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ABSTRACT

Quick, precise control of a flexible manipulator in a space environment is
essential for future Space Station repair and satellite servicing. Numerous control
algorithms have pfoven successful in controlling rigid manipulators with colocated
sensors and actuators; however, few have been tested on a flexible manipulator
with noncolocated sensors and actuators. In this thesis, a model reference adaptive
control (MRAC) scheme based on command generator tracker theory is designed
for a flexible manipulator. Quicker, more precise tracking results are exprected over
nonadaptivé control laws: for this MRAC approach.

Equations of motion in modél coordinates are derived for a single-link, flexible
manipulator with an actuator at the pinned-end and a sensor at the free end. An
MRAC is designed with the objective of controlling the torquing actuator so that
the tip position follows a trajectory that is prescribed by the reference model. An
appealing feature of this direct MRAC law is that it allows the reference model
to have fewer states than the plant itself. Direct adaptive control als.o adjusts the
controller parameters directly with knowledge of only the plant output and input
- signals. No a priori knowledge of the plant is necessary. - |

Simulations are performed to test both nonadaptive and adaptive model
reference control on the flexible manipulator model. Although nonadaptive control
gives satisfactory tracking results, the adaptive control does not due to the inability
of the noncolocated system to satisfy a necessary positive realness condition. When

the sensor and actuator are nearly colocated excellent tracking results are achieved.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The function of a robotic manipulator is to follow a commanded trajectory into
a workspace and then to perform a given task with its end effector. Conventional
manipulators of today control the positon of the end effector by commanding an
appropriate set of joint-angle values which are derived through a real-time kinematic
transformation. Large, massive manipulators that are very rigid must be used for
this method to ensure that the end effector will move to the desired location. Since
the position sensor is colocated with the actuator, stable servo control éxists and
the control system is easy to design. |

In space, ﬁexil;le robotic arms capable of quick, precise tra.cking of trajectories
and performance of tasks are necessary for in-orbit assembly of the Space Station
and autonomous satellite retrieval and repair. The arms are flexible because theg}
are made as lightweight as possible to keep the energy consumption and costs of
shipping and operating in space to a minimum. Control of the tip position of a
flexible manipulator requires a control scheme and an actuator/sensor setup that
is unlike that used for the conventional rigid manipulator. If the sensor for the
manipulator is placed at the tip then the position is determined directly without
the use of real-time kinematic transformations. |

The objective in this study is to test a Model Reference Adaptive Control
(MRAC) scheme on a flexible manipulator with a torquing actuator at the pinned-
end of the arm and a sensor at the free-end. When the actuator and sensor are not

located at the same place on the manipulator, the system is referred to as being



“noncolocated”. The function of MRAC is to command the tip of the manipulator
to track a prescribed reference signal with speed and accuracy.

Stable control of a noncolocated flexible manipulator like the one used in this
project is a difficult control problem that has only recently been addressed. Schmitz
[SCH-1] has experimentally shown that with a noncolocated manipulator system it
is possible to control the end of a flexible arm using feedback and experimental
identification. The tracking results he obtains are satisfactory but quicker, more
precise tracking results are expected with a.da.htive control.

A direct MRAC scheme is chosen for this problem since the plant for the
flexible manipulator is a complex, distributed-parameter system whose parameters
are uncertain and may change with time. Direct adaptive control adjusts the
controller parameters directly with knowledge of only the plant output and input
signals whereas indirect adaptive control requires adaptivej identification of the
plant parameters. The direct MRAC algorithm that is used to control the flexible
manipulator is developed in detail in [WEN-1]. An especially appealing feature of
this MRAC law is that it allows the reference model to have fewer states than the
plant itself. Hence, mére states may be used to represent the plant more accurately
without the cost of implementing a large order reference model.

Although MRAC has not yet successfully controlled a system that has non-
colocated sensors and actuators, it has been applied in a number of cases where the
sensors and actuators are colocated. In particular, the Power Tower configuration
of the future space station has been modelled and successfully controlled in simula-
tions with this control scheme {IH-1]. A historical review of the control of flexible

structures (including manipulators) and the MRAC law follows.



1.2 Literature Review

In a literature review on adaptive control of a remote manipulator arm it is
appropriate to discuss first the research on control of flexible structures. Next the

history of adaptive control is presented. .
1.2.1- Control of Flexible Structures

Stability is a crucial topic that must be addressed in the control of flexible
~ structures. Since very low» freqoency modes and spillover effects from the use of
~ truncated modal models may easily lead to inetability problems it is important to

| '_ be able to verify the s_tability of a contr‘ol system design. This issue bwas made

abundantly clear when the lirst spacecraft placed in orbit oy the United States,

Explorer I, went unstable due to energy dissipation of its elastic whip antennas>

Py | | | -
~ Early work related to control system design for ela.stic spa.cecraft was performed

in [LIK-1], [LIK-2] [FLE—l], [FLE—2] where the focus was on developing useful

dynamic simulation tools. More recently, control of ela.stlc structures for space

. applications has mcluded commumcatlons satellites with long ﬂexlble solar panels,

the Space Shuttle Remote Manipulator System (SRMS), and the future Space

Station [GRA-1], [GUP-1], [LYO-1]. In [NGU-1}, [RAV-1] the independent joint

servo control of the SRMS is described.
| Currently a “design challenge called SCOLE (Spacecra.ft Control Labora.tory

Expenment) is being developed at N ASA Langley Research Center {BA-1], [TAY-
1]. The challenge consists of both a mathematxcal problem and an experimental

test specxmen for whxch control laws are to be developed to slew and stabilize

the radio frequency axis of a flexible off-set antenna attached to the space shuttle




by a flexible beam. The dynamics are described by a distributed parameter
free-free beam equation with rigid bodies attached at each end. Hence, the
mathematical formulation involves various techniques for the solution of partial
differential equations (PDE) with delta-functions on the boundary. Many of the
issues that must be addressed in SCOLE are similar to those for the flexible remote
manipulator.

At the Jet Propulsion Laboratory (JPL) a project called Space Power-IOO KW
(SP-100) has been modelled very much like the SCOLE prOJect——a free-free beam
- with rlgid bodles attached at each end [SPA-1]. Free and forced vibration studies
have been made and a proportlonal-derlvative (PD) controller has been designed.
Future work w1ll 1mplement hlgher order compensators, full-state feedback, and
multi-actuator / aensor controllers.

- The spacecraft projects described above demonstrate that research in the
control of flexible space structures has many issues in common with the problem-
of active control of an elastic mampulator Numerous control schemes have been
developed for mampulators ‘Book [BOO-l] [BOO-2], desngned a PD jomt-angle
feedback controller for a two-lmk planar mampulator The French Atomlc Energy
Commission (C.E.A.) [LIE-1] developed a dynamic model of a six degree-of-freedom,
lightweight MA-23 manipulator and implemented servo control of a single joint of
the manipulator with a full-state feedback law.

In order to test many of the controllers that have been 'de‘signed, several exper-
iment:al beams and manipulatoré have been built A orie-meter-lorlg experimental
arm with colocation was bullt by 'I‘ruckenbrodt [TRU-1]. Various control laws were
tested such as output feedback and state-feedback using a reduced-order estimator.

In [USO-1] an optimal full-state feedback regulator based on a quadratic perfor-




mance index was designed for a two-link elastic arm. Other experimental arms that
have been built include the JPL beam [SC-1], [SC-2], the Lockheed Toysat beam
[BRE—l] [BRE—2] and the NASA Langley beam [MON-1]. JPL built a pinned-free
beam wnth coloca.ted SEensors and actuators a.nd demonstra.ted\actwe shape control
actlve dynamlc control, and state estlmatlon '_

All of the examples listed above use only colocatlon of the sensors and actuators
Noncoloca.ted systems often lea.d to non-mmlmum phase systems, that 1s, systems
~with nght half plane zeros. Thls is an undesxrable feature that creates a dnﬂicult
control problem Horowrtz a.nd Sldl [HOR-l] address non-minimum phase systems
but not for the case of a system ha.vmg llghtly damped elastlc modes In [EDM—
1], problems assocxated with control system des1gn for elastxc systems ha.vmg
noncolocatlon are 1dent1ﬁed and optrma.l control desxgns usmg output feedback and
full-state feedback are eva.luated in terms of robustness and performance. )

A number of successful designs have been demonstrated for noncolocated
systems The Galxleo spa,cecraft [CHO 1], and the Orbxtmg Solar Observatory-s
(OSO-8) [YOC-1], [SLA-l], 1mplement control des13ns for noncolocated systems In
[BAU—l] [CAN—2] the feasibility of actxvely controllmg the ela.stlc vxbratlon modes
of a hghtly damped mechamcal system has been demonstra.ted w1th noncolocated
pos1tlon control The tests were performed on the Lockheed ﬂexrble oﬁ'set-feed
antenna and the Stanford four-dlsk system

At Stanford Schmntz [SCH-1] has recently completed end-pomt pos1txon feed—
back experlments on a very ﬂexxble beam wrth actuatlon at the pmned-end and
sensing at the other He 1mplemented a dlrect dlscrete Llnear Quadratic Gaussxan
(LQG) desxgn a.nd also a reduced-order LQG compensator des1gn Both controllers

ylelded a four—fold 1mprovement in bandwndth over what is typxcally achreved wrth



joint-angle feedback.
1.2.2 Adaptive Control

Adaptive control was initiated in the late 1950°s when it.was found that
high> éystem performance under 'va.rying conditions is difficult to achieve with
constant linear feedback [KAL—I]. Significant strides have since been made using
primérily two approachés called MRAC and self-tuning regulator (STR); Given a
deterministfc system, MRAC drives the difference between the plant output and
the reference model output to zero asymptotically. An STR divides the problem of
controlling a stochastic system into a controller and an estimation scheme [EGA-1],
[AST—2]. A surVey of the n‘l'a'.vin. res'ults for a.daptivé control may be found in [AST-1],
[LAN-3]. In this research a detérministic system is to be controlled by an MRAC;
hence, the ensuing discussion Wili focus’ primﬁrily on the history of direct é.da.ptive
cqnﬁrol.. | ‘ | |
_ Direct adaptive control was first desig‘ned.i‘n 1961 using the index minimization
method [WHi-l]. Improvements on the design rule were made in [DON-1], [WIN-
2] but by 1966 still none of them were gldbaliy stable. In 1966, Butchart and
Shackcloth [BUT-1] first suggested the use of a qua.dratic Lyapunov function which
was immediately applied to MRAC [PAR-I]. Other adaptive algorithms employing
the direct Lyapunov stability approach were developgd by Monopoli for single-
input, single-output (SISO) systems [MOQI], [MO-2]. For multi-input, multi-output
(MIMO) systems satisfying Erzﬁergér’s perfect model following conditions [ERZ-1],
" MRAC a.lgorithnﬁs were also developed in [GII;I], [POR-1], [WIN-1].

‘Aside from the direct Lyapuﬁov meth_od, two other approaches for stability
ax;ilysig ha.ve"'been."a'.ppliéd to MRAC systems: Popov’é Hypersfability Theorem
[POP-1), [POP-2], and the Kalman-Yakubovich Lemma [MO-4]. Landau was



the first to apply Popov’s hyperstability criterion to MRAC design of continuous
systems [POP-1), [POP-2]. The same technique was used by Landau [LAN-1],
[LAN-2], and Bethoux [BET-1], to treat discrete-time MRAC proBIems. |

The Kalman-Yakubovich Lemma has been used for stability analysis in [[ON-
1}, [MO-3], [MOR-1], [MOR-2|, [NAR-1], [NAR-2], [NAR-3], and [SUZ-1]. In
[MO-3], Monopoli uses the lemma in conjunction with an augmented error signal

to eliminate pure differentiators when the reference model is not positive real.

....... LTy

Narendra, Valavani, and Morse [MOR-1], [MOR-2], [NAR-1], [NAR-2], [NAR-
3], design globally stable, asymptotic output tracking algorithms but under the
assumption that the relative degree of the plant transfer function is known. Similar
techniques were developed for discrete SISO systems by Narendra [NAR-3], Ionescu
[ION-1}, and Suzuki [SUZ-1|. A projection theorem was used by Goodwin [GOO-1]
to obtain a class of globally convergent adaptive algorithms for the multi-variable
discrete case providéd that certain a priori knowledge of the plant is available.

The adaptive controllers mentioned so far all require many assumptions on the
unknown plant and the size of the reference model in order to ensuré stability. In
1979, the Command Generator Tracker (CGT) theory was developed by Broussard
[BRO-1], for the model following problem with known parameters. This theory has
since led to sbme major developments in MRAC design.

Using the CGT law and a direct Lyapunov stability approach, Sobel, Kaufman,
and Mabius, [SOB-1}, [SOB-2|, [SOB-3|, designed a direct MRAC algorithm that
forces the error between the outputs of -the plant and model to approach zero.
Although the algorithm requires the same number of outputs and control inputs and
compliance with the condition of strict' positive realness of the closed-loop transfer

function matrix, the reference model need not be the same size as the plant. In

SN,



addition, no a priori knowledge of the plant is necessary. Bar-Kana [BAR-2] relaxed
the condition of strict positive realness to simply positive realness.

Positive realness [AND-1|, [CHE-1], [KAL-2}, [LAN-3], [LI-1], [LJU-1}, [MO-4],

'[NAR-4], [POP-1], [POP-2|, is a strong condition that is very difficult to satisfy
for many systems. Wen and Balas [WEN-1], [WEN-2], [WEN-3], have relaxed the
condition even further by designing a “modified” MRAC scheme that requires only
the condition of “almost” positive realness. The algorithm has also beén generalized
to infinite dimensional systems. Studies on the effects of unmodelled dynamics and
modal truncations on the stability of systems have been addressed in [BAL-2], [IOA-
1], [IOA-2], [IOA-3], [JOH-1}, [ORT-1].

MRAC has been successfully applied to systems with colocated sensors and
actuators. In [[H-1] and [WAN-1] the planar model of the Space Station is controlled
with MRAC in simulation studies. At JPL a tuned feedback controller for an elastic
spacecraft, Galileo, has been designed [KOP-1|, [MAC-1]. The success of the design

' remains to be seen until the spacecraft is launched in 1986.

Direct MRAC is very attractive since it eliminates the need for a priori
knowledge of the system to be controlled. Successful application of this scheme to a
flexible manipulator with noncolocation is highly desirable especially when changes
are encountered in the reference trajectory and the tip mass. In this research a
study is made on applying direct MRAC to a flexible remote manipulator with
noncolocation. MRAC using various reference model tracking objectives is applied
to the flexible manipulator for several sensor configurations. The prominent issue
that is addressed is for what manipulator configuration and tracking objectives can
the almost positive realness condition be satisfied. This condition is extremely

difficult to achieve for a nonminimum phase system.



1.3 Outline

In order to satisfactorily analyze the properties of a flexible remote manipulator
with noncolocation and boundary control it is important to exactly model the
system. A detailed derivation of the model using a distributed parameter approach
is shown in Chapter 2 and features peculiar to the flexible manipulator are pointed
out, Chapter 3 presents MRAC algorithms using the CGT approach. Chapter 4 is
devoted to the application of the controllers derived in Chapter 3 to the manipulator
model described in Chapter 2. Various sensor configurations and reference model
objectives are tried and the results are discussed. A summary and recommendations

for future research are presented in Chapter 5.

1.4 Summary of Results

The results of this study include:

1. Nonadaptive model reference control of the flexible manipulator with noncolo-
cation is possible and gives satisfactory resuits.

2. MRAC of the manipulator witﬁ actuation at the pinned-end and sensing at the
free-end is not possible due to the positive realness condition_.

3. MRAC with two sensors and one actuator results in a bounded error but not
proper tracking by the manipulator tip.

4. MRAC with a reaction wheel and a sensor located at the tip of the manipulator

give excellent tracking results.
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CHAPTER 2

MODEL FORMULATION FOR A ONE LINK FLEXIBLE MANIPULATOR

2.1 Introduction

The main goal in this chapter is to acquire an understanding of the general
structure and fundamental characteristics of flexible manipulator dynamics. First
an exact infinite dimensional representation to evaluate the system analytically
is derived. Then a reduced-order model is obtained by choosing a finite number
of system modes which can be used to test the adaptive control algorithm in

simulation.

2.2 Model Description

The manipulator is represented as a uniform pinned-free beam of length L,
moving in the horizontal plane, as shown in Figure 2.1. Properties of the beam are
as follows: E is the Young’s modulus of elasticity, I is the second moment of area,
A, of the beam cross-section, and p is the density per unit volume of the beam. At
the pinned-end an external torque T may be applied to create an angle 6(t) with
respect to the beam’s neutral axis. A horizontal displacement of any point along

the beam’s neutral axis at a distance z from the pinned end is given by u(t, z).

2.3 Derivation of the Equations of Motion

In order to obtain a partial differential equation (PDE) for the model shown
in Figure 2.1, apply Hamilton’s principle [KAN-1]:
i3

§| (K-V)dt=0 (2.1)



11

b

Torque T(t)

Fig. 2.1 Flexible Manipulator Geometry

where 6 is the Kronecker delta, t; and ¢; are two arbitrary times (t1 <t2), Kis
the kinetic energy, and V is the potential energy.-

The kinetic energy of the beam is

. L . 2 _ ’ . .
2K = pA/ (6_11.) dz ' (2.2)
o \Ot

Neglecting the effects of shear displacement for this model, the strain potential

L ?u\? | ‘ | .
(a—z-,;) dz . (2.3) '

The external torque T contributes a potential energy of:-

energy is expressed as follows:

2V, =EI/
0o

Vo=-T0 _ : (2.4)
Energy dissipation of the system will be added later as a damping term in the modal
~ state space formulation.
Applying the Hamiltonian of (2.1), where V, + V, is the total potential er;ergy

V; the following fourth order horﬁogeneous PDE is obtained:

8% 8%y
EI oz4 +od ot?

S 25
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with the non-homogeneous boundary conditions:

u(t,0)=0 | (2.6)

3%y ‘
.EIEZE 0-—11”_

2
oz z=L :

3
EIZY =0
oz z=L :

The dynamic equations describing the motion of the flexible manipulator are given
by the fourth order PDE (2.5) with its four boundary conditions (2.6). Next these

equations shall be solved in a manner that will result in a modal state space form.

2.4» Solving the Equations of Motion

To solve the equatlons of motlon (2.5), (2.6), apply a method proposed by
Me1rov1tch [MEI—l] whereby a homogeneous PDE with non-homogeneous boundary
conditions is transformed into a non-homogeneous PDE thh homogeneous bound-
ary conditions. | |

Assume a solution of (2.5) in the form: -
u(t,z) = v(t, z) + h(z)T(t) (2.7)
This gives boundary conditions for v(t, z) as

o(t,0) = —h(O)T() o DY)

=) —.Ezd;’;(f) 1)

z=0 z=

8%v(t, z)

EI ozx?
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2 2
grovt.z) - _g1¥h(z) T(t)
oz? |, o dz? |, _ .
3 3
EIa v(t, z) _ —EId h(z) T(t)
oz |._p dr? |,_,

To render the boundary conditions for the variable v(t, z) homogeneous, h(z) must

satisfy the following equations:

k(0)=0
2
pr&dadl o, (2.9)
dz z=0 '
2 _
dz? | _,
3
dz® z=L
Equation (2.9) may be written as:
d*h(z) 1 (z? 22
—‘h—z-——ﬁ(-ﬁ—-f-l-l) (2.10)

In view of (2.9), (2.10) has the solution

1 z4 z3 2 ]
k=) = 27 (12L2' 3t ) o @)
where h(z) is zero at z = 0.

The transformed problem consists of the nbnhombgeneoﬁs PDE:

dtv(t, ) v(t,z) _ d4h(z) ..\ d?T(t)
EI F) + pA 362 = EI_d:cTT(t) pAh(z)T (212)
and the homogeneous boundary conditions: -
v(t,0) = 0 (2.13)
d%v(t, z) |
Bl |, ="

lz=0
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2

azz z=L

3 .
EIa v(t, z) _o

az® |,_.

" In order to solve (2.12), (2.13) by using modal expansion, first use modal
analysis to obtain a solution to the eigenvalue problem for the flexible modes that

consists of the differential equation:
d¢, -
EI—Z—;}Q —w2pAda(z) =0, n=1,...,00 (2.14)

with the boundary conditions:

 $a(0)=0- (2.15)

L d?¢n(z) _
E1 dz? |, , =0 o (219)
d*n(2) —
BI=g5™| =0 (2.17)
Boalz)| |
EI=g5=| =0 (2.18)

where ¢, represents the infinite set of natural, orthogonal mode shapes of the system
with their associated natural frequency, wy.

The general solution of equation (2.14) is:
#n(z) = Cisink,z + Cysinhk,z + C3coskpz + Cqcoshkp,z (2.19)

When dealing with end conditions it is useful to write (2.19) in the following

equivalent form:

#n(z) = Acosk,z + coshknz) + B(cosk,z — cosh k,z)+
- (2.20)
C(sinknz + sinh k,z) + D(sink,z — sinh k, z)
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From (2.15) and (2.16) obtain A = 0 and B = 0, respectively. The remaining linear
system obtained from (2.17) and (2.18) is:

[—smk,,L+smhk,,L -—smk,.L—smhk,,L] [C] 1 [0] (2.21)

—cosk,L +coshk,L. —cosk,L —coshk,L | |D ~EI|o
Solving for the coefficients two relationships are obtained:

g sink,L +sinhk, L
D —sink,L +sinhk,L
¢

(2.22)

cosk,L + coshk,L
D —cosk,L +coshk,L

Therefore, the frequency equation is given by

tankn,L = tanh k,L (2.23)
p

where the eigenvalues obtained by solving (2.23) are approximately:

kp, ~ ——34—, n=12,3,...,00 (2.24)

From (2.14), (2.20), (2.24), the infinite set of natural, orthogonal modes ¢.(z) and

the associated natural frequencies w, are:

én(z) = [(1 4+ 0p)sink,z + (0, — 1) sinh k,z)], n=1,2,3,...,00 (2.25)
C
where. Op = D
k.\* |EI
Wn = (_IT) oA’ n=12,3,...,00 (2.26)

Normalize the eigenfunctions (2.25) so that the orthogonal modes satisfy the

relation:

L
pA/o én(z)Pdm(z)dz = bmn; m,n=12,3,...,00 (2.27)
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After solving (2.27) for the normalization constant the flexible normalized eigen-

functions become [BIS-1]:

1

$n(z) = VPAL

Equations (2.26), (2.28) are the solution to the eigenvalue problem for the

[(1+ on)sinkz + (0, — 1) sinh kz] (2.28)

flexible modes. A pinned-free beam has one rigid body mode, rotation about the
hinge, that must also be taken into account. Assuming no gravitational force field,
a rigid body displacement added to the motion does not affect the potential energy;

hence, for a rigid body mode, the eigenvalue equation becomes [MEI-1J:

d4¢0($)
EI prranie 0 (2.29)
.
which has the general solution:
¢o(2) =D+ Dz + 1):‘_’,1:2 + D4$3 (2.30)

To satisfy the homogeneous boundary conditions:

¢0(0) =0 (2.31)

d2¢o (:z:)

dz?

d2¢0 (:z:)

2
dz =L

d3¢o(z)

3
dz =L

EI

ErI

EI

the general solution (2.30) becomes:

¢o($) = Dgx (2.32)
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Upon normalizing (2.32), the rigid body eigenfunction may be written as:

3 .
bo(2) = z\/ 75 (2.33)
with the corresponding natural frequency:
wo =0 (2.34)

Now that the natural eigenfunctions of the system have been obtained, use modal

expansion to assume a solution of (2.12) in the form:

v(t,z) = Z &n(z)na(t) (2.35)

where 7, (t) are time-dependent generalized coordinates. Introducing (2.35) into

(2.12) the following is obtained:

3 [ﬂn(t) d“d». (=) , Z;(t) pA LWE
n=0 (2.36)

_d*h(z) d*T(t)
T r) - 2o )

Since ¢,(z) and w, satisfy (2.14) and (2.29), (2.36) reduces to:

g[”’z;’;;“ @) Gatale) = -2 D7) - LA ET0

Equation (2.37) contains all the generalized coordinates n,(t) so, in effect, it is a
coupled equation. To uncouple it multiply both sides of the equation by ¢mn(z)
and integrate with respect to z over its domain. If this is done and in addition the

notation

L
H, = /0 én(2)h(z)dz (2.38)
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P d*h(z
= [ a0 (2.39)
is introduced, an infinite set of uncoupled ordinary differential equations is obtained:
d*na(t) . d*T (t)
T + wpMn (t) = —HnT(t) - Hn——dtT (2.40)

Equation (2.40) is simply the modal representation of the transformed non-
homogeneous PDE (2.12).
In order to implement an adaptive control scheme on this system, a state

space representation is desired in terms of control torque T'(t) only — not T'(¢) and

d2T(¢

~7— as in (2.40). This can be done by performing the following transformation.

Assuming zero initial conditions, take the Laplace transform of (2.40):
L1(2.40)] = 5250 (s) + w2iin(s) = —H:T(s) — s2HnT(s) (2.41)

Solve for T'(s) to obtain: | .
(s? + w2)iin(s)

T(s) = = T Hoe? (2.42)
Define 2,(s) as
2n(s) = ——:—"-(-S}I—"—s; (2.43)
then
r) = L0 4 2 (2.44)
mat) = ~E, 2220 _ gea (2.45)

Solve for dz—:fgm in (2.44) and substitute into (2.45) to obtain:

Mn(t) = (Haw? — H3)za(t) — HaT (2)  (246)
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A solution to the original PDE (2.5) may now be written in terms of the
generalized coordinates 7,(t) (2.46) and the eigenfunctions of the system ¢, (z)
(2.28), (2.33). In (2.7), a solution of (2.5) was assumed in the form

u(t,z) = v(t, z) + h(z)T(t) - (2.47)

- From (2.7), (2.11), and (2.46) it follows that

u(t,z) = E n (£)$n(2) + h{2)T'(2)

n=0

| (2.48)
= Z(Hnw ) zn(t)én(z) — Z Hun(2)T(t) + h(z)T(t)
The expanglon of h(z) is Cozo Hadn (z):—t;lerefore,
. i H,éa(2z)T(t) + h(z)T(t) =0 (249
leaving | "
u(t,z) = ni:)(H,,wﬁ - H;);n(t)¢n(z) (2.50)

For the expansion (2.48), both strong and weak solutions u give Euni_form and
pointwise convergence for u and u/. If u" is continuous, -then the expansion
>0 Mn(t)$a(z) + h(z)T(t) also converges uniformly and pointwise [STR-1]. Al-
though the difference between the weak and strong formulation is mentioned, it is
important to note that both formulations ultimately result in the same dynamic
equations. | |

Since (2.50) is a solution of u(t,z) in terms of z,(t), equation (2.44) is an exact
representation of u(t,z). In a flexible structure such as the manipulator, structural
damping of about .5 percent is inherent. This may be heuristically represe’nf;ed by
adding the damping term 2gwn£z7"t@- to (2.44) as

d%z,(t)
dt?

,.()

T(t) = + 2¢wn w2z () (2.51)
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where ¢ is the damping coefficient.
The state-space form of (2.51) is then:

dz(t)

= Az(t) + BT(t)

with z(t), A, and B as follows:

2(t) = dt

—wd —2wo
0 1
A= —'W? —2;&)1

OO

0
1]
Output y(t).i's obtained from (2.7) and (2.50) as:

y(t) = v(t, L) + A(L)T()

= E(Hnw: - H,:)va(t)¢n(.L)

n=0

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)



The term H, may be expanded with the eigenfunction ¢,(z) as

Hy= <d4h(’),¢n( )>

d3h(z) L d2h(z) dgn(z)|" | dh(z) d?¢n(z)|"
¢"() dz? dz |, dz dz? |,
_h(z)———daj;f) RO 2y

From the boundary conditions for h(z), (2.9), obtain

H: = d¢n(0) 2(h(:c ¢n(z)>

d¢n(0) S,

Hence, the oufput y(t) may be éxpressed as

d¢n (0)

y(t) = ¢,.(L) n(t)

In state-space form,

y(t) = Cz(t) + DT(t)

with

=[‘“M¢() adylly() ~4404(1) a0, (1)

ﬂﬁ'—‘%w () —aM%(L)]

D=0

where a is the weighting factor of the position versus rate measurement.

21

(2.57)

(2.58)

o (2.59)'

(2.60)

- (2.61)
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An equivalent realization for the B and C matrices given in (2.55) and (2.61)

is: N

0
dgo(0)

dz

) 0

. d 1 0 . oo - E .

B= z . o (2.62)

0
.| d¢e(0)
b z -
C =[¢o(L) ado(L) ¢1(L) a¢1.(L')__ T $oo (L) _' adoo(L)] s ‘(2763)',
For the simulation studies, the flexible manipulator system matrices will be repre-

sented as in (2.54), (2.62), and'(2.63).

2.5 Characteristics of the Model

It is important to recognize a few f\i;dé,lﬁeht;.i f:haractei:iétics of th; ﬁeii};l;
manipulator model that have just been derived. Look at thevmode shapes of the
binnéd—free beam in Figures 2.2 -‘2.7 as gi\;én by equations (2.28) and (2.33). Two
important observations can be made: )

1. ‘The slopes of the mode shapes at the pinned end 1%@- become larger for
increasing modal frequencieé. ==

2. The signs of the modal deflection ¢,(L) alternate from one mode to the next
due to the nonminimum phase property of the system.

.~ These ;:ha;fa;ﬁte;isti;s will be ;hown to ha.§e a‘:sub‘svtantia.l effect ;)n the system’s

performance under adaptive control. - -
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CHAPTER 3

MODEL REFERENCE ADAPTIVE CONTROL

3.1 Introduction

In this chapter direct model reference controllers are developed for the flexible
manipulator. The Command Generator Tracker (CGT) theory, the basis of the
controllers, is introduced first. A nonadaptive model reference controller is then
designed using CGT theory and explicit knowledge of the system' plant. Positive
realness, a condition that must hold for MRAC of a system, is defined before finally

developing adaptive control and “modified” adaptive control schemes.

3.2 Command Generator Tracker Theory

The plant under consideration was developed in Chapter 2 as

dz(t)
dt

= Az(t) + BT(2)

y(t) = Cz(t) + DT(t)

Taking a finite-dimensional plant, it is desired to find a finite dimensional controller
so that the output y(t) tracks a desirable output trajectory y,,(t). This output
trajectory is generated by a finite dimensional reference model

dzn(t)
Znl) = Amzm(t) + BTom(t) (3.1)
ym(t) = szm(t); | zm(o) = Zmoy t>0

with the only requirement that the model output is of the same dimension as the

plant output. The order of the model may be much smaller than the order of
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the plant which makes this method very attractive-as far as implementation is
- concerned.

Since the dimensions of z and 2, are not the same, the error sxgnal must be
created via the CGT approach as developed in [BAL—3] [WEN—l] We assume there
exlsts an “ideal” intermediate system: - ST e

L0 _ 4@+ BT (5.2
v'(t)=Cz'(t); 2*(0)==z3, t>0

Provided that the state space dimension of the reference model is not bigger than
the dimension of a completely controllable and completely observable subsystem of
the plant under piecewise constant T, the followmg exact model matching CGT

- condition is usually satisfied [WEN'll " o
Fol-l wllEel e
y*(t) ;ym(t) vizo - '(3»;4«)

nvhere Sii, S12, S21, Sa2 are bounded linear operators. This condition is not always
easily verified. A sufficient but: not necessary condition for CGT has been proposed
in [BAL-3] and is described below.

Assume that z (t) and T*(t) are linearly related to the model state vector

Zm(t) and comma.nd vector Ty, (t) as in (3.3):
2*(8) = Suzm(t) + SaTm(t) . (35)

'T:‘(t)=52fzm(t) +:“'S'2v21?wm(t)_»";‘ D
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Since Tya(t) is constant, differentiation of (3.5) with respect to t leads to: .
dz*(t) s dz, ()
d "M dt |

= (ASy1 + BS21)2m(t) + (ASy2 + BS23)Tm(t). ('3-7')
=A (Snz,,,(t) + Slng(t)) + B (Sglzm(f) + Sgng(t))

= Az*(t) + BT*(t)

‘and
2‘(0) = Snzm(O) + S;sz(t)
y'(t)=C2(t)
= CSuZm(t) + C’SmT,,.(t)
' (3.8)
= Cm2zm(t)
= ym(t)
Equations (3.7) and (3.8) may be rewritten as
A B|(Su Si2|_}Su 0| [Am Bm (3.9)
C 0|82 Sa 0 Ij|Cm O -

If (3.9) is satisfied then the CGT condition (3.3) holds. In order to verify (3.9), the

following manipulation is made: Let

A B]'[0n Q] _[A™(I-B(CA™'B)~'CA~Y) A-'B(CA-'B)~!
C 0| |0y Ny (cA~'B)"CcA? —-(cA~1B)!
. (3.10)

Then (3.9) can be written as

Su Siz] _[0u 0][Su S$i2][Am Bm 0 0
[521 SzzJ—[ 0 0|lSy S2ilo olT|c, o (3.11)
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Equation (3.11) is of the form S = F(S); hence, if a fixed point of F exists, then
(3.3) is satisfied.

| However, it has been demonstrated that in some cases the CGT condition
(3.3) is satisfied even though it is impossible to satisfy the sufficient coﬁdition (3.9).
A heuristic justification for this is as follows [WEN-1]: A stabilizable, 'detectabie_

system can be decomposed into
da(t) _ B |
e [0 A ] (t)+[ l]T(t) (312)

y(t) =[C1 C:lq(t)

where ¢(t) = P~!z(t) is a linear coordinate transform, (A;, B1,C;) is a finite-
dimensional minimal sjstem and A, generates an exponentially stable s&stem.'

: AsSuming that the dimension of A, is the same as that.of A,,,, A,, has distinct
_eigenvalues, and T,,(t) is a constant input, chooée T(t) = Gq1 (t) +v. The constant
. gaih G is chosen such that the eigenvalues of (A1 + B;G) are exactly the sa.rﬁe as

the eigenvalues of A,,. Another coordinate change gives
dz . [A; O P1 .
dt [ 0 Az] (t) * [ﬁz : - (3'13)'
v(t) =[m ]z()

where the éigenvalu_es of A; and (A;+B,G) are the same and likewise the eigenvalues
of A; and A, are the same. If z;(0) is chosen to be —A; vlﬂgu then, z, will be

—Ait and a constant

—Az'Bsv for all t > 0. Y is thus a linear combination of e
where A; represents the eigenvalues of A,,. With proper choice of T'(t) and z;(0),
the CGT condition can be satisfied provided that y,, does not contain any modes

that do not appear in y. In [WEN-1| additional strategies are developed for the
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cases when y,, does contain modes not present in y and when the reference model is
chosen higher than the largest controllable-observable subsystem of the plant. For
an example of how to verify the CGT condition using the technique described in

(3.12)-(3.13) see Appendix A.

3.3 Nonadaptive Model Reference Control

Before developing thé direct adaptive control law which uses no a priori
knowledge of the plant parameters, the nonadaptive control law is investigated.
Since the dimensionality mismatch between the plant and the reference model has
been accounted for by the intermediate system introduced in (3.2), the following

error system can now be created:

e(t) = z(t) — z*(t)

de(t)

“pt = Ac(t) + BT(t) - BT*(t); e(0)=z2-25, t>0 (3.14)

ey(t) = y(t) —y*(t) = Ce(t)

~ The objective of model reference control based on the error system (3.14) is to find
a bounded control signal that drives e,(t) to zero asymptotically and keeps e(t)
uniformly bounded. A derivation of fhe control law follows.

Assume (4, B,C) are known in (2.52), (2.60), and it is possible to find a static
output feedback gain G such that (A + BGC) is strictly stable. Find Sz; and S, in
(3.3) by solving for the CGT condition. With these parameters the model following

nonadaptive control law may be constructed:

T(t) =G (y(t) - ym(t)) + Szlzm(t) + SzzT,'n(t) S (3.15)
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Substituting (3.15) into (3.14) and applying the CGT conditions (3.3) and (3.4),

the following error equation is obtained:

2e8) — Ac(t) + BG (4(t) ~ ym(t)) + B (Ssa2m(t) + SnaTon(t) = T*(2) (3.16)

= (A + BGC)e(t)

Since (A + BGC) is strictly stable by assumption, e(t) — 0 as ¢ — oo and the
control objective is satisfied. '

Explicit knowledge of the plant is required to actually compute G, S2;, and
S22 in (3.15). Since the plant is generally not known, an adaptive control law may
be derived based on (3.15) after the concept of positive realness is defined. In the
nonadaptive control law (3.15) it is sufficient for (A + BGC) to be just output
stabilizable; but, in adaptive control the positive' realness condition must also be

satisfied.

3.4 Positive Realness
N L

The system (A, B,C,D), AeR"*", BeR"*™, CeR™*", DeR™*™ is “strictly
positive real” if there exists PeR"*", positive definite, WeR"*™, QeR™*" and

¢ > 0 sufficiently small such that [AND-1]:
ATP+ PA=—(eI +Q7Q) _ (3.17)
BTP=Cc+WTQ

(D + DT)
2

wTw =

If (3.17) is replaced by
ATP+ PA=-Q7Q
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then (A, B,C, D) is “positive real.”
This definition is equivalent to the frequency condition of the Kalman-
Yakubovich Lemma [LI-1}):

Re[WT(C(jwI — A)"'B+ D)W| >0, VWeC™, VweR (3.18)

~ For the adaptive control law presented in the next section, it is required that the
closed-loop system be positive real. Hence, in (3.18) A is replaced by A. = A+ BGC.
To actually verify positive realness of a system, (3.18) says that the Nyquist plot
b_f (Ac,B, C,0) must be only in the closed right half plane. A necessary condition

that must also be satisfied for positive realness is that

"CB>0 (3.19)

3.5 Model Reference Adaptive Control

The objective of model reference adaptive control is to find a bounded control
signal that drives e, (t) as in (3.14) to zero asymptotically and keeps e(t) uniformly
bounded. This objective is similar to that of nonadaptive control but now no a
priori knowledge of the plant parameters is required.

Assuming that (A + BGC) is stable and (A, B,C,0) is strictly positive real,

an adaptive version of (3.15) may be constructed [SOB-2]:
T(t) = G(¢) (y(t) — ym(t)) + S21() 2m (t) + S22(t) T () (3-20)

~where G(t), S21(t), S22(t) are the adaptive estimates of G, S21, S22 respectively.
Define
AG(t)=G(t) -G (3.21)
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Lit)=8() -5
w(t) = [2a()T Tm(®)T]”
S(t) = [Sa1(t) Sa22(t)]

S§=[Sn Sa]

From (3.14) and (3.20) the following closed-loop dynamic equation is obtained:

1‘2(:_) — (4 + BGC)e(t) + BAG(t)e, (t) + BL(t)u(t) (3.22)

ey(t) = Ce(t)

Applying Lyapunov’s Direct Method to select an adaptive strategy that will stabilize
(3.22) yields [WEN-1]: ’

dG(t) _ dAG(t) _ |
= = —T1e,(t)el (2) (3.23)

ds(t) _ dL(t) _
=== = e, (10T (1)

where I';, I'; are constant positive definite matrices of dimension m x m. LaSalle’s
Theorem [LAS-1] is then used to verify that e — 0 and ¢y, — 0 as t — oo. Since
G(t), S21(t), S22(t) are uniformly bounded the control objective is satisfied.

* A modification of the adaptive algorithm (3.23) is made by Wen [WEN-1] by
adding an extra term to generalize the algorithm to infinite dimensions and to add

robustness:
dG(t) _ dAG(t)
dt ~—  dt

dS(t) _ dL(t)
dt —  dt

= —nG(t) — T1ey(t)ey (¢) (3.24)

= —725(t) — Tze, () w7 (2)
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However, this modification weakens the global asymptotic stability to Lagrange
stability. The convergence rate is glbbally exponential with rate A but strict positive
realness of (4., B, C,0) is still a re-quirerﬁent.

In [BAR-1] the control law (3.20) is modified in order to relax the condition on
(A¢, B,C,0) from being strictly positive real to positive real. The control (3.20) is

T(t) = G(t) (y(t) — ym(t)) + S21(8)2m(t) + S22() T (t) + K (¥(t) — ym(2)) (3.25)

where K is a positive definite constant matrix. If the positive realness and CGT
conditions are satisfied then asymptotic output stabilizability is acheived.
Adaptive control laws (3.20), (3.23), (3.24), and (3.25) are well suited for
~ systems that are static output feedback stabilizable and positive real. However,
these restrictions rule out the possibility of adaptively controlling many interesting
systems that are “almost” feedback positive real. “Almost” positive real means
that there exists an output feedback gain G that is -d-stabilizing with d > 0 for
(A,B,C, 0) where -d-stabilizing meaﬁs the Nyquist plot is in the left half plane
a very small distancq d from the imaginary axis. This distance “d” is called the
“positive realness index” (PRI). In {WEN-1] a “modified” adaptive controller is

derived to allow systems of this type to be successfully controlled (see Figure 3.1):

T(t) = G(t)ev(t) + S(t)w(t). - hev(t) (3.26)
where |
d?i_ft) = —mG(t) - T1ey(t)ey (t) — ET1G(t)e, (t)e] (2) (3.27)
ds(t)

= = ~72S(t) — T2e, (w7 (1
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- The adaptive contfol laws (3.26), (3.27) are based on the assumption that the
following statements are true: |
1. There exists GeR™*™ that is -d-stabilizing, d > 0.
2. CGT condition (3.3) holds.

3. The reference model is stable.

When these conditions are satisfied a robust controller with Lagrange stability is
obtained. Parameters v;, 72, €, and h are constants which must be chosen to satisfy

the following .condition's: Given PRI sufficiently small,

h= (3.28)

€=

-1
dg < 0.25 (f-—c—)

2 > ed||T2|| M,

QI Y

c>1

where g is the upperbound on the feedback gain G such that .(A + BGC) is
exponentially stable and M,, is the uniform upperbound of w. Positive'deﬁnite
parameters I'y, I'; affect the ultimate bound of the norm e. The larger 'y, I'; are
chosen, the faster the rate of convergence will be between the.outputé y and y,,.
For experimentation purposes in this project, an additional MRAC controller
is derived based on (3.23) and (3.26) for a system with two sensors and one control
actuator. The output of the sensor that satisfies both the positive realness and CGT
conditions goes to zero asyﬁxptotically. For the sensor that satisfies oﬁly the CGT
condition, the output stays bounded. The derivation is presented in Appendix B

and results in the following MRAC law:
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T(t) = G(2) (¥(t) — ym(t)) + S21(t)2m (8) + S22() T () — b (y2(t) — ym, () (3.29)

dGy(t) _ dAG(2)

o o = —'rleyz (t)ea (t)
dG,(t) _ dAG.,(t) — T

2 - o = —Pzey, (t)eyi (t)

0 < 0 - 2070

In the simulation results that follow the control algorithms presented in this
chapter are implemented. The choice of the controller used in each case depends

on which positive realness condition is satisfied by the system.



38

CHAPTER 4

SIMULATION RESULTS AND DISCUSSION

4.1 Introduction

A state-space represenfation for a flexible beam with actuation at the pinned-
end and sensing at the free—end was formulated in Chapter 2. In this chapter, five
different simulation cases of model reference control with the flexible manipulator
are presented. Using a fou‘rth order model of the system with a desired reference
model, nonadaptive (case 1) and adaptive (case 2) model reference controllers are
designed and simulated. In case 2 the MRAC scheme is not capable of controlling
the manipulator. Until recently all adaptive control laws have been designed on the
basis that the system being controlled is minimum phase. In [MOR-3] an adaptive
control law has been stated for a first order, non-minvimum phase system tﬁat has
a relative degree of one in the transfer function. Although this algorithm may be a

' step in the right direction, the result is a highly complex, nonlinear confroller.

Due to the inability to adaptively control the noncolocated, noﬁminimuni phase
manipulator system that does not satisfy positive realness, two additional model
configurations are constructed and tested with MRAC. Case three has an actuator
at the pinned-end controlling two sensors that are located respectively at the tip

 and one meter from the pin. The next two cases have a torque producing reaction
wheel located close to the sensor at the tip so that positive realness is satisfied.
Case 4 has the reaction wheel perfectly colocated with the sensor and case 5 has
the reaction wheel located one meter from the sensor.

After stating the pai'ameters chosen for the manipulator model, simulation

results are presented and discussed for each case described above. All simulations
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are performed on an IBM-PC-AT computer with PC-MATLAB [PCM-1], a software
package designed by the Mathworks, Inc.

4.2 Plant and Reference Model Parameters

In order to simulate the manipulator model and implement the control algo-
rithms, the parameters as shown in Table 4.1 were chosen. These values are con-
sistent with experimental data that has been obtained from a pinned-free, flexible

beam experiment presented in [SCH-1].

TABLE 4.1
Model Parameters

~ Parameter Value
L=arm length 40m
A=x-sectional area - 0.0016 m?
E=modulus of elasticity . 7.311 x 101°N — m?
I=moment of inertia 1.0 x 10~ 8 m* |
p =density/unit volume 2699.0 kg/m?3
¢ =structural damping | 0.5%
a = weighting factor of .5 (case 1)
position vs. rate 0.05 (cases 2,3,4,5)
measurement :

- Now that E, I, p, A, and L have been chosen, the natural frequencies of the

manipulator system may be calculated from (2.26) (shown below for convenience):

(k.\? [EI
wn = (-f) oA’ n=0,1,2,...,00

In Table 4.1 the eigenvalues, k,, and natural frequencies w, in rad/sec and f, in

Hz are listed.
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TABLE 4. 1T
Natural Frequencies

mode # (n) kn wp (rad/sec) Ja (Hz)
0 0 0 0
1 3.927 12.542 1.996
2 7.069 40.637 6.467
3 10.210 . 84.773 13.492
4 13.352 144.976 23.074
5 16.493 221.210 35.207

Using the parameter values in Table 4.1 and Table 4.1I the sixth order state

space model matrices may be obtained based on equations (2.52)-(2.55), (2.60),

(2.62), and (2.63):

where

(==
O =

he

dz(t)
—d-t— = Ag(t) + BT(t)
y(t) = Cz(t)
20
(1) = | B0
22(t)
-d:, t |
0 1
—-157.3 -—-.1254
0
—-1651.4

1

—.4064

B=[0 366543 0 157.1943 0 299.9147)7

(4.1)

(4.2)

(4.3)
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C=[.866 0.866 —1.3759 o(—1.3759) 1.4165 al.4165] (4.4)

This model is used in cases 1 and 2. In case 3 the same system is used but

with an additional row in C' to represent the sensor located at one meter from the

pin, ¢(1):

C=[.866 «.866 —1.3759 a(—1.3759) 1.4165 a1.4165] (4.5)

2165 «.2165 .7778 a. 7778 9854 a.9854

Cases 4 and 5 have the actuator placed at the tip and one meter from the tip,

respectively. Thus, the systems they use are (4.1) and (4.4) with the B matrices:
case4: B =[0 366543 0 —228.7695 O 423.6336]7 (4.6

case5: B =[0 366543 0 —201.5686 0 202.6958]7  (4.7)

Although the ultimate interest is in the posstion of the manipulator tip, velocity
must also be included in the output matrix C in order to obtain output feedback
stabilizability. This is a requirement for both the nonadaptive and adaptive
controllers. By choosing parameter «, the weighting factor of position versus
rate measurement (Table 4.I), very small, the majority of the torque controller
is devoted to satisfying the position requirement. Parameter ¢, the percent of
structural damping present in the manipulator, has been chosen to represent the
amount of damping typically found in flexible space structures.

To implement model reference control on the manipﬁlator model created with
the parameters in Tables 4.1 and 4.II, an appropria.te reference model must also
be constructed. For all five simulation cases, the desired trajectory that the

manipulator tip is to track is sin 5¢. Hence, the reference model is chosen as follows: |

dzm(t)
dt

= Amzm(t) - (4.8)
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where
=[5l e[f
Am = [—25 cl)] tm =0
Ym(t) = Cmzm(t) (4.9)
where
Cm=[1 a]

The output y,, is equal to sin 5t + 5acos 5t where 5acos 5t is included to control
the velocity component in the plant output y(t).

For case 3 there are two outguts due to the two sensors. A requirement on the
reference model is that it must have the same number of outputs as plant outputs.
If the manipulator tip is commanded to track sin 5t it is reasonable for the sensor
at one meter from the pinned-end to track a motion with a smaller magnitude
and a phase shift of 90°. In this simulation the second sensor is commanded to
track a trajectory of .5cos 5¢. This may be represented by combining (48) with the

following for case 3:

Ym(t) = Cnzm() (4.10)

1 0
C"“[o 0.1]

.. 4.3 Case 1: Nonadaptive, Noncolocated, 6th Order System

where

Before attempting model reference adaptive control, design and test the non-
adaptive controller (3.15) presented in Section 3.3 for the sixth order plant (4.1),
(4.2), (4.3), (4.4):

T(t) = G(y(t) — ym(t)) + S212m(t) + S22Twm(2)
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Gain G is chosen so that output feedback stabilizability of the plant is obtained.
Matrices S2; a.n_d Sq, are determined by satisfying the CGT condition described in
Section 3.2. A detailed derivation of S3; and S;; (see Appendix A) results in the

following nonadaptive model reference controller:
T(t) = —.001 (y(t) — ym(t)) +[—.3791 —.0003] 2y (t) (4.11)

Since the CGT and output feedback stabilizability conditions are satisfied it
is expected that the controller will perform well in simulation. Figure 4.3 shows
that the tip position of the manipulator tracks the desired trajectory of sin 5¢ with
a small error of .1 within 3.5 seconds. The implications of these excellent results is
that a higher order system can be successfully controlled with nonadaptive model
reference control as long as CGT and output feedback stabilizability conditions are
satisfied.

Although successful control has been demonstrated for this case, the issue of
robustness is still of concern. In (4.11) the static output feedback gain, G, is chosen
very small, -.001, in order to achieve output feedback stabilizability. This resultsin a
small stability margin and hence little robustness. The tracking results for this case
are comparable to those shown in [SCH-1] for a similar manipulator where dynamic
| feedback is used to achieve a very robust system. It is highly probable that dynamic
output feeciba,ck used with nonadaptive model reference control would result in a
more robust system for this case. However, a limiting factor will be the computation
of the CGT matching conditions.

There are several drawbacks to nonadaptive control that should be mentioned.
The most significant drawback is that in nearly all control situations, exact

knowledge of the plant is not available. To design this nonadaptive controller,
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exact knowledge of the plant is necessary. If it is desired that the reference Qignal
be tracked well in less than 3.5 secoﬂds, nonadaptive control ﬁu no means of tuning
the gain parameters for a quicker response in this case. Any disturbance or change
in the reference model would require a change in the S matrix wilich is not possible
with this nonadaptive contfoller. In addition, as can be seen by looking at Appendix
A, the calculations required to determine fhe S gains are very tedious — especially -

when a large order plant is used.
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Fig. 4.1 Case 1. Plant Output, YP, and Model Output, YM
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Fig. 4.4 Case 1: Velocity of Ma.nipplator Tip,.PVEL,}nd Model 2.5 cos 5t, MPOS

4.4 Case 2: Adaptive, Noncolocated, 6th Order System

This case is a test of the primary objective in 6ur study: to ‘adaptively control
the tracking of a flexible ﬁ:a.nipulator tip that has a noncolocated actuator located
at the opposite end of the arm. Su;:g:gissfu) MRAC is‘ biéhly -de_sira}ble for this
flexible manipulator because quicker tracking of the reference signal a.nd robustness
to disturbances and changes in the reference model would be poasibl;a. As noted
in Section 3.5 there are three major requirements that must be satisfed before
MRAC will- work. Not only must the plant satisfy the ‘CGT -;cpndition and be
output feedback stabilizable, but the quadruplet (A + BCC, B,‘C,O) must be at
least “almost” positive real. |

It is possible for the plant (4.1), (4. 2) (4 3) (4. 4) to satxsfy the CGT condition
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and output feedback stabilizability as shown in the previous section. The question
that remains is can “almost” positive realness be obtained at the same time? A
great deal of time has been spent trying to simultaneously satisfy these conditions
for this system. The necessary condition CB > 0 is satisfied and “almost” positive
realness of (A + BGC, B, C,0) is also»sa.tisﬁed but not for an output feedback gain
G that stabilizes the system. By looking at the B and C plant matrices (4.3), (4.4),

a key poinf can be made:
B=[0 36.6543 0 157.1043 0 299.9147)7

C =[.866 0.866 —1.3759 o(—1.3759) 1.4165 .4165]

The pinned-free flexible beam with boundary control and end-point sensing has a.h
eigenfunction that is composed of sines and Ihyperbolic sines (2.28). As n goeé from
1 — oo, the C paraméters, én(L), alternate in sign like a sine series. Negative
output feedback therefore has an opposing effect on the system that causes some |
poles to cross over the imaginary axis into the right half plane causing instébility.
Only a very small G will stabilize the system by placing the poles very close to the
imaginary axis in the leff half plane. Unfortunately, for G’s of this small magrﬁtude,
“almost” positive realness of the system is impossible. |

Although it is not possible to satisfy the three conditions required for MRAC,
controllers (3.25) and (3.26) were designed and implemented in simulation. Many
combinations of controller parameters were tested and as might be expected, the
system went unstable.

The results obtéined for this case, albeit not surp?ising, are disappointing. It
is conceivable that if the manipulator were stiffer than the one used in this project,

then MRAC of simply the rigid body mode would be possible. Perhaps an upper



48

bound on the flexibility possible for successful MRAC of a noncolocated system like
this one can be found in future research.

In the next three sections different sensor-actuator configurations for the
flexible manipulator are tested with MRAC in an attempt to successfully attain

our tracking objective.

4.5 Case 3: Adaptive, Two Sensor/One Actuator, 6th Order System

The motivation for this case is that the addition of one sensor to the manip-
ulator system of Section 4.4 may allow MRAC to be successful. A sensor located
at one meter from the actuator at the pinned-end of the arm results in the model
(4.1), (4.2), (4.3), (4.5). Define C; and C; to be the first and second rows of C
in (4.5), respectively, where each row of C represents a different sensor. The sys-
tem (A, B,C;,0) with the sensor at the tip is called “system 1” and the system
(A, B,C5,0) with the sensor near the pin is “system 2.” The objective for this setup
is for the plant to track the ségnals produced by the reference model (4.8) and (4.10).
System 1 is to follow sin 5¢ and system 2 is to follow .5 cos 5t.

In Appendix B an adaptive control law similar to (3.23) and (3.26) is derived
that allows for two sensors and one actuator. The algorithm is derived keeping
in mind that both systems satisfy the CGT condition but only system 2 is
simultaneously output feedback stabilizable and positive real. Stated below is the

control law derived in Appendix B:
T(t) = G(t)ey(t) + S(t)w(t) — h(v2(t) — ym,(?)) (4.12)

where

G(t) =[G:1(t) Ga(t)]
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e, (t) = [yl(t) —~ Ym, (t)] (4.13)

v2(t) — Ym, (t)

.dcdlt(t) _ dAjtl(t) = —T1ey, (t)el, (¢)
d(Z(t) _ dAg:(f) = “Tien (e, )
050

Since s&stem 1 is not positive real but system 2 is, the algorithm only guarantees
that |le,, || is bounded and lley, || = O. Simulation results of control law (4.12) with
plant (4.1)., (4.2), (4.3), (4.5) and reference model (4.8), (4.10), are presented in
figures 4.5 - 4.8. The controller parameters were chosenv as Iy =T, = 100 and
h = 20. Comparing the plots on figure 4.5, it can be seen that the tip position
tracking is at least bounded.but it still does not track the desired trajectory of |
sin 5¢. The positic;n of the manipulator at sensor 2 tracks the trajectory of .5 cos 5t
extremely well (Figure 4.6). This is because system 2 satisfies the positive realness
condition.

Again, as in Section 4.4, the limiting factor in achieving the desired tracking
with the manipulator tip, is the inability to satisfy the positive realness condition.
Various controller parameters and reference models We:é again implemented in
simulation but without much success. If it were somehow possible to slow down
the convergence of ey, to zero (see Figure 4.8) , it may be possible to achieve better
tracking results with system 1. The reason for this is made clear by looking at the
control law (4.13). When e,, reaches zero, no more adaptation takes place in the
controller since d—c%@, d—?"—t@l, and %ﬂ equalqzero.

The last two sections propose different sensor-actuator configurations that

satisfy 'the positive-realness condition.
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4.6 Case 4: Adaptive, Colocated, 6th Order System
with Reaction Wheel

As demonstrated in the previous cases, MRAC of the ﬂexii;le manipuiator is
not possible when positive realness is not satisﬁed. If the actuator is moved close to
the sensor at the tip of the beam then positive realness is finally ’satisﬁed. At first
the hesitafidn to this approach is the pra.ct_iéality of ‘loc‘.ating é torquing actuator
at the free end of a flexible manipulator. As Sir Isaac Newton said, “To every
action there is always opposéd an equal reaction;...” [NEW-I]. When the actuator
is loca,téd at the pinnéd-end, actuating torque is produced by a reaction again'stvthe
basebody inertia. A torque at the free end can be produced 'by a reaction against
a rotating inertia. This requires a reaction wheel type actuator similar to those
used extensively for spacecraft attitude control. In space applications of a flexible
manipulé.tor the reaction wheel actuator may ultimaﬁely prove to be better than the
pinned-end actuator as far as disturbanées to the spacecraft go. The actuator at
the pinhed—end may impart a large, undesirable moment to the sﬁé.cecra.ft whereas -
the reaction wheel may produce only a small linear force.

For this case a reaction wheel is placed at the tip with the sensor-system (4.1),
(4.2), (4.4), (4.6). Again, the objective is to control the tip position so that it follows
the trajectory produced by fhe reference model (4.8), (4.9). After verifying that
this system simultaneously satisfies the CGT condition, “almost” positivé realness
and oﬁtput feedback stabilizability,-the following control parameters were chosen in
accordance with (3.28): T'y =T, = 100, v; = 2, Y2 = 20, h =20, and f = 0.05.

The resultmg “modified” adaptive controller (3.26) is

T(t) = G(t)ey(t) + S(t)w(t) — 20e,(t) | (4.14)
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where
d—czﬂ = —2G(t) — 100e,(t)e (t) — (.05)(100)G(t)ey (t)e7 (t)
d%w = —20S(t) — 100¢,(t)w7 ()

This adaptive controller was implemented with the manipulator model (4.1),
(4.2), (4.4), (4.6) to obtain the results shown in figures 4.9 - 4.13. At last, quick,
precise tracking of the reference model trajectory sin 5t is obtained by the tip of
the flexible manipulator! By comparing figures 4.11 - 4.13, it can be seen that the
majority of the error, e,(t), is due to the velocity component of the plant output.

By colocating the actuator #ﬂd senéor it has been shown that MRAC of the
flexible manipulator is now possible. -An important question still needs to be
~ answered before a claim is made that this setup is a viable solution. How far
can the reaction wheel be _loca.ted' from thg' sensor while maintaining satisfactory
tracking results? Perfect colocation is difficult to achieve and m some cases may

not be desirable. This question is addressed in the next section.
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4.7 Case 5: Adaptive, Noncolocated, 6th Order System
with Reaction Wheel

In the previous section it was demonstrated that excellent tracking results can
be obtained for MRAC of a flexible manipulator with a colocated sensor and reaction
wheel. However, perfect colocation is difficult to achieve and in some cases may not
be desirable. For instance, if the manipulator has an end effector attached to the
tip, a reaction wheel may obstruct its performance. To test MRAC (4.14) on the
manipulator when the reaction wheel is moved in from the tip use model (4.1),
(4.2), (4.4), (4.7). With the reaction wheel placed one meter away from the tip and
using the same parameter settings and objective as in Section 4.6, the simulation
results shown in figures 4.14 - 4.18 are obtained. Satisfactory tracking of the tip
position is again achieved but with a higher error than that shown in Figure 4.11
for the colocated system. “

Other simulations were run to determine that the maximum distance the
actuator may be moved from the sensor for this model is =~ 1.5 meters. This is
dependent on the parameters that have been chosen for this case. The more the
actuator and sensor are separated, the higher the position error becomes due to the
positive realness condition. As d increases, ¢ increases also to satisfy the conditions

stated in (3.28); therefore, more error is incurred.



57

solid = YA
dash = YP

%0 01 02 03 04 05 06 07 08 08 1
SECONDS -

Fig. 4.14 Case 5: Manipulator Output, YP, and Model sin §¢ + .25 cos 5¢, YM

02 03 0405 06 07 08 09 4
0 01 0z 03 0.4 &% |

Fig. 4.15 Case 5: Torque Control, UP



58

o
o

OIS 0 N O O

S

solid = APOS
dash = PPOS

0 01 02 03 0405 065 07 08 09
deeouss UF O 09 1

Fig. 4.16 Case 5: Position of Manipulator Tip, PPOS, and Model sin 5¢, MPOS

g
S
[ ¥ )
A

solid = MVEL
dash = PVEL

7 2 A " -t A " A - o
0 04 02 03 04 05 06 07 08 0.9 1
SECONDS

Fig. 4.17 Case 5: Velocity of Manipulator Tip, PVEL, and Model .25cos 5¢t, MVEL



o
N ]
v
a

Fig. 4.18 Case 5: Output Error EY=YP-YM

01 02 03 04 05 06 07 08 08 ¢
0 01 02 03 0.4 08 |

59




60

CHAPTER 5§

CONCLUSION

5.1 Results

As stated in Section 1.1, the objective in this study was to invoke MRAC as the-

control scheme by which the tip of a flexible manipulator with a torquing actuator

at the pinned-end and a sensor at the free-end would track a prescribed trajectory.

Through analysis and computer simulations the following results were obtained.

1.

An exact modal representation of the pinned-free flexible manipulator with
boundary control at the free-end was derived. ‘

A reduced-order state space model was obtained by seleqting a finite number
of the system modes. This model was used for simulation studies.

The nonadaptive and adaptive model reference control laws were stated. These
laws were implemented with the state-space model in simulations.

A nonadaptive control law was derived for a sixth order model of the flexible
manipulator. In simulation satisfactory results were acquired.

The MRAC control laws stated in Section 3.5 were unsuccessful in controlling
the same sixth order model of the flexible manipulator used in 4. Due to the
inherent nonminimum phase properties of a noncolocated pinned-free beam, it
is impossible to satisfy “almost” positive realness of (A + BGC, B, C,0) for an
output feedback gain that will stabilize the system.

In an attempt to achieve stability and proper tracking by the system, an
additional sensor located one meter from the pin was added to the model.
After modifying the MRAC law to include two sensors, simulation tests were

run. The fip position error was at least bounded for this case but proper
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fracking by the tip was still not possible.

7. -Since MRAC is definitely not possible when positive realness is not satisfied,

a torque producing reaction wheel coloca.ted with the sensor at the tip was
. proposed. This setup satisfies positive realness and excellent tracking results
‘are obtained in simulation.

8. To demonstrate the robustness of the MRAC when perturbations of the -
actuator placement are present, the reaction wheel was moved away from the
sensor at the tip. Simulation results verify that satisfactory tracking of the tip
is pgssible as long as positive realness is satisfied. ‘However, the position error

of the tip increases as the actuator is moved further away from the sensor.

Based on these results several important conclusions can be drawn. If the
system can be configured such that “almost” positive realness s satisfied, then
MRAC is a powerful algorithm. Without knowledge of the plant and with a
reference model that may be of a smaller order than the plant, a robust controller
may be designed to give quick, precise tracking results. For the flexible manipulator
with a reaction wheel type actuator excellent tracking by the tip was demonstrated.

By producing torque with a reaction wheel located at the tip of the flexible
manipulator many dynamic problems that may occur when the actuator is placed at
‘the pinned-end are resolved. In [SCH-1] it has been shown that when the actuator
and sensor are noncolocated that the speed of response to commands is ultimately
limited by the inherent wave-propagation delay for the beam. By colocating the
reaction wheel with the sensor this problem does not need to be coped with. Another
advantage 6f using the reaction wheel is that only a small linear force as opposed
fo a large torque is imparted to the basebody that the manipulator is pinned to.

For a flexible manipulator with an actuator at the pinned-end and a sensor at
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the free-end, MRAC is not advised as a suitable control law unless the algorithm
is modified such that the positive realness condition is omitted. Although the
nonadaptive control scheme which requires ezact knowledge of the plant performed
well in simulation for this setup, it also is not recommended. Not only are the control
gains obtained by performing tedious calculations, but the controller is not robust

when disturbances are imparted to the plant or if the reference model changes.

5.2 Future Research Recommendations

The ‘wo'rk presented in this thesis merely demonstrates the ad_va.ntaées and
disadvantages of the MRAC laws as applied to .a flexible manipulator. Many
‘interesting issues remain as future research topics. A few are listed below:

1. The “almost” positive realness condition is a very restricting condition that
precludes MRAC of many intereéting systems. Is a modification to the MRAC |
law possible such that positive realness can be omitted entirely?

2. Simulation studies have been made that include only the first three modes of
the flexible manipulator system. A useful study would be to test MRAC on an
experimental manipulator with a reaction wheel.

3. MRAC is designed to adjust gain pa.ra.xﬁeters on-line in the event a disturbance
or change to the system occurs. Successful demonstration of the ability of
MRAC to handle a change in the tip mass would be extremely valuable for
robotic applications requiring the retrieval of a payload. _

4. MRAC may be possible if the controller parameters are chosen for the two
sensor/one actuator system (case 3) such that the convergence of ey, slows
down to allow more adaptation for the control of e, .

5. It may be possible to add more sensors to the setup in case 3 such that the
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nonminimum phase system becomes minimum phase. If this is true then the
chances of MRAC working increase significantly. In [SCH-1] regulation results
were improved by adding a hub-rate sensor and a strain gauge.

In [WEN-1] a bound is determined for the magnitude of a, the weighting factor
of position versus rate measurement, that will give an output feedback positive
real system. For the model derived in this study a seems to behave in an inverse

manner from the condition Wen states. This issue should be investigated.



64

[AND-1]

AND-2]
|AND-3]
[AST-1]
[AST-2]

[BA-1]

[BAL-1]

[BAL-2]

[BAL-3]

[BAR-1]
[BAR-2]

[BAU-1]

REFERENCES

Anderson, B.D.O., S. Vongpanitlerd, Network Analysis and Synthesis:
A Modern Systems Theory Approach. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1973.

Anderson, B.D.O., “A System Theory Criterion for Positive Real Ma-
trices,” Journal SIAM Control, vol.5, no. 2, 1967.

Anderson, B.D.O., “A Simplified Viewpoint of Hyperstability,” IEEE
Transactions on Automatic Control, vol.AC-13, pp.292-294, 1968.

Astrom, K.J., “Theory and Applications of Adaptive Control— A
Survey,” Automatica, vol.19, pp.471-486, 1983.

Astrom, K.J., B. Wittenmark, “On Self-Tuning Regulators,” Automat-
tca, vol.9, pp.185-199, 1973.

Balakrishnan, A.V., “A Mathematical Formulation of the SCOLE Con-
trol Problem: Part I,” NASA Contractor Report 172581, NASA Langley
Research Center, May 1985.

Balas, M.J., “Feedback Control of Flexible Systems,” IEEE Transac-
tions on Automatic Control, vol.AC-23, no. 4, August 1978.

Balas, M.J., “Some Critical Issues in Stable Finite-Dimensional Adap-
tive Control of Linear Distributed Parameter Systems,” in Proceedings
4th Yale Conference on Adaptive Control, Yale, Conn., 1983.

Balas, M.J., H. Kaufman, J. Wen, “Stable Direct Adaptive Control
of Linear Infinite Dimensional Systems Using a Command Generator
Tracker Approach,” presented at the Workshop on Identification and
Control of Flexible Space Structures, San Diego, CA, June 1984.

‘Bar-Kana, I., “Direct Multivariable Model Reference Adaptive Control

with Application to Large Structural Systems,” Ph.D. Dissertation,
Rensselaer Polytechnic Institute, Troy, NY, 1983.

Bar-Kana, I., H. Kaufman, M.J. Balas, “Model Reference Adaptive
Control of Large Structural Systems,” Journal Guidance and Control,
vol.6, No. 2, pp.112-118, 1983.

Bauldry, R.D., J.A. Breakwell, G.J. Chambers, K.F. Johansen, N.C.
Nguyen, and D.B. Schaechter, “A Hardware Demonstration of Control
for a Flexible Offset-feed Antenna,” The Journal of the Astronautical
Seiences, vol.31, no. 3, July-September 1983.°



[BET-1]

[BIS-1]
[BOO-1]

[BOO-2]

[BRE-1]

[BRE-2]

[BRO-1]

[BUT-1]

[CAN-1]

[CAN-2]

[CAN-3]

[CHE-1]

65

REFERENCES (Continued)

Bethoux, B., B. Courtiol, “A Hyperstable Discrete Model Reference
Adaptive Control System,” in Proceedings Srd IFAC Symposium on.
Sensitivity, Adaptivity, and Optimality, Ischia, Italy, June 1973.

Bishop, R.E.D., D.C. Johnson, The Mechanics of Vibration. Cambridge,
MA: At the University Press, 1960.

Book, W.J., “Modeling, Design and Control of Flexible Manipulator
Arms,” Ph.D. Dissertation, M.1.T., Cambridge, MA, April 1974.

Book, W.J., O. Maizza-Neto, and D.E. Whitney, “Feedback Control of
Two Beam, Two Joint Systems with Distributed Flexibility,” ASME

Journal of Dynamic Systems, Measurement and Control, vol.97, no. 4,
December 1975.

Breakwell, J.A., “Control of Flexible Spacecraft,” Ph.D. Dissertation,
Stanford Umvers1ty, May 1980.

Breakwell, J.A., G.J. Chambers, “The Toysat Structural Control Ex-
periment, " The Journal of the Astronautical Sciences, vol.32, no. 3,
July-September 1983.

Broussard, J., M. O’Brien, “Feedforward Control to Track the Output
of a Forced Model,” in 17th IEEE Conference on Decision and Control,
Jan. 1979.

Butchart, R.L., B. Shackcloth, “Synthesis of Model Reference Adaptive

Control Systems by Lyapunov’s Second Method,” in Proceedings 1965
IFAC Symposium Adaptive Control, Teddington, England, 1966.

Cannon, R.H., E. Schmitz, “Initial Experiments on the End-Point Con-
trol of a One Link Flexible Experimental,” The International Journal
of Robotics Research, vol.3, no. 3, Fall 1984,

Cannon, R.H., D.E. Rosenthal, “Experiments in Control of Flexible
Structures with Noncolocated Sensors and Actuators,” Journal of Guid-
ance and Control, vol.7, no. 5, September-October, 1984. -

Cannon, R.H., E. Schmitz, “Precise Control of Flexible Manipulators,”

- in Robotics Research Brady, M, R. Paul, ED. Cambridge, MA: MIT

Press, 1984, chap. 9, pp. 841-861.

Chen, C.T., Linear System Theory and Design. New York, NY: CBS
College Publishing, 1984.



66

[CHO-1]

[DON-1]
[EDM-1]
[EGA-1]

[ERZ-1]

[FLE-1]

[FLE-2]

[GIB-1]

[GIL-1]

[GOO-1]

[GRA-1]

REFERENCES (Continued)

Chodas, J.L., G.K. Man, “Design of the Galileo Scan Platform Control,”
Journal of Guidance and Control, vol.7, no. 4, July-August 1984.

Donalson, D.D., C.T. Leondes, “A Model Reference Parameter Tracking
Technique for Adaptive Control Systems,” IEEE Transactions Appl.
Ind., vol.241-262, Sept. 1963. :

Edmunds, R.S., “Robust Control System Design Techniques for Large
Flexible Space Structures Having Non-Colocated Sensors and Actua-
tors,” Ph.D. Dissertation, University of California at Los Angeles, 1982.

Egardt, B., “Stability Analysis of Continuous-time Adaptive Control
Systems,” SIAM Journal Control and Optimization, vol.18, no. 5,
pp-540-558, 1980.

Erzberger, “On the Use of Algebraic Methods in the Analysis and Design
of Model Following Control Systems,” NASA TN D-4663, 1963.

Fleischer, G.E., P.W. Likins, “Attitude Dynamics Simulation Subrou-
tines for Systems of Hinge-Connected Rigid Bodies,” Technical Report
32-1592, Jet Propulsion Laboratory, November 1, 1972.

Fleischer, G.E., P.W. Likins, “Attitude Dynamics Simulation Subrou-
tines for Systems of Hinge-Connected Rigid Bodies with Nonrigid Ap-
pendages,” Technical Report 32-1598, Jet Propulsion Laboratory, Au-
gust 15, 1975.

Gibson, J.S., private communications, March-September 1985.

Gilbart, J.W., R.V. Monopoli, “A Modified Lyapunov Design for Model
Reference Adaptive Control Systems,” presented at the Conference on
Circuit and System Theory, October 1969.

Goodwin, G.C., P.J. Ramadge, and P.E. Caines, “Discrete Time Multi-
variable Adaptive Control,” IEEE Transactions on Automatic Control,
vol.AC-25, no. 3, pp.449-456, June 1980.

Gran, R., G. Rodriguez, editor, “Control of Flexible Structures: A
Systematic Overview of the Problems,” in Proceedings of the Workshop

on Applications of Distributed System Theory to the Control of Large
Space Structures, JPL Publication 83-46, NASA, July 1983.



[GUP-1]
[HOR-1]
[TH-1]

[10A-1]

- [10A-2]

[I0A-3]

[[ON-1]

[JAC-1]
[JOH-1]
[KAI-1]
[KAL-1]
[KAL-2)

[KAN-1]

67

REFERENCES (Continued)

Gupta, N.K., M.G. Lyons, J.N. Aubrun, and G. Margulies, “Modeling,
Control and System Identification Methods for Flexible Structures,”
Spacecraft Pointing and Position Control, AGARG-AG-260, 1981.

‘Horowitz, 1., M. Sidi, “Optimum Synthesis of Non-Minimum Phase

Feedback Systems with Plant Uncertainty,” Internatsonal Journal Con-
trol, vol.27, no. 3, pp.361-386, 1978.

Ih, C.H.C., “A Direct Model Reference Adaptive Approach to the
Control of Space Stations,” Ph.D. Dissertation, University of California
at Los Angeles, 1985.

Ioannou, P.A., P.V. Kokotovic, Adaptive Systems with Reduced Models.

- New York, NY: Springer-Verlag, 1983.

Ioannou, P.A., P.V. Kokotovic, “Instability Analysis and Improvement

of Robustness of Adaptive Control,” Automatica, vol.20, no. 5, pp.583-
594 1984.

Ioa.nnou, P.A., P.V. Kokotovic, “Robust Redesxgn of Adaptive Control,”
IEEE Transact_mns on Automatic Control, vol. AC-29, 1984.

Ionescu, T., R. Monopoli, “Discrete Model Reference Adaptive Control
with an Augmented Error Signal,” Automatica, vol.13, pp.507-517, 1977.

Jacobsen, L.S., R.S. Ayre, E'ngineéring Vibrations. New York, NY:
McGraw-Hill Book Company, Inc., 1958.

Johnson, C.R., Jr.,, M.J. Balas, “Reduced-order Adaptive Controller
Studies,” in Proceedings Joint Automatic Control Conference, San Fran-
cisco, CA, 1980.

Kailath, T., Linear Systems. Englewood, NJ: Prentice-Hall, 1980.

Kalman, R.E., “Design of Self-Optimizing Control Systems,” Transac-
tions ASME, vol 80, PP .468-478, 1958.

Kalman, R.E., “Lyapunov Functions for the Problem of Lur’e in Auto-
matic Control ” Proceedings N.A.S., vol.49, pp.201-205, 1963.

Kane, T.R., D.A. Levinson, Dynamscs: Theory and Appl:cat:ons New
York, NY: McGraw-Hlll Book Co., 1985.



68

[KNU-1]

[KOP-1]

[KUO-1]

[LAN-1]
[LAN-2]

[LAN-3]
[LAS-1)

LIE1)

[LE1]
[LIK-1]
[LIK-2]

[LIK-3]

REFERENCES (Continued)

Knuth, D.E., The IE\’book. Readmg MA: Addlson-Wesley Publishing
Co., 1984.

Kopf, E.H., TXK. Brown, E.L. Marsh, “Flmble Stator Control on
the Galileo Spacecraft,” presented at the AAS/AIAA Astrodynamics
Specialist Conference, Provincetown, MA, June 25-27, 1979.

Kuo, B.C., Automatic Control Systems. Englewood Cliffs, N.J.: Prentice-
Hall, Inc., 1982. :

Landau, L.D., “Synthesis of Discrete Model Reference Adaptive Con-
trol,” IEEE ﬁamactwns on Automatic C’ontrol vol AC-16, pp. 507—508
1971

Landau, 1.D., HM. Silveira, “A Stability Theorem with Applications
to Adaptive Control System,” in Proceedings Srd IFAC Symposium on -

- Sensitivity, Adaptivity, and Optimality, Ischia, Italy, June 1973.

Landau, LD., “A Survey of Model Reference Adaptive Tecliniques
Theory and Applications,” Automatica, vol.10, pp.353-379, 1974. -

LaSalle, J.P., “Some Extensions of Lyapunov’s Second Method” IRE
ﬂansacttons on Circ. Theory, vol.520-527, December 1960.

Liégois, A., E. Dombre, and P. Borrel, “Leammg and Control for a
Compliant Computer-Controlled Manipulator,” IEEE Transactions on
Automatic Control, vol.AC-25, no. 6, December 1980.

Likhtarnikov, A., V. Yakubovich, “The Frequency Theorem for Equa-
tions of Evolution Type,” Stbirskis Mathematicheskii Zhurnal, vol.17,
Pp-1069-1085, 1976. -

Likins, P.W., “Dynamics and Control of Flexible Space Vehicles,”
Technical Report 32-1329, Rev 1,Jet Propulsxon Laboratory, Pasa.dena, _
CA, January 15, 1970.

Likins, P.W., “The New Generation of Dynatnic 1nteractxon Problems,”
The Journal o] Astronaut:cal Sciences, vol. 27 no. 2, pp. 103-113 April-
June, 1979.

Likins, P.W., ‘G.E. Fleischer, “Large-Deformation Modal Coordinates
for Nonrigid Vehxcle Dynamics,” Technical Report 32-1565, Jet- Propul-
sion Laboratory, Pasadena, CA, November 1, 1972.



[LIK-4]

[LIN-3]

[LIU-1]
[LYO-1]

[MAC-1]

[MEL-1]

[MEL-1]

[MEL-2]

[MEL-3]

[MO-1]

[MO-2]

69

REFERENCES (Continued)

Likins, P.W., “Analytical Dynamics and Nonrigid Spacecraft Simula-
tlon, Techmcal Report 32-1593 Jet Propulsion Laboratory, Pasadena,
CA, July 15, 1974.

Lin, J.G., H.Y.H. Lin, D.R. Hegg, J.L. Johnson, and J.E. Keat, “Ac-
tively Controlled Structures Theory: Theory of Design Methods,” In-
terim Technical Report, Vol. I, R-1249, Charles Stark Draper Labora-
tory, April 1979.

Ljung, L., “On Positive Real Transfer Functions and the Convergence

of Some Recurswe Schemes,” IEEE Transactzons on Automatzc Control,
vol.AC-22, no. 4, August 1977.

Lyons, M.G., and others, “Across Five (Active Control of Large Space
Structures) Phase 1-A,” Final Report No. RADC-TR-82-21, Lockheed
Missiles and Space Company Inc., Palo Alto, California.

Macala, G.A., “Tuned Feedback Damping with Application to the
Galileo Spacecraft;” presented at the AAS/AIAA Astrodynamics Spe-
cialist Conference, Lake Tahoe, NE, August 3-5, 1981.

Meirovitch, L., Analytical Methods sn Vibration. New York, NY: The
MacMillan Company, 1967.

Meldrum, D., M.J. Ba.las “Direct Adaptive Control of a Flexible Remote
Manipulator Arm, presented at the ASME Annual Winter Conference,
Miami Beach, Florida, November 1985.

Meldfuin, D., M.J. Balas, “Application of Model Reference Adaptive
Control to a Flex1ble Remote Manipulator Arm,” Submitted for Publi-
cation,

Meldrum, D., “End-Point Adaptive Control of a Flexible Manipulator
Arm with a Reaction Wheel and Visual Sensor,” Submitted for Publi-
cation.

Monopoli, R.V., “Lyépundv s Method for Adaptive Control System
Design,” IEEE Transactions on Automat:c Control, vol.AC-12, pp.334-
335, August 1967.

Monopoli, R.V., J.W. Gilbart, and W.D. Thayer, “Model Reference

. Adaptive Control Based on Lyapunov-Like Techniques,” in Proceedings

of the Second IFAC Symposium on System Sensitivity and Adaptivity,
August 1968,



70

[MO-3]

[MO-4]

[MON-1]

[MOR-1]

[MOR-2]

[MOR-3]

[NAR-1]

[NAR-2]

[NAR-3]

[NAR-4]

[NEW-1]

REFERENCES (Continued)

Monopoli, R.V;, “Model Reference Adaptive Control with an Aug-
mented Error Signal,” IEEE Transactions on Automatic Control, vol.AC-
19, no. 5, pp.474-484, 1974.

Monopoli, R.V., “The Kalman-Yakubovich Lemma in Adaptive Control
System Design,” IEEE Transactions on Automatsic Control vol.AC-18,
no. §, pp.527-529, 1973.

Montgomery, R.C., G.C. Horner, and S.R. Cole, “Experimental Re-
search on Structural Dynamics and Control,” presented at the 3rd VPI
and SU/AIAA Symposium on Dynamics and Control of Large Flexlble
Spacecraft, Blacksburg, VA, June 1981.

Morse, A.S., A. Feuer, “Adaptive Control of Single-Input Single-Output
Linear Systems, IEEE Transactions on Automatse Control, vol.AC-23,
pp.557-570, August 1978. '

Morse, A.S., “Global Stability of Parameter Adaptive Control Systems,”
IEEE Transact:ons on Automatic Control, vol.AC-25, no. 3, pp.433-439,

- 1980.

Morse, A.S., “New Directions in Parameter Adaptive Control,” in
Proceedings of the 28rd IEEE Conference on Decision and Control, Las
Vegas, NE, December 12-14, 1984.

Narendra, K.S., P. Kudva, “Stable Adaptive Schemes for System Iden-

. tification and Control - Parts I and II,” IEEE Transactions on Systems,

Man, Cybernetics, vol.SMC-4, no. 6, pp.542-560, 1974.

Narendra, K.S., L.S. Valavani, “Stable Adaptive Controller Design -

Direct Control,” IEEE Transactions on Automatic Control, vol.AC-23,
no. 4, pp.570-583, 1978.

Narendra, K.S., Y.H. Lin, L.S. Valavani, “Stable Adaptive Controller
Design - Part II: Proof of Stability,” IEEE Transactions on Automatsc
Control, vol.AC-25, no. 3, pp.440-448, June 1980.

Narendra, K.S., J.H. Taylor, Frequency Domasn Criteria for Absolute
Stability. New York NY: Academic Press, Inc., 1973.

Newton, 1., Philosophiae Naturalis Principia Mathematica. Royal Academy
of Sciences: London, England, 1686.



[NGU-1]

[ORT-1]
[PAR-1]
[PCM-1]
[PIL-1]

[POP-1]
[POP-2]

[POR-1]

[RAV-1]

[ROH-1]

[sC-1]

71

REFERENCES (Continued)

Nguyen, P.K., R. Ravindran, R. Carr, and D.M. Gossain, “Struc-
tural Flexibility of the Shuttle Remote Manipulator System Mechanical
Arm,” in Proceedings of the Guidance and Control Conference, AIAA
paper no. 82-1536, August 1982.

Ortega, R., “Assessment of Stability Robustness for Adaptive Con-
trollers,” IEEE Transactions on Automatic Control, vol. AC-28, no. 12,
pp.1106-1109, 1983.

Parks, P.C., “Lyapunov Redesign of Model Reference Adaptive Control

Systems,” IJEEE Transactions on Automatic Control, vol.AC-11, no. 3,
pp.362-367, 1966.

PC-MATLAB, a Computer-Aided Design Package, PC-MATLAB User’s
Guide, Version 1.0. Portola Valley, CA: The Mathworks, Inc., January
1985. - . :

Pilkington, W.C., “Vehicle Motions as Inferred from Radio Signal

Strength Records,” Publication No. 551, Jet Propulsion Laboratory,
Pasadena, CA, September 5, 1958.

Popov, V.M., “The Solution of a New Stability Problem for Controlled
Systems,” Automation and Remote Control, vol.24, pp.1-23, 1963.

Popov, V.M., Hyperstability of Control Systems. New York, NY: Springer-

~ Verlag, 1973.

Porter, B., M.L. Tatnall, “Stability Analysis of a Class of Multivariable
Model Reference Adaptive Systems Having Time Varying Process Pa-

rameters,” International Journal of Control, vol.11, no. 2, pp.325-332,
1970. 4

Ravindran, R., K.H. Doetsch, “Design Aspects of the Shuttle Remote
Manipulator Control,” in Proceedings of the Guidance and Control
Conference, AIAA paper No. 82-1581, August 1982.

Rohrs, C.E., L.S. Valavani, M. Athans, G. Stein, “Analytic Verification
of Undesirable Properties of Direct Model Reference Adaptive Control
Algorithms,” in Proceedings 20th IEEE Conference on Decision and
Control, San Diego, CA, 1981.

Schaechter, D.B., “Hardware Demonstration of Flexible Beam Control,”
Journal of Gusdance and Control, vol.15, no. 1, January-February 1982.




72

[SC-2)

[SCH-1]

[SLA-1]

[SOB-1]

[SOB-2]

[SOB-3]

[SPA-1]

[STR-1]

[SUZ-1]

[TAY-1]

[TIM-1]

REFERENCES (Continued)

Schaechter, D.B., D.B. Eldred, “Experimental Demonstration of the
Control of Flexible Structures,” Journal of Guidance and Control, vol.7,
no. 5, September-October 1984.

Schmitz, E., “Experiments on the End-Point Position Control of a
Very Flexible One-Link Manipulator,” Ph.D. Dissertation, Stanford
University, Stanford, CA, 1985.

Slafer, L.I., “On-Orbit Evaluation of the Control System/Structural
Mode Interactions on OSO-8,” Journal of Guidance and Control, vol.3,
no. 3, May-June 1980.

Sobel, K., H. Kaufman, L. Mabius, “Model Reference Output Adaptive
Control Systems without Parameter Identification,” presented at the
18th IEEE Conference on Decision and Control, Ft. Lauderdale, FL,
December 1979.

Sobel, K., “Model Reference Adaptive Control for Multi-Input Multi-
Output Systems,” Ph.D. Dissertation, Rensselaer Polytechnic Institute,
Troy, NY, June 1980. '

Sobel, K., H. Kaufman, L. Mabius, “Implicit Adaptive Control Systems
for a Class of Multi-Input Multi-Output Systems,” IEEE Transactions
on Aerospace and Electronics Systems, vol.576-590, September 1982.

Spanos, J.T., “SP-100 Finite Element Modelling and Preliminary Con-
trol Studies,” EM-343-898, Jet Propulsion Laboratory, Pasadena, CA,
November 1985.

Strang, G., G.J. Fix, An Analysis of the Finite Element Method.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1973.

Suzuki, T., S. Takashima, “A Hyperstable Scheme for Discrete Model
Reference Adaptive Control Systems,” International Journal of Control,
vol.28, pp.245-252, 1978.

Taylor, L., compiler, “” in Proceedings of the SCOLE Workshop, NASA
Langley Research Center, Hampton, Virginia, December 1984.

Timoshenko, S., D.H. Young, W. Weaver, Jr., Vibration Problems in
Engineering. New York, NY: John Wiley and Sons, 1974.



[TRU-1]
[Us0-1]
[WAN-1]
[WEN-1]
[WEN-2]
(WEN.-3]
[WHI-1]
[wm.i]

[WIN-2]

[YOC-1]

REFERENCES (Continued)

Truckenbrodt, A., “Modelling and Control of Flexible Manipulator
Structures,” in Proceedings of jth CISM-IFToMM Symposium on The-
ory and Practice of Robots and Manipulators, Warsaw, 1981.

Usoro, P.B., R. Nadira, S.S. Mahil, “Control of Lightweight Flexible
Manipulators: a Feasibility Study,” in Proceedings of the American
Control Conference, San Diego, CA, June 1984.

Wang, S.J., C.H.C. Ih, Y.H. Lin, E. Mettler, “Space Station Dynamic
Modelling, Disturbance Accommodation and Adaptive Control,” pre-
sented at the Workshop on Identification and Control of Flexible Space
Structures, San Diego, CA, June 4-6, 1984.

Wen, J., “Direct Adaptive Control in Hilbert Space,” Ph.D. Disserta-
tion, Rensselaer Polytechnic Institute, Troy, NY, 1985.

Wen, J., M.J. Balas, “Direct Adaptive Control in Hilbert Space,”
Robotics and Automation Laboratory Report, Rensselaer Polytechnic
Institute, Troy, NY, 1985.

Wen, J., M.J. Balas, “New Method of Adaptive Regulation and MRAC,”
Robotics and Automation Laboratory Report, Rensselaer Polytechnic
Institute, Troy, NY, 1985.

Whita.ker, H.P.,, P.V. Osburn, A. Keezer, “New Developments in the
Design of Adaptive Control Systems,” Institute of Aeronautical Sciences,
Paper 61-39, 1961.

Winsor, C.A., R.J. Roy, “Design of Model Reference Adaptive Control
Systems by Lyapunov’s Second Method,” IEEE Transactions on Auto-
matsc Control, vol.AC-13, no. 2, pp.204, April 1968.

Winsor, C.A., “Model Reference Adaptive Design,” NASA-CR-98453,
Nov. 1968.

Yocum, J.F., “Control System in the Presence of Severe Structural
Dynamics Interactions,” Journal of Guidance and Control, vol.1, no.
2, March-April 1978.

73



74

APPENDIX A

EXAMPLE ON HOW TO DERIVE CONTROLLER GAINS, S,

VIA THE CGT CONDITION

Transform the plant matrices (4.2}, (4.3), (4.4) to controller canonical form

[KUO-1}:
dz*(t)

=5 = 42 (1) + BG* (t)

Given
If (A, B) is controllable, 3 a nonsingular transform
v () = Q="
or
z*'(t) = Q7 'y*(t)
s,t,

W - a0+ BT ()

A, is determined by defining the following:

Q1
o=|
QA1
where
Q=[0 0 ... 1][B AB ... A~'B]!
Then
A1 =QAQ™!

B, =QB



75

For this example:

[0
0

co~o
O~0o0o
o~o0oO0Oo

0
0
0
0
0 , 0 1
—2.5972¢5 —271.0091 —1808.7 —.5318.

©CO0OOO0O

-0
0
0
0
0

1.

Perform pole-placement design with state feedback. The desired poles are chosen to

B,

include the same eigenvalues as in the reference model plant, A,,. The remaining
poles may be placed anywhere in the left half plane. For this example the desired
poles are chosen as +5¢,—51,—4,-3,—2, —1.

To determine the feedback gain matrix, G, the following method is used: Let

Gi=[91 92 93 9s 95 9e)

Then
0 1 0 0 0 0
0 o0 1 0 0 0
0 o0 0 1 0 0
AI—BIGI—_ 0 o 0 0 1 0
0 o0 0 0 0 1

[ —g1 —g92 —2.6e®—g3 —271.—gy —1808.7—g; —.53—ge.
The elements of the G; matrix are determined by equating coefficients of the
(A1 — B;G1) characteristic equation, (c.e.), with the desired charaﬁteristic equation,
(d.c.e.):

ce. =28 + ‘(.5318 +96)A® + (1808.7 + g5)A*

+ (271.0091 + g4) A% + (2.5972¢% + g3) A% + g2) + ¢
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d.c.e. = A% 4+ 1015 + 60)* + 30023 + 899)2 + 1250\ + 600

After equating coefficients, the G; matrix becomes

G, =[600 1250 —258821 28.99 —1748.7 9.4682]

G is the feedback gain matrix to give A; — B1G) the desired eigenvalues. To give

the original system, A + BG, the same desired eigenvalues, take the negative of G,

and multiply by the transformation matrix Q:

G=[Gq, ] [Q] = —6.3027¢~5 —1.3124¢~* -.0696 .0053 5.8703 —.0343]_
’ (A.1)
The closed-loop system, A. = A + BG, is now A
-0 1 0 0 0 0 7
—.,0023 -—-.0048 —2.5516 1953 215.1727 2 —1.259
A—| O 0 0 1 0 0
€T ] —.0099 -—.0206 -—168.2168 .7124 922.7825 —5.3991
0 0 0 0 0 1
| —.01890 —.0394 —20.8776 1.5984_ 109.2232 —10.7075 .

where the control T*(t) is Gz*(t).

Diagonalize the system, A., by the following similarity transformation:

where

[ —.0001 — .23
1
.0006 + .1621¢
—-.8103 + .0027:
.0252:
L —.1257

A=P1A.P
r=P'B
f=CP
—.0001 +.2¢ —.2458 1 —.3519 —.478 1
] 1 1 —-.9927 1 1 |
0006 — .1621¢ —.1007 .0267 —.0739 —.0556
—.8103 — .0027¢ .4095 —.0265 .2099  .1163
—.0252¢ —.02 0049 -—-.014 -—.0103
—.1257 .0813 —.0048 .0398 .0216

(A 2)



Then
A =diag[5f -5 —4 -1 -3 -=2]

—639.52 + 3651.1:
~639.52 — 3651.13
38853
58980
47663
| 4028 ]

B =[.892 —.3608¢ .892+ .3608: —.0818 .7947 -—.1913 -.3153] (A .3)

The diagonalized system is

ag()
dt =T&(t) + I'T(t)

() = BE(?)
Solving these equations, £;(t) become:
£1(t) = e**&:(0)

£2(2) = e~ *£5(0)

£s(t) = e=*65(0)
(1) = 640
£s(t) = e=¢5(0)
tolt) = e=266(0)

The desired output based on the reference model (4.8), (4.9) is:

y*(t) = sin5¢ + 2.5 cos 5¢

Bit _ ,—bit 5it |, —6it (A .4)
= f____i_e__ +2.5 (f___'{'_e_)
1

2
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Since the only eigenvalues that must be retained to obtain the desired output are

5t and —51, the states &3, €4, €5, and &g may be set to zero by choosing
| €3(0) = €4(0) = £5(0) = £6(0) =0
From (A.3)
| y* (t) = (.892 — .3608:)¢10e5™ + (.892 + .36081) £30e % (A .5)
Equate coefficients of (A.5) with (A.4) and solve for £;0 and €3¢ to yield: |
€10 = 1.386705 + .0036197

€20 = 1.386705 — 00361975

The ideal trajectory is now
| z*(t) = P¢(t)
Hence,
 z1(t) = (~.0001 - 20) (1) + (—0001 + 20)€2(£)
aa(t) = 61(0) + &00)
2(t) = (.0006 + .16214)£, (£) + (.0006 — .16214) &3 (2)
24(t) = (—.8103 + .0027T) &, (t) + (—.8103 — .00275) €2 (t)
 2s(t) = 025261(t) — 02526 (t)

26(t) = —.125T61(£) — 1257£:(t) RN

Substitute the appropriate values for £;(t) and £;(t) (including the initial condi-

tions) and combine in terms of cosine and sine to obtain:

z1(t) = .554689sin 5t — .0013255 cos 5¢
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22(t) = —.0072394sin 5t + 2.77341 cos 5t
 z3(t) = —.449574 sin 5¢ + .00049054 cos 5t
24(t) = —.0016222in 5t — 2.2473136 cos 5¢
z5(t) = —.06;989 sin 5¢ — .0001824 cos 5¢
2g(t) = .00091 sin 5t — .3486176 cos 5t

Control T*(t) becomes:

T*(t) = ~6.3027¢~ %2, (t) — 1.3124e ™42, (t) — .069623(t)
+ .005324(t) + 5.870325(t) — .03432¢(t)

= —.37905874 sin 5¢ — .00142196 cos 5¢

The CGT condition is satisfied by

rzi(f)] [ .554689  —.0002651 O
23 (t) —.0072394  .554682 O
23 (1) ~.449574 0000981 O
zj(t) | = | —.0016222  —.449462 0| [sin5t 5cos5t 0]
z3 (1) —.06989  —.00003648 O
z3(t) .00091 —.069723 0
LT (¢) . [ —.37905874 —.000284392 0.
where
Sa1 = [—.37905874 —.000284392] " (A.6)

S22 = 0] (A.7)
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APPENDIX B

MRAC ALGORITHM FOR SINGLE-INPUT DOUBLE-OUTPUT SYSTEM

An MRAC algorithm is derived for a case with one actuator and two sen-
sors. System 1, denoted as (A, B, C,0), satisfies the CGT condition and system 2,
(A,B,Cz,o)_, satisfies both the CGT and posiﬁive realness conditions. By substi-

tuting a signal control law similar to (3.26)
T() = Gla ) + 5000 - -um() (B

into the error equation (3.14)

de(t)
dt

= Ae(t) + BT(t) — BT*(t)

the following closed-loop dynamic equation is obtained:

de(t) ' ,
——= = (A+ BGC)e(t) + BAG,(t)e,, (t
o =\ ")elt) 1(t)ey, (2) (B.2)
+ BAG; (t)ellz (t) - heyz (t) |
_ | w(t) —ym, (t)
t) = ! = Ce(t B.3
eoft) = [ 73m 0] = cety ®.3)
Choose the quadratic Lyapunov function ca.n&idate as in [WEN-1]:
V(e,AG,L) = eTPe +tr [AGTT'AGT]

- (B .4) .
+tr [AG;TT'AG]] + tr [LT7*LT] 1

where P > 0 is from (3.17) with A replaced by (A + BGC) = A;. Take the time -



derivative along the solution (B.2):

dV (e, AG, L
(e,dt GL) _ T(4TP + PAJJe + 2T PBAGye,,
+2¢TPBAG;e,, + 2T PBLw
dAG (1)
dt

dAG,(t)

2tr
e

r;lAGT] +2tr [ r;lAczf]
+2tr [‘"’(t) r;lLT] — 2¢TPBhe,,
Since positive realness is satisfied for the system (Ac, B,C2,0) then

¢TPB = ey,

For the adaptive law chosen as follows:

dc;lt(t) _ dAftx(t) = —T1ey, (t)el, (t)

dGz( ) dAGz(t)

= —Tqe,, (t)e (t)

dt dt
LY = L0 = rae, @070

Equation (B.5) then becomes

dV (e, AG, L)

o < —Qell? — ellell® — Rlley, |I*
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(B .5)

(B .6)

(B.7)

(B .8)

(B .9)

If € > 0, strict positive realness is satisfied and |¢|| — 0. If only positive realness is

satisfied, ¢ = 0 and ||e,, || is bounded while ||ey, || — 0.

For a case that requires only regulation, no model following, then (B.6) may

be used with (3.26).
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