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ABSTRACT

Sounding rockets equipped to monitor electron density and its fine

structure were launched into the auroral and equatorial ionosphere in

1980 and 1983, respectively. The measurement electronics are based on

the Langmuir probe and are described in detail. An approach to the

spectral analysis of the density irregularities is addressed and a

software algorithm implementing the approach is given. Preliminary

results of the analysis are presented.
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1.. INTRODUCTION

Many characteristics of the ionosphere have been investigated in

order to increase the understanding of the mechanisms determining its

behavior. Of considerable interest In recent years are irregularities

in the number density of electrons and ions, primarily as indicators of

the physical phenomena generating these irregularities. Emphasis has

been placed on the study of sporadic-E, spread-F and the electrojet,

especially in the equatorial and auroral regions where the plasma

density structure shows the greatest complexity.

Measurements of electron density fine structure have been obtained

with several experimental techniques. The :most popular techniques

involve ground-based radar sensing, in-situ probes located on sounding

rockets, balloons and satellites. An overview of the experimental and

theoretical 'work on ionospheric irregularities in past years has been

presented by FEJER AND KELLY [1980-].

Two major .campaigns supported by the Aeronomy Laboratory of the

University of Illinois under the sponsorship of NASA were undertaken to

investigate the ionosphere in 1980 .and 1983. The Energy Budget

Campaign, a coordinated study of sources and sinks of energy in the

auroral zone, took .place at a launch site near .Kiruna, Sweden. The

Aeronomy laboratory participated with three payloads containing Langmuir

probes for the measurement of electron density irregularities. Project

Condor, a coordinated study of the equatorial ionosphere, occurred at

Punta Lobos Rocket Range near Chilca, Peru where two launches carried

payloads prepared by the Aeronomy Laboratory, both containing nose-tip



Langmuir probes. Although each payload contained varied experiments to

measure electron density, electron temperature and energetic particle

precipitation, the major thrust of this report is the discussion of the

methods used to measure electron-density irregularities on these

payloads and the analysis of the spatial characteristics of the fine

structure using the techniques of spectral estimation.

The following report details, in Chapter 2, the experiments

implemented for measurement of electron-density irregularities in the

auroral ionosphere (Energy Budget Campaign) and in the equatorial

ionosphere (Project Condor). Chapter 3 describes the techniques of

spectral estimation as applied to the fine structure experiment and the

software developed for the analysis. Chapters 4 and 5 present

preliminary results obtained from spectral estimation of the data from

the two campaigns along with possible interpretations. The report

concludes with a summary of results and suggestions for future work.



2. PROBE FINE STRUCTURE EXPERIMENT

2.1 General Description

The fine structure experiment is basically an extension of the

experiment which has been used for measuring ambient electron densities

versus altitude. This particular experiment is based upon the DC probe

experiment developed by SMITH [1964, 1967] used to measure electron

densities in the 50 to 200 km altitude range. PRAKASH ET AL. [1972]

adapted the experiment to also measure electron-density irregular-

ities. For the payloads described herein^ the Langmuir probe serves as

the basis for the experiments measuring electron density, electron

temperature, and electron density fine structure. The following

description, however, will deal primarily with the fine structure

measurements.

A block diagram of the fine structure experiment used in the Energy

Budget Campaign- is shown in Figure 2.1. The experiment consists of two

boom-mounted Langmuir probes connected in parallelj a sweep generator, a

logarithmic electrometer, and an AC amplifier. The sweep generator

provides the voltage reference to the probes for the electron density

and temperature measurements. The specific voltage profile used is

shown in Figure 2.2. The voltage sweeps from -1.35 V to 4.05 V in 0.3

seconds and then remains constant at 4.05 V for 1.7 seconds. The ramped

portion allows measurement of the electron temperature as described in

ZIMMERMAN AND' SMITH [1980], while the electron density and fine

structure are monitored during the constant voltage portion. The



Average
Electron
Density

Sweep
Generator

Logarithmic
Electrometer

AC
Amplifier

Irregularities

Boom-Mounted
Langmuir Probes
(180° Separation)

Figure 2.1. Block diagram of the electron density probe and fine
structure experiment used in the Engergy Budget Campaign.
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profile repeats every 2 seconds, providing alternating measurements of

temperature and density. During the constant voltage mode, the probe

current is processed by the logarithmic electrometer and AC amplifier.

Both output signals are transmitted to a telemetry station and recorded

on tape.

2.1.1 Langmuir probe theory. In the fine structure experiment, an

electrode is inserted into the ionospheric plasma and held at a constant

potential relative to the rocket body. The current into the electrode

is then monitored as an indicator of electron concentrations. We now

examine the relationship between the electron density, probe voltage and

probe current.

Assuming the electrons in the ionosphere are in thermal

equilibrium, the energy distribution may be represented by the electron

temperature Tg. The average velocity of the electrons is then given by

ve (8kT_AnO1/2. (2.1)

where k is the Boltzmann constant and me the electron mass. The current

density j due to the random thermal motion of electrons is

Neeve/4, (2.2)

where N is electron density and e the charge of the electron. For an

ideal probe at the plasma potential, the current into the probe is



strictly dependent on the random motion of the electrons and is

I0 = J0A, (2.3)

where A is the surface area of the probe. For a probe at a positive

potential V relative to the plasma potential, the purrent density j is

given by

<2.4)

The .current injto the probe is

AN, ey
(2.5).

This relation expresses the probe current as a function of the probe
• • : •... •- .. ••••• V.. i:...f- •..-•/•••.;,.. -. rr 5 -, ••- .;i !-<.„.: M; :, » •.-;»• .',' ..'•,.- . ;i j, J..- •« U- .-.:': £ . .'

voltage V, the electron temperature Te, and the electron (density N£.

Up to this point, currents due to negatiyie and positive ions have

been neglected. This neglect is quite .valid for negative ion currents

since the concentration of negative ions is negligible at altitudes
:j : • . ' • - - '•>;•• • v^ -'. • -1 - \ • ; .(. , . • . •. _ -. ., .» - ;.--••'» . v -_.. \ «.. ..i.*r.tv- '<• v- "' —'• - .•; ... • - --i*t^ ,•

above 90 km, i.e., in the E region. The positive ion current cannot be

so .easily dismissed? At thermal .equilibrium the mean velocity of the

ions is

V± - (8kT1/Trm±) l /2. (2.6)



From Equations 2.1 and 2.6 we have

(2.7)

In the D and E regions, collision frequencies are sufficiently

large to maintain reasonable thermal contact between electrons and ions

so that thermal equilibrium between these may be safely assumed.

Equation 2.7 is then further simplified to give

7e/7± = (m±/me)
1/2 . (2.8)

This ratio is roughly 170; the exact value depends on the ion

composition of the specific region of interest. This fact, along with

charge neutrality (Ng = N̂ ), implies that the random electron current

density is approximately two orders of magnitude larger than the random

positive ion current density for a probe at the plasma potential. This

ratio is increased further for a probe with a positive (ion-retarding)

potential, as is the case for the fine structure experiment. Likewise,

the ratio is also increased if the condition that thermal equilibrium

exist between electrons and ions is relaxed, since theory and

observation have shown that Te is always greater than or equal to T^.

Therefore it is reasonable to assume that the current due to positive

ions is negligible in comparison with the electron current.

With this in mind, Equation 2.5 will be used to express the total

current into the probe.



2.1.2 Signal development ,and ion-board processing.. As mentioned

^earlier, ;t-he .probe current -as a /function of -voltage and itemperature .is

given by

AN ev
-*l + eV/-kTe), (2; 9)

In the fine structure experiment., -.the voltage V is held constant at 4.0,5

V. Assuming t-hat the electron ^temperature .remains constant .over short

intervals, a linear relationship -exists between the current and electron

density. The ̂ assumption \di xonsitant ^temperature -over ss'ho.rt .intervals :6f

/al-tltude :is geneTally .accepted .and is .supported 'by <most -existing data.

•However, HI^AO /AND iOYAMA :[1<972'] '.hawe ;q,uest;ioned ithls .assumption. Their

.data seems to indicate .;small scale temperature 'fluctuations In the 100

.fcm to 200 km r.ange;, .contradicting '-the constant temperature .assumption.

DURK1N AND :SMITH ;[19,8:1:] /shave designed :an ^experiment if:or Mgh resolution

measurements of ithe .electron ;temperatu<r,e ipriOJf,il-e ^in torder :bo further

investigate this.. She 'experiment >.was f-lown .on two .iNike-^Orion -rockets in

1981 :and l';982 -at iWallops Llsland, "vVirgi-nia;; jhowever ithe fitemperaiture -data

.ar.e not yet -available iai this time,. *Eor the •pr:es.en.t., -iw.e -wit?! .take ;the

former view that .electron temperatur.es r.emain constant -:o,ver the

observation intervals iresul'ting in .a linear .relati-onship between probe

current and electron •density.

The current into the probe .is then given by

1 = *Ne, C2..10)
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Aev
where P = —r— (1 + eV/kT£). Fluctuations in electron density produce

changes in probe current which are monitored by the logarithmic

electrometer. The probe current may be decomposed into two components:

(a) a dc (or slowly varying) component, Iav, associated

with the average value of the ambient electron density,

and

(b) an ac component, AI, associated with the small-scale

fluctuations about the ambient density.

This signal serves as the input to a logarithmic electrometer which is a

current sensitive amplifier with a logarithmic gain characteristic. A

logarithmic amplifier was chosen due to the large variation of Iav over

the duration of the flights. The output voltage of the logarithmic

electrometer is then given by the expression

V. - K ln(I/I ) = K ln[(I + Al)/I ]
J. S clV S

K ln(I /I ) -I- K ln(l -I- AI/I ), (2.11)

where I~ *s the reverse saturation current of the nonlinear feedback
S

element. Assuming that AI is much smaller in magnitude than Iav> which

experiment has shown to be the case, the electrometer output may be

expressed as

V. = K ln(I /I ) + K(AI/I ); for AI « I (2.12)
A. oV o civ 3V
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This signal is telemetered', to ground via a- channel of appropriate

bandwidth and' stored on magnetic tape to provide the large scale

structure of the electron density profile.

At this stage, the magnitude of the ac signal is q(uite small in

comparison with the dc bias. Since this small signal is the quantity of:

interest,, the bias must be removed and the magnitude increased: in order

to increase the1 signal-to-noise ratio- at the input to the telemetry

transmitter. Therefore,, the signal is enhanced by an1 ac amplifier. The

output of the ac amplifier is given by

V2 = GK: CftlA-av> - GK (ANe,/Ne.)̂  (2'. 13.)

f

where G is the1 voltage gain of the1 amplifier. This: signal is

representative of the relative1 small scale structure of the electron

density profile and is- telemetered, to> ground1 for storage on magnetic

tape.

2.2. Circuit Implemen'tatt'on- for. the;. EneTgy Budget Gampa'iigfl

The instrumentation' of: the fine structure1 experiment, is shown in

Figure 2.3. Following; is a description of the actual, circuit

implementation including, details of integration into the payload.

2.2.11 Langmulr probe. The1 prb'bes consist of spherical aluminum

electrodes, 1. cm in- diameter, coated with a layer of colloidal graphite'

(Aquadag.). The coating provides a reasonable' uniformity in the- contact
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.potential of the .probe ^surface. This is especially important in the

•calculation 'of plasma potential which is 'defined as the transition point

in the i-v •characteristic from a 1-pgarithmlc dependence on voltage to a

linear dependence '(see .Figure 2v4».. If the contact -potential is not

uniform over the probe surface, small voltage offsets corresponding to

small regions ;o'f constant contact potential .occur in the equations

.relating probe current to voltage. 'Summing the contributions of each

small area with ;a specific -contact potential -results In a distorted i-v

characteristic :'in which the transltti'on is less well defined. The

colloidal sgraphlte it-ends to :reduce /this effect while providing -a smooth

conducting surface..

A spherical ;geometry was .selected for its indifference to

orientation with respect to the magnetic field- -'SMITH i[:1969'] has shown

that the magnitude of the current f<or a 'given density is not dependent

on the total surface area of the vproibe, ;but instead on t-he cross

sectional area perpendicul'ar t-o it-he .magnet-lc ;fl?eld:. 'Since a sphere

presents the .same cross ssection from any .aspect, it :is Insensitive to

••orientati'on ;w'itih vrespect ;to 'the miagneti'c fl'elrd.

Physical 'dimension is another fimportant 'Consl'der'ation in it^he use of

probes .f'or -rocket—based measurements. 'A •positive volt-age relative to

the plasma potential placed -on the ;pr.oibe tends to :f>or-ce the rocket

floating potential -negative \which in turn 'decreases the ,pro'be

potential. '.This ^occurs 'so that ^enough positive ion current may flow

Into the rocket body to equal the 'electron fcurrent drawn by the probe.
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Figure 2.4. Total electrode current, including electron and
positive-ion components (ZIMMERMAN AND SMITH, 1980).
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The dependence on probe arid rocket surface areas is shown below to

be :a ̂ consequence 'of 'these equal cur-rents :

JeAprobe = JiArocket; (2.15)

. . .... „
) = d

0 l
A r o c f c e t 7 J A ' <2'16:

If the quantity on the right is equal to one •XAr..oc'ket
 = *^ Aprobe^

assuming Te % Tj,, then V rofee is -equal 'to -Vrocket:; the voltages are

symmetric about the .plasma potential. Clearly, it is desirable to

minimize :the voltage shift and maintain Vroc|cet as near -as possible to

the plasma poteritial. This is accomplished by "ensuring that the ratio

on the right is as large as possible. A reasonable lower bound is ten,

which ,fo.r a ;probe voltage of 4.;05 V ral-lows a 7.4% offset. .The following

relation must then be 'satisfi'ed :

docket > 170° Vobe- (2

The Taurus Orion rocket and the pay load are shown in Figures 2.5

and 2.6, along with the relevant dimensions. The surface area of the

Orion and payload combination is approximately 5.2 x 10 cm while the



q
d

16

g
b

"q
cvi

OJ
"5.o

73
O

O
Q.

g
Q

cc
o

q
r^
CO

in
(D

oc

c
60
•rl

bO
T3

00
M
01
Cw
0)

co
•H
4-1

Cfl
M
3
60

•H
H-l
C
Oo

0)
.*!
O



17

271.

1

90.

30.

j
Ocm

45.

i

35.

\

68.

7cm

•

7cm

|
1
5cm

6cm

6cm

/ V

LJ

^-//s**^

Clamshell
Nosecone
(NASA)

Experiment
(Bern)

Telemetry
and Tracking
(NASA)

Receiving
Antennas

; (Illinois)

Experiments
(Illinois)

Telescope
and Gyroscope
(NASA)

Recovery
System
(NASA)
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probe area (total) is 6.3 cm2 yielding a ratio of 8197/170 = 48. This

is more than sufficient to keep the voltage shift of the rocket within

acceptable limits.

In the above calculations, the total surface area of the Orion

stage is used rather than the cross sectional area perpendicular to the

magnetic field. This is reasonable since the positive ion current is

not dependent on the magnetic aspect angle [ZIMMERMAN AND SMITH, 1980].

The last consideration concerning the probe is integration into the

payload. In the launches of the Energy Budget Campaign, the Langmuir

probes were mounted on booms with a 180° separation about the rocket

axis. The booms are 76.2 cm in length and are located 243.8 cm from the

nose tip. In past flights, these dimensions have proved adequate to

minimize the effect of the vehicle wake on density measurements. The

probes are positioned opposing each other and electrically connected in

parallel in order to reduce the effect of non-uniformities of electron

density in the region around the rocket. A non-uniform density distri-

bution manifests itself as a modulation in the probe current. For a

single boom mounted probe, the modulation has a frequency equal to the

spin rate of the rocket and a magnitude proportional to the maximum

differential in the density (Figure 2.7). The modulation frequency for

the parallel pair on the other hand is twice the spin rate with a

magnitude proportional to one-half the maximum density differential.

Therefore, the parallel probe configuration smooths out the non-

uniformities.

2.2.2 Sweep and timing circuits. The sweep circuit provides the
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periodic voltage profile mentioned in Section 2.1. The circuit and

pinouts are shown in Figure 2.8. Upon activation of the sweep relay Kl,

a linearly increasing voltage appears across Cl at a rate dictated by

the time constant T(= (Rl + R3) Cl). Eventually the rising voltage on

Cl turns Ql off and the voltage remains constant until sweep relay Kl is

turned off, at which time Cl discharges through R4. The cycle is

repeated upon reactivation of the sweep relay. The voltage on Cl is

buffered by a voltage follower Q2, and divided to obtain the required

range of -1.35 to 4.05 V.

A calibration feature is also included in the sweep circuit. To

perform in-flight calibrations of the probe circuitry, relay K2 may be

activated, thus connecting the probe input to a grounded resistor. This

provides a known current to the circuit, allowing in-flight monitoring

of circuit operation.

The probe timer operates the sweep and mode relays, shown in

Figures 2.3 and 2.8, and is responsible for the timing scheme of the

experiment. The circuit implementation and timing diagram are given in

Figures 2.9 and 2.10. When power is connected to the timer circuit, Q2

turns on and the sweep relay is initially energized. At this time, a

voltage develops across Cl at a rate dependent on the time constant TJ(=

R8xCl). This voltage increases until the threshold of the unijunction

transistor is reached at which time Cl is quickly discharged and Q2 is

turned off, de-energizing the sweep relay. The time constant TI is

adjusted by selecting R8 and in this case is set for 2 seconds. With Q2

off, a reverse voltage builds on Cl with a time constant T2(=R2xCl).

This reverse voltage increases until Q2 turns on again, beginning the
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Q,3 s 1.7-s
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0.02s

Figure 2.10... Timing- diagram for the timing circuit.
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next cycle. The time constant T£ is adjusted for 20 msec by proper

selection of R2. This arrangement provides the sweep relay profile

shown in the figure.

To provide synchronization between the sweep relay and mode relay,

the output of Q2 serves as the input to an additional circuit (Q3, Q4,

Q5). Initially, Q3 and Q5 are nonconducting while Q4 is conducting.

As Q2 is turned on, Q3 conducts, Q4 shuts off and Q5 energizes the mode

relay. Charge then builds on C3 at a rate specified by ToC3 R5xC3)

until Q4 conducts, cutting off Q5 and Q3. For this case, TO is adjusted

by R5 to be 0.3 seconds. This cycle repeats as Q2 is triggered.

2.2.3 Logarithmic electrometer. The circuit of the logarithmic

electrometer is shown in Figure 2.11 [KLAUS AND SMITH, 1978] along with

its ideal circuit representation. A Kiethly Instruments Inc. Model 302

was chosen for its low input impedance and the nominally low input bias

current (MO A). The logarithmic characteristic was chosen to

increase the dynamic range of the amplifier and is obtained by the diode

configuration in the feedback. The current through the diode is given

by

Id = Is[exp(Vl/vT) - 1] (2.18)

where I. is the reverse bias saturation current of the diode, v, is thes i

voltage across the diode, and VT (= kT/e) is approximately 25 mV. For

values of Vj greater than 90 mV (i.e., exp(v1/vT) ̂ 10), Equation 2.18

may be approximated by
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Figure 2.11. Schematic of logarithmic electrometer
and a simplified representation.
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Id - IglexpCv^v-p)]. (2.19)

The assumption that the measured current I is much larger than the input

bias current yields

I * Id = Is exp(Vl/vT). (2.20)

The output of the electrometer is thus given by

v = ( v )ln(I/I ); I > I . (2.21)
o R- T s s

The reverse bias leakage current I presents a lower bound on the

measurable current assuming the input bias current is less than Ig. If

this is not true, the measurable current is lower bounded by the bias

current.

—8For auroral flights, electron currents in the range of 10 A to

10 A (corresponding to approximate electron densities of 10 to 10

o
electrons per cm ) were expected in the D and E regions. With the low

input bias current of the Model 302, electron currents as small as 10~

A may be measured. The p-n junction in the feedback circuit is

therefore chosen to have a logarithmic characteristic in the

above-mentioned ranges and a leakage current much less than the bias
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current. The gain factor K is then adjusted to provide a reasonable

output to the telemetry transmitter. For the Energy Budget Campaign, a

transistor junction is used in the feedback with an I_ on the order of
S

10 ^ A. To provide an output in the 0-5 range, R^ and R2 are specified

as 1 k fl and 120 fi respectively. This configuration yields a gain

factor, K, for the fine structure signal of 0.247 V and a base-ten

logarithmic voltage gain of 0.57 V/decade for the average current.

The frequency response of the logarithmic electrometer is

characterized for two different situations. The first deals with the

frequency response to small signal fluctuations about an average

current; the second deals with large fluctuations in the average current

itself. KLAUS AND SMITH [1978] measured the frequency response due to

small scale signal fluctuations by imposing a square wave on an average

current and measuring the rise time of the output. They found that the

frequency response was proportional to the average current. For an

Q

average current of 10~° A, the upper cutoff frequency was found to be

2.5 kHz. This response is important for the fine structure experiment.

ZIMMERMAN AND SMITH [1980] have included a theoretical computation

of the frequency response due to large average current fluctuations

based on measurements of the small signal response. The analysis

considered a step input of current of magnitude I. The response was

again found to be proportional to the magnitude of the current. For a

—R
current step of 10 ° A,the upper cutoff frequency is calculated to be

650 Hz. This is the upper cutoff frequency for large scale changes in

the average electron density.
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2.2.4 ac amplifier. The schematic of the ac amplifier is shown in

Figure 2.12 [KLAUS AND SMITH, 1978]. The midband voltage gain of the

amplifier, determined by the feedback resistor and the output voltage

divider, was set at 100. This configuration was chosen to limit the

output voltage range to ± 2.5 V (with a supply voltage of ± 10 V). This

prevents overdriving the telemetry VCO and interfering with adjacent

channels. The voltage gain of 100 allows observation of electron

density irregularities up to 10%.

The frequency response of the ac amplifier was measured by the

risetime-falltime method described by KLAUS AND SMITH [1978]. The upper

cutoff frequency is specified by the time constant of the feedback

network. The measured cutoff frequency was found to be approximately 2

kHz. The lower cutoff frequency is specified by the time constant of

the input circuit. Due to a modulation of the input current at the spin

frequency of the rocket (see Section 2.2.1) the lower cutoff frequency

was adjusted to attenuate this low frequency signal ('o 12 Hz) and

thereby prevent saturation of the ac amplifier. The measured cutoff was

approximately 50 Hz providing 12 dB of rejection at 12 Hz.

2.2.5 Telemetry. The telemetry consists of an on-board FM/FM

system with an S-band transmitter. Data from the individual experiments

are assigned to specific channels corresponding to the standard IRIG

format. The FM subcarriers are then used to frequency modulate the S-

band carrier. The data are retrieved on the ground and the multiplexed

subcarriers are obtained by discrimination of the S-band carrier. The

subcarriers are then stored on tape in an analog format.
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The fine structure data (output of Ac amplifier) were assigned to

IRIG channel 18 with a bandwidth of 1050 Hz. The logarithmic

electrometer output was carried on channel 20 with a bandwidth of 1860

Hz. Table 2.1 lists the channel assignments for the other experiments

of the Energy Budget Campaign.

2.3 System Calibration and Special Issues

2.3.1 Probe electrometer calibrations. The probe electrometer was

tested to insure a logarithmic characteristic. To check the

characteristic, the probes were placed in the constant voltage mode

(4.05 V) and connected to ground through a variable resistance. This

allowed manipulation of the current into the probe and monitoring of the

log electrometer output voltage. The test results for the three

payloads are shown in Table 2.2. As can be seen, the logarithmic

characteristic is quite accurate.

2.3.2 Effects of voltage divider on electrometer output. In order

to adjust the gain of the logarithmic electrometer, a voltage divider

was introduced into the feedback (refer to Figure 2.11). The original

analysis assumed that this voltage source was ideal; the question is the

validity of this assumption. An idealized circuit equivalent is shown

in Figure 2.13. The object is to calculate the Thevenin equivalent

circuit for the portion on the left of the dashed line and to determine

the effect of the voltage divider on the output characteristic. The

details of the analysis are shown in the figure. It is evident that a

linear term arises in the output characteristic which may adversely
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Table 2.1 Telemetry channel assignments for the Energy Budget Campaign.

CH. I Particle bunching experiment

20 Boom probe, (logarithmic output)

19 Microprocessor (EPS experiments)

18 Boom probe, fine structure

17 EPS 1

16 EPS 2

15 Receiver #1, modulation

14 Receiver #2, modulation

13 EPS 3

12 EPS 4

11 AGC #1

10 AGC #2

9 Magnetometer (transverse)

8 Commutator

7 Roll gyro

6 Pitch gyro

5 Yaw gyro
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Table 2.2 Logarithmic electrometer calibrations for the Energy Budget
Campaign

Input Current (A)

Flight 33.009

4.05 x 10~10

4.05 x 10~9

4.05 x 10~8

4.05 x 10~7

4.05 x 10~6

4.05 x 10~5

Flight 33.010

4.05 x 10~10

4.05 x 10~9

4.05 x 10~8

4.05 x 10~7

4.05 x 10~6

1.50 x 10~5

Flight 33.011

4.05 x 10~10

4.05 x 10~9

4.05 x 10~8

4.05 x 10~7

4.05 x 10~6

4.05 x 10~5

Output Voltage (V)

2.52

3.06

3.62

4.17

4.78

5.39

2.70

3.27

3.82

4.37

4.92

5.23

2.49

3.11

3.69

4.25

4.82

5.44

Voltage Gain (V/decade)

0.54

0.56

0.55

0.61

0.61

i

0.57

0.55

0.55

0.55

0.62

0.58

0.56

0.57

0.62
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affect the output, depending on the value of Rj. This fact should be

taken into account in the data analysis.

2.3.3 Vehicle potential sensitivity. Another point of interest is

the effect of vehicle potential variation on the experiment. Experience

has shown that small variations in vehicle potential do occur during the

rocket flight, thereby changing the ground reference of the

experiments. The effects may be studied by observing the output of the

logarithmic electrometer as expressed in .equation 2.12,

Vj_ = K ln(Iav/Is) + K(AI/Iav). (2.22)

Aev.
Recalling that I = PNg where P = -~- (1 + eV/kTe),

VL = K ln(PNe/Is) -I- K(ANe/Ne). (2.23)

Changing vehicle potential is reflected in a change in P. It is obvious

that the relative irregularity term is independent of P and therefore of

small variations in vehicle potential. The background density term

however is affected and must be dealt with in the analysis.

2.3.4 Calibration of background electron density. In the

description of the fine structure experiment, various references have

been made to the measurement of the background (ambient) electron

density. This is the result of their interdependence in the measurement



35

technique. Therefore,in the interest of completeness, a few words will

be mentioned concerning the calibration of the background density.

It was noted earlier that the major assumption concerning probe

measurements of electron density was that of constant electron

temperature over short intervals. This corresponds to a constant P in

Equation 2.23. Since P does vary over larger intervals, a calibration

factor is needed to obtain absolute measurements of electron density. A

method of performing this calibration is based on the techniques of

Faraday rotation and of differential absorption which have been

described by FRANCE AND WILLIAMS [1976] and JACOBSEN AND .FRIEDRICH

[1979]. In this experiment, a CW linearly polarized radio wave is

transmitted from the ground to a rocket-borne receiver with a dipole

antenna. As the radio wave propagates through the ionosphere, the plane

of polarization rotates as a function of electron density. This

rotation is due to the different refractive indices of the two

characteristic modes. Along with the rotation, a modification of the

wave occurs as a result of the difference in absorption coefficients of

the characteristic modes. This signal is then received on-board the

rocket where the rotation and differential absorption may be monitored.

Both the differential absorption and Faraday rotation yield quite

accurate absolute values of electron density; however, the resolution is

on the order of 1 km. Therefore, to obtain high resolution absolute

measurements of electron density, the experiment is used to calculate

the proportionality constant P of the probe experiment.
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2.3.5 Harmonic distortion due to logarithmic compression. The

probe experiment uses logarithmic compression in the measurement of

current. This distorts the spectrum of the fluctuations in probe

current. The following analysis shows that the distortion is negligible

in the case of our measurements of ionospheric irregularities.

The compression can be expressed mathematically by

y = ln(l + x), (2.24)

where y represents the output of the system and x the ac component of

the signal. Consider a sinusoidal signal x = a cos cot. This is a

fluctuation at frequency to with peak amplitude a; the amplitude is

expressed as a fraction of the dc (or steady) signal. The logarithmic

compression will introduce harmonics at frequencies 2u), 3d) ... This

effect, taken over a range of fundamental frequencies, will distort the

spectrum by increasing the relative importance of the higher

frequencies.

For x « 1, series expansion gives

x) = x - x2/2 + x3/3 - x4/4 + ... (2.25)

so that, using x = a cos (jt,
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y = a cos wt - (a2/2)cos2 wt + (a3/3)cos3 wt (2.26)

- (a4/4)cos4 wt + ...

Next, powers of cos wt are expressed in terms of the harmonics using

cos2 wt = 1/2 + (l/2)cos 2wt,

cos3 wt = (3/4)cos wt + (l/4)cos 3<Dt, (2.27)

cos4 wt = 3/8 + (l/2)cos 2wt + (l/8)cos 4wt.

Substituting and collecting terms give

y = -[(!/4)a2+(3/32)a4+. ..] + [a+(l/4)a3+. . . ]cos wt

-[(!/4)a2+(l/8)a4+...]cos 2wt + [(l/12)a3+. . . ]cos 3wt

-t(l/32)a4 + ...]cos 4wt. " (2.28)

The ratio of the amplitude of the second harmonic to the amplitude of

the fundamental is

A2/A1 = [(!/4)a+(l/8)a+...]/[a+(l/4)a+...] . (2.29)

f\
If a « 1, as is to /be expected, then

A2/AL ^a/4. (2.30)
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Similarly, the ratio of the amplitude of the third harmonic to the

amplitude of the fundamental is

A3/A1 - (l/12)a
3/[a + (l/4)a3 + ...] ^ a2/12. (2.31)

These ratios lead to the conclusion that the spectral distortion

becomes less serious as the amplitude becomes smaller. For the large

amplitude fluctuations given by AN/N = 5% (peak-to-peak) we have a = 2.5

x 10~2. Thus A2/A1 % 6 x 10~
3 and A3/AX £ 5 x 10~5.

The distortion will also be more significant as the power law index

becomes a large negative number. Taking the steepest spectral slope

encountered in these observations (-7, in power) the ratio of AN/N at

—7/2 —2frequencies one octave apart would b e 2 ' = 9 x l O . Since this

value is much greater than the value of fyl^l. calculated above for the

large amplitude fluctuation we conclude that spectral distortion is

negligible in these observations.

2.4 Modifications for Project Condor; the Equatorial

Experiment

The fine structure experiment was modified for the equatorial

flights 31.028 and 31.029 of Project Condor in order 1) to increase the

experiment sensitivity at higher frequencies, and 2) to provide post-

flight computation of the spectral index as a "quick look" feature as

well as a check on the computer processing to follow.
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The modified experiment includes the same sweep generator and

logarithmic electrometer as that for the Energy Budget Campaign. The

major modifications were implemented in the signal processing hardware

after the electrometer.

The block diagram of the modified fine structure experiment as

flown for Project Condor is illustrated in Figure 2.14. It is composed

of the sweep generator and logarithmic electrometer used for the Energy

Budget Campaign with an ogive-shaped nose-tip probe instead of the dual

probe arrangement. The next portion consists of a pair of broadband

amplifiers whose outputs will provide the data for the computer spectral

analysis. Last, a pair of narrowband filter/amplifier combinations

provide real-time samples of the irregularity spectrum.

The probe used for Project Condor is a nose-tip probe having the

shape generated by spinning an ogive about its axis of symmetry. This

shape was chosen to provide a constant surface area projection onto any

plane about the probe thereby preserving the current-to-voltage

characteristic of the probe. The sweep and timing circuits are

described in detail in Section 2.2.2. Likewise, the logarithmic

electrometer design and operation are outlined in Section 2.2.3 with one

minor modification outlined in Section 2.5.2. The overall gain of the

electrometer was adjusted and measured at 0.82 V/decade for the average

current which for the fine structure equipment corresponds to a gain

factor K of 0.356 V. The electrometer exhibited a flat small signal

frequency response with a 3 dB upper cutoff frequency of 1.8 kHz at an
_ Q

average input current of 10 ° A. For average input currents above
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Figure 2.14. Block diagram of the modified electron density
probe and fine structure experiment for Project Condor.
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10 A the upper cutoff frequency was in excess of 7 kHz. The detailed

calibrations of the electrometers used for Project Condor are included

in the next section. The output of the electrometer serves as the input

to the broadband amplifiers and is also assigned to telemetry channel 19

with a bandwidth of 7 kHz (for a modulation index of one).

At the output of the electrometer, the magnitude of the fine

structure signal is quite small in comparison with the dc signal due to

the average electron density. Since this small signal is the quantity

of interest, the bias must be removed and the magnitude increased so as

to provide the telemetry transmitter with a reasonable signal level.

This is accomplished by two broadband ac amplifiers with differing gains

and frequency bands of operation. The need for two separate amplifiers

is a consequence of the signal contamination arising from the rocket

spin. Asymmetries in electron density introduced by wake effects

contribute to modulation of the probe current at the spin

frequency of the rocket (% 6 Hz) and at harmonics of this frequency.

This contamination would drive a single high gain amplifier into

saturation.

Alternatively the gain of the amplifier could be reduced or the

lower cutoff frequency could be increased at the expense of signal-to-

noise ratio and lower frequency information, respectively. Therefore,

the adopted alternative is to divide the spectrum into two separate

frequency bands, one covering the lower frequencies at low gain and the

other covering the higher frequencies at high gain. This way a

reasonable signal-to-noise ratio is obtained by the high gain stage
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while the low-frequency information with the rocket spin is monitored by

the low gain stage.

In FM/FM systems, the received noise spectrum has the form N(f) «

2
f . As mentioned earlier, the anticipated fine structure spectrum will

have the form S(f) <x f~n; therefore, at higher frequencies the noise

spectral density may be quite large in comparison with the signal

spectral density which results in a decreased signal-to-noise ratio. To

reduce this degradation of signal-to-noise ratio at higher frequencies,

pre-emphasis is incorporated into the broadband amplifiers.

In previous equatorial flights, a single broadband amplifier with a

voltage gain of 100 and a 3 dB bandwidth ranging from 50 Hz to 3 kHz was

used. With a voltage gain of 100, the amplifier provided a maximum

signal excursion of 4.5 V (on a 0-5 V scale), the dominating frequency

components being around 100 Hz. To prevent exceeding the dynamic range

of the system a maximum gain of 40 dB at 100 Hz must be maintained. In

addition to this requirement the higher frequency components require

emphasis to increase the signal-to-noise ratio as the irregularity

spectrum rolls off. Both requirements are achieved using a broadband

amplifier with the lower frequency roll-off exhibited in Figure 2.15a.

With a voltage gain of 400 and a 3 dB lower frequency cutoff at 400 Hz,

the gain is reduced by 6 dB/octave at lower frequencies, which

corresponds to a voltage gain of 100 at 100 Hz. Likewise the gain grows

beyond 100 as frequency increases,finally reaching its maximum of 400.

Therefore all frequencies above 100 Hz are emphasized, frequencies below
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100 Hz are de-emphasized and the maximum signal excursion requirement is

met.

With this design for broadband amplifier 1, the rejection at the

spin contamination is 24 dB relative to the response at 100 Hz providing

ample protection from saturation. The useful bandwidth for this

amplifier ranges from about 50 Hz to the upper frequency cutoff which

was chosen to be 5 kHz. Unfortunately, information below 50 Hz is lost;

hence broadband amplifier 2 is used to retain this information along

with the spin contamination. Experience has shown that a voltage gain

of 10 at the spin contamination frequency precludes the possibility of

saturation. This requirement with the need for pre-emphasis results in

the low frequency rolloff shown in Figure 2.15b. The upper frequency

cutoff was again chosen as 5 kHz so that both broadband amplifiers

overlap the same frequency spectrum to provide redundancy in case of an

in-flight failure.

The schematic of the broadband amplifier section is illustrated in

Figure 2.16. A voltage follower serves as the front end to prevent any

interaction between the amplifiers.and the logarithmic electrometer.

The signal is then split between the two broadband amplifiers whose out-

puts are routed to the narrowband filter sections and to telemetry

channels 20 and 21 with bandwidths of 9.3 kHz and 12.4 kHz, respectively

(for a modulation index of one).

Broadband amplifier 1 has a dynamic range of 14% AN/N for

irregularities containing 100 Hz components and, due to the pre-

emphasis, this range decreases for increasing frequency until it reaches
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its value of 4% for components above 400 Hz. Similarly, the dynamic

range for broadband amplifier 2 is 140% AN/N for irregularities

containing 10 Hz components steadily decreasing to 35% for components

above 40 Hz. The details of these calculations are shown in Figure

2.17.

The narrowband branches are composed of a narrowband filter, a

post-amplifier and, in the case of the 1 kHz branch, a rectifier/low-

pass filter combination. The objective of the narrowband filters is to

provide continuous samples of the irregularity spectrum at frequencies

of 100 Hz and 1 kHz. These samples may then be envelope detected and a

spectral slope could then be computed providing rapid evaluation of the

data after the rocket flights, a back-up to the computer analysis of the

spectral slope and redundancy in the event of an in-flight failure.

Ideally, an extremely narrow bandwidth filter is desirable in order

to obtain an accurate estimate of the spectrum at a particular

frequency. Unfortunately, the spectrum is highly variable as a function

of altitude with very sharp changes in electron density which would

cause a high Q filter to ring significantly. This ringing manifests

itself in the envelope of the signal,thereby introducing error in the

measurement. To minimize ringing a filter Q of 2, corresponding to a

50% bandwidth is chosen. KLAUS AND SMITH [1978] have shown that with

the given spectral shape, an increase in the filter bandwidths within

reason, will result in erroneous samples of the spectrum; however, the

spectral index computed from the samples will remain very close to the
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48

actual index. Therefore, the 50% filter bandwidths prevent substantial

ringing without adversely affecting the spectral index measurement.

The two telemetry channels available for the narrowband branches

are IRIG Channels 10 and 11 with bandwidths of 81 Hz and 110 Hz,

respectively (for a modulation index of five). This creates an

interesting problem concerning channel assignments. Suppose an

instantaneous increase in electron density irregularities occurs in the

100 Hz components. This would result in an instantaneous increase in

the amplitude of the 100 Hz signal out of narrowband 2 which would be

detected at the output of the rectifier on the order of 1/200 Hz = 5 ms

(Figure 2.18). The information bandwidth of the narrowband 2 branch is

200 Hz. Similarly, 2 kHz is the maximum bandwidth of narrowband filter

1. Given the available channels and the desire to maximize the amount

of information transmitted, any filtering beyond that of the channel is

undesirable and therefore omitted. For this reason it is preferable to

transmit the full-wave rectified signal and perform envelope detection

on the ground. This method, however, presents a problem also. The

channel distorts the waveform by bandlimiting the rectified signal which

has infinite bandwidth. This distortion affects the envelope and is

undesirable; consequently, the rectification and low-pass filtering are

omitted in the narrowband 2 branch and the output is simply amplified

and sent to channel 11. Since the information bandwidth is grossly

large in comparison with the available channel bandwidths, the signal

out of narrowband 1 (1 kHz) is full-wave rectified and low-pass filtered

at approximately 85 Hz. This signal is then sent out on channel 10.
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Figure 2.18. Full-wave rectified output of 100 Hz narrowband
filter branch exhibiting the effect of an instantaneous
increase in electron density.
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The final issue concerning the narrowband branches is the gain of

the post-amplifiers. The gain of the post amplifiers must be as large

as possible without allowing saturation. Therefore, the optimum gain

provides maximum signal excursion for the largest expected input

voltage. The maximum signals expected in the frequency bands of

interest are calculated from data obtained by KLAUS AND SMITH [1978] in

their analysis of electrojet irregularities at the magnetic equator.

The maximum normalized RMS amplitudes, En(f), in the frequency bands of

interest were found to be En(100 Hz) = 100 x 10~
6 V/Hz at 90 km and En(l

kHz) = 3 x 10~6 V/Hz at 110 km. Following is an analysis of the signal

strengths at the output of the system.

For the 1 kHz branch, the maximum denormalized RMS amplitude is E(l

kHz) = (3 x 10~6 V/Hz) (500 Hz) = 1.5 mV or 0.15%. The logarithmic

electrometer produces an output of 3.5 mV for a 1% change in input

current; thus an input of 0.15% produces 0.525 mV at the output.

Broadband 1 boosts the signal magnitude by 400. The filter provides no

loss or gain and the rectifier/low-pass filter combination provides an

effective voltage gain of I/IT (The rectifier halves the peak-to-peak

excursion of the signal, while the low-pass filter extracts the average

value of the full-wave rectified signal, which for a sinusoid is 2/ir

times the peak amplitude). To prevent saturation, the maximum gain of

the entire branch must not exceed 5V/2.1 mV(peak) = 2381. Therefore,

the voltage gain of the post-amplifier in the 1 kHz branch must not

exceed 2381/140(l/ir) = 53.

For the 100 Hz branch, the maximum denormalized RMS amplitude is

E(100 Hz) = (100'x 10~6 V/Hz) (50 Hz) = 5 mV or 0.5%. The gain of the
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electrometer (xO.35) combined with the gain of broadband '2 (x40)

provides a total voltage gain of 14. Since this signal is not full wave

rectified and filtered, the maximum voltage gain of the post-amplifier

is bounded by (5V/7.1mV)/14 = 50.

To allow for the possibility of large signal strengths, the post-

amplifier voltage gains are set at 10. This value should provide a

reasonable increase in signal-to-noise ratio while reducing the risk of

clipping the signals which would distort the spectrum. With this gain,

the ranges of AN/N of the narrowband branches are 3.5% and 1.1% for the

100 Hz and 1 kHz branches, respectively (See Figure 2.19).

The circuit schematic of the narrowband filter branches is shown in

Figure 2.20.

2.5 Equatorial Fine Structure Experiment Calibration and

Special Issues

Following is an account of the calibration of the hardware used for

equatorial flights 31.028 and 31.029 along with some special issues

concerning the hardware implementation.

2.5.1 Calibration.

Table 2.3 contains the current-to-voltage measurements for the

input current range 10"̂  A to 10"̂  A for the logarithmic

electrometers. These measurements were performed using a IV source and

a set of calibrated resistors to provide the precise current levels.

The output voltages during the beginning of the sweep mode are included
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Table 2.3 Logarithmic electrometer calibrations for Project Condor

Input
Current (A)

Flight 31.028

io-10

io-9

10"8

ID'7

io-6_
10

.

10

Cal*

Flight 31.029

io-10

10 9

ID'8
7

10

io-6

io-5
.

10"̂

Cal*

Output
Voltage (V)

0.96

1.64

2.38

3.19

4.01

4.82

5.95

4.39

0.98

1.63

2.38

3.20

4.03

4.85

6.00

4.41

Swept Output
Voltage (V)

0.04

0.19

0.71

1.35

2.06

2.85

3.63

2.41

0.00

0.19

0.68

1.33

2.00

2.79

3.59

2.36

Voltage Gain
(V/decade)

0.68

0.74

0.81

0.82

0.81

1.13

0.65

0.75

0.82

0.83

0.82

1.15

This measurement is the output voltage when the logarithmic

electrometer is in the self-calibration mode.
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for completeness.

Table 2.4 contains the frequency response of the logarithmic

electrometers as a function of average input current. These

measurements were made using the risetime-falltitne method described by

KLAUS AND SMITH [1978],

Table 2.5 displays the frequency response measurements for the

broadband amplifiers. These measurements were performed by injecting a

signal of known frequency and magnitude and monitoring the output signal

magnitude. Similarly, Table 2.6 contains the frequency response

measurements for the narrowband branches. The method of measurement was

identical to that of the broadband amplifiers.

2.5.2 Special issues.

It should be mentioned that the calculations in Sections 2.3.2

through 2.3.5 are still valid for the equatorial experiment. In

addition to those issues, one peculiar only to the equatorial experiment

arose.

With the experiment fully assembled, a preliminary observation of

the output of the fine structure experiment with the probe shielded

disclosed high noise levels. The noise voltages of 100 mV (peak-to-

peak) out of broadband 1 and 10 mV (peak-to-peak) out of broadband 2

were primarily due to a large noise level at the input to the fine

structure board. The source was a 1 kfi resistor located between the

output of the logarithmic electrometer and the input of the fine

structure experiment. The intent of this resistor was to provide a load



56

Table 2.4 Frequency response of logarithmic electrometers for Project
Condor, 1983

Input Current (A)
-3dB Frequence Cutoff (Hz)

Flight 31.028 Flight 31.029

10-9 262 230

10-8 1800 1800

10-7 7300 9200

10-6 14700 18300

10-5 14100 24400

10-4 13100 18300
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Table 2.5 Frequency response of broadband amplifiers

Frequency (Hz)

Broadband Amplifier 1

40
100
200
400
500
1000
1500
2000
3000
4000
5000
6000
7000
8000

Voltage Gain
Flight 31.028 " Flight

34
82
156
265
300
375
400
400
375
345
315
290
265
240

31.029

33
80
150
260
295
375
395
400
375
350
320
290
265
245

Broadband Amplifier 2

4 1.7 2.0
10 8.0 8.5
20 16.0 17.5
30 22.0 24.5
40 27.0 28.3
50 30.0 32.0
60 32.0 33.5
70 33.5 35.5
80 35.0 36.5
90 35.0 37.0
100 36.0 38.0
200 39.5 41.0
400 41.0 42.5
500 41.0 42.5
1000 41.0 42.5
5000 38.5 40.0
10000 38.0 35.0
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Table 2.6 Frequency response of narrowband filter branches

Voltage Gain
Frequency (Hz)

Narrowband Branch 1

100
500
600
700
800
900
1000
1100
1200
1300
1400
1500
2000
10000

Narrowband Branch 2

10
20
30
40
50
60
70
80
90
100
200
300
400
500
600
700
800
900
1000

Flight 31.028

0.5
3.4
4.4
5.8
7.8
9.6
10.4
9.6
8.2
7.0
5.9
5.2
3.2
0.5

0.4
1.0
1.7
2.4
3.2
4.4
5.8
8.0
9.8
10.4
3.1
1.8
1.3
1.0
0.9
0.7
0.6
0.5
0.5

Flight 31.029

0.6
3.4
4.6
6.0
8.0
9.8
10.4
9.4
8.2
7.2
5.9
5.2
3.3
0.5

0.4
0.9
1.5
2.2
2.9
4.0
5.3
7.4
9.2
10.2
2.9
1.8
1.2
1.0
0.8
0.7
0.6
0.5
0.5
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at the output of the electrometer in case of an accidental short to

ground during prelaunch testing. The resistor, however, increased the

output impedance of the electrometer, increasing the magnitude of the

equivalent noise source at the input to the broadband amplifiers.

To correct the problem, the output of the electrometer is fed

directly to the input of the fine structure experiment and the 1 kft

resistor is placed between the output of the electrometer and the

telemetry transmitter VCO. This arrangement reduces the noise levels

out of the broadbands to 5 mV (peak-to-peak) and still provides the

short-circuit protection to the electrometer. The modified electrometer

circuit is shown in Figure 2.21.
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Figure 2.21. Schematic of modified logarithmic electrometer for
Project Condor.
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3. SPECTRAL ANALYSIS

3.1 Introduction

It is of interest at this point to investigate the method of

extracting the desired information from the output of the fine structure

experiment. The objective is to characterise the irregularities in the

electron density as a function of altitude over a finite time interval.

With this in mind, Fourier decomposition becomes an attractive approach,

characterizing the fluctuations as a sum of periodic functions with

differing frequencies and amplitudes.

As an example, assume a sinusoidal variation of relative electron

density with altitude, expressed by

AN/N (h) = A sin 2irfh = A sin(2TT/A)h, (3.1)

where A is the magnitude of the density variation relative to the

ambient density, h is the altitude, f is the spatial frequency, and A is

the spatial wavelength (scale size). A probe travelling upward with a

velocity v encounters a variation with time of the form

AN/N (t) = A sin(2TTv/X)t = A sin 2TTf t, (3.2)

where

f0 = v/X.
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This variation is converted in the circuit: of the fine structure

experiment to a voltage

Vou(.(t) = G A sin 27Tf0t, (3.3)

where G is the fine structure system gain. Fourier analysis of this

voltage produces a spectrum consisting of a pair of delta functions at

the frequencies f and -fQ

2 2
S(f) = ̂- [6(f - fQ) + 5(f + fo)]. (3.4)

The magnitude and scale size of the variation are then determined by the

magnitude and frequency of the delta function and the probe velocity, v.

In the geaeral case, the variation of relative electron density is

modelled as a random process with a power spectral density of the form

S(f) = Sor
n ; f = V/X, (3.5)

where n is a positive rational number. The exponent (-n) is referred to

as the spectral index and, along with the constant SQ, completely

characterizes th« spectral shape. (In the literature, n (not -n) is

sometimes referred to as the spectral index). In this model, the

spectral magnitude S and the spectral index -n, vary as a function of

altitude reflecting the changes in amplitude distribution among the

various scale sizes. The t;isk at hand is therefore
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(1) to compute a power spectral density from the acquired data as

a function of altitude,

(2) to fit the computed spectra to the model spectrum S(f) = SQf~
n

thereby obtaining the spectral magnitude and index as a

function of altitude, and finally

(3) to correlate these data to electron density irregularity

variations versus altitude.

In light of this, several questions come to mind. First of all,

what is an appropriate estimator for the spectral density? Since the

Fourier transform exists only for functions defined for all time, what

are the effects of computing a transform for finite data? Another point

to consider is the stationarity of the data. The random process of

interest is characterized by a power spectral density which varies with

time, henceforth, by definition the process is nonstationary. This

presents a substantial obstacle to Fourier analysis which is based on

the premise of stationary data. The answers to these questions lie in

the concepts of spectral estimation.

3.2 Spectral Estimation

3.2.1 Background. Estimation of the power spectral density of a

random process is primarily based on the computation of the discrete

Fourier transform defined by

L-l . 27T .
X(k) - I x(n)e~J M ; k=0,...,M-l; (3.6)

n=0
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where x(n); n = 0,...,L-1 are the L discrete data samples of the random

process and X(k), k = 0 M - 1 are the M Fourier coefficients (Note

that M > L). The inverse of this transform expresses the random process

x(n) as a finite sum of complex exponentials weighted by the complex

Fourier coefficients and is given by

M-l j nk
x<n) = IT I X(k)e ; n=0,...,L-l and M>L. (3.7)

M k=0

Since the major concern is how well this transform approximates the

continuous Fourier transform, it is worthwhile investigating their

relationship through a simple example.

Suppose the process under consideration is given by the sinusoid

defined for all time in Figure 3.1(a), along with its Fourier

representation (magnitude only) . Next the data are sampled with the comb

function illustrated in Figure 3.1(b). Since multiplication in the time

domain transforms to convolution in the frequency domain, the result is

the infinite, periodic extension of the original spectrum shown in

Figure 3.1(c). Assuming that only a segment of the data is available

for observation is equivalent to multiplying the sampled sinusoid by an

observation window shown in Figure 3.1(d). This again transforms to

convolution resulting in the spectrum of Figure 3.1(e). Already the

effects of taking a finite data sample are evident. The next step is to

discretize the spectrum facilitating computer analysis. This is
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accomplished by multiplying the spectrum by a comb function shown in

Figure 3.l(f). The final result is a periodic, discrete process

represented by a periodic discrete Fourier representation (Figure

3.Kg)). Note, however, that both are completely defined by one period

of their respective discrete waveforms and hence the convenience of

using the discrete Fourier transform is realized. But most important of

all, the discrete Fourier transform has very simply been shown to be a

corrupted, periodic version of the continuous Fourier transform.

As we shall see, the form and degree of the corruption may be

predicted and controlled,thereby lending the discrete Fourier transform

(DFT) as a reasonable approximation of the continuous Fourier transform.

3.2,2 Estimator of spectral density. Calculation of the spectral

density of a random process presupposes the availability of the sample

function for all time. Since the data consist of a finite number of

samples from the sample function, only an estimate of the spectral

density may be obtained. A derivation of the estimator used in the

analysis of electron density irregularities follows. The statistical

performance of the estimator will then be investigated in the next

section.

Suppose x(n) is a set of samples from a continuous, stationary, and

ergodic random process x(t). Assume also that only L datd points are

available (n = 0, 1,...,L - 1). The Wiener-Khinchin theorem relates

R (T), the autocorrelation function of the continuous random process

x(t), to the power spectral density function S(f) via the Fourier

transform relation
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S(f) = R (T) e-J27TfTdT, (3.8)

where

= E[x(t) x(t + T)] (3.9)

The caret 'V denotes the complex conjugate of x(t). Ergodicity implies

that expectations may be replaced with time averages allowing Equation

3.9 to be rewritten as

RX(T)
lim _

2T x(t) x(t + T) dt

-T

From this equation and Equation 3.8, it may be shown that

(3.10)

S(f)
lim

2T x(t)

-T

(3.11)

The expectation operator is required for convergence of the limit and

must be taken into account as will be seen.

We would now like to extend this expression to account for discrete

data. Sampling of the random process x(t) every T_ seconds generates as

sequence of random variables x(nT ); n = ...-2, -1, 0, 1, 2....
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Assuming that L of these samples are contained in the interval [-T, T],

the integral in Equation 3.11 may be approximated by

L-l
dt

-T
n=0

x(nT Af (3.12)

The factor Tg is a result of the rectangular approximation of the

integral and is required to conserve area under the curve. Af is the

discretized frequency spacing which is a function of the sampling

interval and the number of Fourier coefficients (= l/MTg where M L̂).

Therefore, the smallest possible frequency interval is 1/LT .

Substituting this discrete version of the integral into Equation

3.11 yields

S(kAf)
Mm
L,M-*»

1
MT
s

L-i -j ZL
I x(nT )e
n=0

(3.13)

This expression within the absolute value operator is the previously

defined discrete Fourier transform reducing the expression to

S(k) = T
lim. E X(k) (3.1A)

Obviously it is impossible to compute the limit when L (and M) is

constrained to be finite. Likewise, the expectation of the function of

the random variable X(k) cannot be computed since only one sample
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function has been observed. Therefore, the spectral density estimate

will be defined as above with the limiting and expectation operators

deleted.

Ts
s<k> - IT X(k)

2
; k = 0 M-l. (3.15)

,
With the limiting and expectation operators removed, the estimate S(k)

may be viewed as a random variable with an associated mean and

variance. It would be desirable for the mean of the estimator to equal

the actual spectrum and the variance to be as small as possible;

however, this is not always the case. These statistics and how they may

be manipulated will be discussed shortly. For the present it will be

assumed that the estimator of Equation 3.15 is statistically acceptable.

It was mentioned earlier that the electron density irregularity

sizes may be deduced from the magnitude and frequency distribution of

the spectrum. The characteristics of the frequency distribution

generated by the discrete Fourier transform are well documented;

however, the characteristics of the magnitude generated by the transform

as compared to the actual continuous spectrum are seldom mentioned.

This omission is primarily due to the fact that in most practical cases

of spectral estimation, only relative magnitude is of interest (i.e.*

looking for a sinusoid in a noise background). For the fine structure

experiment, the absolute magnitude is of prime importance. With this in

mind, we will investigate the estimator's performance in regard to
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magnitude estimation.

Since the objective of this analysis is to estimate the spectrum of

a noise process, the scaling property of the estimator on "white" noise

will be computed as the general case. Assuming the noise process has a

2
total power of a , the autocorrelation and spectral density functions

are given by

RN(n) = a
2 6(n),

SN(k)

The estimator to be used is again given by

Tss(k) = =- X(k) 2 ; k = 0,...,M-1. (3.16)

The question is whether or not the mean of the random process S(k)

accurately represents the white noise process with respect to

magnitude. This will be answered by comparing the total power of the

estimate with the total power of the original process.

The DFT of a sample function of the random process is

r

T i 2TT ,
L-l -j 7T- nk

X(k) = I x(n) e ; k = 0,1,...,M-1. (3.17)
n=0
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Since x(n) is a random process and X(k) is a function of a random

process, it too is a random process with autocorrelation function

Rx(k,m) = E[X(k) X(m)]

JL-1 -j
E \l x(n)e

Ln=0

L-l j . 1m
I S(l)e M

1-0

L-l L-l

I I E

n=0 1=0
x(n)

- j ^nk j i l lm
e e

T 1 T l

n=0 n=0
n- e

2lT , . 2lT

M-nk J M~e

2
a e

n=0

Letting z = k - m,

(3.18)

0 2 e
n=0

(3.19)



The expected value of the estimator is then given by

T
2}

T T L-l ,

n=0

The total power in the estimate is

PT = I E(S(k)}Af; ^ = MT
k=0 £

M-l LT
V ®

k=0 M2Tg

72

- V . (3.20)

(3.21)
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But the original process had a total power of 0 . Therefore, to correct

for the "gain" of the estimator, a corrected estimator of the form

s(k) - (f) X(k) X(k) '; k=0,...,M-l (3.22)

will be used.

It was mentioned earlier that the spectrum of the output of the

fine structure experiment may be corrupted by a sinusoid (and harmonics)

due to the spin of the rocket. In order to provide additional

information regarding this corruption for future flights, it is of

interest to calculate the estimator gain for a sinusoidal component.

Let the discrete waveform be given by

x(n) = A cos (2irfnT ); n = 0,1,...,L-1. (3.23)

The M-point DFT is

L-l -j
X(k) = I x(n)e

n=0

M
k = 0,1,...,M-l. (3.24)

For positive frequencies, this transform becomes
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TTL(k-fMT) TT(k-fMT) (L-l)
A sin[ M ° ]

c-f MT )
2 sin [ rj ^-]

The spectral estimate for positive frequencies then becomes

S(k) = ̂

7 ? irL(k-fMT )
T A sin [ - jj — - — ]_s _ l M J

 r. _,.
-4L -- , TT(k-fMT ) ' (3'26)

Sin f - -^~ ]

Assuming that an integral number of cycles of x(n) are present in the L

samples, the estimate will be sampled at the peak (i.e., k = fmTg) of

the given function yielding

A2T
S(k) = -2=4 (L2) = LT (A2/4) (3.27)

*f*j S
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The actual power contained in the positive frequencies of the actual
f\

spectrum of a sinusoid is (Â /4); therefore the estimator gain for a

discrete frequency component is LT .

3.2.3 Statistical properties of the estimator.

In the preceding section a spectral estimator for a discrete noise

process was derived without regard to its statistical performance.

Recalling Equation 3.14, the expectation and limit operators were

omitted for two practical reasons: 1) It is impossible to compute the

expectation of a random process with only one available sample function;

and 2) the limit cannot be computed since L (and M) is a given finite

%
number. By doing this, a set of random variables, S(k); k = 0,...,M-1

was created with its associated statistical parameters. The intention

is to reveal the consequences of the omission by computing the

statistics of the estimator and to justify its use under the resulting

limitations•

To begin, let x(n) be a discrete white noise process with mean zero

2
and variance a • Given only L data points and allowing M to equal L

(no zero padding) for ease of computation, the spectral estimator may be

written as

S(k)

L-l -j nk
I x(n) e L

n=0
(3.28)
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Separating the complex transform into real and imaginary parts yields

S(k) = ̂
L-l Z1T

I x(n) cos •=— nk
n=0 L

2TT

L-l
£ x(n) sin •=— nk
n=0 L

[A(k)2 + B(k)2], (3.29)

where A(k)

L-l 2 L-l 27r

V x(n) cos ̂ nk and B(k) = % x(n) sin =— nk
n=0 L n=0 L

Equation 3.29 indicates that the statistics of S(k) may be deduced

from those of A(k) and B(k). The mean of A(k) is

L-l
E[A(k)] = I E[x(n)] cos (̂  nk)

n=0
(3.30)

= 0

since the mean of the random process x(n) was originally assumed to be
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zero. The same argument holds for B(k) also. The variance of A(k) is

then given by

Var[A(k)J = E[A(k)2]

L-l 2 2 2ir
£ E[x(n) ] cos (T— nk)

n=0

= a y cos (•=— nk). (3.31)
X /\ Lin=0

Likewise,

Var[B(k)] = a
2 I sin2(̂ nk). (3.32)

n=0
These may be simplified further with the aid of the

following identities.

L-l ,, [L/2 k=0,l,...,L/2-l and L/2+1,...,L-1.
I cosz(f̂  nk) = J for
n=0 L k=0,L/2 .

L-l

n=0
sin (fi nk) =

L/2 k=0 L/2-1 and L/2+1....L-1 .
for

0 k=0, L/2 .

(3.33)

Hence, the variances of A(k) and B(k) are



Var[A(k)]
'a2 L/2 k=0,...,L/2-l and L/2+1,...,L-1.

for
k=0, L/2.

Var[B(k)]
a L/2 k=0 L/2-1 and L/2+1 L-l,

.4--
for

k=0, L/2.

Proceeding one step further,

Cov[A(k) E[A(k)

L-l L-l
y y
n=0 m=0

, .
E[x(n) x(m)]cos(fi nk)cos(fi ml)

L L

T 7 a 6(n-m)cos(= — nk)cosG= — ml)
X L L
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(3.34)

since x(n) was assumed to be a white noise process. This reduces to

Cov[A(k) A(l)] = a
n=0

nk)cos(̂  ml)

- 0 for k ̂  1. (3.35)

Similarly, the covariance of B(k) is zero for all k not equal to 1.

Also
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Cov[A(k) B(l)] = a2 T cos(|̂  nk)sin(̂  nl)
X ,, L Li
n=0

= 0 for all k! (3.36)

All the necessary statistical parameters of A(k) and B(k) are now

available for the computation of the mean and variance of the spectral

estimator, S(k).

First, the assumption that A(k) and B(k) are gaussian random

variables will be stated. A(k) and B(k) are linear sums of random

variables; hence, by the Central Limit Theorem their distributions tend

to the gaussian distribution in the limit as L goes to infinity.

Therefore, for large L, the above mentioned assumption is reasonable.

Since the variances of these guassian random variables are known, they

may be normalized in the following fashion:

-*<£> (3.37)
/Var[A(k)] / Var[B(k)]

By Equation 3.36, AN(k) and BN(k) are uncorNrelated random variables and

thus independent because they are normally distributed. With these

facts, a new set of random variables may be created

A2,. . A2(k) _2 ,, . B2(k) ,, ,Qx
Vk) = Var[A(k)] J BN (k> = Var[B(k)] (3'38)
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2 2
where by definition ATI (k) and B (k) have a chi-squared distribution

2
of order one (Xi ) • Furthermore, allow

Z(k) = A (k) + B (k) (3.39)

2
where Z(k) is a chi-squared random variable of order two (x~) • Using

^Equation 3.39, the mean and variance of S(k) may be derived.

For k = 0 and L/2, B(k) and therefore BN(k) is equal to zero. In

this case, Z(k) is chi-squared of order one. It is well known that the

mean and variance of a chi-squared random variable are given by

and (3.40)

Var[ x2] = 2n

where n is the order of the chi-squared random variable. Substituting

Equations 3.29 and 3.38 into 3.39 yields

% 1 Var[A(k)] Z(k)
S(k) = -^ = . (3.41)

With the aid of Equation 3.40 and 3.34, the mean of S(k) is

Ts
E[S(k)] = Var[A(k)] E[Z(k)]
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= T a2 • (3.42)s x

But this is nothing more than S(k), the discrete spectral density

function of a white noise process. Therefore

E[S(k)] = S(k) for k = 0 and L/2. (3.43)

The variance of S(k) is computed from Equation 3.41 in a similar manner

% T 2 Var2[A(k)] Var[Z(k)]
Var[S(k)] = — 5

2a4T2

x s

= 2 S2(k) ; k - 0 and L/2. (3.44)

For k ? 0 or L/2, B(k) is not zero and therefore Z(k) is

2
distributed as ^2 ' Combined with the fact that Var[A(k)] = Var[B(k)]

for this range of k, substitution of Equations 3.29, 3.34 and 3.38 into

3.39 again results in Equation 3.41. Again invoking the properties of

chi-squared random variables (Eq. 3.40), we obtain the mean of S(k)

T
E[S(k)] = ̂ Var[A(k)] E[Z(k)]

T La 2

- a2T
X S
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= S(k); k = O.....L/2-1 and L/2+1,...,L-1; (3.45)

and the variance of S(k)

T2

Var[S(k)] = -| Var2[A(k)] Var[Z(k)]
L

2 2 4TZ v- <r
- -r* ">

k = 0,...,L/2-l
S2(k) ; and (3.46)

L/2+1 L-l.

At this point, a summary of all that has been observed is in

order. First, it has been shown that, for a given k, the spectral

%
estimator, S(k) is a random variable with mean S(k) and variance

2
proportional to S (k). Therefore the mean of the estimator is the

actual spectrum as it should be. Unfortunately, the variance of the

estimator is proportional to the square of the parameter to be

estimated. A desirable characteristic of estimators is the asymptotic

decrease in the variance as the sample size L increases. Obviously this

is not the case here as the variance is totally independent of the

sample size; estimators of this nature are deemed inconsistent. This

problem will be addressed later when methods of reducing the variance

are investigated. Second, certain assumptions were made which must be
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considered for practical applications: a) A(k) and B(k) are gaussian

random variables; b) the estimated noise process is "white"; and c) L,

the number of data points available, and M, the order of the discrete

Fourier transform are equal. Assumption a) is quite reasonable as long

as the number of data points is sufficiently large as is the case in the

fine structure experiment. Assumption b) was required to obtain simple

mathematical expressions, however the extension to a monotonically

decreasing noise spectrum is heuristically satisfying. The final

assumption is valid since, in practice, the number of data points, L, is

increased to M by attaching M-L zeros. This technique of zero-padding

assures that the number of apparent data points equals the order of the

discrete Fourier transform.

3.2.4 Windows.

Throughout the previous discussion, the finite extent of the

available data samples has inevitably led to compromises in the

computation of the spectral estimate. The most significant of these is

spectral leakage which is easily understood with the concept of windows.

In the example of Section 3.2.1, a heuristic explanation was given

for the distortion introduced into the Fourier transform by the

truncation of the given data sample. A useful means of evaluating this

distortion mechanism becomes evident with the following observation.

Assuming a set of data samples, x(n),

T i ^ 2ir , . 2ir .L-l -j rj- nk °° -j — nk
I x(n)e "I w(n)x(n)e (3.47)
n=0 n=-°°
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where w(n)
1 for n = 0,1,...,L-l,

0 for all other n

and x(n) is defined for all n.

From Equation 3.47, we see that the discrete Fourier transform may

be expressed in the form of the infinite extent discrete Fourier

transform with a modified set of data samples. The modified data have

the form

x(n) = w(n)x(n) (3.48)

where x(n) and w(n) are defined as in 3.47. The effect of this

weighting function may be studied more easily in the frequency domain.

Taking the Fourier transform of Equation 3.48 yields

X(k) - W(k) * X(k) (3.49)

where the '*' operator denotes convolution. Substituting this into the

expression for the spectral estimator (3.22) we obtain

s(k) = -i |w(k) * x(k)|

|X(k) (3.50)

Here we see that the spectral estimate is actually the spectrum of
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the original data samples convolved with the spectrum of the window.

w(n). From this knowledge, the distortion introduced into the spectral

estimate may be predicted by studying the properties of the spectrum of

the window w(n) .

In the calculation of the DFT, it has been shown that an "implied"

window is inherently applied to the data sample x(n). The window w(n)

defined in 3.47 and commonly referred to as the rectangle or box

function has a spectrum of the form

sin (y)

which is shown in Figure 3.2. Since this function is convolved with the

actual spectrum to obtain the desired spectrum, we see that the estimate

at a particular frequency is the weighted sum of all frequencies present

in the actual spectrum! This leakage of adjacent frequencies into the

frequency of interest is called spectral leakage and is responsible for

the bias in the spectral estimate. This phenomenon is easily understood

with the aid of an example. Suppose the data samples consist of a

sampling of a sinusoid of frequency o)Q. The one-sided spectrum of a

sinusoid existing for all values of time is a delta function located at

frequency (*)_• Computation of the DFT on a finite sample of the sinusoid

results in a spectrum consisting of the convolution, of the delta

function with W(k) (see Figure 3.3). The spectral estimate therefore

has nonzero values for frequencies not equal to to ; the sinusoid at to
o o

has leaked into other frequencies. This leakage can also be explained
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Figure 3.2. Spectral representation of the rectangular
window function.
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tu.

Figure 3.3. Computation of the DFT on a sinusoid
of finite extent.
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by taking a look at what happens in the time domain. Figure 3.4 shows a

sinusoid that has been arbitrarily truncated by the data window w(n).

Remembering that computation of the DFT on a finite data sample is

equivalent to performing the infinite-extent Fourier transform on a

periodic extension of x(n), we see that a discontinuity exists between

segments. The discontinuities contribute to frequency components other

than o)Q and therefore leakage has occurred.

It is advantageous to control spectral leakage by judicious choice

of the data window w(n). At first glance, any reduction in the

discontinuity would improve on leakage therefore most data windows used

today transition smoothly to zero at the boundaries,thereby forcing

continuity between segments of the periodic extension. However as in

all engineering problems, this reduction of discontinuities does not

come free. In order to understand the tradeoffs involved in window

design it is necessary to discuss some relevant parameters of windows.

Obviously, the ideal window would be represented in the frquency

domain by a delta function. Convolution with the actual spectrum would

thereby reproduce the actual spectrum. For this reason, window design

in the frequency domain is focused around two objectives: 1) to

minimize the main lobe width, and 2) to minimize the sidelobe levels

relative to the main lobe. Unfortunately, these are conflicting

requirements and therefore must be traded off with one another depending

on the specific application. If one chooses to allow large sidelobes

for the sake of a narrow main lobe, spectral leakage will occur to a

degree proportional to the relative sidelobe level. On the other hand,



89

x(t)
,w(t)

a)

b)

Figure 3.4. Time domain perspective of DFT
computation on a sinusoid arbitrarily
truncated by a rectangular window.
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lower sidelobes and a wide main lobe reduce spectral leakage but also

reduce the ability to resolve between two closely spaced frequencies.

HARRIS [1978] provides a detailed explanation of the many available

window designs along with their associated tradeoffs.

Two other important window parameters have to do with spectral

scaling. Suppose x(n) is a white noise process with variance (total

2
power) 0 and a window w(n) is applied to the L. samples of x(n).

x

Following the analysis in Section 3.2.2, the effects of a window on the

mean of the spectral estimate may be determined by first computing the

autocorrelation function of X(k), the discrete Fourier transform of the

modified data sample, w(n)x(n).

Rx(k,l) = E [X(k)

= E
2TTim

I w(n) x(n) e £ w(m) x(m) e M

n=0 m=0

L-l L-l
I I

n=0 m=0
w(n) w(m) a2 6(n-m)e M e M

L_! -j2TTn(k-l)

* I w2(n)e M

n=0
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L-l
_ _ .. . ,,2 r 2, v M
R(k) = a I w (n) e (3.52)

n=0
The mean of the "windowed" spectral estimate is then given by

9~1 T2 - -i
L

L-l

n=0
(n)

(3.53)

It is evident that the mean of the spectral estimate has been biased by

the term in parentheses which is the sum of the squared window terms

normalized to the window length L. This term is referred to as the

incoherent power gain (IPG). For a rectangular window, IPG = 1 as it

should since the spectral estimate computed in Section 3.2.2 took into

account this "implied" data window.

Finally, a window's effect on a sinusoid or the coherent power gain

.(CPG) will be addressed. Given a sinusoid of the form x(n) = A cos(2fr

fnTg); n=0,l,...,L-1 and following the same calculations as in Section

3.2.2, the spectral estimate is

S(k) = ̂ |X(k) * W(k)

6(k-s) * W(k) (3.54)
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where s is the normalized discrete frequency corresponding to £ (i.e., s

is one point in the set of k = 0,1,...,M-1).

22

S(k) = W(k-s)

r\j

S(s) = TsL(A
2/4) |W(0)|2

TsL
-L-l
I w(n)
n=0

(3.55)

Since (Â /4) is the spectral magnitude for the positive frequency

component of a sinusoid of amplitude A, the coherent power gain is

CPG = TSL
"L-l
I w(n)
n=0

(3.56)

Because the spectrum of electron density irregularities is noise-

like, the IPG is of primary importance concerning spectral scaling due

to the use of windows. Therefore, this factor is accounted for in the

spectral computations.

3.2.5 Variance reduction.

^In Section 3.2.3, the spectral estimator S(k) was determined to be

a random variable with a mean equal to the actual spectrum S(k) and a

*\
variance proportional to Ŝ (k). Obviously the large variance of the

estimator is undesirable; so the question arises as to how it may be
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reduced. WELCH [1967] has suggested a method based on averaging

modified spectral estimates.

This method is implemented by dividing a data segment of N samples

x
into K segments of L samples each. The spectral estimates Ŝ (k) are

then computed for each segment respectively and averaged to derive the

overall estimate

S(k) = i I S (k) ; k-0,...,.M-l . (3.57)

x-
The computation of each spectral estimate Si(k) is performed according

to the methods mentioned previously; .namely a window is applied to the

data segment of length L and the estimate is computed using Equation

3.22.

x
If the K segments are non-overlapping, then the estimates S,(k) are

independent random variables which are identically distributed. The

mean and variance of a random variable created by summing K independent,

identically distributed random variables are related to the mean and

variance of the individual random variables as follows:

E [ S ( k ) ] = E

and

l
£ I S (k) = E [ S . ( k ) ] (3.58)
K L i

•x
Var [S(k) ]= Var

K x -i .

K /, iS ( k ) = Var [ S k ) ] . (3.59)
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Therefore, by segmenting the N samples, we have reduced the variance of

the estimate by a factor of 1/K without introducing any bias.

Unfortunately, the reduction in variance comes at the expense of

spectral resolution. It has been shown earlier that the spectral

resolution of the estimate depends on the length of the data segment and

the type of window used in the computation. By segmenting the data, the

computational length has been reduced from N to L which corresponds to a

widening of the spectral window in the frequency domain. Thus, the

averaged estimate is the result of a convolution of the actual spectrum

with a broader spectral window which results in a loss of spectral

resolution.

To optimize the tradeoff, we wish to choose a value of L and

therefore K that reduces the variance to an acceptable level while

maintaining the required resolution bandwidth. Both of these

requirements may be eased a little by overlapping the data segments.

For a given L, the number of segments used in the average could be

increased and vice versa. However, estimates computed from overlapping

segments result in random variables which are no longer independent.

The actual reduction in the variance diminishes as the correlation

between overlapped segments increases. WELCH [1967] and KAY AND MARPLE

[1981] have shown that the variance of the averaged estimate assuming a

Gaussian white noise process is

Var
Var

K-l
2 I K-r

r=l
(3.60)
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where c(r) is the correlation coefficient and r is the number of

overlapping data samples. c(r) is given by

c(r)

rL-1
I w(n)

n=0
T-l

I
n=0

w(n+(l-r)L)

w (n)

2

2 (3.61)

For a given segment length L determined by the required spectral

resolution, the number of segments K may be increased by providing more

overlap between the segments. At what point however, does the

increasing correlation begin to seriously degrade the variance

reduction? KAY AND MARPLE [1981] have shown that for most "good"

windows, fifty percent overlap results in essentially independent

segment estimates.

3.2.6 Stationarity.

The final issue to be addressed concerning spectral estimation of

fine structure data is the Stationarity of the measured time series.

The estimation techniques described up to now are based on the

assumption that the data are statistically stationary (i.e., the mean and

autocorrelation functions are independent of time). If these parameters

vary with time, the spectral estimate will be far from an accurate

representation of the actual spectrum. To our dismay, the spectrum does
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indeed change with time as the frequency distribution of the electron

density irregularities changes. How do we obtain a reliable estimate?

The same problem is encountered in the spectral estimation of

speech, another inherently nonstationary random process. The solution

is to choose a time interval over which the data may reasonably be

assumed to be stationary. In other words, the spectrum changes over

some finite time interval; therefore we choose a smaller time interval

over which to perform the analysis. The key is then to determine the

rate at which the spectrum changes.

The proposed method to test the fine structure data for

stationarity is built in Welch's technique of averaging spectral

estimates. To begin, a data sequence of length N is chosen and assumed

to be stationary. The sample is then divided into K segments of L

samples, each according to variance and spectral resolution

requirements. The K spectral estimates are computed and may be compared

to one another prior to averaging to determine whether or not the

spectrum is changing over the chosen time interval of N data points.

Considering the large variance of the individual estimates, it may

be difficult to discern any variations in the spectrum. This may be

alleviated by performing a linear fit to the computed spectra (on a

logarithmic scale) and comparing spectral indices.

3.3 Software Implementation

The electron-density irregularities are analyzed using program

SPECTRA, a FORTRAN alogrithm which computes the spectral density of the
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irregularities (see Appendix). A flowchart of program SPECTRA is shown

in Figure 3.5.

The main program is the center of control which allows user-

interaction and accesses the subroutines (shown in rectangular boxes

with quotations) subject to the operator's wishes. Details concerning

the experiment and analysis are entered here in two ways. First are the

experiment parameters (see Appendix) such as the total experiment gain;

tape channel number; discriminator-digitizer calibrations; the upper

frequency 3 dB points of the logarithmic electrometer, amplifiers and

telemetry channel; and the number of the broadband amplifier output

being analyzed. In addition to those parameters describing the

experiment are several which detail the plotting parameters which are

unlikely to be changed during the analysis. All experiment parameters

are manually entered directly into the software arid cannot be modified

during program execution.

Secondly, parameters detailing the analysis of the data are

interactively entered by the user during program execution. These

include the launch time;.starting time of the data to be analyzed; the

number of data samples to be analyzed; the number of segments used to

partition the data; the individual segment lengths; the type of data

window; the FFT block length; the type of plot, if any; plotting of

individual peridograms and an optional least-squares line fitting to ,the

spectra. The operator is given the option to change any of these

parameters prior to execution of the subroutines and immediately

following.
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START

ENTER USER-
SPECIFIED VARIABLES

READ THE REQUESTED
DATA FROM TAPE

•LOAD'

CALIBRATE THE DATA
'CALIB'

COMPUTE AN
AVERAGED SPECTRUM

'SPECTRM*

CORRECT FOR
FREQUENCY ROLLOFFS

OF EXPERIMENT
1FILTCAL'

PERFORM DE-EMPHASIS
ON SPECTRUM

NO

DETERMINE SCALE
OF AXES FOR
PLOTTING
'MAXMIN'

PLOT THE
SPECTRUM

NO
S^ or di, ii^rtij s>

•̂s. INDEX? .^

\

YES

STORE SPECTRAL
INDEX

'STORE1

\

^S
\

^^^ FINISHED ^ss-^

Figure 3.5. Flowchart of program SPECTRA.
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Following the interactive portion, the main program calls

subroutine LOAD which retrieves the data as specified by the operator.

This routine is tailored specifically for use with a magnetic tape

formatted for a -'Control Data Corporation Cyber 175 computer :and

therefore must be modified for use with another computer system

incompatible with the Cyber 175. LOAD -reads '.the number of data samples

requested, starting with 'the first .s'ample after the desired time from

launch and stores them in an array for .future .processing-. LOAD also

determines the sampling rate of the •digitized data ;by reading the time

•code stored -on the 'tape.

•Subroutine CALIB performs the -necessary calibrations to t'he data

array so .tha't the samples resemble :the output of the fine structure

experiment (namely the output of the AC amplifier :in the case of the

'Energy Budget Campaign .and the broadband amplifiers in the case of

Project Condor). First the data 'are corrected for nonlinearities in the

discriminator which Is used to demodulate the FM signal von the original

.analog tape, and are reduced ;by the inherent .gain in the digitizer. The

^discriminator and digitizer -combination -are calibrated .prior to

digitization of the analog tape !by injecting known signals Into the

discriminator and monitoring the output o'f the digitizer. These 'values

are stored in an array BANDCAL -which is entered manually under

experiment parameters .in the main program. A piecewise linear fit %to

these values then serves as the calibration curve correcting for

digitizer gain and discriminator nonlinearities.
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Secondly, the data are reduced by the gain of the experiment itself

so it is representative not of the output signal of the experiment but

of the actual value of AN/N sensed by the probe.

Subroutine SPECTRM performs the heart of the analysis and is shown

in Figure 3.6. After initializing all variables and arrays, the

subroutine reads a specified data segment from the data array and

immediately computes and subtracts the mean from the segment samples.

This prevents large dc components from arising in the spectrum which

might contaminate it. Next the data are weighted with a window function

by subroutine WINDOW. Presently, six weighting functions are available

in WINDOW: rectangular, Bartlett, Manning, Hamming, Blackman and

Blackman-Harris (4-term) windows. The subroutine may easily be modified

to include other window functions also. The details of the application

and effects of the window functions are described in Section 3.2.4.

A periodogram (or spectral estimate) is computed from the data

segment using the estimator described in Section 3.2.2. Implementation

of the FFT is accomplished via an algorithm (FFTRC) from a software

library provided by IMSL, Inc. Since this algorithm only computes the

Fourier coefficients for positive frequencies, all are multiplied by a

factor of two so that the resulting spectrum represents the total power

in the irregularities.

At this point, a running average of the periodograms is computed as

described in Section 3.2.5. Plotting of the individual periodograms may

then be performed or bypassed according to the operator's wishes. If

individual periodogram plotting is desired, subroutines FILTCAL, DEEMPH,
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Figure 3.6. Flowchart of subroutine SPECTRM.
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MAXMIN, PLOTTER and STORE are accessed by subroutine SPECTRM. These

subroutines will be described later as they are used by the main

program. If individual periodogram plotting is bypassed, these

subroutines are not accessed. In either case, spectral estimates are

computed sequentially for all data segments and the running average is

returned to the main program at the end of SPECTRM execution.

The main program then calls subroutine FILTCAL which corrects the

averaged spectrum for the upper frequency rolloff of the logarithmic

electrometer, telemetry filter and the AC amplifier (or broadband

amplifiers). The telemetry filter is modelled as an ideal three-pole

low-pass filter [ZIMMERMAN and SMITH, 1980]. The logarithmic

electrometer is modelled as a single-pole low-pass filter as is the ac

amplifier (or broadband amplifiers).

For data derived from Project Condor, de-emphasis of the spectrum

is accomplished with subroutine DEEMPH. The de-emphasis filter is

modelled as the inverse of a single-pole high pass filter with the

characteristics shown in Fig. 2.16 for the particular broadband

amplifier output being analyzed. If de-emphasis is not required such as

the case of the Energy Budget Campaign, DEEMPH may be bypassed by

setting the variable BBAND = 0 in the experiment parameters section of

the main program.

Subroutine MAXMIN determines the scale of the plotting axes by

determining the maximum values of the spectral magnitude and

frequency. In the case of logarithmic plotting, MAXMIN calls subroutine

LIMITS which rounds the maximum values to the next largest power of ten.
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Subroutine PLOTTER allows plotting of the spectrum in linear, or

logarithmic coordinates along with the capability of least-squares, line

fitting in logarithmic coordinates to determine spectral indices. A

flowchart of PLOTTER is shown in Figure 3.7. This subroutine requires

the Graphics Compatibility System- software library for the Control Data

Corporation Cyber 175 series and must be modified for use .with another

graphics software package.

Subroutine STORE allows the option to store the spectral indices of

spectra in the following format: average time of the data segment, the

spectral index, the spectral magnitude.
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4. PRELIMINARY RESULTS FROM THE ENERGY BUDGET CAMPAIGN

The Energy Budget Campaign of November and December of 1980

included the launch of three Taurus Orion rockets from Kiruna, Sweden

into the night time auroral ionosphere. The geographic coordinates of

the launch site are 67.9° N, 21.1° E. The rockets carried probes for

measuring electron density irregularities in the D and E regions of the

ionosphere. High quality data were obtained from only one rocket,

Taurus Orion 33.011. The results from a preliminary analysis follow.

4.1 Data Processing

The FM/FM telemetry signal from 33.011 contained the output of the
\

fine-structure experiment on channel 20. The FM signal was recorded on

analog tape and later digitized onto another tape at a rate of 5000

samples per second. With the useful bandwidth of the system bounded by

the spin frequency harmonics on the lower end and the sampling theorem

on the higher, the spectra of the irregularities are obtained over the

frequency range from 4 Hz to 2.5 kHz. The spectra were computed with

Program SPECTRA described in Section 3.3. An FFT was performed on

sequences of 2048 consecutive data samples, representing an interval of

0.41 seconds. Windowing and spectral averaging were not used in the

preliminary analysis. The rocket velocity in the upper mesosphere was

about 1.3 km/s so the range of irregularity spatial wavelengths is 0.5 in

to 300 m.
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4.2 Observations

Strong fluctuations in electron concentration were observed at

altitudes between 80 and 110 km. Between 78 and 80 km the signal

appears to be below the noise level of the experiment. Spectra are

shown in Figure 4.1 for the altitude range from 81 to 97 km. Above 89

km the spectra in the frequency range 50 Hz to 2 kHz show a slightly

negative slope, as seen in the spectrum from 97 km, Figure 4.1(f). (The

large spectral components at lower frequencies are due to the rocket

spin frequency and its harmonics.) The irregularities above 89 km are

due to a plasma instability mechanism and show characteristics

previously observed at these altitudes both in the auroral zone and at

the equator [THRANE AND GRANDAL, 1981; ROYRVIK AND SMITH, 1984].

At altitudes below 89 km, as shown in Figure 4.1(a) to (e), the

spectra have a slope of -5/3 (the solid line) for low frequencies.

Above some frequency, indicated by the vertical dashed line, the slope

is steeper (about -3). The frequency at which the change of slope

occurs decreases as the altitude increases. The conversion from

frequency to wave number is made using the rocket velocity of 1.3

km/s. The amplitude of the irregularities at low frequencies (i.e., low

wave numbers) is similar to that observed by THRANE AND GRANDAL [1981].

4.3 Discussion

The change in spectral index observed in the spectra of electron-

concentration irregularities in the auroral mesosphere, from -5/3 at low

wave numbers to about -3 at higher wave numbers, is similar to
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observations of irregularities in the equatorial mesosphere which were

generated by neutral atmosphere turbulence [ROYRVIK AND SMITH, 1984].

There are, however, some important differences that must be considered.

We will consider the possibility that the change in the slope of

the spectra represents the inner scale of three-dimensional turbulence

[TATARSKII, 1971]. The wave number of the inner scale of turbulence,

from the data of the previous section, is plotted in Figure 4.2 as a

function of altitude. This figure also contains one point derived from

probe observations at the geomagnetic equator during Project Condor

launches and estimated limits of the inner scale based on Jicamarca

radar observations. It can be seen that the inner scale of turbulence

observed at high latitude is much larger than the upper limit estimated

for the equatorial region.

Using the equation

(4.1)

relating the inner scale of turbulence (H) to the energy dissipation

rate (e) and the kinematic viscosity (Y)> we may consider the

implications for y and £• If values for the kinematic viscosity are

adopted from the US Standard Atmosphere 1976 we calculate that an energy

dissipation rate of 8 W/kg is required to give the observed inner scale

of turbulence at 81 km. This value of £ is larger, by at least an order

of magnitude, than accepted values [RASTOGI AND BOWHILL, 1976].

Therefore it does not seem likely that the small inner scale of
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turbulence observed in the auroral zone can be due only to a large

energy dissipation rate.

The values of the kinematic viscosity given in the US Standard

Atmosphere 1976 are calculated from a complicated formula involving the

gas density and temperature. The right combination of decrease in

temperature and increase in density might possibly account for the small

inner scale; it requires at least a factor of two change from accepted

values.

It is also possible that equations for calculating the inner scale

of turbulence may be of limited accuracy at the altitudes considered

here. The same equations have, however, yielded agreement with

experimental results from the equatorial mesosphere.

An unexplained feature of these observations is the value of the

spectral index at large wave numbers, possibly the dissipation

subrange. The index here is about -3 although a previous experiment (at

the equator) has shown a slope closer to -7 [ROYRVIK AND SMITH, 1984].

In addition, theoretical estimates predict an exponential decay (with

wave number) of the irregularities in the dissipative subrange

[TATARSKII, 1971].

It is interesting to note that a slope of about -3 has also been

observed in velocity spectra from the stratosphere in the range of

wavelength from 40 m to 2 km [DEWAN ET AL., 1984]. The wavelengths

observed in the stratosphere are several orders of magnitude larger than

reasonable estimates of the inner scale of turbulence (about 10 cm).

They are also equal to, or larger than reasonable values for the outer
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scale of isotropic turbulence (10 to 100 ra) and thus are likely to be

two-dimensional in nature. On the other hand, the range of wavelength

(0.5 to 300 m) observed in the rocket experiments in the mesosphere,

includes what is a reasonable estimate of the inner scale (about 10 m)

at these altitudes. The range of wavelength over which the observed

spectra have a slope of -3 must therefore coincide, in.the mesospheric

observations, with the dissipative range of turbulence. The

observations presented here and those of DEWAN ET AL. [1984] represent

different regimes present in the atmosphere and it is difficult to see

how the similarity in spectral slope can be anything more than a

coincidence.

ROYRVIK AND SMITH [1984] observed at the equator a single layer of

irregularities approximately 1 km in vertical extent. The data have

been interpreted to indicate that the layer resulted from mixing of the

refractive index profile by shear-layer turbulence. In contrast with

this equatorial observation, the data from the Energy Budget Campaign

show a fairly broad region of irregularities of uniform amplitude from

80 km up to 89 km; above 89 km the turbulent irregularities are masked

by the larger irregularities due to plasma instabilities in the

electrojet. The broadness of this region indicates that the turbulence

is not generated by a shear layer. It may be due to convective

instabilities resulting from the breaking of gravity waves travelling

upward in the mesosphere. BALSLEY ET AL. [1983] have, indeed, suggested

that breaking gravity waves may be the dominant turbulent mechanism
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contributing to radio-wave scattering at lower VHP frequencies in the

high latitude winter-time mesosphere.

THRANE AND GRANDAL [1981] have reported data from an experiment

carried on a rocket launched at night in the auroral zone during

moderately disturbed conditions. They observed spectral indices of -5/3

for their range of sensitivity (2 to 100 m) in the altitude range from

65 to 95 km. They did not observe the inner scale of turbulence in

their spe,ctra of ion-concentration irregularities even though we would

expect that, at 90 km, the value would be several tens of meters. On

the basis of these data "it may be necessary to consider the possibility,

noted earlier, that mechanisms other than turbulence may sometimes

contribute to the shape of the irregularity spectra. At altitudes above

95 km they observed an almost flat spectrum, as in our observations, and

indicate a plasma instability as the generating mechanism.
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5. PRELIMINARY RESULTS FROM PROJECT CONDOR

5.1 Introduction

Project Condor, conducted near Lima, Peru in February and March of

1983 included the simultaneous observation of electron density

irregularities in the equatorial ionosphere using :both rocket and radar

experiments. The electrojet and spread F have been the major topics of

other investigations (see, for example, the comprehensive review of

ionospheric irregularities by FEJER AND KELLEY, 1980).. The principal

concerns here are the electron density irregularities in the mesosphere

and in the upper E-region. Electrojet .observations for which there .are

no simultaneous radar data (because of ;the limited number of range

gates) are also presented.

Details of the two rocket launches are given in Table 5.1. The

launch coordinates are: .12.50°S; 76..80°W. It is interesting to note

that the flight of 27 February took place under geomagnetically quiet

conditions (indicated by the Dst and Kp values,)., whereas 'that of 12

March had disturbed conditions. Though there are differences in the

data from the two days, a connection with magnetic activity has not been

established.

On the first day radar data were obtained from 1015 'LST 'to 1155

LST, and include both mesopheric and upper E-region echoes. Mesospheric

echoes were absent from the radar data of the second day, taken during

the period 1203 to 1226 LST, although the upper E-region echoes were

again observed. The radar data were taken at Jicamarca (11.95°S;
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Table 5.1 Nike Orion rocket launches in Project Condor, 1983

Rocket number

Launch date

Launch time (UT)

Launch time (LSI)

Apogee (km)

Apogee (s)

Apogee velocity (m/s)

Velocity azimuth (deg)

Spin rate (Hz)

Dst (nT)

Kp

Solar zenith angle (deg)

31.028

February 27

1633

1133

206.0

227.3

232

260

7.3

14

1

12.3

31.029

March 12

1709

1209

204.7

227.0

244

269

6.9

-60

6

9.4
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76.87°W) wi';h the beam pointed perpendicular to the magnetic field. The

whole antenna was used for transmitting. The east and west quarter

sections were used separately for receiving in an attempt to obtain

drift velocities in the east-west direction. The radar experiment has

been described in ROYRVIK AND SMITH [1984].

5.2 Data Processing

The probe data have been processed using both analog and digital

methods. The analog form of presentation is used to show the intensity

of the irregularities as a function of time. This allows rapid

identification of features and altitude ranges of interest. Digital

data processing is preferred when spectral characteristics are to be

determined.

Analog processing consists of narrow-band filtering of the probe

fine structure signal, followed by rectification (with low-pass

filtering), so that the magnitude of AN/N is presented. This technique

has been used, without rectification, by PRAKASH ET AL. [1972] and, with

rectification, by SMITH AND KLAUS [1978].

The arrangement used here is shown in Figure 5.1. The fine

structure signal from one or other of the broadband amplifiers appears

at the output of the discriminator (which is provided with tape-speed

compensation). Compensation for the low-frequency attenuation of the

broadband amplifiers is applied using an op-amp circuit for which the

voltage gain is 1 at high frequencies and 10 at low frequencies. The

effect of the low-frequency compensation is to move the low frequency
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cutoff from 40 and 400 Hz to 4 and 40 Hz, respectively, in the two

broadband amplifiers. The precision rectifier and two-channel chart

recorder are identical to those used by SMITH AND KLAUS [1978]. The

time code is also recorded on the chart.

Digital processing begins with digitization of the fine structure

data. During the flight, the fine structure signal is stored on an

analog tape as an FM signal. The recorded signal is then demodulated

with an FM discriminator and digitized at a rate of 5000 samples/s. A

reference sinusoid originally stored on the analog tape synchronizes the

digitizer, thereby preventing tape speed fluctuations from contaminating

the data.

The spectra are obtained using Program SPECTRA (see Section 3.3).

A 2048-point FFT was performed on data samples from an interval of 0.41

seconds. Windowing and spectral averaging were not used in the

preliminary analysis. De-emphasis of the fine structure signal is

implemented in the software along with upper frequency cutoff

compensation to correct for the rolloff of the logarithmic electrometer

and the telemetry channel. The range of irregularity size is, for a

rocket velocity of 1 krn/s, 0.4 m (2.5 kHz) to 250 m (4 Hz).

5.3 Observations

The profiles of probe current (measured at constant voltage) for

the two flights are shown, up to an altitude of 130 km, in Figure 5.2.

The calibration factor, (electron density)/(probe current), is about 5 x

10 cm /A. An accurate value, which may show some variation with



118

r 1 1 1 1 1 1 1 1 1 1 1 1 1 1

•o
C

oo
CM
O

C
O

•H
)-l
O

0)
&
•H

O
S-i

C
0)
t-l
>-l
3
O

O
S-i
ex

tn
(LI

<NJ

m

0)

3

•rl

M)
S IS

S
Q
(T

S
CD

S
ts

Q
<0



119

altitude, will be established by the propagation experiments using the

reflection heights of the ordinary and extraordinary waves in the upper

E region, differential-phase measurements in the lower E region and

differential-absorption measurements in the D region (see Section

2.3.4).

The main features of the profiles are similar to those obtained at

midlatitudes: the D layer (up to about 82 km), the E layer (peaking at

about 110 km), and a relatively constant electron density in the upper E

region. Only in the altitude range from 80 to 88 km is there any

substantial difference between the two profiles. The difference in

solar zenith angles (see Table 5.1) is not sufficient to explain this.

The components of the probe current signal at the spin frequency

(about 7 Hz) and its harmonics have been eliminated from the profiles of

Figure 5.2 by averaging the measured current (digitized at 1 kHz) over a

time interval equal to the spin period.

The burn-out of the two-stage Nike Orion rocket occurs at T + 41 s,

which, for these flights is an altitude of 45 km. Except for the period

from T + 19.5 s to T + 27 s, which is the in-flight calibration, the

output of the probe experiment shows a high level of noise during the

launch phase. The noise is attributed to vibration of the payload.

It decreases after burnout„ becoming insignificant at an altitude of

about 80 km (T + 63 s). It is interesting to note that the spectrum of

this noise has a spectral index which is close to the -5/3 power law

that characterizes neutral atmospheric turbulence. We attribute this
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signal to vibration of the payload by rocket-generated turbulence rather

than to electron density irregularities of the ambient ionosphere.

The system noise in the probable absence of payload vibration and

electron density irregularities is illustrated by the spectrum shown in

Figure 5.3. This is at T + 66.7 s from Nike Orion 31.028 at an altitude

of 87 km. The rocket has a total velocity of 1.51 km/s at this time and

the flight elevation is 82.2 deg. The spin-related components of probe

current (mentioned previously) appear at frequencies below 70 Hz. The

lowest noise level, occurring near 600 Hz, shows a value of about 10

(in units of (AN/N)2/Hz).

The main features of the electron density irregularities of the

daytime equatorial lower ionosphere are shown in Figure 5.4 which result

from processing the data by the analog method (see KLAUS AND SMITH,

1978). Some of the spikes in the data, such as those near 81 km in both

flights, appear to be artifacts of the instrumentation; they will be

ignored. The features to note in Figure 5.4 are

(a) The layer of mesopheric irregularities near 85 km (only on

31.028);

(b) The Type 2 irregularities of the lower part of the electrojet,

between 90 and 105 km;

(c) The Type 1 irregularities of the upper part of the electrojet,

between 103 and 108 km (better developed on 31.029);

(d) A continuum of irregularities of small amplitude above 100 km.
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In the following sections we will discuss the characteristics of

each of these four features and compare them with radar and other rocket

observations.

5.4 Discussion

5.4.1 Mesospheric irregularities. At the time that the layer of

mesospheric irregularities was observed on the rocket experiment

(31.028) the radar at Jicamarca also recorded echoes, although at a

slightly lower altitude (near 82 km). The radar data lead to a

scattering cross section per unit volume of 2 x 10"̂ -̂  m [ROYRVIK AND

SMITH, 1984].

The irregularity spectrum from the fine structure experiment is

shown in Figure 5.5. The scales are expressed in rad/m rather than Hz,

based on a rocket velocity of 1.52 km/s. (The scales are otherwise

identical to those of other spectra included here.) Comparison with the

noise spectrum of Figure 5.3 shows this to be a very strong signal.

Slopes corresponding to power laws of -5/3 and -7 are indicated on

the spectrum shown in Figure 5.5. The extrapolation of the -7 slope to

a wave number of 2 rad/m (corresponding to the radar wavelength of 3 m)

gives an estimated power of 3 x 10~10 (AN/N)2 m/rad. This leads to a

—18 —1scattering cross-section per unit volume of 4 x 10 m , in satis-

factory agreement with that obtained from the radar data [ROYRVIK AND

SMITH, 1984].

The spectrum includes a range of wave numbers where the slope is

-5/3, indicating turbulence in the neutral atmosphere. The wave number
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at the intersection of the -5/3 and -7 slopes is interpreted as the

inner scale of turbulence. The value, 0.3 rad/m (freq.uency: 75 Hz;

scale size: 20m), agrees with estimates of RASTOGI AND BOWHILL

[1976]. The comparison of rocket and radar data is discussed in detail

in ROYRVIK AND SMITH [1984].

A feature of the data which is not discussed in ROYRVIK AND SMITH

(1984] is the double-peaked nature of the irregularities in the layer.

This is most clearly seen in Figure 5.4 in the frequency bands 20-40 Hz

and 40-80 Hz. If the turbulence originates in a shear layer which has

become unstable, it follows that the electron density gradient in the

center of the turbulent layer will be small, whereas there will be steep

gradients at the upper and lower boundaries [PELTIER ET AL., 1978]. An

analogous effect has been noted by SMITH AND MILLER [1980] in sporadic-E

layers associated with unstable wind shears. Since the irregularities

are related to the local gradient of refractive index, the strongest

irregularities may be expected to occur at the boundaries of the

turbulent layer.

The steepening of the electron density gradients at the upper and

lower boundaries, and the corresponding decrease of gradient within the

layer can be seen in Figure 5.6. This is an expanded section of the

profiles of Figure 5.2. The boundaries of the layer, at 85.2 and 86.5

km, are indicated on the profile for 31.028. The corresponding section

of the other profile (31.029) is relatively smooth within this region,

consistent with the absence of echoes in the radar data or of

irregularities in the rocket data.
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PRAKASH ET AL. [1980], in reviewing the results of many rocket

flights at the equatorial site at Thumba, India, identify irregularities

due to neutral turbulence. For medium-scale irregularities (30 to 300

m), which they have observed in the altitude range 70 to 81 km, the

average spectral index is -2.7 ± 0.4. Small-scale irregularities (1 to

15 m), observed in the altitude range 61 to 70 km, showed a more

variable spectral index with an average value of -1.6 ± 0.7 (i.e., about

-5/3). We have attributed these apparent small-scale irregularities to

payload vibration and the apparent medium-scale irregularities to spin-

related components of probe current (see Figure 5.3 and the related

discussion).

5.4.2 Electrojet irregularities. The spectrum shown in Figure 5.7

is obtained from Nike Orion 31.028 at an altitude of 96 km. The rocket

velocity is 1.45 km/s and the elevation angle is 81.5 deg. This is in

the lower part of the electrojet and these are the Type 2 irregularities

of the equatorial electrojet. They are generated by the gradient-drift

instability and have been extensively studied by ground-based radio

experiments.

The altitude range of the Type 2 irregularities is, from Figure

5.4, about 90 to 105 km. They have larger-scale components than can be

represented in Figure 5.4. These are visible in the profile of probe

current, Figure 5.2. They are shown again in Figure 5.8 with expanded

scales and with a separation introduced by multiplying the probe current

of 31.029 by the factor of 1.5. The large-scale irregularities are
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responsible for a strong scintillation of the signal which was observed

in the 5 MHz radiowave propagation experiment. This aspect of the data

will not be discussed.

The spectral index of the spectrum shown in Figure 5.7 is about -3

for frequencies below 200 Hz (scale size > 7 m). At higher frequencies

(until obscured by system noise) the magnitude appears to increase.

PRAKASH ET AL. [1980], in daytime flights, find the spectral index to be

-2.0 ±0.7 for the medium-scale irregularities (30 to 300 m) and to be

between -A and -2 for the small-scale irregularities (1 to 15 m). Our

observations are not substantially different from these.

Type 1 irregularities are seen in both flights in the upper part of

the electrojet (in the altitude range 103 to 108 km). As seen in Figure

5.4 they are more pronounced in the second flight (31.029) than in the

first (31.028). There is considerable structure within the few

kilometer thickness of the region. This is seen most clearly at the

higher frequencies (>160 Hz). The sharply defined upper and lower

boundaries (on 31.029) can be noted, as well as the separate peak at 103

km. The mechanism producing the Type 1 irregularities has been

generally considered to be the two-stream instability.

The spectrum observed on Nike Orion 31.029 at 106.5 km is shown in

Figure 5.9. The rocket velocity is 1.38 km/s and the elevation angle is

79.7 deg. Except at low frequencies (spin-related components) the slope

is close to zero. PRAKASH ET AL. [1980] also report a flat spectrum for

the Type 1 irregularities.
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The irregularities seen in the rocket data are several orders of

magnitude stronger than can be deduced from echoes obtained from a

vertically directed radar, even during very strong scattering conditions

[IERKIK, 1980]. The scattering cross section per unit volume (at 3 m

wavelength) is calculated from the rocket data to be 7 x 10 m . This

is comparable with estimates by IERKIK [1980] for strong Type 1

irregularities observed in the horizontal direction.

5.4.3 Upper E-region irregularities. The upper boundary of the

electrojet is seen in Figure 5.4 to be sharply defined. Above the

electrojet, however, there are electron density irregularities of much

smaller amplitude which can be detected to an altitude of about 170

km. The altitude profile of these irregularities in the frequency band

240 to 480 Hz is shown in Figure 5.10. This frequency range is chosen

so that, with the changing rocket velocity, the 3 m wavelength

components (to which the radar is sensitive) are included.

The radar at Jicamarca, on both occasions, recorded echoes between

140 and 170 km, but not between 110 and 140 km. Spectra from the rocket

experiment, such as the one at 132 km from Nike Orion 31.028 shown in

Figure 5.11, indicate a small positive slope of 0.4 ± 0.2 throughout the

region (The velocity is 1.20 km/s and the elevation angle is 79.5 deg) .

In order to reconcile the rocket and radar data, it is suggested

that the irregularities are plane waves which are aligned almost

vertically at the lowest altitudes but more obliquely at increasing
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altitudes. It is also suggested that this idea could be tested with

further experiments using the Jicamarca radar.

The irregularities of the upper E region have been reported

previously by SMITH AND KLAUS [1978] and by PRAKASH ET AL. [1980]. The

amplitudes are comparable when correction is made for the different

bandwidths used.

No satisfactory explanation for the occurrence of the upper E-

region irregularities has yet been given although the similarity of the

spectrum to that of the Type 1 irregularities may be noted.
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6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

6.1 Conclusions

Electron density Irregularity measurements were performed by the

Aeronomy Laboratory of the University of Illinois in the auroral and

equatorial ionosphere during the Energy Budget Campaign in 1980 and

Project Condor in 1983. The measurements were obtained by monitoring

the current drawn through a rocket-borne probe held at constant poten-

tial and amplifying the resulting signal for transmission to a ground-

based telemetry station. The fine structure signal was then calibrated

and spectral estimates were computed for specific altitudes using an

interactive FORTRAN algorithm developed specifically for analysis of the

fine structure experiment. Preliminary spectra were obtained for Taurus

Orion 33.011 in the auroral ionosphere and Nike Orions 31.028 and 31.029

in the equatorial ionosphere. The conclusions drawn from each follow.

6.1.1 Energy Budget Campaign. On the basis of the spectra

presented here, and those from THRANE AND GRANDAL [1981], it may be

premature to conclude that the mesospheric irregularities are due to

three-dimensional neutral atmosphere turbulence of the Kolmogorov

type. In the absence of any other plausible nonturbulent mechanism,

however, the similarities between the observed and theoretical spectra

(-5/3 slope at small wave numbers, the steeper slope at larger wave

numbers and the changing break point as a function of altitude) strongly

suggest that some kind of turbulence is responsible for the electron

density irregularities. The differences between auroral and equatorial
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mesospheric spectra (in the apparent Inner scale value and in the

spectral slope at large wave numbers) may or may not be significant.

Not enough is known about temporal and latitudinal variations of energy

dissipation rate and kinematic viscosity to decide if the wave number -of

the observed break in the spectral slope can be reconciled with

turbulence theory. The -7 and —3 spectral indices may result from

attempts to fit straight lines to a curve that is actually the

exponential function of wave number .predicted by simple turbulence

theory. In this case the discrepancy between the -7 and -3 slopes is

unimportant. If, on the other hand, subsequent observations should con-

firm the power law, then the different slopes become important and must

be explained. .Further experimental data and theoretical studies are

needed to resolve these problems.

6.1.2 Project Condor. It has not been possible to detect

irregularities in the ambient electron density at altitudes much below

80 km because of instrumental noise apparently generated by vibration of

the payload. Previous reports of irregularities at low altitudes must

be reconsidered before they can be taken as evidence of neutral

atmosphere turbulence.

At altitudes above 80 km it is possible to see evidence of neutral

atmosphere turbulence. In the region from 80 km to the lower limit of

the electrojet (near 90 km), in two rocket flights, only one layer of

turbulence was found. The radar and rocket data from the layer are in

satisfactory agreement and support isotropic neutral turbulence.
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The Type 2 irregularities of the equatorial electrojet are seen on

both rocket flights in the altitude range of 90 to 105 km. These are

dominated by large-scale components, are about equal in intensity on the

two occasions and are considered to be generated by the gradient-drift

instability.

The Type 1 irregularities of the electrojet have different

intensities on the two flights; those on the second flight (31.029)

being much greater in amplitude and extending over a greater altitude

range (103 to 108 km). The irregularities originate in the two-stream

instability.

The rocket data from both flights show irregularities in the upper

E region continuously from the electrojet (near 110 km) up to an

altitude of about 170 km. They have the same flat spectrum as the Type

1 irregularities but amplitudes that are smaller by several orders of

magnitude. There are radar echoes from 140 to 170 km on both occasions

but none between the electrojet and 140 km. This is possibly related to

the anisotropic nature of the irregularities. The properties have not

yet been well enough defined to allow an identification of the mechanism

generating the upper E-region irregularities.

6.2 Suggestions for Future Work

In the near term, the capabilities of Program SPECTRA should be

exploited to further refine the analysis in order to maximize the amount

of information extracted from the data. Also further qualification of

the data may be achieved by reducing dependence on assumptions.



139

Preliminary analyses were performed on the data in Chapters 4 and 5 to

obtain initial results from the rocket flights and to serve as a

baseline for more detailed analyses. For example, the software's

capability for data "windowing" may be utilized to decrease the leakage

of the spin harmonics into higher frequencies of the spectra.

Determination of an optimum window function could thereby increase the

accuracy with which large scale size irregularities are computed. Like-

wise, data segmenting and spectral averaging may be performed for

variance reduction in the spectral estimate. Decreasing the variance of

the estimate might allow more accurate computations of spectral indices

as well as better defined transitions in spectral slope. Data

segmenting and spectral averaging may however be more important in the

context of stationarity tests.

As was mentioned in Section 3.2.6, Fourier analysis rests on the

premise that the data are stationary (i.e., the spectrum is time-

invariant) . A spectral estimate of nonstationary data is suspect and

highly unreliable. The fine structure spectrum, however, does change

with time and therefore, extreme care must be taken when performing

spectral analysis. Experimentation with data segmenting and observation

of the resulting individual periodograms may help to determine the rate

at which the spectrum is changing thereby indicating an upper bound on

data segment length over which Fourier analysis is valid. In addition,

further information regarding the irregularity structure in the

ionosphere may be obtained.
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In the long term, it may prove worthwhile to investigate the more

advanced spectral estimation techniques which are described in the

literature under maximum entropy spectral estimation, autoregressive-

moving average (ARMA) modelling, etc. These modern techniques produce

estimates which are unbiased, consistent and of equal or better quality

than the classical estimators. In addition, they are more amenable to

dealing with nonstationary random data.
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APPENDIX

PROGRAM SPECTRA AND RELATED SUBROUTINES

PROGRAM SPECTRA IS AN 1NTER-ACTIV
PQWfcR SPECTRA T 0 _ 8

HUUTINE WHICH ALLOWS
U&EO IN THE CALCULAT ION
- - - -

OMPUTATIUN UP _ _ _ _ . . ___ _ _ ..
F FINF STRUCTURF IRREGULARITIES. THE FINE 8TRUC
ILE TO Bfc ANALYZED IS ENTERED TftHOUGM DEVICE J,
8 THEN PROMPTED TO PROVIDE INFORMATION REGARDING

STRUCTURE D A T A
THE USER
THE D A T A

AND THg ANALYSIS. A LINEAR FIT MAY ALSO BE PERFORMED ON
THE DATA AND THE SPECTRAL INDEX CALCULATED, THE USER MAY
~ THE SPECTRAL INDEX AND MAGNITUDE IN i ~~

SPINDEX MAY THEN BEUSED_TO PLOT THE
TORE VA OF ARRAY

PECTRAL INPE* AND'MAGNITUOE AS - rw.,.,**,.-. v, nki«iuu<..
PKIOE TO EXECUTION OF SPECTRA. THE USER MUST PROVIDE

CERTAIN PARAMETERS. THESE PARAMETERS ARE' GAIN -• THIS IS THE GAIN OF THE EXPERIMENTCHANNEL -«• 'HIS REFERS TU THE CHANNEL NUMB?*OF THE REQUIRED DATA AS STORED UNA CDC FORMAT TAPE.THIS IS THE LOWER BOUNDARY ON THE
THIS is THE JRRAY WHICH CONTAINS

3) MINMAG

4) BANDCAL

5) LOLIMIT

6)

7) FC .„.

») PAC —

9) FLE —

THE OAT* CALIBRATIONS AS DETERMINED
FROM PROGRAM CW*LCAL.

.. LOLIMIT IS THE LOWER BOUND ON THE
FREQUENCY UP
IN THE LEAS

U

N IH6S TH|

INCLUDEDL0f _ATA POINTS fo~BE
QUARE.5 FIT.
UPPeK bOUNU ON THE

ATA POINTS TO BE INCLUDED
.QUARES FIT.

PEK 3DB ERfUUENCY OF THETHIS IS THf QPPEK 3DB FREUUENCY OF THE
TELEMETRY LOW PASS FILTER.
THIS IS TH| UPPER 3DB FREQUENCY OF THE
AC AMPLIFIEH.
THIS IS THE OPPER 308 FREQUENCY OF THE

THESE VA

l«5) BBAND •- ^HJS IS THE DUMBER &F*THE BROADBAND
AMPLIFIER OUTPUT BEING PROCESSED. (TO
BYPAS

UPS
b*

ARE
THEIN

BYPASS OEE1PH. 3ET BBAND ,EQ. 0)
ENTERED UNDER THE TITLE BEXPE$IM£NT

PROGRAM, {WRITTEN BY BRUCt TOMEI, 1983),

PROGRAM SPECTRA (INPUT.OUTPUT,DATA11.INDEX,TAPE!«INPUT.
* T A P E ? « C l U T P U T . T A P E 3 « O A T A l l l T A P E < » t I N O E X )
INTEGER N.*.M.OVLP.wiNOONO.DiSPLAY,OPTJON,CHANNEL*IHRS,IMIN,s,
REAL DATA(40i6|,MA6^0aij.MAGAV^fp6a9^ .FREQ f 2PI«9) . X («096j| .

* M{N8AG.K»EiLfsLOPE,YiNT,HiLIMlTjLOLIMiT,r- "L "' '' '
COMPLE* 2(26ao3EXTERNAL CABS
DATA 2,U*TA

ENTER USER. SPECIFIED VARIABLES (HH
LTIME;FLUAT(IHR*3b»Pi*IMlN*fc0)*8ECS

10 PRINT*."ENTEK THE DESIRED STARTING TIME, (SECONDS AFTER LAUNCH)
R.AD*,$TIM£;
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20
t

199
40

30

78

PRINT*. "ENTER THt NUMBER OF DATA POINTS »
REAO*.N
PRINT*. "ENTER THE SEGMENT LENGTH (MUST BE AN EVEN INTEGER)"
R£AO*,L
PRIM*," NUMBER OF SEGMENTS OVERLAP"
S«N/L
PRINT4,8,0

00
• 1) GOTO 40

I«2.L

PRlNT«. K.I-

L«ci-in

;NT*.
kD*,*
.P«(L

"ENTER THE NUMBER OF SEGMENTS OESIRfcO"

(«-*<-Nl/(K.l)
PR
PR
PR
PR
PR
PR in* I w, -
HEiO*,wlNO.
PRINT*,"£NTE
READ*,M

[NT*7 " E N T E R * TH£" DESIREDNT*,"
NI*'INT*, "

t-HECTANGULAR
2-BARTLETT*
3.HANNJNG11

UT*,"
MT»' •

THE FFT BLOCK LENGTH

5-8LACKMAN"
6*BLAC"MAN«

(MUST »E A POWER OF

t-LINEAH"
2-LOGARlTHMIC11

3-NO PLOT"

PRINT*,"ENTER THE OESIREO PLOT.
PRINT*,"
PRINT*,"READ*,OPTIONFiT?«a
OISPLAY.2

lJ{JpflON ,EO. 3JGOTO 70
IFC* ,e«. I)G3TO 33PRINT*,"5o YUU WISH TO PLOT INDIVIDUAL PERIOOOGRAMS?
PRINT*,"
READ*.DISPLAY
iFfOlSPLAY .EQ. 21GOTO 10PRINT*,"HOW MANY INDIVIDUAL PLOTS?"R£AD*.NUMM£R
PRINT*,"PERFORM LINEAR FIT TO INDIVIDUAL PERIODOGRAMS?
PRINT*."
READ*,FIT2
PRINT*,"PERFORM LINEAR FIT TO AV£«AGEO P£RIOOOGRAM?
PRINT*." 5..NO"
READ*.F lT i
P R I N T * , 8 A N Y CHANGES? 1
PRINT*." 2
READ*,S
IF(S .EO, D G O T O 10

EXPERIMENT P A R A M E T E R S

1—2..
YES

BiSS
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BANOCAL(5>«3836.ai

* »^,t »* V ̂  » w
BBANO»0 *

BEGIN PROCESSING

50 REWIND 3
CALL LUAD(DATA*N.CHANNEL.LTIME
CALL CALl8tDATA.N.(3A*JOCAL.GAlN
CALL SPtCTHM(nATA|MAG,MAGAVE.Fnti«.A,t|n.i%,..,.-ie:.WiU»t'-

* SMPTIME.OPTION.01 SPLAY.NUrtHE&»*INnAGfFIT
* LOLlMtT:HlUMl t .FC.FAC;FLE,BBANO f LTlMe,S

CALl DEEM*

CALL PLOTTER(MAGAVE.FREQ. M,' M2.MAXMAG7MIHMAG,MAXFREQ, OPTIOH.
*PRlNT« "D •••8LOeC*Vi-T*-*Jl»^tX-l!i*lUhJT.l....'

PRINT*, "AH£ YOU FINISHED? l -Yfc5> H

PRINT*." 2.NO"

. - » - . - . .,«.W Tt^E. SAME ANALYSIS? i—YES"
PRINT*;"
GOTO 10
STOP
END

SUBROUTINE LOAD READS A SPECIFIED CHANNEL FRUM A
PDP2COC CONVERTED TAPE AND STURES THIS DATA IN ARRAY
DATA, THE NUMBER OF DATA POINTS TO BE READ ANQ TH|
TlMfc CU«*ESPONO!NG TO THE FIRST DATA POINT AHE ENTERED
BY THE USER. IP THE STARTING TIME ENTERED DOES NOT
CORRESPOND TO A SPECIFIC DATA POINT. THE FIRST DATA

^^L^ellSfLL^E^THr^
{NOTE •• THE NUMBER IN PARENTHESES IN TH£ READ STATEMENTSPECIFIES THE DEVICE TO BE READ. THIS SHOULD BE MODIFIEDIN ACCORDANCE WITH THE USER'S PROGHAM STATEMENT,)

DATA B A R R A Y CONTAINING THE CHANNEL SAMPLES,
N aNUMBER OF SAMPLES TO BE READ.

.LAUNCH TIME IN UNIVERSAL TIMg (IN SECONDS).
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ST1ME «T|ME CORRESPONDING TO THE FIRST SAMPLE TO P£READ TIN SECONDS FROM LAUNCHI.PTIME aTIMg CORRESPONDING TO FjRST SAMPLt IN A RECORD,
SMPTIME .CHANNEL SAMPLING PERIOD* '
TIME .TIME OF DATA POINT IN UNIVERSAL TlMf. (LTIME*

FRAME .THE FR!ME NUMBER CA FRAME is A SET OF FIVE DATA PUINTS).
CHANNEL aTHE DESIRED CHANNgi TO BE READ.
POINT .THE DATA POINT CORRESPONDING ffl TIME
JPOINT .THE LARGEST INTFGER LESS THAN OR EQUAL TO POINT.
3TPOINT .THE FIRST DATA POINT TO BE READ (STARTING POINTj.

ROUTINE LOAD (DATA .N.CHANNEL.LTIME.STIME,SMPTIME)
L DATA (NT.AHRAYdaSll.LTlME.STIME.TlME.SMpTIME, PTIME, POINT
EGER !AHRAY(l2501,lPOfNT,3TPOINT,CHANNEL

SUBROUTJN
REAINT

R£AO(3) A R R A Y
PTlMtaARRAYd'
REAOJ31 ARRAY

iEfclND 3
10 RgAHp) ARRAY

i P ( A r f R A Y d ) ,GT. T I M E J G O T O 20
GOTO 10

20 BACKSPACE 3
BACKSPACE

IPOINT.IPOJNT*! '
IFdPOlNT LE. 1250) GOTO 30
«EAO(3) ARftAY
IPOINT.l

GOTO 30IPUINT*!
"T«AUt. 1250) GOTO 30

_. ARRAv
Ta!

30
STPOINT»rF*AME-.i
IFCIPOlNf .LE, S
3Tl*giNt.STPOiaT«_
IF(StPOlNT LE. 1250) GOTO 40
READfJl A R R A Y
STPOINT.CHANNEL

40 00 1^0 I.I.N
O A T A f n.FLOAT(lARHAY(STPOlNT))

STPOINf.STPOlNT+5
IF(3TPOINT ,CE. 1250) GOTO 100
READJ3) ARRAY
STPOINNCHANNEL

100 CONTINUE
RETURN
END

SUBROUTINE CALJ8 PERFORMS TH£ NECESSARY
CALIBRATIONS SO THAT THE DATA IS REPRESENTATIVE
OF THE OUTPUT FRQM ThE EXPERIMENT. THESECALIBRATIONS INCLUDE ADJUSTMENTS FOR EXPERIMENT
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GAIN. DIGITIZE? GAIN SIGNAL OFFSETS. AND
DISCRIMINATOR NON-LINEARITIES. THE NON-LINEARITIESARE REMOVED *ITH A CALIBRATION CU«VE OBTAINED BY
A PlECEHlSf-LlNEAR FIT TO TH£ CALIBRATION VALUES
C8ANDCAL(5)).

SUBROUTINE CALXB (DATA.N.BANQCAL,GAIN)
HEAL OATA(N),BANDCAL(5),GAIN
INTEGER N
DO T00 I

i t>ATA(h .GT. B A N D C A L C 2 ) ) GOTO 1«
T A C l ) > n i ! 2 5 > e 8 A N 5 C A L C 2 ) - B A N D C A L C m } * 0 A T A r X )

* .~ •< l . * 5«BANUCALU) / (BANQCAL(2 )«BANDCA lh )M-2 .3 ) /GA lN
GOTO I0fl

10 IF i "AfAfn .GT, H A N O C A L ( 3 ) ) GOTO 30
D A T A ( I ) « ( ( l * 2 5 ^ ( 8 A N D e A L | 3 1 . B A N O C A L r 2 ) n * D A T A r n

* • ( 1 . 25 *BANOCAL(2 ) / (BANOCAL? l f * 6ANOCAL{ ! ) ) ) »1 .25 ) /GA lN
GOTO 10fl

20 IFiDAjAa) .GT. BANDrALU} ) GOTO 30
OATA(t)i7ri*|5/(6ANOCAL(a)»BANDCAL(3)l)*OATAfXl

* •(Iv2S*BANOCAL(3)/(BANOCAL(4)»BANUCAL(3nn/<;AlN
GOTO 100

30 OATACi)«Cfl,S5/{8ANpCAL(5)»8ANOCAL(4Jl)*yATA(l;

100 CONTINUERETURN
END

SUBROUTINE SPECTRM SEGMENTS.THE DATA. REMOVES THE MEAN,
WINDOWS THE DATA, COMPUTES THE PEKIOtlOGRAM. UPDATES AN
AVERAGE OF THg P£RIODOGRAMS, AND THEN DISPLAYS THE
INDIVIDUAL P£RIODOG»AMS. AN AVERAGED PEWIOOUGKAM IS
OBTAINED UPON RETURN FROM THE SUBROUTINE,

*

SUBROUTINE SPECTRMtOATA.MAG.MAGAVE.FREU.XrZ.N.K.M.Ma L.OVLP
• WINOONO.SMPTIMElOPTION.oisfrLAYiNUHBER^

MXT,MlLlMXT,FC,r»C,FLEf8bANO,

* NOM&eft.SiB8ANf>.V
REAL DATA(N),MAG?M|),M4GAVE
* SMPT|Mt;MAxAA6^AzNMAO.

*COMPLEX Z(H§I |S '

INTEGER N.K,M.M?,I
.NQHMft,8tl.« . LFREpXMg^XCM^MEAN^a).

COMPLEX

INITIALIZE ARRAYS

70

H
0»(N-OVLP)/K
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BEGIN SPECTRAL ESTIMATION

00 200 J»l,*

IN THE APPROPRIATE OAT*
DO 300 1-1,1

T"t"J-1)
MEAN REMOVAL

M£AN«0,0
UO 400 I

400 CONTINUEoo saa J«i»L
XCI)«|(I)-MEAN

500 CONTINUE

APPLY WINdO* TO DATA,

CALL WINQOW(X,L,M,WINOONQ)

COMPUTE

800

600 CONTlNdfc'

AVERAGE PtRIOOOGRAMS

00 900 I«lfM2
MAGAVE(15«r

900 CONTINUE

DISPLAY INDIVIDUAL P£RIOOOGRAH

IFCOISPLAY ,EQ. 2JGOTO i
IF(S -GT. NuH8EB)GOTO 200
CALL FILTCAL(KAG.FREQ.M2.FC.FAC,FLE)CALL oeEMpacMA5,FRE>4,A2 ,6eAf to^
CALL NAXMlNjCMAliiFREQ.MAXMAG.MAxFREQ.M.MP)
CALL PLOTTER(HAG.FREQ.M.M2.PAX MAG.MlNMAG,MAXFREQ,OPT ION,SLOPE,

YINti&IT^^OJ'^MlT»HI^IMIT)FIT2 ,EQ, 236010 10
NT*,"00 9QU WISH TO STORE THE SPECTRAL INDEX? 1--V6S"
NT*," 2--NO"

IF
PH
PR

, J)CALL
10 aBS*l

200 CONTINUE
RESTORE ARRAY FREQ
DO 999 1=1. M2 .
FREQ(I)=(I-1)/(FW>AT(M)*SMPTIME)

999 CONTINUE
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RETURN
END
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SUBROUTINE MAXMIN CALCULATES THE VALUES OF MAXMAG,
AND MAXFR~~ '- "' " " ~"
PLOTTING,
ANQ MAXFREQ AND HOUNDS THEM TO APPROPRIATE VALUES FOR AXES
-. g

SUBROUTINE MAXMIN(MAG,FP.EQ,MAXMAG,MAXFREQ,M,M2)INTEGER M.MJ
REAL MAl i ( f t2J,FREQ C M ? ) , M A X M A G , MAXFREQ

DO IF(MA&(IJ ~GT. MAXMAG) MAXMAG«MAGfI)
100 CON'""lir ' *

URN"

SUBROUTINE FILTCAL PERFORMS,A CALIBRATION TO THE SPEC
IN ORDER TO COMPENSATE FQP- THE RQLLOFF EFFECTS OF THg
TELEMETMY FILTER, THE AC AMPLIFIER. AND THE LOGARITHM
ELECTRQMFTef l THg TgLE«ETRY FM TER IS MUOELfcO AS AN
iQtALM3-PyBe LO* PASS FILTER (SEE ZIMMERMAN.i«»8H). T
AC A«PLIFIEP ANO LOG ELECTROMETER KOLLOFFS A«e M6flELL
A$ SINGLE POLE LO* PASS FILTERS. THE INPUT PARAMETERAS SINGLE
ARE

THMIC

THE

FC mm THE UPPfR 3QB FRffJUENrY OF THE TELEMETRY FILTER.
FAC .- THE UPPFR JOB FHlQuENCY OF THE AC AMPLIFIER,
FLE mm THE UPPER SOB FREQUENCY OF THE LOG ELECTROMETER.HCiH*5iHLE *«6 THE MAGNITUDES SUUAWEO OF THE TRANSFER FUNCTIONS

CORRESPONDING TO THE RESPECTIVE FILTER,

SUBROUTINE FRTCAL ("AG,FREQ,M},FC,FAC,FLE)
NTEGER Hg
EAL PAG|R| i .FREQ(M2) ,OMEGA,PI ,WC,WAC,*LE

*(U75480*MC**2

MAGCI
100 CONTINJ

RETURN
END
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SUBROUTINE OEEMPH PERFORMS DE-EMPMASIS ON THE SPECTRUM
OBTAINED *ROH THE FINE STRUCTURE EXPERIMENT. THE PRE-EMPHASIS
FILTER is MODELED AS A SINGLE-POLE HIGH PASS FILTER WITH
CUTOFF FREQUENCY EQUAL TO T"AT OP. THE BROADBAND AMPLIFIER.THE DE-EMPHASIS FILTER is TH£N OBTAINED BV TAKING THE INVERSE
OF Trt| PRE-EMPHASIS FILTER TRANSFER FUNCTION, OE-EHPMASJS
IS REOUIH6D FOR PAYLQAOS 31.028. 31.939. *NO ANY OTHER
PAYLOAD3 WITH THE SAME EXPERIMENT CONFIGURATION. THE
PARAMETERS ARE

i) BBA*0 •- THIS NUMBER REFERS TO THE NUMBER OF THE
BROADBAND AMPLIFIER WHOSE OUTPUT IS UNDER
ANALYSIS. FUR BBAND .EQ. 0. DE-EMPHASIS

iS BYPASSED
IS THg CuftER 308 CUTOFF FREQUENCY OF THE

BROADBAND AMPLIFIER.3) HOE — THIS is THE MAGNITUDE SQUARED OF THE DE-EMPHASIS
FILTER TRANSFER FUNCTION.

SUBROUTINE DEEMPH(MAtJ,FREQ,M2f 88 AND)
INTEGER M2.B8AND
REAL MAG(Mi) FREQ(M2),PI,OMEGA,WC,NDEpl"l
IF(8 .Q. (J)RETUHN

PERFORM OE.EMPHASIS

IM SU«N
ffio

SUBROUTINE PLOTTER PI OTS THE POWER DENSITY VESSUSFREQUENCY OR SCALE SIZE JN LINEAR UK LOGARITHMIC FORMA LINEAR FIT MAY ALSO aE PERFORMED ON THE LOSARITHMIC

SUBROUTINE PLOTTER (MAG, FREO.M, Mg. MAXMAG.MINMAG.MAXFREQ, OPTION,
* SLOPE, Y INT, F It (LOLIM1T,HILIMIT)
INTEGER M,M2,OPTIONtPIT,J
REAL MAG fMg)'FREQ(M2).MAXMAG.MINHAG,MAXFREU,Y INT, SLOPE,
* LOLfMfT HH.lMlTlfti(3),Yi(3)

INITIALIZE PLOTTING PARAMETERS
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Si t

Sit
Sit

CAtt USETY"XBOTHLABEL'")C-ALL user*"Y«uTHt*6fC'" J
CALL USET!t"OWNSCAL£"I
feU- HB!5«:*J.»fel.!.: iUP&E

UPSrT'
:. kLL UPa
S»ff ^p?CALLCALL
£AL

«E

["TfRMtNA
"i I
ATQR*:I

^"HSSKr*-11-
WARE'

.0.»7t0,

.''•"•'
SOFTWARE")

0.01

UPW'I

us
US

I.".POW€R
i,"?!")

THE FOLLOW IN;G THREE STATEMENTS BE
:$UPERCEOE THE OUTPUT OP SUBROU'T,INE ..
.THIS IS (UESliRE'O, REMOTE THE ICOWE'NT 'M;AR-K'.E*S,.

XOI'L'T'A w/N) /HZI

TO
IF

CALL UW iNiOQ (0 .13, MAXFiRf Q,.0...a ,M.A'XM/AG)I'FtOPTION ;.EQ; a,)GOTO i*
LINEAR PLOTTING

ALL yPLOT! '(FR;EOI'MAG,OTO 20
iP-E RF'O R M LOG »« J T H H lc PL 01 T2'N'G

10 CALL uwrNOg(i.,0,M'A'xFREo.Mi
C ALL US| T,(* X Y M6,A'R.I T hN,I t ° )

lift af!f!;::t«lM:{.!i:i
J»5 . ...

, M A X M A G )

100
»s

NUt

«at
C»IL

,.£0. .0-0,1 HAG(IV«M;iKiMAG'̂.Lg. AAXFRES)

F RE o, M A G , FI OAT (. j)

PERFORM LINEAR tEAST.SQUARES .FIT.

.EQ. 2)RETURN

FLAG DATA POINTS WITH MAGNITUDE EUUAL TO ZER«
OR WITH FREQUENCY OUT OF LIMITS.
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.I LOLlMlT)FHE<Jm^0.0
HiLiniT)FReQ(n»0!0

REMOVE FLAGGED DATA POINTS AND COMPRESS DATA
j»i
00 300 X«l.Mg

(F(FREO(i) .EQ. 0,0)GOTO 300

J«J*i
300 CONTINUE

PERFORM LINEAR FIT

CALL UL INF T(FREO, MAG, FLOAT (J.I), SLOPE, Y INT)

GENERATE FITTED CURVE (THREE POINTS ONLY)

Xim-LOilMlT
Yl(l)«US0**YINn*CXl(l)*«SLOPE)8 n i " i V O l M l T * H T L l M l ) / 2 ,
Y t ( 2 J « ( I 0 . 8 * * Y I N t y * ( x i ( 2 f S
X 1 ( 3 ) « H I L X M I T
y i ( 3 ) « l l ( 8 . 0 * * Y I N T ) * f X l ( 3 ) « *SLOPE)

PLOT FITTED LINE

E")
o S C A L "

CALL
Ct

,- *20 CALL uFn
CALL OPAiJSECALL
CALL UfcN0RETU
END

UWN

SUBROUTINE STORE STORES TH£ SPECTRAL iNDgjj DATA IN ARINOEX IN THE FOLLOWING FORMAT- T IMf.SPECTRAL INDEX.MAGNITUDE! A«HAY INQEX THEN SERVES AS THE INPUT ARRAY

SUBROUTINE STORE (SLOPE,YlNT,LTIME,STIME,S«PTlME,N)
INTEGER N

END
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SUBROUTINE WINDOW APPLIES A SPECIFIED WINDOW TO THE DATA
SEGMiNT X. THE WINDOW TS SPECIFIED B* WINDONO. THE
WINDOWED DATA IS ALSO N&SMALUEO BY THE INCOMEP-ENT
POWER GAIN OF THE WINDOW (IPS).

SUBROUTINE WINDOW (x.L.N.WINDONO)
INTEGER UJ.W.WINOONS.H

RECTANGULAR WINDOW

10 RETURN

BARTLETT

20 J-L/2
RiJ*!;j

100
° • " " - ' /FLOAT(J)

CDIPG«
DO 2(1

kG
200 CDNT NU£~

P5/f/FLOAT(L)

RETURN

MANNING WINDOW

00wIlgHf;J:5*(l.0-C03t2.0lPI*(I«n/LJ)

HAMMING WINDOW

P(
0«« jPC-?*397«

400 CONTINUE
RETURN

BLACKMAN WINDOW
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")0"50ft"Iil,L

500 CONCONTIN
RETURN

. HARRIS WINDOW U-TERM)
60 IPG»0. 289672277

00 *00

600 CONTINUE
RETURN
END

.0.9ai§3*COSffe,0»PI*FLOATU-l/L

SUBROUTINE LIMITS ROUNDS THE VALUE OF MAX FOR EASE IN AXESPLOTTINC, FOR i0**(N*n > MAX > IBI**N .JN GREATER THAN OR
EQUAL TO l,0)i LIMITS »OUNOS THE VALUE OF MAX UP TQ THE
REXTNN-lJTH PoagR OF TEN. FOR l<***-fN»l) > MAX > H3**-N
EQUAL TO i,0)i LIMITS BOUNDS THE VALUE OF MAX UP TQ THE
REXTH(N-i)TH POHgR OF TEN. FOR 10**-fN»i) > MAX > 1|<J**-N
(R LESS T«AN 1.0), LlMTfs HOJNQS THE VALUE OF MAX UP TO
THE N£?T -(N*ljTH'POUER OF TEN,

SU9NUUTINE LIMITS (MAX

» » M ' c
DO 108

106
MA»«PACTOW*(Y*,1)
RETURN

10 00 200 IiiiB

200 I^MAJ .5T, Z)

iFUMOotMAX,FACTOR) ,G£. 0.0001) OELTA«1 .0
MA*«FACTOR* (AINy(MAX/FACTOR)*OELTA)
RETURN
END




