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ABSTRACT

Quick, precise control of a flexible manipulator in a space environment is

essential for future Space Station repair and satellite servicing. Numerous control

algorithms have proven successful in controlling rigid manipulators with colocated

sensors and actuators; however, few have been tested on a flexible manipulator

with noncolocated sensors and actuators. In this thesis, a model reference adaptive

control (MRAC) scheme based on command generator tracker theory is designed

for a flexible manipulator. Quicker, more precise tracking results are expected over

nonadaptive control laws for this MRAC approach.

Equations of motion in modal coordinates are derived for a single-link, flexible

manipulator with an actuator at the pinned-end and a sensor at the free end. An

MRAC is designed with the objective of controlling the torquing actuator so that

the tip position follows a trajectory that is prescribed by the reference model. An

appealing feature of this direct MRAC law is that it allows the reference model

to have fewer states than the plant itself. Direct adaptive control also adjusts the

controller parameters directly with knowledge of only the plant output and input

signals. No a priori knowledge of the plant is necessary.

Simulations are performed to test both nonadaptive and adaptive model

reference control on the flexible manipulator model. Although nonadaptive control

gives satisfactory tracking results, the adaptive control does not due to the inability

of the noncolocated system to satisfy a necessary positive realness condition. When

the sensor and actuator are nearly colocated excellent tracking results are achieved.

iii
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The function of a robotic manipulator is to follow a commanded trajectory into

a workspace and then to perform a given task with its end effector. Conventional

manipulators of today control the positon of the end effector by commanding an

appropriate set of joint-angle values which are derived through a real-time kinematic

transformation. Large, massive manipulators that are very rigid must be used for

this method to ensure that the end effector will move to the desired location. Since

the position sensor is colocated with the actuator, stable servo control exists and

the control system is easy to design.

In space, flexible robotic arms capable of quick, precise tracking of trajectories

and performance of tasks are necessary for in-orbit assembly of the Space Station

and autonomous satellite retrieval and repair. The arms are flexible because they

are made as lightweight as possible to keep the energy consumption and costs of

shipping and operating in space to a minimum. Control of the tip position of a

flexible manipulator requires a control scheme and an actuator/sensor setup that

is unlike that used for the conventional rigid manipulator. If the sensor for the

manipulator is placed at the tip then the position is determined directly without

the use of real-time kinematic transformations.

The objective in this study is to test a Model Reference Adaptive Control

(MRAC) scheme on a flexible manipulator with a torquing actuator at the pinned-

end of the arm and a sensor at the free-end. When the actuator and sensor are not

located at the same place on the manipulator, the system is referred to as being



"noncolocated". The function of MRAC is to command the tip of the manipulator

to track a prescribed reference signal with speed and accuracy.

Stable control of a noncolocated flexible manipulator like the one used in this

project is a difficult control problem that has only recently been addressed. Schmitz

[SCH-l] has experimentally shown that with a noncolocated manipulator system it

is possible to control the end of a flexible arm using feedback and experimental

identification. The tracking results he obtains are satisfactory but quicker, more

precise tracking results are expected with adaptive control.

A direct MRAC scheme is chosen for this problem since the plant for the

flexible manipulator is a complex, distributed-parameter system whose parameters

are uncertain and may change with time. Direct adaptive control adjusts the

controller parameters directly with knowledge of only the plant output and input

signals whereas indirect adaptive control requires adaptive identification of the

plant parameters. The direct MRAC algorithm that is used to control the flexible

manipulator is developed in detail in [WEN-l]. An especially appealing feature of

this MRAC law is that it allows the reference model to have fewer states than the

plant itself. Hence, more states may be used to represent the plant more accurately

without the cost of implementing a large order reference model.

Although MRAC has not yet successfully controlled a system that has non-

colocated sensors and actuators, it has been applied in a number of cases where the

sensors and actuators are colocated. In particular, the Power Tower configuration

of the future space station has been modelled and successfully controlled in simula-

tions with this control scheme [IH-l]. A historical review of the control of flexible

structures (including manipulators) and the MRAC law follows.



1.2 Literature Review

In a literature review on adaptive control of a remote manipulator arm it is

appropriate to discuss first the research on control of flexible structures. Next the

history of adaptive control is presented.

1.2.1 Control of Flexible Structures

Stability is a crucial topic that must be addressed in the control of flexible

structures. Since very low frequency modes and spillover effects from the use of

truncated modal models may easily lead to instability problems it is important to

be able to verify the stability of a control system design. This issue was made

abundantly clear when the first spacecraft placed in orbit by the United States,

Explorer I, went unstable due to energy dissipation of its elastic whip antennas

[PIL-1].

Early work related to control system design for elastic spacecraft was performed

in [LIK-1], [LIK-2], [FLE-1], [FLE-2], where the focus was on developing useful

dynamic simulation tools. More recently, control of elastic structures for space

applications has included communications satellites with long flexible solar panels,

the Space Shuttle Remote Manipulator System (SRMS), and the future Space

Station [GRA-l], [GUP-l], [LYO-l]. In [NGU-l], [RAV-l] the independent joint

servo control of the SRMS is described.

Currently a "design challenge" called SCOLE (Spacecraft Control Laboratory

Experiment) is being developed at NASA Langley Research Center [BA-l], [TAY-

1]. The challenge consists of both a mathematical problem and an experimental

test specimen for which control laws are to be developed to slew and stabilize

the radio frequency axis of a flexible off-set antenna attached to the space shuttle



by a flexible beam. The dynamics are described by a distributed parameter

free-free beam equation with rigid bodies attached at each end. Hence, the

mathematical formulation involves various techniques for the solution of partial

differential equations (PDE) with delta-functions on the boundary. Many of the

issues that must be addressed in SCOLE are similar to those for the flexible remote

manipulator.

At the Jet Propulsion Laboratory (JPL) a project called Space Power-100 KW

(SP-100) has been modelled very much like the SCOLE project—a free-free beam

with rigid bodies attached at each end [SPA-1]. Free and forced vibration studies

have been made and a proportional-derivative (PD) controller has been designed.

Future work will implement higher order compensators, full-state feedback, and

multi-actuator/sensor controllers.

" The spacecraft projects described above demonstrate that research in the

control of flexible space structures has many issues in common with the problem

of active control of an elastic manipulator. Numerous control schemes have been

developed for manipulators. Book [BOO-1], [BOO-2], designed a PD joint-angle

feedback controller for a two-link, planar manipulator. The French Atomic Energy

Commission (C.E.A.) [LIE-l] developed a dynamic model of a six degree-of-freedom,

lightweight MA-23 manipulator and implemented servo control of a single joint of

the manipulator with a full-state feedback law.

In order to test many of the controllers that have been designed, several exper-

imental beams and manipulators have been built. A one-meter-long experimental

arm with colocation was built by Truckenbrodt [TRU-1]. Various control laws were

tested such as output feedback and state-feedback using a reduced-order estimator.

In [USO-l] an optimal full-state feedback regulator based on a quadratic perfor-



mance index was designed for a two-link elastic arm. Other experimental arms that

have been built include the JPL beam [SC-l], [SC-2], the Lockheed Toysat beam

[BRE-1], [BRE-2], and the NASA Langley beam [MON-l]. JPL built a pinned-free

beam with colocated sensors and actuators and demonstrated active shape control,

active dynamic control, and state estimation.

All of the examples listed above use only colocation of the sensors and actuators.

Noncolocated systems often lead to non-minimum phase systems; that is, systems

with right half plane zeros. This is an undesirable feature that creates a difficult

control problem. Horowitz and Sidi [HOR-1] address non-minimum phase systems

but not for the case of a system having lightly damped elastic modes. In [EDM-

1], problems associated with control system design for elastic systems having

noncolocation are identified and optimal control designs using output feedback and

full-state feedback are evaluated in terms of robustness and performance.

A number of successful designs have been demonstrated for noncolocated

systems. The Galileo spacecraft [CHO-1], and the Orbiting Solar Observatory-8

(OSO-8), [YOC-1], [SLA-1], implement control designs for noncolocated systems. In

[BAU-l], [CAN-2], the feasibility of actively controlling the elastic vibration modes

of a lightly damped mechanical system has been demonstrated with noncolocated

position control. The tests were performed on the Lockheed flexible offset-feed

antenna and the Stanford four-disk system.

At Stanford, Schmitz [SCH-1] has recently completed end-point position feed-

back experiments on a very flexible beam with actuation at the pinned-end and

sensing at the other. He implemented a direct discrete Linear Quadratic Gaussian

(LQG) design and also a reduced-order LQG compensator design. Both controllers

yielded a four-fold improvement in bandwidth over what is typically achieved with



joint-angle feedback.

1.2.2 Adaptive Control

Adaptive control was initiated in the late 1950's when it was found that

high system performance under varying conditions is difficult to achieve with

constant linear feedback [KAL-l]. Significant strides have since been made using

primarily two approaches called MRAC and self-tuning regulator (8TR). Given a

deterministic system, MRAC drives the difference between the plant output and

the reference model output to zero asymptotically. An STR divides the problem of

controlling a stochastic system into a controller and an estimation scheme [EGA-l],

[AST-2]. A survey of the main results for adaptive control may be found in [AST-l],

[LAN-3]. In this research a deterministic system is to be controlled by an MRAC;

hence, the ensuing discussion will focus primarily on the history of direct adaptive

control.

Direct adaptive control was first designed in 1961 using the index minimization

method [WHI-1]. Improvements on the design rule were made in [DON-l], [WIN-

2] but by 1966 still none of them were globally stable. In 1966, Butchart and

Shackcloth [BUT-l] first suggested the use of a quadratic Lyapunov function which

was immediately applied to MR AC [PAR-lj. Other adaptive algorithms employing

the direct Lyapunov stability approach were developed by Monopoli for single-

input, single-output (SISO) systems [MO-1], [MO-2]. For multi-input, multi-output

(MIMO) systems satisfying Erzberger's perfect model following conditions [ERZ-1],

MRAC algorithms were also developed in [GIL-1], [POR-l], [WIN-1].

Aside from the direct Lyapunov method, two other approaches for stability

analysis have been applied to MRAC systems: Popov's Hyperstability Theorem

[POP-1], [POP-2], and the Kalman-Yakubovich Lemma [MO-4]. Landau was



the first to apply Popov's hyperstability criterion to MRAC design of continuous

systems [POP-1], [POP-2]. The same technique was used by Landau [LAN-1],

[LAN-2], and Bethoux [BET-1], to treat discrete-time MRAC problems.

The Kalman-Yakubovich Lemma has been used for stability analysis in [ION-

1], [MO-3], [MOR-1], [MOR-2], [NAR-l], [NAR-2], [NAR-3], and [SUZ-l]. In

[MO-3], Monopoli uses the lemma in conjunction with an augmented error signal

to eliminate pure differentiators when the reference model is not positive real.

Narendra, Valavani, and Morse [MOR-1], [MOR-2], [NAR-l], [NAR-2], [NAR-

3], design globally stable, asymptotic output tracking algorithms but under the

assumption that the relative degree of the plant transfer function is known. Similar

techniques were developed for discrete SISO systems by Narendra [NAR-3], lonescu

[ION-1], and Suzuki [SUZ-l]. A projection theorem was used by Goodwin [GOO-1]

to obtain a class of globally convergent adaptive algorithms for the multi-variable

discrete case provided that certain a priori knowledge of the plant is available.

The adaptive controllers mentioned so far all require many assumptions on the

unknown plant and the size of the reference model in order to ensure stability. In

1979, the Command Generator Tracker (CGT) theory was developed by Broussard

[BRO-1], for the model following problem with known parameters. This theory has

since led to some major developments in MRAC design.

Using the CGT law and a direct Lyapunov stability approach, Sobel, Kaufman,

and Mabius, [SOB-l], [SOB-2], [SOB-3], designed a direct MRAC algorithm that

forces the error between the outputs of the plant and model to approach zero.

Although the algorithm requires the same number of outputs and control inputs and

compliance with the condition of strict positive realness of the closed-loop transfer

function matrix, the reference model need not be the same size as the plant. In
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addition, no a priori knowledge of the plant is necessary. Bar-Kana [BAR-2] relaxed

the condition of strict positive realness to simply positive realness.

Positive realness [AND-l], [CHE-l], [KAL-2], [LAN-3], [LI-l], [LJU-l], [MO-4],

[NAR-4], [POP-1], [POP-2], is a strong condition that is very difficult to satisfy

for many systems. Wen and Balas [WEN-l], [WEN-2], [WEN-3], have relaxed the

condition even further by designing a "modified" MRAC scheme that requires only

the condition of "almost" positive realness. The algorithm has also been generalized

to infinite dimensional systems. Studies on the effects of unmodelled dynamics and

modal truncations on the stability of systems have been addressed in [BAL-2], [IOA-

1], [IOA-2], [IOA-3], [JOH-1], [ORT-1].

MRAC has been successfully applied to systems with colocated sensors and

actuators. In [IH-1] and [WAN-1] the planar model of the Space Station is controlled

with MRAC in simulation studies. At JPL a tuned feedback controller for an elastic

spacecraft, Galileo, has been designed [KOP-l], [MAC-l]. The success of the design

remains to be seen until the spacecraft is launched in 1986.

Direct MRAC is very attractive since it eliminates the need for a priori

knowledge of the system to be controlled. Successful application of this scheme to a

flexible manipulator with noncolocation is highly desirable especially when changes

are encountered in the reference trajectory and the tip mass. In this research a

study is made on applying direct MRAC to a flexible remote manipulator with

noncolocation. MRAC using various reference model tracking objectives is applied

to the flexible manipulator for several sensor configurations. The prominent issue

that is addressed is for what manipulator configuration and tracking objectives can

the almost positive realness condition be satisfied. This condition is extremely

difficult to achieve for a nonminimum phase system.



1.3 Outline

In order to satisfactorily analyze the properties of a flexible remote manipulator

with noncolocation and boundary control it is important to exactly model the

system. A detailed derivation of the model using a distributed parameter approach

is shown in Chapter 2 and features peculiar to the flexible manipulator are pointed

out. Chapter 3 presents MRAC algorithms using the CGT approach. Chapter 4 is

devoted to the application of the controllers derived in Chapter 3 to the manipulator

model described in Chapter 2. Various sensor configurations and reference model

objectives are tried and the results are discussed. A summary and recommendations

for future research are presented in Chapter 5.

1.4 Summary of Results

The results of this study include:

1. Nonadaptive model reference control of the flexible manipulator with noncolo-

cation is possible and gives satisfactory results.

2. MRAC of the manipulator with actuation at the pinned-end and sensing at the

free-end is not possible due to the positive realness condition.

3. MRAC -with two sensors and one actuator results in a bounded error but not

proper tracking by the manipulator tip.

4. MRAC with a reaction wheel and a sensor located at the tip of the manipulator

give excellent tracking results.
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CHAPTER 2

MODEL FORMULATION FOR A ONE LINK FLEXIBLE MANIPULATOR

2.1 Introduction

The main goal in this chapter is to acquire an understanding of the general

structure and fundamental characteristics of flexible manipulator dynamics. First

an exact infinite dimensional representation to evaluate the system analytically

is derived. Then a reduced-order model is obtained by choosing a finite number

of system modes which can be used to test the adaptive control algorithm in

simulation.

2.2 Model Description

The manipulator is represented as a uniform pinned-free beam of length L,

moving in the horizontal plane, as shown in Figure 2.1. Properties of the beam are

as follows: E is the Young's modulus of elasticity, 7 is the second moment of area,

A, of the beam cross-section, and p is the density per unit volume of the beam. At

the pinned-end an external torque T may be applied to create an angle 8(t) with

respect to the beam's neutral axis. A horizontal displacement of any point along

the beam's neutral axis at a distance x from the pinned end is given by u(t,x).

2.3 Derivation of the Equations of Motion

In order to obtain a partial differential equation (PDE) for the model shown

in Figure 2.1, apply Hamilton's principle [KAN-1]:

6 I (K - V)dt = 0 (2.1)
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Torque T(t)

Fig. 2.1 Flexible Manipulator Geometry

where 6 is the Kronecker delta, fj. and t-i are two arbitrary times (t\ < tz), K is

the kinetic energy, and V is the potential energy.

The kinetic energy of the beam is

2K = pA I ( — ) dx (2.2)
/ V dt /

Neglecting the effects of shear displacement for this model, the strain potential

energy is expressed as follows:

dx (2.3)

The external torque T contributes a potential energy of:

Va = -TO (2.4)

Energy dissipation of the system will be added later as a damping term in the modal

state space formulation.

Applying the Hamiltonian of (2.1), where Va + Ve is the total potential energy

V, the following fourth order homogeneous PDE is obtained:
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with the non-homogeneous boundary conditions:

u(*,0) = 0 (2.6)

El = T(t)
x=0

El
dx*

= 0
i=L

El
dx3 = 0

x=L

The dynamic equations describing the motion of the flexible manipulator are given

by the fourth order PDE (2.5) with its four boundary conditions (2.6). Next these

equations shall be solved in a manner that will result in a modal state space form.

2.4 Solving the Equations of Motion

To solve the equations of motion (2.5), (2.6), apply a method proposed by

Meirovitch [MEI-1] whereby a homogeneous PDE with non-homogeneous boundary

conditions is transformed into a non-homogeneous PDE with homogeneous bound-

ary conditions.

Assume a solution of (2.5) in the form:

u(t ,x)=v(t ,x)+h(x)T(t)

This gives boundary conditions for v(t,x) as

v(t,0) =-h(0)T(t)

El
z=0

T(t)

(2.7)

(2.8)

z=0
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dx* x=L dx* _x=L

C?*3
 x=L d*3 s=L

To render the boundary conditions for the variable v(t,x) homogeneous, h(x) must

satisfy the following equations:

h(0) = 0

rd*h(x)
El-

El

dx*

d*h(x)
dx2

= 1
x=0

= 0
x=L

EI
dx*

= 0

x=L

Equation (2.9) may be written as:

d*h(x) 1 /x2 2x
dx* EI\L* L ^

In view of (2.9), (2.10) has the solution

1 / x4 x3 x*

where h(x) is zero at x = 0.

The transformed problem consists of the nonhomogeneous PDE:

and the homogeneous boundary conditions:

v(*,0)=0

d*v(t,x)
EI

dx*
= 0

x=0

(2.9)

(2.10)

(2.11)

(2.13)
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El
d*v(t,x)

= 0
*=L

El
d3v(t,x)

dx3 = 0
z=L

In order to solve (2.12), (2.13) by using modal expansion, first use modal

analysis to obtain a solution to the eigenvalue problem for the flexible modes that

consists of the differential equation:

El
dx*

with the boundary conditions:

El

El

d*<f>n(x)
dx*

= 0
z=0

El

dx*

d3<f>n(x)

= 0
x=L

dx3 = 0
x=L

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

where <f>n represents the infinite set of natural, orthogonal mode shapes of the system

with their associated natural frequency, wn.

The general solution of equation (2.14) is:

(j>n (x) = C\ sin knx + C2 sinh knx + C3 cos knx + C4 cosh knx (2.19)

When dealing with end conditions it is useful to write (2.19) in the following

equivalent form:

n(x) = A(cosknx + coshknx) + B(cosknx — coshknx)+

C(s\n knx + sinh knx) + D(sin knx — sinh knx)
(2.20)
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From (2.15) and (2.16) obtain A = 0 and B = 0, respectively. The remaining linear

system obtained from (2.17) and (2.18) is:

[ -sin knL + sinh knL - sin knL - sinh knL j |"Cl _ J_ fol , .
- cos knL + cosh knL - cos knL - cosh k n L\ \D \ El [ 0 I (' '

(2.22)

Solving for the coefficients two relationships are obtained:

C _ sin knL + sinh fcn.L
I? — sin knL + sinh fcn.L

C _ cos fcnl/ + cosh knL
D — cos knL + cosh knL

Therefore, the frequency equation is given by

tan knL = tanh knL (2.23)
4

where the eigenvalues obtained by solving (2.23) are approximately:

(n+iW
kn » V

 L
4 , n = 1,2,3,...,00 (2.24)

From (2.14), (2.20), (2.24), the infinite set of natural, orthogonal modes <£*(z) and

the associated natural frequencies u>n are:

^n(x) = [(1 + an) sin fcnx+(an-l) sinh knx)}, n = 1,2,3,... ,00 (2.25)

where an = —

^n= ? »/=-, n= 1,2,3,...,00 (2.26)

Normalize the eigenfunctions (2.25) so that the orthogonal modes satisfy the

relation:
FL

pA I 4>n(x}<j>m(x}dx = 6mn\ m,n=l ,2 ,3 , . . . ,oo (2.27)
Jo
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After solving (2.27) for the normalization constant the flexible normalized eigen-

functions become [BIS-l]:

[(1 + on) sin kx + (an — 1) sinh kx] (2.28)

Equations (2.26), (2.28) are the solution to the eigenvalue problem for the

flexible modes. A pinned-free beam has one rigid body mode, rotation about the

hinge, that must also be taken into account. Assuming no gravitational force field,

a rigid body displacement added to the motion does not affect the potential energy;

hence, for a rigid body mode, the eigenvalue equation becomes [MEI-l]:

which has the general solution:

<f>o(x) = DI + D2x

To satisfy the homogeneous boundary conditions:

= 0

D4x
3

El
dx*

= 0
*=o

El

El

dx*

d3<f>0(x)

= 0
x=L

dx3 = 0

x=L

the general solution (2.30) becomes:

(2.29)

(2.30)

(2.31)

<f>o(x) = (2.32)
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Upon normalizing (2.32), the rigid body eigenfunction may be written as:

(2.33)
» j-i

with the corresponding natural frequency:

wo = 0 (2.34)

Now that the natural eigenfunctions of the system have been obtained, use modal

expansion to assume a solution of (2.12) in the form:

oo

(2.35)
n=0

where rjn(t) are time-dependent generalized coordinates. Introducing (2.35) into

(2.12) the following is obtained:

n=0 (2.36)

Since <j>n(x) and un satisfy (2.14) and (2.29), (2.36) reduces to:

, IpA <J4M*)rm PA
nl|"w ~ * n ( } ~ ~~~ ( } ~ ( ] ~ ~ (2'37)

n=0 L

Equation (2.37) contains all the generalized coordinates rjn(t) so, in effect, it is a

coupled equation. To uncouple it multiply both sides of the equation by <j>m(x)

and integrate with respect to x over its domain. If this is done and in addition the

notation
fL

Hn = I <}>n(x}h(x}dx (2.38)
Jo
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dx (2.39)

is introduced, an infinite set of uncoupled ordinary differential equations is obtained:

+ uhn(t] = _H.T(t] _ Hn (2.40)

Equation (2.40) is simply the modal representation of the transformed non-

homogeneous PDE (2.12).

In order to implement an adaptive control scheme on this system, a state

space representation is desired in terms of control torque T(t) only — not T(t) and

dtj ' as in (2.40). This can be done by performing the following transformation.

Assuming zero initial conditions, take the Laplace transform of (2.40):

£[(2.40)] = s2fjn(s} +u2
nr)n(s) = -H&(*) - s*Hnf(s} (2.41)

Solve for T(s) to obtain:

*M = '^."jffff (2.42)

ibefihe zn(s) as

then

nzn(t) (2.44)

*MV (2-45)

Solve for *$*) in (2.44) and substitute into (2.45) to obtain:

r)n(t) = (Hnul - H^)zn(t) - HnT(t) (2.46)
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A solution to the original PDE (2.5) may now be written in terms of the

generalized coordinates r?n(f) (2.46) and the eigenfunctions of the system <j>n(z)

(2.28), (2.33). In (2.7), a solution of (2.5) was assumed in the form

*(t tx)=v(t tx)+h(x)T(t) (2.47)

From (2.7), (2.11), and (2.46) it follows that

u(t,x) =
60

n=0
oo oo

= y ^(Hnb}n — Hn)zn(t)(}>n\X) — y ^ Hn<f>n[x)T(t) + /i(i)T"(t)
n=0 n=0

The expansion of h(x) is JI^Lo Hn<t>n(x)\ therefore,

(2.49)
n=0

leaving
oo

.2u(t, x) = (Hnu*n - H*n)zn(t)<t>n(x) (2.50)
n=0

For the expansion (2.48), both strong and weak solutions u give uniform and

pointwise convergence for u and u'. If u" is continuous, then the expansion

53n^=o^»(0^»(z) + ^(^^(O ak° converges uniformly and pointwise [STR-l]. Al-

though the difference between the weak and strong formulation is mentioned, it is

important to note that both formulations ultimately result in the same dynamic

equations.

Since (2.50) is a solution of u(t, z) in terms of zn(t)t equation (2.44) is an exact

representation of u(t,z). In a flexible structure such as the manipulator, structural

damping of about .5 percent is inherent. This may be heuristically represented by

adding the damping term 2ftjn ^ t° (2.44) as
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where f is the damping coefficient.

The state-space form of (2.51) is then:

dz(t)
dt = Az(t] + BT(t) (2.52)

with z(t), A, and B as follows:

*(«) =

zo(<)
o(
t

*oo(«)

(2.53)

0 1 0
0 1
-

0 0 1
oo ••

(2.54)

roi
i
o
i

0
.u

Output y(t) is obtained from (2.7) and (2.50) as:

= v(t,L)+h(L)T(t)

(2.55)

(2.56)

n=0



The term H* may be expanded with the eigenfunction <t>n(x) as

U4h(x)
\ dx4 '^n(

>(*) dx2
dh(x)

dx2

rfx3

Prom the boundary conditions for h(x)t (2.9), obtain

Hence, the output y(<) may be expressed as

21

(2.57)

(2.58)

(2.59)

In state-space form,

DT(t] (2.60)

with

(2.61)

where a is the weighting factor of the position versus rate measurement.
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is:

An equivalent realization for the B and C matrices given in (2.55) and (2.61)

dx
0

(2.62)

= [<t>0(L) a<j>0(L) a<fn(L) (2.63).

For the simulation studies, the flexible manipulator system matrices will be repre-

sented as in (2.54), (2.62), and'(2.63). .

2.5 Characteristics of the Model

It is important to recognize a few fundamental characteristics of the flexible

manipulator model that have just been derived. Look at the mode shapes of the

pinned-free beam in Figures 2.2 - 2.7 as given by equations (2.28) and (2.33). Two

important observations can be made:

1. The slopes of the mode shapes at th^ pinned end -^ become larger for
z=0

increasing modal frequencies.

2. The signs of the modal deflection <f>n(L) alternate from one mode to the next

due to the nonminimum phase property of the system.

: These characteristics will be shown to have a substantial effect on the system's

performance under adaptive control. ' ;
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Fig. 2.7 Pinned-Free Flexible Mode Shape #5,
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CHAPTER 3

MODEL REFERENCE ADAPTIVE CONTROL

3.1 Introduction

In this chapter direct model reference controllers are developed for the flexible

manipulator. The Command Generator Tracker (CGT) theory, the basis of the

controllers, is introduced first. A nonadaptive model reference controller is then

designed using CGT theory and explicit knowledge of the system plant. Positive

realness, a condition that must hold for MRAC of a system, is defined before finally

developing adaptive control and "modified" adaptive control schemes.

3.2 Command Generator Tracker Theory

The plant under consideration was developed in Chapter 2 as

= Az(t) + BT(t]

y(t) = Cz(t) + DT(t)

Taking a finite-dimensional plant, it is desired to find a finite dimensional controller

so that the output y(t) tracks a desirable output trajectory ym(t). This output

trajectory is generated by a finite dimensional reference model

^j®- = Amzm(t) + BmTm(t) (3.1)

ym(t) = Cmzm(t); *m(0) = zm0, t>0

with the only requirement that the model output is of the same dimension as the

plant output. The order of the model may be much smaller than the order of
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the plant which makes this method 'very attractive as far as implementation is

concerned.

Since the dimensions of z and zm are not the same, the error signal must be

created via the CGT approach as developed in [BAL-3], [WEN-lj. We assume there

exists an "ideal" intermediate system:

(3.2)

t > 0

Provided that the state space dimension of the reference model is not bigger than

the dimension of a completely controllable and completely observable subsystem of

the plant under piecewise constant Tm, the following exact model matching CGT

condition is usually satisfied [WEN-l]:

TM (3-3)L - i ' W J Lo21 o22 j [Tm(t)\

y*(t) = y m ( t ) , V t > o (3.4)

where Sn, 5i2, 52i, 522 are bounded linear operators. This condition is not always

easily verified; A sufficient but not necessary condition for CGT has been proposed

in [BAL-3] and is described below.

Assume that z*(t) and T*(t) are linearly related to the model state vector

zm(t) and command vector Tm(t) as in (3.3):

(3.5)

(3.6)
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Since Tm(t) is constant, differentiation of (3.5) with respect to t leads to:

and

= A

SnBmTm(t)

BS2l)zm(t)

B (S7lzm(t)

(3.7)

= Cmzm(t)

Equations (3.7) and (3.8) may be rewritten as

pi r c o i# SH *i2 .
0 J [S2i £22]

A B
C

5n 0 | | Am Bn

0 I \ \ C m 0

(3.8)

(3.9)

If (3.9) is satisfied then the CGT condition (3.3) holds. In order to verify (3.9), the

following manipulation is made: Let

\A B}~^_ fnn n12] _ \A-I(I-B(CA-IB)-ICA~I) A-IB(CA-IB)~I]
[c o j ~ [ n 2 1 n 2 2 J ~ [ (CA~1B)-1CA-1 -(CA-IB}~I J

(3.10)

Then (3.9) can be written as

Su sl2
S21 5221

r T r- rn" °i f~i ° °J[
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Equation (3.11) is of the form S = F(S); hence, if a fixed point of F exists, then

(3.3) is satisfied.

However, it has been demonstrated that in some cases the CGT condition

(3.3) is satisfied even though it is impossible to satisfy the sufficient condition (3.9).

A heuristic justification for this is as follows [WEN-l]: A stabilizable, detectable

system can be decomposed into

(3.12)

where g(t) = P~lz(t) is a linear coordinate transform, (A\ tB\,C\) is a finite-

dimensional minimal system and A% generates an exponentially stable system.

Assuming that the dimension of A\ is the same as that of Am, Am has distinct

eigenvalues, and Tm(t) is a constant input, choose T(t) = Gqi(t) +v. The constant

gain G is chosen such that the eigenvalues of (Ai + B\G) are exactly the same as

the eigenvalues of Am. Another coordinate change gives

hi 72 MO

where the eigenvalues of AI and (Ai+BiG) are the same and likewise the eigenvalues

of A 2 and A^ are the same. If 2:2(0) is chosen to be — AJ1/^ then, 0:3 will be

— A2~
1/?2V for all t > 0. Y is thus a linear combination of e~*ft and a constant

where At- represents the eigenvalues of Am. With proper choice of T(t) and xi(0),

the CGT condition can be satisfied provided that ym does not contain any modes

that do not appear in y. In [WEN-l] additional strategies are developed for the
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cases when ym does contain modes not present in y and when the reference model is

chosen higher than the largest controllable-observable subsystem of the plant. For

an example of how to verify the CGT condition using the technique described in

(3.12)-(3.13) see Appendix A.

3.3 Nonadaptive Model Reference Control

Before developing the direct adaptive control law which uses no a priori

knowledge of the plant parameters, the nonadaptive control law is investigated.

Since the dimensionality mismatch between the plant and the reference model has

been accounted for by the intermediate system introduced in (3.2), the following

error system can now be created:

e(t)=z(t)-z*(t)

*o-zS,. t>0 (3.14)

e y ( t )=y( t ) -y*( t )=Ce( t )

The objective of model reference control based on the error system (3.14) is to find

a bounded control signal that drives ey(t) to zero asymptotically and keeps e(t)

uniformly bounded. A derivation of the control law follows.

Assume (A,B,C) are known in (2.52), (2.60), and it is possible to find a static

output feedback gain G such that (A + BGC) is strictly stable. Find £31 and £22 *n

(3.3) by solving for the CGT condition. With these parameters the model following

nonadaptive control law may be constructed:

(t) (3.15)
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Substituting (3.15) into (3.14) and applying the CGT conditions (3.3) and (3.4),

the following error equation is obtained:

= Ae(t) + BG (y(t) - ym(t)) + B (S2lzm(t) + S22Tm(t) - r

= (A + BGC)e(t)

Since (A + BGC) is strictly stable by assumption, t(i) — * 0 as t — > oo and the

control objective is satisfied.

Explicit knowledge of the plant is required to actually compute G, £21, and

#22 *n (3.15). Since the plant is generally not known, an adaptive control law may

be derived based on (3.15) after the concept of positive realness is defined. In the

nonadaptive control law (3.15) it is sufficient for (A + BGC) to be just output

stabilizable; but, in adaptive control the positive realness condition must also be

satisfied.

3.4 Positive Realness
« • '

The system (A,B,C,-D), Ae#nxn, BeRnXm, Ceflmxn, DeRmxm is "strictly

positive real" if there exists PeRnXn, positive definite, WtRn*m, QeRmXn and

e > 0 sufficiently small such that [AND-l]:

QTQ) (3.17)

If (3.17) is replaced by

ATP + PA = -QTQ
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then (A, B, C, D) is "positive real."

This definition is equivalent to the frequency condition of the Kalman-

Yakubovich Lemma [LI-lj:

Re\WT(C(juIr-A)- lB + D)W]>0, VWfCm , Vwefl (3.18)

For the adaptive control law presented in the next section, it is required that the

closed-loop system be positive real. Hence, in (3.18) A is replaced by Ac = A+BGC.

To actually verify positive realness of a system, (3.18) says that the Nyquist plot

of (Ae,B,C,Q) must be only in the closed right half plane. A necessary condition

that must also be satisfied for positive realness is that

CB > 0 (3.19)

3.5 Model Reference Adaptive Control

The objective of model reference adaptive control is to find a bounded control

signal that drives ey(t) as in (3.14) to zero asymptotically and keeps e(t) uniformly

bounded. This objective is similar to that of nonadaptive control but now no a

priori knowledge of the plant parameters is required.

Assuming that (A + BGC) is stable and (Ae,B, (7,0) is strictly positive real,

an adaptive version of (3.15) may be constructed [SOB-2]:

= G(t) (y(t) - ym(t)) + S2l(t)zm(t) + S22(t)Tm(t) (3.20)

where G(t), Szi(t), S^(t) are the adaptive estimates of G, S^i, SM respectively.

Define

= G(t) - G (3.21)
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L(t) = S(t) - S

= [zm(t}T Tm(t)T]T

S =[ S^l $22 ]

From (3.14) and (3.20) the following closed-loop dynamic equation is obtained:

—& = (A + BGC)e(t) + B&G(t)ev(t) + BL(t)w(t) (3.22)
at

ey(t) = Ce(t)

Applying Lyapunov's Direct Method to select an adaptive strategy that will stabilize

(3.22) yields [WEN-1]:

dG(t) _
~

dS(t) _ dL(t) _
-dT ~ ~dT -

where FI, F2 are constant positive definite matrices of dimension m x m. LaSalle's

Theorem [LAS-1] is then used to verify that e — > 0 and ey — »• 0 as t — »• oo. Since

G(i)y ^21 (t), ^22(0 are uniformly bounded the control objective is satisfied.

A modification of the adaptive algorithm (3.23) is made by Wen [WEN-l] by
*

adding an extra term to generalize the algorithm to infinite dimensions and to add

robustness:

w (3.24)
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However, this modification weakens the global asymptotic stability to Lagrange

stability. The convergence rate is globally exponential with rate A but strict positive

realness of (AC,B, C, 0) is still a requirement.

In [BAR-1] the control law (3.20) is modified in order to relax the condition on

(Ae,B, C, 0) from being strictly positive real to positive real. The control (3.20) is

now:

T(t) = G(t) (y(t) - ym(0) + S21(t)zm(t) + Sn(t)Tm(t) + K (y(t) - ym(t)) (3.25)

where K is a. positive definite constant matrix. If the positive realness and CGT

conditions are satisfied then asymptotic output stabilizability is acheived.

Adaptive control laws (3.20), (3.23), (3.24), and (3.25) are well suited for

systems that are static output feedback stabilizable and positive real. However,

these restrictions rule out the possibility of adaptively controlling many interesting

systems that are "almost" feedback positive real. "Almost" positive real means

that there exists an output feedback gain G that is -d-stabilizing with d > 0 for

(A,B,CyO) where -d-stabilizing means the Nyquist plot is in the left half plane

a very small distance d from the imaginary axis. This distance "d" is called the

"positive realness index" (PRI). In [WEN-l] a "modified" adaptive controller is

derived to allow systems of this type to be successfully controlled (see Figure 3.1):

T(t) = G(t)ey(t) + S(t)w(t) - hev(t) (3.26)

where

dS(t)
dt
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The adaptive control laws (3.26), (3.27) are based on the assumption that the

following statements are true:

1. There exists GeRm*m that is -d-stabilizing, d > 0.

2. CGT condition (3.3) holds.

3. The reference model is stable.

When these conditions are satisfied a robust controller with Lagrange stability is

obtained. Parameters 11,73, £, and h are constants which must be chosen to satisfy

the following conditions: Given PRI sufficiently small,

(3.28)

dg < O.J

01

where g is the upperbound on the feedback gain G such that (A + BGC) is

exponentially stable and Mw is the uniform upperbound of w. Positive definite

parameters Fj, TZ affect the ultimate bound of the norm e. The larger FI, F2 are

chosen, the faster the rate of convergence will be between the outputs y and ym.

For experimentation purposes in this project, an additional MRAC controller

is derived based on (3.23) and (3.26) for a system with two sensors and one control

actuator. The output of the sensor that satisfies both the positive realness and CGT

conditions goes to zero asymptotically. For the sensor that satisfies only the CGT

condition, the output stays bounded. The derivation is presented in Appendix B

and results in the following MRAC law:
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T(t) = G(t)(y(t)-ym(t)) + S2l(t}zm(t)+S22(t)Tm(t}-h(y2(t)-ym,(t)) (3.29)

dt ~ dt

In the simulation results that follow the control algorithms presented in this

chapter are implemented. The choice of the controller used in each case depends

on which positive realness condition is satisfied by the system.
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CHAPTER 4

SIMULATION RESULTS AND DISCUSSION

4.1 Introduction

A state-space representation for a flexible beam with actuation at the pinned-

end and sensing at the free-end was formulated in Chapter 2. In this chapter, five

different simulation cases of model reference control with the flexible manipulator

are presented. Using a fourth order model of the system with a desired reference

model, nonadaptive (case 1) and adaptive (case 2) model reference controllers are

designed and simulated. In case 2 the MRAC scheme is not capable of controlling

the manipulator. Until recently all adaptive control laws have been designed on the

basis that the system being controlled is minimum phase. In [MOR-3] an adaptive

control law has been stated for a first order, non-minimum phase system that has

a relative degree of one in the transfer function. Although this algorithm may be a

step in the right direction, the result is a highly complex, nonlinear controller.

Due to the inability to adaptively control the noncolocated, nonminimum phase

manipulator system that does not satisfy positive realness, two additional model

configurations are constructed and tested with MRAC. Case three has an actuator

at the pinned-end controlling two sensors that are located respectively at the tip

and one meter from the pin. The next two cases have a torque producing reaction

wheel located close to the sensor at the tip so that positive realness is satisfied.

Case 4 has the reaction wheel perfectly colocated with the sensor and case 5 has

the reaction wheel located one meter from the sensor.

After stating the parameters chosen for the manipulator model, simulation

results are presented and discussed for each case described above. All simulations
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are performed on an IBM-PC-AT computer with PC-MATLAB [PCM-l], a software

package designed by the Mathworks, Inc.

4.2 Plant and Reference Model Parameters

In order to simulate the manipulator model and implement the control algo-

rithms, the parameters as shown in Table 4.1 were chosen. These values are con-

sistent with experimental data that has been obtained from a pinned-free, flexible

beam experiment presented in [SCH-l].

TABLE 4. I
Model Parameters

Parameter

L=arm length

A=x-sectional area

E=modulus of elasticity

I=moment of inertia

p =density/unit volume

f =structural damping

a = weighting factor of
position vs. rate

measurement

Value

4.0m

0.0016m2

7.311 xl010^r-m2

1.0 x 10~8 m4

2699.0 kg/m*

0.5%

.5 (case I)
0.05 (cases 2,3,4,5)

Now that Et /, p, A, and L have been chosen, the natural frequencies of the

manipulator system may be calculated from (2.26) (shown below for convenience):

2

C k \ EI
f) M* n = °'1'2'-'00

In Table 4.n the eigenvalues, kn, and natural frequencies wn in rad/sec and /„ in

Hz are listed.
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TABLE 4. H
Natural Frequencies

mode # (n)

0

1

2

3

4

5

*«

0

3.927

7.069

10.210

13.352

16.493

u>n (rad/sec)

0

12.542

40.637

84.773

144.976

221.210

MHz)

0

1.996

6.467

13.492

23.074

35.207

Using the parameter values in Table 4.1 and Table 4.II the sixth order state

space model matrices may be obtained based on equations (2.52)-(2.55), (2.60),

(2.62), and (2.63):

*'M = AM(t) + BT(t) (4.1)dt

y(0 = Cz(t)

where

*(') =

zt(t)

A =

0 1
0 0

0

0
0 1

-157.3 -.1254

0 1
1651.4 -.4064

(4.2)

B = [0 36.6543 0 157.1943 0 299.9147 f (4.3)
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C = [.866 a.866 -1.3759 a(-1.3759) 1.4165 al.4165] (4.4)

This model is used in cases 1 and 2. In case 3 the same system is used but

with an additional row in C to represent the sensor located at one meter from the

phi, <£(l):

P t*e>e* _ o * » * > •« owr/\ _/ * *»*»rrv\ i At &f _ 4 A* f*i» ~

(4.5)c==[.866 a.866 -1.3759 a(-1.3759) 1.4165 al.4165
.2165 a.2165 .7778 a.7778 .9854 a.9854

Cases 4 and 5 have the actuator placed at the tip and one meter from the tip,

respectively. Thus, the systems they use are (4.1) and (4.4) with the B matrices:

case 4: B = [0 36.6543 0 -228.7695 0 423.6336 ]T (4.6)

case 5: B = [Q 36.6543 0 -201.5686 0 202.6958 ]T (4.7)

Although the ultimate interest is in the position of the manipulator tip, velocity

must also be included in the output matrix C in order to obtain output feedback

stabilizability. This is a requirement for both the nonadaptive and adaptive

controllers. By choosing parameter a, the weighting factor of position versus

rate measurement (Table 4.1), very small, the majority of the torque controller

is devoted to satisfying the position requirement. Parameter f, the percent of

structural damping present in the manipulator, has been chosen to represent the

amount of damping typically found in flexible space structures.

To implement model reference control on the manipulator model created with

the parameters hi Tables 4.1 and 4.II, an appropriate reference model must also

be constructed. For all five simulation cases, the desired trajectory that the

manipulator tip is to track is sin5t. Hence, the reference model is chosen as follows:

= Amzm(t] (4.8)
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where

M r*» iWi fo'9 It I ^ I j /A I 9 =: I
5(1) ' 2m0 =

-[
dt

0
-25

ymW = cmzm(t) (4.9)

where

Cm = [l a]

The output ym is equal to sin 54 + 5acos5t where 5acos5£ is included to control

the velocity component in the plant output y(t).

For case 3 there are two outputs due to the two sensors. A. requirement on the

reference model is that it must have the same number of outputs as plant outputs.

If the manipulator tip is commanded to track sin 5t it is reasonable for the sensor

at one meter from the pinned-end to track a motion with a smaller magnitude

and a phase shift of 90°. In this simulation the second sensor is commanded to

track a trajectory of .5cos5t. This may be represented by combining (4.8) with the

following for case 3:

3/m(0 = Cmzm(t) (4.10)

where

c -\ l °1Cm~ [o o.ij

4.3 Case 1: Nonadaptive, Noncolocated, 6th Order System

Before attempting model reference adaptive control, design and test the non-

adaptive controller (3.15) presented in Section 3.3 for the sixth order plant (4.1),

(4.2), (4.3), (4.4):

T(t) = G (y(«) - ym(«)) + S21zm(t) + S22Tm(t)



43

Gain G is chosen so that output feedback stabilizability of the plant is obtained.

Matrices S^i an^ £32 are determined by satisfying the CGT condition described in

Section 3.2. A detailed derivation of S^\ and S22 (see Appendix A) results in the

following nonadaptive model reference controller:

T(t) = -.001 (y(t) - ym(t)) + [ -.3791 -.0003 ] zm(t) (4.11)

Since the CGT and output feedback stabilizability conditions are satisfied it

is expected that the controller will perform well in simulation. Figure 4.3 shows

that the tip position of the manipulator tracks the desired trajectory of sin 5t with

a small error of .1 within 3.5 seconds. The implications of these excellent results is

that a higher order system can be successfully controlled with nonadaptive model

reference control as long as CGT and output feedback stabilizability conditions are

satisfied.

Although successful control has been demonstrated for this case, the issue of

robustness is still of concern. In (4.11) the static output feedback gain, G, is chosen

very small, -.001, in order to achieve output feedback stabilizability. This results in a

small stability margin and hence little robustness. The tracking results for this case

are comparable to those shown in [SCH-l] for a similar manipulator where dynamic

feedback is used to achieve a very robust system. It is highly probable that dynamic

output feedback used with nonadaptive model reference control would result in a

more robust system for this case. However, a limiting factor will be the computation

of the CGT matching conditions.

There are several drawbacks to nonadaptive control that should be mentioned.

The most significant drawback is that in nearly all control situations, exact

knowledge of the plant is not available. To design this nonadaptive controller,
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exact knowledge of the plant is necessary. If it is desired that the reference signal

be tracked well in less than 3.5 seconds, nonadaptive control has no means of tuning

the gain parameters for a quicker response in this case. Any disturbance or change

in the reference model would require a change in the S matrix which is not possible

with this nonadaptive controller. In addition, as can be seen by looking at Appendix

A, the calculations required to determine the S gains are very tedious — especially

when a large order plant is used.
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4.4 Case 2: Adaptive, Noncolocated, 6th Order System

This case is a test of the primary objective in our study: to adaptively control

the tracking of a flexible manipulator tip that has a noncolocated actuator located

at the opposite end of the arm. Successful MRAC is highly desirable for this

flexible manipulator because quicker tracking of the reference signal and robustness

to disturbances and changes in the reference model would be possible. As noted

in Section 3.5 there are three major requirements that must be satisfied before

MRAC will work. Not only must the plant satisfy the CGT condition and be

output feedback stabilizable, but the quadruplet (A + BGC,JB,C,0) must be at

least "almost" positive real.

It is possible for the plant (4.1), (4.2), (4.3), (4.4) to satisfy the CGT condition
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and output feedback stabilizability as shown in the previous section. The question

that remains is can "almost" positive realness be obtained at the same time! A

great deal of time has been spent trying to simultaneously satisfy these conditions

for this system. The necessary condition CB > 0 is satisfied and "almost" positive

realness of (A + BGC, B, C,0) is also satisfied but not for an output feedback gain

G that stabilizes the system. By looking at the B and C plant matrices (4.3), (4.4),

a key point can be made:

B = [0 36.6543 0 157.1943 0 299.9147 ]T

C = [.866 a.866 -1.3759 a(-1.3759) 1.4165 a.4165]

The pinned-free flexible beam with boundary control and end-point sensing has an

eigenfunction that is composed of sines and hyperbolic sines (2.28). As n goes from

1 -* oo, the C parameters, <j>n(L}, alternate in sign like a sine series. Negative

output feedback therefore has an opposing effect on the system that causes some

poles to cross over the imaginary axis into the right half plane causing instability.

Only a very small G will stabilize the system by placing the poles very close to the

imaginary axis in the left half plane. Unfortunately, for G's of this small magnitude,

"almost" positive realness of the system is impossible.

Although it is not possible to satisfy the three conditions required for MR AC,

controllers (3.25) and (3.26) were designed and implemented in simulation. Many

combinations of controller parameters were tested and as might be expected, the

system went unstable.

The results obtained for this case, albeit not surprising, are disappointing. It

is conceivable that if the manipulator were stiffer than the one used in this project,

then MRAC of simply the rigid body mode would be possible. Perhaps an upper
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bound on the flexibility possible for successful MRAC of a noncolocated system like

this one can be found in future research.

In the next three sections different sensor-actuator configurations for the

flexible manipulator are tested with MRAC in an attempt to successfully attain

our tracking objective.

4.5 Case 3: Adaptive, Two Sensor/One Actuator, 6th Order System

The motivation for this case is that the addition of one sensor to the manip-

ulator system of Section 4.4 may allow MRAC to be successful. A sensor located

at one meter from the actuator at the pinned-end of the arm results in the model

(4.1), (4.2), (4.3), (4.5). Define Ci and C2 to be the first and second rows of C

in (4.5), respectively, where each row of C represents a different sensor. The sys-

tem (A, B,Ci,Q) with the sensor at the tip is called "system 1" and the system

(.A, B, Cj, 0) with the sensor near the pin is "system 2." The objective for this setup

is for the plant to track the signals produced by the reference model (4.8) and (4.10).

System 1 is to follow sin5t and system 2 is to follow .5 cos 52.

In Appendix B an adaptive control law similar to (3.23) and (3.26) is derived

that allows for two sensors and one actuator. The algorithm is derived keeping

in mind that both systems satisfy the CGT condition but only system 2 is

simultaneously output feedback stabilizable and positive real. Stated below is the

control law derived in Appendix B:

T(t) = G(t)ev(t) + S(t)w(t) -h(yz(t) - ym,(*)) (4-12)

where

[G1(t) G2(t)}
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Since system 1 is not positive real but system 2 is, the algorithm only guarantees

that ||eyi || is bounded and ||eya || —> 0. Simulation results of control law (4.12) with

plant (4.1), (4.2), (4.3), (4.5) and reference model (4.8), (4.10), are presented in

figures 4.5 - 4.8. The controller parameters were chosen as FI = ?2 = 100 and

h = 20. Comparing the plots on figure 4.5, it can be seen that the tip position

tracking is at least bounded but it still does not track the desired trajectory of

sin 5t. The position of the manipulator at sensor 2 tracks the trajectory of .5 cos 5t

extremely well (Figure 4.6). This is because system 2 satisfies the positive realness

condition.

Again, as in Section 4.4, the limiting factor in achieving the desired tracking

with the manipulator tip, is the inability to satisfy the positive realness condition.

Various controller parameters and reference models were again implemented in

simulation but without much success. If it were somehow possible to slow down

the convergence of eV3 to zero (see Figure 4.8), it may be possible to achieve better

tracking results with system 1. The reason for this is made clear by looking at the

control law (4.13). When eV3 reaches zero, no more adaptation takes place in the

controller since *%£•*-, ^&, and *%& equal zero.

The last two sections propose different sensor-actuator configurations that

satisfy'the positive-realness condition.
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4.6 Case 4: Adaptive, Colocated, 6th Order System
with Reaction Wheel

As demonstrated in the previous cases, MR AC of the flexible manipulator is

not possible when positive realness is not satisfied. If the actuator is moved close to
•9

the sensor at the tip of the beam then positive realness is finally satisfied. At first

the hesitation to this approach is the practicality of locating a torquing actuator

at the free end of a flexible manipulator. As Sir Isaac Newton said, "To every

action there is always opposed an equal reaction;..." [NEW-l], When the actuator

is located at the pinned-end, actuating torque is produced by a reaction against the

basebody inertia. A torque at the free end can be produced by a reaction against

a rotating inertia. This requires a reaction wheel type actuator similar to those

used extensively for spacecraft attitude control. In space applications of a flexible

manipulator the reaction wheel actuator may ultimately prove to be better than the

pinned-end actuator as far as disturbances to the spacecraft go. The actuator at

the pinned-end may impart a large, undesirable moment to the spacecraft whereas

the reaction wheel may produce only a small linear force.

For this case a reaction wheel is placed at the tip with the sensor-system (4.1),

(4.2), (4.4), (4.6). Again, the objective is to control the tip position so that it follows

the trajectory produced by the reference model (4.8), (4.9). After verifying that

this system simultaneously satisfies the CGT condition, "almost" positive realness

and output feedback stabilizability, the following control parameters were chosen in

accordance with (3.28): TI = T2 = 100, 71 = 2, 72 = 20, k = 20, and £ = 0.05.

The resulting "modified" adaptive controller (3.26) is:

T(t) = G(t)ey(t) + S(t)w(t) - 20ey(t) (4.14)
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= -2G(t) - 100t,(t)c?(*) -

where

= -205(t) -

This adaptive controller was implemented with the manipulator model (4.1),

(4.2), (4.4), (4.6) to obtain the results shown in figures 4.0 - 4.13. At last, quick,

precise tracking of the reference model trajectory sinSf is obtained by the tip of

the flexible manipulator! By comparing figures 4.11 - 4.13, it can be seen that the

majority of the error, ey(t), is due to the velocity component of the plant output.

By colocating the actuator and sensor it has been shown that MRAC of the

flexible manipulator is now possible. An important question still needs to be

answered before a claim is made that this setup is a viable solution. How far

can the reaction wheel be located from the sensor while maintaining satisfactory

tracking results? Perfect colocation is difficult to achieve and in some cases may

not be desirable. This question is addressed in the next section.
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4.7 Case 5: Adaptive, Noncolocated, 6th Order System
with Reaction Wheel

In the previous section it was demonstrated that excellent tracking results can

be obtained for MRAC of a flexible manipulator with a colocated sensor and reaction

wheel. However, perfect colocation is difficult to achieve and in some cases may not

be desirable. For instance, if the manipulator has an end effector attached to the

tip, a reaction wheel may obstruct its performance. To test MRAC (4.14) on the

manipulator when the reaction wheel is moved in from the tip use model (4.1),

(4.2), (4.4), (4.7). With the reaction wheel placed one meter away from the tip and

using the same parameter settings and objective as in Section 4.6, the simulation

results shown in figures 4.14 - 4.18 are obtained. Satisfactory tracking of the tip

position is again achieved but with a higher error than that shown in Figure 4.11

for the colocated system.

Other simulations were run to determine that the maximum distance the

actuator may be moved from the sensor for this model is wl.5 meters. This is

dependent on the parameters that have been chosen for this case. The more the

actuator and sensor are separated, the higher the position error becomes due to the

positive realness condition. As d increases, c increases also to satisfy the conditions

stated in (3.28); therefore, more error is incurred.
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CHAPTER 5

CONCLUSION

5.1 Results

As stated in Section 1.1, the objective in this study was to invoke MRAC as the

control scheme by which the tip of a flexible manipulator with a torquing actuator

at the pinned-end and a sensor at the free-end would track a prescribed trajectory.

Through analysis and computer simulations the following results were obtained.

1. An exact modal representation of the pinned-free flexible manipulator with

boundary control at the free-end was derived.

2. A reduced-order state space model was obtained by selecting a finite number

of the system modes. This model was used for simulation studies.

3. The nonadaptive and adaptive model reference control laws were stated. These

laws were implemented with the state-space model in simulations.

4. A nonadaptive control law was derived for a sixth order model of the flexible

manipulator. In simulation satisfactory results were acquired.

5. The MRAC control laws stated in Section 3.5 were unsuccessful in controlling

the same sixth order model of the flexible manipulator used in 4. Due to the

inherent nonminimum phase properties of a noncolocated pinned-free beam, it

is impossible to satisfy "almost* positive realness of (A +BGC,B,C,Q) for an

output feedback gain that will stabilize the system.

6. In an attempt to achieve stability and proper tracking by the system, an

additional sensor located one meter from the pin was added to the model.

After modifying the MRAC law to include two sensors, simulation tests were

run. The tip position error was at least bounded for this case but proper
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tracking by the tip was still not possible.

7. Since MRAC is definitely not possible when positive realness is not satisfied,

a torque producing reaction wheel colocated with the sensor at the tip was

proposed. This setup satisfies positive realness and excellent tracking results

are obtained in simulation.

8. To demonstrate the robustness of the MRAC when perturbations of the

actuator placement are present, the reaction wheel was moved away from the

sensor at the tip. Simulation results verify that satisfactory tracking of the tip

is possible as long as positive realness is satisfied. However, the position error

of the tip increases as the actuator is moved further away from the sensor.

Based on these results several important conclusions can be drawn. If the

system can be configured such that "almost" positive realness is satisfied, then

MRAC is a powerful algorithm. Without knowledge of the plant and with a

reference model that may be of a smaller order than the plant, a robust controller

may be designed to give quick, precise tracking results. For the flexible manipulator

with a reaction wheel type actuator excellent tracking by the tip was demonstrated.

By producing torque with a reaction wheel located at the tip of the flexible

manipulator many dynamic problems that may occur when the actuator is placed at

the pinned-end are resolved. In [SCH-l] it has been shown that when the actuator

and sensor are noncolocated that the speed of response to commands is ultimately

limited by the inherent wave-propagation delay for the beam. By colocating the

reaction wheel with the sensor this problem does not need to be coped with. Another

advantage of using the reaction wheel is that only a small linear force as opposed

to a large torque is imparted to the basebody that the manipulator is pinned to.

For a flexible manipulator with an actuator at the pinned-end and a sensor at
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the free-end, MRAC is not advised as a suitable control law unless the algorithm

is modified such that the positive realness condition is omitted. Although the

nonadaptive control scheme which requires exact knowledge of the plant performed

well in simulation for this setup, it also is not recommended. Not only are the control

gains obtained by performing tedious calculations, but the controller is not robust

when disturbances are imparted to the plant or if the reference model changes.

5.2 Future Research Recommendations

The work presented in this thesis merely demonstrates the advantages and

disadvantages of the MRAC laws as applied to a flexible manipulator. Many

interesting issues remain as future research topics. A few are listed below:

1. The "almost" positive realness condition is a very restricting condition that

precludes MRAC of many interesting systems. Is a modification to the MRAC

law possible such that positive realness can be omitted entirely?

2. Simulation studies have been made that include only the first three modes of

the flexible manipulator system. A useful study would be to test MRAC on an

experimental manipulator with a reaction wheel.

3. MRAC is designed to adjust gain parameters on-line in the event a disturbance

or change to the system occurs. Successful demonstration of the ability of

MRAC to handle a change in the tip mass would be extremely valuable for

robotic applications requiring the retrieval of a payload.

4. MRAC may be possible if the controller parameters are chosen for the two

sensor/one actuator system (case 3) such that the convergence of eya slows

down to allow more adaptation for the control of eVl.

5. It may be possible to add more sensors to the setup in case 3 such that the
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nonminimum phase system becomes minimum phase. If this is true then the

chances of MRAC working increase significantly. In [SCH-l] regulation results

were improved by adding a hub-rate sensor and a strain gauge.

6. In [WEN-l] a bound is determined for the magnitude of a, the weighting factor

of position versus rate measurement, that will give an output feedback positive

real system. For the model derived in this study a seems to behave in an inverse

manner from the condition Wen states. This issue should be investigated.
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APPENDIX A

EXAMPLE ON HOW TO DERIVE CONTROLLER GAINS, S,

VIA THE CGT CONDITION

Transform the plant matrices (4.2), (4.3), (4.4) to controller canonical form

[KUO-1]:

Given 2^£- = Az*(t)
at

If (.A, B) is controllable, 3 a nonsingular transform

or

s,t,

**(*) = <rvw

A\ is determined by defining the following:

Q =

Qi
QiA

IQiAn-l

where

Then

0 ... 1][B AB ... A*~1B]

Al = QAQ-i

-i
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For this example:

•o i
0 0
0 0
0 0
0 0
.0 0

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

-2.5972e6 -271.0091 -1808.7

BI -

0
0
0
0
.1.

o •
0
0
0
1

-.5318.

Perform pole-placement design with state feedback. The desired poles are chosen to

include the same eigenvalues as in the reference model plant, Am. The remaining

poles may be placed anywhere in the left half plane. For this example the desired

poles are chosen as +5t, — 5i, —4, —3, —2, —1.

To determine the feedback gain matrix, G\, the following method is used: Let

Then

0
0
0
0
0

1
0
0
0
0

02 93 04 9s 96

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

0
0
0
0
1

.-01 -02 -2.6e5 - 03 -271. - 04 -1808.7-05 -.53 -06_

The elements of the G\ matrix are determined by equating coefficients of the

(Ai — BiGi) characteristic equation, (c.e.), with the desired characteristic equation,

(d.c.e.):

c.e. = A6 + (.5318 + 06)A6 + (1808.7 + 05)A4

+ (271.0091 + 04)A3 + (2.5972c5 + 03)A2 + 02A + 0i
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d.c.e. = A6 + 10A6 + 60A4 + 300A3 + 899A2 + 1250A + 600

After equating coefficients, the G\ matrix becomes

<?i = [600 1250 -258821 28.99 -1748.7 9.4682]

GI is the feedback gain matrix to give A\ — B\G\ the desired eigenvalues. To give

the original system, A + BG, the same desired eigenvalues, take the negative of GI

and multiply by the transformation matrix Q:

= [-6.3027e~5 -1.3124e~* -.0696 .0053 5.8703 -.0343]

(A .1)

The closed-loop system, Ac = A + BG, is now

0 1 0 0 0 0
-.0023 -.0048 -2.5516 .1953 215.1727 -1.259

0 0 0 1 0 0
-.0099 -.0206 -168.2168 .7124 922.7825 -5.3991

0 0 0 0 0 1
L-.0189 -.0394 -20.8776 1.5984 109.2232 -10.7075 J

where the control T*(t) is Gz*(t).

Diagonalize the system, Ac, by the following similarity transformation:

A = P~lAeP

D —1 D
= f H

where

P =

-.0001 - .2t
1

.0006 + .1621t
-.8103 + .0027t

.0252*
-.1257

-.0001 + .2t
1

.0006 - .1621t
-.8103 - .0027t

-.0252*
-.1257

-.2458
1

-.1007
.4095
-.02
.0813

1
-.9927
.0267
-.0265
.0049
-.0048

-.3519
1

-.0739
.2099
-.014
.0398

-.478 '
1

-.0556
.1163
-.0103
.0216 .

(A .2)
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Then

A = diag[5t -5t -4 -1 -3 -2]

r =

r-639.52 +3651.lt 1
-639.52 - 3651.1»

38853
58980
47663
4028

0 = [.892-.3608t .892+.3608t -.0818 .7947 -.1913 -.3153] (A .3)

The diagonalized system is

dt

Solving these equations, £t-(t) become:

The desired output based on the reference model (4.8), (4.9) is:

y*(t) = sin 5*+ 2.5 cos 5t
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Since the only eigenvalues that must be retained to obtain the desired output are

5t and — 5t, the states £3, £4, 6> and £e may be set to zero by choosing

6(0) = £4(0) = £5(0) = 6(0) = o

From (A. 3)

y* (t) = (.892 - .36080 6oe6" + (-892 + .36080 6oe~5** (A .5)

Equate coefficients of (A.5) with (A.4) and solve for 60 and 60 to yield:

60 = 1-386705 + .0036197*

60 = 1.386705 - .0036197*

The ideal trajectory is now

Hence,

Zl(t) = (-.0001 - .206(0 + (-.0001 + .206(0

23(0 = (.0006 + .162106(0 + (-0006 - .162106(0

z4(t) = (-.8103 + .002706(0 + (-.8103 - .002706(0

25 (0 = -02526(0 ~ .02526(0

*6(0 = -.12576(0 -.12576(0 x

Substitute the appropriate values for 6(0 an^ 6(0 (including the initial condi-

tions) and combine in terms of cosine and sine to obtain:

zi(t) = .554689 sin 5t - .0013255 cos 5t
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z2(t) = -.0072394 sin 5t + 2.77341 cos 5t

zz(t) = -.449574 sin 5t + .00049054 cos 5t

Z4(t) = -.0016222 sin 5* - 2.2473136 cos 5t

25 (0 = -.06989 sin 5* - .0001824 cos 5*

ze(t) = .00091 sin 5i - .3486176 cos 5t

Control T*(i) becomes:

+ .005324 (*) + 5.8703*5 (*) - .0343z6(«)

= - .37905874 sin 5* - .00142196 cos 5t

The CGT condition is satisfied by

" 2i(0 "
Z2(0

z*(t)
Z4(t)
zsW*t(t)
.r*m.

=

• .554689
-.0072394
-.449574
-.0016222
-.06989
.00091

.-.37905874

-.0002651
.554682
.0000981
-.449462
-.00003648
-.069723

-.000284392

0'
0
0
0
0
0
0.

where

[sinSt 5cos5t 0]

= -.37905874 -.000284392

= [0]

(A .6)

(A .7)
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APPENDIX B

MRAC ALGORITHM FOR SINGLE-INPUT DOUBLE-OUTPUT SYSTEM

An MRAC algorithm is derived for a case with one actuator and two sen-

sors. System 1, denoted as (A,B,Ci,Q), satisfies the CGT condition and system 2,

(AtB, C2,0), satisfies both the CGT and positive realness conditions. By substi-

tuting a signal control law similar to (3.26)

(B.I)

into the error equation (3.14)

de(t)
BT(t)-BT*(t)dt

the following closed-loop dynamic equation is obtained:

= (A + BGC)e(t) + B&Gi(t)eVl (t)

Choose the quadratic Lyapunov function candidate as in [WEN-l]:

(B .4)
+ tr AC?2rr AG + tr

where P > 0 is from (3.17) .with A replaced by (A + BGC) = Ac. Take the time
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derivative along the solution (B.2):

*G'L) = eT(A* P + PAe)e + 2e

2eTPBLw

AC?
r (B .5)

Since positive realness is satisfied for the system (Ac,B,Ci,Q) then

eTPB = ev,

For the adaptive law chosen as follows:

:«)««(*) (B.6)

»£(*) (B -7)

dt ~ dt ~ -— ''wT(t] (B'8)

Equation (B.5) then becomes

< r\
-h \ \e v a \ \^ (B.9)

If e > 0, strict positive realness is satisfied and ||e|| —* 0. If only positive realness is

satisfied, e = 0 and \\ey i \\ is bounded while ||eya|| —»• 0.

For a case that requires only regulation, no model following, then (B.6) may

be used with (3.26).
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