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SUMMARY

A mathematical model 1s developed to predict the enhanced coupled bending-
torslon unstalled supersonic flutter stability due to alternate circumferential
spacing aerodynamic detuning of a turbomachlne rotor. The translatlonal and
torslonal unsteady aerodynamic coefficients are developed 1n terms of Influence
coefficients, with the coupled bending-torslon stability analysis developed by
considering the coupled equations of motion together with the unsteady aerody
namlc loading. The effect of this aerodynamic detuning on coupled bendlng-
torslon unstalled supersonic flutter as well as the verification of the
modeling are then demonstrated by considering an unstable 12 bladed rotor, with
Verdon's uniformly spaced Cascade B flow geometry as a baseline. It was found
that with the elastic axis and center of gravity at or forward of the airfoil
mldchord, 10 percent aerodynamic detuning results 1n a lower critical reduced
frequency value as compared to the baseline rotor, thereby demonstrating the
aerodynamic detuning stability enhancement. However, with the elastic axis and
center of gravity at 60 percent of the chord, this type of aerodynamic detuning
has a minimal effect on stability. For both uniform and nonuniform circumfer-
entially spaced rotors, a single degree of freedom torsion mode analysis was
shown to be appropriate for values of the bending torsion natural frequency
ratio lower than 0.6 and higher than 1.2. However, for values of this natural
frequency ratio between 0.6 and 1.2, a coupled flutter stability analysis is
required. When the elastic axis and center of gravity are not coincident, the
effect of detuning on cascade stability was found to be very sensitive to the
location of the center of gravity with respect to the elastic axis. In addi-
tion, it was determined that when the center of gravity was forward of an
elastic axis located at mldchord, a single degree of freedom torsion model did
not accurately predict cascade stability..

INTRODUCTION

To analyze the aeroelastic stability of gas turbine engine bladed disk
assemblies, a typical airfoil section approach 1s utilized. Thus, the three-
dimensional flow field is approximated by two-dimensional chordwise strips
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along the span of the blade. Also, the rotor 1s assumed to be tuned, with all
of the blades Identical and uniformly spaced. Hence, the airfoil structural
properties and the unsteady aerodynamic loading at a particular span location
are assumed to be Identical for each airfoil. However, due to manufacturing
tolerances, the individual airfoil natural frequencies are never Identical,
I.e., the rotors are structurally detuned.

WhHehead (ref. 1) developed an analysis which demonstrated the effects
of blade natural frequency structural detuning on the flutter characteristics
of a rotor. Several other Investigators have shown that the deliberate Intro-
duction of structural detuning Into a rotor design can be utilized as a passive
means of controlling rotor stability, (refs. 2 to 5). K1elb and Kaza (refs. 2
and 3) and Bendlksen and Frledmann (ref. 6) have both demonstrated that the
coupling between the bending and the torsion modes of vibration can have a
significant effect on the flutter characteristics of a tuned rotor
configuration.

Another approach to passive rotor stability control, termed aerodynamic
detuning, has recently been proposed (ref. 7). Aerodynamic detuning is defined
as designed passage-to-passage variations 1n the unsteady aerodynamic flow
field of the blade row. The subsequent blade-to-blade differences in the
unsteady aerodynamic loading result in the blading not responding in a classi
cal traveling wave mode typical of conventional tuned rotor analyses. In ref-
erence 7, the effect of aerodynamic detuning on unstalled supersonic single
degree of freedom torsion mode flutter, with the aerodynamic detuning accom-
plished by alternating the circumferential spacing of adjacent rotor blades was
considered. The effect of combining both structural and aerodynamic detuning
on supersonic unstalled torslonal flutter, as well as the forced response
characteristics of the single degree of freedom model are reported on 1n
references 8 and 9, respectively.

In this paper, this alternate circumferential spacing aerodynamic detuning
torslonal model 1s extended to analyze the unsteady translatlonal unsteady
aerodynamics to account for the coupling between the bending and torsion
motions of the airfoils. The unsteady aerodynamic loading resulting from both
the torslonal and the translatlonal motions of the airfoils were developed and
presented here in terms of aerodynamic Influence coefficients. A coupled
bending-torsion unstalled supersonic flutter analysis appropriate for conven
tional tuned both and aerodynamically and structurally detuned rotors was then
developed by considering the coupled equations of motion together with the
unsteady aerodynamic loading. While the model 1s capable of analyzing both
types of detuning only the effect of aerodynamic detuning will be addressed in
this paper. The enhanced coupled bending-torsion unstalled supersonic flutter
stability due to alternate circumferential aerodynamic detuning 1s then demon-
strated by applying this analysis to an unstable 12 bladed rotor, with Verdon's
Cascade B flow geometry (ref. 10) as a baseline uniformly spaced geometry. The
results are presented herein 1n terms of the critical reduced frequency, kf,
as a function of the bending-torsion frequency, wh/wa« f°

r 0 and 10 percent
levels of aerodynamic detuning.

NOMtNCLATURE

a dlmensionless elastic axis offset

C
b blade semichord, b =



C airfoil chord

c perturbation 1n speed of sound

d blade passage height

h complex bending displacement

I mass moment of Inertia

K linear spring constant

k reduced frequency, k = wC/Uo,

I. unsteady aerodynamic lifting force per unit span

1 dimenslonless unsteady aerodynamic 11ft coefficient

M unsteady aerodynamic moment per unit span

MOO cascade Inlet Hach number

m dimenslonless unsteady aerodynamic moment coefficient

ra dimenslonless radius of gyration

S airfoil spacing

S(j gap distance for detuned cascade

Sa static mass moment per unit span about elastic axis

Uoo cascade Inlet velocity

u perturbation chordwlse velocity

v perturbation normal velocity

x dimenslonless chordwlse coordinate, x = X/C

xa dimenslonless CG-F.A offset

y dimenslonless normal coordinate, y = Y/C

o amplitude of torslonal displacement

a complex torslonal displacement

0 Interblade phase angle

y complex eigenvalue

ya ratio of natural frequency 1n torsion to the reference frequency

Yh ratio of natural frequency 1n bending to the reference frequency
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e level of detuning

v mass ratio

C structural damping ratio

w oscillatory frequency

a>n natural frequency 1n bending

wft natural frequency 1n torsion

[ ] matrix

Subscripts

d detuned cascade

f critical condition

h refers to bending displacement

Re reference for the set of even numbered airfoils

R0 reference for the set of odd numbered airfoils

a refers to torslonal displacement

UNSTEADY AERODYNAMIC MODEL

The unsteady aerodynamic models utilized 1n flutter analyses of fan and
compressor bladlng consider a two-dimensional cascade with uniformly spaced
airfoils to represent a typical rotor blade section. The motion dependent
unsteady aerodynamic loading 1s determined by harmonically oscillating the
airfoils 1n a classical traveling wave mode, I.e., each airfoil having the same
amplitude with a constant Interblade phase angle between adjacent airfoils.

For unstalled supersonic flutter, a flat plate airfoil cascade embedded
1n a supersonic Inlet flow field with a subsonic leading edge locus is consid-
ered, figure 1. The fluid 1s assumed to be an 1nv1sc1d perfect gas with the
flow 1sentrop1c, adlabatic, and 1rrotat1onal. The unsteady continuity and
Euler equations are linearized by assuming that the unsteady perturbations are
small as compared to the uniform through flow. The boundary conditions,
applied on the mean positions of the oscillating airfoils, require the flow to
be tangent to the airfoil surfaces.

Several investigators have utilized various techniques to predict the
unsteady aerodynamics associated with the torslonal and translational motions
of the airfoil cascade depicted in figure 1. Of particular Interest are the
analyses of Verdon (ref. 11), Brix and Platzer (ref. 12), and Caruthers
(ref. 13). These utilize a finite cascade representation of the semi-infinite
cascade, with the cascade periodicity condition enforced by stacking sufficient
numbers of uniformly spaced single airfoils until convergence 1n the unsteady
flow field 1s achieved. An analogous finite cascade model is utilized for the



alternate drcumferentlally spaced aerodynamlcally detuned cascade, figure 2.
As seen, for this detuned cascade configuration, there are two sets of air-
foils, for convenience termed the set of even numbered airfoils and the set of
odd numbered airfoils. Thus, convergence 1n the detuned unsteady flow field
1s achieved by stacking sufficient numbers of two airfoils at a time. The
level of detuning Introduced Into the cascade 1s specified by the parameter,
c. This quantity 1s the amount by which the passage height d given 1n fig-
ure 1 1s reduced 1n order to obtain the detuned passage height d-|, shown 1n
figure 2.

The formulation of the linearized differential equations describing the
unsteady perturbation quantities for a finite aerodynamlcally detuned cascade
1s based on the method of characteristics analysis developed by Br1x and
Platzer for the finite uniformly spaced cascade (ref. 12). The Independent
variables are the dlmenslonless chordwlse and normal coordinates, x and y.
The dependent variables are the chordwlse, normal, and sonic perturbation
velocities, u, v, and c, respectively. Assuming harmonic motion, the linear
1zed differential equations describing the unsteady perturbation flow field
are specified 1n equation (1).

au ^2 , av ac ,....2 n , .
O
c - u \ 'a I

(lb)

3U

ax

The flow tangency boundary condition requires that the normal perturbation
velocity component, v, be equal to the normal velocity of the oscillating air-
foils, and 1s applied at the mean airfoil positions. For the aerodynamlcally
tuned airfoil cascade executing both harmonic translatlonal (bending) and tor
slonal motions, the dlmenslonless normal perturbation velocity component on the
n-th airfoil 1s specified 1n equation (2).

v (x,y t) --{-̂  1k - a [1 * (x - x ) 1k]le1(ktfnR) (2)
11 j I \f. (J U I

where h0 and a0 denote the translatlonal and torslonal amplitudes of a
reference airfoil; 0 1s the Interblade phase angle; and x0, ys, and k are the
elastic axis location as measured from the airfoil leading edge, the mean
position of the airfoil, and the reduced frequency, respectively.

The unsteady perturbation pressure distributions on the two reference
airfoils, one for the set of even numbered airfoils and the other for the set
of odd numbered airfoils, Re and R0, are determined from the perturbation
velocities by the unsteady Bernoulli equation. The unsteady aerodynamic 11ft
and moment on these reference airfoils are then calculated by Integrating the
unsteady perturbation pressure differences across their chord lines,
equation (3).



-Re'Ro
Ap(x,ys,t)dx (3a)

Re'Ro •/*n (x - Ap(x,ys,t)dx (3a)

The double subscript 1s a shorthand equation notation, with the subscript Re
denoting the equation for the reference airfoil of the set of even numbered
airfoils, and R0 the equation for the reference airfoil of the set of odd
numbered airfoils.

When the boundary conditions specified 1n equation (2) are applied to an
aerodynamlcally detuned cascade, the alternate drcumferentlally spaced air-
foils are required to oscillate with an equal amplitude and a constant Inter-
blade phase angle, a situation not appropriate for the detuned cascade. In
addition, the application of this analysis 1s unduly costly because the com-
plete periodic perturbation flow field must be recalculated, not only for every
new cascade geometry and flow condition, but also for each interblade phase
angle for a particular cascade geometry and flow field.

These restrictions can be eliminated by using the aerodynamic Influence
coefficient technique Introduced 1n reference 7. A complete derivation of the
influence coefficients required to describe the unsteady aerodynamic moments
resulting from harmonic torslonal motion of the airfoils 1n an alternate dr-
cumferentlally spaced detuned cascade 1s presented 1n this reference. The
required unsteady aerodynamic translatlonal 11ft coefficients are obtained 1n
an analogous manner, with this derivation not repeated herein.

The unsteady aerodynamic lift and moment on the two reference airfoils of
an alternate drcumferentlally spaced detuned cascade undergoing both harmonic
torslonal and translatlonal motions are defined in terms of influence coeffl
cients in equation (4).

4 2
MR R = irpb u

iut (4a)

(4b)



The superscripts e and o refer to the sets of even numbered and odd num-
bered airfoils, respectively. The negative sign 1n equation (4a) Indicates
that for a positive downward translatlonal displacement, the 11ft 1s negative,
and thus acts 1n an upward direction.

The term MM 1s the nondlmenslonal unsteady 11ft per unit
I ID DL JRe'Ko

translatlonal displacement on the reference airfoil R or R due to unite o
amplitude translatlonal displacement of all of the even numbered airfoils with

the odd numbered airfoils fixed. 11. I 1s the corresponding 11ft on the
L Vo

reference airfoils due to unit amplitude translatlonal displacements of all of
the odd numbered airfoils with the even numbered airfoils fixed. Similarly,

<e'Ro

1s the unsteady 11ft per unit torslonal displacement developed on

the two reference airfoils due to unit amplitude torslonal motions of the set
of even numbered airfoils while the set of odd numbered airfoils 1s fixed. The

unsteady aerodynamic moments on the reference airfoils, m. , mh ,
LnJR^,R^. LnJR^,Rrt

VRo
are defined 1n an analogous manner.

The relation between the unsteady aerodynamic 11ft and moment coefficients
specified 1n equation (4) and those utilized by Kaza and K1elb (ref. 2) for a
uniformly spaced cascade, lnn, lna, lan, and laa, are readily obtained,
equation (5).

(5a)

(5b)

(5c)

(5d)

Similar expressions can also be obtained 1n terms of the reference airfoil
for the set of odd numbered airfoils, R0.



EQUATIONS OF MOTION

The equations of motion for both conventional uniform and alternate c1r-
cumferentlally spaced aerodynamical ly detuned cascade configurations are
developed by considering the typical airfoil sections depicted schematically
1n figure 3. Translatlonal displacements of the reference airfoils, h and

Re
h , are defined as positive 1n the downward direction. Torslonal motions of
Ro
reference airfoils, o , and a , are defined as positive with the leading

Re Ro
edge up. The unsteady aerodynamic 11ft and moment were defined 1n equation (4)
such that a positive 11ft 1s upward and a positive moment 1s leading edge up.

The Inertia and stiffness properties of the airfoil section are modeled
by the mass moment of Inertia about the elastic axis and by linear springs
attached at the elastic axis. Applying Lagrange's technique, the following
differential equations of motion for the two reference airfoils of the detuned
cascade are obtained.

Vo V«. * % R Vo * ' *e, o

D 4- I "an D D n
Re'Ro R Re'Ro < * R R ,* ,R Re'Ro

= Re'Ro

where the damping ratios for both translation and torslonal motions are
denoted by f. , and f , and the undamped natural frequencies are

«. = /IT /ml T and u = /K /I
hR ,R V hR ,R Re'Ro aR ,R V aR ,R °R ,Re o " e o e o " e o e o

For harmonic motions of the airfoils, the differential equations of
motion, equation (6), can be written as an eigenvalue problem from which the
stability of the conventional and the aerodynamically detuned cascade conflgu
rations can be determined. This eigenvalue problem 1s specified 1n matrix
form 1n equation (7).
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0),

Vo

M - b ' "o = reference frequency
Re'Ro

The stability of the cascade configuration 1s obtained by solving equa-
tion (7) and then relating the complex eigenvalue y to the complex frequency
ratio as shown below.

(8)

The eigenvalues obtained from equation (7) are complex. Therefore, the
stability of the system 1s determined by the sign of the real part of (u/u>0)
1n equation (8). When the real part of (GJ/UO) 1s negative, the amplitude of
the harmonic motion of the airfoil will decay, Indicating a stable casade con-
figuration. A positive sign for the real part of (u/u0) Indicates that the
airfoil motion will Increase 1n amplitude and that the cascade 1s unstable. A
value of zero Indicates that the cascade 1s neutrally stable. The Imaginary
part of (w/o>0) specifies the ratio of the flutter frequency, u, to the
reference frequency, u0.

RESULTS

To demonstrate the stability enhancement due to alternate circumferential
blade spacing aerodynamic detuning on unstalled supersonic coupled bendlng-
torslon flutter, an unstable baseline uniformly spaced 12 bladed rotor based
on Verdon's Cascade B 1s considered. This baseline rotor 1s also utilized to
verify the validity and the formulation of this mathematical model. The base-
line uniform drcumferentlally spaced Cascade B flow geometry 1s schematically
depicted 1n figure 4, and 1s characterized by a stagger angle of 63.4°, a
solidity of 1.497, and an Inlet Hach number of 1.281.

The validity of both the aerodynamic Influence coefficient formulation and
the translatlonal and torslonal unsteady aerodynamic finite cascade model are
verified by comparing predictions for the translatlonal and torslonal unsteady
aerodynamic coefficient, lnn and laet, from the model developed herein
with corresponding predictions from the Infinite cascade analysis of Adamczyk
and Goldstein (ref. 14) for a uniformly spaced baseline Cascade B flow geometry
at a unity reduced frequency. As seen 1n figures 5 and 6, there Is excellent
agreement for both coefficients between the two techniques.
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The formulation of the coupled bendlng-torslon eigenvalue problem 1s ver-
ified by comparing the coupled stability predictions from the model developed
by Bendlksen and Frledmann for a uniformly spaced cascade (ref. 6) with corre-
sponding predictions from the model developed herein. For this verification,
the baseline Cascade B rotor 1s considered with a mldchord elastic axis loca-
tion, a center of gravity specified by xa = 0.1, and a damping ratio of
C = 0.0025. Figure 7 presents the results of this correlation 1n the format
of the critical reduced frequency versus the bendlng-torslon natural frequency
ratio. The good agreement between these two models 1s apparent.

With the validity and formulation of this mathematical model verified,
attention 1s now turned to utilizing this model to consider the stability
enhancement due to alternate circumferential blade spacing aerodynamic detuning
on unstalled supersonic coupled bendlng-torslon flutter. This 1s accomplished
by utilizing an unstable baseline uniformly spaced 12 bladed rotor based on
Verdon's Cascade B flow geometry as well as an alternateclrcumferentlally v

spaced rotor with 10 percent aerodynamic detuning. The flow geometries for
these uniformly spaced and nonunlformly spaced cases are schematically depicted
1n figure 8. .

The stability of a given rotor design 1s predicted by the eigenvalue prob-
lem specified 1n equation (7). Typical bending and torsion mode root locus
plots are presented 1n figures 9 and 10, respectively, for the baseline Cas-
cade B 12 bladed rotor at a reduced frequency of 1.0. These were determined
from equation (7) by considering a value of 0.1 for the bendlng-torslon natural
frequency ratio. Figure 9 shows that the bending modes are all stable. How
ever, as seen 1n figure 10, the torsion modes are unstable for forward travel-
Ing waves characterized by Interblade phase angles between 30 and 150°.

The coupled bendlng-torslon stability results for both the baseline uni-
formly spaced and the 10 percent alternate circumferential aerodynamically
detuned rotors are presented 1n figure 11 1n the format of the critical reduced
frequency as a function of the bendlng-torslon natural frequency ratio. For
both cascades, the elastic axis and the center of gravity are coincident at the
blade mldchord. Also Indicated are the single degree of freedom torsion mode
results for both cascades. It should be noted that with the elastic axis and
the center of gravity coincident, the equations of motion are coupled only
through the unsteady aerodynamic loading terms.

As seen 1n figure 11, the aerodynamlcally detuned rotor has a lower crit-
ical reduced frequency value than does the baseline tuned rotor, thereby demon-
strating the stability enhancement due to aerodynamic detuning. Also, both the
tuned and the detuned cascades behave like their single degree of freedom tor-
sion mode counterparts for values of the bendlng-torslon natural frequency
ratio lower than 0.6 and >1.2. This Indicates that the bending mode 1s not
coupling with the torsion mode at the higher natural frequency ratios for these
cascade configurations. However, for values of this ratio >0.6 and <1.2, cou-
pling effects are significant. It 1s Interesting to note that as shown 1n
figure 11 the difference between the tuned and detuned curves for the coupled
bending torsion model 1s about the same as Indicated for the single degree of
freedom results. Thus the effect of aerodynamic detuning seems to be Indepen-
dent of the bonding-torsion frequency ratio.

For coupled bendlng-torslon stability, the locations of the elastic axis
and the center of gravity are significant. Figures 12 and 13 show the effect

11



of moving the elastic axis and the center of gravity forward and aft of mid-
chord, respectively, on the stability of both the baseline and 10 percent
circumferential aerodynamically detuned rotors.

With the elastic axis and the center of gravity located at 40 percent of
the chord (a = -0.1), figure 12 shows the stability enhancement due to aerody
namlc detuning, with the alternate drcumferentlally spaced rotor more stable
than the uniformly spaced baseline rotor. Also, for values of the bendlng-
torslon natural frequency ratio lower than 0.6 and higher than 1.2, the sta-
bility of both the baseline and the detuned rotors are predicted by the single
degree of freedom torsion mode results. Again, this Indicates that the bending
mode 1s not coupling with the torsion mode at the higher natural frequency
ratios. However, coupling between the bending and the torsion modes for both
the baseline and the detuned rotors 1s seen to be significant for values of
the natural frequency ratio between 0.6 and 1.2.

With the elastic axis and the center of gravity shifted aft to 60 percent
of the chord (a = 0.1), figure 13 shows that circumferential aerodynamic
detuning has minimal effect on the critical reduced frequency value. Also, a
single degree of freedom torsion mode stability analysis 1s again seen to be
appropriate for values of the bending-torsion natural frequency ratio lower
than 0.6 and higher than 1.2. For values of this ratio between 0.6 and 1.2, a
coupled stability analysis 1s required.

The effect of circumferential aerodynamic detuning on cascade stability
when the center of gravity 1s located aft of the elastic axis (xa = 0.1) 1s
shown 1n figure 14. This figure Indicates that for values of the frequency
ratio >1.0, the circumferential aerodynamic has a very beneficial effect on
cascade stability. However, for frequency ratio's <1.0, detuning has little
effect on the critical reduced frequency. The flutter modes associated with
each of the values of reduced frequency of figure 14 are listed 1n table 1.
For values of the bendlng-torslon frequency ratio <0.40 and >1.60, the coupling
between the bending and torsion modes 1s small and the flutter behavior of both
the tuned and detuned cascades can be predicted reasonably well by a single
degree of freedom torsion model which utilizes a mldchord location for both
the elastic axis and center of gravity.

When the center of gravity 1s located forward of the elastic axis
(xa = -0.1), the behavior of the critical reduced frequency as a function of
the bendlng-torslon frequency ratio 1s presented 1n figure 15. In this case,
the circumferential aerodynamic detuning has a beneficial effect on cascade
stability for values of the frequency ratio lower than 1.0, but very little
effect when the frequency ratio 1s above 1.0. Table 1 gives the flutter modes
associated with the values of the reduced frequency shown 1n figure 15. With
this value of xa, the coupling between the bending and torsion modes Is such
that even for low values of the bendlng-torslon frequency ratio, a single
degree of freedom torsion model with the center of gravity and elastic axis
coincident at mldchord should not be utilized to predict the flutter behavior.

CONCLUSIONS

A model to demonstrate the enhanced coupled bendlng-torslon unstalled
supersonic flutter due to alternate circumferential blade spacing aerodynamic
detuning has been developed. This 1s a finite cascade model, with periodicity

12



achieved by stacking two airfoils at a time. Also, the translatlonal and tor-
slonal unsteady aerodynamic 11ft and moment coefficients were developed 1n
terms of aerodynamic Influence coefficients 1n a manner that enables both a
conventional uniform drcumferentlally spaced rotor as well as an alternate
drcumferentlally space aerodynamlcally detuned rotor to be analyzed. The
coupled bendlng-torslon stability analysis was then developed by considering
the coupled equations of motion together with the unsteady aerodynamic loading.

The effect of alternate circumferential spacing aerodynamic detuning on
coupled bendlng-torslon unstalled supersonic flutter as well as the verifica-
tion of the modeling and formulation were demonstrated by applying this analy-
sis to an unstable 12 bladed rotor, with Verdon's Cascade B flow geometry as a
baseline uniformly spaced geometry.

With the elastic axis and the center of gravity at or forward of mldchord,
1t was shown that 10 percent alternate circumferential spacing aerodynamic
detuning results 1n a lower critical reduced frequency value than does the
baseline tuned rotor over the complete range of bendlng-torslon natural fre-
quency ratios, thereby demonstrating the stability enhancement due to aerody-
namic detuning. However, with the elastic axis and the center of gravity at
the 60 percent chord location, the circumferential aerodynamic detuning had a
minimal effect on the critical reduced frequency. Also, 1t was shown that for
both the uniform and nonunlform drcumferentlally spaced rotors, a single
degree of freedom flutter torsion mode analysis was appropriate for values of
the bendlng-torslon natural frequency ratio lower than 0.6 and higher than 1.2,
Indicating that the bending mode does not couple with the torsion mode at the
higher values of the bending-torslon natural frequency ratio. However, for
values of this natural frequency ratio between 0.6 and 1.2, a coupled flutter
stability analysis 1s required.

When the elastic axis and center of gravity are not coincident, the effect
of circumferential aerodynamic detuning on cascade stability was found to be
highly dependent on the position of the center of gravity with respect to the
elastic axis. When the center of gravity 1s forward of an elastic axis located
at mldchord, the Introduction of aerodynamic detuning had a beneficial effect
for bendlng-torslon frequency ratios below 1.0. However, detuning had very
little effect when the frequency ratio was above 1.0. Moving the center of
gravity aft of a mldchord elastic axis had the opposite effect. In this case
aerodynamic detuning was shown to have a beneficial effect when the frequency
ratio was above 1.0, and very little effect for frequency ratios below 1.0.
In addition, when the center of gravity was forward of the elastic axis, the
coupling between the bending and torsion modes was such that a single degree
of freedom torsion analysis which utilized a center of gravity and elastic axis
coincident at mldchord did not yield accurate stability prediction. This con-
dition was found to be true even for low values of the bendlng-torslon
frequency ratio.
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Figure 1. - Uniformly spaced tuned cascade in a supersonic inlet flow field with a
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Figure 2. - Finite cascade representation for alternate non-uniform cir-
cumferentially spaced cascade.



TABLE I. - FLUTTER MODES FOR CASES WHERE ELASTIC AXIS IS

AT MIDCHORO AND Xa = ± 0.1

(a) xa = O.T; a = 0.0; £ = 0.0025; y = 200; ra = 0.5774.

Wh/Wa kF Mode wn/wa ka Mode

c = 0 percent e = TO percent

0.1
.2
.4
.6
.7
.8
.9

l.O/
1.1
1.2
1.4
1.6
1.8

1.10
(Not run)
1.100
1.085
1.060
1.080
1.230
1.280
1.235
1 .210
1.190
1.175
1.170

Torsion
(Not run)
Torsion
Torsion
Torsion
Bending
Bending
Torsion

\ '

0.1
.2
.4
.6
.7
.8
.9

1.0
1.1
1.2
1.4
1.6
1.8

1.100
(Not run)
1.085
1.080

(Not run)
1.080
1.230
1 .255

(Not run)
1 .175
1.145
1.150
1.135

Torsion
(Not run)
Torsion
Torsion
(Not run)
Bending
Bending
Torsion

(Not run)
Torsion

i f'

(b) xa = -O.T; a = 0.0; C = 0.0025; yi = 200; ra = 0.57/4.

wh/wa *F Mode wh/wa ka Mode

c = 0 percent e - TO percent

0.1
.2
.4
.6
.7
.8
.9

1.0
1.1
1.2
1.4
1 .6
1 .8

1.200
(Not run)

1.210
1.225

(Not run)
1.270
1.285
1.300
1.2660
1.200
1.120
l.TOO
1.110

Torsion
(Not run)
Torsion
Torsion

(Not run)
Torsion

\ <
Bending
Bending
Torsion
Torsion

0.1
.2
.4
.6
.7
.8
.9

1.0
1.1
1.2
1.4
1.6
1 .8

1.175
(Not run)

1.175
1.200

(Not run)
1.230
1 . 230
1 .285
1.245
T.195
T.TT2
T.090
1.10

Torsion
(Not run)
Torsion
Torsion

(Not run)
Torsion

v
Bending
Bending
Torsion
Torsion
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Figure 3. - Coupled bending-orsion model of typical blade sections
in a circumferentially detuned cascade.
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Figure 4. - Baseline cascade B uniformly spaced flow geometry.
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