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PREFACE

In recent years much attention has been devoted to the development of simple and computationally fast analyti-
cal approximations to the radiative transfer equation. This has largely been the result of the need to parameterize the
radiative properties of clouds and aerosols in general circulation climate models. In these and other climate model

applications, it becomes necessary to rapidly calculate the plane albedo, total transmission and fractional absorption
as a function of optical thickness and solar zenith angle for a wide range of atmospheric conditions.

This report contains a comparison of the absolute and relative accuracy of eight different radiative transfer

approximations as a function of optical thickness (0. I _<rt _<100) and cosine of the solar zenith angle (0 _</a0 _<1).
Contour plots of the approximate plane albedo, total transmission and fractional absorption are presented for each
model, as well as contour plots for the relative and absolute errors in each model. These results have been obtained

for fourvalues of the single scattering albedo (viz.., 1.0, 0.99, 0.9 and 0.8) and for a cloud phase function having an
asymmetry factor g = 0.843. The radiative transfer approximations considered in this report are asymptotic theory
for thick layers and the following widely used two-stream approximations: Coakley-Ch_lek's models 1 and 2, Meador-
Weaver, Eddington, delta-Eddington, PIFM and delta-discrete ordinates. The baseline computations for these com-
parisons were obtained using the doubling method.

The authors are grateful to Howard G. Meyer for aid in performing the computations and in generating the
numerous graphical results. The research was in part supported by NASA Grant NAG 5-309.
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COMPARATIVE ACCURACY OF THE ALBEDO, TRANSMISSION AND ABSORPTION FOR

SELECTED RADIATIVE TRANSFER APPROXIMATIONS

Michael D. King and Harshvardhan 1

Laboratory for A tm ospheres
Goddard Space Flight Center, NASA

Greenbelt, MD 20771

SUMMARY

In the present study the plane albedo, total transmission and fractional absorption predicted
by eight different radiative transfer approximations are compared with doubling computations as a
function of optical thickness, solar zenith angle and single scattering albedo. The phase function
used in these computations is intended to be representative of a fair weather cumulus cloud having
an asymmetry factor g = 0.843. These results show that specific regions can be identified where
one radiative transfer approximation is more accurate than another. For climate model applica-
tions in which a single radiative transfer approximation is required to accurately model reflection,
transmission and absorption at all optical depths, solar zenith angles and single scattering albedos,
our results show that this requirement is not satisfied by any of the approximate methods. How-
ever, for remote sensing applications involving flux measurements of either reflected or transmit-
ted radiation, it is generally possible to use these results as a guide in selecting the most accurate
approximation to use.

Of the models we have examined, asymptotic theory (Sobolev, 1975, van de Hulst, 1980), al-
though seldom used, is the most accurate approximation for optical thicknesses greater than about
6, where errors less than 5% are obtained for reflection, transmission and absorption for all solar

zenith angles and all single scattering albedos. Among the two-stream methods, Coakley-Ch3_lek's
model I is accurate to within 5% for optically thin atmospheres having optical thicknesses less
than about 0.2 for most values of the solar zenith angle. Though the accuracies of the delta-Ed-

dington and Meador-Weaver approximations are less easily summarized, it can generally be con-
cluded that the delta-Eddington approximation is the most accurate two-stream method for con-
servative scattering in optically thick atmospheres, whereas the Meador-Weaver approximation is

the most accurate two-stream method for nonconservative scattering (6% _ 0.9). In general, the
PIFM and delta-discrete ordinates methods are quite similar to, but slightly worse than, the delta-
Eddington method over the entire range of variables. The other two-stream models presented in
this report are the Eddington approximation and Coakley-Ch_,lek's model 2. In both of these
methods it is always possible to find one of the other six models for which more accurate esti-
mates of the plane albedo, total transmission or fractional absorption are obtained. This precludes
the use of either of these models in any radiative transfer problem involving large asymmetry fac-
tors, such as those examined in this report.

INTRODUCTION

In many remote sensing and climate model applications, it is necessary to calculate the plane
albedo, total transmission and fractional absorption of atmospheric layers as a function of opti-
cal thickness and solar zenith angle. Among the simplest and most widely used approximations
to the radiative transfer equation are the two-stream approximations. These approximations

1Also affiliated with Department of Meteorology, University of Maryland, College Park, MD 20742.
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have been discussed and analyzed by lrvine (1968), Kawata and Irvine (1970), Shettle and Wein-
man (1970), Liou (1973, 1974), Coakley and Ch_lek (1975), Joseph et al. (1976) and Schaller
(1979). Recently, Meador and Weaver (1980) and Zdunkowski et al. (1980)have shown that a
whole class of approximate two-stream solutions can be reduced to a standard form with only a

few coefficients. These coefficients depend on the cosine of the solar zenith angle (/10)' single
scattering albedo (coo) and one or more moments of the single scattering phase function, while the
general equations for the plane albedo and total transmission depend in addition on the total opti-
cal thickness of the layer (rt). In spite of this long history of development, no generally agreed-
upon variable ranges exist within which one can use a given approximation with assurance that
accurate reflected, transmitted and absorbed flux densities will be obtained.

Once a layer is sufficiently thick, an asymptotic regime is established within the layer which
permits the extension of the plane albedo, total transmission and fractional absorption to com-
parable values for a semi-infinite layer (van de Hulst, 1968a, 1980; Sobolev, 1975). In the present
study, this asymptotic method for thick layers is compared in accuracy with selected two-stream

approximations for 0 _<_0 _< 1 and 0.1 _r t _ 100. Results have been obtained for four values of
the single scattering albedo (viz., 1.0, 0.99, 0.9 and 0.8) and for a cloud phase function having an
asymmetry factor g = 0.843. Following the suggestion of Wiscombe and Joseph (1977), who con-
sidered the accuracy of the Eddington approximation for g 40.5, both absolute and relative errors

in the plane albedo, total transmission and fractional absorption ale presented in this report. We
concentrate our comparisons on asymptotic theory for thick layers and Coakley-Chylek's models I

and 2, Meador-Weaver, Eddington, delta-Eddington, PIFM and delta-discrete ordinates approxima-
tions.

MULTIPLE SCATTERING COMPUTATIONS

To provide a baseline for assessing the accuracy of various radiative transfer approximations, numerical compu-
tations were performed for a model atmosphere composed of cloud particles. Fig. 1 illustrates the phase function
employed in these calculations, which is based on Mie theory for a wavelength X = 0.754 _m, refractive index
m = 1.332. and a size distribution of particles of a given radius proportional to r 6exp(-1.6187r), where r is the
particle radius in _m. This distribution of particles is a gamma distribution with an effective radius of 5.56 _m and
an effective variance of 0.11 I. and is considered typical of fair weather cumulus (FWC) clouds (Hansen, 1971).
This distribution is similar to Deinnendjian's (1963) cloud C. 1 model, except that the effective radius in Deirmend-
jian's model is 6.0 _m.

In performing our radiative transfer calculations, we have followed the common practice of expressing the prod-
uct of the single scattering albedo coOand phase function ,l_(cos ®), as a finite expansion of Legendre polynomials ofthe form

L

¢OOaP(cosG) = _ coI PI(COS 0), (1)
l=O

where ® is the scattering angle and Pl (cos O) a Legendre polynomial of order l. With this definition, the phase
function obeys the nomlalization condition

I

f ,v(c,,sO)d(cosO)= 1, (2)-1

with the asymmetry factor g related to the Legendre coefficient col by

1

,/,f cosOd(.,,sO)= g = %/(3 o) . (3)
--1 "

-)
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Figure 1. Phase function as a function of scattering angle for a fair weather cumulus (FWC)size distribution given
by n(r) o:r6 exp(-1.6187r), where k = 0.754 #m and m = 1.332 - O.Oi.



The asymmetry factor for the FWC cloud model is g = 0.843.

Multiple scattering calculations were performed for the azimuth-independent term of the reflection and trans-

mission functions using the doubling method described by Hansen and Travis (1974), together with the invariant
imbedding initialization described by King (1983). In terms of these functions, the azimuthally-averaged reflected
I °(0, -/1) and transmitted l°(r r _) intensities from a horizontally homogeneous atmosphere illuminated from above
by a parallel beam of radiation of incident flux density F0 may be expressed as

I 0(0, - la)= (laoFo/zr)R O(rt;/1,/10) , (4)

I °(rt,/.t) = (/a0 Fo/rr) T0(rt:/a,,u 0 ), (5)

where r t is the total optical thickness of the atmosphere,/a 0 the cosine of the solar zenith angle and/a the cosine of
the zenith angle with respect to the outward normal (0 _/_,/a 0 _< 1).

In terms of the azimuth-independent reflection function R 0(r t ;,u, _u0) and transmission fimction T0(rt,/a,,u0).
tile plane albedo [r(rt, _0)] , total transmission [t(r r /a0)] and fractional absorption [a(r r/10) ] of the layer aregiven by

" ' 1

r(rt,/a0) = 2 f R°(rt;/.t,/a0)ud/a' (6)
0

1

t(rt, tl0) = 2 fTO(rt:tl, _O)ladla + exp( - rt/P0) , (7)
0

a(rt' P0) = 1 - r(rt, U0) - t(rt, p0 ) . (8)

Due to the use of a highly anisotropic phase function and the requirement that accurate computations of the plane
albedo, total transmission and fractional absorption be obtained, we have subdivided the/l angular interval using
a Gaussian quadrature of order 80 (King, 1983).

Since the major purpose of this study is to examine the accuracy of various radiative transfer approximations
over a wide range of optical depths, solar zenith angles and single scattering albedos, we have ignored the effects of
surface reflection. As a result, the reflection and transmission functions appearing in (4) - (7) apply to those of an
isolated cloud layer only.

RADIATIVE TRANSFER APPROXIMATIONS

Asymplotic Theory

When the optical thickness is sufficiently large, an asymptotic regime is established within the layer such that
the reflection and transmission functions can be expressed in terms of functions applicable to a senti-infinite layer
(van de Hulst. 1968a, 1980). From these expressions, coupled with the definitions oi:plane albedo and total trans-

mission given previously, it can be shown that the asymptotic theory approximations for the plane albedo [r^(rt,/.to)]
total transmission [rA(rt./a0)] and fractional absorption [a(r t./a0) ] of the layer are given by

Ar(rt"laO) = rodlao) _ m n l K(laO) 6" 2krt , (9)
1 - 1 2 e-2krt



m n
_(rt '/.to) = KO0) e-k';t (10)

1-12e-2krt

_(rt,g0) = 1 -_r t, g0 ) - _(rt,/J 0) (11)

In these expressions rc,o(g0) is the plane albedo of a semi-infinite atmosphere,K(u 0) the escape function, k the
diffusion exponent describing the attenuation of radiation in the diffusion domain, and m, n and l constants which
depend primarily on the single scattering albedo and asymmetry factor (King, 1981).

The escape function and diffusion exponent, as well as other asymptotic functions and constants appearing in
(9) and (10), can be obtained by applying the asymptotic fitting method of van de Hulst (1968b). In this method,

computational results from the doubling method are fit to asymptotic expressions for the plane albedo, diffuse
transmission and internal intensity field as a function of the optical depth. The functions K(g 0) and rodg0) thus
obtained are illustrated in King and Harshvardhan (1986) as a function ofg 0 for the FWC phase function and for

four values of w o. In addition to these functions, the plane albedo and total transmission of thick layers depend on
the constants m, n, l and k [of. Eqs. (9) and (I0)]. Each of these constants is strongly co0 dependent with a some-
what weaker dependence on g. King (1981) has shown that m, n and l can be well described by a function of a sim-

ilarity parameter s, defined by

s = , (12)
-- Co0

where s reduces to (l - ¢o0)½ for isotropic scattering and spans the range 0 (6o0 = 1) to l(w 0 = 0).
Although the diffusion exponent k does not obey such a similarity relationship, the flmction k/(1 - 6Oog)does.

Fig. 2 illustrates k/(l - ¢o0g) as a function of s for both the FWC (w0 = 0.99, 0.9 and 0.8) and Henyey-Greenstein
phase functions for varying values of _0 (0.9999, 0.999, 0.996, 0.99, 0.96, 0.9, 0.8 and 0.6) and g (0.8, 0.85 and
0.9). The computational results presented in Fig. 2 were fit to k/(1 - Wog) as a function of s. The formulas for

m, n, 1 and k/(1 - c_0g) are summarized in Table 1. The formula for m is identical to that obtained by King (1981),
whereas the coefficients in the formulas for n and I differ slightly in order to give a better fit for small values ofs.

For conservative scattering, when roo(g0) = n = l = I and m = k = 0, the asymptotic expressions for the plane
albedo and total transmission given in (9) and (10) are indeterminate. Expanding tt, I, m and k to first order in s. it
can be shown that (9) and (I0) can be rewritten as (King, 1981)

4K(g 0)
_(rt, g0) = 1 - , (13)

3(1 -g)(r t + 2q0)

^ 4K(g0) (14)
t(r t, g0 ) =

3(1 - g)(r t + 2q0)

where q0 is the extrapolation length. The reduced extrapolation length q' = (1 - g)q0 is known to range between
0.709 and 0.715 for all possible phase functions (van de Hulst, 1980), and can be well approximated by 0.714 for
anisotropic cloud phase functions (King, 1981). Thus it is seen that the plane albedo and total transmission in opti-

cally thick, conservatively scattering layers are a function of(1 -g)r r with all of the solar zenith angle dependence

contained in K(I_0).
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Figure 2. k/(1 -_0 E) as a function of similarity parameter s = [(1 - WO)/(1 -w0g ] ½ , where k is the diffusion
exponent. The symbols represent values obtained by numerical computation for FWC and Henyey-
Greenstein phase functions, and the curve the result of a least-squares fit to an analytic equation.



TABLE 1

Similarity relations satisfied by the constants which arise in asymptotic expressions for the plane albedo,
total transmission and fractional absorption of thick layers.

(1 -0.681s)(1 -s)
1 =

(1 + 0.792s)

(1 + 0.414s)(1 -s)_ ½. = J

m=(l+l'537s)ln[i+l'800s-7"O87s2+4"740s3t(1- 0.819s)(1- s)2

(0.985 - 0.253s)s"
k/( l -Wog ) = ,ITs-

(6.464 - 5.464s)

Two-Stream Approximations

The two-stream approximations in radiative transfer are based oil assuming various analytic forms for tile up-
ward and downward intensity fields within and at tile boundaries of a plane-parallel medium. Substituting tile as-

sumed angular distribution into tile integro-differential form of the equation of transfer results in a set of differen-

tial equations for tile upward [F-(r. /10)] and downward [F+(T,/10)] flux densities (Meador and Weaver, 1980:
Zdunkowski et al.. 1980):

dF-(r'/10 ) = 1,1F- (r, i.t0)- 3'2F+(r,/l 0) - F0w o 73 e -z]laO (15)
dr

dF+(r'/a°) = 72F-(r,/a0) - 3,IF+(r,/10) + F0 w03,4 e-rlUo , (16)
dr

where 1 (17)

F+(r,_u0) = err f I°( "r,+/a) gd/.t.
0

In order to obtain tile forms given in (I 5) and (16), it is often necessary to approximate the scattering phase
function in order to integrate tile source function analytically. Expressions for the plane albedo, total transmission
and fractional absorption are obtained by solving (15) and (16), subject to the boundary conditionsF-(r t, po ) =

F*(0,/anl = 0. The results may be obtained in the form (Meador and Weaver. 1980)



O30
ra(rt, go) = x [(1 -k go)(a2 + k73)ekl"t

(1 -k2gol[(k +71)e krt +(k-71)e -krt]

- (1 + k #0}(a 2 - k73)e -k rt - 2k(73 - a2/20) e-rt/gO], (18)

lt(rt,go) = e-Vt/go x 1-

(1 - k2gO 2) [(k + 71) ekrt _"(k- 71)e-krt]

x [(1 + kgo) (a 1 + k74)ekrt _ (1 - kgo)(a I -- k74 )e-krt

al g°)ertlg°l I ' (19)2k(74
+

/

where

al -- 7174 + "/'273, (20)

a 2 = 71")'3+_74' (21)

k = (712 - 722) ½, (22)

74 = 1 - 73 , (23)

and the fractional absorption a_(rt,t20) is given by (11).

The 71.3, 2 and 73 coefficients in (15) and (16) for various two-stream approximations, along with references to

their original description in the literature, are given in Table 2. Several of these methods employ delta scaling (Jo-
seph etal.. 19761 in wtfich a fraction fofthe scattered energy is considered to be in the forward peak, approximated
as a Dirac delta function. For each of these methods, which include the delta-Eddington, Practical Improved Flux
Method (PIFM) and delta-discrete ordinates methods. (18) and (19) can still be used as long as the following trans-
)'ormations are made in the coefficients and solutions:

rt "-*rt' = (1 -O3oJ)rt, (24)

COO_ o30' = (1 - f)o30/(l - COo,f), (25)

g'-*g' = (g - f)/(l -f). (26)

Tile primed quantities in (24) - (26), when substituted into the expressions for 7,, 3'2 and 7_ (cf. Table 2) as well as

into (18_ and (19_, yield the relevant expressions for r*(rt, g0)' _(rt, g0) and _(rt_ g0)for the_delta-scaled approxima-
tions. Though various choices of f are possible, the most frequently used choice, and the one used in all computa-
tional results to be presented below, is f=g2.



TABLE 2. Summary of 3'/ coefficients in selected two-stream approximations.

Method Reference 7 I 3,2 3"3

Eddington Kawata and Irvine (1970) 1/417 - wo(4 + 3g)] -1/4[ 1 - Wo(4 -- 3g)] 1/4(2 - 3g_u0)

delta-Eddington Joseph et al. (1976) 1[417 - w(_'(4 + 3g')l -1/4[1 - _o'(4 -- 3g')] 1[4(2 - 3g'%)

PIFM Zdunkowski et al. ( 1980) 1/4 [8 - Wo'(5 + 3g')] 3/4 [w 0'(1 - g')] 1/4(2 - 3g',%)

discrete ordinates Liou (1973, 1974) a]_-3/212 - e%(l +g)l "ff3"/21%(1 -g)] l/2(l-_ff'3gt_ o)

,.o delta-discrete ordinates Schaller (1979) "ff_'3[212 - _o'(1 +g')] .ff'j'/2[_o'(1 -g')] 1/2(I- 'ff_g'u o)

Coakley-Chylek (I) Coakley and Ch_,lek (1975) 211 -Wo(i - _ )] o WO/3 /3(/aO)

7-3g2-w0 (4+3g)4. Wo g2[4/3(pO)+3g] - l -tg2_-_Oo(4 ..3g)+ w0 g2 [4/3(/Jo)+3g--4]
Meador-Weaver Meador and Weaver (1980) 13(11O)

411 - g2(I - pO)] 411 _g2(] _ Uo)1



In the Meador-Weaver and Coakley-Chfdek approximations, 73 is set equal to tile backscatter fraction fl(gO), de-fined as

1 1

/3(UO)= -- f h°(-U,Uo)dU, (27)
2c°0 0

where h°( -/2, U0) is the azimuthal average of COoq_(eos6)) for incident solar radiation in the direction U0 and re-
flected in the direction - U. The backscatter fraction/3(/a0) is illustrated in King and Harshvardhan (1986) for the
FWC phase function used in the present investigation.

The Coakley and Ch_,lek (1975) model 2, which we will hereafter refer to as Coakley.Ch351ek (II), uses the
average backscatter fraction _'in the expression for 71 and 7 2. This constant is defined as

1

= f t3(u0)dUo. (28)
0

For the phase function used in the present investigation, _ = 0.1772.
For conservative scattering, for which 71 = 72 and k = 0, Eqs. (18) and (19) reduce to

A, ^ 1

rtr r Uo) = 1 -- t(rt,Uo ) - 1 + 71r t [7! rt + (73 - 71Uo) (I -- e -rt/Uo)]. (29)

For Coakley and Chylek's (1975) model 1, hereafter referred to as Coaldey-Chvlek (1), 73 =y 1UOand thus (29) re-duces to an especially simple form (see Table 2).

Since k exceeds unity for strongly absorbing atmospheres in all two-stream app,oximations (cf. Table 2). con-
ditions can easily exist for which !"0 =-"k-1. especially in the water vapor bands. Thougll this condition can lead

to a numerical singularity in (18) and (lO) the singularity is removable, and when U0 =k -1 it is rather straigllt-forward to show that (18) and (19) reduce to

r^(rt'Uo ) = to° x { (a2U0 +7 3) eZt/Uo - [(a2U0 + 73)
2[(1 + ylUo)e zt/U 0 + (1 - 71 i.tO)e-rt/Uo]

+ 2(a2 I%- 73)rt]ta o] e- rt/Uo} ' (30)

_'(rt'l%) = e-rt/la(I × I 1 - COO
2[(1 +71 Uo)ert/#c, + (1 -7 1,/-/0 )e-rt/Uo]

x [[(ctI ,u0-74 ) -2(a I PO +74)rt/PO] ertha° -(ai u0 -74)e-rt/Uo J 1" (31)

This case may be avoided by either applying these fommlae when U0 = k -I, or by displacing _0 by a very small
increment and applying (18) and (19), as suggested by Zdunkowski et al. (1980).

in computing fluxes for multi-layer systems overlying a reflecting surface, it is also necessary to compute the
albedo and transmission of layers for diffuse radiation. For parameterization purposes, it is usual to compute these

10



quantities for an isotropic incident source. Under this situation, the global (spherical) albedo and global trans-
mission can be obtained by integrating the corresponding plane albedo and total transmission solutions as a function

OfPo: 1

7(rt) = 2 f _(rt, PO) Pod/l O, (32)
0

1

7(r t ) = 2 f? (r t, P0) P0 dUO (33)0

Inspection of (18) and (19), or even the simpler (29) for conservative scattering, shows that a general closed form
solution for (32) and (33) does not exist. Although these integrations can be carried out numerically for each

specific two-stream model, this is not practical for most modeling applications. For those two-stream models for

which/3(p 0) does not explicitly appear in any of the 7 i coefficients, it is in principle possible to analytically integrate
(18) and (19) to obtain expressions for r-'(rt) andY(rt} for specific models. In asymptotic theory it is possible to ob-
tain simple analytic fommlae for F(r t)and t-(r t). These expressions can be found in King (1981).

Coakley and Ch¢lek (1975) suggest that (32) and (33) may be avoided by using a second set of globally-aver-

aged two-stream equations in which tire incident isotropic radiation is treated as an upper boundaD' condition. In
general, however, the results obtained by this approach yield different results from those obtained using (32) and
(33) for the same model. In the results to be presented below, we have restricted our comparisons of the radiative
properties of various radiative transfer models to those for an isolated layer composed of cloud particles. The com-
plicating effects of ground albedo have therefore not been considered, but a comparable intercompanson of results

for r(rt) and 7(rt)as a function ofr t and _o0 remains an important study to be pursued in the future.

RESULTS

We have examined both the absolute and relative accuracies ot the plane albedo, total transmission and frac-

tional absorption (where applicable) as a function of r t and/l 0 for four values of the single scattering albedo (co0 = 1.0,
0.99.0.9 and 0.8) and for all radiative transfer approximations discussed in the previous section. Fig. 3 illustrates

r(r t, pO) = i - t(r,, pO) as a function of rt(O.1 _r t _ 100) and P0 (0 _/_0 _ 1) for conservative scattering (w 0 = 1),
and Fig. 4 illustrates corresponding results for _(r t, go/for each of eight different radiative transfer approximations.
The shaded regions in the asymptotic theory and Eddington approximation results of Fig. 4 delineate regions for

which nonphysical (negative) plane albedos are obtained in the approximations. In both of these models, nonphysi-
cal regions occur for optically thin atmospheres and for small solar zenith angles (large values of P0)"

Fig. 5 illustrates a 4 x 3 plot composite of errors for conservative scattering and for four radiative transfer
models, where the first row applies to asymptotic theory and succeeding rows to thedelta-Eddington, Meador-Weaver
and Coakley-Ch_,lek (I) approximations. Individual plots in the first colunm of Fig. 5 represent absolute errors in

the plane albedo, defined as

_r (7"t 'tao ) = _ (rt' PO)- r (r t, p0 ). (34)

With this definition, positive (negative) errors indicate that the radiative transfer approximation overestimates
(underestimates) the exact albedo, taken as the computational results presented in Fig. 3. Similar definitions apply

to errors in the total transmission [At(r r PO)] and fractional absorption [Aa(r t,/aO)]. The relative errors in the

plane albedo [kr(r r po)/r(rr p0 )] and total transmission [At(r t, Po)/t(rt ,PO)] are presented in succeeding col-
umns of Fig. 5, and are given in per cent. Relative errors with magnitudes greater than 20% and absolute errors
with magnitudes greater than 0.2 are not plotted in Fig. 5 or in subsequent figures.

11
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Figure 3. Doublingcomputations of the plane albedo as a function of optical thickness and cosine of the solar

zenith angle for a FWCphase function with conservative scattering (¢o0 = 1.0).
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Figure 5. Absolute and relative accuracy of asymptotic theory, delta-Eddington, Meador-Weaver and Coakley-
Ch_lek (I) approxmations to the plane albedo and total transmission as a function of optical thickness

and cosine of the solar zenith angle for conservative scattering (coo -- 1.0). All relative accuracy values
are in per cent. The FWC phase function is assumed throughout.
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Fig. 5 shows that asymptotic theory is accurate to within 5% in both reflection and transmission for r t _3

when/l 0 <0.9. ,,Furthermore, asymptotic theory is accurate to within 1% for all solar zenith angles when r t _8.
The Coak_ey-Chylek (I) approximation, on the other hand, is accurate to within 5% for all r t _0.2 when/a 0 > 0.1.

Since r(r t, /l0) is small when rt//a 0 _ 0.5 (cf. Fig. 3), a relative error of 5% is too stringent a criterion to use for

accepting a model in this range. Adopting instead the absolute error criterion [Ar(r t, t_0) I _ 0.005, we see
that the range of validity of the Coakley-Chylek (I) approximation can be extended to r t _ 0.5 for a wide range
of solar zenith angles. An advantage of both of these models is that their absolute and relative accuracies show

little sensitivity to/l 0 in their respective ranges of validity.
In contrast to these models, the delta-Eddington approximation tends to have its greatest accuracy when

/_0 _ 0.5, regardless of optical thickness. The large relative albedo errors which occur when rt/la 0 is small are not
critical, since the absolute errors are small in this range. Similarly, when rt _ 10 and/l 0 40.5, the small values of

t(r t, /10) allow one to extend the range of validity of the delta-Eddington model to values of/a 0 somewhat lower
than 0.5.

The Meador-Weaver approximation, which was developed as a composite of the Eddington and Coakley-Ch)lek

(I) methods, has most of the characteristics of the latter for conservative scattering, especially for thick atmo-
spheres. In optically thin atmospheres, on the other hand, it has a much greater/a 0 sensitivity than the Coakley-
Ch_lek (I) method. This makes the Meador-Weaver approximation less suitable than alternative methods for con-
servative scattering over the entire range of variables, at least for the high values of asymmetry factor considered
in the present investigation.

Detailed results for conservative scattering analogous to Fig. 5 are presented in Fig. 6 for four other radiative

transfer approximations, viz., the Eddington, Coakley-Ch3_lek (II), PIFM and delta-discrete ordinates methods. On
examination of Table 2, one can readily show that the PIFM method of Zdunkowski et al. (1980) is identical to
the delta-Eddington method for conservative scattering, which accounts for the identical appearance of the corre-
sponding panels in Figs. 5 and 6 for these two models. The difference Zdunkowski et al. report between the delta-

Eddington and PIFM methods when ¢o0 = 1 is likely a result of their using different values of f in the scaling for-
mulae (24)- (26) for each method.

A careful examination of the results in Fig. 6 shows that the Eddington, PIFM and delta-discrete ordinates

methods are quite accurate for optically thick, conservative atmospheres, although they differ substantially in
their accuracy at small and intermediate optical depths. From a comparison of the results in Figs. 5 and 6, it fol-
lows that the Coakley-Ch_lek (I1) approximation is everywhere less accurate than the Coakley-Ch_lek (I) approx-

imation. In general, it can be concluded that when w 0 = 1 the majority of models considered in this report are in-
accurate in their approximation of the plane albedo when/l 0 "_ 1 and 1 _ r t _ 5, with asymptotic theory being
the best suited in this difficult range of variables.

Fig. 7 illustrates doubling computations of the plane albedo, total transmission and fractional absorption as a

function of r t and /a0 for nonconservative scattering (w0= 0.99), where we have used the same phase function il-
lustrated in Fig. 1, but simply scaled the Legendre coefficients by w0. Figs. 8 and 9 show corresponding figures for
each of the eight radiative transfer approximations considered in this report. Again we have used shading to iden-

tify all nonphysical regions where either the plane albedo or fractional absorption is negative or the total transmis-
sion exceeds unity.

Fig. 10 illustrates a 4 x 3 plot composite showing absolute errors in the plane albedo, total transmission and

fractional absorption as a function of 1-t and P0 for 6% = 0.99 and for each of the four models presented in Fig. 8.

A similar plot composite for the remaining four models is presented in Fig. 11. Corresponding results for relative
errors for all eight models are presented in Figs. 12 and 13. In all of these figures, individual plots in the first col-
umn represent errors in the plane albedo, while plots in succeeding columns represent errors in the total transmis-
sion and fractional absorption, respectively. Due to the small amount of absorption when w 0 = 0.99 and r t _ 5,
the relative and absolute errors for all eight models are nearly identical to corresponding errors in the conserva-

tive case. Only in the case of high sun and large optical depths do appreciable changes occur in the accuracy of dif-
ferent models. Further discussion of these differences is reserved for the following treatment of the 6% = 0.9 case.

Fig. 14 illustrates doubling computations of the plane albedo, total transmission and fractional absorption for

6o0 = 0.9, while Figs. 15 and 16 show corresponding figures for all eight radiative transfer approximations consid-
ered in this report. Figs. 17 - 20 illustrate absolute and relative errors obtained for ¢o0 = 0.9 in the same format
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Figure 6. As in Fig. 5 except for the Eddington, Coakley-Ch_lek(II), PIFM and delta-discrete ordinates approxi-
mations.
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Figure 7. Doubling computations of the (a) plane albedo, (b) total transmission and (c) fractional absorption as a
function of optical thickness and cosine of the solar zenith angle for a FWC phase function with noncon-

servative scattering (6o0 - 0.99).
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Figure 8. Computations of the plane albedo, total transmission and fractional absorption as a function of optical
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Figure I0. Absolute accuracy of asymptotic theory, delta-Eddington, Meador-Weaver and Coakley-Ch_lek (I) ap-
proximations to the plane albedo, total transmission and fractional absorption as a function of optical

thickness and cosine of the solar zenith angle for nonconservative scattering (¢o0 = 0.99).
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Figure 11. As in Fig. 10 except for the Eddington, Coakley-Ch3_lek (II), PIFM and delta-discrete ordinates approxi-
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Figure 12. As is Fig. 10 except for relative accuracies (in per cent).
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Figure 13. As is Fig. 11 except for relative accuracies (in per cent).
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Figure 14. Doubling computations of the (a) plane albedo, (b) total transmission and (c) fractional absorption as a
function of optical thickness and cosine of the solar zenith angle for a FWC phase function with noncon-

servative scattering (co0 = 0.9).
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Figure 15. Computations of the plane albedo, total transmission and fractional absorption as a function of optical
thickness and cosine of the solar zenith angle for asymptotic theory, delta-Eddington, Meador-Weaver and

Coakley-Ch_,lek (I) approximations when coo = 0.9.
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Figure 16. As in Fig. 15 except for the Eddington, Coakley-Ch_lek(lI), PIFM and delta-discrete ordinates approxi-
mations.

26



ASYMPTOTICTHEORY
Ar(T,_) &t(T,_) &a(:,_) COO-0.9

u100.0 i i i i i i i L ] i i i i t _ i J i i i i i i ?_1

i ___L_, ' _o.,

o, ,A-;\ //
DELTA--EDDINGTON

' ' L! ....... F,l I,_,'o_' ' _,
lo.o ;_o.oo5

_ t "

o.,11,//i ......

ii o.
COAKLEY--CH_'LEK(I)

10.0 0.2 0.4 0.6 0.8 1.0 0,0 0,2 0.4 0.6 0.8 1.0 0.0 0.2 014 I 0.i6 I 0!8 I 1.0

/% /Jo /Jo

Figure 17. Absolute accuracy of asymptotic theory, delta-Eddington, Meador-Weaver and Coakley-Ch_,lek (I) ap-
proximations to the plane albedo, total transmission and fractional absorption as a function of optical

thickness and cosine of the solar zenith angle for nonconservative scattering (w 0 = 0.9).
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Figure 18. As in Fig. 17 except for the Eddington, Coakley-Chylek (II), PIFM and delta-discrete ordinates approxi-
mations.
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Figure 19. As is Fig. 17 except for relative accuracies (in per cent).
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as used previously in Figs. 10 - 13. Figs. 17 and 19 show that asymptotic theory is equally as valid an approxi-
mation for optically thick, nonconservative atmospheres as it is for optically thick, conservative atmospheres (cf.
Fig. 5). Relative errors of 5% or less are achieved in asymptotic theory for reflection, transmission and absorp-

tion when _'t _ 6, regardless of solar zenith angle. For cases in which reflection is the most important, the results
presented in Fig. 19 show that asymptotic theory can be applied to optical depths as low as 4 with an accuracy
of better than 5%.

As in the case of conservative scattering, the Coakley-Chy'lek (I) method is the most accurate approxima-
tion for optically thin atmospheres, with a tendency to be somewhat more accurate for small solar zenith angles

(large values of/a0). In order to have an accuracy of better than 5% in reflection, transmission and absorption,
Fig. 19 suggests that it is necessary for r t _0.1 and/.t o _0.1. However, since a(rt,PO)_ I when rt/P 0 _0.5 (cf.
Fig. 14c), it is more meaningful to use the absolute error criterion IAa(r t, t_0)l < 0.005. Thus we conclude that
the range of validity of the Coakley-Ch_dek (I) approximation can generally be extended to include all optical depths

less than some maximum in the range 0.2 _r t _0.7, depending on solar zenith angle.
For the delta-Eddington approximation, comparison of Figs. 5 and 19 show that relative errors in the plane al-

bedo and total transmission degrade somewhat in accuracyas absorption increases, especially for optically thick atmo-

spheres. This is a consequence of the fact that the _'oo(/a0) computed in the delta-Eddington approximation is nearly
linear in ju0 for all single scattering albedos, whereas the true roo(tlO) has increasing curvature as absorption increases
(cf. King and Harshvardhan, 1986). Both the absolute and relative errors in the other delta-scaled approximations

(viz., the PIFM and delta-discrete ordinates methods) are very similar to, but slightly worse than, the delta-Eddington

method. A feature of all of these methods is the isolated region at intermediate values oft t and/a 0 where absorp-
tion errors in excess of 10% occur (cf. Figs. 19 and 20).

Although the Meador-Weaver approximation was previously shown to be an inferior model for conservative scat-
tering, it is clear from Figs. 17 and 19 that its accuracy improves dramatically as absorption increases, especially for
reflection. This is true for both Optically thin and thick atmospheres. Moreover, it is the only two-stream model

which has an albedo accuracy of better than 5% over a wide range of solar zenith angles when r t _2, although the
absorption error is sometimes as large as 10% in this range of variables. The explanation for the exceptional accur-

acy of the Meador-Weaver approximation in optically thick, nonconservative atmospheres is that _'o_ 0) exhibits
significant curvature in/a 0 for all single scattering albedos, as does the true too (/a0) (cf. King and Harshvardhan,
1986). This feature is unique to the Meador-Weaver method among two-stream approximations.

Although the Eddington approximation was previously shown to be quite accurate for optically thick, nearly
conservative atmosphere_, the results presented in Figs. 18 and 20 show that the Eddington approximation has no

useful regime where albedo errors less than 5% occur when: co0 = 0.9. From a similar examination of results for the
Coakley-Ch_lek (II) method, we conclude that this model is also a poor approximation for nonconservative atmo-
spheres involving collimated radiation.

Detailed results analogous to Figs. 14 - 20 are presented in Figs. 21 - 27 for co0 = 0.8. From a comparison of
the relative errors in Figs. 5, 12, 19 and 26, one can see that there is a clear tendency for the Meador-Weaver approx-

imation to improve in accuracy as w 0 decreases, at least to _0 = 0.8, at which point albedo errors of less than 7.5%
occur for all optical depths when _t0 > 0.2. In addition, these figures show that asymptotic theory continues to be
a valid approximation for optically thick, nonconservative atmospheres. Although the Coakley-Ch'),lek (I) model can
still be used for optically thin atmospheres, the other two-stream methods generally degrade in accuracy as absorption
increases. Again it is clear from Figs. 26 and 27 that all of the delta-scaled two-stream methods have an isolated

region at intermediate values of r t and _u0 where absorption errors in excess of 10% occur. In general, it can be con-
cluded that all models with the exception of asymptotic theory and the Meador-Weaver approximation have diffi-
culty in optically thick, nonconservative atmospheres.
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Figure 21. Doubling computations of the (a) plane albedo, (b) total transmission and (c) fractional absorption as a
function of optical thickness and cosine of the solar zenith angle for a FWC phase function with noncon-

servative scattering (co0 = 0.8).
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Figure 22. Computations of the plane albedo, total transmission and fractional absorption as a function of optical
thickness and cosine of the solar zenith angle for asymptotic theory, delta-Eddington, Meador-Weaver

and Coakley-Ch_lek (I) approximations when u_0 = 0.8.
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Figure 23. As in Fig. 22 except for the Eddington, Coakley-Chylek (II), PIFM and delta-discrete ordinates approxi-
mations.
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ASYMPTOTIC THEORY
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Figure 24. Absolute accuracy of asymptotic theory, delta-Eddington, Meador-Weaverand Coakley-Ch_lek(I) ap-
proximations to the plane albedo, total transmission and fractional absorption as a function of optical

thickness and cosine of the solar zenith angle for nonconservativescattering (w0 = 0.8).
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Figure 25. As in Fig. 24 except for the Eddington, Coaldey-Ch3_lek (II), PIFM and delta-discrete ordinates approxi-
mations.
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ASYMPTOTIC THEORY
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Figure 26. As is Fig. 24 except for relative accuracies (in per cent).
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Figure 27. As is Fig. 25 except for relative accuracies (in per cent).
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CONCLUDING REMARKS

Most previous intercomparisons of radiative transfer approximations have concentrated on presenting results
for the plane albedo as a function of cosine of the solar zenith angle for selected values of the optical depth. On

some occasions, intercomparisons have been further restricted to selected values of/10" Although plane albedo er-
rors in the delta-Eddington approximation are less than 5% for all optical depths when w 0 = 0.9 and/l 0 = 0.4
(cf. Fig. 19), a generalized conclusion on its overall accuracy based on this restricted intercomparison would be
highly misleading. We therefore feel it is important to examine the accuracy of the plane albedo, total transmis-
sion and fractional absorption as a function of optical depth and solar zenith angle before drawing conclusions
about the overall accuracy of a given approximation.

After examining a wide variety of radiative transfer approximations over a large range of optical depths, solar
zenith angles and single scattering albedos, it has become evident why some approximations succeed while others

fail in specific regimes. For example, a straight-forward comparison of (13) and (29) shows that when _0 = 1 and

rt//a 0 >>1, the plane albedo obtained from asymptotic theory and two-stream approximations are equivalent, pro-
vided the two-stream coefficients 3'1 and 3'3 satisfy the following criteria:

1

71 -- -_q,(1 - g), (35)

2K(/_0)
73 = 1 +7 I/_0 -_ (36)

3q'

For the delta-scaled approximations, the only difference in these criteria is the substitution g _ g" in (35). Since

q' ,... 0.714 for all possible phase functions, (35) implies that 3'1 __0.7 (1 - g) for unscaled approximations and
0.7 (1 - g') for scaled approximations. Table 2 shows that the Eddington and delta-Eddington methods satisfy these
requirements the most closely. Furthermore, in order for a two-stream method to perform well for optically thick,

conservative atmospheres, it is necessary for 73 to be a linear function of/_0 over most of the range of solar zenith
angles. This readily follows from a comparison of (36)with the escape function K(/10)presented in King and Harsh-
vardhan (1986, Fig. 4). The poor performance of the Meador-Weaver and Coakley-Ch)71ek(I) methods under these

conditions is at least in part a result of theirchoice of 73 =/3(/a0), a function which is highly nonlinear in/a 0. The
Eddington and delta-Eddington methods, on the other hand, very nearly satisfy (36). Note that although 3,3 can
be negative for high sun in the Eddington method, this is in accord with the requirement given by (36).

Due to the importance of developing a radiative transfer approximation which is accurate for all solar zenith
angles and over a wide range of optical depths, our results suggest that a hybrid two-stream model that reduces to
asymptotic theory for thick atmospheres but extends the range of validity of asymptotic theory to thinner atmo-
spheres would be extremely valuable. The development of such a model remains a challenge for further study.
Finally, we would like to note that none of the conclusions drawn in the present investigation are affected by our
choice of a Mie theory phase function. Limited intercomparisons with doubling computations using the Henyey-
Greenstein phase function with the same asymmetry factor as in the fair weather cumulus model (g = 0.843) yield
error plots with virtually the same appearance as those of the FWC phase function.

Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbelt, MD 20771
September 6, 1985
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