	~. 1555	1650	1718
•80	2479	2555	2612
•90	1882	1920	1950
•98	0989	1008	1005

(b) Row 1, lower surface

x/c	Pressure angle of		
	2.0	2.5	3.0
•03	2158	1497	0931
•10	2915	2476	2084
•15	2702	2336	2011
•20	2282	2012	1762
•30	1936	1722	1545
•40	2150	1963	1790
•50	1950	1804	1667
•61	1217	1121	1036
•70	+.0036	+.0079	+.0133
•80	+.1925	+.1978	+.2032
•90	+.2978	+.3039	+.3091
•95	+.2581	+.2619	+.2661

TABLE XII.- Continued

(c) Row 2, upper surface

x/c	Pressure coefficient for angle of attack, deg, of -			
	2.0	2.5	3.0	
•01	0678	1641	2665	
•03	2317	3108	3950	
.10	1985	2442	2902	
•15	1982	2334	2685	
•30	1835	2086	2307	
•40	1437	1617	1843	
•50	1321	1487	1679	
•55	~.1803	1954	2103	
.61	1747	1894	2051	
•80	2246	2299	2372	
•90	3085	3095	3110	
•98	1010	0965	0890	

(d) Row 2, lower surface

x/c	Pressure coefficient for angle of attack, deg, of -			
	2.0	2.5	3.0	
.03	6451	5494	4671	
•10	3583	3085	2630	
.15	3283	2911	2582	
•20	2221	2386	2195	
•30	1667	1788	1886	
•40	1639	1468	1300	
•50	1624	1495	1359	
•70	+.1005	+.1020	+.1054	
.80	+.2043	+.2128	+.2197	
•90	+.2627	+.2714	+.2785	
•95	+.2667	+.2723	+.2777	

(e) Row 3, upper surface

x/c		coeffici	
	2.0	2.5	3.0
•01	+.0993	+.0197	0678
.03	0911	1617	2387
•10	1473	1902	2331
•15	1221	1631	1925
•30	0507	0721	1121
•40	1058	1189	1332
•45	1204	1341	1467
•50	1765	1889	2010
•55	1337	1439	~. 1541

TABLE XII.- Concluded

(f) Row 3, lower surface

ж/с		coeffic attack,	ient for deg, of -
	2.0	2.5	3.0
.15 .40 .50	2691 1660 1095	2572 1519 1084	2720 1375 1004

(g) Row 4, upper surface

x/c	Pressure angle of		
	2.0	2.5	3.0
•01	+.2215	+.1513	+.0732
•03	0118	0813	1532
.10	0800	1197	1603
•15	1040	 1343	1650
. 40	0952	 1096	1235
•45	1250	1405	1534
•50	1487	1614	1719
•55	1504	1621	1716

(h) Row 4, lower surface

x/c	Pressure angle of		
	2.0	2.5	3.0
.03 .10 .15 .40	8169 3652 3649 1716 1335	6889 3755 3204 1611 1271	5758 3500 2888 1527 1218

TABLE XIII.- PRESSURE COEFFICIENT DATA ARRAY FOR FLIGHT 11 AT A MACH NUMBER OF 0.80

(a) Row 1, upper surface

	Pressure	coeffic	lent for
x/c	angle of	attack,	deg, of -
	2.0	2.5	3.0
•01	0060	0660	1258
•03	3107	3716	4324
•10	3297	3707	4093
.15	3716	4114	4515
•20	3344	3612	3862
•40	2425	2578	2707
•45	2214	2356	2486
•50	1896	2041	2178
•55	1866	1975	2072
.61	1576	1669	1745
•65	1705	1794	 1871
•70	1570	1648	1703
.80	2569	2637	2685
•90	1941	1984	2013
•98	0891	0901	0895

(b) Row 1, lower surface

x/c		coeffici	lent for deg, of -
	2.0	2.5	3.0
•03	2293	1749	1260
•10	3211	2823	2450
•15	2998	2688	2380
•20	2540	2315	2097
•30	2105	1953.	1812
•40	2473	2330	2193
• 50	2184	2075	1964
•61	1396	1333	1257
•70	+.0032	+.0064	+.0116
.80	+.1884	+.1935	+.2006
•90	+.2911	+.2957	+.3017
•95	+.2610	+.2640	+.2687

TABLE XIII.- Continued

(c) Row 2, upper surface

	Pressure	coeffici	ent for
x/c	angle of	attack,	deg, of -
-	2.0	2.5	3.0
•01	0127	0859	1643
•03	1855	~. 2494	3158
.10	1722	~.2096	2461
•15	1725	2038	2271
•30	1662	~. 1817	1944
•40	1317	1447	1558
•50	1267	1396	1529
•55	1660	1778	1901
•61	1660	1753	1844
.80	2294	2386	2433
•90	3063	3137	3135
.98	0856	0899	0856

(d) Row 2, lower surface

x/c	Pressure coefficient for angle of attack, deg, of -			
	2.0	2.5	3.0	
•03	7078	6249	5208	
.10	4209	3818	3219	
•15	3587	3343	2900	
•20	2810	2557	2480	
•30	1576	1669	1745	
•40	1935	1807	1667	
•50	1867	1768	1654	
•70	+.0922	+.0958	+.0998	
.80	+.1839	+.1920	+.1977	
•90	+.2406	+.2495	+.2548	
.95	+.2520	+.2589	+.2624	

(e) Row 3, upper surface

x/c	Pressure coefficient for angle of attack, deg, of -		
	2.0	2.5	3.0
•01	+.1767	+.1198	+.0586
•03	0179	0703	1265
•10	0995	1338	1688
•15	0646	0995	1454
•30	0269	0422	0537
•40	0792	0938	1078
•45	0975	1122	1260
•50	1518	1650	1782
•55	1180	1303	1418

TABLE XIII.- Concluded

(f) Row 3, lower surface

x/c	Pressure angle of	coefficate,	
	2.0	2.5	3.0
.15 .40 .50	3587 2040 1548	3200 1905 1567	2718 1755 1504

(g) Row 4, upper surface

ж/с	Pressure coefficient for angle of attack, deg, of			
	2.0	2.5	3.0	
•01	+.3063	+.2613	+.2099	
•03	+.0752	+.0289	0199	
.10	0260	0576	0822	
•15	0559	0828	1080	
•40	0796	0913	1008	
•45	1105	1207	1281	
•50	1360	1448	1503	
•55	1398	1477	1518	

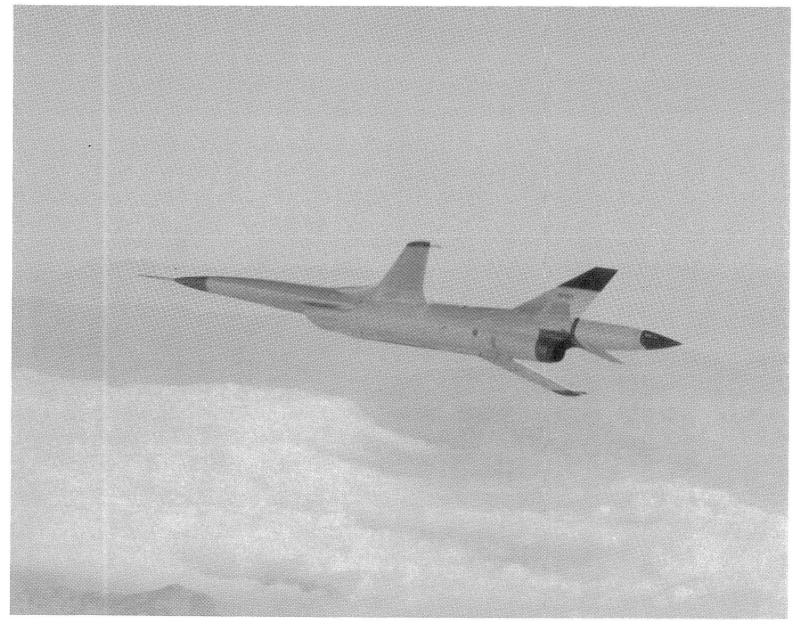
(h) Row 4, lower surface

x/c	Pressure coefficient for angle of attack, deg, of -			
	2.0	2.5	3.0	
.10 .15 .40	4643 4384 1970 1472	4242 4170 1927 1440	3180 3528 1855 1387	

TABLE XIV.- SECTION NORMAL-FORCE COEFFICIENTS FOR ARW-1

Orifice row	α, deg	c _n for flight 10	c _n for flight 11	c'n for flight 10	c'n for flight 11	
	*M = 0.75					
1	2.0 2.5 3.0	0•206 •247 •289	0 • 151 • 189 • 224			
2	2.0 2.5 3.0	0•173 •217 •263	0•088 •145 •182			
3	2.0 2.5 3.0			-0.032 0 .033	-0.075 046 020	
4	2.0 2.5 3.0			-0.066 033 004	-0.112 082 053	
		**M	= 0.80			
1	2.0 2.5 3.0	0 • 198 • 241 • 285	0.137 .169 .200			
2	2.0 2.5 3.0	0 • 157 • 203 • 252	0.075 .106 .136			
3	2.0 2.5 3.0			-0.055 015 .022	-0.129 097 062	
4	2.0 2.5 3.0			-0.080 045 012	-0.148 123 088	

 $[\]star \bar{q}_{\infty} = 320$ psf for flight 10 and 466 psf for flight 11.


 $^{**\}bar{q}_{\infty}$ = 360 psf for flight 10 and 533 psf for flight 11.

(a) Upper view.

L-85-129

Figure 1.- DAST BQM-34F drone aircraft with ARW-1 wing during flight testing.

(b) Lower view.

Figure 1.- Concluded.

L-85-130

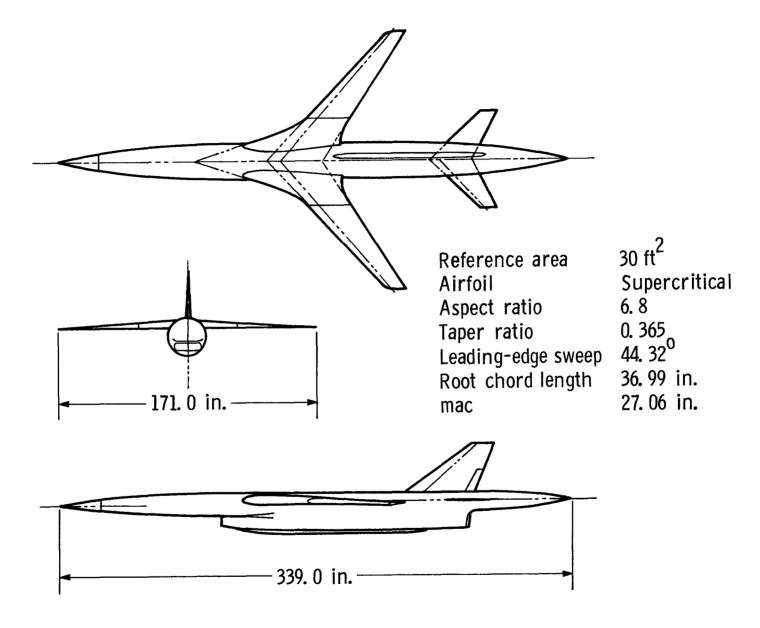


Figure 2.- General arrangement of DAST BQM-34F drone aircraft with ARW-1 wing.

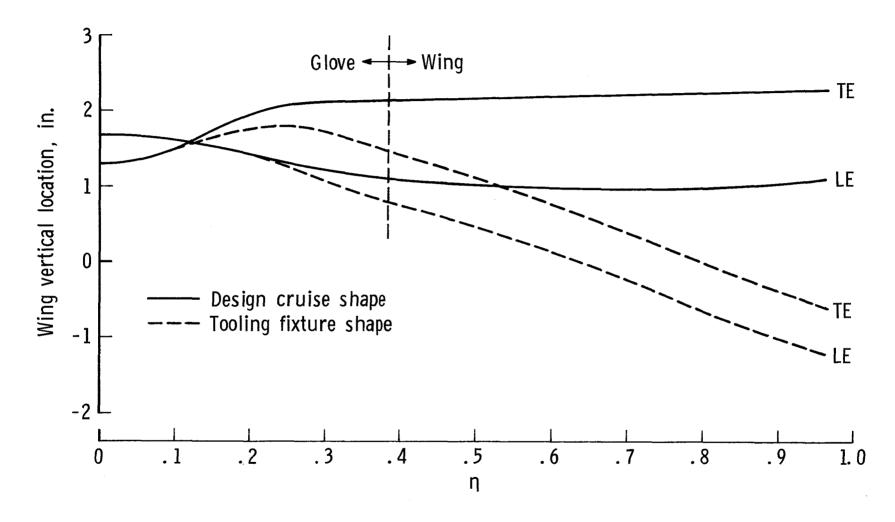


Figure 3.- Wing leading- and trailing-edge vertical locations for design cruise and tooling fixture shapes.

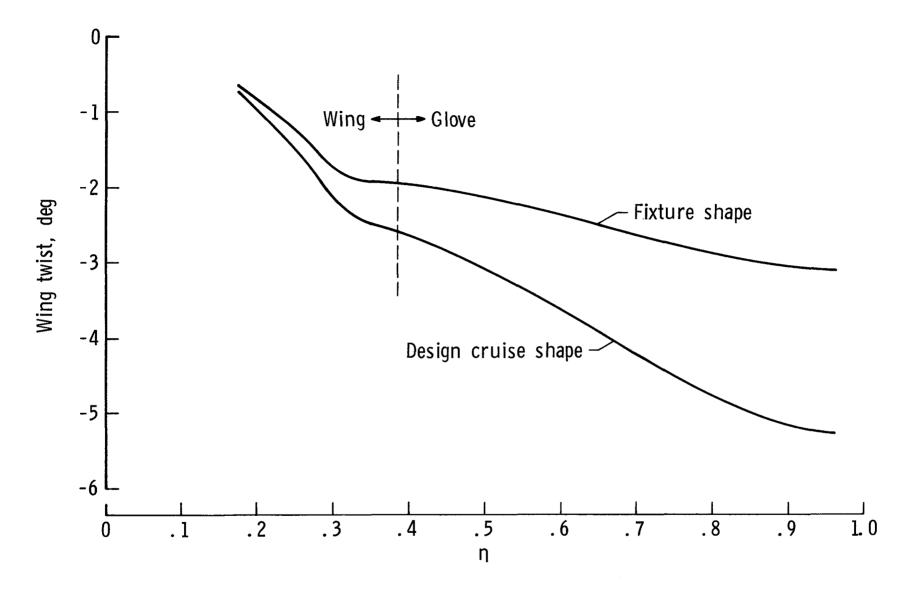
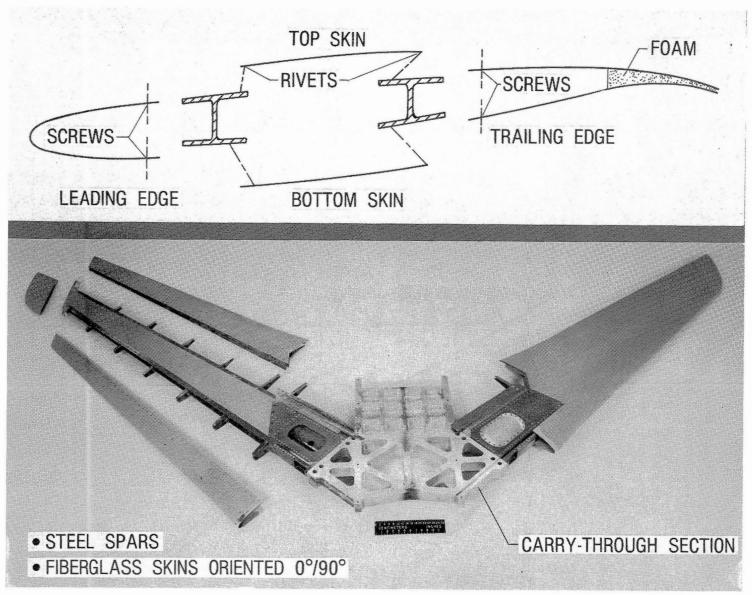



Figure 4.- Wing twist for design cruise and tooling fixture shapes.

L-81-7306

Figure 5.- Wing structural arrangement.

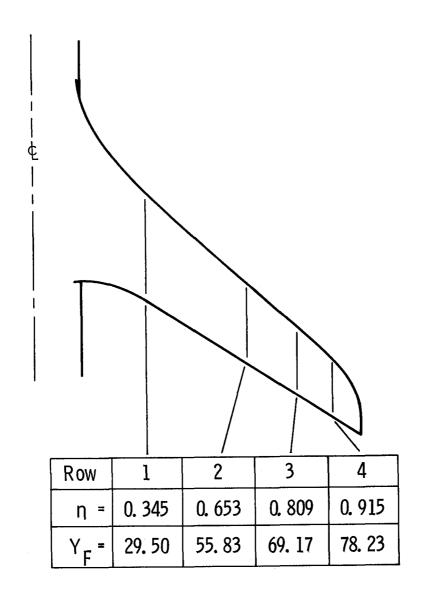


Figure 6.- Semispan locations of wing surface pressure measurements.

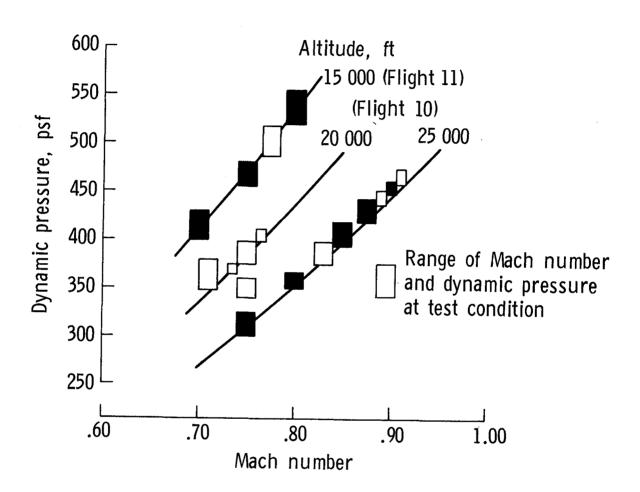
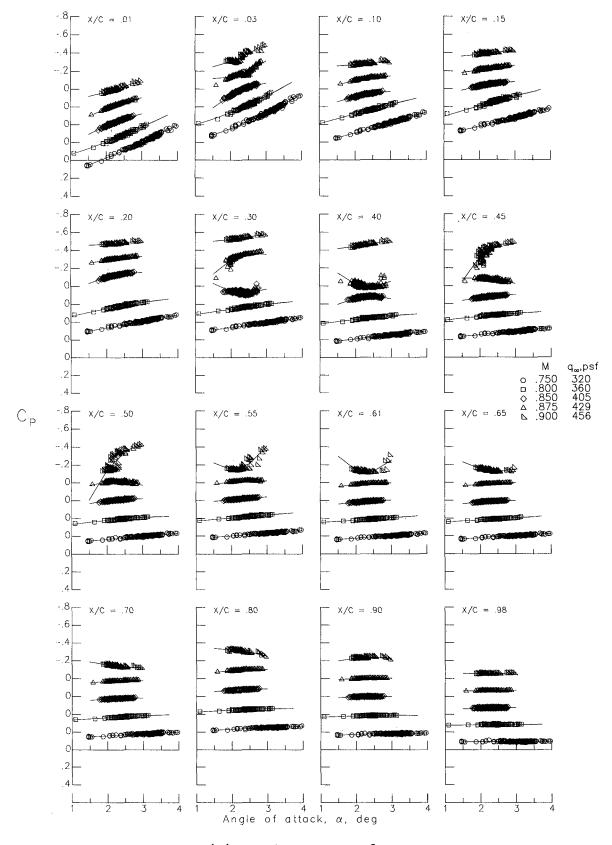
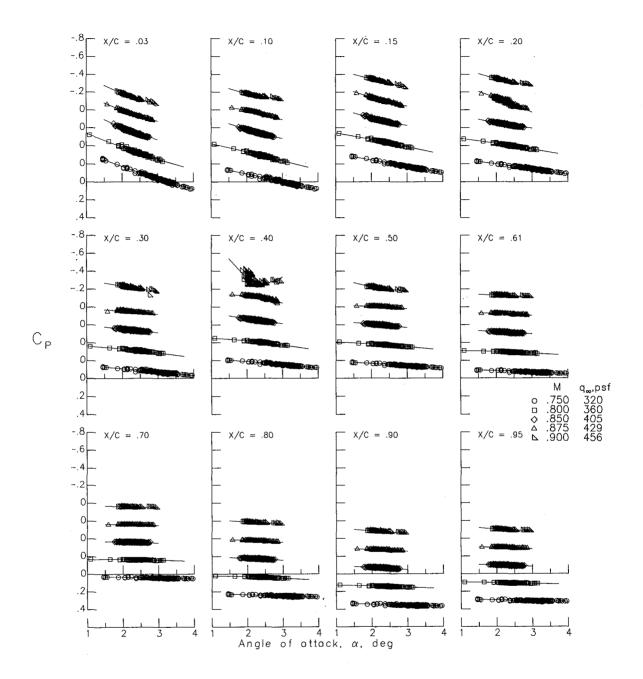




Figure 7.- Flight-test conditions. Closed symbols represent primary test conditions for data analysis.

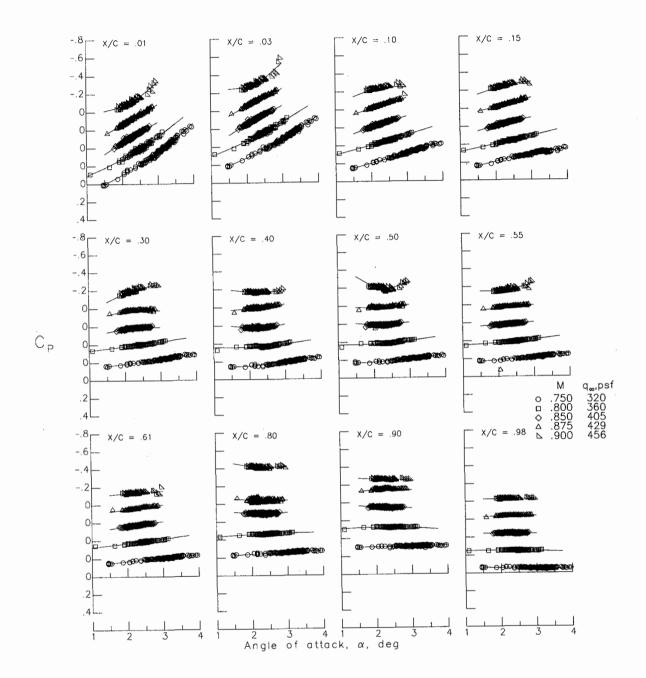

(a) Row 1, upper surface.

Figure 8.- Variations of wing surface pressure coefficients with angle of attack for flight 10.

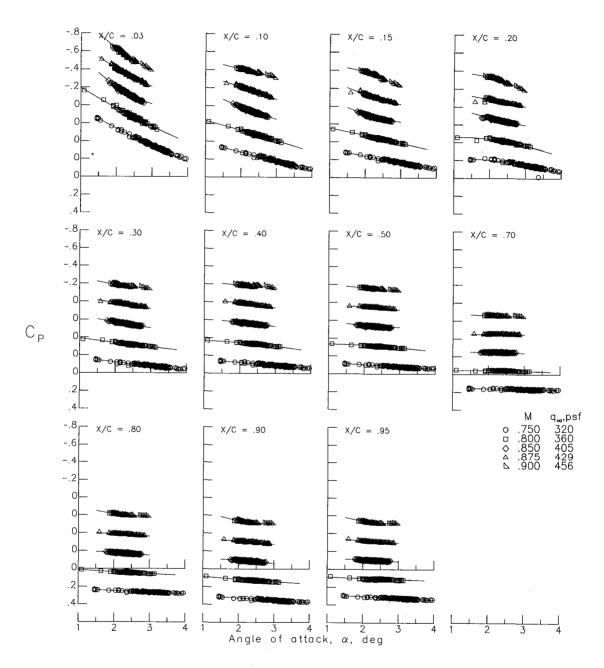

(b) Row 1, lower surface.

Figure 8.- Continued.

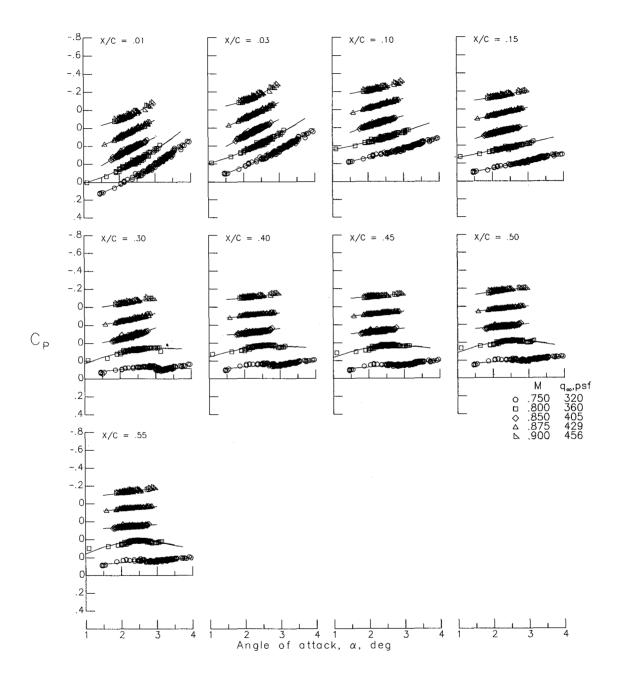

(c) Row 2, upper surface.

Figure 8.- Continued.

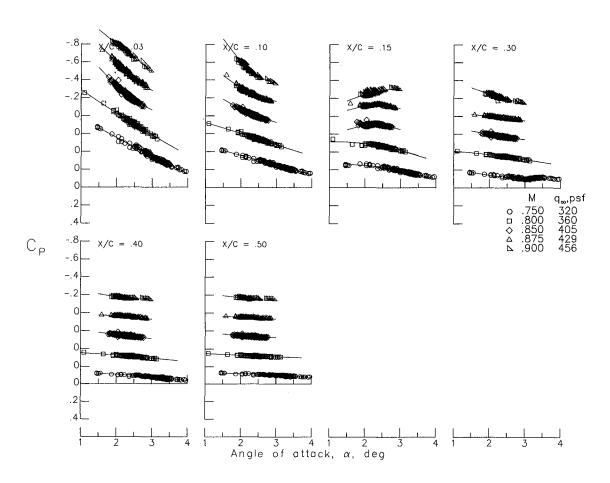
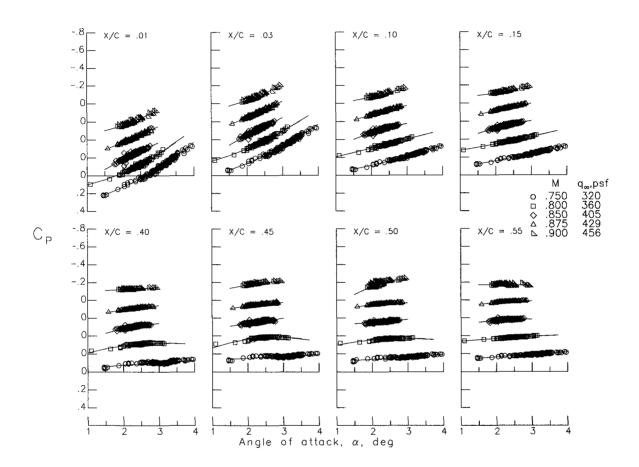
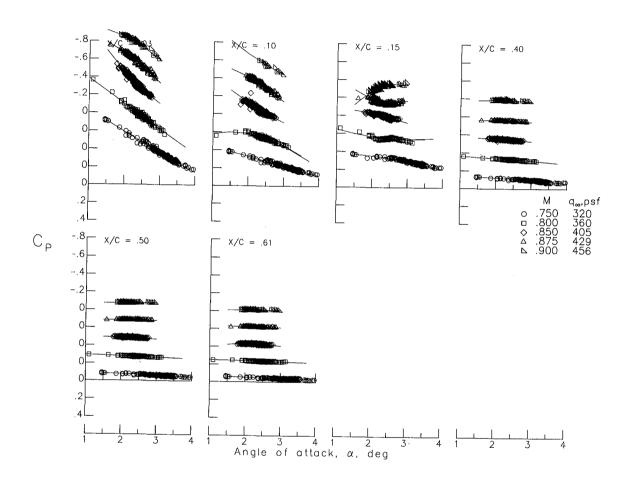

(d) Row 2, lower surface.

Figure 8.- Continued.



(e) Row 3, upper surface.

Figure 8.- Continued.



(f) Row 3, lower surface.
Figure 8.- Continued.

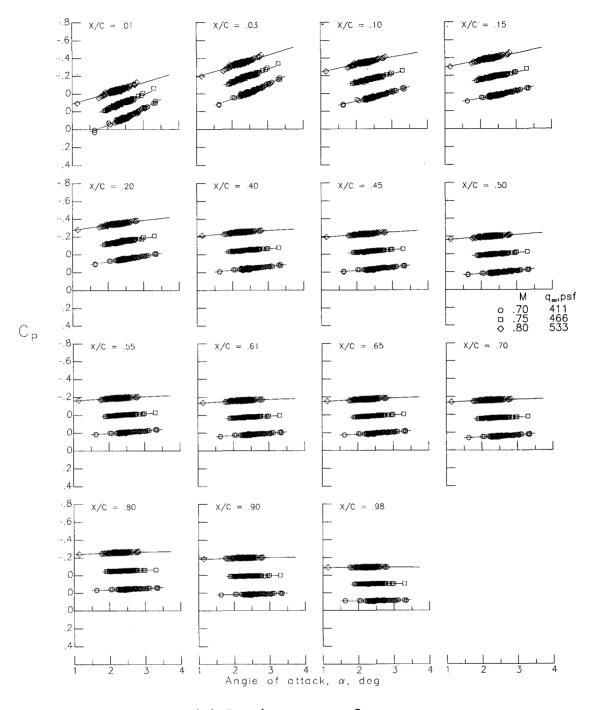

(g) Row 4, upper surface.

Figure 8.- Continued.

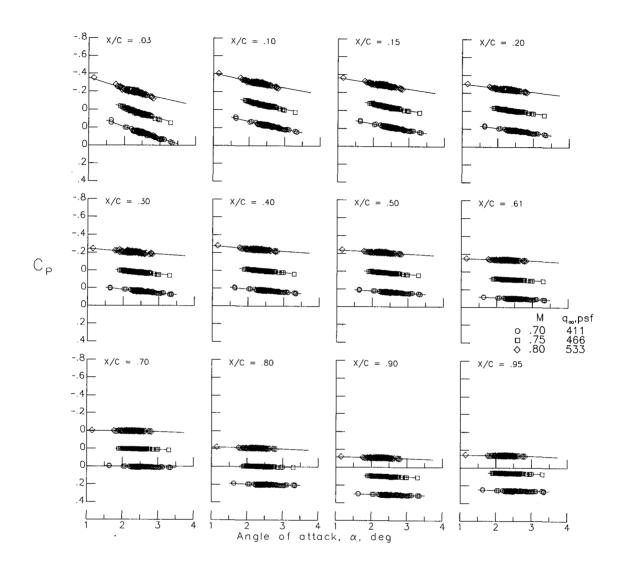

(h) Row 4, lower surface.

Figure 8.- Concluded.

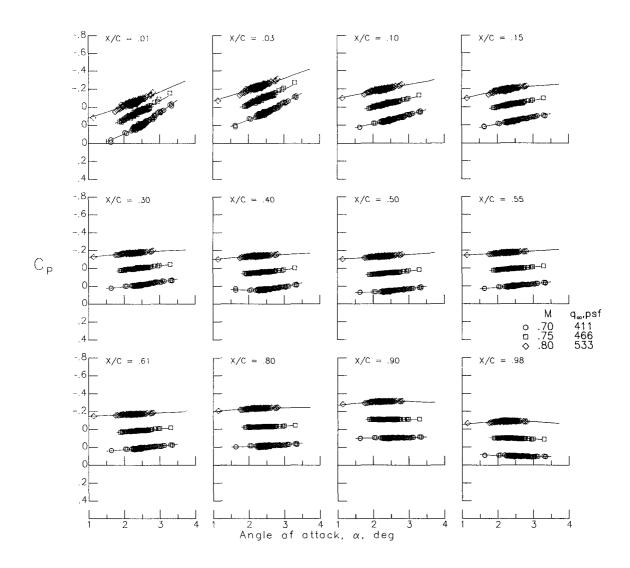

(a) Row 1, upper surface.

Figure 9.- Variations of wing surface pressure coefficients with angle of attack for flight 11.

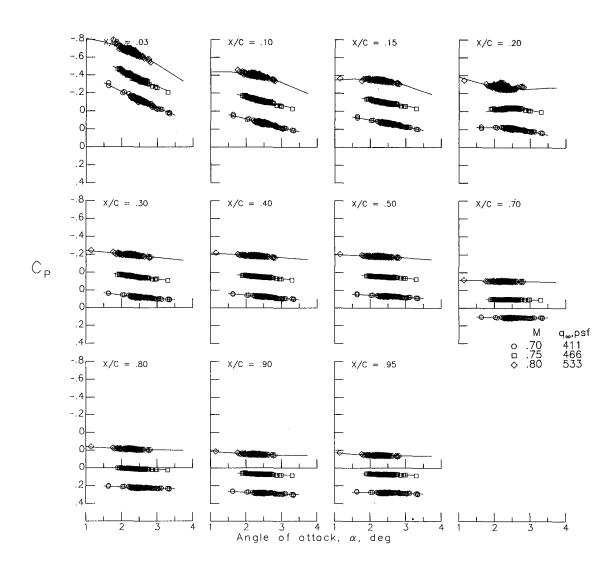

(b) Row 1, lower surface.

Figure 9.- Continued.

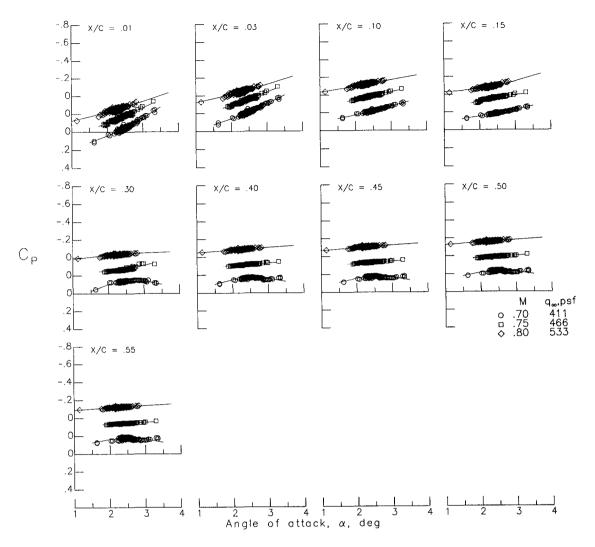
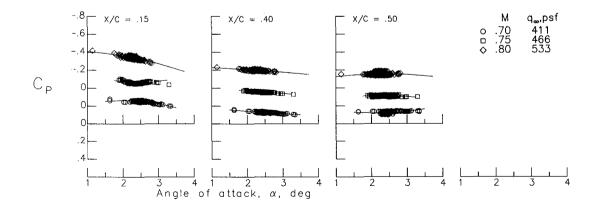
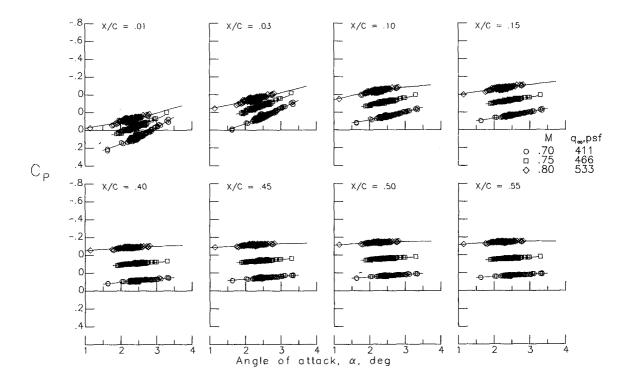

(c) Row 2, upper surface.

Figure 9.- Continued.

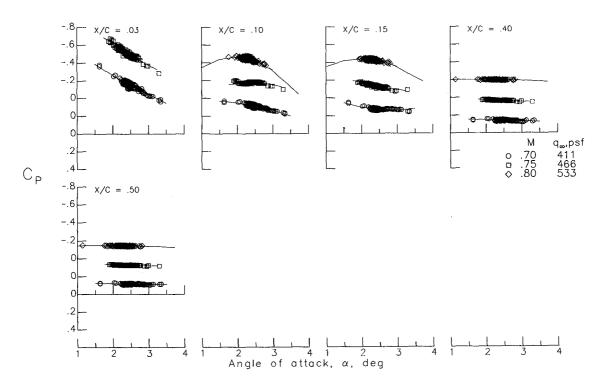


(d) Row 2, lower surface.

Figure 9.- Continued.

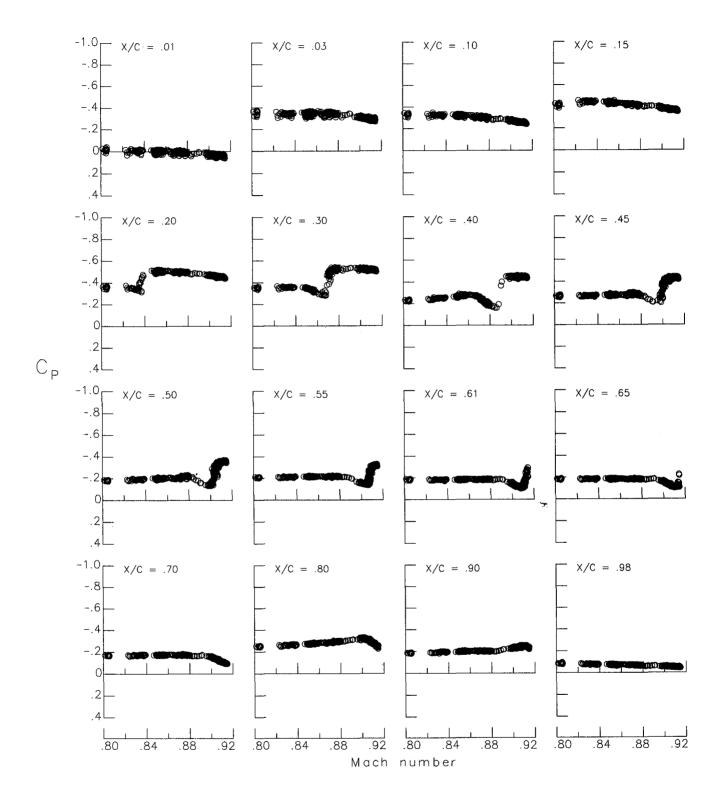


(e) Row 3, upper surface.



(f) Row 3, lower surface.

Figure 9.- Continued.



(g) Row 4, upper surface.

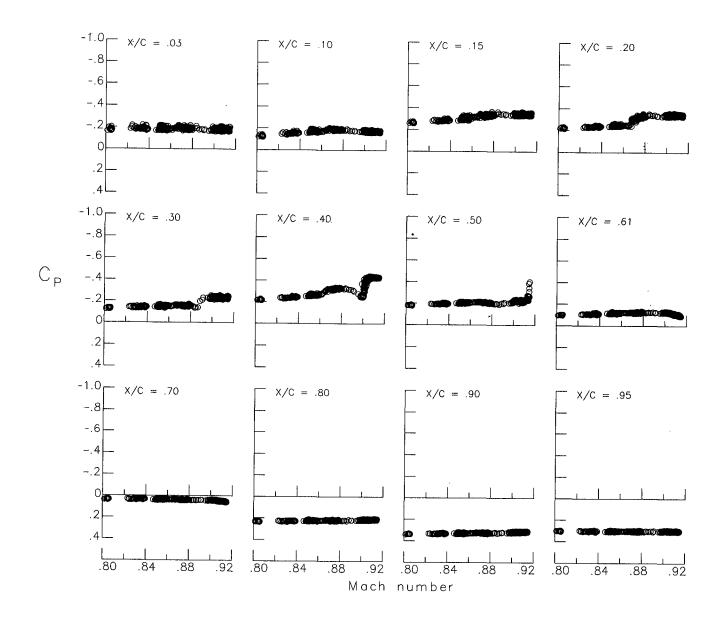

(h) Row 4, lower surface.

Figure 9.- Concluded.

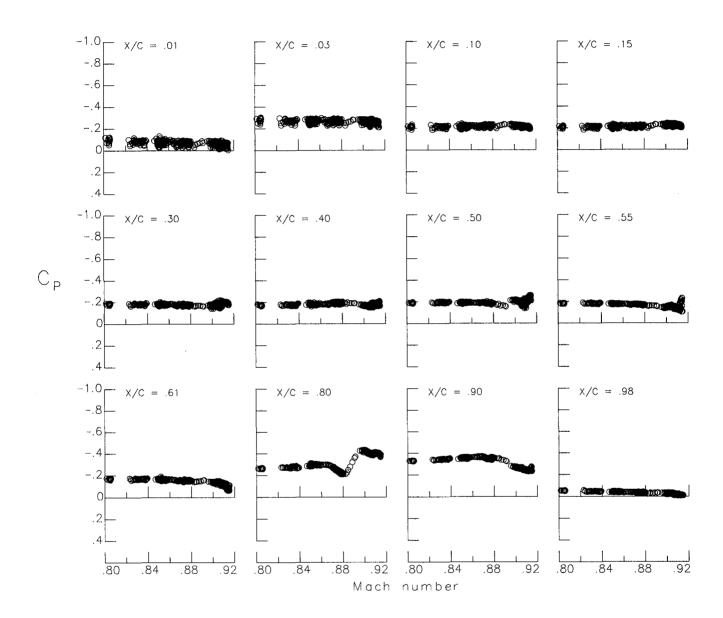

(a) Row 1, upper surface.

Figure 10.- Variations of wing surface pressure coefficients with Mach for flight 10. α = 2.0°.

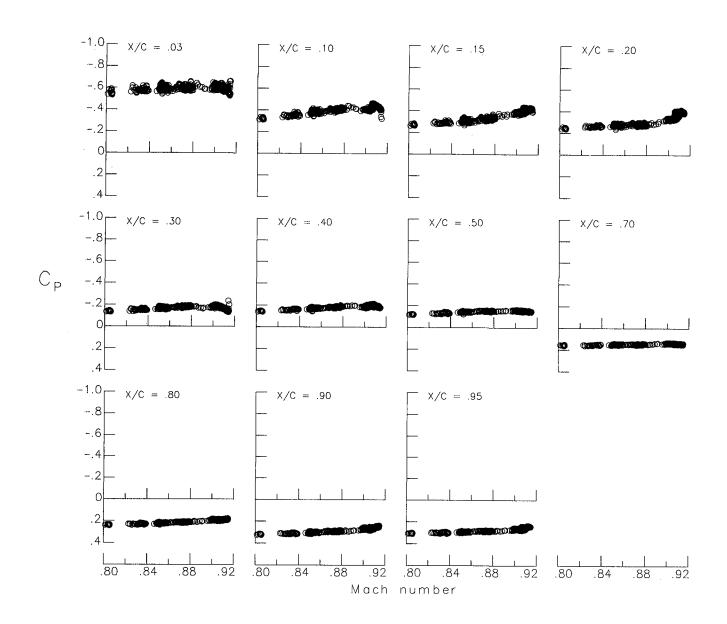
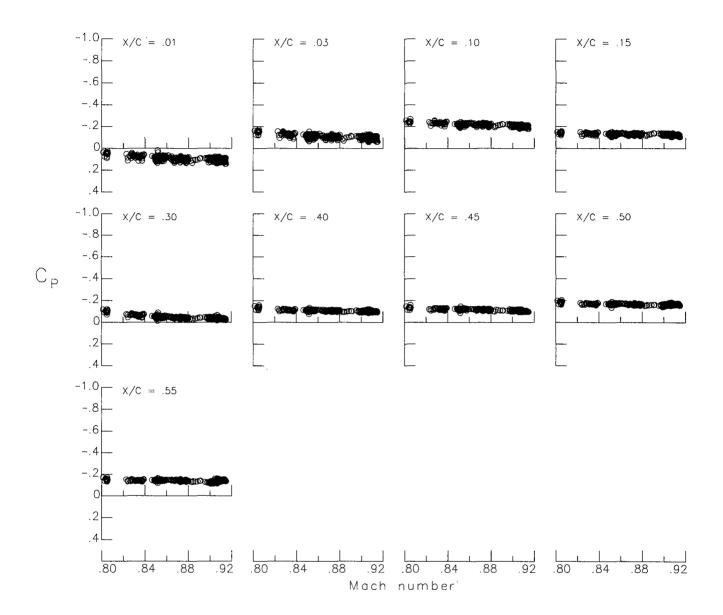
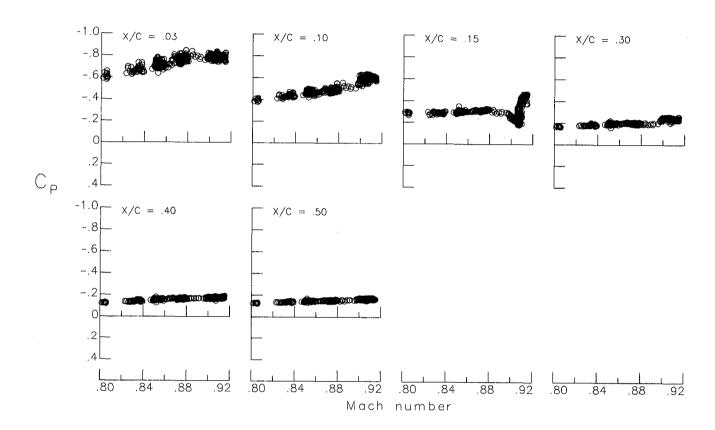

(b) Row 1, lower surface.

Figure 10.- Continued.



(c) Row 2, upper surface.

Figure 10.- Continued.



(d) Row 2, lower surface.
Figure 10.- Continued.

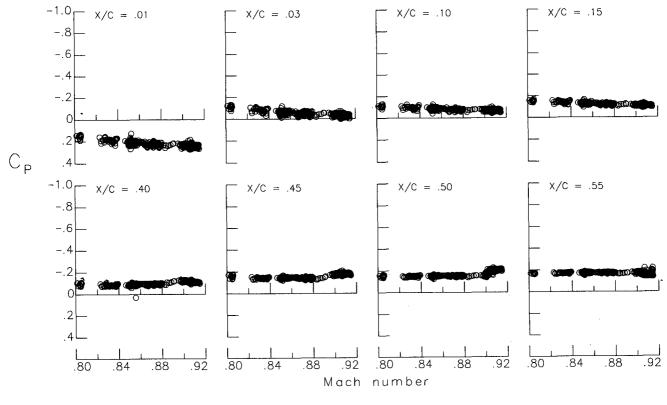
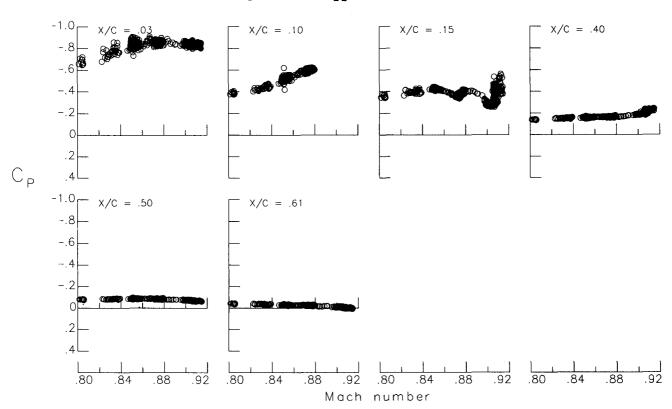

(e) Row 3, upper surface.

Figure 10.- Continued.



(f) Row 3, lower surface.

Figure 10.- Continued.

(g) Row 4, upper surface.

(h) Row 4, lower surface.

Figure 10 .- Concluded.

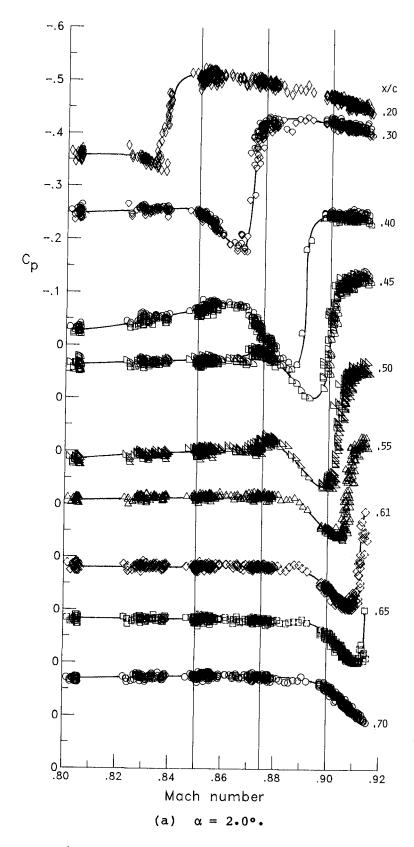
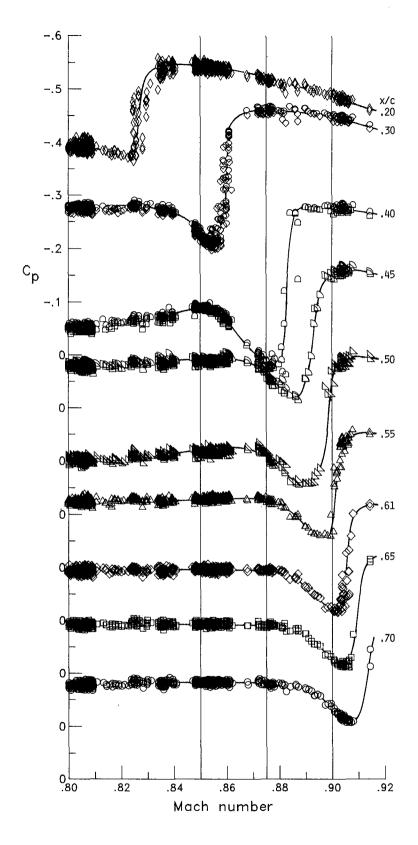
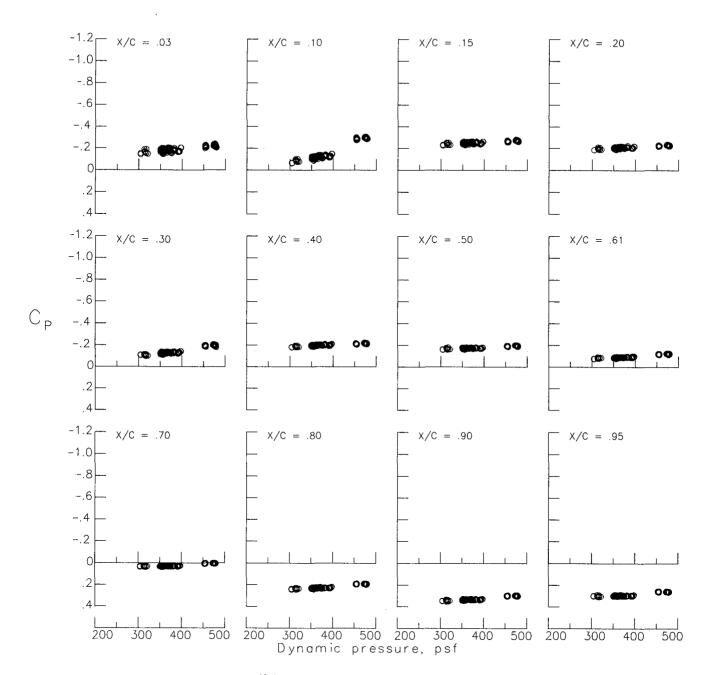



Figure 11.- Variations of wing surface pressure coefficients with Mach number for selected orifice locations on row 1 of the wing upper surface.



(b) $\alpha = 2.5^{\circ}$.

Figure 11.- Concluded.

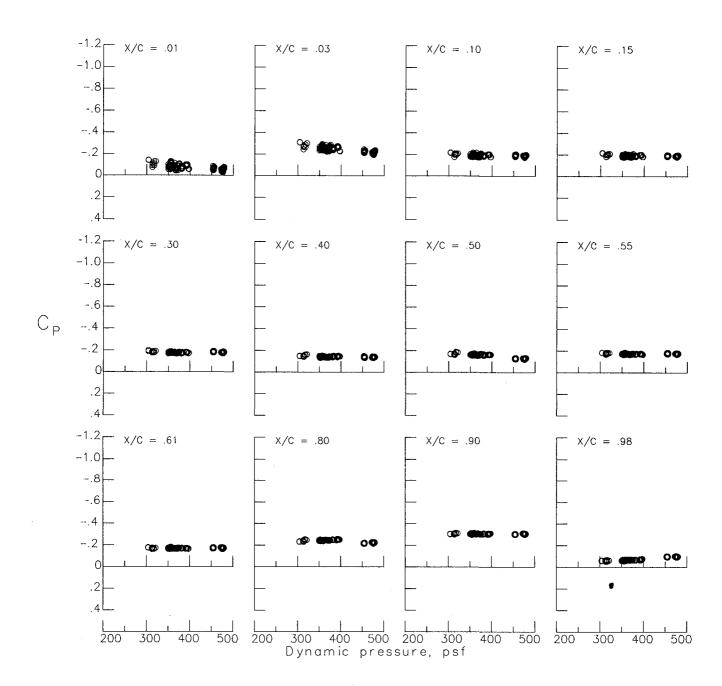


Figure 12.- Variations of wing surface pressure coefficients with dynamic pressure. $M = 0.75 \pm 0.01$, $\alpha = 2.0^{\circ}$.

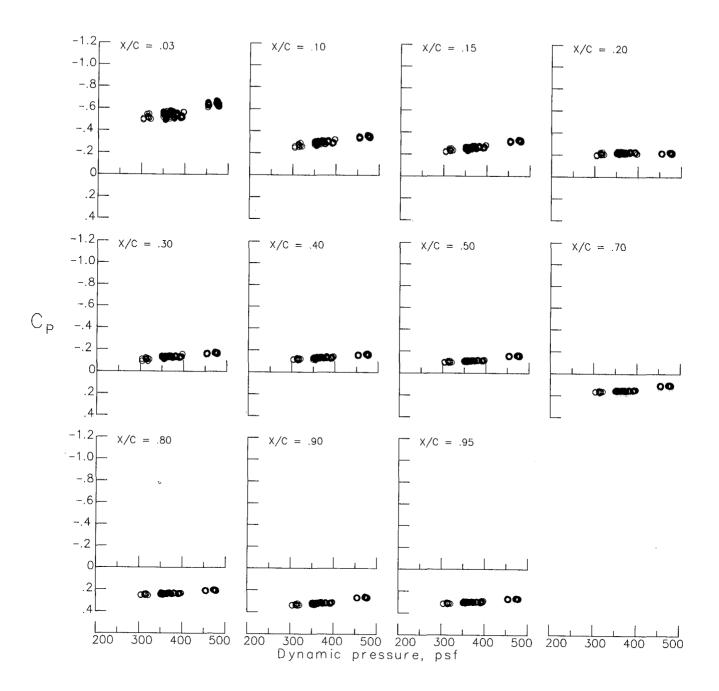

(b) Row 1, lower surface.

Figure 12.- Continued.

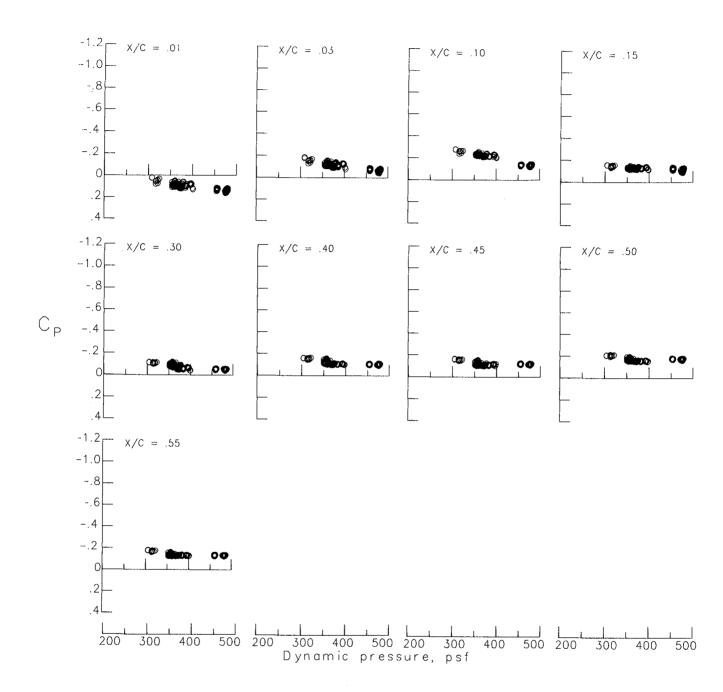

(c) Row 2, upper surface.

Figure 12.- Continued.


(d) Row 2, lower surface.

Figure 12.- Continued.

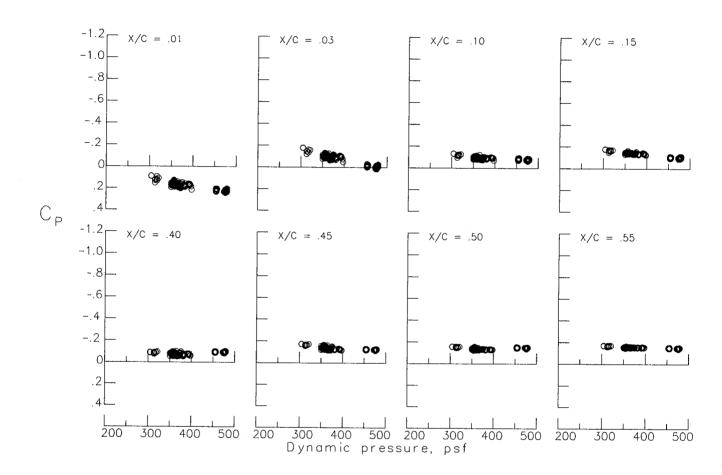

(e) Row 3, upper surface.

Figure 12.- Continued.

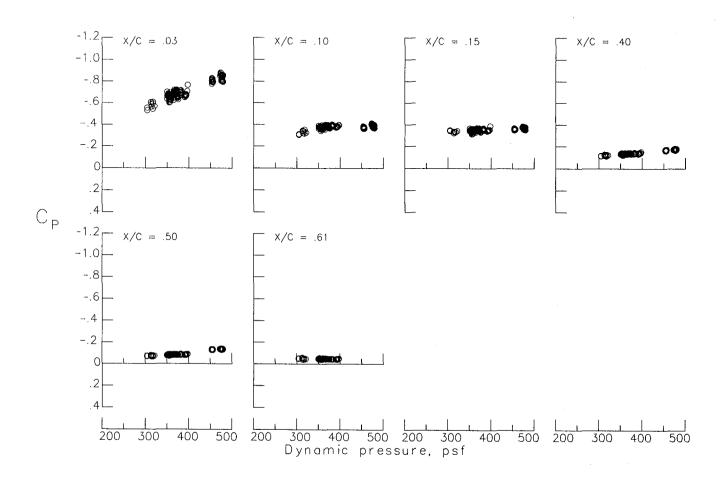

(f) Row 3, lower surface.

Figure 12.- Continued.

(g) Row 4, upper surface.

Figure 12.- Continued.

(h) Row 4, lower surface.

Figure 12.- Concluded.

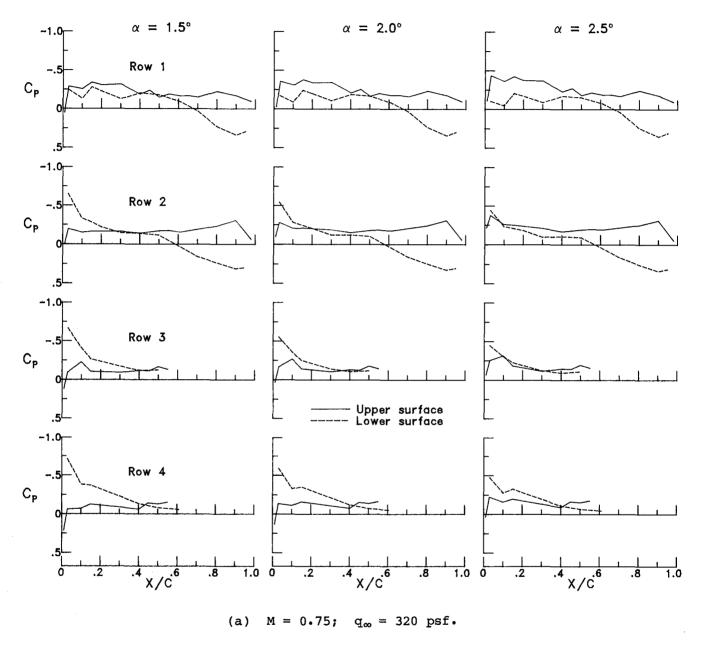
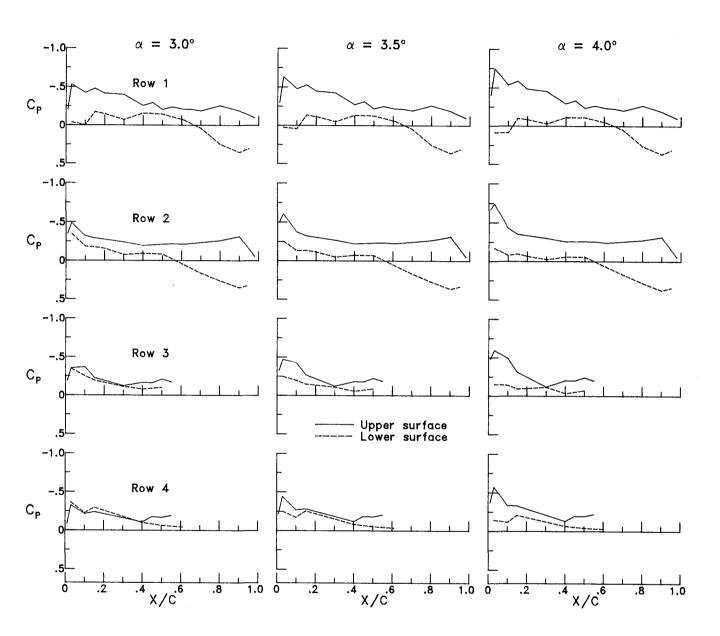



Figure 13.- Chordwise pressure distributions for flight 10.

(a) Concluded.

Figure 13.- Continued.

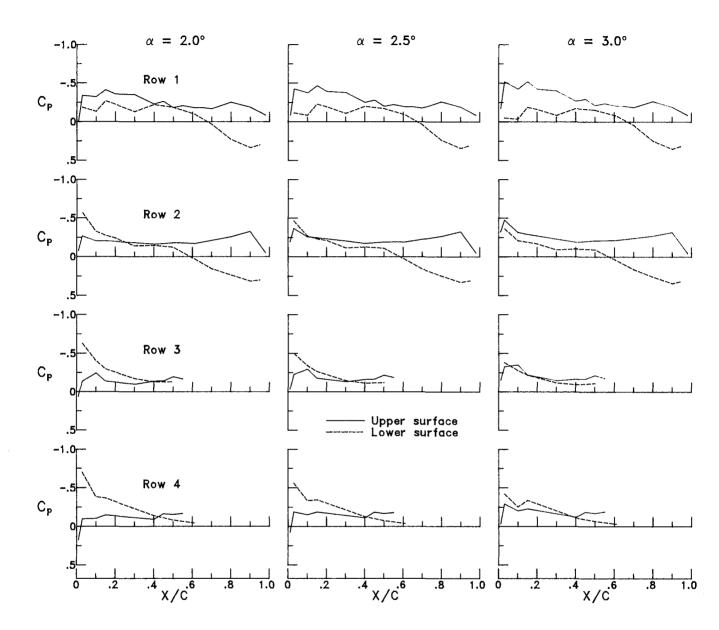
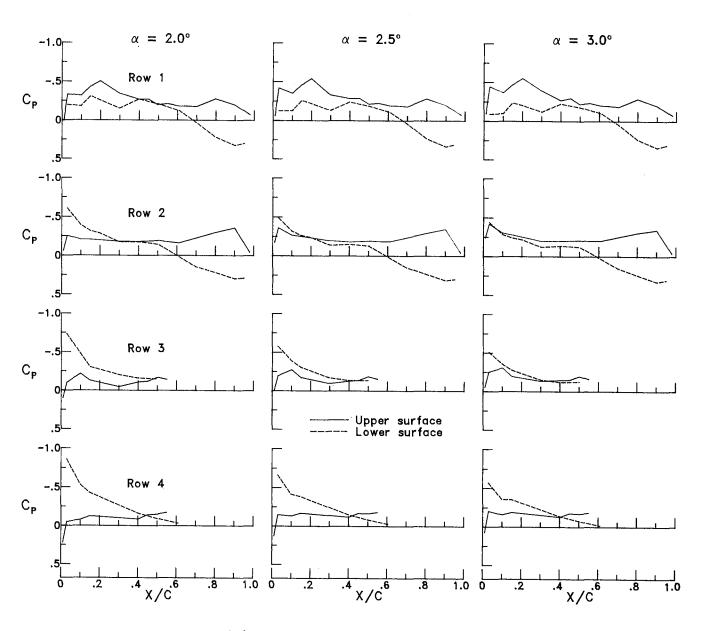



Figure 13.- Continued.

M = 0.80; $q_{\infty} = 359 \text{ psf}$.

(c) M = 0.85; $q_{\infty} = 406 \text{ psf}$.

Figure 13.- Continued.

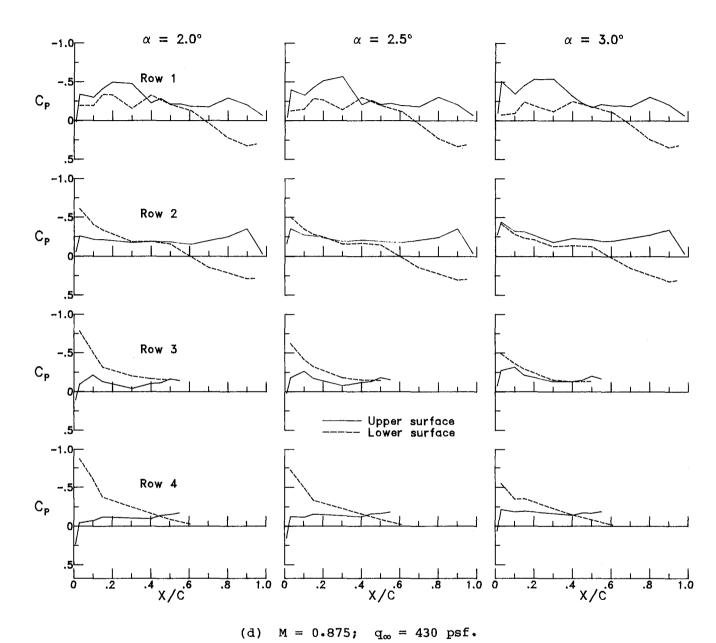


Figure 13.- Continued.

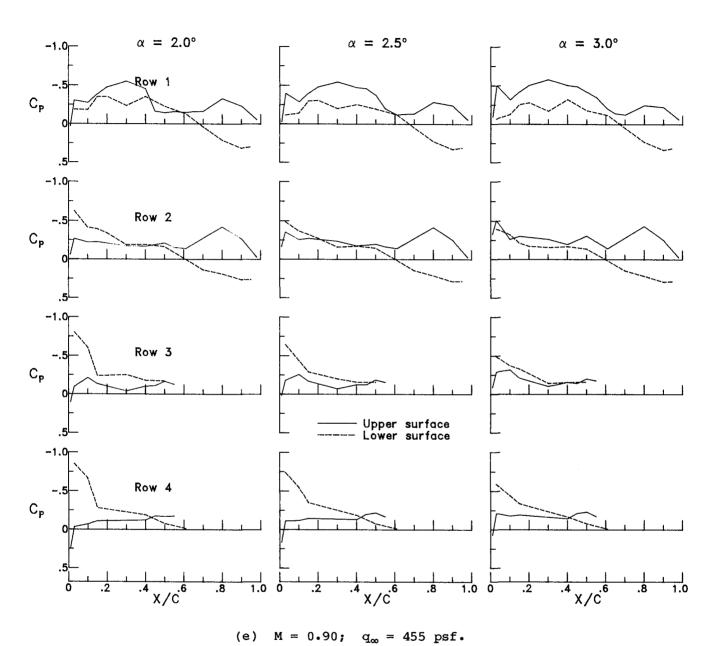


Figure 13.- Concluded.

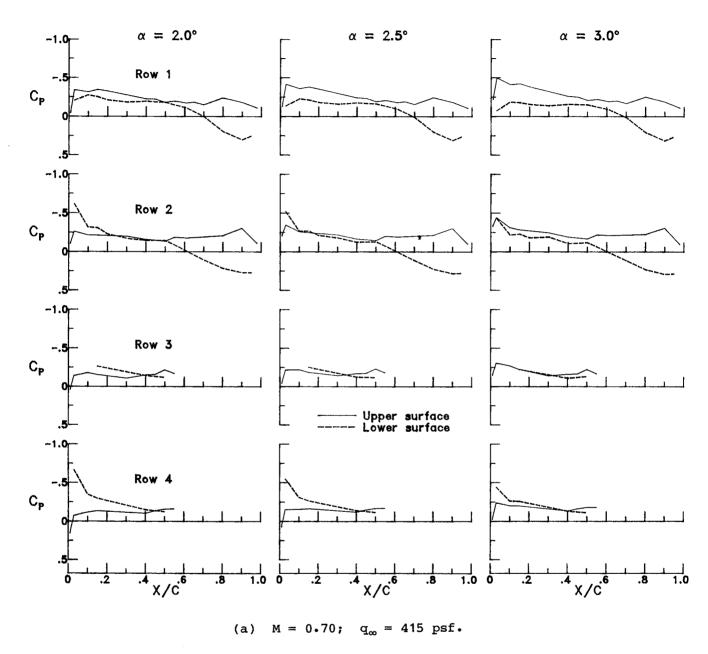
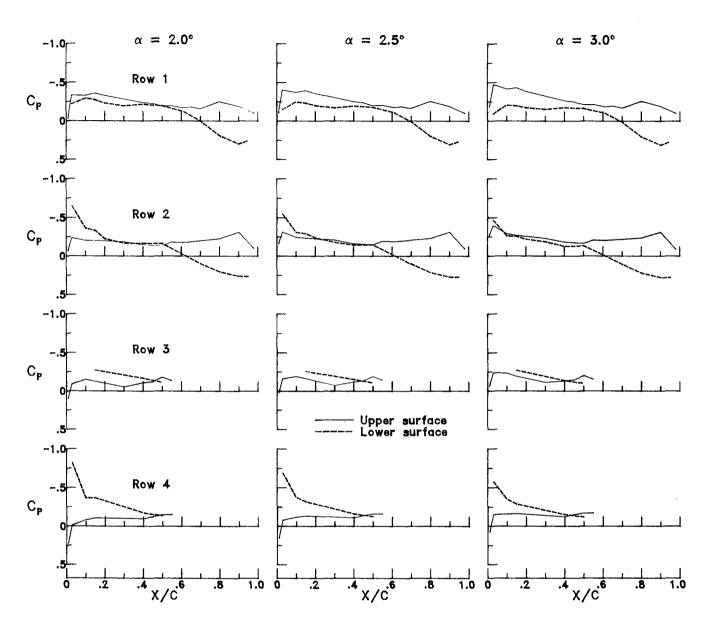



Figure 14.- Chordwise pressure distributions for flight 11.

(b) M = 0.75; $q_{\infty} = 467 \text{ psf}$.

Figure 14.- Continued.

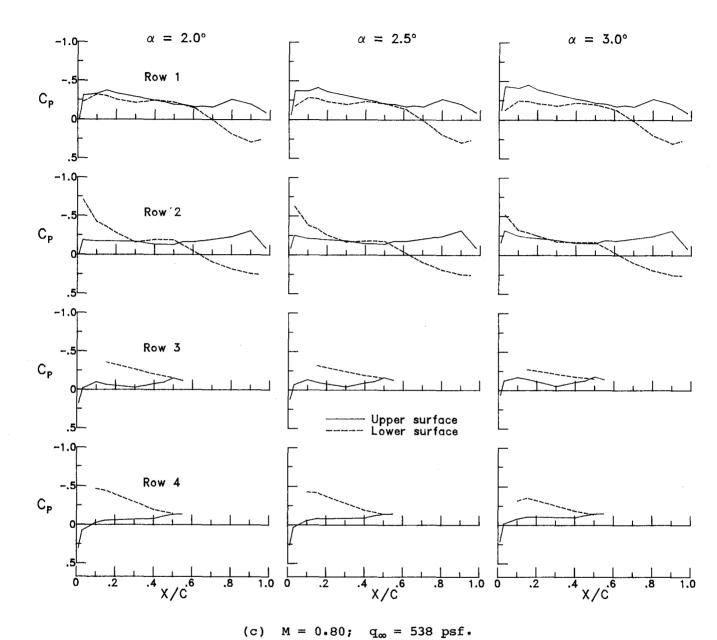


Figure 14.- Concluded.

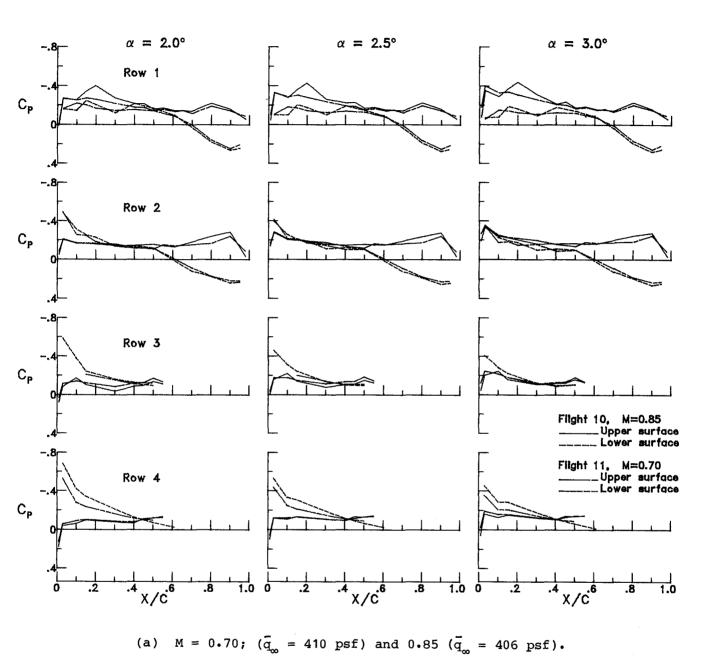
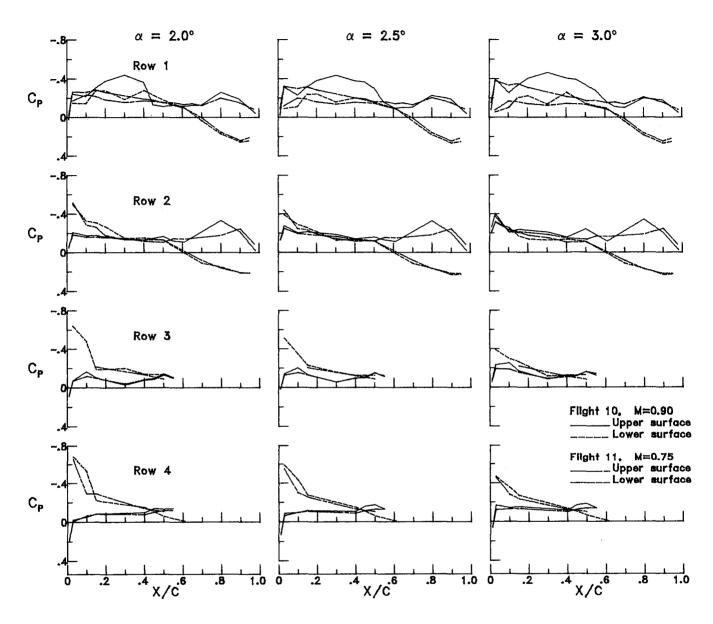



Figure 15.- Variations of chordwise pressure distributions for different Mach numbers but approximately equal dynamic pressures.

(b) M = 0.75; $(\vec{q}_{\infty} = 466 \text{ psf})$ and 0.90 $(\vec{q}_{\infty} = 456 \text{ psf})$. Figure 15.- Concluded.

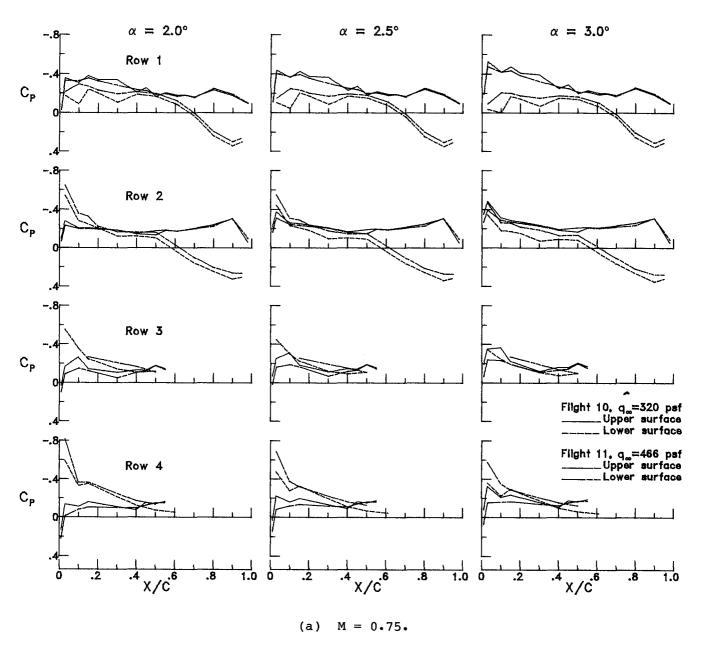


Figure 16.- Variations of chordwise pressure distributions for equal Mach numbers but different dynamic pressures.

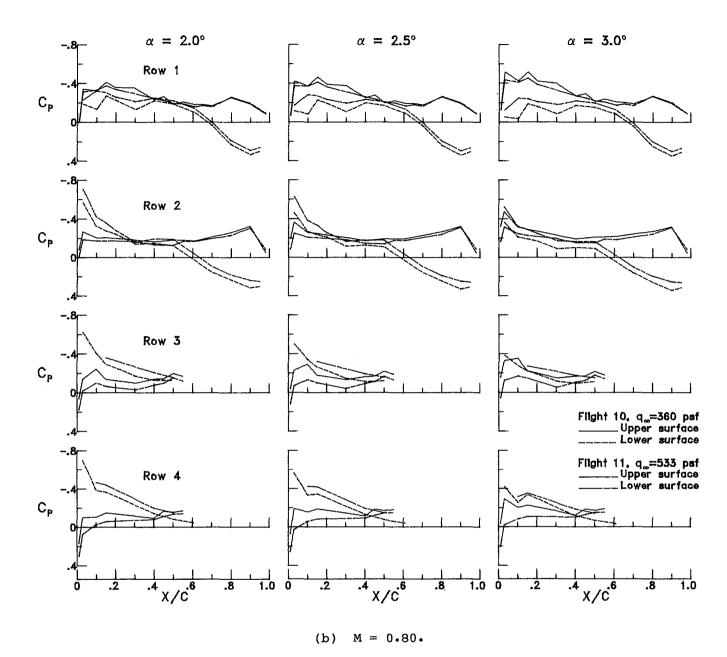


Figure 16.- Concluded.

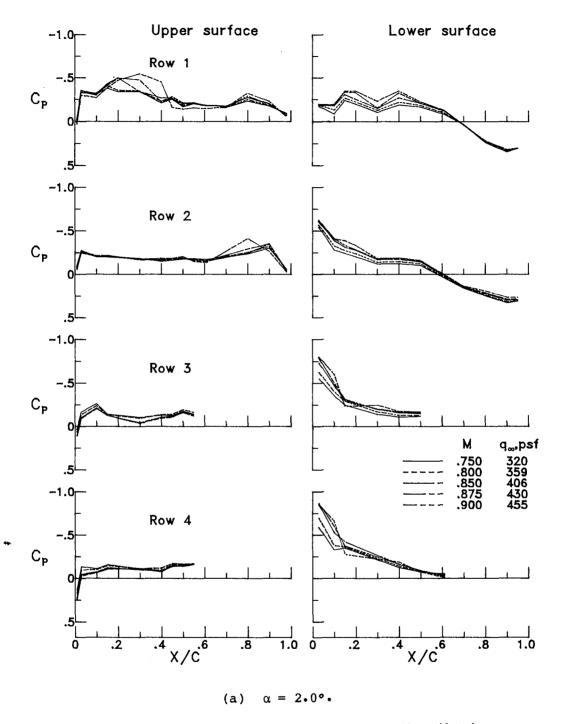
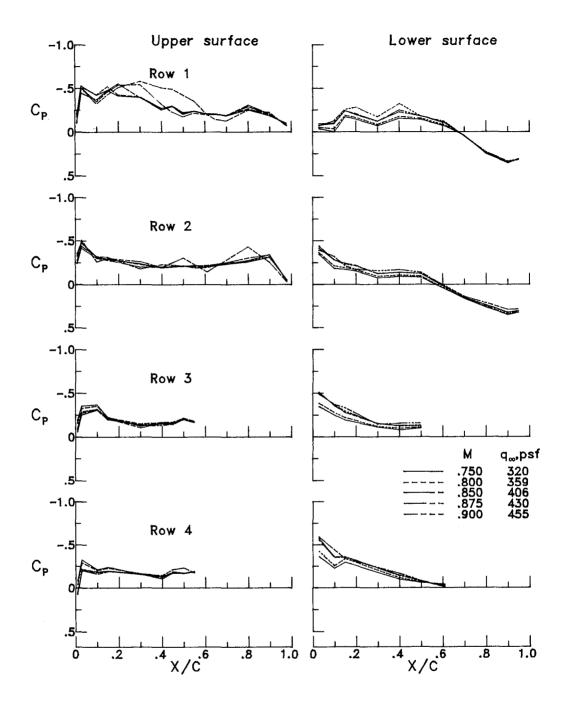



Figure 17.- Variations of chordwise pressure distributions with combined changes in Mach number and dynamic pressure for flight 10.

(b) $\alpha = 3.0^{\circ}$.

Figure 17.- Concluded.

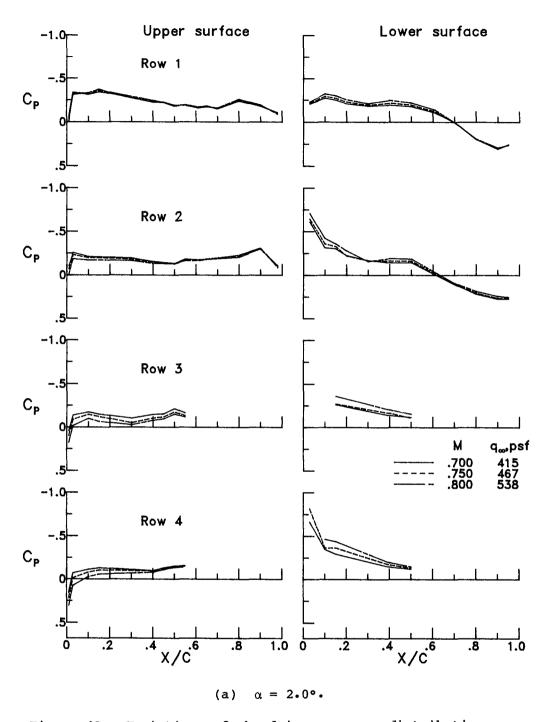


Figure 18.- Variations of chordwise pressure distributions with combined changes in Mach number and dynamic pressure for flight 11.

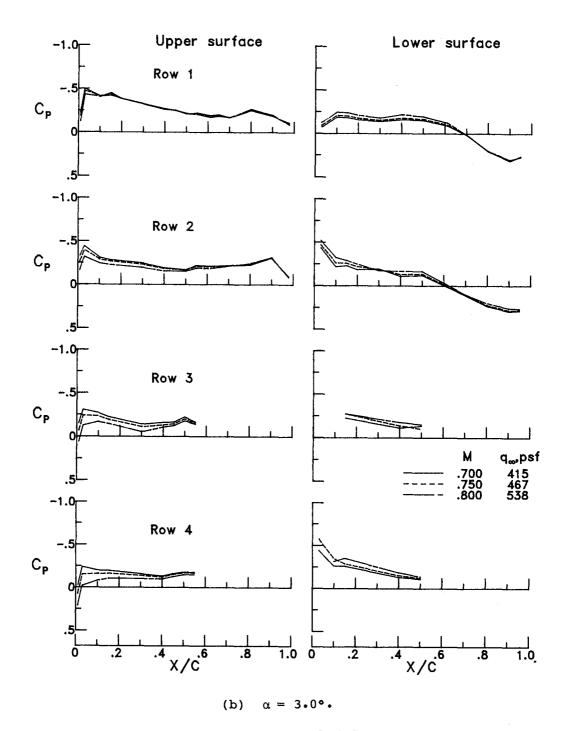


Figure 18.- Concluded.

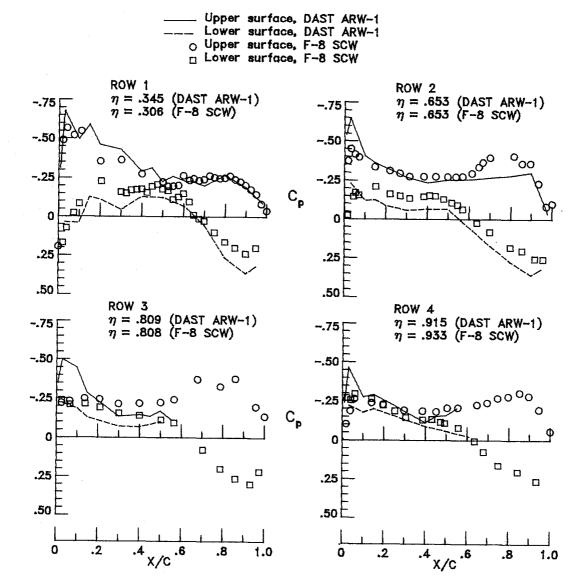


Figure 19.- Variations of chordwise pressure distributions from flight tests of DAST ARW-1 and F-8 SCW. M = 0.80; α = 3.73°.

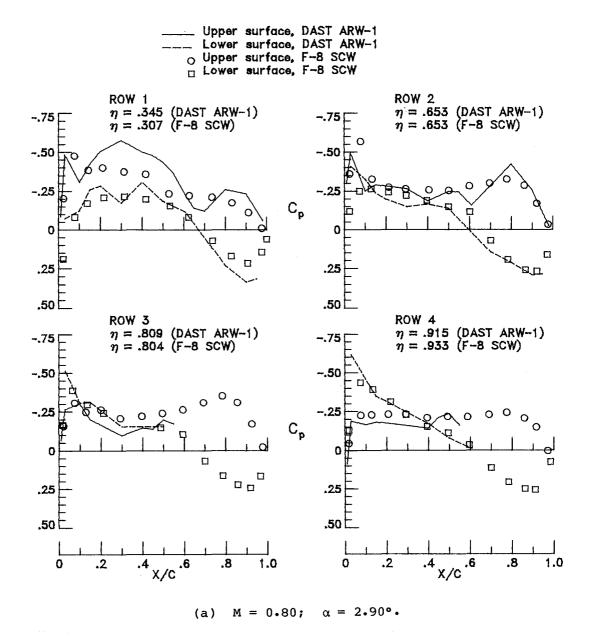
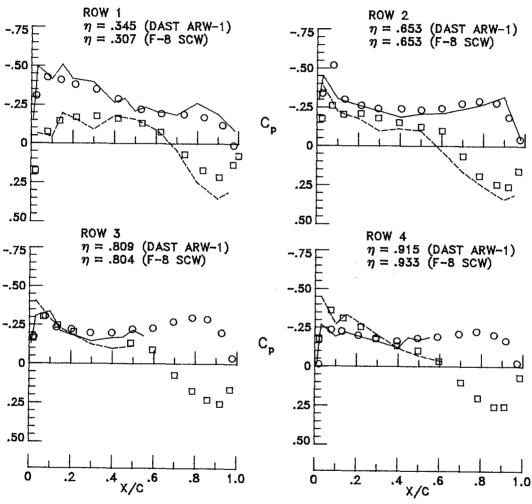



Figure 20.- Variations of chordwise surface pressure distributions from DAST ARW-1 flight tests and F-8 SCW scaled-model wind-tunnel results.

Upper surface, DAST ARW-1
Lower surface, DAST ARW-1
O Upper surface, F-8 SCW
D Lower surface, F-8 SCW

(b) M = 0.90; $\alpha = 2.91$ °.

Figure 20.- Concluded.

1. Report No. NASA TP-2501	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle		5. Report Date December 1985		
Flight Measurements of Surface Flexible Supercritical Research	6. Performing Organization Code 505-33-43-08			
7. Author(s) Clinton V. Eckstrom	8. Performing Organization Report No. L-15877			
9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665-5225		10. Work Unit No. 11. Contract or Grant No. 13. Type of Report and Period Covered Technical Paper		
12. Sponsoring Agency Name and Address				
National Aeronautics and Space Washington, DC 20546-0001	Administration	14. Sponsoring Agency Code		
15. Supplementary Notes				
16 Abstract				

A flexible supercritical research wing, designated as ARW-1, was flight-tested as part of the NASA Drones for Aerodynamic and Structural Testing (DAST) Program. Aerodynamic loads, in the form of wing surface pressure measurements, were obtained during flights at altitudes of 15 000, 20 000, and 25 000 feet at Mach numbers from 0.70 to 0.91. Surface pressure coefficients determined from pressure measurements at 80 orifice locations are presented individually as nearly continuous functions of angle of attack for constant values of Mach number. surface pressure coefficients are also presented individually as a function of Mach number for an angle of attack of 2.0°. The nearly continuous values of the pressure coefficient clearly show details of the pressure gradient, which occurred in a rather narrow Mach number range. The effects of changes in angle of attack, Mach number, and dynamic pressure are also shown by chordwise pressure distributions for the range of test conditions experienced. Reynolds numbers for the tests ranged from 5.7 to 8.4×10^6 .

17. Key Words (Suggested by Authors(s))		18. Distribution Statement		
Surface pressure measurements Supercritical wing Flight test results		Unclassified - Unlimited		
Flexible wing		Subject Category 02		
19. Security Classif.(of this report) Unclassified	1	Classif.(of this page)	21. No. of Pages 118	22. Price A06

National Aeronautics and Space Administration Code NIT-4

Washington, D.C. 20546-0001

Official Business Penalty for Private Use, \$300

1/6 0132/ 5590

NASA

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return