
L/!

NASA
Technical
Paper
2528

February 1986

An Approximate Buckling

Analysis for Rectangular

Orthotropic Plates With

Centrally Located Cutouts

Michael P. Nemeth,

Manuel Stein,

and Eric R. Johnson

(tit_iix-Ti:,-252:_} AI_ AP I_SCxI_A'It: t_,jL_L£t_G
_N&L_51S FOR hECiANGUIA_I C_,I_C150$IC pLA'iES

wiTt{ CZNIEALLY LGCATEL cUTOUtS (NASAl 21 PCSCL 20K

_C AO21S_ A01

Ng_-2Cfi56

Unclas

BtI39 0_027

https://ntrs.nasa.gov/search.jsp?R=19860011385 2020-03-20T15:17:45+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42841907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




NASA
Technical

Paper
2528

1986

National Aeronauhcs
and Space Administration

Scientific and Technical
Information Branch

An Approximate Buckling
Analysis for Rectangular
Orthotropic Plates With
Centrally Located Cutouts

Michael P. Nemeth

and Manuel Stein

Langley Research Center

Hampton, Virginia

Eric R. Johnson

Virginia Polytechnic Institute and State University

Blacksburg, Virginia





Abstract

An approximate analysis for predicting buckling

of rectangular orthotropic composite plates with cen-

trally located cutouts is presented. In this analysis,
the prebuckling and buckling problems are converted
from a two-dimensional to a one-dimensional system

of linear differential equations with variable coeffi-

cients. The conversion is accomplished by expressing

the displacements as series with each element con-

raining a trigonometric function of one coordinate
and a coefficient that is an arbitrary function of the

other coordinate. Ordinary differential equations are

then obtained from a variational principle.

Analytical results obtained from the approximate

analysis are compared with finite element analy-
ses for isotropic plates and for [010]s, [9010]s, and

[(0/90)5]s specially orthotropic plates with central
circular cutouts of various sizes. Experimental re-

suits for the specially orthotropic plates are also pre-
sented. In nearly all cases, the approximate analysis

predicts the buckling mode shapes correctly and pre-
dicts the truckling loads to within a few percent of

the finite element and experimental results.

Introduction

In aircraft and spacecraft structures, cutouts are

commonly found as access ports for mechanical and

electrical systems. Often during flight, structural
members with cutouts experience compression loads,

and thus the ability of a compression member with

a cutout to resist buckling is important in design.

Several studies of the elastic buckling behavior of

isotropic square plates containing central circular

cutouts have been presented in the technical litera-

ture. Reference 1 presents a summary of these stud-

ies. Substantially fewer studies (e.g., refs. 1 3) of the

elastic buckling behavior of rectangular laminated

composite plates with cutouts appear in the technical
literature. Understanding the buckling behavior of a

rectangular composite plate with a centrally located
traction-free cutout provides valuable insight into the

behavior of more complicated structural members.
Closed-form solutions for the buckling of plates

with finite lengths and widths and with centrally lo-

cated cutouts are presently beyond the state of the

art. Hence, various approximate analyses have been

used to study buckling of plates with cutouts. Most

of the previous studies have focused on the square

plate with a central circular cutout. Before the ad-
vent of the finite element method, approximate anal-

yses for performing buckling calculations for these

plates typically used boundary collocation methods

or the Rayleigh-Ritz method. The major disadvan-

tage of these analyses is the computational difficulty

associated with the numerical integration of the po-

tential energy over the doubly connected region, es-

pecially in those studies performed before the use of

high-speed digital computers became routine. Gen-

eral purpose finite element computer programs, such

as EAL (ref. 4), are now available to solve a broad
class of plate buckling problems. With proper dis-

cretization, accurate solutions can be obtained. How-

ever, for a specific problem, a special purpose anal-

ysis tailored to the problem characteristics is more

appealing than general purpose finite element analy-
ses, in terms of cost, ease of usage, and convenience

of parametric studies.
The objective of this paper is to present an ap-

proximate analysis that accurately predicts buckling

of rectangular specially orthotropic composite plates

with centrally located cutouts. The results of this

analysis are compared with finite element results and

with experimental results. The scope of the analysis

presented in this paper includes uniaxial compression

loadings, symmetrical cutout shapes, and simply sup-

ported and clamped boundary conditions.

Symbols

Although the data are given in both SI and U.S.

Customary Units, the measurements and calcula-

tions were made in U.S. Customary Units.

AII,A12_

A22, A66

b,c

d

Dll, D12,

D22, D66

F

K

L

N

N_, N.V,N_y

orthotropic membrane

stiffnesses, N/m (lb/in.)

rectangular plate half-width

and half-length (see fig. 1),

cm (in.)

circular cutout diameter, cm

(in.)

orthotropic bending

stiffnesses, N-m (in-lb)

integrand defined by equa-
tion (14), J/m (in-lb/in.)

nondimensional buckling

coefficient given by equa-

tion (19)

rectangular plate length,

equal to 2e (see fig. 1), cm

(in.)

number of terms in the

prebuekling displacement

series (see eqs. (2))

membrane stress resultants,

N/m (lb/in.)



N_r

Per

S

UB/

Uis

vO

w

[/I /'E

W2k-- l

6

_0 cO 0

_x, _y, "fxy

average Nx stress resultant

at buckling, N/m (lb/in.)

Nz stress resultant in a

plate without a cutout,

N/m (lb/in.)

buckling load, N (lb)

number of terms in the

buckling displacement series

(see eq. (13))

prebuck]ing displacements

in the x- and y-directions,

respectively, cm (in.)

bending energy, defined by

equation (ll), J (in-lb)

initial stress energy, defined

by equation (12), J (in-lb)

membrane energy, defined

by equation (1), J (in-lb)

energy integrand defined by

equation (3), J/m (in-lb/in.)

generalized displacements

for prebuckling problem,

cm (in.)

displacement series

parameter

out-of-plane buckling

displacement, cm (in.)

rectangular plate width,

equal to 2b (see fig. 1), cm

(in.)

external work defined by

equation (4), J (in-lb)

generalized displacements

for buckling, cm (in.)

Cartesian coordinates, cm

(in.)

differentiation of ( ) with

respect to x

variational operator

midplane membrane strains
of plate

nondimensional loading pa-
rameter defined in equa-

tions (2)

AfigO applied normal stress

resultant, N/m (lb/in.) (see
fig. 1)

A0, A2k- 1 functions defined by equa-
tion (5)

Analysis

In this paper, the classical two-dimensional buck-

ling analysis for plates is converted into a simpler

approximate one-dimensional analysis following the

Kantorovich method (ref. 5, pp. 304 3_7). The for-

mulation of the present analysis consists of two parts:

calculation of tile in-plane stress distribution prior to

buckling, referred to as the "prebuckling problem,"
and calculation of the buckling load, referred to as
the "buckling problem." In the discussion that fol-

lows, the requirements of the approximate analysis

are described and the Kantorovich method is applied

to obtain the one-dimensional prebuckling and buck-
ling equations.

Plate Description

The formulation of the analysis as a one-

dimensional problem implies certain symmetry prop-

erties in the geometry, material properties, loading,

and boundary conditions. The geometry, loading
conditions, and coordinate system used in the anal-

ysis are shown in figure 1. The plate has length
L = 2c, width W = 2b, and uniform thickness and

is referred to a right-handed Cartesian coordinate

system with origin at the center of the plate. The

cutouts must be centrally located and must possess
shapes that are symmetrical with respect to the xz-

and yz-planes. Similarly, the principal orthotropic
material axes must coincide with the x- and y-axes of

the plates. The loading is applied symmetrically at

the x = +c edges by either uniformly displacing the

two opposite edges of the plate or by applying a uni-

form normal stress to these edges (see fig. 1). Prior

to buckling, the unloaded lateral edges of the plate at

y = +b are free to expand in-plane in the y-direction.

At buckling, these edges are considered simply sup-

ported. Only the shaded portion of the plate shown
in figure 1 is used to derive the equations in this anal-

ysis because of the symmetry discussed previously.

Prebuckling Analysis

Prior to buckling, the potential energy of the plate

is the difference between the strain energy due to
stretching Um (also referred to as the "membrane

strain energy") and the work done by the external
loads W E.



Exploiting the problem symmetry allows the

strain energy prior to buckling to be expressed as

fc ftb [ ,o,2 02Urn = Alll, ex) +A22(_y)

-c f(x)

o_o A66('_xy) ] dydx+2Al2cx..y + o 2 (1)

where f(x) is the curve shown in figure 1, which fol-

lows the centerline of the plate and the cutout bound-

ary; Aij are the orthotropic membrane stiffnesses;
and,-° ¢o and o_z, _j, "_xy are the linear midplane strains of
the two-dimensional theory of elasticity. Following
tile Kantorovich method, the prebuckling displace-

ments are represented by kinematically admissible se-

ries containing products of trigonometric functions of

tile y-coordinate and generalized displacements that

are fimctions of the x-coordinate. The two major

considerations used in this paper to select these se-

ries are as follows: (1) the series should adequately
approximate the in-plane displacements of the plates

and (2) the series should not produce any nonzero
resultant forces on the unloaded edges of the plates.

These considerations led to selection of the following

series to represent the prebuckling displacements of

the plates:

u(x,y) = A u0(x)+ Eu2k-l(X)COS (2k- 1)-_

k=l

v(x,y) = _ voy+ __v2k_,(x)sin (2k- l)_g
k=l

(2)
where A is a nondimensional loading parameter that

is increased monotonically from zero until buckling

occurs. The term Au0 in the series for u and the

term Avoy in the series for v represent the exact so-
lution for a plate without a cutout. The remaining

terms in the series represent corrections to the dis-

placement field that account for the presence of a

cutout. The constant v0 is selected to satisfy the
condition that no resultant normal forces act on the

unloaded edges of the plate (ref. 1). Substituting

the displacement series into the strain-displacement

relations of the two-dimensional theory of elasticity,

then substituting the resulting expressions into equa-

tion (1), and integrating over y yields the membrane
strain energy in the following form:

fUm = A2 _Tm dx
c

(3)

where brm is a function of the generalized displace-

ments uo,u2k_ l, and v2k_ 1 (k = 1,2,...,N) and

their first derivatives with respect to x, that is, u_),

tt_k_l , and Vl2k_i (k---- 1,2,...,N).
The external work done by the applied loads is

given by

(we = -A_¢° [_(_,y) - u(-e, y)Jdy
b

(4)

where -toA__x is the applied uniform stress loading
shown in figure 1. Substituting the displacement se-

ries for u(x, y) given in equations (2) into equation (4)

and integrating over y yields the external work in the

following form:

wE = -2_2_ [_0(x)A0(x)

N )] x=+c
4- E U2k-l(X)A2k-l(X

k= 1 x=--c

(5)

The functions A0(x) and A2k_l(x ) are deternfined
directly from integration of the displacement series.

Applying the principle of minimum potential en-

ergy results in the following ordinary differential

equations and boundary conditions for the prebuck-

ling problem

Differential equations (-c <_ x <_ c)

OU2k- 1 dx k O_t2k- 1

OgTm d ( ogTm)
0_2_:-1 dx \ Ov--_ki]

=0

=0

=0

(6)

for k= 1,2,3,...,N.

Boundary conditions

[(O0m 1
---+ o (7)

[ko_k-1 _.=-7

[{ Ix=+
/ t Ov'--_-_,,/ 2k-l| 0
k \ 2k- 1 / J x=-c

for k= 1,2,3,...,N.
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For the uniformedge-displacementloading,the
displacementisprescribedto bea unit displacement
timestheloadingparameter(seefig.1), andtheshear
stressresultantis requiredto vanishat x = +c, the

edges of the plate. Thus, for this loading case,

,,o(±,.)= }
u2k-l(+c) 0

L,!,2k_l(-t-C) -- (2k -- 1) 7r_u2k-l(=k,,) = 0

(8)

for k = 1,2,3 .... , N. For the unifornl edge-stress

loading condition, the normal stress resultant is pre-

scribed t.o be equal to the loading parameter times

an arbitrary applied load N?, and the shear stress

resultant is required to vanish at, x = -t-c (see fig. 1).
Thus, for this loading case,

0/
A11uo(±c) + A12v{} = -N_

! 71"

Aliu2k_l(±c)+ A12(2k l)_v2k-l{±c)=0

G___{±c)- (2k - 1} "
_U2k ]{±c}=0

(9)
fork= 1,2 3,...,N.

Buckling Analysis

Using the Trefftz criterion, the buckling problem
can be posed as

(_(U/3 -t- UIS ) = 0 (10)

where U B and UI_. are tile contributions of tile

bending energy and the membrane energy (referred

to as the "initial stress energy"), respectively, to

the second variation of the total potential energy
(ref. 1). Exploiting the problem symmetry allows

these energies to be expressed as

l"u = [D]l(w,:rx )2 + D:_2{w.uy )2
, {x)

+ 2D]2(W,xx W,yy) + 41)66(w,x,q )21 ely dx (11}

a nd

fc [b [:%(w,x)z + x,(",y) 2
UIH = --c Jr(x)

+ 2NxywxWy ] dy dx (12)

where f(x) is the same curve shown it] figure 1 and

described in the prebuekling analysis section, Dij
are the orthot.ropic bending stiffnesses, Nx, Ny, and

,\_y are the prebuckling membrane stress resultants,

and subscript commas followed by letters denote par-
tial differentiation with respect to the coordinate

corresponding to each letter. Both U B and U1, _,
are derived using the Von Karman nonlinear strain-

displacement relations and the principle of mini-

mum potential energy. Following the Kantorovich

method, the out-of-plane displacement w(x, y) is ap-

proximated by a kinematically admissible trigono-
metric series given by

s

k= 1

(13)

This series also satisfies the natural boundary condi-

tions when the unloaded edges are simply supported.

Substituting the above series expressions for the

out-of-plane displacement and the expressions for the

prebuckling stress resultants (obtained from solution

of eqs. (6)) into equations (11) and (12), and inte-
grating over y yields a functional of the form

UI_ + UIS = F dx (t4)
c

where F is a function of the generalized displace-

ments w2k_ l (k = 1,2,3,...,S) and their first and
andsecond derivatives with respect to x, W2k_l

tt

w2k_ _ (k = 1,2,3 .... ,S).

Applying equation (10) to this functional leads

to the following stability equations and boundary
conditions:

Dzfferential equations (c <_ x < c)

-- =0

Ou;2k_ , cL 0_,'2k_ t + Ufi2 \ Owzk_ 1

(15)
for k= 1,2 3 ...,S.

Boundary conditions

{ ()]OF d OF
• ,t , T _JW2k--1

Ott2k- 1 dx OW2k_l -" x=--c

[( ,1. -77-- _W2k- 1

[)W2k-1 x=-c

=o

=o

16)

for k = 1,2,3 .... ,S.

The boundary conditions for the buckling prob-

lem considered in this paper are simply supported



or clampededgesat z = +c. For simply supported

edges, the boundary conditions are

w2k__(+c) = 0 / (17)

" (±c) = o /W2k- 1

for k = 1,2,3,...,S. For clamped edges, the bound-

ary conditions are

W2k_l(+C) = 0 I

I' (+c) oW2k- 1

(18)

fork= 1,2,3,...,S.

Calculation of the Buckling Load

The approximate analyses described in the previ-
ous sections for the prebuckling and buckling prob-

lems result in two systems of linear ordinary differ-

ential equations. The analysis for the prebuckling

problem produces 2N + 1 simultaneous second-order
differential equations and 4N + 2 boundary condi-

tions. Some of the boundary conditions are nonho-

mogeneous. The analysis for the buckling problem

produces S simultaneous fourth-order homogeneous
differential equations and 4S homogeneous bound-

ary conditions. Together these differential equations

and corresponding boundary conditions for the buck-

ling problem constitute an eigenvalue problem for the
nondimensional loading parameter A in equations (2).
The smallest nontrivial value of A corresponds to

buckling.

In both the prebuckling and the buckling prob-

lems, the ordinary differential equations have vari-
able coefficients that prevent closed-form solutions

from being obtained. To obtain solutions, the equa-

tions are solved numerically by the finite difference
method. Details of the finite difference formulation

for the prebuckling analysis corresponding to N = 3
and for the buckling analysis corresponding to S = 3

are presented in reference 6.

Experiment

The specimens tested in this investigation were
fabricated from commercially available 450 K (350°F)
cure graphite-epoxy preimpregnated tapes. The

tapes were made of unidirectional Hercules AS4

graphite fibers preimpregnated with Hercules 3502
thermosetting epoxy resin. The tapes were laid up to

form 20-ply-thick laminates having [010]s, [(0/90)5]s,

and [90m]s stacking sequences. The laminates were
cured in an autoclave using the manufacturer's rec-

ommended procedures. After curing, the laminates

were ultrasonically C-scanned to establish specimen

quality and then machined into test specimens. All

specimens were 25.4 cm (10 in.) long and 25.4 cm

(10 in.) wide, and the loaded edges were machined
fiat and parallel to permit uniform compressive load-

ing. Centrally located circular cutouts were ma-
chined into the panels with diamond-impregnated
core drills. The hole diameters ranged from 0 to

15.88 cm (6.25 in.). One side of each specimen
was painted white to reflect light so that a moir6

fringe technique could be used to monitor out-of-'

plane deformations.

The specimens were loaded in axial compression

with a 1.33-MN (300-kip) capacity hydraulic testing

machine. The loaded ends of the specimens were

clamped by fixtures during testing, and the sides

were simply supported by restraints that prevented

the specimen from buckling as a wide colunm. All

specimens were loaded slowly to approximately twice
the buckling load. A typical specimen mounted in the

test fixture is shown in figure 2.

A total of 20 specimens were tested; they were

designated A1 through A7 for the I010]s specimens,

B1 through B6 for the [90m]s specimens, and CI

through C7 for the [(0/90)5]s specimens. The an-

alytical results presented in the results and discus-
sion section of this paper are based on length and

width dimensions of 24.13 cm (9.50 in.). These di-

mensions represent the portion of the plate between

edge supports of the test fixture (see fig. 2) that de-
forms out of plane when buckling occurs. The analyt-
ical results are also based on the average value of sev-

eral thickness measurements made on each specimen.

These average thickness values were determined to

be 2.718 mm (0.107 in.) for the [0m]s laminates,

2.692 mm (0.106 in.) for the [90m]s laminates, and
2.794 mm (0.110 in.) for the [(0/90)5]s laminates.

Electrical resistance strain gages were used to

monitor strains, and direct-current differential trans-

formers were used to monitor axial displacements and

displacements normal to the specimen surface. Elec-

trical signals from the instrumentation and the cor-

responding applied loads were recorded on magnetic

tape at regular time intervals during the tests.

Results and Discussion

Results obtained with the analysis presented in

this paper were compared with finite element results

and with experimental results to determine the ac-

curacy of the approximate analysis. The converged
finite element results were obtained from the com-

puter program EAL (ref. 4). The results for the

approximate analyses for N = 1 and 2 and S = 1

and 2 were obtained from computer programs simi-

lar to the computer program described in reference 6.
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Thecomputerprogramdescribedill reference6 cor-
respondsto theapproximateanalysisfor N = S = 3
in equations (2) and (13).

The plates used to assess the accuracy of the ap-

proximate analysis were square because square plates

exhibit larger differences in the displacement and

stress fields for the loading conditions and boundary
conditions considered in this paper than do rectan-

gular plates. Previous studies (refs. 1 3) have shown

that the buckling load of a simply supported square

isotropic plate decreases monotonically with increas-

ing cutout size when a uniform colnpressive stress is
applied to two opposite edges of the plate. When the

loading is applied as a uniform compressive displace-

ment of two opposite edges, the buckling load of these

plates decreases slightly and then increases with in-
creasing cutout size, until the cutout size becomes

larger than approximately 70 percent of the plate

width. Rectangular plates with aspect ratios greater

than 1 typically exhibit, buckling behavior bounded

by the buckling behavior for the two loading condi-

tions of tile square plates, tlence, square plates are
.expected to serve as a more rigorous test of the abil-

ity of the approximate analysis to predict buckling
accurately.

Tile analytical and experimental results presented

in tile following sections of this paper are for square

plates with centrally located circular cutouts having

ratios of diameter to plate width d/W ranging from

0 to 0.66. The influence of orthotropy on the ac-

curacy of the analysis is investigated by studying

[010]s, [9010]s, and [(0/90)5]s specially orthotropic
laminates. These laminates represent the two ex-
treme cases and one intermediate case of laminate

orthotropy.

All results presented in this section are for lami-

nates made of graphite-epoxy plies having longitudi-

nal rnodulus E l of 127.8 GPa (18.5 x 106 psi), trans-

verse modulus E2 of 11.0 GPa (1.6 x 106 psi), in-
plane shear modulus Gl2 of 5.7 GPa (0.832 × 106
psi), and major Poisson's ratio u12 of 0.35. A nom-

inal ply thickness of 0.127 mm (0.005 in.) is used
in the analytical comparisons with the finite element
analyses.

Analytical Results

Accuracy of the prebuckling analysis. The stress

distribution in a plate prior to buckling must be de-

t.ermined in order to determine the plate's buckling

load. For plates without cutouts, finding an analyti-
cal expression for the prebuckling stress distribution
is often trivial. However, for plates with finite dimen-

sions and with a cutout, finding closed-form solutions

for the prebuckling stress distribution is presently

beyond the state of the art. For the analysis pre-

sented herein, the prebuckling stresses are approxi-

mated by the truncated displacement series given by
equations (2). A highly accurate prebuckling stress

analysis may not be needed to predict accurately the
buckling load if the overall load distribution in the

plate is adequately, represented. To assess the appli-
cability of the prebuckling analysis presented in this

paper for predicting buckling of plates with cutouts,

the Nx and 3,_ stress resultant distributions at the

net section of the plates (located at x = 0 in fig. 1)
are examined. Results are presented ill figures 3 to

8 for both isotropic and specially orthotropic plates.
The stress resultant distributions in figures 3 to 8

are normalized by the constant value of N, in the

corresponding plate without a cutout, denoted N °.

In figure 3, the Nor distributions at. the plate

net section obtained for N = 1,2, and 3 in equa-
tions (2) are coinpared with finite element results

tbr an isotropic plate loaded by uniform edge dis-

placement. The isotropic plate considered in figure 3
has an intermediate ratio of cutout diameter to plate

width, d/W -- 0.3. The results shown in figure 3
indicate that the best approximation to the finite el-

ement results is obtained for N = 3 (values of N

greater than 3 were not. considered). Similar results

were obtained for two other cutout sizes, d/W = 0.1
and 0.6.

The finite element results for d/W = 0.1 indicated
a stress distribution similar to the stress distribution

for a compression-loaded infinite plate with a hole.

Most of the plate is uniformly stressed and local

stress concentration and gradient are present near

the hole. The approximate analysis for N = 3

models the uni[brmly stressed region of the plate

very well, but lacks the higher harmonics in the
displacement series to give the correct value of the

stress concentration near the cutout. An accurate

representation of this localized stress concentration

may not be required in the prebuckling analysis.
Tile approximate analysis must accurately predict

the overall load distribution in the plate, and for

N = 3, it accomplishes this objective.

The stress distribution for the plate with d/W =
0.6 is different from the stress distributions for the

plates with d/W = 0.1 or 0.3. For this large cutout
size, the stress distribution is nonuniform across the
entire plate net section without a local stress concen-

tration near the cutout. The results obtained with

the approximate analysis suggest that higher har-

monics in the displacement series are not required

to predict reasonably well the stress distribution in

the plate with d/W = 0.6. The approximate analy-

sis predicts the overall load distribution in the plates
with the larger cutout sizes reasonably well.



Theapproximateanalysisforplateswith interme-
diatecutoutsizesis lessaccuratethan the approx-
imateanalysisfor plateswith smallor largecutout
sizes.Plateswith intermediatecutoutsizes,suchas
d/W = 0.3, have a large region with a severe stress
gradient and a small region with a uniform stress dis-

tritmtion. However, even with the reduced pointwise

accuracy of the analysis, the overall load distribution

in the plate is adequately represented.

The directional nature of the approximate anal-

ysis suggests that orthotropy influences the accu-

racy of the prebuckling stress predictions. Stress
distributions obtained from the finite element anal-

ysis and the approximate analysis for N = 3, for

tile displacement-loaded plates, are presented in fig-

ures 4 to 7 for tile [0m]s and [90m]_ laminates with

d/W = 0.3. The results shown in figures 4 to 7 indi-

cate that orthotropy does influence the present analy-

sis. For the :_ distribution at the net section of the

plate, the approximate analysis predicts the stress

distributions reasonably well, with the results for the

[90m]s laminate (fig. 4) agreeing with the finite ele-

ment analysis results better than the results for the

[0t0ls laminate (fig. 5). For the N:j distribution at the
net section of the plate, tile results of the approxi-

mate analysis for the [0m]s laminate (fig. 6) agree

with the finite element results substantially better

than those for tile [9010]s laminate (fig. 7). The ap-

proximate analysis results for Ny in tile [90m]s lam-
inates exhibit the largest differences from the finite
element results.

Contour plots of the Nz distribution obtained

from the finite element analysis and from the approx-

imate analysis for N = 3 are shown in figure 8 for a

[90m]s laminate with d/W = 0.4 (Nx is normalized

by N_?). These contour plots suggest that the approx-
imate analysis predicts the overall axial load distri-

bution in the plate reasonably well. Similar results

were obtained for N_, N_.j, and Nzv distributions for

[0t0]s and [90m]s laminates with d/W = 0.1, 0.4,
and 0.6. These results also suggest that the approx-

imate analysis adequately predicts the overall load

distribution in a plate except, for N u in the [9010]s

laminates with d/W > 0.3. The approximate anal-

ysis generally predicts the load distributions in the

[9010Is laminates, but not to tile same accuracy as
for the other laminates.

The results shown in figures 3 to 8 suggest that

the approximate prebuckling analysis for N = 3 is

not suitable for highly accurate stress analysis of

plates with cutouts. However, tile approximate anal-

ysis appears to predict the overall load distribution
in the plates reasonably well and may be sufficient

for predicting buckling loads.

Accuracy of the buckling analysis. The accuracy

of the buckling displacement approximations given

by equation (13) is evaluated using N = 3 in the pre-

buckling analysis. Buckling results for displacement-
loaded and stress-loaded isotropic square plates with

central circular cutouts are shown in figure 9. The

plates are simply supported on all edges, and the

buckling load is expressed in terms of a nondimen-

sional buckling coefficient given by

19)

For the stress-loaded plates, N cr is the critical

value of the applied loading. For the displacement-

loaded plates, Nf r is obtained by dividing the total

axial load at buckling Per by the width of the plate.

The results presented in figure 9 show a compari-

son of the buckling coefficients obtained using equa-

tion (13) with S = 1, 2 and 3 with the corresponding

results obtained from finite element analyses. The re-

sults in figure 9 show that for both loading cases, tile

buckling loads converge monotonically from above
toward the finite element solutions as tile value of S

increases. The best agreement between the approx-

imate and finite element analyses is for S = 3, with

the difference in the buckling coefficients being less

than 6 percent for d/W = 0, 0.1, 0.2, 0.3, 0.4, and

0.5 and about 10 percent for d/W = 0.6. Moreover,
the results for the isotropic plates given in table I

indicate that both the approximate (for N = S = 3)

and finite element analyses predict tile same buck-

ling mode shapes. The buckling mode shapes consist

of a single half-wave along the direction of the ap-

plied loading and a single half-wave in the direction

perpendicular to the loading.

The influence of orthotropy on the accuracy of

the approximate analysis is indicated by the results

presented in figure 10 and table I. Approximate

results obtained using N = S = 3 and finite element

results are presented in the figure and in the table

for simply supported [010]s, [90re]s, and [(0/90)5]s

displacement-loaded laminates with d/W = 0 to 0.6.

The best agreement between the approximate and
finite element results was obtained for the [0t0]s and

the [(0/90)5]s laminates. The buckling loads from

the two analyses for these laminates differed by less

than 6 percent for all cutout sizes considered. For

the [9010]s laminates, the difference in the buckling
loads increased as d/W increased: the loads for

d/W = 0, 0.1, and 0.2 differed by less than 2 percent;

for d/W = 0.3, by slightly less than 8 percent; and for

d/W = 0.4, 0.5, and 0.6, by 13 to 15 percent.. These

differences in the buckling loads for [9010]s laminates

with d/W = 0.4, 0.5, and 0.6 suggest, that this group
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of laminatesis the mostsensitiveto the directional
natureof theapproximateanalysis.Thissensitivity
ismanifestedin the,_ prebuckling stress prediction.

For all cases presented in table I, with the ex-

cept.ion of the [9010Is laminate with d/W > 0.2, the

approximate analysis predicts the buckling loads to
within 10 percent of the finite element results and

predicts the same buckling mode shapes. For the
[9010]s laminate with d/W >_ 0.3, the approximate

and finite element analyses predict buckling loads
that differ by less than 15 percent. However, the

approxinmte analysis for d/W = 0.3 predicts a differ-
ent mode shape from that predicted by the finite ele-

ment analysis. This incorrect prediction of the mode

shape is attributed t.o the lower accuracy of the Ny
prebuckling stress resultant approximation for the

[90m]s laminates, due to the directional nature of

the approximate analysis previously discussed.

Experimental Results

The buckling loads obtained for N = S' = 3 in

the approximate analysis are compared with experi-

mental buckling loads for simply supported isotropic

plates in reference 1. The cutout sizes range from
d/W = 0 to 0.6 and results are presented for both

uniform edge-stress and uniform edge-displacement

loadings. For all cases considered in reference 1, good

agreement between the present analysis and the ex-

periments is indicated.

In this study, experimental buckling loads were

obtained and compared with the corresponding an-

alytical buckling loads for the [0m]._, [(0/90)5]s, and
[90t0]s laminates previously described to further as-

sess the accuracy of the approxilnate analysis. The

results of this comparison are presented in figure 11

and tables II to IV. The experilnental buckling load

for each specimen was obtained by determining the
value of the applied load at which the slope of the

load vs. end-shortening curve changed. A shadow

moir6 technique for monitoring the out-of-plane dis-

placement was also used to veri_, the experimental

buckling load calculations and to identify the buck-
ling mode shapes. The buckling mode shapes of the

plates indicated in tables II to IV consist of either one

or two half-waves along the direction of the applied

loading. For all the plates, the buckling mode shapes

consist of a single half-wave in the direction perpen-

dicular to tile loading direct.ion. The experimental

and analytical buckling loads shown in figure 11 and

listed in tables I[ to IV agree well except for the

[010Is laminate with d/W = 0.6 and 0.66 and the

[(0/90),_,]s laminate with d/W = 0.66. The analytical

results for the [(0/90)a]s laminates with d/W <_ 0.6
and [0m]s laminates with d/W < 0.4 are within

5 percent of tile experimental results. The analytical

and experimental results for the [010]s laminates with

d/W = 0.42 differ by approximately 12 percent, but

with d/W >_ 0.6, they differ by more than 25 percent.

The agreement between the analytical and experi-

mental results for the [90m]s laminates is typically

not as good as for the other laminates with similar

cutout sizes, especially for the smaller cutout sizes,

but the differences between the experimental and an-

alytical buckling loads never exceed 13 percent. The

analytical buckling load for the [9010]s laminate with
d/W = 0.66 was within 3 percent of the experimen-

tal buckling load. The [9010]s laminate designated as

specimen B2 in table III buckled into a mode shape

that was not predicted by the approximate analysis.

The difference between the analytical and experimen-
tal buckling loads is approximately 9 percent for this

specimen. This result reinforces the previous sugges-

t.ion that the analysis does not approximate the Ny
prebuckling stress resultant, for the [9010]s laminates
as well as it does for the other laminates.

The [0m]s and [9010Is laminates represent ex-

treme degrees of orthotropy, and the most disagree-

ment between the analytical and experimental buck-

ling loads occurs for these laminates, with the [9010Is
laminates typically showing the worst disagreement

overall. This larger disagreement for the [9010]s lam-

inates is attributed to the lower accuracy of the N v
prebuckling stress resultant predicted by the approx-

imate analysis for the [9010]s laminates compared

with that for the [010Is and [(0/90)5]s laminates. The

buckling loads for the [(0/90).5]s laminates (laminates

without an extreme degree of orthotropy) are pre-

dicted accurately by' the approximate analysis for
cutout sizes with d/W <_ 0.6. In addition, both

the experimental and the analytical results for the

[(0/90)5]s laminates indicate that the buckling load

increases as the cutout size increases, as do the re-

sults reported by Ritchie and Rhodes (ref. 7) for

isotropic plates. This analytical and experimental

trend suggests that the buckling resistance of a plate

might be improved by optimizing its cutout size as

well as its stacking sequence.

Concluding Remarks

An analysis for predicting buckling of rectangu-

lar orthotropic composite plates with centrally lo-

cated cutouts has been presented. In this analysis,

the prebuckling and buckling problems are converted

into systems of linear ordinary differential equations
with variable coefficients. The conversion is accom-

plished by expressing the displacements as series with

each element containing a trigonometric function of

one coordinate and a coefficient that is an arbitrary



functionof theothercoordinate.Ordinarydifferen-
tial equationsare thenobtainedfroma variational
principle.

Bucklingloadsobtainedfrom the approximate
analysisarecomparedwith bucklingloadsobtained
fromfiniteelementanalysesfor isotropicplatesand
for [010Is,[9010Is,and[(0/90)5]sspeciallyorthotropic
plates. The platescontaincentralcircularcutouts
havingdiametersd ranging in sizes from 0 to nearly

70 percent of the plate width (0 <_ d/W <_ 0.66). Ex-

perimental results are also presented for the specially

orthotropic laminates.

The comparison of the approximate and finite el-

ement results suggests that a highly accurate point-

wise prebuekling stress analysis is not essential for

accurately predicting the buckling load, as long as

the prebuekling stress analysis gives the general load

distribution in the plate. The comparison also in-

dicates that in most cases the approximate analy-

sis predicts the buckling loads to within 10 percent

of the buckling loads obtained from a finite element

analysis. Orthotropy plays an important role in the

accuracy of the approximate analysis (with regard to

the directional dependence associated with the choice

of the displacement series) and is most important in

the analysis of the [9010]s laminates. For the [9010Is

laminates with d/W > 0.3, the approximate analy-

sis predicts the overall prebuekling load distribution
with less accuracy than for the other laminates and

results in differences from 13 percent to 15 percent in

the buckling loads obtained by the approximate and

finite element analyses. For the [010]s and [(0/90).5]s

specially orthotropic plates and isotropic plates, the
differences between the buckling loads obtained from

the approximate analysis and the buckling loads ob-

tained from the finite element analysis are at most

10 percent for cutout sizes with d/W <_ 0.6.

Experimental results presented indicate that the
approximate analysis predicts buckling loads to

within 13-percent accuracy in most cases. Specifi-

cally, the approximate analysis predicts buckling of

the [(0/90),51s laminates to within 5 percent of the ex-

perimentally obtained buckling load for cutout sizes

tip to d/W = 0.6. Similar accuracy in the buckling

load predictions was obtained for the [010Is laminates

with cutout sizes up to d/W < 0.4. The approxi-

mate analysis results for the [0m]s laminates with

d/W = 0.6 and 0.66 and for the [(0/90),5]s laminates

with d/W = 0.66 differed from the experimental re-

sults by more than 25 percent. The buckling load ob-
tained from the approximate analysis for the [9010Is

laminate with d/W = 0.66 was within 3 percent of
the experimental buckling load. Both the analytical'

and the experimental results presented in this paper

indicated that increasing the cutout size in a given

plate does not always reduce the buckling load.

NASA Langley Research Center
Hampton, VA 23665-5225
Octoher 30, 1985
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TABLEII. EXPERIMENTALANDANALYTICALBUCKLINGLOADSFORCLAMPED[010]s LAMINATES

[All plates buckled into one half-wave in each coordinate direction]

Specimen

A1

A2

A3

A4

A5

A6

A7

Ratio of

:utout diameter

to plate width,

d/W
0

0.11

.21

.32

.42

.60

.66

Cutout

diameter, cm (in.) Experiment

37.392 (8406)

36.289 (8158)

33.642 (7563)

32.530 (7313)

28.455 (6397)

28.638 (6438)

27.245 (6125)

0 (0)
2.54 (1.00)
5.08 (2.00)
7.62 (3.00)

10.16 (4.00)
14.48 (5.70)
15.88 (6.25)

Buckling Loads, kN (lb)

Analysis

37.894 (8519)

36.395 (8182)

33.744 (7586)

33.958 (7634)

32.041 (7203)

20.916 (4702)

3.3(}9(744)

Difference, a

percent

-1.3

--.3

--.3

-4.4

-12.6

27.0

87.9

aDifference from experiment.

TABLE III. EXPERIMENTAL AND ANALYTICAL BITCKLIN(; LOADS FOR CLAMPED [9010]s LAMINATES

[All plates buckled into one half-wave in each coordinate direction mdess otherwise noted]

Specimen

B1

B2

63

B4

B5

B6

Ratio of

cutout diameter

to plate width,

d/W
0

0.11

.21

.32

.42

.66

Cutout

diameter, cm (in.)

o (o)

2.54 (1.00)

5.08 (2.oo)
7.62 (3.00)

10.16 (4.00)

15.88 (6.75)

aDifference from experinmnt.

Buckling Loads, kN (lb)

Experiment

b9.710 (2183)

b10.889 (2448)

8.803 (1979)

7.322 (1646)

7.024 (1579)

8.256 (1856)

Analysis

b9.822 (2208)

9.937 (2234)
8.879 (1996)
8.220 (1848)
7.873 (1770)
8.o16 (18o2)

bMode shape consists of two half-waves m the axial direction and one in the other direction.

Difference, a

percent.

-1.2

8.7

--.9

-12.3

-12.1

2.9

TABLE IV. EXPERIMENTAL AND ANALYTICAL BI.( KLIN(, LOAD FOR CLAMPED I(0/90)5]s LAMINATES

[All plates buckled int<) one half-wave in each coordinate direction unless otherwise noted]

_pecinlen

CI

C2

C3

C4

(15

C6

C7

Ratio of

cutout diameter

to plate width,

d/W
0

0.11

.21

.32

.42

.60

.66

Cutout

diameter, cm (in.)

0 (0)
2.54 (1.00)
5.08 (2.00)
7.62 (3.00)

10.16 (4.00)
14.48 (5.70)
15.88 (6.25)

Buckling Loads, kN (lb)

Experiment

28.842 (6484)

27.681 (6223)

25.777 (5795)

25.880 (5818)

27.610 (6207)

27.339 (6146)

29.207 (6566)

Analysis

29.087 (6539)

27.979 (6290)

25.862 (5814)

26.391 (5933)

27.348 (6148)

26.467 (5950)

b7.042 (1583)

Difference, a

percent

-0.9

-1.1

--,3

-2.0

1.0

3.2

75.9

aDifference from experiment.

bMode shape consists of two half-waves in the axial direction and one in the other direction.
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(b) Uniform compressive edge stress. (c) Uniform compressive edge displacement.

Figure 1. Geometry, coordinate system, and loading conditions for rectangular plate with centrally located
cutout.
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Figure 2. Specimen mounted in test fixture.
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Figure 3. Comparison of the approximate and finite element Nz prebuckling stress distributions at x -- 0 for
a displacement-loaded isotropic plate, d/W = 0.3.
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Figure 4. Comparison of the approximate and finite element N. prebuckling stress distributions at x = 0 for
a displacement-loaded [9010]s ]amitlate. d/W = 0.3.
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Figure 5. Comparison of the approximate and finite element j_ prebuckling stress distributions at x = 0 for
a displacement-loaded [010Is laminate, d/W = 0.3.
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Figure 6. Comparison of the approximate and finite element Ny prebuckling stress distributions at x = 0 for
a displacement-loaded [010]s laminate, d/W = 0.3.
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Figure 7. Comparison of the approximate and finite element N u prebuckling stress distributions at x = 0 for
a displacement-loaded [9010]s laminate, d/W = 0.3.
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(b) Approximate analysis.

Figure 8. Comparison of the approximate and finite element Nz/N ° prebuckling stress resultant contours for
the displacement-loaded [9010Is laminate, d/W -- 0.4.
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(a) Displacement loading.
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(b) Stress loading.

Figure 9. Comparison of the approximate and finite element buckling coefficients for square simply supported
isotropic plates.
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Figure 10. Comparison of the approximate and finite element buckling coefficients for the displacement-loaded
[0j0]s, [(0/90),5]s, and [9010]s simply supported laminates. N = S = 3.
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Figure 11. Experimental and approximate buckling loads for clamped specially orthotropic laminates.
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