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In the present work, the breakdown of an isolated axisymmetric vortex embedded

in an unbounded uniform flow is examined by numerical integration of the com-

plete Navier-Stokes equations for unsteady axisymmetric flow. The results

show that if the vortex strength is small, the solution approaches a steady
flow aad the vortex is stable and that if this strength is large enough, the

• solution remains unsteady and a recirculating zone will appear near the axis,

its form and internal structure resembling those of the axisymmetric breakdow_

bubbles with multi-cells observed by Faler and Leibovich (1978). For appro-

priate combinations of flow parameters, the flow reveals quasi-periodicity.

Parallel calculations with the quasi-cylindrical approximation indicate that

so far as predicting of breakdown is concerned, its results coincide quite
well with the resul_s mentioned above. They both show that the vortex break-

down has little concern with the Reynolds number or with the critical classi-

fication of the upstream flow, at least for the lower range of Reynolds num-

bers covered by the calculations of this work.
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Numerical Simulation of Vortex Breakdown

Shi Xungang

(Beijing University)

I. Introduction

Since Peckham and Atkinson (1957) first observed the */22

breakdown of the leading edge vortex of a large sweptback wing at

large angles of attack, many authors introduced various

theoretical explanations, such as the critical flow theory by

Benjamin (1962, 1967), the unstable theory of fluid dynamics by

Ludwieg (1962) and the quasi-cylindrical approximation theory by

Gartshore (1962, 1963), Hall (1965, 1966, 1967) and Mager (1972),**

for the breakdown of vortices. Until now, however, not a single

theory is widely accepted. There is considerable confusion among

various theories, as well as between theoretical and experimental

values.

Based on either the critical flow theory or the finite

transition theory, the flow upstream from the breakdown must be

super critical. • Hall (1967, 1972) and Ludwieg (1970) also

pointed out that the vortex breakdown process described by quasi-

cylindrical approximation is just the process in which a super

critical flow approaches a critical state. This seems to be a

popular viewpoint. That means the breakdown of a vortex must

start from a super critical upstream flow. Lavan, Nielsen, and

Fejer (1969), Kopecky and Torrance (1973), and Grabowski and

Berger (1976) directly performed numerical integration of the
+.

*Numbers in margin indicatepagination'inforeigntext
**And Squire (1960) Bossel (1967,1969).
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complete Navier-Stokes equations regardless o_ whether the upstream

flow is supercritical or subcritical, resulting in an ...........

axisymmetric breakdown bubble recirculating zone (see Figure I)

similar to that observed in the experiment which is directly

contradictory to the above theory. This contradiction is yet to

be clarified.

On the other hand, their numerical results could not show

the double cell structure inside the breakdown bubble (see Figure

I) as measured by a laser flow meter by Faler and Leibovich

(1978).

Furthermore, when the rotational speed is high enough, their /23

computation could not even get a convergent solution. This may

be due to their excessively rigorous assumption. Leibovich

(1978) believed that if the periodicity and asymmetry of the flow

inside the breakdown bubble observed experimentally were not

considered, then any numerical experiment could not describe this

double cell structure.

In this work, attention is paid to their opinion. Through

axisymmetry and numerical integration of the complete unsteady N-

S equations, we hope to more realistically describe the breakdown

of "axisymmetric" vortices. The axisymmetric assumption remains

because of economic considerations and limitation of computer

capability. In order to facilitate the analysis and comparison,

parallel calculations are made under quasi-cylindrical
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approximation. On this basis, the contradiction between the

theoretical results and numerical experiments is discussed.

II. Mathematical Model

In this work, an isolated axisymmetric vortex with a

constant circulation embedded in a uniform flow in an infinite

space is investigated. Let us take a cylindrical coordinate and

make the x-axis coincide with the axis of symmetry. Let us '

assume that the axial and circumferential velocity distributions

on a certain "inlet cross-section" are expressed by the two

following equations:

x =0, I [z =l._.a f(r)
t _u=F0g(r)

where the velocity components and co6rdinates are rendered

dimensionless by the uniform flow velocity at infinity u and the

vortex core radius R. Figure 2 schematically shows their shapes.

The initial axial velocity or the axis U0=1+_ and the velocity

circulation, or vortex intensity £0 at infinity are two flow

parameters.

Figure I. The Flow Field Structure Inside an Asymmetric Break-
down Bubble (Leibovich 1978).



Figure 2. Initial Axial and Tangential Velocity Distributions

If we introduce the local circulation r = rw

the circumferential vortex component _ = 0v - 0u
Ox Or

and the flow function

then the dimensionless N-S equations for the unsteady,

axisymmetric motion of a viscous, incompressible fluid may be re-

written a series of P-_-_ equations:

/24

---_;-+ u 3.4- + Or =ki_: I. Ox' r- - " r at.

ao ao ao _.o a r, __._}___L<>,_7_ <)r 1 lJ(ra)"1 t--DT-+ u-D_-+ v ar r --D7 '-7;--- a e t a7.... --Dr[-F.......-Or-]/

o(, o,,,)-yx-_-+ r -Or- . r ar " =rD

u = 1 1 0_ v 1 0_........... =.= .......

r ar ' r Ox

where Re=u_R/v. This is a series of parabolic equations. In

terms of spatial coordinates, however, they are also elliptical.



I
In order to obtain a real solution, it is necessary to provide

the appropriate initial conditions as well as all the boundary

conditions over the region of integration.

The region of integration is defined as follows:

D={O_x_L, O<r<+_}

The exit boundary is chosen to be sufficiently downstream at x=L,

where L>>I, such as L=20.

The condition for a definite solution is specified as

follows:

initial condition:

-_f'(r), _= -_Ii_rf(r)dr in D
t=0: r=r0 rg(r), n=

tF -

boundary condition:

i t"
x =0, F=I'org(r), f_=-a/'(r), W='a r/(r)drt

o

5F aO a_
x = L • Ox = O, -Ox- ==O, -Ox--T = O_

r =0- F=O, _Q=O , _t=Ot

Ot/t -,-0
r -_+oo: F-..F,, 0--.'0 , -ar- o

The so-called quasi- cylindrical approximation is to assume

that

v<<U,W 0 _r0--f<<

and the flow is steady. Under this approximation, the above

series of equations can be simplified as:
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u 1 i _Qdr

'I! ....Iir(1 ....u)dr

1. O_F
U awa .............

r Ox

This is also a series of parabolic equations. When the initial

125
conditions on the initial cross-section x=0 and the boundary

conditions at the axis r=0 and the external edge r_ +_ are given,

numerical solution can always be obtained by iteration along the

x-direction. The initial conditions given are:

x=O: F=Foro(r), _ = -a/'(r) (A)

Then, the boundary conditions are

r=O_ F=O O=O
, (B)

Near the breakdown point of the vortex, however, the quasi-

cy!indrical approximation is no longer valid. The differential

equations also become unstable. Numerical calculation is no longer

convergent. Thus, the presence of a large axial gradient in the

calculation or the divergence of the <::.;:_putation can be as a

i label for a vortex breakdown.

In order to turn an infinite integration zone in the r-direc-

tion into a finite one and to ensure that the numerical solution
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has a high enough resolution in the region where the flow changes

vigorously, two independent coordinate transformations are

introduced radially and axially:

x==c(_--l) xz(O,L)_,(O,1)

,'=tan,, r,(O,+_)_., (0,--_--)

In quasi-cylindrical approximation, only the radial transforma-

tion is required. All differential equations, as well as the

initial and boundary conditions, must be transformed accordingly.

III. Results and Discussion

The Crank-Nicolson mean implicit finite difference method is

used to solve the simplified equations under quasi-cylindrical

approximation. The method is simple and efficient. The result

shows that when r0 is very small, such as P0=0.63, the axial

velocity varies slightly along the axis. If we proceed to

calculate downstream, the axial velocity slows down initially and

then gradually rises to approach the incoming flow velocity U_ I.

The vortex is stable. As r0 increases, the axial velocity drops

faster and faster. When r0 exceeds a certain value, the axial

velocity abruptly drops to a value close to 0 at a certain

position. The computation is no longer convergent from this

point. As discussed earlier, this position can be considered as

the vortex breakdown point. With increasing r0 , the breakdown

point position continues moving upstream. Increasing U0 ,

however, will strengthen the stability of the vortex. The

legends shown in Figure 3 represent a combination of results

7



obtained by using quasi-cylindrical approximation. From the

figure we can see that, in terms of vortex breakdown, the

conclusion obtained with Re=t00 is in total agreement with Re=200

with the exception of one point U.=1.4 and P0=0.8944. The dotted

lines in the figure represent the boundary of vortex breakdown.

@

U_

I.: @

0

Figure 3. Calculated Results

I. stable
2. unstable
3. super critical range
4. subcritical range

/26
The complete N-S equations are solved by alternate direction

iterations. The result shows that any stable vortex flow as

predicted by the quasi-cylindrical approximation will reach a

steady state after some time. The flow surface appears to be

flat. The quasi-cylindrical approximation should obviously be

valid in the entire flow field. A comparison of velocity

distribution also shows that the flow fields obtained by both

methods agree extremely well. This indicates that quasi-

cylindrical approximation is indeed an excellent approximation



kI . i

for stable vortices. Furthermore, the numerical integration

program designed for the complete N-S equations was also tested.

When vortex breakdown is predicted by quasi-cylindrical

approximation, with the exception of individual edges, the

numerical solution of the complete N-S equations shows that the

flow is unsteady. Figure 4 is one of the examples. They are

intercepts of an axisymmetric flow plane and a meridian plane.

With increasing time, it begins to bulge near the axial flow

plane and then develops into an enclosed recirculating zone.

This recircuiating zone continues to develop into a so-called

"double cell" structure (see Figure 4a). Its appearance and

internal structure is very similar to the broken cell (Figure I)

measured by Faler and Leibovich (1978) using a laser flow meter.

With an appropriate combination of flow parameters, the flow

appears to be quasi-periodic after some time. A new internal

cell is formed periodically at the head of a broken cell. It

gradually strengthens and moves along with the main stream.

Then, it either combines with the inner cell formed earlier to

become a large cell and flow downstream, or flows away alone. In

Figure 4, b-d and e-g are very similar in sequence, which can be

interpreted by the periodicity of the solution. Qualitatively,

the periodicity of the unstable vortex
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motiondiscovered in our numerical calculation is in agreement

with the experimental observations made by Sarpkaya (1971), and

Faler and Leibovich (1978).

If we assume that the flow becomes unstable with respect to /28

any non-axisymmetric perturbation after an axisymmetric cell

breakdown occurs, then the periodic inner cells flowing

downstream may be the spiral tail behind a broken cell as

ii



observed in experiments.

When the complete N-S equations are used in the calculation,

the conclusions obtained are in total agreement with those using

the quasi-cylindrical approximation. In terms of whether a

vortex breaks down, the results are identical with Re=t00 and

200. The solid line in Figure 3 represents the vortex breakdown

boundary calculated based on the complete unsteady N-S equations.

It stands between the curve obtained based on quasi-cylindrical

approximation and the curve (dotted lir_:) obtained in using the

complete steady N-S equations by Grabowski and Berger• (1976).

They are, however, very close to one another.

Figure 3 also plots the critical curve (double dot dotted •

line) separating the upstream supercritical and subcritica!

regions as calculated by Mager (1972) based on the equation

introduced by Benjamin (1962). From the figure we can see that

many breakdown solutions are obtained with subcritical upstream

conditions; just as Grabowski and Berger (1976) pointed out

earlier. It does not agree with the critical flow theory by

Squire and the finite transition theory by Benjamin. A parallel

calculation based on quasi-cylindrical approximation also proved

that these subcritical upstream flows will lead to vortex

breakdown. The parabolic nature of the equations under quasi-

cylindrical approximation precludes the possibility of any

perturbation propagating upstream. Therefore, the breakdown of

these vortices thus calculated cannot be explained by the

propagation of disturbance upstream. Various experiments
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conducted in pipes also show that when the flow rate remains

unchanged and the rotation is intensified, which means when the

subcrltlcal nature of the upstream flow is strengthened based on

Mager,s critical curve, what happens is the upward shift of the

breakdown point and the change of the pattern, rather than the

.disappearance of the breakdown of the vortex is, is indeed

independent of the critical nature of the upstream flow.

IV. Conclusions

In this work, the breakdown of an isolated axisymmetric

vortex embedded in a uniform flow is investigated by the

numerical integration of the complete N-S equations under the low

Reynolds numbers.

First, the N-S equations are simplified using the quasi-

cylindrical approximation. Its solution can be determined by

proceeding along the x-direction by a numerical method. The

results show that this method is an excellent approximation of

the real flow for stable vortices. The rapid drop of axial

velocity and the divergence of the calculation can be considered

as a sign of vortex breakdown. In addition, the breakdown of a

vortex is very sensitive to the variation of vortex intensity.

The numerical integration of the complete N-S equations for

an unsteady axisymmetric flow, however, shows that the solution

approaches a steady state if vortex breakdown does not occur.

Otherwise, the solution will remain unsteady. A recirculating

zone will appear near the axial line. Its shape and internal

13



structure is very similar to the broken cell observed

experimentally by Faler and Leibovich (1978). With appropriate

combination of flow parameters, the flow will appear to be quasi-

periodic after some time.

The consistency of both methods indicates that the breakdown

of a vortex does not concern the Reynolds number significantly,

at least in the lower Reynolds number range calculated.
i

Furthermore, it is not related to the classification of the

critical status of the upstream motion.
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