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INTRODUCTION

This document represents the final report for the project entitled
"Advanced Data Structures for the Interpretation of Image and Cartographic
Data in Geo-Based Information Systems" (award no. NAG 5-369). This report
is necessitated by the move of the Principal Investigator to The Pennsyl-
vania State University and describes work still in progress. A proposal to
continue this research and complete current work elements at PSU is
currently in preparation.

Overview

The purpose of this project was to investigate the use of new methods
to improve the flexibility and overall performance of very large, hetero-
geneous databases.

This project commenced in 1983 to study new methods of representing
spatial data that would be suitable for very large heterogeneous database
applications. The original project envisaged cooperative empirical
comparison of two newly developed hybrid data structures, one being the
Vaster structure developed by the Principal Investigator, and the other
being the Topological Grid structure developed at NASA/GSFC.

The objective was to test whether such hybrid structures represent an
improvement in performance over other previously known structure types, and
to quantify and compare the performance characteristics of the Vaster and
Topological Grid structures.

Two problems related to designing any empirical test which would be
meaningful and valid soon became apparent in this work; 1) No theoretical
framework of spatial data structures then existed to use as a reference for
evaluating the selection of the specific data structures chosen for testing
among the possible alternatives, existing and potential. 2) The primitive
tasks to be performed for the comparison were found to be in some cases
difficult to define in that they tend to be context dependent. This is
attributable to the fuzzy nature of spatial entities and spatial relation-
ships.

This finding also had two far-reaching implications; 1) It indicated a
significant gap in the necessary knowledge for designing and implementing
any integrated spatial database or geographic information system with
predictable results. 2) Conventional algorithmic approaches for spatial
data handling are inadequate for accommodating the required variety of
applications or for providing the required level of efficiency.

As a result of these preliminary findings, a review of existing
spatial data structures was performed and an overall comparative framework
developed. This work was documented in the report entitled "Spatial Data
Models: A Conceptual Framework and Comprehensive Review".



In addressing the problem of algorithmic approaches for handling
large, heterogeneous databases, it was readily apparent that Artificial
Intelligence techniques hold much promise as tools for providing the
efficiency, flexibility and robustness required for the spatial databases
envisaged by NASA. This use of AI techniques in a geographic/earth-
sciences database context has only begun to be explored. As a result of
this finding, a major extension of the original work in this area was begun
in the latest phase of the project.

This expanded work was performed in conjunction with an overall
research effort that was also funded by the U.S. Geological Survey, the
National Science Foundation and Digital Equipment Corporation to design and
build a knowledge-based geographic information system.

The specific task associated with this overall research effort is to
explore methodologies that will allow the following CIS performance
requirements to be satisfied within a single, unified environment:

1) the ability to process large, multi-layered, heterogeneous
databases;

2) the ability to query such databases about the existence,
locations and properties of complex spatial objects;

3) a level of efficiency in responding to queries that allows
the system to be tailored easily to accommodate a variety of
applications.

The achievement of these requirements imply the following capabilities
within a CIS:

1) the ability to answer a wide range of complex queries posed
by the scientist concerning phenomena that may not be
explicitly encoded in the database;

2) the use of knowledge-based, non-exhaustive search to limit
and control the level of database retrieval needed to answer
queries;

3) the use of an extremely efficient and robust database
architecture; and

4) the ability to inductively 'learn' new information regarding
spatial objects and the relationships between those objects.

The system currently under construction, called KBGIS II, is based
upon the design concepts and overall capabilities demonstrated in a simple,
'proof-of-concept' system called 'KBGIS I'. This system was completed in
late 1983 with funding from the U.S. Geological Survey and Digital Equip-
ment Corporation.



Construction of KBGIS II began in mid-1985 with added support from
NASA/GSFC. This enabled a specific emphasis on innovative techniques for
spatial data representation and the use of AI techniques for search and
retrieval in a very large, heterogeneous spatial database.

In the latest phase of the NASA/GSFC grant, the work elements spec-
ified were the following:

1) The development of high-level search heuristics which
incorporate:

a) high-level descriptive knowledge concerning the general
characteristics of specific types of objects and where
they are likely to geographically occur; and

b) knowledge concerning what information is contained in
the system, the overall functional characteristics of
the system and where specific classes of information
are stored.

2) The development of efficient, non-exhaustive Spatial Search
procedures including:

a) the detection of complex feature presence or absence
through the use of "spectral signatures;" and

b) the use of spatial spectra and other heuristics for
guiding hierarchical search by indicating directions
for prioritizing search.

3) The development of object-based search procedures, for both
general and domain-specific heruristics. This would
include:

a) object retrieval based on full, or complete, object
descriptions; and

b) object retrieval using rules of inference for objects
when only partial object descriptions or descriptions
of "similar" objects are available.

4) Investigation of methods to increase the storage and perfor-
mance efficiency of the database.

In terms of the architecture of KBGIS II, these elements are mani-
fested as a dual object/spatial database and a three-tier hierarchical
search subsystem. The nature and current status of these components are
briefly reviewed below.



SYSTEM COMPONENTS

Spatial Language

All spatial objects in KBGIS II are expressed in terms of a language
which was developed as part of the work supported by the USGS. In this
language, a spatial object is a set of pixels having various properties:

1. Properties assignable to individual pixels, such as landuse,
ground cover class or elevation. These are termed PPROPs.

2. Properties assignable to a group of pixels, or to individual
spatial entities (e.g., a lake or a road). Examples of such
properties include size, shape and orientation. These are
termed GPROPs.

3. Properties assignable to two groups of pixels or to two
individual spatial entities. These are relationship
properties, termed RPROPs, and include distance, relative
direction and containment.

Using these three classes of properties and the logical connectives A
(and), V (or) and ~ (not), one may represent arbitrary spatial objects.
For example, using infix notation to denote properties and "obji" to
represent the ith spatial subobject, we may represent a city as a resi-
dential annulus (objl) of a given size surrounding a commercial core (obj2)
of a given size as follows:

((el (LU ?objl commercial))
(el (AREA ?objl (30 40)))
(el (LU ?obj2 residential))
(el (AREA ?obj2 (50 60)))
(el (CONTAINS ?obj2 ?objl) t ) ).

In this language, a specific spatial object is defined when each obji in
the object description is bound to a specific set of spatial indices (i.e.,
when all predicates "el" takes on the value "true"). Some fuzziness may be
introduced into object descriptions by allowing "el" to take on a range of
values.

The queries in the system are the fundamental, inverse queries:

(find locations <number of instances> <spatial object> <spatial
window>)

and

(find objects <spatial window> <class of object>)



In the first type of query, the spatial object is defined in terms of the
language, and is satisfied when sets of spatial locations are correctly
bound to obji for each i.

The spatial object language and the queries described above are
similar to those in some other spatial database and image processing
systems (see for example Ballard and Brown, 1982, pp. 335-340).

Locational Database

a) General Description

The Locational Database of the system contains, for the most part,
information on the spatial distribution of relatively primitive PPROP's,
although some high-level (i.e., derived) spatial objects are also stored
in part of this database. The overall conceptual structure employed for
the Locational Database is the linear quadtree structure. This type of
structure has been discussed extensively in the literature (Peuquet, 1984;
Mark, 1984; Abel and Smith, 1984). In the area quadtree model used in
KBGIS II, a given geographic area is recursively subdivided into four
quadrants, as shown in Figure 1. This subdivision of space translates
functionally into a regular, balanced hierarchy of degree 4. Any entry at
any hierarchical level in the Locational Database is directly addressable
utilizing a recursive spatial addressing scheme shown graphically in Figure
2. Each separate type of data, or coverage, can be viewed as being
arranged in a separate quadtree with all quadtrees spatially registered in
a common coordinate reference system.
A detailed description of the logical structure of the Locational Database
is given in Appendix A.

The Locational Database significantly extends the conventional linear
quadtree concept to include various types of higher-level information at
the nodes of the location tree. Each node in the location tree is struct-
"ured as a three-dimensional frame (see Figure 3a). One slot is allocated
for each data layer in the database. An additional slot is allocated for
some data pertinent to the node as a whole. Each layer (slot) in turn is a
frame which contains the following slots: a slot that is used to store the
data value of the layer at that node; a slot for storing information
describing how data for that layer are spatially distributed; a slot for
storing the names of domain-specific functions (i.e., system software
modules) that can be used to guide search; and a slot for storing temporary
flags used during search.

Each of these slots may also contain subunits, called facets, which
allow the storage of multiple pieces of information within any given slot.
For example, the Search Tag slot has several facets to allow multiple
searches to be executed in parallel. The Distribution Parameters slot may
also contain more than one statistic for describing various aspects of
spatial distribution. This is particularly helpful for dynamically
prioritizing the various regions of the image represented in lower levels
of the location tree for ordering candidate areas to be searched at each



stage of the process. The data value slot for higher-level (i.e., non
pixel-level) nodes can also have more than one facet to allow storage of
generalized values that have been computed from different inheritance rules
needed for different applications.

Overall, this frame structure has several advantages:

1. It allows any combination of logical layers in the database
to be searched simultaneously.

2. It allows the use of heuristic search guided by higher-level
knowledge stored within the Location Tree itself to dramat-
ically improve search efficiency.

3. It increases the overall flexibility and robustness of the
database for representing spatial information.

4. It allows compatibility with the higher-level, LISP-based
portions of the system and a total integration of AI and
spatial database techniques, while minimizing the overhead
of the C-LISP interface.

5. The Locational Database is the logical dual of the Spatial
Object Knowledge database, thus allowing a cleaner overall
system design.

b) Current Status

This revised Locational Database design is now fully implemented.
Test data for a selected geographical area has also been loaded into the
Locational Database. It is felt that this current design not only contains
the necessary added elements required by the search process, but that it
also represents a dramatic improvement in flexibility and performance
efficiency.

Object Knowledge Base

a) General Description

The Spatial Object Knowledge Database stores the definition of all
objects, whether user-defined or learned by the system. Spatial objects
are hierarchically defined. At the lowest level, a spatial object is a set
of pixels characterized by a set of elemental data values such as ground
cover and elevation. Higher level spatial objects consist of sets of
hierarchically-lower spatial objects with connecting relations (RPROP's)
between them. The Spatial Object Knowledge Base thus serves to define
implicitly objects that are not directly stored in the spatial database.

As noted above, spatial objects are represented formally in the
spatial object language. For each member of an important subset of object
definitions there is a frame data structure in the object knowledge base,



that is similar in structure to the Location Tree frame. An illustration
of the data structure used in the object knowledge base is given in Figure
3b. This knowledge base is easily expandable by the system user.

The defined by slot contains a list of subobjects that together define
the current object.

The heuristics slot contains information that is characteristic of
that object and can be used to guide the location tree search when the user
desires to locate some examples in a certain area or to find what objects
exist in a certain area. An example of such a heuristic might involve the
knowledge that an object of class A is frequently found close to objects of
class B, which have a frequent occurrence. Such heuristic knowledge is
accessible to the rules in the rule-based control system.

The "examples" slot contains the geographical coordinates, expressed
as location tree coordinates, of selected known examples of a given spatial
object. If more than a few examples are known, then the system limits
stored examples to those that are frequently requested or are expensive to
retrieve. Expensive objects tend to be those which are complex in that they
are defined in terms of many other, more primitive objects. These limiting
criteria are needed in order to prevent needless redundancy with the
Location Tree Database and to achieve an optimal balance between economical
storage and rapid query response.

The information in any slot in the Object Knowledge Database can be
added, modified or deleted explicitly by the user by means of a spatial
object knowledge base editor. Furthermore, information may be inserted
into any slot (except Examples) by the inductive learning phase of the
system. Autonomous modification of the Examples slot can be updated with
new examples as queries are answered using a specialized set of redundancy-
limiting rules, as outlined above.

b) Current Status

The revised and expanded implementation of the data structures for
spatial objects are now complete. A few spatial objects have been defined
and implemented in the Object Knowledge Database.

Search

The primary task in the latest phase of the NASA/GSFC grant was to
design and implement a powerful, heuristic search facility which will use
high-level knowledge to guide search and use the hierarchical nature of the
storage structures to maximum degree. The design objective of this
facility is to avoid search in unlikely portions of the database through
the use of a priori information. Maximally efficient search is the
counterpart to the flexible and robust database structure, and is essential
to enable any CIS to handle a very large, heterogeneous geographic data-
base.
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A single, integrated control structure which can efficiently handle
both object-based search and locational search efficiently was designed.
Since heuristic locational search was viewed as the more complex and less
explored form of search, this was chosen first for detailed study and
implementation. A general overview of the search control structure is
given below. This is followed by a description of the spatial search
process that employs this structure.

a) General Description

The approach used for the control of search over the input data sets
involves the joint application of five principles:

1. The use of hierarchical decomposition in both data struc-
tures and in search procedures applied to the data struc-
tures.

2. The use of best-first search procedures, in which domain-
specific knowledge is used to reduce as much as possible the
sets of spatial indices explored in satisfying queries.

3. The use of a constraint satisfaction approach to query
satisfaction.

4. The use of recursion.

5. The use of dynamic updating of the system's knowledge base
in response to query satisfaction.

Although these five principles have been employed in other research, the
particular combination that has been employed in the construction of KBGIS
II appears to be unique. In particular, it is one of the few known control
structures that combines a range of AI and spatial database techniques in
answering queries about complex spatial objects from a combination of large
databases and knowledge bases.

When a query is entered by a system user, it is parsed and checked for
syntactic correctness, and the user is prompted for any necessary modif-
ications. The object of the query is then transformed into a semantic
network representation in which the links represent RPROP relations between
the subobjects of the query (i.e., constraints) that must be satisfied.
The network is then augmented with heuristic knowledge and the subobjects
at the nodes are ordered. A recursive, constraint satisfaction procedure
is then applied to the nodes in the designated order. Search first occurs
in the Object Knowledge Base for stored examples of specific subobjects
that satisfy the relational and spatial constraints. If satisfaction of
the query cannot be accomplished by this lookup procedure, new procedures
are invoked (recursively) to search the Locational Database. When a query
is ultimately satisfied by a search of the Locational Database that is
considered 'expensive', the examples found of the 'expensive' object or



subobject are stored in the Object Knowledge Base for use in future
queries.

The recursive hierarchical structure of the Locational Database is
employed to maximum degree for search of the Locational Database. The
major control of query satisfaction is also hierarchical, being performed
via three levels of control:

!• High-level search on the semantic network derived from the
Object Knowledge Base.

2. Mid-level search using high-level spatial knowledge to
select heuristics for low-level search and avoid redundant
search.

3. Low-level search on the Locational Database.

The use of best-first, knowledge-based search is intended to reduce the
amount of search required to satisfy a query.

b. The Spatial Search Process

1) High-Level Search

The search process takes a syntactically correct query as input. The
query is first transformed into a semantic net. The net is implemented as
a set of structures. These structures are of two kinds, one representing
objects (named the subobject structure), and the other representing the
RPROPs (named the relation structure). The RPROPs conceptually function as
the relational links between subobjects, and the nodes in the semantic net.

The process of transformation consists of analyzing each conjunctive
term in the query and either creating a new instance of a structure, or
storing information in the appropriate slot of an existing structure. Each
instance of the subobject structure represents an object that is a sub-
object of the query or a subobject in the definition of some higher object
in the Object Knowledge Base. The subobject structure slots are shown in
Figure 4.

At the end of the initial transformation of the query into a semantic
net the type, relations, PPROP and GPROP slots of the subobject structures
created are filled. Global lists of all the subobjects (nodes) and all the
relations (arcs) in this primary net are stored in a short term memory
area. The rules attached to the heuristics slot in the object data
structure are then used to augment the primary net by creating new sub-
object and relation structures.

Next, the subobjects in the semantic network representation of the
query object are prioritized to determine the order in which the individual
subobjects and their associated RPROP's (i.e., constraints) will be passed
to the lower levels of the search process for resolution. Prioritization
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for this constraint satisfaction process is accomplished using two factors:

1) Prerequisite object(s) needed to satisfy RPROPs.

2) The level of constraint (i.e., estimated amount of areal elim-
ination) imposed by the RPROP.

Levels of constraint for RPROPs in this context are determined through
the use of the distribution knowledge stored in the high levels of the
Locational Database. From this knowledge, information on the typical size
of the object, form of the distribution (e.g., degree of clustering) and
areal concentrations can be derived for any search window and for any layer
or combination of layers. This distribution knowledge is computed and
saved in the Locational Database at the time of initial data input and is
thus always present.

The estimated computation cost of spatial search for a given object or
subobject is calculated primarily on the basis of the estimated total
number of location tree nodes which must be accessed given the stored
distribution knowledge. The prioritization procedure aims at maximally
utilizing all available information to minimize the total system effort
used in satisfying a query in anticipation of a Locational Database search.
This information includes object-oriented knowledge, locationally-oriented
knowledge and knowledge concerning the performance characteristics of the
system itself.

The first step in the search procedure attempts to satisfy all the
unary predicates (GPROPs) that apply. Processing consists of comparing
stored GPROP information against desired GPROP information and matching the
ranges of function values. If no information on the desired GPROP is
available for a particular example, it is pushed to the end of the queue of
example locations.

The constraint satisfaction checking is accomplished by backtracking
through the space of examples. Subobjects are instantiated in decreasing
order of priority. The backtracking develops a partial solution based on
the application of the RPROPs to the found examples. The advantage of
backtracking is that it yields the best partial path using all examples.
While in a conventional constraint satisfaction problem it might be
desirable to apply arc and path consistency algorithms, in the present case
the problem is not a closed one; the domain of each variable can be
expanded through spatial search. The set of partial solutions developed is
stored in a best first manner.

The k most advanced solutions using previously known or found examples
are extracted from the results of the backtracking, where k is an adjust-
able parameter. This list of partial solutions is iterated through as
follows. For each partial solution (best first) the locations of the known
examples are bound to the curloc slots of the appropriate primary sub-
objects. The curloc slots of subobjects that are to be searched is set to
nil. The primary subobjects to be searched are stored in a global list.
The value of each primary relation is set to TRUE or FALSE depending on the
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solution being investigated. The primary relations that are FALSE are also
stored in a global list. These two global lists are passed to the mid-
level search module, which then initiates a constrained search restricted
to a subarea within the search window on the Locational Database. This
operates on the subnet defined by the set of currently FALSE relations, and
the associated subobjects. The definitions of each subobject to be
searched and the heuristic information that pertains to it are available to
the mid- and low-level search.

Upon the conclusion of the Locational Database search, control is
transferred back to the high-level search module. If the additional
instantiations found via locational search do not yet complete satisfaction
of the query, the next of the k partial solutions is instantiated. If a
solution has been found (i.e., all constraints are satisfied), the query
has been answered and the solution is returned.

When the list of partial solutions is exhausted, constraint satis-
faction is reapplied to the net and the procedure repeats itself until a
solution has been found or a predetermined stopping criterion is satisfied.
The reapplication of the constraint satisfaction is based on examples of
specific subobjects which have been added by the spatial search module
during the course of the k preceding unsuccessful searches to the
exampleloc slot of structures.

2) Mid-Level Search

There is a link between the high-level, object-oriented search and the
low-level, location-oriented search which we term the mid-level search.
The role of the mid-level search is to invoke a low-level search of the
Locational Database if information on specific object or subobject
instances stored in the Object Knowledge Base is insufficient to satisfy
the query, and to directly invoke the GPROP and RPROP operators.

The mid-level search utilizes a series of working memory cells,
containing information on the current subobject being searched. Each cell
contains the complete locational definition of each candidate instance for
each active subobject. These candidate instances can be augmented or
initially entered by the low-level search. RPROP constraints are tested by
invoking the appropriate function on these cells.

As stated previously, the ^object' to be retrieved to satisfy a user
query is defined in terms of a conjunction of subobjects with a certain
number of GPROPs. Each subobject can itself be defined in terms of a
conjunction of subobjects. Therefore, the definition of the main object
can be nested several levels deep. For this reason, the mid-level search,
including management of the cells, is implemented as a recursive function.

The mid-level search loads components of the prioritized semantic net
created by the query processor for each subobject to be found into a
working memory cell. This is done for each subobject, in turn, when it is
raised to the head of the priority queue. Since subobjects may appear more
than once in the definitions of a series of more complex objects, duplicate
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subobjects are temporarily 'marked' to avoid redundant search. If no
examples were passed down from the Object Knowledge Base or if known
complete examples have already been discarded for not satisfying the
constraints, then the mid-level search invokes the low-level search expert.
This expert operates directly upon the Locational Database within the
current search subwindow to retrieve complete locational definitions for
new examples of a given subobject that has been defined as a conjunction of
primitive objects. (A primitive object is defined in this context as
corresponding to a single layer in the Locational Database.) The process
employed by the low-level search expert is described below.

If full locational definitions of known examples are present, the
appropriate GPROP operators are called to eliminate all candidate instances
not satisfying the given GPROP constraints. Each of these GPROPs is
implemented as a separate function. These are: shape, texture, size and
distribution. If the subobject represents a conjunction of primitive
objects which has been found through search of the Locational Database,
these may have been already invoked at that level.

The appropriate PPROP operator is called to sequentially check each of
these candidate subobject instances to find examples satisfying the given
RPROP constraint. Each RPROP is also implemented as an individual funct-
ion. All but one of these operate on the locational information contained
in two cells. The RPROP functions are: l)inside, outside (containment), 2)
relative direction (8 possible - north, north-east, east, etc.), 3)
adjacency (= next to, touching), 4) distance, 6) connectivity, 7) nearest
neighbor.

3) Low-Level Search

The locational search for each individual subobject is designed to
eliminate as much area as quickly as possible while minimizing the total
number of accesses to the Locational Database. This is partially accompl-
ished by performing a search on as many data layers as possible simultan-
eously (i.e., as each locational node is retrieved). Constraints which can
be satisfied during direct search on the Locational Database include all
GPROPs (potentially distributed over separate sub-objects).

When the low-level search is initially invoked by the searcher, a
locational search queue for the entire query search window is initialized.
Search is subsequently limited to within a given locational subwindow which
represents the most likely spatial window containing a subobject instance
or instances that can potentially satisfy the relevant component of the
original query. This subwindow is determined by the high-level search.

When all instances are found within the given subwindow that satisfy
the GPROP constraints, the state of the search in relation to the entire
search window is saved and control is passed back to the mid-level search.
If the instances found do not satisfy the RPROP constraints, control is
passed back to the low-level search and the process resumes in a new
subwindow.
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The location tree search process is divided into two distinct tasks;

1. Find individual instances.

2. Find complete locational coverage of each instance.

Finding individual instances is performed with either a modified breadth-
first or a modified depth-first strategy. Finding the complete locational
coverage of each instance is performed either as soon as the first location
of a new instance is performed either as soon as the first location of a
new instance is found via a region growing procedure, or as a batch
clustering procedure after all locations occupied by any of the instances
are found.

The first step for search in each locational subwindow is to determine
the initial pair of search heuristics (one for each of the two steps) to be
used. This is done on the basis of;

1. The desired quantity, relative to the total expected number
of instances within the search window (i.e., all or most vs.
one or few).

2. The overall density of the distribution within the window.

3. The typical size of the desired object (small vs. large).

These are expressed in terms of a small set of rules used to determine the
proper choice, and are evaluated based on the distribution information
contained in the Locational Database.

If these constraints indicate a non-exhaustive search (e.g., find the
largest object), a depth-first strategy is preferred in order to quickly
narrow in on the desired instances. If, on the other hand, an exhaustive
search is indicated (e.g., find all instances within the search window),
the choice of heuristic would in this case be chosen so as to minimize the
maximum size of the areal search queue during the location tree search.
For example, if the object being sought is known to be 'large' and there
are known to be few instances of such an object within the search window,
then as soon as the first spatial index contained within such an object is
found, that index is immediately passed on to a region growing procedure
which finds the remaining areal coverage for that instance. This process
is repeated until all desired objects are found.

If, on the other hand, the object being sought is 'small' and 'numer-
ous' then all locations within the location tree which satisfy the con-
straints for the object being sought are gathered into a single list. This
list is then passed to a clustering procedure which groups locations in the
individual objects. These two situations represent simple examples of a
rule-based procedure for selecting the appropriate combination of search
heuristics and parameters to be used.

The order in which the areal quadrants (i.e., nodes of the location
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tree) are to be searched for each subobject is dynamically adjusted during
spatial search on the basis of global distribution information stored at
all levels of the location tree except for the leaves. As this distri-
bution information changes relative to scale (i.e., lower levels of the
tree) and to that area of the window currently being searched, the heur-
istics themselves may also be modified to maximize search efficiency. It
must be noted here that due to the nature of heuristics, the fastest
possible method of search is not guaranteed for every instance.

4. Types of Spatial Search

The satisfaction of a locationally-based query will usually entail
finding a number of objects within a given spatial search window. Each
instance of a given object must satisfy the set of GPROPs that apply to
that object. In addition, the set of objects found must satisfy all the
RPROPs that apply.

The locational search in satisfying a component of a user query can be
classed into three distinct types according to the amount of high-level
knowledge which is available to guide the search in the form of constraints
added to the original user query:

1. Search for known objects which are completely described in
the object knowledge database.

2. Search for partially described objects.

3. Search for objects which are not described in the object know-
ledge database.

In the first class of search, all characteristics which represent
high-level knowledge used to guide spatial search are known and stored in
the object knowledge database. This includes properties (GPROPs) such as
Atypical^ size, shape. It also includes examples of known locations. In
some cases, the stored locational examples may provide enough instances to
satisfy the relevant portion of the query. In this case, all search
heuristics are bypassed and the process becomes one of direct retrieval.

In the second class of search, some information concerning the desired
object is known. Such information includes stored knowledge which des-
cribes the characteristics of the class of objects to which the desired
object belongs. This general knowledge is used in heuristics very early in
the search process to more quickly narrow the spatial areas to be searched.
Stored information may also include knowledge of known spatial associations
with specific other objects that are fully described. In this case, the
search for unknown objects is anchored around the locations of these known
objects within the search window.

In the last class of search, the spatial characteristics of the
desired object are completely unknown. This relies solely on the lower-
level heuristics which use the distribution information of individual
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Locational Database data layers to limit and prioritize the spatial areas
to be searched. This would obviously be the slowest type of search since
it has the least amount of knowledge for guidance. This is, however, the
most frequent type of search used during the early phases of system use
until higher-level knowledge learned from previous queries is accumulated
in the object knowledge database.

c) Current Status

The structure of the overall search control process which incorporates
all of the features originally envisioned has been designed and a prelim-
inary test version has been implemented.

Basic principles for using spatial spectral information in guiding
spatial search, as well as a method of representing this information within
the current database design has also been developed. This is described in
a separate report attached as Appendix B.

SUMMARY OF CURRENT STATUS

In light of the abbreviated time of work, it must be noted here that
most of the work elements that were specified for the current phase of the
grant were cumulative in nature; i.e., commencement of productive work in
some areas required completion of major portions of other work elements.
Both components of the database (Object Knowledge Base and the Locational
Database) were completely redesigned and rebuilt. The overall search
control structure, which is intended to handle both object- and locat-
ionally-oriented queries with equal ease and efficiency, was designed and a
preliminary version was implemented. Building upon this control structure,
empirical investigation of the use of this structure for answering locat-
ionally-based queries was conducted.

Two factors combined to slow the anticipated pace of this work:
First, the VAX/Common Lisp environment proved to be insufficient for a
large, multidimensional database. Much time and effort was spent on
devising 'clever', low-level methods for stretching the data handling
capacity of this environment. Second, new algorithms for many 'standard'
spatial data manipulation procedures had to be developed so that they were
efficient and compatible with other procedures in this significantly
different and innovative database/search design.

16
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Abstract

There is a .rapidly growing need to use geographic
information systems (GIS) to manage extremely large databases
containing data integrated from a number of imagery, cartographic
and other sources for a variety of applications. Current GIS
technology is, however, exhibiting severe shortcomings in meeting
these performance demands.

The underlying cause of these current shortcomings of GIS is
that geographic data possesses a number of special
characteristics not shared with other types of two- or three-
dimensional data which must be taken into account: First,
natural geographic boundaries tend to be very convoluted and
irregular. They subsequently do not lend themselves to compact
definition or mathematical prediction. Geographic databases
consequently tend to become extremely large. Second, the data in
digital form tend to be incomplete, imprecise and error-prone due
to both the context dependencies of the definitions of many
geographic entities and relationships, and the characteristics of
the data gathering process. Third, spa.ial relationships tend to
be fuzzy or application-specific, and the number of possible
spatial interrelationships is very larga.

Spatial data structures or data mcdels which take all of
these characteristics into account currently do not exist. In
the present paper, a database design is described as the basis of
a prototype system currently under development which Artificial
Intelligence techniques with recent developments in database and
spatial data processing techniques to overcome these problems.

The architecture of this database, its advantages in
utilizing AI techniques in a spatial context and its
functionality within a running kncwledge-based geographic
information system are discussed.
\



Introduction

Problems with Current Geographic Information Systems

Many problems of geographic analysis require the sti)raqe
retrieval, and manipulation of databases that:

(1) contain very large amounts of geographic data;

(2) contain many diverse data types, such as
functions (e.g., digitized elevation data,
data), vector-valued functions (e.g., multisp.3ctrai
data), categorical-valued functions (e.g., lai»<3 use
data) and functions taking general symbolic Values
(e.g./ place-name data);

(3) contain many layers of data of different l.ypes,
interrelated by complex (implicit) relationships;

(4) are capable of solving a large array of 3ifrerent
problems, some of which may not have been antic i pated
by the system designers;

(5) provide quick .interactive response.

There has been recent recognition of the need to conotruct
geographic information systems (GIS) that possess all of these
capabilities. For example, a growing number of federal -level
government agencies world-wide are currently attempting to build
very large, integrated spatial databases for incorporation into
geographic information systems which will, in turn, becoi,,e the
basic analytical and information tool within their respizctive
organizations. The U.S. Geological Survey is envisior,£nq a
cartographic database containing all information from 55,0'iQ y_
1/2 minute map sheets covering the entire United Stattig> A
conservative estimate of the total digital data volume geni3i:ated
by these maps when digitized at cartographic precision io 10
bits for a single data layer (e.g., topography or hydrol0gy) .
NASA is currently planning to develop an integrated datiabagg
system incorporating all Landsat and other spacecraft dat;4 for
the earth, as well as outer space.

Current GIS have consistently exhibited severe problems with
response times and storage volumes for data sets of anv

significant size, as well as with rigidity and narrowness in
their range of applications. Existing GIS technology requ£res
operation on a predefined data set with "built-in" objects ana
.relationships. The integration 'of different types of geograp-hic
data, such as imagery and digital map data, is possible only
under very special conditions.

These problems are related to three special character! stics
of geographic data which are not shared with other types of: two-



or three-dimensional data. First, geographic "objects" tend to
be poorly defined and their boundaries tend to be convoluted and
irregular. Hence, they do not lend themselves to compact
definition and quickly become extremely large. Second, the data
in digital form tend to be incomplete, imprecise and error-prone
due to high variability in characteristics and overall quality of
original archival documents and the characteristics of the
digital capture process. Third, spatial relationships between
objects tend to be imprecise or application-specific, and the
number of possible spatial interrelationships is very large.

^

Potential Solutions . . •

The current performance demands on CIS technology thus
requires significant advances in three areas; to develop data
models which represent geographic phenomena more efficiently and
completely, develop procedures for searching complex geographic
databases in an extremely flexible and efficient manner, and to
develop methods for dealing with imprecision.

It is the aim of the research described in this paper to
construct a prototype CIS which simultaneously addresses all of
these areas by employing:

"(1) a highly flexible, robust and efficient method for data
representation and retrieval;

(2) heuristic search procedures;

(3) the capacity to learn.

Recent research in the area ' of spatial data models has
revealed the significant potential of an entire class of data
models new to the application of automated geographic data
processing but which are based on well known geometric
principles. These are recursive tessellation models which offer
a much greater degree of flexibility and efficiency than grid or
vector-type models currently used in CIS.

Heuristic search procedures involve the use of shortcuts to
greatly increase data retrieval speed by eliminating large
portions of the database from consideration at an early stage of
the search process. Heuristics utilize built-in data about the
data--i.e., knowledge about how the various data elements are'
distributed within the database.

The capacity to learn is the most powerful means of dealing
with imprecision and uncertainty. This allows a system to
provide answers in terms of "confidence margins" and to adapt to
new kinds of queries and applications.

In order to deal with fuzzy entity definitions and fuzzy
relationships, knowledge needs to be built into the database



system. This would obviate the current need to insert artificial
precision into the data, and would allow a more natural data
representation. This knowledge-base can also be used as a self-
checking mechanism to detect and potentially correct data errors.
Such a system would be able to answer user queries concerning the
relationships of complex objects in a large landscape where the
specific query or application cannot be anticipated by (i.e.,
built into) the system. This flexibility would not only greatly
extend the types of data and range of application a single system
could handle, it would extend the useful life of a system for a
given application as needs grow and change over time.,. The system
would also use its knowledge-base to effectively narrow down the
problem'"s search space with respect to: (1) data retrieved from
the large geographic database, and (2) activation of CIS
operations on the data retrieved.

Besides overcoming a number of existing major problems in
CIS, the application of the results of recent AI research on
learning may have a profound impact on the field of geography as
a whole, since learning procedures could be built into a CIS for
the purpose of adapting to the imprecise and voluminous nature of
geographic data as the system acquires knowledge about the
phenomenon. This means that such a system can be used to acquire
new knowledge concerning the nature of geographic phenomena and
their interrelationships.

The prototype described here is designed to solve problems
which are generally considered to require expertise, and which at
the same time may require rapid search and manipulation on an
extremely large and heterogeneous data space. Such systems are
called "knowledge-based" because they are based on the use of
stored facts and logical rules, including heuristics. The
current prototype system under development at UCSB has been
named the Knowledge Based Geographic Information System (KBGIS).

Knowledge-based systems to date are 'normally limited to
either solving complex problems or to handling very large data
volumes. However, the current research expects to show that
database and spatial data processing techniques, though developed
by independently evolving technologies, can be combined with AI
techniques and applied in a complementary manner to enhance the
capabilities of the individual techniques for application in CIS.
Similarly, it is expected that this combination would yield a
system with data volume capacities, levels of computational'
efficiency, and range of applications well beyond those which can
be provided using traditional CIS approaches. The KBGIS is
designed to demonstrate the feasibility and potential power of
this new approach.

r-

One major problem in doing this is that the methods of data
representation in AI, though superficially similar to
hierarchical representations in spatial data handling, differ
significantly in their methods of implementation and manner of
use. Since the data storage and retrieval methods employed are



the basis upon which the rest of any system is built, this was
the first problem to be solved in building a knowledge-based
geographic information system.

A brief overview of the system will be given in the next
section. The remainder of this paper will present a detailed
description of the database architecture and its'- functionality
within a knowledge-based geographic information system.

Overview of the Knowledge-Based *"
Geographic" Information System

KBGIS is currently restricted to answering queries in a
given domain, centering around the use of remote sensed data for
natural resource problems. The -current functional database
includes topography, rainfall, land use and vegetation for a
•small test area.

Figure 1 shows the major components of KBGIS and how they
are interrelated. The dominant feature of this design is the
dualism of functions relating to; 1) spatial objects, and to 2)
the distribution of those objects in space. These functions are
logically distinct in the system design, with each group of
functions and storage methods specifically tailored for maximum
flexibility and efficiency in handling the two primary types of
operation: one is to answer queries concerning objects at a
specified location, the other is to answer queries concerning the
location of specified objects.

Because of this duality, many equivalent procedures are
implemented in both portions of the system, and much data are
stored on both forms. Nevertheless, a basic assumption
underlying this design is that much of-the power and efficiency
of the system is derived from this.

Under actual use conditions, it is expected that queries may
often have both object-based and spatially-based components. The
two portions of the system are therefore interrelated and
designed to work together in answering individual queries.

Knowledge is built into the system in the form of rules and
the procedures for using these rules. These rule-based
procedures occur at several levels of the system for performing
various specific functions, as will be seen below.

System Architecture

As shown near the top of Figure 1, the query parser acts as
the translator between the user and the remainder of the system
and functions in the same way as a query parser in any modern
information system. The high-level user query language is
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translated into sequences of lower-level system commands.

The next level in the system is the high-level query
control. This portion of the system contains knowledge about
what capabilities are available within the rest of the system,
what combinations of lower-level tasks are needed to perform
higher-level complex tasks, and maintains statistics on how much
time is required to execute these tasks. This knowledge is used
by the high-level control to determine precisely what path
through the system is to be used in answering each user query,
such as, whether the object or spatial portion of the database
must be used in answering a particular"portion of the query.
This knowledge is a'lso used for automatic performance •• tuning by
selection of the shortest-time path based on performance
statistics from previous queries. This tuning mechanism may also
detect system bottlenecks which can only be corrected by manual
intervention to modify or add algorithms.

The next level of the system consists of two complementary
components, one for the object and the other for the spatial
portion of the system. These each contain object- and
spatially-oriented problem solving rules,respectively. These
rules are gradually accumulated and modified by the learning
portion of the system. They are used by the system for various
types of tasks, such as database search and retrieval.

These two components of the system -also contain the
libraries of low-level algorithms which are combined in various
ways determined by the higher level control to answer queries.
These low-level algorithms operate directly on the stored data.

The learning procedures by which the system is capable of
acquiring new knowledge concerning the properties of data
entities and the relationships between entities are contained in
a separate portion of the system which operationally transcends
the object/spatial distinction.

Learning can be accomplished either inductively or
deductively. Inductive learning is user driven and is
accomplished by the user supplying examples of new
characteristics or relationships. Deductive learning is
accomplished by the storage and accumulation of information
gained from previous queries.

The KBGIS Database

Overview
r

The KBGIS is based upon a pair of hierarchical data models,
one spatially-oriented and the other object oriented. The data
are organized spatially in the form of quadtrees. Quadtrees have
been discussed extensively by Samet and others (Samet, 1983;
Klinger, 1971; Klinger and Dyer, 1976; Finkel and Bentley, 1974).



In the area quadtree model which is used in KBGIS, the geographic
area is recursively divided into four quadrants, as shown in
Figure 2. This subdivision of space translates functionally into
a regular, balanced tree of degree 4

Each separate type of data, or coverage, is arranged in a
separate quadtree, and all quadtrees are spatially registered, as
shown in Figure 3. This arrangement has become known as a
"forest" of quadtrees, and allows efficient search through
multiple coverages for all data pertaining to a given location.

4.

The regular nature of this data model allows a simple
indexing scheme to be used for direct addressing to increase
retrieval efficiency. This indexing scheme will be described in
greater detail later in this paper.

The data are also organized by object in a tree structure.
The particular data model used here is known as an and-or tree, a
standard device used in artificial intelligence applications for
problem solving by subdividing a problem into a series of smaller
sub-problems. In the context of the KBGIS, the and-or tree, is
used to record, in effect, a taxonomy of data objects. At each
node in the and-or tree the names and properties of classes of
data objects are stored. There are two kinds of links. The
father-son links without a cross-link bar, as shown graphically
in Figure 4, is an "or" relation. This indicates, for example,
that either mature or immature orchard can be classes in a more
general sense as "orchard." The father-son links shown
graphically with a cross-link bar indicates an "and" relation.
For example, "eroding orchard" in Figure 4 is composed of the
combined set of "orchard" and "slope".

The objects in any individual Object Tree are functionally
data values. These values may be nominal in nature; "county",
"city", "orchard", etc. They may^also represent elevation range
or other data value classes which we would not normally associate
with named geographic objects.

Each class of data (hydrology, topography, etc.) is not as
distinctly organized into separate hierarchies as is the case
with the quadtree portion of the database. Since there are often
logical interrelationships between given classes of data, the
Object Tree's tend to be interlinked.

At the leaves of the Object Trees are the primative objects
which cannot be further subdivided. With these objects are
stored the spatial definitions of each individual occurrence
within the database. This spatial definition is in the form of a
.list of quadtree addresses.

Because of the more irregular nature of the Object Tree,
this portion of the database is implemented using pointers.
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Spatial Trees

The quadtree data model was chosen for use in the Knowledge
Based CIS for a number of reasons:

First, Quadtrees are based on the square grid model and
retain all of the inherent advantages of a regular tessellation.
The foremost of these is its extreme flexibility in being able to
portray the distribution of almost any .type of phenomenon over
space. This flexibility in part is derived from its simplicity
and in part from . the characteristic that all spatial
interrelationships are implicitly and inherently present within
the data model. The square grid is also compatible'with a wide
range of existing spatial data processing techniques,
particularly those derived for the field of image processing.

Second, tree storage and search techniques is one of the
more 'thoroughly researched and better understood topics in
computer science. This includes techniques for implementation as
a file structure, such as hashing, which would eliminate the need
to store null cells while allowing rapid retrieval via direct
addressing. In other words, familiarity with regular tree
handling means that the implementation techniques are known and
performance characteristics are predictable.

Third, in cartographic terms this is a variable scale scheme
based on powers of 2. This means that scale changes between
these built-in scales merely require retrieving stored data at a
lower or higher level in the tree. Stored data a multiple scales
also can be used to get around problems of automated map
generalization. The obvious cost of these features, however, is
increased storage volume.

'A fourth factor is efficiency. At first glance, it would
seem that the quadtree data model would be unsuitable for large-
area spatial databases because of combinatorial explosiori.
However, it must be remembered that although the number of cells
increases four times at each successive level in the hierarchy,
the area of cells at each successive level decreases by one-
fourth. This means that the individual cell size quickly becomes
very small. Thus, 9 levels are needed to store 40 meter
resolution pixel data at the lowest level of the quadtree for a
geographic area equivalent to one 7 1/2 minute quadrangle map.
This results in 57,334 leaf nodes and approximately 87,381 nodes
in the whole tree. To store data for the entire surface of the
earth at 40 meter resolution, only 21 quadtree levels are
required. A full quadtree of this depth contains approximately
10 nodes.

r

Fifth, the recursive subdivision facilitates physically
distributed storage, and greatly facilitates browsing operations.
This is a major advantage for very large databases. Windowing,
particularly if designed to coincide with areas represented by
quadtree cells, is also very efficient.



All of the above advantages hold for application of the
quadtree data model in any large CIS. Nevertheless, the most
significant advantage of quadtrees for a knowledge-based CIS is
that their inherent hierarchical structure is compatible with
standard AI problem solving techniques, which are in • large part
based on tree traversal.

Spatial Addressing
•• •• • i ii " t

Because KBGIS is specifically designed to efficiently handle
very large volumes of spatial data, the usual'- method of
implementing a quadtree structure through the use of pointers is
too inefficient. This is true both in terras of the extra space
required to store the pointers and the time required to
sequentially trace through a long sequence of pointers in order
to retrieve any single data element.

KBGIS employs a direct addressing scheme which is derived
from a locational code initially described by Morton [1966],
Although this code was based on a grid, it can be expressed in
quadtree form as was noted by Torpf and Hertzog [1981].

The basis of the numeric locational key used in KBGIS is a
recursive numbering scheme for four quadrants/ as seen in Figure
5. Each successive level in the spatial decomposition requires
one additional digit to indicate level.' This scheme, at any
given level, is the Morton matrix scheme. The only difference is
that base-4 notation is used to give a better representation of
the quadtree model. This results in physical storage of the
quadtree nodes in breadth-first order, i.e., each complete level
is stored in sequence, starting from the top level. The finest
resolution layer, or leaves of the quadtree, are thus stored as
the last level in each coverage file. This order maintains the
level-specific nature of the addressing scheme.

This scheme has important characteristics which facilitate
spatial retrieval (Mark and Lauzon, 1983). The numeric ordering
of the quadtree cells generates the trace of an N-shaped Peano
curve, as shown in Figure 6 (White, 1982). These Peano curves,
also know as space-filling curves, track through space in such a
way that N-dimensional space transformed into a line and vice-
versa.

The three properties of Peano curves which are useful for
spatial database applications are:

(1) The unbroken curve passes once through every locational
element in the data space.

r

(2) Some of the spatial associativity of the scanned data
space and the single dimension found by the scan are
preserved. Most particularly, points close to each
other on the curve tend to be close to each other in
space, and vice versa.
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(3) The curve acts as a transform to and from itself and
N-dimensional space.

Obviously, the first property is essential in database
applications to provide a unique search key.

The second property provides efficiency in retrieval for
areally coherent data in consecutive or near by locations in
storage. This is an advantage with geographic data since many
phenomenon such as land use, and elevation tend to be spatially
clustered. «.

As a result of the third property, the address code
represents a bitwise interlacing of the x and y cartesian
coordinates at each level of resolution, as shown in Figure 5b.
The quadtree address can thus be quickly calculated from any x-y
coordinate by alternating bits from the binary representations of
each coordinate. Conversely, the cartesian coordinate for any
given quadtree address is easily calculated by performing the
reverse process (Torpf and Herzog, 1981).

The properties of Peano curves have also been shown to have
significant utility for a number of procedures derived from
remote sensing applications which are used within KBGIS. These
•applications include histogram equalization adaptive thresholding
and spatial spectrum techniques. The reason for this is that
these and many other techniques for manipulating and analyzing
image data are sequential and single channel operations, i.e.,
they are linear in nature. The property of preserving some of
the spatial relationships within the Peano scan sequence allows
for these procedures (Stevens, Lehan and Preston, 1983).

The most important consideration of Peano curves is that
these known properties, and others which can be derived from them
in this particular context, can be used to form the primary
search heuristics used by the locational problem-solving portion
of the system. These search heuristics are in the form of a
series of rules which act as the basis of a dynamic decision-
making process on how to most quickly retrieve the required
quadtree nodes when specific addresses are not specified. This
type of search is needed to answer an object-based query, such as
"find the locations of all irrigated orchards", when this object
has not yet been entered into the Object Trees. As such, the
query is interpreted as a series of search constraints. (As a
result of the query, "irrigated orchards" may also be entered'
into the Object Tree for use with future queries.)

The spatial data structure used in KBGIS is efficient for a
number of other essential frequently used procedures in a CIS
context. Some of these procedures are discussed below.

Data Retrieval Operations

Many spatial retrieval operations are performed via address



calculations. A tree traversal search which may require many
access to the database to retrieve individual data items is thus
avoided. The address calculations are performed using bitwise-
interlaced arithmetic. For example, retrieval of the last
neighbor cell of cell address 031 requires the following simple
addition:

031 + 1 = 120
•

,or in binary notation;

001101 " '

011100

Retrieval of the North-West neighbor of the same cell requires a
subtraction: . .

031 - 3 = 012

,or in binary notation;

001101
11

000110

Geometric calculations such as point-to-point distance are
performed in the standard manner, but using bitwise-interlaced
arithmetic:
For example, cell distance between location 032 and 312:

312 - 032 ='

110110
-001110

100 = 4,0

10 = 2^

(1002 - 102)
2 = 1002 = 41Q

The primary difference to be remembered here is that cell size is
level-specific. All distance and area measurements must
therefore be adjusted to a constant scale.

w

Rectangle retrieval problems, including range searching and
containment are reduced to binary search problems involving
binary code range shrinking. The range search problem has been
described in detail by Torpf and Herzog [1981], This involves
recursively testing if a candidate address is within the



specified window. If not, the addresses for the descendant sub-
tree are not tested. Thus, whole quadrants can be eliminated one
at a time without any database access taking place. This address
test is implemented as a bitwise comparison of the candidate
quadtree code.

Empirical experiments'performed by Torpf and Herzog indicate
that search time complexity for range search is logarithmic with
the number of records using this scheme. .More specifically, the
expected time for searching a single quadtree is 0(2(logN + F) ),
where N is the number of nodes in the tree, and F is •- the number
of nodes found within the specified range.

Search Heuristics

Although point and rectangle retrieval retrieval are seen to
be efficient and straightforward utilizing a bitwise interlaced
scheme for direct addressing, it is often not suitable in the
retrieval of geographic objects, which tend not to occur
naturally in compact shapes. Geographic entities, instead, tend
to have convoluted and highly irregular shapes. They may also
have holes or be discontinuous, with isolated portions scattered
throughout the data space. This is particularly true within the
context of the KBGIS where an "object" is really a data value or
range of values, such as "orchard" or "20-30 feet elevation."

The rules used by search heuristics are tailored to minimize
search time for these types of occurrences. . Spatial search
heuristics are particularly important in the Spatial Trees
because this is the larger portion of the database. Although
Object Trees are initially manually entered into the system,
these are rudimentary in nature. All other data are entered into
the system as quadtrees. As the system is used it acquires
knowledge about spatial objects and builds the Object Trees
autonomously. Thus, in the system's early state, it must rely
heavily on retrieving information from the Spatial Tree portion
of the database. This means that queries such as "find the
.locations of all eroded orchards" can often not be aided by
referencing the Object Tree portion of the database. Once an
object-based query such as this is answered utilizing the
spatially-based portion of the database, this information is
stored in the Object Tree for use in future queries. In this
way, the data are propogated in the Object Tree and object-based
queries gradually become more efficient.

The objective of the search heuristics is to search very
quickly through a very large database by using knowledge about
how the data are spatially distributed in order to eliminate
large portions of the database for consideration at an early
stage of the search. In order to aid this process on the Spatial
Trees, spatial statistics derived from the spatial spectra are
used as additional inputs to the decision-making process. These
spatial statistics are computed and stored at the nodes of the



Spatial Tree.

Spatial spectrum techniques were developed within the field
of image processing and provide a compact method for describing
spatial distributions. Thus, spatial spectra can be used to
guide search procedures by indicating at a given quadtree level
(i.e. scale) whether the distribution in the descendant nodes -is
clustered, scattered, and how large or small the individual
objects tend to be.

Development of these heuristic search techniques^ are still
in the formative stages, but it is expected that this feature
will allow spatial search timing performance ' which are
substantially better than methods .utilizing conventional methods.

Summary

The integration of techniques from spatial database,
Artificial intelligence and. image processing show significant
promise in overcoming simultaneously several of the major
obstacles preventing geographic information systems from handling
large, heterogeneous spatial databases in an efficient and
flexible manner.

The Knowledge Based Geographic Information System is
demonstrating that techniques from these independently developed
fields can be integrated in a natural manner, and that the
capabilities of one can be used to substantially enhance another.

The duality of the database design of KBGIS is in itself a
significant step in overcoming some seemingly inherent
shortcomings in current CIS.

Most existing CIS are based either on vector- or raster-type
data storage structures. From a modeling perspective, the Object
Trees and Spatial Trees used in KBGIS are a vector-type data
model and a raster-type data model, respectively. The basic
logical component of a vector model is a spatial entity or
object. The spatial organization of these objects are explicitly
stored as attributes of these objects. Conversely, the basic
logical component of a raster-type model is a location in space.
The existence of a given object at that location is explicitly
stored as a locational attribute.

The use of both simultaneously, with carefully designed and
controlled redundancy, would in itself greatly enhance the
potential range of applications and flexibility ' in representing
data and speed efficiency of any CIS.
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Abstract

An efficient technique is presented to generate and represent spatial distri-

bution information for large volumes of spatial data. Quadtree spatial spectra

(QTSS) are introduced and derived based on the quadtree data structure. In

comparison with conventional transforms such as the Fast Fourier Transform

and the Fast Walsh Transform, it is found that QTSS are much more efficient to

calculate but there is also some information Loss. QTSS generation and its uses

in high-, low-pass, and band-pass filtering are also developed.



-2 -

Introduction

Radiation spectra, consisting of tables or histograms of reflectance com-

ponents distributed at different electromagnetic wavelengths within a digital
*

image have been widely used in the fields of physics, chemistry and environmen-

tal remote sensing to identify objects. For example, vegetation, water and dry

bare soil can be easily identified via their distinctive characteristic spectral sig-

natures [10]. This is graphically shown in Figure 1. Here it can be seen that the

radiation spectrum of vegetation has a high response at wavelength l^um, while

soil has a high response at wavelength O.SAim.

Similarly, spatial spectra consisting of tables or histograms of spatial com-

ponents distributed at different spatial wavelengths can be used to distinguish

individual objects and to describe the spatial arrangement of those objects. In

the example shown in Figure 2, a rectangular object and its 2-Dimensional

Fourier transform are presented.

Spatial spectra have been widely used in digital image processing for filter-

ing operations, such as smoothing and edge enhancement [8]. The basic

transform function most commonly used for generating spatial spectra is the

Fourier Transform. The Walsh Transform and the Hadmad transform are also

used in some cases. These spatial transforms are well developed. There is no

information loss during either forward or inverse transform procedures, which

make them useful for image reconstruction in image processing applications.

Although The Fast Fourier Transform (FFT) increases the speed of calculating

the Fourier transform significantly, it is still too slow for frequent operations on
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very large images and its 2-D spatial spectra requires almost'as much storage

space as the original image.

The purpose of the present paper is to describe a method to extract and
*

represent information concerning the spatial distribution of objects within a

digital image which is efficient enough for practical use in a very large data base

context. To this end. we assume that such a method must have the following

properties:

(1) Generating the new spatial spectra from a large volume of 2-D data must

be significantly faster than the FFT.

(2) It must have a highly compact representation.

(3) It must retain a significant degree of spatial information and allow spa-

tial filtering functions similar to other conventional transforms.

(4) A variety of functions based on interpreting the new spatial spectra

must be simple and computationally efficient.

It is assumed that some information loss can be incurred, resulting in

"approximations" for the sake of computational speed. In an effort to satisfy

these requirements, we introduce the concept of Quadtree Spatial Spectra

(QTSS). This is a quickly computed spatial spectrum statistic based on the

quadtree data structure. In the following discussion, we will show that although

it is not complete information preserving, as in the Fourier and Walsh

transforms, it still retains a great deal of useful information about the original

image.
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A review of the Quadtree structure

The quadtree data structure has recently received considerable attention

in the literature. It has significant advantages for geographic data storage and
#

processing, and some of these are particularly advantageous for large volumes

of data. The quadtree structure and associated algorithms have been discussed

extensively by Samet and others [21] [9].

Samet provides an extensive review of this subject. In the Quadtree data

structure, the geographic area is divided recursively into four quadrants. This

subdivision of space translates functionally into a regular, balanced tree of

degree 4. Only those quadrants which contain data need be stored. This simple

form of quadtree data compaction is known as a linear quadtree [11]. As shown

graphically in Fig.3, each square is a quadtree "node". A node with a larger

square is at a higher hierarchical level of the quadtree, and vise versa. A size-

able repertoire of algorithms based on the quadtree structure comparable to

those used in geographical data processing based on other data models have

been developed. These algorithms include computation for geometric proper-

ties such as region area and centroid. set operations for the comparison of

images [22]. connected component labeling and neighbor detection [18], dis-

tance transforms [19], image segmentation and data smoothing [16] and edge

enhancement [15]. Algorithms for the conversion of data from raster storage to

quadtree format have been developed and refined [5] and the storage efficiency

examined [6] and enhanced by using linear quadtrees [7]. Quadtree-based geo-

graphic information systems have also been proposed [20] and such structures
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have been presented [14] [12]. The possibility of using artificial intelligence to

improve a very large quadtree-based CIS has also been considered [3] [4] [25].

Description, of the Quadtree Spatial Spectra(QTSS)

Quad trees as a hierarchical data structure allow the storage of spatial dis-

tribution information which varies between levels of the hierarchy on a variable

scale scheme based on powers of 2. Spatial information at each of these scales

can be regularly organized as a quad tree spatial spectrum (QTSS).

¥e first assume that a raster image has been converted to its quad tree

representation. A Z^*ZN binary raster image can be represented by its quad

tree by successively subdividing it into four quadrants until all pixels within a

quadrant are homogeneous [9]. Figure 4a shows a simple binary image. Figure

4b is its corresponding quadtree, shown graphically and figure 4c shows the

same structure represented as a tree. Large cells, which are at higher levels in

the hierarchy correspond to long wavelength components in the spatial spec-

trum.

For construction of a quadtree spatial spectra, we assume is that a "black"

(i.e., occupied) quadtree node adds a component with a spatial wavelength equal

to the edge length of this node. The additive value of this component is propor-

tional to the size of the node. Thus, this spectra has power-of-two intervals on

the wavelength axis, corresponding to the size increments of the quadtree nodes

through levels of the hierarchy. The component strength at a wavelength, which
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equals the edge-length of a quadtree node at level i, is proportional to the

number of pixels (i.e. lowest level cells) within all those black nodes at level i. A

table or a histogram containing a set of these wavelength components is defined
f

as a Quadtree Spatial Spectra (QTSS) of the image.

In the quadtree spatial spectra shown in Figure 4d, note that there are two

curves. The broken line represents the sum of nodes at each wavelength inter-

val. The solid line is the quadtree spatial spectra curve. ¥e first explain the

broken curve. If an image can be represented by a quadtree with L levels. Its

QTSS has N elements, and it can be represented as a set whose length is N. For

instance, the image in Fig.4a can be represented as a quadtree (Fig.4b), which

has four levels. Its QTSS has length 4. In the notation used in the reminder of the

paper, the root node is defined at the level 0. There is no black node at level 0,

so we put 0 as the first member. There is one black node at level 1 and at level 2,

so the second and third members are set as 1, respectively. There are 14 nodes

at level 4, we put 14 as the fourth member. This set is represented as:

(0 1 1 14)

This set is represented by a broken curve in Fig.4d. Then we multiply these

node numbers by the total number of pixels (Le. leaf-level cells) represented by

a quadtree node at the corresponding level The result is shown by the solid

curve. A node at level 1 has 16 pixels and there is only one node, The solid curve

thus has 16 at level 1. At level 2, there is also one node, but the solid curve has

value 4 here, because each node has 4 pixels. At the level 3, there are 14 nodes

and they are single pixels, so the solid curve has value 14. We define the solid
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curve as the QTSS of this image, and represent it as following:

( 0 16 4 14 )

The Mathematical Derivation of QTSS

1. General Mathematical Formulas for Image Linear Transforms

An original scene g(x,y) can be viewed mathematically as a continuous sur-

face. Suppose a non-linear operator SQ[ ] samples and quantizes an image into

a digital image [G], so that

A general separable linear transformation on an image matrix [G], may be

written in the form

(2)

(3)

Consider unitary transform operators [£/].[f] such that

Thus.

Let's rewrite

[7] =

UN]

• • VN] (5)

Then

[ G ] = ( u 1 . . . u f f ] [ a ] (6)
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If the matrix a is written as a sum

«H
0.

6

0 .
0 .

. .

0
•

6
^

0
0

6

a 12
0

•

0
•

6
(7)

Then

X,;- Ui U/ (8)

The Fourier transform, YTalsh transform, Hadamard transform and discrete

cosine transforms, can each be expressed in the above forms. •

2. Function q(i. j) and set Q(i)

The definition of function q(i.j) at domain [O.T] is:

for

else (»)

Yfaere i is the level of the functions, j is the position sequence number from

left to right, T is the period. For each level i, the total number of j is 2*. For

example, the q(0,0) has only j=0, the 1st level has j=0 and 1, so on.

1
1
1
1
1
1
1
1 .

(•\ n\ —q(l,0) —

1
1
1
1
0
0
0
0 .

, . _
?(1,1; -

0
0
0
0
1
1 .
1
1 ,

We can define a set for all q(i,j) at same level i, called Q(i):

(10)

The pattern of function q(i,j) at top three levels for T=16 are as follows:
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3. Matrix Description

The set Q(i) can be described as a matrix. For instance, for T=8. Q(2) is:

9(2) =

1
1
0 1
0 1
0 0

000
000
0 0
0 0
1

0 0 1
000
000

Similarly, if we substitute Q for U in equation (5):

= [ 9[0] 9[1] 9[2] 9[3]
= [g(0,0)?

In matrix format T=8 would be:

1
1
1
1
1
1
1
1

1
1
1
1
0
0
0
0

0
0
0
0
1
1
1
1

1
1
0
0
0
0
0
0

0 0
0 0
1 0
1 0
0 1
0 1
0 0
0 0

0
0
0
0
0
0
1
1

1
0
0
0
0
0
0
0

0 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0 0
0 0
0 0
0 0
0 0
0 0
1 0
o i ,

(ID

4. Digital Image linear description in q(i. j)

Now we can describe a digital image applying the above formulas. Note that

2̂ 11 l(i» j) within each Q(i) are orthogonal to each other. Thus, an image can be

serially described by the following:

[G] = 9(0) [ o0 ] 9(0)' + Go

= 9(0)[oo]9(0)J + 9(D [ a, ] 9(1)' + G:

[ a0 ] 9(0)' + 9(D [ a, ] 9(1)' H- 9(2) [ az ] 9(2)' + Ga
 (12)

where Q is the redundancy of the image from the it* level approximation term
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and Oi is a matrix coefficient for the t^ term. We can recursively execute the

procedure until arriving the bottom of the quad tree, where the nodes are pix-

els. The redundancy at this level is 0,

(13)

<=0 j=0

where 1 is the maximum level number at the quad tree. o<;- is the coefficient.

For deriving the last step, we apply the orthogonal property of all function q(i,j)

with same level L When the values of all pixels in the image are either "1" or "0".

the image is called a binary image. (i.e., Oy is either 0 or 1).

From a mathematical point of view, two notes are interesting here accord-

ing to definitions of orthogonal and complete. First, a group of q(i, j) with identi-

cal i is orthogonal, but they are not complete. For instance, q(2, 0), q(2, 1), q(2,

2) and q(2, 3) are orthogonal. Second, total groups of q(i. j) with all i are not

orthogonal. Nevertheless, equation (12) can represent an image precisely. Both

orthogonal and complete definitions are from Beauchamp, 1984.

5. QTSS formulas

As mentioned above, all functions q(i,j) at the same level i are orthogonal.

Figure 5 shows all patterns at the top three levels of g(i lp j'j) q(iz, jzY-

The size of the individual quadtree cell varies with its level in the tree. The

number of squares in the whole image is 4*. Thus, Oy is the coefficient for

existence of a particular quadtree cell and we use the term
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to denote the component of the spatial spectrum at level i. Then, a set consist-

ing of these members at all levels can be expressed as:

j=o *=o i=o
«<

If the image is a binary image, where ay-is 0 or 1, each member £ Oy is the

number of squares at i^ level. Figure 4 shows a simple generation of QTSS

directly from a quad tree pattern.

The QTSS method uses a set of regular squares, with a fixed series of sizes

and positions. So far, the above derivation is not constrained to binary images.

( i.e., cty does not have to be either 1 or 0 ). This means that QTSS is applicable

to gray tone images.

Nevertheless, we will only discuss binary images in the remainder of this

paper for the sake of clarity. It is more traditional to think in terms of the pixel

concept instead of variable sized cells. A weight, which is the size (number of

pixels) of nodes at different levels, is therefore multiplied by each term to

improve interpretation of the spectra.

* ;=0

When this spectrum is normalized, the Quad Tree Spatial Spectra is generated.

QTSS = —^— [ Sa Sln S a . - - - . S j (16)
£s*
*=o
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Efficiency Comparison "with the Fast Fourier Transform
<•

The QTSS and other transforms are all described in general mathematical

forms (8) and (12). The Fourier, Walsh and other linear transforms have perfect
+

orthogonal functions for whole wavelength domain. Their transforms are com-

plete. As a result, their spectra in the wavelength domain include all spatial dis-

tribution information. Since the information amount in both spatial and fre-

quency domains are the same, they can be used as bidirectional transforms, for-

ward or inverse, without any loss of information, at least from the theoretical

point of view. Based on this property, these transforms play an important role

in image restoration as high-pass and low-pass frequency filtering procedures

[8]. However, these transforms require a large amount of CPU time, especially

for large 2-D data. For a 2-D image with size N*N. the FFT shortens execution

time from 0(N*) down to 0((N iog^V)2). They are thus not suitable for frequent

use in many geographic information system environments because of their com-

putational complexity and subsequent time requirements.

Conversely, QTSS do not retain complete information of the original image.

"When we derived formula (12), each member only has the sum of the coefficients

at the if* level without recording their positions. We can therefore not reverse

the QTSS procedure to restore the original image as is the case for the other

transforms discussed above.

For an image with N*N pixels, the computational complexity of generating

QTSS is proportional to 4/3./V2. or 0(NZ}. A simple explanation of this Ls as fol-

lows. Suppose at a level L, there are four quadtree nodes, nodeL[i], i=l. 2, 3, 4 .
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They belong to one node^^lj], at level L— 1. A procedure for calculating their

contribution to QTSS is:

begin *
initial j = 0

begin
for(i=l, 2.3, 4) do
if (nodejti] is 'black1 )
then j plus 1

end

begin
ifj = 4
then QTSS ( L ) plus 4
assign nodeL_Jk} 'black'.

end
end

This subroutine has 1.5*4 simple additions in the worst case, or we can say, the

number of additions is less than proportional to the number of nodes. For an

image -with N*N pixels, the number of additions at the lowest level is less than

N2

proportional to ——, and at the next lowest level, the number of additions is less

Nz

than proportional to — —, and so on. Thus the amount of total additions fromID

leaves to the root of the quadtree is:

This means that for larger images, there is an increasingly more obvious time

saving. When an image is over 1024*1024 pixels, the CPU time spend for QTSS is

less than one percent of the time required by the Fast Fourier transform. Thus,

if ail 2-D data were constructed as quad trees in a CIS. the utilization of QTSS will

save a considerable amount of CPU time as compared to other transform
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methods.

Spatial Distribution Knowledge Interpreted from QTSS

f
QTSS can directly describe the spatial distribution properties, such as den-

sity, degree of clustering and approximate location, of any phenomenon

represented in a single data layer. Three graphic examples are shown in Figures

6, 7, and 8, which were extracted from the landuse data layer of our test data

set representing an area adjacent to the Black Hills in southwestern South

Dakota. Each figure includes a quad tree image and its'corresponding QTSS his-

togram. In Figure 6a, the quadtree image of land covered by evergreen forest is

seen to be predominately clustered in a few large areas. Much of the coverage

for these large areas are represented by correspondingly large (i.e., high-level)

quadtree nodes. The histogram of these data in Figure 6b shows a dominance of

long wavelength components, with the peak located at level 5. Figure 7a is the

rangeland component of the same landuse layer, showing a mixed distribution —

most are clustered in smaller areas and some are small or fragmented areas.

Figure 7b is its QTSS. Its wavelength component distribution seems relatively

even, covering a wide wavelength domain. Its peak locates at level 8. Figure 8a

is the urban component of the land use layer. Most of its pixels are scattered. A

few of them are merged into small blocks. Figure 8b shows a strong short

wavelength components in the QTSS. Its peak locates at level 9.

1. Use of QTSS for spatial filtering

QTSS can be utilized for "high-pass", "low-pass" and "band-pass" filters,

similar to Fourier and Walsh transforms. In the wavelength domain, short

wavelength components emphasize boundary information, while long wavelength

components correspond to the interior areas of spatial objects. For example.
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the edges of irregularly shaped objects tend to be represented by many small

(Le., low-levels) quadtree nodes. This effect has been experimentally mentioned

in [17].

A filtering operation in the quadtree environment is relatively fast and sim-

ple. Those levels, whose nodes have edge length within the given omitted

wavelength range are simply removed.

Edge enhancement can thus be performed as a high-pass filtering operation

on data represented in quadtree form. Figure 9 shows a high-pass filtered result

from the image in Fig.6, and its corresponding QTSS. A high-pass filter removed

those nodes at level 0 ~ 10. All remaining nodes have wavelength equal to one

pixel (the side-length of a node at level 11). Figure 8b shows an example of the

edge enhancement effect resulting from this operation.

Conversely. Figure 10 shows two results from the same image after low-pass

filtering. In Fig.lOa, those nodes at levels 1 ~ 9 are kept; In Fig.lOb, those nodes

at levels 1 ~ 8 are kept. We don't see much difference between them visually,

nor do we see much difference between the filtered images and the original,

showing that most of the information, as it relates to total spatial area and

overall pattern, has been preserved." The total volume of the data, however, has

been greatly reduced due to that small instancery are eliminated and the

remaining larger instances can be recorded very simply. Table 1 shows a com-

parison of precision and storage of those low-pass results. Here the precision is

defined as a ratio of the number of remaining pixels over the number of total

pixels in the original image. Assume that the space required by the original

image are 100%. If we use the low-passed (l~10) levels to approximate the origi-

nal image (l~ll), the storage space is 48.4%, and still keeps 98.36% of the origi-
>

nal pixels. This means that we save over half of the original storage space at a

loss of less than 2% of the pixels. If we use a low-pass filter to remove (10~11)
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and keep (l~9). the storage space is only 22.5% of the original space at a loss

less than 5% of the pixels.

2. Scene context information generating from QTSS
*

Previous spatial analyses in digital image processing can be classified

according to their active spatial wavelength bands. For the case of discussion,

we use the width of a pixel as the spatial wavelength unit. Multi-radiational spec-

tral analysis works on the single pixel level (̂ 1). Filtering involves several to

dozens of pixels (1 ~ 10). Texture is still a local property and it depends on

lower level spatial information, usually concerning from several to hundreds of

pixels (1 ~ 100) [23]. Hence these processes only concern with the shorter

wavelength portion of spatial spectra.

Contextual analysis depends on spatial information at a wide spatial

wavelength range, but much emphasis is given on longer wavelength components

of the spatial spectra. It is useful to employ QTSS in contextual analysis because

it provides a convenient way to acquire, represent, and manipulate spatial infor-

mation at a wide range in wavelength, from one pixel to a whole scene.

Generally speaking, two kinds of contextual descriptions are considered

useful, and can be generated from QTSS:

a. the overall pattern of the distribution of objects. This could be scattered

evenly, clustered, or a mixture of the two.

b. locational concentration relative to quadrants or subquadrants, such as

eastern, western, northern or southern.

A brief description of the generation of these contextual information is following:

(1). distribution pattern — measuring degree of clustering by QTSS

The spatial pattern of a distribution is essentially what spatial spectra
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represent, and various distributional measures can thus be easily generated

directly from QTSS. A quantitative representation the spatial pattern is

explored here based on QTSS. Define CLUS(L) as a set derived from Eq(l7):

CLUS(L) = [ C(0). C(l). f ...... C(L) ..... C(i) ] (17)

where

C(L) = if— (18)
2*
*=0

where S has been defined in Eq.(l5).

The interpretation of C(L) is the probability of a pixel clustering into blocks

with the size larger than a node at the L^ quadtree level. In Figure 11, three

CLUS(L) have been drawn from the QTSS in Fig. 6b, 7b, and 8b. We see, all C(0)

are 1.0. and the CLUS(L) is monotonically decreasing from C(0)=l to C(i)=0.

Different positions of the three curves show different clustering behaviors: the

one which is closer to the vertical axis shows stronger clustering.

If we wish to represent these same data at 95% accuracy, we simply draw a

horizontal line at 0.85 and omit data above this level. We then know that for the

evergreen forest data, level 9 ~ 11 can be omitted in this operation. However, for

rangeland data, we only can omit levels 10 and 11. For residential data, we must

use all of the original data.

(2). Locational concentration .

One QTSS of the whole image is not enough for interpretation of locational

concentrations. Storing QTSS at each quadrant and subquadrant within one

image, we can know more detail about the image. Figure 12 shows the QTSS of

Fig.7a, and four QTSS at its each quadrants. We can call this a Quadtree Spatial

Spectra Tree (QTSST). Table 2 shows the corresponding five QTSS for residential

landuse of Rapid City, South Dakota. The first entry represents the root, the
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other four are for the four quadrants, respectively, where the QTSSP(L, N) is the

QTSS of phenomenon P of the Nth node at the L leveL The QTSS at 'the root

shows that there are residential areas in the image. From the QTSSs from the

four quadrants, it can be seen that most of the residential areas are in qua-

drants 2 and 4. with a few in quadrant 1 and none in quadrant 3.

3. Complex phenomena represented by Multiple-layers

A complex phenomenon is denned as being represented by two or more

separate data layers (i.e.. "elementary" phenomenon) of the image. We can also

analyze the combined features of the QTSSs of those elementary phenomena to

derive information concerning complex phenomenon. ¥e can call the combined

QTSST a Quadtree Spatial Spectra Forest (QTSSF).

For example, an urban area can be characterized as possessing a particular

amount of urban residential, industrial and transportation land use areas in

characteristic distributional patterns. Then the three QTSST corresponding to

these can be used to detect urban areas within a given scene, see Figure 13.

Concluding Remarks

In this paper, we have introduced a new form of spatial spectra, Quadtree

Spatial Spectra (QTSS), which is based on the quadtree spatial data modeL The

primary advantage of QTSS is that it is significantly faster to calculate than the

fast Fourier Transform. QTSS has a computational complexity of 0(N2}, where N

is the total number of pixels, as opposed to 0((l/LogzN}z) for FFT. Although

QTSS is not completely information preserving as are the Fourier and Walsh

transforms, they can still be used in a similar manner for describing and analyz-

ing spatial distributions.

Based on the comparative computational speed of QTSS, it seems particu-
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larly suitable for use in a large-scale geographic information systems-context.
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Figure 1. A histogram of radiation spectra for
three geographic phenomena (Landgrebe 1972).
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Table 1. List of precision and storage of
Low-pass results for the everegreen data

levels

1~ 11
1~ 10
1~9
1~8

nodes

57890
27991
13000
5229

storage

100.0%
48.4% -
22.5%

9.0%

orecision

100.0%
93.36%
95.08%
88.29%

oixels

1828649
1798756
1738768
1614523



Table 2. An example of the five QTSS (in Fig. 12) of residential area

£TSStuii(0. 0) = ( 0 0 0 0 0 0 2 82 472 1456 3311 )

l. 1) = ( 0 0 0 0 0 0 6 64 252 525 )

l. 2) = ( 0 0 0 0 0 1 42 214 692 1729 )

i. 3) = (0000000000)
l. 4) = ( 0 0 0 0 0 1 34 194 512 1057 )
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Figure 12. The structure of a QTSS tree
(only the top two levels of the QTSS tree are shown here)
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