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Alloy Chem'stry and M'crostructura1 Control to Meet the Demands 

of the Automot've St'r1ing Engine 

Joseph R. Stephens 
National Aeronautics and Space Administration 

Lewis Research Center 
Cleveland, Ohio 44135 

Abstract 

The automotive Stirling eng'ne now under development by DOE/NASA as an 

alternative to the internal combustion engine, imposes severe materials 

requirements for the hot portion of the engine. Materials selected must be 

low cost and contain a m'nimum of strategic elements so that availability is 

not a problem. Heater head tubes contain high pressure hydrogen on the inside 

and are exposed to hot combustion gases on the outside surface. The cylinders 

and regenerator housings must be readily castab1e into complex shapes having 

varying wall thicknesses and be amenable to brazing and welding operations. 

N Also, high strength, oxidation resistance, resistance to hydrogen permeation, 
~ 
00 
N 

I cyclic operation, and long-life are required. A research program conducted by 
LU 

NASA Lewis focused on alloy chemistry and microstructural control to achieve 

the desired properties over the life of the engine. Results of alloy 

selection, characterization, evaluation, and actual engine testing of selected 

materials will be presented. 

KEY WORDS: Automotive Stirling engine; Alloy chemistry; Microstructure; Creep 

resistance; Oxidation; Hydrogen permeation; Iron-base alloys 



The Department of Energy (DOE) and NASA [1] are currently investigating 

the Stirling engine as an alternative power source to the internal combustion 

engine for automotive applications. The Stirling engine (Fig. 1) is an 

externally heated engine that offers the advantages of high efficiency, low 

pollution, low noise, and multifuel capability. Hydrogen is used as the 

working fluid for automotive applications in order to obtain maximum 

efficiency from the engine. Heat is input to the working fluid by a 

combustion·flame impinging on the outside walls of the tubes containing the 

hydrogen working fluid. Current engines designed for automotive applications 

use tubes with a wall thickness of 0.75 mm (3.0 mm i.d. by 4.5 mm o.d.). The 

thin wall is required to achieve maximum heat input to the hydrogen. However, 

the tube material must be of sufficient strength to contain the hydrogen, 

which operates at high pressures and temperatures. Automotive design 

requirements call for a normal maximum pressure of 15 MPa, with peak pressures 

reaching 21 MPa during transient conditions. Tube walls are designed for an 

average temperature of 820 °C, with 870 °C common on the flame side. A 

further requirement is that the tubes operate for a period of 3500 h, which is 

approximately equivalent to the 160 OOO-km (100 OOO-mile) driving life of an 

engine. 

The tubes currently are heated by direct exposure to a combustion flame 

fired by gasoline or diesel fuel. Alternative fuels such as alcohol and shale 

oil derivatives may be considered for future applications. Oxidation and 

corrosion resistance is one of several criteria for selecting heater-head-tube 

alloys to withstand the extreme operating requirements of the Stirling 

engine. A second criterion is the resistance of the tube material to hydrogen 

permeation so that hydrogen recharging of the engine is required in excess of 

6 month intervals. Finally, the creep-rupture strength for 3500 h life is a 

determining factor in selecting a heater tube alloy. These criteria are 
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interrelated. For example, excessive scale spalling due to 

oxidation/corrosion will reduce the tube wall thickness and lead to premature 

failure caused by the high-pressure hydrogen rupturing the tubes or permeating 

rapidly through the tube walls. Prototype engines and initial models of 

experimental automotive engines use N-155 (Multimet) for heater head tubes. 

However, this iron-base alloy contains 20 percent cobalt, a costly and 

strategic metal. Efforts are currently under way by NASA [2-7] and the 

contractors on this program, Mechanical Technology Inc. (MTI) and United 

Stirling Sweden (USAB), to identify substitutes for N-155. The primary 

emphasis is on high-strength austenitic iron-base alloys although a limited 

number of nickel-base superalloys are under consideration. As part of the 

evaluation of candidate substitute alloys the oxidation and corrosion 

resistance has been determined for 16 alloys [8]. Hydrogen permeation 

coefficients have been determined for most of those alloys [9], and strength 

properties have been measured by creep testing in air [2] and hydrogen [10]. 

Further, endurance testing in a materials simulator rig and engine testing 

have been used to characterize selected candidate heater tube alloys [3,6,9]. 

The purpose of this paper is to describe the effects of alloy chemistry 

and microstructure on the oxidation/corrosion behavior and resistance to 

hydrogen permeability of candidate alloys. 

Procedure 

Materials 

Twenty alloys (14 iron base, five nickel base, and one cobalt base) were 

evaluated for their oxidation and corrosion resistance, hydrogen permeability. 

and endurance under conditions of temperature and environment anticipated for 

automotive Stirling engines. The chemical compositions of the alloys are 

listed in Table 1. All of the alloys are commercially available except 

AL-EX-20, an experimental alloy supplied by Allegheny Ludlum Steel Company. 
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Iron-base alloys are the primary candidates for automotive Stirling engine 

applications because their raw material costs are lower than those for 

nickel-base and cobalt-base alloys. Nickel-base alloys are considered as 

possible candidates in the event a less expensive iron-base alloy cannot be 

identified that will meet all of the requirements of the Stirling engine. 

Cobalt-base alloys are not under consideration for automotive Stirling engine 

applications because of the high cost of cobalt, its limited availability, and 

its status as a strategic material (more than 95 percent of the cobalt used in 

the United States is imported). However, one cobalt-base alloy (HS-188) was 

included in this investigation as a comparison with the iron- and nickel-base 

alloys. 

For oxidation testing, test coupons 1.27 by 2.54 cm, and generally 0.8 to 

1.0 mm thick, with a 0.3-cm-diameter hanger hole, were cut from the alloy 

sheet material. For hydrogen permeability and endurance testing the alloys 

used in this study were obtained commercially in the form of tubing with an 

outside diameter of 4.5 mm and an inside diameter of 3.0 mm (the size used in 

current prototype engines). Four of the tubing alloys were weld-drawn and the 

others were seamless tubing. The weld-drawn alloys were N-155, 19-9DL, 

Inconel 718(wd) and HS-188. 

Stirling Engine Simulator Materials Test Rig 

The Stirling engine simulator rig used in this program was deSigned and 

fabricated at the NASA Lewis Research center; it consists primarily of a 

combustion gas heating chamber (Fig. 2) with auxiliary heating, control, and 

gas management systems. The rig and its operation have been described in 

detail [3]. The rig was fired with natural gas for initial ignition and then 

with diesel fuel throughout the test run. Duplicate oxidation-corrosion test 

specimens were suspended by platinum wires from the hairpin turns of the tubes 

shown in Fig. 2. The specimens were heated to the desired 820°C test 
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temperature (automot1ve St1r11ng eng1ne temperature) by the combust1on flame 

flow1ng over them. The r1g was used pr1marily as a means of rank1ng cand1date 

heater-head-tube alloys [3,6,9]. The ox1dat1on-corros1on test1ng was 

conducted s1multaneously w1th a 3500-h endurance and permeab1l1ty run of 

tub1ng alloys. An endurance run consisted of a ser1es of 5-h cycles to obtain 

the requ1red 3500 h of test t1me to simulate the m1n1mum l1fe of an automot1ve 

eng1ne. A typ1cal heat1ng cycle consisted of a 6- to 10-m1n preheat to get to 

the operat1ng temperature, a 5-h hold at temperature, and a 1-h cooldown to 

near room temperature. The change 1n spec1f1c we1ght ~W/A w1th t1me t for 

the oxidat1on coupons was f1tted by least squares [11] to equation (1). 

where k1 1s an ox1de growth constant comparable to a parabo11c ox1dat1on 

scaling constant, k2 1s an oxide spal1ing constant, and SEE is the 

standard error of estimate. An ox1dation attack parameter Ka [11] was 

derived from equation (1) and 1s defined as 

K - kl12 10k a - 1 + 2 

The or1g1nal hydrogen pressure in the tubes and the pressure at the end of a 

5-h cycle were used to calculate the hydrogen permeability coeff1c1ent, ~, 

us1ng the equation: 

pl12 _ ~AP Tt 
P s 

= 2LVT 0 s 

where 

P pressure in closed system, MPa 

P or1g1nal pressure, MPa 
0 

A permeated area, cm 3 

P standard pressure, MPa 
s 

T temperature of system, K 

5 

(1) 

( 2) 

(3 ) 



t t1me, sec 

L membrane th1ckness, cm 

V volume of system, cm3 

T 
s 

standard temperature, K 

Results 

St1r11ng Eng1ne S1mulator Ox1dat10n and Corros10n Tests 

We1ght Change. - The alloys could be categor1zed 1nto four groups on the 

bas1s of spec1f1c we1ght change data. Alloys 1n group I had excellent 

ox1dat10n and corros10n res1stance, and the1r spec1f1c we1ght change was 

pos1t1ve (we1ght ga1n) throughout the 3500-~ test. Group I compr1sed the f1ve 

alloys CG-27, Incoloy 800, HS-188, N-155, and Incone1 718. Three of the 

alloys, CG-27, Inco10y 800, and HS-188, d1d not exh1b1t any s1gn1f1cant 

spal11ng dur1ng test1ng 1n the St1r11ng eng1ne s1mulator r1g. F1nal average 

spec1f1c we1ght change (F1g. 3) ranged from 1.4 to 0.17 mg/cm2 for CG-27 to 

Inconel 718, respect1vely. 

A second group of alloys 1s cons1dered to have re1at1vely good ox1dat10n 

and corros10n res1stance under s1mulated St1r11ng eng1ne operat1ng 

cond1tions. The five alloys 1n group II in order of 1ncreas1ng f1nal we1ght 

loss are RA-330, San1cro 31H, Sanicro 32, 12RN72, and 253 MA. F1nal average 

spec1f1c we1ght change (F1g. 4) ranged from -0.54 to -6.0 mg/cm2 for RA-330 

to 253 MA, respect1vely. 

The third group of alloys, 316 sta1n1ess steel, W-545, A-286, and 

N1tron1c 40 1s cons1dered to have fa1r to poor ox1dation and corros10n 

res1stance on the basis of spec1f1c-weight-change-versus-time data. F1nal 

2 average spec1fic we1ght change (Fig. 5) ranged from -22.8 to -41.8 mg/cm 

for 316 sta1n1ess steel to Nitronic 40, respectively. 

A final group of alloys, consisting of 19-90L and AL-EX-20, exh1bited 

catastrophic oxidation and corrosion behav10r upon r1g testing. Spall1ng 
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began after only a very short time into the test and excessive weight loss 

occurred after 500 h of cyclic testing. The tests were terminated before the 

3500-h goal because of the unacceptable oxidation and corrosion resistance of 

these alloys. 

Attack parameter K . - Oxidation and corrosion 
a 

weight-change-versus-time data were fitted to the para1inear equation 

(eq. (1». For three of the alloys, HS-188, Inco10y 800, and CG-27, where no 

spa11ing was observed, the attack parameter was calculated from equation (2) 

with k2 = O. The remaining 13 alloys also derived their attack parameters 

from equation (2) but with values of k2 included. For alloys 19-9DL, 
1/2 Nitronic 40, and AL-EX-20 the kl term dropped out so that 

Ka = 20k 2t was used. Figure 6 is a summary plot of calculated Ka 

values for the alloys. Values of Ka are plotted on a log scale in 

decreasing order of oxidation and corrosion resistance based on the highest 

values of the duplicate specimens. The attack parameter ranged from 0.011 for 

HS-188 to 12.49 for 19-9DL, or over three orders of magnitude. Examination of 

the K values in Fig. 6 suggested that the alloys could again be 
a 

categorized into four groups. Group I comprised the alloys HS-188, Sanicro 

31H, Inconel 718, Incoloy 800, N-155, CG-27, and RA-330, with K 
a 

ranging 

from 0.011 for HS-188 to 0.031 for RA-330. Group II comprised the three 

alloys Sanicro 32, 12RN72, and 253 MA, with K 
a 

values of 0.098, 0.110, and 

0.159, respectively. Group III comprised the alloys A-286, W-545, 316 

stainless steel, and Nitronic 40, with K 
a 

ranging from 0.370 to 0.659. 

Group IV comprised AL-EX-20, , with a Ka of 4.68, and 19-9DL, with a Ka 

of 12.49. This grouping was somewhat arbitrary, but corresponded to the 

previous grouping based on final weight change. The only exception was for 

RA-330, which experienced a net weight loss and was placed in group II 
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(F1g. 4) but has a Ka value s1m11ar to those for the other f1ve alloys 1n 

group I. 

X-ray d1ffract10n. - The x-ray d1ffract10n data from the spec1men surface 

after test1ng are summar1zed 1n Table 2 by rank of the alloy 1n decreas1ng 

X-ray 1ntens1ty. In general, the most ox1dat10n and corros10n resistant 

alloys formed nearly pure cr203 as either the most or secondmost 1ntense 

ox1de. The Cr203 ox1de 1s 11sted as a sesqu10x1de, d (024) = 0.1818 nm 1n 

Table 2. Because Fe went 1nto solut10n as Fe203, the value of d 

1ncreased. As the d value approached 0.1839 nm, the ox1de became 

essent1ally pure Fe
2
03 . Chromite sp1nel w1th a

o 
rang1ng from 0.835 to 

0.840 nm also formed on most of the alloys during ox1dat1on and corros10n 

testing. This chromite spinel appeared to be innocuous. Alloy A-286 showed 

another spinel with a = 0.830 nm along with a lower sesqu1ox1de with d = 
o 

0.1813 nm, and also N10 was formed. Alloy 19-9DL, wh1ch ox1d1zed 

catastrophically, formed as 1ts two strongest oxides a spinel with 

0.840 nm and the desirable ox1de Cr203 with d = 0.1821 nm. 

a o 

Metallography. - Microstructures of selected alloy specimens after the 

3500-h test are shown in Fig. 7. Alloy CG-27 (Fig. 7(a» had an adherent 

oxide scale on the spec1men surface. Alloy Inconel 718 (F1g. 7(b» had a 

th1n, adherent ox1de scale w1th a small deplet10n zone present in th1s alloy. 

San,cro 32 (Fig. 7(c» formed large voids in the depletion zone. Severe gra1n 

boundary attack occurred in W-545 (Fig. 7(d» and resulted in almost total 

consumption of the alloy matr1x beneath the surface oxide. 

Electron m1croprobe analys1s. - Alloy CG-27, a group I alloy, was 

examined because 1t had excellent oxidation resistance and contained the least 

chromium of the 16 alloys tested in the rig. The distribution of the major 

alloy1ng elements and oxygen in the oxide scale and the adjacent metal 

substrate of'CG-27 (Fig. 8) showed the surface oxide to be rich 1n 1ron, 
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n1ckel, and to a lesser extent alum1num. Beneath th1s ox1de layer was a th1n, 

cont1nuous ox1de layer rich 1n chromium and t1tan1um. Adjacent to the 

chrom1um-r1ch 1ntermed1ate scale was an alum1num-rich ox1de next to the metal 

substrate, wh1ch exhibited a wide zone of internally oxidized aluminum-rich, 

and somewhat fewer titanium-rich, protrusions. 

Metallograph1c results for the group III alloy W-545 (Fig. 7(d» 

indicated a large surface scale consisting of a porous oxide. Results from 

electron microprobe analyses (Fig. 9) showed an outer oxide rich in iron, 

nickel, and chromium. Oxygen had penetrated uniformly into this alloy to a 

sUbstantial depth. The ox1de formed appeared to be rich in nickel with some 

chrom1um. Iron was depleted from th1s area, but discrete areas of molybdenum 

were observed near the surface. Alum1num and titanium did not appear to enter 

into the oxidation process of this alloy. The compos1tion of W-545 is s1m11ar 

to that of CG-27 except for the large difference in aluminum content. This 

suggests that aluminum makes a major contribution to the ox1dation res1stance 

of CG-27 and that its low concentration in W-545 may explain the poor 

oxidation res1stance of that alloy. 

St1rling Engine Simulator Hydrogen Permeation and Endurance Tests 

Hydrogen permeability. - Previous measurements of hydrogen permeation 

during cyclic testing in the simulator rig [12] indicated that hydrogen loss 

was rapid through the thin wall tubes of alloy N-155. Hydrogen pressure decay 

curves are shown in Fig. 10(a) for selected 5 h cycles in an 100 h test. It 

should be noted that pressure loss is rapid and is most severe for the first 

5 h cycle. The slight improvement for the remaining cycles is attr1buted to 

the formation of an oxide scale on the exterior surface of the tubes. It was 

shown previously [13] that a th1n (0.02 mm) carbide could form on the tubes 

internal surface in an eng1ne presumably due to 011 leak1ng into the heater 

head. This carb1de layer resulted 1n reducing the permeab111ty rate of 
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hydrogen from the engine. A program was undertaken at NASA Lewis [12] to 

investigate various dopants such as CO, CO2, CH4, etc. to form carbide or 

oxide surface layers on the tubes internal surfaces to act as a barrier to 

hydrogen permeability. The effects of 1 vol % CO
2 

in hydrogen are shown 

in Fig. lOeb) for alloy N-155. The results suggest that the oxide that formed 

on the internal surfaces was effective in reducing hydrogen loss from the 

tubes. Hydrogen permeability coefficients were calculated from the pressure 

decay curves using equation (3). Permeability coeffic1ents as a function of 

rig exposure time are plotted in Figs. 11 to 13 for iron, nickel, and 

cobalt-base alloys, respectively. For iron-base alloys, hydrogen permeability 

coeff1cients vary over two orders of magnitude while for the five nickel-base 

alloys a var1at10n of about a factor of two 1s noted. A compar1son of the 

hydrogen permeability coeff1c1ents after 250 h test1ng (since some alloys did 

not survive much longer) 1s shown in Fig. 14. In general the nickel-base 

alloys exhibited lower permeability coefficients than the iron-base alloys. 

An iron-base alloy, CG-27 was an exception to this general observation. 

Endurance test1ng. - Endurance test1ng was also conducted on the tube 

alloys by f11ling w1th 15 MPa he11um. S1nce helium did not permeate the tube 

walls, a constant pressure (stress) was maintained. Th1s test is much more 

severe than actual eng1ne operat1on where the mean pressure 1s near 4 MPa, but 

does provide an effect1ve method for ranking the strengths of the alloys under 

simulated engine conditions. A comparison of rupture 11ves is shown 1n 

Fig. 15. Only CG-27 and pyromet 901 survived the 3500 h test. It should be 

noted for alloy Inconel 718 that seamless tub1ng (Inconel 718(a» had a much 

longer life than the weld-drawn tubing (Incone1 718(wd». Cold work1ng of 

12RN72 (cw) reduced the rupture 11fe from the standard heat treated condition. 

Metallography. - M1crostructures of selected alloys are shown 1n 

Fig. 16. Alloy CG-27 is shown before and after exposure. The ox1de f1lm on 
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both internal and exterior surfaces is evident for the hydrogen and 1 percent 

CO
2 

containing tube (fig. 16(a». Alloy Incone1 625 (fig. 16(b» exhibited 

external scale cracking after cyclic exposure. 

Discussion of Results 

Some insight into the excellent oxidation and corrosion behavior of CG-27 

can be gained from the electron microprobe results. The chromium distribution 

shows that CG-27 had a chromium-rich oxide layer ranging in thickness from 

about 3 to 4 pm. The poorer oxidation behavior of group II and III alloys was 

characterized by chromium-rich oxide layers about 8 pm thick (group II alloys) 

and from 20 to 35 pm thick (group III alloys) [8]. All 16 alloys studied 

herein formed Cr
2
0
3 

chromite spinels as their major oxides. The thin, 

adherent oxide formed by the group I alloys CG-27 and Incoloy 800 (not shown) 

is believed to be a major contributor to the oxidation resistance of these 

alloys. 

further comparison of the alloys characterized by electron microprobe 

techniques indicated that iron and nickel were present as a thin outer oxide 

in group I alloys. In contrast, in group II alloys and especially in 

group III alloys, iron and nickel were observed as thick, discrete areas of 

oxide that were in some cases ready to spall from the specimen. Evidently in 

group I alloys the iron and nickel oxides formed early in the 3500-h test, and 

then oxide formation of the more reactive alloying elements took over the 

oxidizing process. The thicker oxides and higher spalling rates in particular 

for group III alloys (specific weight losses of 23 to 42 mg/cm2 as compared 

with little or no weight loss for group I alloys) suggest that iron and nickel 

oxides formed throughout the 3500-h test. 

Particular interest was focussed on the apparent roles of the more 

reactive oxide-forming alloying elements aluminum and titanium contained in 

some of the alloys. In CG-27 internal oxidation of aluminum to a depth of 
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approx1mately 10 pm below the oxide-metal 1nterface was ev1dent. In add1t1on, 

alum1num was present 1n the surface oxide, and a thin ox1de layer rich 'n 

alum1num ex1sted adjacent to the metal substrate. A sim1lar, though not as 

ev1dent, d1stribution of alum1num occurred in Incoloy 800. Incoloy 800 

contains 0.38 wt % alum1num as compared w1th 1.5 wt % in CG-27. A thin, 

discont'nuous aluminum-rich oxide layer near the oxide-metal interface and 

grain boundary oxides were previously noted for Sanicro 32. Titanium, at a 

concentration of 2.5 wt % in CG-27, appeared to be associated with aluminum 

in the oxide scales and as internally oxidized. In contrast, for the 

group III alloy W-545, which contains slightly more titanium (2.85 wt %) but 

much less aluminum (0.2 wt %), titanium does not preferentially oxidize. 

The role of reactive elements such a yttrium, scandium, cerium, 

z1rconium, and hafnium in improving oxide scale adherence particularly for 

Fe-Cr-AL, Ni-Cr-Al, and Co-Cr-Al alloys has been investigated in much detail 

[14-19]. The standard free energies of oxide formation of these reactive 

elements are more negative than those for iron, nickel, cobalt, chromium, and 

aluminum. Small additions «1 at %) of these elements have been shown to 

dramatically improve oxide scale adherence and to reduce spalling in cyclic 

oxidation. The exact mechanism by which such an improvement occurs is not 

agreed upon by investigators in this field. For example, yttrium and scandium 

have been reported to 'ncrease oxide growth rates by forming rapid diffusion 

paths along yttria and scandia stringers [14]. Increased grain boundary 

transport of oxygen has been demonstrated by 180 tracer studies on Ni-Cr-Al 

alloys with zirconium additions [15]. The resulting oxide adherence has been 

attributed [14,15,18] to (1) mechanical oxide pegging; (2) stress-strain 

accommodations at the oxide-matrix interface; (3) increased chemical bonding 

across the interface; and (4) a vacancy sink mechanism that precludes void 

formation at the oxide-metal interface, which would promote spall'ng. 
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It 1s postulated that for the alloys stud1ed here1n, alum1num plays a 

role s1m11ar to that of the react1ve elements d1scussed prev1ously. Alum1num 

has a more negat1ve standard free energy of ox1de format1on than do the major 

alloy1ng const1tuents of the cand1date heater-head-tube alloys such as iron, 

nickel, and chrom1um. The internal aluminum oxidation suggests that 

controlling the inward oxygen diffusion plays a major role in the oxidation of 

CG-27 and probably Incoloy BOO [B]. Although the remaining group I alloys 

were not studied by electron microprobe techniques, the reactive elements 

niobium in N-155, niobium and aluminum in Inconel 71B, and lanthanum in HS-1BB 

probably playa role similar to that of aluminum in the two alloys that were 

examined. - The results further suggest that although 0.4 wt % aluminum is 

adequate to be effective in promoting good scale adherence (Incoloy BOO, 

Sanicro 32, Sanicro 31H, and Inconel 71B), a concentration of 0.2 wt % 

aluminum such as exists for W-545, fig. 9 and A-2B6 is insufficient to improve 

the oxidation behavior of these alloys. It is not clear from this study which 

of the previously suggested models for oxide scale adherence is to be 

preferred. 

The factors effecting oxidation/corrosion behavior of the alloys is also 

important in minimiz1ng hydrogen permeation through the tube walls. formation 

of an adherent oxide film on the internal surface of the heater head tubes is 

required to reduce the hydrogen loss by permeation. Alloys with low 

oxidation/corrosion attack parameters, K also had low hydrogen 
a 

permeability coefficents,~. Results presented herein have clearly shown 

the importance of alloy compos1tion, specifically the presence of the more 

reactive elements such as Al, Ti, and La as a key to controlling 

oxidation/corrosion behavior of the alloys. This, in turn, is reflected in 

the resulting microstructure where thin ox1de layers containing the reactive 
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elements are desirable for long-life, low-hydrogen permeability heater head 

tube alloys. 

Application of Results 

Based on the results of these tests alloys CG-27, 12RN72, Sanicro 32, and 

Inconel 625 were selected for engine testing. Engine testing under 

accelerated conditions exceeded 2000 h or an equivalent 3300 h of 

urban-highway driving. Only alloy CG-27 did not fail by creep rupture in the 

engine test [20]. Alloy CG-27 has been selected as the heater head tube 

material for the automotive Stirling engine because of its good creep-rupture 

(endurance) strength, resistance to oxidation and corrosion, and resistance to 

hydrogen permeation as a result of forming a thin, tenacious oxide using CO2 

doped hydrogen. 

Concluding Remarks 

This study has shown that chemistry and microstructure of heater head 

tube alloys which develops during operation of the engine and in simulated 

tests play an important role in alloy selection for the automotive Stirling 

engine. Specifically the following features were shown to be important: 

1. The presence of a sufficient amount (about 0.4 wt %) of the reactive 

metal aluminum in iron-base alloys leads to a microstructure characterized by 

a thin, adherrent oxide scale rich in aluminum plus internal oxidation of 

aluminum which impedes inward diffusion of oxygen. 

2. The thin, adherrent oxide scales on bo~h the combustion gas side and 

the CO2 doped hydrogen side of the tubes act as barriers to hydrogen 

permeation. 

3. The thin, adherrent oxides characterized by no or very little spalling 

and metal loss lead to utilization of the full cross-sectional area of the 

tube alloy to provide the required strength for the 3500 hr life of an engine. 
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TABLE 1 -- CHEMICAL COMPOSITION OF COMMERCIAL ALLOYS 

Alloy Compos it ion, wt % 

Fe Cr Ni Co Mn Si Mo Nb W Al 

Iron-base alloys 

N-1SS 30 21 20 20 loS O.S 3.0 1.0 2.S ---

CG-27 38 13 38 -- .1 .1 S.S .6 -- loS 

RA_330 a 43 19 3S -- loS 1.3 -- --- --- ----

Sanicro 32 43 21 31 -- .6 .47 --- --- 2.8 .4 

Sanicro 31H 46 21 31 -- .6 .S5 --- --- --- .4 

Incoloy 800 46 21 32 -- .75 .5 --- --- --- .38 

12RN72 47 19 30 -- 1.7 .28 1.4 --- --- ----

A-286 53 15 26 -- 1.4 .4 1.25 --- --- .2 

W-545 54 14 26 -- loS .4 1.5 --- --- .2 

Nitronic 40a 64 21 6.5 -- 9.0 ---- ---- --- --- ----

253 MA 66 21 11 -- .4 1.7 .04 --- --- ----

316 Stainless 66 18 13 -- 2.0 1.0 2.5 --- --- ----

steel 

19-90L 67 19 9 -- 1.1 .6 1.2 .4 1.2 ----

AL-EX-20a 70 5 1.0 -- 20 .42 ---- --- --- 3.15 

Ni cke l-base all oys 

Inconel 750b 
8 16 71 -- 0.16 0.23 --- 0.05 --- 0.72 

Inconel 625b 3 22 61 -- .15 .3 9.0 4.0 --- .2 

Inconel 601b 14 23 60 -- .S .2 --- --- --- 1.4 

Incone 1 718 18 18 53 - .2 .3 3.1 5.0 --- .4 

Pyromet 901 b 34 12 45 -- .10 .19 5.9 --- --- ----

Coba It-base alloys 

HS-188 1.5 22 22 40 -- ---- --- --- 14 ---

aEvaluated in hydrogen permeability and endurance testing only. 

bEvaluated in oxidation/corrosion testing only. 

Ti 

----

2.S 

----

.4 

.5 

.38 

.5 

2.15 

2.85 

----

----

----

.3 

----

2.5 

0.2 

---

.9 

2.6 

---

C Other 

O.lS O.lSN 

.OS .01B 

.OS -----

.89 -----

.07 .02N 

.05 -----

.1 .02N 

.05 .26V 

.08 .08B 

.04 .30N 

.09 .2N 

.08 -----

.3 -----

.02 -----

0.05 -----

0.05 -----

.05 -----

.04 -----

.03 -----

0.08 0.08la 



Rank Alloy 

1 HS-188 

2 Sanicro 31H 

3 Inconel 718 

4 Inconel 800 

5 N-155 

6 CG-27 

7 RA-330 

8 Sanicro 32 

9 12RN72 

10 253 MA 

11 A-286 

12 W-545 

13 316 Stainless 

steel 

14 Nitronic 40 

15 AL-EX-20 

16 19-90L 

TABLE 2 -- X-RAY DIFFRACTION DATA OF SPECIMEN SURFACE AFTER 3500-h TEST 

IN ORDER OF DECREASING INTENSITY 

[Values of d and ao are in nanometers.] 

Chromi um 1 2 3 
content, 

wt % 

22 0.1818 Sesqu i ox i de ao = 0.840 Spinel Mn2 03 

21 ao = 0.840 0.1819 Si02 

18 ao = 0.835 0.1822 0.41O(Si02 ) 

21 ao = 0.840 0.1819 Mn20
3 

21 ao = 0.840 0.1826 0.411(Si02) 

13 ao = 0.835 Spinel 0.1821 Sesquioxide 0.1841 Sesquioxide 

19 ao = 0.840 0.1818 Mn20
3 

21 ao = 0.840 0.1819 Si02 

19 ao = 0.840 0.1819 (MnO• 98leo.oll )203 

21 0.1839Sesquioxide ao = 0.835 Spinel Si02 

15 ao = 0.830 Spinel 0.1813 NiO 

14 ao = 0.840 Spinel 0.1849 Sesqu i ox i de --------------------

18 0.1842 Sesqui ox i de 0.1824 ao = 0.845 Spinel 

21 ao = 0.840 Spinel 0.1843 -------------------

5 0.1839 Sesqu i ox i de ao = 0.840 Spinel Mn203 

19 ao = 0.840 Spine 1 0.1821 Sesquioxide 0.1843 Sesquioxide 

4 

0.408 (Si02) 

(MnO• 98leo.017)20 3 

-------------------

0.409 (Si02) 

0.272 

Triruti Ie, d = 0.330 

--------------------

(MnO• 9sleo.oll )203 

Si02 

0.1812 Sesquioxide 

--------------------

--------------------

Mn203 

--------------------

--------------------

--------------------



Figure 1. - Schematic representation of automotive Stirling engine. 
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Figure 2. - Schematic representation of Stirling engine rn~terials simulator test rig. 
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(a) CG-27. 

(c) Sanicro 32. 

(b) Inconel 718. 

(d) W-545. 

Figure 7. - Photomicrographs of selected 3500 hr oxidation and corrosion test specimens. 
Longitudinal view showing surface scales and depletion zones; magnification, 250. 



(a) BSE. 
(b) Iron. 

(c) Oxygen. 

(d) Nickel. 

Figure 8. - Electron microprobe analyses of alloy CG-27. Magnification, 1000. 



(e) Chromium. 

(f) Aluminum. 

Figure 8. - Concluded. 

(g) Molybdenu m. 

(h) Titanium. 



(a) BSE. 

(b) Iron. 

(c) Oxygen. 

(d) Nickel. 

Figure 9. - Electron microprobe analyses of alloy W-545. Magnification, 300. 



(e) Chromium. 

(f) Aluminum. 

Figure 9. - Concluded. 

(g) Molybdenu m. 
(h) Titanium. 
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base alloys tested at 820 °c with H2 + 1% C02 at 15 MPa. 

200xlO-8 

100 -

60 
40 

t> I NCONEL 601 
o I NCONEL 625 
<) INCONEL 718(wd) 
o I NCONEL 718(a) 
f::, I NCONEL 750 
'l PYROMET 901 

20 ~'r-n----o/ 

10 

6 

40 
I L __ I J 

500 1000 1500 2000 2500 3000 3500 
RIG EXPOSURE TIME, hr 

Figu re 12. - Hyd rogen permeabi I ity coefficient 
<J) versus rig exposure time for nickel base 
alloys tested at 820 °c with H2 + 1% C02 at 
15 MPa. 



~ ..... 
ro 

0... 
:;E 
u 
Q) 
V) 

N 
E 
u 

o SOD 1000 
RIG EXPOSURE TIME, hr 

Figure 13. - Hydrogen 
permeability coefficient 
<l> versus rig exposure 
time for cobalt-base 
alloy HS-188 tested at 
820 °c with H2 + 1% 
C02 at 15 MPa. 



~ ...... 
C'O 

0... 

2: 
u 
CI) 
V'l 

N-

E 
u 

e 
f--
z 
!:=! 
u 
w:: 
U-
l.J..J 
0 
U 

>-
f-
::::i 
Ci:i 
<:t: 
l.J..J 

2: 
0:: 
l.J..J 
0... 

Z 
l.J..J 
<..? 
0 
0:: 
Cl 
>-::r: 

5x106 

4 

3 

2 

1 

PYROMET 
901 

INCONEL 
7l8(a) 

INCONEL 
601 

CG-27 

INCONEL 
750 

INCONEL 
7l8(wd) 

12RN72 
(cw) 

INCONEL 
625 

12RN72 N-155 

A-286 INCOLOY SANICRO W-545 
800 31H 

HS-188 SANICRO 253MA 19-9DL 
32 

Figure 14, - Apparent hydrogen permeability coefficient at 250 hr for tubing material endurance tested at 820°C and 15 MPa. 



4000 ,..--

.-- .--

~ 

.c 3000 -
U .. r r--
:2: r--
r::: 
LLJ 
0::: 
=> 
I-
0... 
=> 2000 0::: 

I--

LLJ 
co r--
=> r--
I-
Z -- r--
0:: r--

0::: 
:;;: 1000 
:::r: 

f--
...---

r--
..-- r--

~nn'-'l1 
o 

253MA INCONEL 
750 

19-9DL INCONEL SANICRO 
718(wd) 31H 

CG-27 I NCONEL I NCONEL HS-188 
625 718(a) 

PYROMET W-545 12RN72 12RN72 SANICRO N-155 INCONEL A-286 INCOLLOY 
901 (cw) 32 601 800 

Figure 15. - Ranking of hairpin tubes according to rupture lives when pressurized with 15 MPa helium at 820 °C. 



Unexposed Unexposed 

H 2 - 1"/0 CO2 exposed H2 + 1"/0 CO2 exposed 

(a) CG-27. (b) Inconel 625. 

Figure 16. - Microstructures of hairpin tubes before and after rig exposure, 820 °C, 3500 h. 
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