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QUASI-MODAL VIBRATION CONTROL BY MEANS OF ACTIVE CONTROL BEARINGS

Kenzou Nonami* and David P. Fleming
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

This paper investigates a design method of
an active control bearing system with only veloc-
ity feedback. The study provides a new quasi-
modal control method for a control system design
of an active control bearing system in which
feedback coefficients are determined on the basis
of a modal analysis. Although the number of sen-
sors and actuators is small, this quasi-modal
control method produces a control effect close to
an ideal modal control.

1. INTRODUCTION

There are two approaches to reduce the vibra-
tion of rotating shafts. One is the approach
using passive elements and the other 1s the case
using active elements.1-13  The studies of the
former based on damped flexible supports have
been done by many authors. However, it is diffi-
cult to obtain desirable optimum tuned conditions
in actual rotating machinery. Conversely, it is
very easy for an active vibration control method
to obtain desirable optimum values because the
support conditions can be varied by only feedback
coefficients. The first author proposed an active
control bearing wherein the bearing housings are
actively controlled by using a state feedback
control method.12,13  The experiment for a two
degree of freedom system proved that active con-
trol bearings are effective for vibration control
of rotating shafts. However, for a multidegree
of freedom system, it is necessary for a control
system with state feedback to get complete state
variables of displacements and velocities for a
rotor system. A control system is thus compli-
cated. Therefore, in the case of a multidegree
of freedom system such as a multi-bearing and
multi-disk system, active control bearings with
only velocity feedback are to be desired. This
paper investigates a design method of an active
control bearing system with only velocity feed-
back. The study provides a new quasi-modal con-
trol method for a control system design of an
active control bearing system in which feedback
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coefficients are determined on the basis of a
modal analysis. The features of the new quasi-
modal control method proposed in this paper dif-
fer depending on the number of measurements and
the number of controlled modes. There are three
cases. The first case is when the number of
measurements of vibration velocity i1s equivalent
to the number of controlled modes. The second
case when the number of measurements is less than
the number of controiled modes. The third case
is when the number of measurements i1s more than
the number of controlled modes. The method does
not depend on the number of active control
bearings.

On the basis that it is sufficient for
active control of a system to provide critical
damping on each mode, the control system is
assembled independently for each mode. Simula-
tions of the active control of a three bearing
and three disk rotor system are carried out to
verify the efficiency of this method. Although
the number of sensors and actuators is small,
this quasi-modal control method produces a con-
trol effect close to an ideal modal control or an
optimal state feedback control.

2. QUASI-MODAL VIBRATION CONTROL METHOD

2.1 1deal Modal Control System Design Method
First, a control system design method is

described in general. The following equation is

considered. '

BnXn + CnXn + KnXn = B(t) + U(t) (1)

where Mp, Cp, and Kp are mass, damping, and
stiffness matrices. X, 1is a general nodal dis-
placement vector.. P(t) 1s a general nodal unbal-
ance force vector and U(t) 1s a general nodal
control input vector. Equation (1) is written with
n degree of freedom system. For X, of Eq. (1),
the following transformation is performed.

Xn=Ta o a=I"X (2)

where T 1s a modal matrix assumed to be normal-
ized. With Eq. (2), Eq. (1) 1s transformed as
follows:

T3 » TTCaTa ¢ TTKnTa = TTR(E) + TTU(E) (D)
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where TTM,T 1s a unit matrix, TTK,T 1s a
diagonal ¥requency matrix, and
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If constant damping coefficients (proportional
damping) are assumed,
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Therefore Eq. (3) is reduced to the following
equation.
Zrcirola-TR(t)+ TUH) ()
where gz symbolizes a frequency matrix, and ¢
is a principal damping matrix. Thus Eq. (1) is

reduced to Eq. (6) separated on each mode and
uncoupled. It 1s very easy to determine the
optimal control inputs to each mode in the above
expressed modal domain. The input IT u(t) is
taken to be a portion of critical damping times
the modal velocity a. That is,

TU-Fa )

- - (8)
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and %y, C2, ..., {pn are modal damping ratios,
or percentage of critical damping, and w7, wp,
..., wy are undamped critical speeds.

If modal damping ratios inherent in the sys-
-tem (obtained by measurement) are very small,
let ¢4 =0.7(1=1,2, ..., n) in kq. (8). If
the system damping is not negligible, then the
values of ¢7 1in Egq. (8) should be taken as 0.7
minus the measured value. The control input,
from Eq. (7), 1s then

u-(H e (9)

U = Gy (10)

where

6=(T) ET (1

In n degree of freedom system, if the number of
control inputs or number of velocity measurements
is less than n, this control system is not a
true modal control system. This paper names such
a control system a quasi-modal control system.
For example, for two control force inputs and
three vibration measurements, the quasi-modal
control system is expressed as follows:

U =6'%n (12)
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where G' s a modified feedback coefficient
matrix. Determining G' 1s the subject of the
next section.

2.2 Modification of Feedback Coefficient for
Quasi-Modal Control

Equation (11) provides feedback coefficients
for the case when vibration velocities are meas-
ured at every station. If this is not the case,
satisfactory control is unlikely using Eq. (11).
Therefore for a quasi-modal control system, it is
necessary to modify the value of G depending on
the number of measurements and positions of meas-
urements (probe locations) in order to produce
the maximum of control efficiency. The assump-
tions are as follows; (1) the number of active
control bearings and their positions are given,
(2) the vibration from the first mode to the s th
mode (s < n) is to be controlled, and (3) the
positions of measurements (probe locations) are
unconstrained. The modification of & differs
depending on the number of measurements and the
number of controlled modes. They are divided
into three cases depending on the relationship of
the number of measurements (k) to the number of
controlled modes(s): (1) k =5, (2) k < s, and
(3) k > s.

2.2.1 Case when the number of measurements
of vibration velocity is equivalent to_the number
of controlled modes. (k = s). As the first step,
write the G matrix with zero rows where there
are no active control bearings.

locations of measurements
e oot e,

' ' ¥
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From Eq. (14), the Tocations of active control
bearings are positions in which row vectors in
the matrix G are not zero.

For the first mode, the control force
coefficients supplied to each active control
bearing may be computed by using G from
£Eq. (14). -
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where [t1y, t2y, . . ., tm]T is the eigen vec-

tor for the first mode in the modal matrix T.
Namely, this vector multiplied by an angular
velocity « and modal amplitude is the first
modal component of the vibration velocity vec-
tor. On the right side of Eq. (15), vay, Vp1,
..., Va1 are the control force coefficients sup-
plied to positions a, b, . . ., and e to
actively control the first mode vibration. In
the same manner for the other modes, the follow-
ing relations are obtained.
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The right side of Eq. (17) shows the control force
coefficients supplied on each mode to each posi-
tion of active control bearings. The control
forces applied to any one bearing are independent
of the forces applied to the other bearings. With
respect to the active control bearing at position
a, it is the most desirable to supply control
forces of vg7 for the first mode, vz for the
second mode, . . ., and vag for the s th mode.
Therefore, even if the number of vibration veloc-
ities measured are less than n, we only have to
modify the elements in the matrix @ to satisfy
the right side of Eq. (17).

As the number of measurements (k) equals the
number of controlled modes (s) from assumption,
replacing n with s and writing Eq. (17) again
after omitting zero elements, we obtain the fol-
Towing expression.
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G'T =V (19)

where the dimensions of the matrices G' and V
are r x s and the matrix T has the dimension
s x s. From Eq. (19), we have

or

6' = V-1 (20)

The matrix G' 1is the modified feedback coeff?
cient matrix to be used instead of the matrix
6. In Eq. (11) G' s the one and only solution.
The number of active control bearings is
equivalent to the number of row vectors of the
matrix G' 1in Eqs. (20) and (21), namely r.
Whether r > s or r <s, the matrix G' 1is cer-
tainly determined. However, the eigen value
assignments and the unbalance responses actually
depend on the number of active control bearings
as shown later. In this section, an optimization
of control inputs is carried out concerning how
to supply the control forces to active control
bearings assigned. Even if the number of measure-
ments of vibration velocities is at most equiva-
lent to the number of controlled modes, it is
possibie to achieve the control effect similar to
the case when the number of measurements is n.
It is important to note that this control effect
does not depend on the location of measurements.



2.2.2 Case when the number of measurements
of vibration velocity 1s less than the number of
controlled modes. (k < s)}. In this case, Eq. (18)
appears as
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where the matrix G' has the dimension r x k

(k < s), the matrix T has k x s and the matrix
U hasr xs. Thus T becomes a rectangular
matrix and cannot be inverted. Therefore, the
number of controlled modes is reduced to k to
be able to get the inversion of the matrix.

After this reduction, matrices T and G" are
obtained as follows:
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G*T' =V (28)
Accordingly,
6" = V(T")-1 (25)

Then, it requires the following consideration
for the modes eliminated from a control object.

Assuming that the modes eliminated are 1 th and
J th, we estimate errors as regards the 1 th and
the j th modes between the control force deter-
mined by Eq. (25) and the optimal control force
in section 2.2.1 using the matrix G' (Eg. (18))

9a1 9a2 - - - Yak| [F11 tay Vai Vaj

t
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where vai, Vbi, . . ., Vet and vajy, Vpj. - - -,
Vej of the right side are control forces supplied
for the § th and the j th modes eliminated.
Accordingly, k positions of measurements have to
be optimized so as to satisfy the following per-
formance index.

S o2
J = m‘lnl:(va1 - Va1) + (vb1 - Vb1) ...

t (Vgy - ;e1)2 * (Vaj - ;aj)z

A L er)z] (27)

The dynamic characteristics sensitivity depends
on k positions of measurements in this case.

In general, it is impossible to realtze J = 0;
however it i1s possible to make J small. It is
very important to find out the optimal positions
of measurements. Moreover, it has to be also
evaluated which mode can minimize the performance
index J.

2.2.3 Case when the number of measurements
of vibration velocity is more than the number of
controtled modes. (k > s). This case is k > s
in contrast to section 2.2.2. We only have to
determine the feedback coefficients by increasing
controlled modes as to k = s.

The three cases above mentioned are summa-
rized as follows: (1) in the first case of
k = s, unique feedback coefficients are deter-
mined independent of measuring positions and the
number of active control bearings, (2) in the
second case of k < s, the feedback coefficients
are not determined such as the first case.
Accordingly, the number of controlled modes must
be decreased so the number of controlled modes
agrees with the number of measurements. Then the
feedback coefficients can be determined. After
this, on the basis of a performance index for
uncontrolled modes, the positions of measurements
must be selected so as to minimize the perform-
ance index. These positions of measurements are
the best positions to measure and the feedback
coefficients in this case are best for vibration
control. (3) In the third case of k > s, as in
the second case, feedback coefficients are not
determined. In this case, contrary to the second
case, the number of controlled modes must be
increased.

The control effect in the case where veloc-
ities are measured at all positions can be real-
ized by measuring velocities at only s positions




minimize the performance index. It 1s possible
to control a vibration of rotating shaft from the
first mode to the third mode as shown in Fig. 5
(a) and (b). The first mode is evaluated for the
performance index J in this example.

4. CONCLUSION

According to the results of the simulations,
if the optimal feedback coefficients are chosen,
the unbalance vibration up to the third mode can
be sufficiently controlled by means of only two
active control bearings and measurements of vibra-
tion velocities at only two locations. The unbal-
ance amplitude can be reduced to less than the
center of gravity eccentricity. In this case, it
is very important to choose the positions of meas-
urements to avoid instability.

The quasi-modal control method for active
control of rotor vibrations proposed in this paper
results in near maximum control efficiency using
the minimum number of active control bearings and
the minimum measurements of vibration velocities.
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in the first case and the third case. 1In all
three cases, the greater the number of active
control bearings, the better the response of

vibration control will be.

3. MODEL OF ROTOR-BEARING SYSTEM AND SIMULATION

3.1 Rotor Model and Equation of Motion
Simulatiens of a three bearing and three
disk rotor system are carried out in this chap-
ter. The rotor model and its undamped natural
modes are shown in Fig. 2. The equation of
motion is derived by a finite element method. 1In
this case, the equation of motion is a fourteenth-
order matrix differential equation because this
rotor model is divided into six elements. Now,
it is assumed that there are three active control
bearings at positions 1, 3, and 6 and this
system is uncoupled between x and y directions.
The vibrations from the first mode to the third
mode are to be controlled and it is possible to
measure vibration velocities at any position.
For simpiicity, only measurements in the x direc-
tion are considered.

3.2 Case When the Number of Measurements of
Vibration Velocity is Equivalent to the
Number of Controlled Modes

This section describes the case where the
number of measurements of vibration velocities is
three. 1In order to investigate the stability of
the rotor-bearing system, a complex eigenvalue
analysis is carried out and the eigenvalues are
shown on a complex plane as an eigenvalue assign-
ment. The unbalance responses in these cases are
also shown. Figure 3 (a) and (b) shows the eigen-
value assignment and their unbalance responses.

In the case of three inputs and three outputs

1ike this one, 1t is observed that the unbalance

responses are almost the same independent of the
positions of measurements. The unbalance
responses are similar to the case in which all
velocities at all positions are measured. This
section also shows the responses when the number
of active control bearings is changed. These

results prove the summary in chapter 2.

3.3 Case When the Number of Measurements of
Vibration Velocity is Less than the
Number of Controlled Modes

This section 1llustrates the case of three
control inputs and two measurements as the second
case in chapter 2. The control characteristics
depend on the mode of the performance index. The
positions where the performance index is minimum
should be selected for measuring positions of
vibration velocities. These are shown in Fig. 4
(a) and (b) as typical example. These show the
case in which the performance index J is based on
the third mode. These figures indicate that
measuring positions xj7 and xp are the best
positions in this case. Since some cases become
unstable in such a system with three inputs and
two outputs, care is required in the selection of
measuring positions to avoid having unstable
modes.

Lastly, Fig. 5 shows the case of two control
inputs and two measurements where both the number
of measurements and the number of active control
bearings are less than the number of controlled
modes. Even if there are only two active control
bearings, the maximum effect is afforded by
selecting the positions of measurements so as to
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