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SUMMARY

The multidimensional, ensemble-averaged, compressible, time-dependent

Navier-Stokes equations are solved to predict the turbulent flow field

resulting from confined swirling and nonswirling jets discharging into a

suddenly expanded duct. The calculations which correspond to the experiments

of Johnson and Bennett were conducted in a domain whose inflow boundary was

situated upstream of the dump plane where the flow is unaffected by viscous

interactions and extended downstream into the duct where the flow is fully

developed. In order to be faithful to the actual experimental configuration,

all sharp corners were retained and the inner jet wall was tapered.

A two—equation k-e turbulence model was employed to obtain the reported

results. For the swirling case there was excellent qualitative and

quantitative agreement with the experiments while for the nonswirling case

qualitative agreement was obtained. The differences in agreement between the

numerical predictions and the experimental data in the two cases appear to

correspond to the effect of large scale coherent structures in the flow

field. As determined in the companion paper by Brondum and Bennett, these

large scale structures are dominant in the nonswirling case and may thus

have a significant effect on the turbulence model, thereby leading to the

discrepancies noted in the numerical computations. Furthermore, the

calculations show that excessive artificial dissipation can have a dramatic

effect on the overall flow structure, and must be effectively controlled to

obtain accurate predictions.



INTRODUCTION

The design of modern gas turbine combusters is an extremely complex

process. Many factors can influence their operation, including geometric

effects, inflow properties of the air and fuel, turbulence of the flow and

the overall mixing process. Obviously, methods that could aid in

understanding and simulating these phenomena would be extremely useful in

the design of more efficient combustors. Before considering the combustor

as a whole includeing the combustion process, it is advantageous to consider

the isothermal case. This allows study of individual nonreacting fluid

dynamics phenomena, such as the effects of mass and momentum transport

prior to considering the complications associated with reacting fluids.

An understanding of these processes is a necessary prerequisite to the

simulation of the more complex reacting flow field.

Recently Johnson and Bennett (Ref. 1) and Roback and Johnson (Ref. 2)

have accumulated extensive experimental data for nonswirling and swirling

turbulent flows in confined suddenly expanded coaxial jets. Since the

experimental configurations were constructed to be similar to actual

combustors and the Reynolds number under which the experiments were conducted

was sufficiently high to assure fully turbulent flow, the data obtained from

these experiments could be directly applied to the study of gas turbine

combustors.

References 1 and 2 describe tne non-instrusive experiments conducted on

a confined suddenly expanded coaxial jet. A schematic of the facililty is

shown in Fig. 1. The working fluid was water which was circulated by a pump

from the storage tank through the test section. Laser Velocimeter (LV) and

Laser Induced Fluorescence (LIF) techniques were employed to obtain the data:

velocities, concentrations and flow visualization. Details of the operation

of the system are given in Refs. 1 and 2.

In association with these experiments numerical computations were

performed (cf. Ref. 3) to model the flow fields. The results of these

calculations indicated that several areas were in need of special attention;

turbulence modeling, specification of upstream (inflow) boundary conditions

and control of numerical or aritifical dissipation. With regard to

turbulence modeling it should be noted that, a major objective of the

experimental program was to obtain data bases from which a better



understanding and formulation of transport models could be obtained.

In accordance with this goal the present effort was initiated to obtain

accurate numerical computations which is a prerequisite in meeting the aims

of the program. Concurrently Brondum and Bennett in the companion effort

(Ref. 4) conducted experiments to isolate the effects of the large scale

structures.

The effects of boundary conditions in general and inflow boundary

conditions in particular play an important role in the flow development and,

therefore, must be carefully chosen. In view of the strong interactions that

occur between the coaxial jets, the subsequent strong mixing and the large

recirculation zones that develop it is generally agreed that the full

ensemble-averaged Navier-Stokes equations should be considered rather than

simplified systems of equations. However, there is not universal agreement

on how and where to specify boundary conditions. Implicit in the choice and

application of "correct" boundary conditions is the choice of the appropriate

computational domain. Recent results employing the TEACH code and its

derivatives consider a rectangular domain with the upstream boundary being

situated at the dump plane (cf. Ref. 3). In this computational domain one

must specify at the dump plane not only the streamwise velocity and swirl

velocity (if swirl is present), but also the normal velocity which is an

extremely sensitive quantity. Furthermore, at the dump plane strong

interactions between the jets occur so that it is not an optimum location at

which to impose boundary conditions. Since the determiation of the flow

properties at or near the dump plane is one of the objectives of the

calculation, one cannot specify boundary conditions there.

In contrast to the procedure described above in the present calculations

the upstream inflow boundary is placed upstream of the dump plane, where the

flow properties are not influenced by the inteiaction process occurring at

the dump plane. Further, the geometrical domain has been constructed to

include a tapered inner wall for the central jet in order to model as best

possible the actual experimental facility.

Navier-Stokes calculations were performed for the two cases considered

in Refs. 1 and 2 employing a k-e turbulence model. The Navier-Stokes

solution procedure which was used in this effort was the consistently split



linearized block implicit (LBI) scheme of Briley and McDonald (Refs. 5 and

and 6). The numerical scheme is embodied in a general computer code termed

MINT (Multidimensional, Implicit, Nonlinear, Time-Dependent). The particular

form of the code being used for the present application solves the general

tensor form of the Navier-Stokes equations and, therefore, can be used with a

general coordinate system. The dependent variables in the analysis are the

velocity components, the density, and for turbvlent flow if a two-equation

model is used, the turbulence kinetic energy, k and the dissipation rate, e.

The results obtained compared well with the experiments in Refs. 1 and 2.

In particular, for the nonswirling case there was excellent quantitative

agreement with the data. Furthermore, the calculations indicate that

numerical dissipation can have a significant effect on the numerical results.



ANALYSIS

The present analysis is based upon the solution of the ensemble-averaged

Navier-Stokes equations using the linearized block implicit (LBI) method of

Briley and McDonald (Ref. 5). The equations are solved in a constructive

coordinate system with density and the velocity components being taken as

dependent variables. The discussion of the coordinate system and governing

equations is given next.

Coordinate System

In Fig. 2 is shown a schematic of the experimental facility with the

pertinent dimensions (duplicated from Ref. 2). It consists of two coaxial

pipes of inner and outer radii Rij and Ra respectively expanding into a

larger radius pipe of radius RQ with the inner pipe having a taper angle of

7.5 degrees. The computational domain chosen for the numerical computation

was constructed to model this configuration as close as possible and is shown

in Fig. 3.

There are several important features that are noteworthy. First, and

foremost, the computational domain extends upstream of the dump phase, away

from where the two jets mix. This allows for the specification of boundary

conditions in a region unaffected by the mixing of the two jets which in

general cannot be prescribed accurately. However, the computational

domain introduces additional complications which must be taken into account

by the solution procedure. These include reentrant corner points at the

intersection of the inner pipe walls with the dump plane walls, and the

introduction of surfaces where boundary layers develop and which must be

resolved when no-slip boundary conditions are employed. In the case under

consideration three reentrant corners are introduced. Note that although the

Inner central jet wall is tapered it terminates at the dump plane such that

there is a finite thickness of the wall between the two jets. Furthermore,

three additional walls have been Introduced at Rij, Ri2 and Ra, upstream of

the dump plane where the respective boundary layers must be resolved. This

places additional demands on the grid, viz. more grid points and/or grid

clusterings are required.

The next feature of note is the inclusion of tapered inner wall at a

nominal angle of 7.5° which corresponds to the actual experimental setup.



This tapered section is not a straight line, but rather consists of a cosine

curve in order that the coordinate lines vary smoothly. By including this

tapered portion, the grid becomes nonorthogonal, and must be taken Into

account in the analysis.

This geometry although more complicated than those considered by other

researchers (e.g. Ref. 3) is more realistic and is, therefore, employed.

Nevertheless, the nonorthogonal geometry and the reentrant corners requires

no additional code modifications since the MINT procedure has been designed

to treat such cases.

The upstream boundary was placed at 51.0 mm upstream of the dump plane

to correspond to the location where the swirler was placed and was employed

for the nonswirl case as well. The downstream boundary was placed at 14.0

Ro downstream, where fully turbulent conditions should be recovered.

The grid consisted of 91 grid points in the radial direction and 71

points in the streamwise direction. The grid was clustered as noted above to

resolve the boundary layers on all solid surfaces. The solid surfaces

correspond as the following radial grid point locations

RH = 28
R12 = 31

Ra = 63

R0 = 91

In the streamwise direction, there were 71 grid points with the dump plane

located at grid point 15. The maximum grid spacing was at the downstream

boundary, AZmax = .70 RQ, and the minimum spacing at the dump plane was

AZmin = *01 RO- The family of radial lines were straight while the

streamwise curves conformed to the body shape. As noted above, this led to a

nonorthogonal coordinate system, and is shown in Fig. 4. Note that

downstream of the dump plane the streamwise coordiante curves are adjusted to

cluster more points near the centerline. To achieve the grid clustering, a

transformation due to Oh (Ref. 8) was employed.



Governing Equations

The equations used in the present effort are the ensemble-averaged,

time-dependent Navier-Stokes equations which can be written in vector form as

Continuity

^£- +V ""-

Momentum

V-(/3UU)= -VP+ V-(T +7T
T)

dt

Energy

dob — — — DP

(2)

at r Dt (3)

where p is density, U is velocity, p is pressure, IT is the molecular stress

tensor ir^ is the turbulent stress tensor, h is enthalpy, Q is the mean heat

flux vector, QT is the turbulent heat flux vector, $ is the mean flow

dissipation rate and e is the turbulence energy dissipation rate. If the

flow is assumed as a constant total temperature, the energy equation is

replaced by

Q2
Tf = T + — = constant (4)

where Tt is the stagnation temperature, q is the magnitude of the velocity

and Cp is the specific heat at constant pressure. In the cases considered

in this work, constant total temperature has been assumed. A number

of terms appearing in Eqs . 1-3 require definition. The stress tensor

appearing in Eq . 2 is defined as

= 2 — _
TT = 2/itD -(y/i-KB)V-Ul

where Kg is the bulk viscosity coefficient, I is the identity tensor, and

ID is the deformation tensor, defined by:

ID =((VU)H-



In addition, the turbulent stress tensor has been modeled using an isotropic

eddy viscosity such that:

TTT =-p u7^

where, k is the turbulent kinetic energy and MT» tne turbulent viscosity,

is determined by a suitable turbulence model. Turbulence modelling is

described in some detail in the next section.

Equation 8 contains a mean heat flux vector defined as follows:

Q" =-/cVT

and a turbulent heat flux vector defined as:

" (9)

where K and K™ are the mean and turbulent thermal conductivities,

respectively.

Also appearing in Eq. 3 is the mean flow dissipation term <&.

<E> = 2/lID: CD- ( \VL- KB)(V-U)
2 (10)

The equation of state for a perfect gas

P = pRT (11)

where R is the gas constant, the caloric equation of state

e = CVT (12)

and the definition of static enthalpy

h = CpT (13)

supplement the equations of motion.

Finally the flow properties u, K and Kg are determined using the following

constitutive relations.

The molecular viscosity u is determined using Sutherland's law.

3/2 T0 + S|
_ . _ (14)

where Sl = ioo°K for air.



The bulk viscosity is assumed to be zero

K B=0

and the thermal conductivity is determined by use of a relation similar to

Sutherland's law viz.

where 82 = 194°k for air.

Dependent Variables and Coordinate Transformation

The set of governing partial differential equations which model the

physical processes was presented in the previous section. For generality

these equations were written in vector notation; however, before these

equations can be incorporated into a computer code, a coordinate system must

be chosen. The governing equations can then be cast in a form reflecting the

choice of the coordinate system. Therefore, the governing equations written

in a cylindrical polar coordinate system are transformed with a general

Jacobian transformation of the form

yJ = y* Cx., "x"-, "x, , t)
(17)

T = t

where (x_, X2, X3) are the original coordinates (Ref. 9). In cylindrical

polar coordinates (xx) would correspond to (r, 9, z). The velocity

components remain the components, (U^, U2, 113) in the (x^, X2, X3) coordinate

directions, respectively. The new independent variables yJ are the

computational coordinates in the transformed system. The coordinate system

requirements for the problem under consideration may be represented by a

subset of the general transformation, Eq. (17)

y1 = y'(x,,x3,t)

y2 = y*(x2)

y3 = y3(xn x3, t)



which is a general axisymmetric time-dependent transformation. For the

coaxial jet configuration which is axisymmetric, Eq. (18) reduces to
2 2
y = X2 and all derivatives 3/3y are assumed to be zero.

Application of the Jacobian transformation requires expansion of the

temporal and spatial derivatives using the chain rule, i.e.,

a

and

a (19)

ax >' ayJ (20)

where

ax.

(21)

The relations Eqs. (19-21) are first substituted into the governing equations

(1-4) written in Cartesian or cylindrical polar coordinates. Then the

resulting equations are multiplied by the Jacotian determinant of the inverse

transformation,

J =
a(x,,X2,X3)

a(y',y2,y3)

ax,
ay '
ax 2

a y '

ax3

ay-

ax,
ay

2

ax2

ay2

ax3

ay2

ax,
ay3

ax2

ay3

ax,
ay3

(22)

and the equations are cast into a "semi-strong" conservation form (Ref. 9)

using the following relations,

3

I = 0 (23)

10



and

y
dr % dyi ~ w (24)

The semi-strong conservation form implies that all factors involving the

radial coordinate r = xi remain as they were before the Jacobian

transformation. The resulting equations are presented in Appendix B.

The geometric relations Eq. (23-24) may be obtained from the

transformation relations for Jy,i! and Jy,. in terms of the inverse

transformation derivatives (e.g., Ref. 10),

Jy ,2 = X3,2 XJ,3 ~ X3,3 Xl,2

Jy1 = ~x "x - 7 "x3 ,3 1,2 2,3 1,3 2,2

(25)

and

(26)

11



Turbulence Modeling

Several alternative turbulence models can be applied to the problem at

hand. In general terms, these models are the zero-, and two-equation

models. The formulation of each of the two is described in this section.

Zero Equation Model - (Mixing Length)

Of all available turbulence models, Prandtl's mixing length model is

probably still the most widely used. The model was originally developed for

use in unseparated boundary layer flow situations and has been shown to

perform well under such conditions. An advantage of the method from the

point of view of economy is that it does not require additional transport

equations to model the effect of turbulence, but rather relates the Reynolds'

shear stress to mean flow quantities via:

where

and

£= min[ i^

where d is the normal distance to the nearest wall and D is the van Driest

damping coefficient given by

D= I - e x p ( - y * / A * ) y* = d u T / u

£„ = 0.098 (27)

K = O 4

and where the local shear stress T£ 'is obtained from

rt = (200: CD)"2 (28)

and CD is defined by Eq. 6.

12



One problem in the mixing Length formulation is the definition of 6,

which for flows of the type considered here is extremely difficult to

estimate. Hence, it has not been used to obtain the reported flow fields.

However, as will be discussed in the following sections, this model is used

to initialize the computations.

Two-Equation Model - (k-e)

As discussed above, the mixing length concept is valid for a variety of

flows, in which the viscous layer is wall bounded. However, in cases such as

considered here which involve large reciruclation zones, and is shear

dominated, a less restrictive model is required. One such model is the

two-equation turbulence model (Refs. 11-15) in which a transport equation for

turbulence kinetic energy, k, is formulated as follows:

-£- + V- (pUK) = V- (—IVK) + 2u.r(\D: [D) - pe - 2pv( VK
172)2

at r °K T (29)

where k is the turbulence kinetic energy and is defined as

K =T u'-u' (30)

and the transport equation for the dissipation e is

at cr€ K K

However, attempts to solve Eqs. 29 and 31 without modification present

problems because an appropriate boundary condition for e at a solid boundary

is difficult to prescribe such that Eq. 31 is satisfied. Following the

suggestion of Jones and Launder (Ref. 12), the turbulence dissipation

equation has been modified by the inclusion of the term:

-2/z/iT(V
2U)2

13



in the energy dissipation equation, Eq. (31), and by the inclusion of the

term:

-2/>z/(VKl/2)2

in the turbulence energy equation. These additional terms allow an e = o

wall boundary condition to be applied and appear to correctly model the near

wall region as discussed in Ref. 12. Following Ref. 12, the following

empirical relations are used.

<rf - 1.3 crk = i.O

Cf = 1.43

C = 0.09 exp[-2.5/(l+RT/50)]

C2 = 1.92 [l.O -0.3 exp(-Rj)]

and RT is defined as:

The Prandtl-Kolmogorov relation, defines the turbulent viscosity as:

In modeling the flow in the near wall region where low local turbulence

Reynolds' numbers occur, two approaches are available. The first is the wall

function approach which does not resolve the near wall region but assumes

specific function forms for the required turbulence quantities and uses these

forms to create the required normal derivative formulations at the first grid

point from the wall. Such an approach obviously requires a detailed

knowledge of the turbulence model dependent variables in the vicinity of the

wall. Although reasonable function formulations can be specified for simple

two-dimensional flows such as constant pressure boundary layers,

specification in the much more complex flows of current interest is much more

difficult. Therefore, the alternative approach in which the viscous sublayer

is resolved has been used. The method makes no approximation at the

boundary, but requires that the near wall low turbulence Reynolds' number

physics be modeled.

14



Initial and Boundary Conditions

Steady solution of the system of governing partial differential

equations represented by Equations (1-3) is obtained by time marching these

equations until a steady state is reached. Before the solution procedure is

described two important aspects must be discussed: (1) the initial

conditions and (2) the boundary conditions. Any procedure which utilizes

either a time marching method to obtain a steady state (or transient)

solution or a Newton-Raphson iteration procedure requires some initial guess

of the flow variables (in this case all the dependent variables and other

necessary variables such as pressure, temperature, viscosity, etc.). In some

of the simpler cases, some reasonable approximation to a converged solution

can either be guessed or obtained through physical reasoning. However, since

the flow field considered under this effort is dominated by large

recirculation zones it was felt that an initial guess containing such closed

vortical patterns would be very difficult at best and at worst could hamper

the ultimate convergence history. The approach taken here was to assume that

the flow was initially stagnant (all velocity components were set to zero),

and that the pressure and temperature were constant being set equal to the

downstream exit flow conditions. The upstream velocity profiles were then

raised to some precribed level over a period of time thereby driving the flow

through the duct. Thereafter the solution was marched out in time until a

steady state was achieved. This technique has the advantage of being easy to

implement in any geometric configuration.

To obtain a solution of the governing system of partial differential

equations represented by Equations (1-3), it is necessary to define boundary

conditions on each bounding surface of the computational domain. For the

purposes of this investigation boundary conditions can be classified as

occurring on two different types of bounding surfaces: (1) walls on solid

surfaces, (2) inlets and exits. The boundary condition utilized on each

different type of surface will now be discussed in turn.

At walls and solid boundaries no slip is prescribed, i.e. the streamwise

and normal velocities are set to zero. In addition the normal pressure

gradient is set to zero. As an alternate boundary condition the normal

momentum equation can be solved at the boundary, and is employed if required

by the physics of the flow.

15



At the outflow boundary, for subsonic flow the static pressure is

specified and the velocity components are extrapolated, i.e. the second

derivatives of the streamwise and normal velocities are set to zero. The

inflow boundary, however requires some additional care. Since the velocity

profiles at the inlet were measured (cf. Ref. 7), they were specified there

and were fixed throughout the calculation. This essentially sets the mass

flow through the system. An additional boundary condition is needed for

density, which for this case reduced to an extrapolation condition.

As a final note, a description is given of the treatment of the

reentrant corners, which appear as geometrical singularities in the flow.

The specification of no slip offers no difficulty at these corners, since the

velocities are set identically to zero. However, the pressure condition is

somewhat more difficult since it involves a derivative. In order to

circumvent the difficulty associated with choosing the direction in which the

normal derivative is to be taken, the corner is treated as a double valued

point. Hence, two values of pressure (and density) are stored, each

corresponding to the direction in which the coordinate lines approach the

corner. Although this method is approximate, it has worked well in practice

and does not appear to adversely affect the results obtained.

Numerical Procedure

The numerical procedure used to solve the governing equations is the

consistently split linearized block implicit (LBI) scheme originally

developed by Briley and McDonald (Ref. 5). A conceptually similar scheme has

been developed for two-dimensional MHD problems by Lindemuth and Killeen

(Ref. 16). The procedure is discussed in detail in Refs. 5 and 6. The

method can be briefly outlined as follows: the governing equations are

replaced by an implicit time difference approximation, optionally a backward

difference or Crank-Nicolson scheme. Terms involving nonlinearities at the

implicit time level are linearized by Taylor expansion in time about the

solution at the known time level, and spatial difference approximations are

introduced. The result is a system of multidimensional coupled (but linear)

difference equations for the dependent variables at the unknown or implicit

time level. To solve these difference equations, the Douglas-Gunn (Ref. 17)

procedure for generating alternating-direction implicit (ADI) schemes as

perturbations of fundamental implicit difference schemes is introduced in its

16



natural extension to systems of partial differential equations.

This technique leads to systems of coupled linear difference equations having

narrow block-banded matrix structures which can be solved efficiently by

standard block-elimination methods.

The method centers around the use of a formal linearization technique

adapted for the Integration of Initial-value problems. The linearization

technique, which requires an Implicit solution procedure, permits the

solution of coupled nonlinear equations in one space dimension (to the

requisite degree of accuracy) by a one-step noniterative scheme. Since no

iteration is required to compute the solution for a single time step, and

since only moderate effort is required for solution of the Implicit

difference equations, the method is computationally efficient; this

efficiency Is retained for multidimensional problems by using what might be

termed block ADI techniques. The method is also economical In terms of

computer storage, in its present form requiring only two time-levels of

storage for each dependent variable. Furthermore, the block ADI technique

reduces multi-dimensional problems to sequences of calculations which are

one-dimensional in the sense that easily-solved narrow block-banded matrices

associated with one-dimensional rows of grid points are produced. A more

detailed discussion of the solution procedure as discussed by Briley, Buggeln

and McDonald (Ref. 18) is given in the Appendix A.

Artificial Dissipation

Since the calculations of interest are often at high Reynolds numbers

typical of combuster flow fields, it is necessary to suppress spatial

oscillations associated with central spatial differences approximations.

This can be done via a dissipative spatial difference formulation

(e.g., one-sided difference approximations for first derivatives) or by

explicitly adding an additional dissipative type term. For the Navier-Stokes

equations, the present authors favor the latter approach since when an

additional term is explicitly added, the physical approximation being made is

clearer than when dissipative mechanisms are contained within numerical

truncation errors, and further, explicit addition of an artificial

dissipation term allows greater control over the amount of non-physical

dissipation being added. Obviously, the most desirable technique would add

17



only enough dlssipatlve mechanism to suppress oscillations without

deteriorating solution accuracy. Various methods of adding artificial

dissipation were investigated in Ref. 20, and these were evaluated in the

context of a model one-dlmenslonal problem containing a shock with a known

analytic solution (one-dimensional flow with heat transfer). The methods

which were considered included second-order dissipation, fourth-order

dissipation and pressure dissipation techniques.

As a result of this investigation, it was concluded that a second-order

anisotropic artificial dissipation formulation suppressed spatial

oscillations without impacting adversely on acccuracy. In the present

application a term of the form

"*'I

is added to the governing equations for each coordinate direction j.

The variable <J> denotes the velocity component U^ for the x^-direction

momentum equation, the density p for the continuity equation, and the

enthalpy h for the energy equation. The coefficient (yart)j Is obtained

from

where Axj is the grid spacing at the point In question. The quantity g

denotes the effective viscosity (ueff) ̂
or tne momentum equations,

(yeff/Pr) for the energy equation, (lieff/
ak) f°r tne turbulence kinetic

energy equation, (lieff/CTe) ̂ or tne turbulence dissipation equation, and

is zero for the continuity equation.

The question arises as to the values of ax and Oy which should be

chosen. This was assessed both through model problems (Ref. 19), and through

actual calculations (Refs. 19, 20 and 21). These results indicated that

values of a = .5 which corresponds to a cell Reynolds number 2 limitation

would severely damp physical variations. However, when a was set in the

range .05 < a < 0.10, which correspond to a cell Reynolds number range

18



between 20 and 10, spurious spatial oscillations were damped with no

significant change In the calculated results as a was varied In this range.

Further, as discussed In Refs. 19-21, the results obtained showed good

agreement with data.

19



DISCUSSION OF RESULTS

As discussed in previous sections, the computation of the flow field was

initiated from quiescent conditions. During the initial transient phase the

upstream velocity profile was augmented until its magnitude matched the

experimental values of Johnson (Ref. 7). Once the profiles were attained,

they were fixed for the duration of the calculation.

The velocity profiles that were employed were obtained from curve fits

of Johnson's experimental data (Ref. 7) which was taken at 41mm upstream of

the dump plane using a hot film probe. For the inner pipe a log law profile

in conjunction with a viscous sublayer was fit to the data. With the

constants in the log law formula fixed, the sole parameter is the friction

velocity UT , which was determined by a Newton iteration procedure.

In the annulus, the formulas presented by Bird, Stewart and

Lightfoot (Ref. 22, Eqs. 5.F-2 and 5.F-3) were used to fit the streamwise

velocity data.

1 r k2-X2i"2 rU-JOR-i .oumax-u = url - k - J ln I r - kR J r < XR

> XR

where lq = .4, k = R£/RO and r = XRQ is the point of maximum velocity.

Since each formula is singular at the inner and outer walls, these formulas

were supplemented by additional equations that account for the viscous

sublayer. Here again the only free parameters were the two friction

velocities at the respective walls, and were determined by using a Newton

iteration procedure.

The k and e distributions at the upstream boundaries were also obtained

from the experimental data given in Ref. 6. In contrast to the curve fit

procedure used for the streamwise velocity distribution, for k and C1 local
i

piecewise parabolic polynomials were employed. The curve fits also

prescribed zero values for k and e at the walls consistent with the boundary

conditions used in the calculation procedure.

For the swirling case, the swirl velocity distribution was also required

at the upstream boundary. Since that data was not given, an alternate

20



procedure was employed to obtain the swirl velocity profiles. A comparison

of the nonswirling axial velocity profiles at the upstream station and at 5mm

downstream of the dump plane showed that the core velocity profile away from

the walls does not vary significantly for the two cases. Hence, it was

assumed that similar behavior should hold for the swirl or azimuthal velocity

profile. Therefore, the data given at z = 5mm downstream of the dump plane

was used to obtain the required velocity profiles. The curve fit procedure

employed was identical to the nonswirling case in which the data was fit with

logarithmic profiles in conjunction with a laminar sublayer.

Both the swirling and nonswirling cases were computed for a Reynolds

number of 35,000 based on duct diameter. The nonswirling case was run first

employing an artificial dissipation parameter of a ** .5. The results were

very similar to coarse grid calculations considered previously. Initially,

the nonswirl case was computed on a coarser grid of 61 x 51 grid points.

This calculation differed from that which is described in this report in two

respects. First, the inner jet wall was untapered and second, the upstream

velocity profiles were "guessed" since at that time no experimental data was

available. The results were substantially the same as the current

nonswirling case which is described subsequently. Hence, grid resolution was

not the prime source of the discrepancies.

The streamwlse velocity profiles across the duct at various downstream

stations are shown in Fig. 5. As can be seen, there is fairly good agreement

between the data and the predictions. However, the axial velocity variation

along the centerline which is shown in Fig. 6 does not compare as well. In

Fig. 6 the present calculations are plotted against the experimental data,

and the predictions of Ref. 3 which uses a different numerical procedure, but

a similar k-e turbulence model. Both computations indicate a dip in the

axial velocity which is not observed in the experiments. The precise reasons

for this behavior is uncertain, but turbulence modeling appears to be the

most likely culprit. In view of the good agreement with data that was

obtained for the swirling case, the source of the discrepancies must lie in

the distinguishing characteristics of the two flows. In reference 4, Brondum

and Bennet determined the presence of large scale coherent structures in the

nonswirling case. Furthermore their major effect was precisely In those

regions which showed the greatest deviation from the experimental data.
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Therefore, It would appear that the <-e tranport equations should be

Investigated to determine how they can be modified to account for the

phenomena observed in the experiments.

In Fig. 7 the streamline pattern and in Fig. 8 contours of constant

axial velocity profiles are shown. The reclrculation zone which develops

along the duct wall extends approximately four duct radii downstream of the

dump plane, and compares well with the experimental data.

Since the emphasis of the present effort was to demonstrate the

capabilities of the numerical scheme, the resolution of the descrepancies

were not pursued further, but rather the swirling case was considered. As

initial conditions, the nonswirl flow field was employed and thereafter the

swirl velocity was introduced at the Inflow boundary In the annulus over a

prescribed number of time steps. Two cases were considered at two different

values of artificial dissipation parameter a. The values of the parameter a

were .5 and .1, a lower value Indicating less dissipation.

The results of the computations are shown in Figs. 9 to 14. Both a = .5

and .1 computations are shown. In Fig. 9 the streamline patterns are shown.

As can be seen, there is a significant variation In the flow patterns in

particular in the shape and extent of the recirculation zones. Similar

differences in the two calcultions can be seen in Figs. 10 and 11 where the

contours of constant streamwise and azimuthal (swirl) velocities are shown.

A more dramatic effect is seen in Figs. 12 to 13 where the axial and

azimuthal velocity profiles are shown at different streamwise locations In

the duct. The a = .1 calculations are in excellent agreement with the data.

Compared with the a = .5 solution, the effect of artificial dissipation is

clearly evident, in the smearing of the profiles and the cutting off of the

peaks. The final plot figure 14 shows the streamwise velocity distribution

along the duct. Here again the effect of reduced artificial dissipation is

evident, in that the computed results are in better agreement with the

experimental data.

In comparing the streamwise velocity distributions along the duct, it Is

noted that the velocity at the dump plane is lower than the experimental

value. Hence, there appears to be a discrepancy with regard to the mass flow

through the system. Inasmuch as the parameter describing the flow is the

Reynolds number, the discrepancy in mass flow would vary the Reynolds number

under which the calculation was run. The reasons for the discrepancies in
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mass flux are uncertain, but errors In the specifIcaton of inflow profiles

could have played a role. Furthermore, the choice to set function conditions

at the upstream inflow boundary may have also contributed to the observed

discrepancies. For subsonic inflow, the preferred inflow boundary condition

is to set the stagnation pressure, and let the streamwise velocity profile

adjust to accomodate the mass flux. Since the stagnation pressure was

unavailable, the mass flux was specified Instead. It is felt that further

investigation is warranted with regard to this aspect of the calcuation.
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CONCLUSIONS

Navler-Stokes calculations employing a k-e turbulence model were

obtained for the flow resulting from confined swirling and nonswlrllng

confined coaxial jets* The calculations compared well with the experimental

data of Johnson and Bennet and Roback and Johnson, In particular for the

swirling case. The calculations Indicate that, as long as the turbulence

model Is well specified, the numerical procedure can give results that

compare very well with the data. Furthermore the results demonstrate that

artificial or numerical dissipation can have a significant effect on the

computations and must be carefully controlled to obtain accurate predictions.
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APPENDIX A

The governing conservation equations in cylindrical-polar coordinates
are transformed using the Jacobian transformation,

yj= yj(x,,x2i73.,t)

T = t

where (x^ , X2 , X3 ) = (r, 0, z). The resulting equations may be written in
the following compact form:

3(JW") £ a ,

dr j=l ,

(A-2)

+ JS"+ JC*

where

J -
at

: (A-3)

Further, the coefficients P£, Y£, ?£ are given by

v = I v = — r = I <A"4)T\ ' ' / 2 r ' 73

L /• - _L r - ,
,01 » =»2 r » =3

and m = 1 for all equations except the X2~direction momentum equations for
which m = 2.



The vector variables used in Eq. (A-2) are defined as

W = =r n

/>U2Ui

(A-5)

where n = 1 for i = 1 and n = 0 for i = 2, 3.

V

r r l l
^12

r r!3

0

- r q ,

' <rk ^" 'I

/*T y . €
QT1 ,

P. =

"P8 | ,"

P§i2

P5i3

0

0

0

6| =

Ti ,

T i2

ri3

0

"X<rk r i f c . ,
fl y <r

^k ' 'i

(A-7) (A-8)

(A-6)

for 1 = 2,3

(A-9)

Note that the velocity componetns ( U j , U£, 1)3) are the cylindrical-polar
velocity components wr i t ten in cylindrical-polar coordinates. The molecular
and turbulent stress tensors may be written as

(A-10)

and the rate of strain tensor components in cylindrical-polar coordinates are



°"--̂ .

'33

? Lr dx, * r r ax, J
(A-ll)

D.3= T

_ .2 r ax, ax,

and

(A-12)

The'derivatives required in Eqs. (A-ll) and (A-12) must be expressed in terms
of the computational coordinates yJ using the chain rule.

•*•
Finally, the vecotr S contains source tenns and certain differential

terms w£ich do not conform to the basic structure of Eq. (A-2), and the
vector C contains the additional curvature terms due to the cylindrical-polar
coordinate system.

S =

c, n V

0

0
0

0

/>€

(A-13)
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r T22 (A-14)

c =
0

0

0

0

0
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APPENDIX B - SOLUTION PROCEDURE

Background

The solution procedure employs a consistently-split linearized block

implicit (LB1) algorithm which has been discussed in detail In [5, 6] .

There are two important elements of this method:

(1) the use of a noniterative formal time linearization to

produce a fully-coupled linear multidimensional scheme which

is written in "block implicit" form; and

(2) solution of this linearized coupled scheme using a consistent

"splitting" (ADI scheme) patterned after the Douglas-Gunn [17 J

treatment of scalar ADI schemes.

The method Is thus referred to as a split linearized block implicit (LBI)

scheme. The method has several attributes:

(1) the noniterative linearization is efficient;

(2) the fully-coupled linearized algorithm eliminates instabilities

and/or extremely slow convergence rates often attributed to methods

which employ ad hoc decoupling and linearization assumptions to

identify nonlinear coefficients which are then treated by lag and

update techniques;

(3) the splitting or ADI technique produces an efficient algorithm

which is stable for large time steps and also provides a means for

convergence acceleration for further efficiency in computing steady

solutions;

(4) intermediate steps of the splitting are consistent with the

governing equations, and this means that the "physical" boundary

conditions can be used for the intermediate solutions. Other

splittings which are inconsistent can have several difficulties in

satisfying physical boundary conditions [6].

(5) the convergence rate and overall efficiency of the algorithm are

much less sensitive to mesh refinement and redistribution than

algorithms based on explicit schemes or which employ ad hoc

decoupling and linearization assumptions. This is important for

accuracy and for computing turbulent flows with viscous sublayer

resolution; and
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(6) the method ie general and is specifically designed for the

complex systems of equations which govern multlscale viscous flow

in complicated geometries.

This same algorithm was later considered by Beam and Warming [23], but the

ADI splitting was derived by approximate factorization Instead of the

Douglas-Gunn procedure. They refer to the algorithm as a "delta form"

approximate factorization scheme. This scheme replaced an earlier non-delta

form scheme [24],which has inconsistent intermediate steps.

Split LBI Algorithm

Linearization and Time Differencing

The system of governing equations to be solved consists of three/four

equations: continuity and two/three components of momentum equation in

three/four dependent variables: p, u, v, w. Using notation similar to that

in [5], at a single grid point this system of equations can be written in

the following form:

3H(4>)/3t = D(<J>) + S(<|>) (1)

where $ is the column-vector of dependent variables, H and S are column-

vector algebraic functions of $» an^ ~D *-G a column vector whose elements are

the spatial differential operators which generate all spatial derivatives

appearing in the governing equation associated with that element.

The solution procedure Is based on the following two-level implicit

time-difference approximations of (1):

(H0*1- H")/At = 3(Dn+1+ Sn+1) (1-fJ) (D° + Sn) (2)

where, for example, Hn+1 denotes H(4»n+1) and At = tn+1 - tn. The

parameter 0(0.5-0— 1) permits a variable time-centering of the scheme,

with a truncation error of order [At2, (6 - 1/2) At].

A local time linearization (Taylor expansion about $n) of requisite

formal accuracy is introduced, and this serves to define a linear differen-

tial operator L (cf. [5]) such that

D° = D° + Ln(*n - *") + 0(At ) (3)

Similarly,

Hn+1 = Hn+ (3H/34>) n Un+1 - *n) + 0 (At 2) (4)

= SD+ (35/34.)" (4>n+1 - *n) + 0 (At2) (5)
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Eqs. (3-5) arc inserted Into Eq. (2) to obtain the following system which Is

linear in

(A - 0At Ln) (*n+1 - *") = At (D° + S") (<6)

and which is termed a linearized block implilcit- (LB1) scheme. Here, A

denotes a matrix defined by

A = (3H/3<f>)n - 0At (3S/34.)11 (7)

Eq. (6) has 0 (At) accuracy unless H = $» *n which case the accuracy is the

same as Eq . ( 2) .

Special Treatment of Diffusive Terms

The time differencing of diffusive terms is modified to accomodate

cross-derivative terms and also turbulent viscosity and artificial dissipa-

tion coefficients which depend on the solution variables. Although formal

linearization of the convection and pressure gradient terms and the resulting

implicit coupling of variables is critical to the stability and rapid con-

vergence of the algorithm, this does not appear to be important for the

turbulent viscosity and artificial dissipation coefficients. Since the

relationship between ue and dj and the mean flow variables is not conven-

iently linearized, these diffusive coefficients are evaluated explicitly at

tn during each time step. Notationally, this .is equivalent to neglecting

terms proportional to 3 Pe/3<|> or 3d4/34> in L
n, which are formally pre-

sent in the Taylor expansion (2), but retaining all terms proportional to

li e or dj in both L
n and Dn.

It has been found through extensive experience that this has little if

any effect on the performance of the algorithm. This treatment also has the

added benefit that the turbulence model equations can be decoupled from the

system of mean flow equations by an appropriate matrix partitioning (cf.

[6]) and solved separately in each step of the ADI solution procedure. This

reduces the block size of the block tridiagonal systems which must be solved

In each step and thus reduces the computational labor.'

In addition, the viscous terms in the present formulation include a

number of spatial cross-derivative terms. Although it is possible to treat

cross-derivative terms implicitly within the ADI treatment which follows, it

Is not at all convenient to do so; and consequently, all cross-derivative

terms are evaluated explicitly at tn. For a scalar model equation

representing combined convection and diffusion, it has been shown by Beam and
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Warming (25J that the explicit treatment of cross-derivative terms does not

degrade the unconditional stability of the present algorithm. To preserve

notatlonal simplicity, it is understood that all cross-derivative terms

appearing in Ln are neglected but are retained in D". It is important to

note, that neglecting terms in Ln has no effect on steady solutions of Eq. (7),

since $n+l - 4>n = 0, and thus Eq. (7) reduces to the steady form of the

equations: Dn + Sn « 0. Aside from stability considerations, the only

effort of neglecting terms in Ln is to introduce an 0 (At) truncation error.

Consistent Splitting of the LSI Scheme

To obtain an efficient algorithm, the linearized system (7) is split using

ADI techniques. To obtain the split scheme, the multidimensional operator L is

rewritten as the sum of three "one-dimensional" sub-operators L^ (i «= 1, 2, 3)

each of which contains all terms having derivatives with respect to the i-th

coordinate. The split form of Eq. (7) can be derived either as in [5, 6] j1 by

following the procedure described by Douglas and Gunn [17] in their

generalization and unification of scalar ADI schemes, or using approximate

factorization. For the present system of equations, the split algorithm is given

by

(A - 0AtL") ($* - <J.n) = At (Dn + Sn) ( 8a )

(A - BAtL) ($ - $) = A <$ - $) ( 8b)

(A - 3AtL) (*n+1 - $n) = A (*** - <frn) ( 8c)

where $* and 4>** are consistent intermediate solutions. If spatial

derivatives appearing In L^ and D are replace by three-point difference

formulas, as Indicated previously, then each step in Eqs. (lOa-c) can be solved

by a block-tridiagonal elimination.

Combining Eqs. ( 8a-c) gives

(A - BAtL") A"1 (A - 6AtL^) A~* (A - 0AtL^) (*"+1 - <f>n) = At (D° + s") ( 9 )

which approximates the unspllt scheme (8) to 0 (At̂ ). Since the intermediate

steps are also consistent approximations for Eq. (8), physical boundary

conditions can be used for $* and <)>* [5, 6]. Finally, since the L^

are homogeneous operators, it follows from Eqs. ( 8a-c) that steady solutions

have the property that 4>n+1 = 4>* = <f>** = ^ and satisfy

D" + S° = 0 (10 )

The steady solution thus depends only on the spatial difference approximations

used for (10), and does not depend on the solution algorithm itself.

«
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