A Computer Program to Calculate the Resistivity of a Thin Film Deposited on a Conductive Substrate From Four-: oint Probe Measurements


```
Calcliale Iiat meSISTIVIIY C& A LIIN FILM
```



```
FCUK\cdotsECLNT ELCGE FESSUFEMEMIS (AASA) 20 p UECLa&
HC AO3/EF AO1 CSCL 09E G3/01 J504;
```

Lawrence G. Oberle and Gustave C. Fralick Lewis Research Center
Cleveland, Ohio

March 1986

Mnsn

Page
SUMMARY 1
INTRODUCTION 1
THEORY 2
Governing Equations and Boundary Conditions 2
Solution of Equations 3
Application to the Four Point Probe h
PROGRAMMING 10
Solution of the Double Integral 10
Program Explanation 12
RESUL $1 S$ 13
CONCLUSIONS 14
APPENDIXES
A - NOMENCLATURE 15
B - THE ELECTRIC POTENTIAL DUE 10 AN ISOLATED POINT CURRENT SOURCE 18
C . OPERATIONS OF PROGRAMS AND SAMPLE OUTPUIS 20
REFERENCES 22
PRECEDING PAGE BLANK NOT FILKVE

Lawrence G. Oberle and Gustave C. Fralick National Aeronautics and Space Administration Lewis Research Center
Cleveland, Ohio 44135

SUMMARI

This paper deals with the use of the four-point probe to measure the resistivity of a thin film of conducting material deposited on another layer of conducting material. Such measurements occur, for instance, in stificon carbide (SiC) research, where it is necessary to grow the SiC on a silicon (Si) substrate. The presence of the silicon substrate will introduce errors in the measured resistivity of the SiC.

Starting from basic principles, and expression for the ratio of measured voltage difference to injected current [$\Delta V / I]$ is developed. This expression involves the probe spacing, relative thicknesses of the layers, and the substrate resistivity as parameters, as well as the unknown resistivity of the deposited layer. The unknown resistivity can be found by iteratively evaluating the theoretical expression. This must be done numerically. A full description of the numerical techniques involved, and the computer programs used, is given.

Finally a comparison with previously published results is presented, together with a detailed description of how to use the programs to ' nd resis. tivities, as well as plot curves displaying the change in $\Delta V / I$ as a function of the thicknesses of he layers, and their resistivities.

INTRODUCIION

One of the ways in which a semiconductor material is characterized is by the measurement of its resistivity. In the development of silicon carbide for use as semiconductor material for high temperature applications, it became necessary to measure the resistivity of the thin film while it still was attached to the silicon upon which it had been grown epitaxially. A method of calculating the "true" resistivity of a deposited layer on a substrate of finite and different resistivity was discussed by Brown and Jakeman (ref. 1). The theory was presented in a cursory fashion, and no mention was made of a technique (i.e., and analysis, or series of programs) to determine the reststivity, or conductivity. Our intent is to remedy this defect with a presentation of the theory in depth, and a library of programs which calculate the correction factors necessary for evaluation of the equation presented by Brown.

The situation is as shown in figure 1. Current of magnitude I is injected at probe A and withdrawn at probe B, and the voltage difference, ΔV, between probes 1 and 2 is measured. The subject of this paper is the determination of the unknown conductivity, σ_{1}, or resistivity, ρ, of the thin film in terms of the known quantitites $\Delta V / 1, \omega_{1}, \omega_{2}$ (the thicknesses of the respective layers), and σ_{2} (the conductivity of the substrate).

THEORY

Governing Equations and Boundary Conditions

It is assumed that the materials obey Ohm's Law, i.e.,

$$
\begin{equation*}
\vec{J}=\vec{\sigma} \tag{1}
\end{equation*}
$$

where \vec{J} is the current density in $A / m^{2}, \sigma$ is the condictivity $(\Omega-m)^{-1}$, and \vec{E} is the electric field in V / m.

The current density \vec{J} satisfies the continuity equation for the electric charge in the form

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{J}+\frac{\partial \varphi}{\partial t}=0 \tag{2}
\end{equation*}
$$

where φ is the electric charge density, in c / m^{3}. For steady currents, there is no accumulation of charge at any point, so $\partial a / \partial t$ is zero, and

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{J}=0 \tag{3}
\end{equation*}
$$

From equation (1)

$$
\begin{equation*}
\vec{\nabla} \cdot(\overrightarrow{\sigma E})=0 \tag{4}
\end{equation*}
$$

The electric field \vec{E} is derivable from a potential function v, since $\vec{\nabla} \times \vec{E}=0$,

$$
\begin{equation*}
\vec{E}=-\vec{V} V \tag{5}
\end{equation*}
$$

Combining equations (4) and (5).

$$
\vec{\nabla} \cdot(\vec{\sigma} \overrightarrow{\nabla V})=0
$$

or if o is constant,

$$
\begin{equation*}
\overrightarrow{v^{2}} v=0 \tag{6}
\end{equation*}
$$

Thus the potential v satisfies Laplace's equations inside the two layers. The boundary conditions satisfied by V may be found by analogy with electrostatics. For a charge-free region, Gauss's law (ref. 2) is given by

$$
\begin{equation*}
\vec{\nabla} \cdot(c \vec{E})=0 \tag{7}
\end{equation*}
$$

where c is the permittivity. Comparing equation (7) with equation (4), it Is seen that o in the steady current problem plays the role of c in the electrostatic case. Equation (7) leads to the boundary condition (ref. 3).

$$
V_{1}=V_{2}, c_{1} \frac{\partial V_{1}}{\partial n}=c_{2} \frac{\partial V_{2}}{\partial n}
$$

where $\partial / \partial n$ indicates the normal derivative at the boundary. Replacing ε by a, our boundary conditions become

$$
\begin{equation*}
V_{1}=V_{2}, \sigma_{1} \frac{\partial V_{1}}{\partial n}=\sigma_{2} \frac{\partial V_{2}}{\partial n} \tag{8}
\end{equation*}
$$

tquations (6) and (8), together with the field about a point current source (from appendix B), are sufficient to find the function V.

Solution of Equations

The method of attack is to find the potential due to a single point current source and then use superposition to find the potentials due to the two sources at A and B.

The $z=0$ plane is at the top of the upper plane in figure 1 , and the positive z axis extends into the material. The two planes are bounded at $z=0, z=\omega_{1}$, and $z \omega_{1}+\omega_{2}$. Since we are considering only the source at A for the time being, the problem has azimuthal symmetry; that is, the poten. tia! ha no angular dependence about the z-axis. It is therefore convenient to use cylindrical coordinates.

In cylindrical coordinates, laplace's equation $\overrightarrow{\nabla^{2}} V=0$, assumes the form

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left[r \frac{\partial V}{\partial r}\right]+\frac{1}{r} 2 \frac{\partial^{2} V}{\partial \theta^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0 \tag{9}
\end{equation*}
$$

where r is the distance from the z-axis and 0 is the angular displacement. Equation (9) may be solved by separation of variables; that is $V(r, \theta, z)$ is written as

$$
\begin{equation*}
V(r, \theta, z)=R(r) \theta(\theta) Z(z) \tag{10}
\end{equation*}
$$

in which case pquation (9) dssumes the form

$$
\begin{equation*}
\frac{1}{r R}\left[r \frac{d R}{d r}\right]+\frac{1}{r^{2} \theta} \frac{d^{2} \theta}{d \theta^{2}}=-\frac{1}{7} \frac{d^{2} z}{d z^{2}} \tag{11}
\end{equation*}
$$

The left side of equation (11) is a function of r and θ, and the right side is a i.nction of z only. In order for equation (11) to be true for all values of $r \geq 0,-\pi \leq \theta<\pi, \infty \leq z \leq \infty$, both sides must equal a constant. Hence equation (11) is written

Therefore Z satisfies the equation

$$
\frac{d^{2} t}{d L^{2}}=k^{2} L
$$

which has the solution

$$
\begin{equation*}
Z=E_{k} e^{k z}+F_{k} e^{-k z} \tag{12}
\end{equation*}
$$

The solution for e is found in a similar fashion. Moving the k ? to the left side and multiplying by r^{2}, equation (11) becomes

$$
\begin{equation*}
\frac{r}{R} \frac{d}{d r}\left[r \frac{d R}{d r}\right]+k^{2} r^{2}=-\frac{1}{\theta} \frac{d^{2} \theta}{d \theta^{2}}=n^{2} \tag{13}
\end{equation*}
$$

so that θ satisfies the equation

$$
\frac{d^{2} \theta}{d \theta^{2}}=-n^{2} \theta
$$

If the potential is to he single valued in θ, n must be an integer, and

$$
\begin{equation*}
\theta(\theta)-C_{n} \cos (n \theta)+D_{n} \sin (n \theta) \tag{14}
\end{equation*}
$$

The above choice of separation constants leads to solutions which are periodic in θ and can be made to vanish at $z= \pm \infty$.

This leaves only the equation for $R(r)$. Multiplying by R, equation (13) can be rewritten as

$$
\begin{equation*}
r \frac{d}{d r}\left[r \frac{d R}{d r}\right]+\left[k^{2} r^{2} \cdot n^{2}\right] R=0 \tag{15}
\end{equation*}
$$

This is Bessel's differential equation, and R is written

$$
\begin{equation*}
R(r)=A_{n} J_{n}(k r)+B_{n} Y_{n}(k r) \tag{16}
\end{equation*}
$$

where J_{n} and Y_{n} are the Bessel functions of order n of the first and second kind. Both are oscillatory functions which vanish are $r=\infty$, but only J_{n} is finite at $r=0$. In our problem, $V(0, \theta, 2)$ must be $<\infty$, so γ_{n} is excluded. Further, since there is no angular dependence, $n=0$, and our solution is written in terms of $J_{0}(k r)$.

For problems involving boundary conditions on cylindrical boundaries at finite values of r and no angular dependence, the solution $V(r, z)$ involves a sum over discrete values of k. As an example, if V is to vanish on a cylinder of radius a, the solution inside the cylinder is

$$
\begin{equation*}
V(r, z)=\sum_{i=1}^{\infty} A_{1} e^{-k_{i}|z|_{J_{0}}\left(k_{1} r\right)} \tag{17}
\end{equation*}
$$

where $a k_{1}=x_{1}$, the i th zero of $J_{0}(x)$. In this way each term in equation (17) vanishes at $r=a$.

Now, ds a, ∞, k_{1}. x_{1} / d becomes a continuous variable, and the
solution (eq. (17)) beromes

$$
\begin{equation*}
v(r, z)=\int_{0}^{\infty} f(k) e^{-k|z|_{J}}(k r) d k \tag{18}
\end{equation*}
$$

This is the form of the solution to be used in finding the potential inside the two conducting layers shown in figure 1 , which are assumed to extend radially to infinity. It can be verified that equation (18) satisfies Laplace's equation.

Application to the Four Point Probe

The potential from the point current source at A will be found first; the total potential due to the source at A and sink at B may then be con structed by algebraic addition.

According to appendix B, and the previous discicsion, the potential in the top layer due just to the source at point A is

$$
\begin{equation*}
V_{A}=\frac{Q}{\sqrt{r^{2}+z^{2}}}=Q \int_{0}^{\infty} e^{-k z} J_{0}(k r) d k \tag{i9}
\end{equation*}
$$

where

$$
\begin{equation*}
0=\frac{1}{2 \pi \sigma_{1}} \tag{20}
\end{equation*}
$$

To V_{A} are then added terms of the form (eq. (18)) due to the currents flowing along the discontinuities at $z=0$, and $z=\omega$. If this were an electrostatics problem, these additional terms would be due to charge distribution; at the discontinuities. Combining equations (18) and (19), the potential in the top region is

$$
\begin{align*}
v_{1} & =\int_{0}^{\infty}\left[f_{1}(k) e^{k z}+g_{1}(k) e^{-k z}\right] J_{0}(k r) d k+\frac{Q}{\sqrt{r^{2}+z^{2}}} \tag{21}\\
& =\int_{0}^{\infty}\left[f_{1}(k) e^{k z}+g_{1}(k) e^{-k z}+Q e^{-k z}\right] J_{0}(k r) d k \tag{22}
\end{align*}
$$

Likewise, in the bottom layer the potential is

$$
\begin{equation*}
v_{2}=\int_{0}^{\infty}\left[f_{2}(k) e^{k z}+g_{2}(k) e^{-k z}\right] J_{0}(k r) d k \tag{23}
\end{equation*}
$$

Once the functions $11, f \supsetneq, 91$, and 9γ dre determined, the potential every where inside the two layers will be known, although, since we need only the potentidl at 7 - 0 , only l_{1} and 91 dre needed.

At $z=0$, the first of the boundary conditions, equation 18), reduces to

$$
\begin{equation*}
\frac{\partial V_{1}}{\partial z}(r, 0)=0 \tag{24}
\end{equation*}
$$

since in the region $z<0, \sigma=0$. At $z=\omega 1$, equation (8) gives

$$
\begin{align*}
V_{1}\left(r, \omega_{1}\right) & =V_{2}\left(r, \omega_{1}\right) \tag{25}\\
\sigma_{1} \frac{\partial V_{1}\left(r, \omega_{1}\right)}{\partial z} & =\sigma_{2} \frac{\partial V_{2}\left(r, \omega_{1}\right)}{\partial z} \tag{26}
\end{align*}
$$

The conductivity for $z>\omega_{1}+\omega_{2}$. is zero, so again

$$
\begin{equation*}
\frac{\partial V_{2}}{\partial \underline{z}}\left(r, \omega_{1}+\omega_{2}\right)=0 \tag{27}
\end{equation*}
$$

The four conditions (24) to (2l) are sufficient to determine the four unknown functions f_{1}, g_{1}, f_{2}, and g_{2}, which appear in equations (21) to (23).

Applying equation (24) to (21).

$$
\frac{\partial V_{1}}{\partial z}=\int_{0}^{\infty} k\left[f_{1} e^{k z}-g_{1} e^{-k z}\right] J_{0}(k r) d k-\frac{Q z}{\left(r^{2}+z^{2}\right)^{3 / 2}}
$$

and, at $z=0$,

$$
\begin{equation*}
\frac{\partial V_{1}}{\partial z}(r, 0)=\int_{0}^{\infty} k\left[f_{1}(k) \quad g_{1}(k)\right] J_{0}(k r) d k=0 \tag{28}
\end{equation*}
$$

Since equation (28) must be true for all $r>0$,

$$
\begin{equation*}
f_{1}(k)-g_{1}(k)=0 \tag{29}
\end{equation*}
$$

Note that equation (22) was not used in setting $\partial V_{p}(r, 0) / \partial z=0$ since

$$
\int_{0}^{\infty} e^{-k z} J_{0}(k r) d k \text { is not differentiable at } z=0
$$

The next two boundary conditions (25) and (26) give, respectively

$$
\int_{0}^{\infty}\left[f_{1} e^{k \omega_{1}}+g_{1} e^{-k \omega_{1}}+Q e^{-k \omega_{1}}\right] J_{0}(k r) d k
$$

$$
=\int_{0}^{\infty}\left[f_{2} e^{k \omega_{1}}+g_{2} e^{-k \omega_{1}}\right] J_{0}(k r) d k
$$

and

$$
\sigma_{1} \int_{0}^{\infty} k\left[f_{1} e^{k \omega_{1}}-g_{1} e^{-k \omega_{1}}-0 e^{\cdot k \omega_{1}}\right] J_{0}(k r) d k
$$

$$
=\sigma_{2} \int_{0}^{\infty} k\left[f_{2} e^{k \omega_{1}}-g_{2} e^{-k \omega_{1}}\right] J_{0}(k r) d k
$$

Again, since these equations are to be true for all r, the integrands must be equal, whence

$$
\begin{equation*}
f_{1} e^{k \omega_{1}}+g_{1} e^{-k \omega_{1}}-f_{2} e^{k \omega_{1}}-g_{2} e^{-k \omega_{1}}=-Q e^{-k \omega_{1}} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{1} f e^{k \omega_{1}}-\sigma_{1} g_{1} e^{-k \omega_{1}} \cdot o_{2} f_{2} e^{k \omega_{1}}+\sigma_{2} g_{2} e^{-k \omega_{1}}=\sigma_{1} 0\left(e^{-k \omega_{1}}\right) \tag{31}
\end{equation*}
$$

Finally, applying equations (23) and (21).

$$
\begin{equation*}
f_{2} e^{k\left(\omega_{1}+\omega_{2}\right)}-g_{2} e^{-k\left(\omega_{1}+\omega_{2}\right)}=0 \tag{32}
\end{equation*}
$$

Rewriting equatior. (32) as

$$
f_{2} e^{k \omega_{1}}=e^{-2 k \omega_{2}}\left[g_{2} e^{-k \omega_{1}}\right]
$$

equations (30) and (31) become, after substitution,

$$
\begin{equation*}
f_{1} e^{k \omega_{1}}+g_{1} e^{-k \omega_{1}}-g_{2} e^{-k \omega_{1}}\left[1+e^{-2 k \omega_{2}}\right]=-q e^{-k \omega_{1}} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{1} f_{1} e^{k l_{1}} 1 \quad \sigma_{1} g_{1} e^{k \omega_{1}}+\sigma_{2} g_{2} e^{k \omega_{1}}\left[1-e^{2 k \omega_{2}}\right]=\sigma_{1} 0 e^{k \omega_{1}} \tag{34}
\end{equation*}
$$

Eliminatinq g_{2} between equations (33) and (34),
$f_{1} e^{k \omega_{1}}\left[\sigma_{1}\left(1+e^{-2 k \omega_{2}}\right)+\sigma_{2}\left(1 \cdot e^{-2 k \omega_{2}}\right)\right]$

$$
\begin{aligned}
& g_{1} e^{-k \omega_{1}}\left[\sigma_{1}\left(1+e^{-2 k \omega_{2}}\right)-\sigma_{2}\left(1-e^{-2 k \omega_{2}}\right)\right] \\
& =Q e^{-k \omega_{1}}\left[\sigma_{1}\left(1+e^{-2 k \omega_{2}}\right)-\sigma_{2}\left(1-e^{-2 k \omega_{2}}\right)\right]
\end{aligned}
$$

Upon rearrangement, this becomes
$f_{1} e^{k \omega_{1}}\left[\left(\sigma_{1}+\sigma_{2}\right)+\left(\sigma_{1} \sigma_{2}\right) e^{2 k \omega_{2}}\right] \quad q_{1} e^{-k \omega_{1}}\left[\left(\sigma_{1} \quad \sigma_{2}\right)+\left(\sigma_{1}+\sigma_{2}\right) p^{-2 k \omega_{2}}\right]$

$$
=0 e^{-k \omega_{1}}\left[\left(\sigma_{1}-\sigma_{2}\right)+\left(\sigma_{1}+\sigma_{2}\right) e^{-2 k \omega_{2}}\right]
$$

Finally, making use of equation (29) (that $f_{1}=g_{1}$), multiplying through by $e^{k \omega_{1}}$, and dividing through by the quantity $\left(\sigma_{1}+\sigma_{2}\right)$,
or
where we have made use of the definition

$$
\begin{equation*}
R=\frac{\sigma_{1} \cdot \sigma_{2}}{\sigma_{1}+\sigma_{2}}=\frac{\rho_{2} \rho_{1}}{\rho_{2}+\rho_{1}} \tag{36}
\end{equation*}
$$

The quantities $\rho_{1}=1 / \sigma_{1}$, and $\rho_{2}=1 / \sigma_{2}$ are the resistivities.
We are interested in the potential difference between the two probes at points 1 and 2 in figure 1 . when a current 1 is injected at point A and
withdrawn at point B. From equations (21) and (29), the potential on the plane 7 - 0 due to the current entering at A is

$$
V(r, 0)=\frac{Q}{r}+20 \int_{0}^{i n} f(k, s) J_{0}(k r) d k
$$

Since the potentials add algebraically, the potential at point 1 due to source Q_{A} at point A, and a source Q_{B} at point B, separated from point A by the distance is

$$
\begin{equation*}
v_{p_{1}}=\frac{Q_{A}}{s}+2 Q_{A} \int_{0}^{\infty} f(k s) J_{0}(k s) d k+\frac{Q_{B}}{2 s}+Q_{E} \int_{0}^{\infty} f(k s) J_{0}(2 k s) d k \tag{37}
\end{equation*}
$$

Likewise, the potential at point 2 , due to the same sources, is

$$
\begin{equation*}
v_{D_{2}}=\frac{Q_{A}}{2 s}+2 Q_{A} \int_{0}^{\infty} f(k s) J_{0}(2 k s) d k+\frac{Q_{B}}{s}+2 Q_{B} \int_{0}^{\infty} f(k s) J_{0}(k s) d k \tag{38}
\end{equation*}
$$

The measured quantity is the voltage difference between points 1 and 2

$$
\Delta V=V_{D_{1}}-V_{D_{2}}-\frac{Q_{A}-Q_{B}}{2 s}+2\left(Q_{A} \quad Q_{g}\right) \int_{0}^{\infty} f(k s)\left[J_{0}(k s) \quad J_{0}(2 k s)\right] d k
$$

In our case, the sources are equal and opposite in $\operatorname{sign}\left(O_{A}=-Q_{B}=0\right)$, and

$$
\begin{equation*}
\Delta V=\frac{Q}{s}+4 Q \int_{0}^{\infty} f(k s)\left[J_{0}(k s)-J_{0}(2 k s)\right] d k \tag{39}
\end{equation*}
$$

Making the change of variable $(t=k s)$ and defining the dimensionless quantities

$$
\begin{equation*}
\lambda=\frac{s}{2 \omega_{1}} ; \quad W=\frac{\omega_{2}}{\omega_{1}} \tag{40}
\end{equation*}
$$

equation (39) becomes, after using the definition of 0 found in equation (20)

$$
\begin{equation*}
\frac{\Delta V}{l}=\frac{1}{2 \pi s \sigma_{1}}\left[1 \cdot 4 \int_{0}^{\infty} g\left[\frac{t}{\lambda}\right]\left[J_{0}(t) \cdot J_{n}(2 t)\right] d t\right] \tag{41}
\end{equation*}
$$

with the symbolism

$$
g(x) \quad e^{x}\left[\begin{array}{c}
1 \tag{42}\\
1+R e^{(W x)} \\
R+e^{-(W x)}
\end{array}\right]-1
$$

The difference $J_{0}(t) \quad J_{0}(2 t)$ which appears in equation (41) may be evaluated using an integral repiesentation for $J_{0}(t)$ (ref. 4).

$$
\begin{equation*}
J_{0}(t)=\frac{1}{\pi} \int_{0}^{\pi} \cos [t \sin (\theta)] d \theta \tag{43}
\end{equation*}
$$

whence

$$
\begin{equation*}
J_{0}(t) \cdot J_{0}(2 t)=\frac{1}{\pi} \int_{0}^{\pi}[\cos [t \sin (\theta)] \cdot \cos [2 t \sin (\theta)]] \theta \tag{44}
\end{equation*}
$$

Using the identity

$$
\cos (\alpha) \cos (\beta)=2 \sin \left[\frac{\alpha+\beta}{2}\right] \sin \left[\frac{\beta-\alpha}{2}\right]
$$

equation (44) becomes

$$
\begin{equation*}
J_{0}(t)-J_{0}(2 t)=\frac{2}{\pi} \int_{0}^{\pi}\left[\sin \left[\frac{3}{2} t \sin (\theta)\right] \sin \left[\frac{1}{2} t \sin (\theta)\right]\right] d \theta \tag{45}
\end{equation*}
$$

and equation (41) becomes

$$
\frac{\Delta V}{I}=\frac{1}{2 \pi 0_{1} 5}\left[1+\frac{8}{\pi} \int_{0}^{\infty} g\left[\frac{t}{\lambda}\right] \int_{0}^{\pi} \sin \left[\frac{3}{2} t \sin (\theta)\right] \sin \left[\frac{1}{2} t \sin (\theta)\right] d \theta d t\right]
$$

where $g(x)$ is defined as in equation (12). The double integral, equation (46), is the basis for the programs described in appendix C; the details of which are fourd in the next section.

PROGRAMAING
Solution for the Double integral
The integral of equation (46) cannot be evaluated analytically. However, Gaussian quadrature (ref. 5) provides a fast, accurate method of evaluatin: the double integral numerically. In an "m" point Gaussian quadrature, the integrand is evaluated at points determined by the roots of an inth order Legendre polynomial, and summed, with predetermined weighting factors, to provide an approximation to the integral over the range of integration. For the purposes of our program it was decider that a 6 point quadrature would yield sufficient accuracy.

Before the integral over t can be evaluated, the integral over θ must be performed. Therefore, we rewrite equation (46) as

$$
\begin{equation*}
\frac{\Delta V}{I}=\frac{\rho_{1}}{2 \pi s}\left[1+4 \int_{0}^{\infty} g\left[\frac{t}{\lambda}\right] K_{1}(t) d t\right] \tag{47}
\end{equation*}
$$

where, using equation (45)

$$
k_{1}(t)=J_{0}(t)-J_{0}(2 t)
$$

or

$$
\begin{equation*}
k_{1}(t)=\frac{2}{\pi} \int_{0}^{\pi} \sin \left[\frac{3}{2} t \sin (\theta)\right] \sin \left[\frac{1}{2} t \sin (5)\right] d \theta \tag{48}
\end{equation*}
$$

Because of the change of variable in equation (41), $K_{1}(t)$ is a function of t only, and is evaluated at the same points, regardless of the value of s, ρ, ρ_{2}, ω_{1}, or ω_{2}. The points at which $K_{1}(t)$ is evaluated are determined by the zeroes of the integrand of equation (47). Two factars influence the evaluation of this integral. First, an integral with upper limit of ∞ is difficult to integrate numertcally because the algorithm to be used requires the upper limit be specified. Second, Gaussian quadrature y' 'Is more accurate results if the integration is performed over subintervals uetermined by the zeros of the integrand. Both factors are taken into account with the decision to integrate between the zeroes of the integrand, and; to sum these results until the change in the total is negligible.

The problem of solving equation (46) is then divided into three parts: finding the zeroes of the integrand

$$
\begin{equation*}
k_{2}(t)=g\left[\frac{t}{\lambda}\right] k_{1}(t) \tag{49}
\end{equation*}
$$

evaluating

$$
\begin{equation*}
P_{j}=\sum_{i=0}^{J} \int_{Z_{1}}^{Z_{i+1}} k_{2} d t \tag{50}
\end{equation*}
$$

and finally, solving

$$
\begin{equation*}
\frac{\Delta V}{I}=\frac{P_{1}}{2 \pi s}\left[1+4 P_{j}\right] \tag{51}
\end{equation*}
$$

for p_{1}, where p_{j} is found by increasing j until $\left|P_{j}-P_{j+1}\right|$ is less than the resolution of the computer.

The variable $g[t / \lambda]$, as given by equation (42), is a monotonically decreasing function of t, and has nnly the one zero (at $t=\infty$). Therefore, the zeroes of K_{2} are identical to the zeroes of k_{1}. The first programming step, then. is to determine the zeroes of $k_{1}(t)$. The number of zeroes
of $K_{1}(t)$ is determined by the relative e es of the other parameters. We found that for all cases attempted, 50 zeroes was sufficient to accurately evaluate the integral. Because equation (48) is a function of t only, the zeroes of the integrand are constant, and can be found once and stored in a file. With the zeroes of the integrand known, the points at which $K_{p}(t)$ is evaluated are known, and the value of $K_{1}(t)$ at these points can be found, and stored in a file.

Ihe order of programming is thus:
PROGRAM

1. Determine first "J" zeroes of $K_{1}(t)$

2ERO
2. Determine values of $k_{p}(t)$ at evaluation points

BESCAL
3. Plot $\Delta V / 1$ versus ρ_{2} / ρ_{1} for various s, ω_{1}, ω_{2}. and ρ_{2} FPPPLT
4. Determine ρ_{1} for given $\Delta V, I, \rho_{2}, \omega_{1}, \omega_{2}$, and s FOUR

The listings for these programs, written in fORIRAN. I/ (ref. 6) for an IBM-PC, can be obtained by contacting COSMIC (Ihe Computer Software Management and Information Center [IEW No. 14389]). An explanation of the pre.edure required for running these programs is found in appendix C.

Program Explanation

The first two programs, $7 E R O$ and BFSCAL use the subroutine BESDIF to evaluate equation (48), at a given value of t. BCSDIF uses the 6 point Gaussian quadrature over 30 subintervals spanning the range from 0 to π. ZERO uses an interval halving technique to find the first "j" zeroes of the difference, $J_{0}(t)-J_{0}(2 t)$ (with $\{"$ arbitrarily recommended to be 50). The first zero is known to occur at $t=0$. The program stores this initial value in the ASCII file ZERO.DAT, and begins the algorithm to identify the rest of the zeroes. Starting at $t=1$, with an interval of 1 , ZERO ralculates $K_{j}(t)$ until the result changes sign At that point the interval is lived, the direction of increment is reversed, and the program calculates values of $K_{p}(t)$ until the sign changes again. Ihis process repeats until the desired accuracy (a recommended 5 digits) is achieved. When the cero is found sufficiently accurately, the value of t which produced the zero is stored, the interval is reset to 1 , and the program repeats until the desired number of zeroes is found.

The program BESCAI, using the location of these zeroes, then calculates the values of $K_{1}(t)$ necessary for the other two programs to evaluate the integral of equation (46). For each interval between zeroes, BESCAL calculates and stores the values of $K_{1}(t)$ in the file TWOBES.DAT.

With the locations of the zeroes known, and the values of $K_{1}(t)$ known at the points of evaluation, the two main programs, FPPPLT and FOUR can be executed. FPPPLT calculates an array of numbers suitabie for plotting. The plots appearing in this report were generated using an off-the-shelf spread sheet program (ref. 7). The plots produced are $\log (\Delta V / I)$ versus $\log \left(p_{2} / \rho_{1}\right)$ for constant W, s and $p 2$, and for various values of λ. This program was used by the authors primarily as a check of the algorithms used.

HOUR, the more useful of the two programs, calculates a of to corre spond to a given $\omega \boldsymbol{\omega}$, $\omega \%$, $\rho 2, s$, and $\Delta V / l$. This is arcomplisited by multiplying both sides of equation (47) by $2 \pi s / \rho_{2}$

$$
\begin{equation*}
\left[\frac{\Delta V}{I}\right] \frac{2 \pi s}{\rho_{2}}=\frac{\rho_{1}}{\rho_{2}}\left[1+4 \int_{0}^{\infty} g\left[\frac{t}{\lambda}\right] \cdot k_{1}(t) d t\right] \tag{52}
\end{equation*}
$$

The left side of equation (52) can be evaluated from experimentally determined parameters. The right side of equation (52) is calculated from an initial guess of ρ_{1}, keeping in mind that $g(x)$ is a function of ρ_{p}, as given by equations (42) and (36). Theoretically the right side of equation (52) can be re-evaluated repeatedly until the equality is achieved. In practice the inter mediate functions F^{\prime} and F are calculated as:

$$
\begin{equation*}
f^{\prime}=\left[\frac{\Delta V}{1}\right] \frac{2 \pi s}{\rho_{2}} \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
t=\frac{\rho_{1}}{\rho_{2}}\left[1+4 \int_{0}^{\infty} g\left[\frac{t}{\lambda}\right] \cdot k_{1}(t) d t\right] \tag{54}
\end{equation*}
$$

if $\left|F^{\prime}-F\right|$ is less than the required tolerance, chen the value of ρ_{1} used is displayed as the "correct" resistivity. Otherwise, the guess for ρ_{1} is modified according to the sign of the quantity $F^{\prime}-F$, and if neces sary, the interval is halved, until the error is less than the required toler. ance. Because most of the "number crunching" needs be performed once for all possible values of the variables, the calculation speed of the algorithm is very high.

RESULIS

The curves of figure 2 were produced using data generated by the program FPPPLI. The parameters were chosen to correspond to the parameters chosen by Brown (ref. 1), in order to compare figure 2 with Brown's results. The shapes of the curves are identical to those produced by Brown. The difference in the plots is that the graphs of this paper are of $\Delta V / I$ versus ρ_{2} / ρ_{1}, and in Brown's report, the plots are of the function F (identical tc F in this paper) versus σ_{1} / σ_{2}. The abscissa is the same in both cases, but the ordinate in Brown's paper does not correspond to a measurable quantity. Since F^{\prime} is a function of the probe spacing, and the resistivity of the substrate, these two parameters were set to one in figures $2(a)$ to (c). With this choice of parameters.

$$
\begin{equation*}
F=\frac{\Delta V}{I}(2 \pi) \tag{55}
\end{equation*}
$$

laking this into account, the plots of this paper are identical with Brown's plots.

Figure 3 shows the variation of $A V / 1$ as a function of the ratio of the resistivities of the layers as well as a function of the thickness of the deposited layer. When the resistivities are approximately equal ($\left.\rho_{2} / \rho_{1} \cong 1\right)$, $\Delta V / I$ is a function of the thickness of the deposited lajer only in the sense that $\Delta V / I$ is dependent on the thickness of the sum of the two layers $\left(\omega_{1}+\omega_{2}\right)$. Intultively, this can be seen to be correct, for if the resis tivities are equal, the division between the materials disappears, and the measurement of $\Delta V / I$ is that of a single layer. Since the deposited layer varies from less than 2 percent to less than 10 percent of the total thickness. the variation in $\Delta V / l$ is relatively small. As the ratio ρ_{2} / ρ_{1} increases, the thickness of the deposited layer comes more into play. In general, it can be seen that the thicker the deposited layer, the lower the measured value of $\Delta V / I$. In addition, the slope of the curve steepens as the ratio ρ_{2} / ρ_{1} increases. This implies that the algorithm is more accurate for values of $\rho_{1} \ll \rho_{2}$.

In order to verify the algorithm in the program FOUR, the two examples from Brown's paper were chosen to be used in our calculation. Table 1 reproduces the applicable numbers from Brown's table Il, augmented by the results obtained using the progran four.

The results of our program agree closely with the results published by Brown, and with the known values for the substances in question. The slight discrepancies are caused by the increased resolution of our machine, and by assumed roundoff errors associated with the numbers published by Brown. With out knowing the algorithm used by Brown, it is difficult to make judgments about his techniques. However, it must be noted that advances in computer technology, in the 20 years since Brown reported his results, have made the evaluation of these equations much easier, and more accurate than before. In addition to this is the fact that the program FOUR solves the equation for ρ, and Brown's results are given in terms of $1 / \rho=0$.

CONCLUSIONS

As can be seen from the plots, and from the numbers generated to produce table 1 , the algorithm devised solves the problem as well as the unknown algo rithm designed by Brown. Along with a detalled explanation of the software generated in this effort, we tried to explain the process of arriving at the integral presented by Brown, starting from the governins equation, and boundary conditions. It is hoped that the detalis in the solution are sufficient to enable the reader to use these results in the solution of the class of problems where resistivity measurements are needed for a substance deposited on a sub. strate of higher resistivity than the deposited layer.

A	probe at which current is injected
A_{n}	coefficient of lst independent solution to Bessel's equation, V
B	probe at which current is withdrawn
B_{n}	coefficient of 2 nd independent solution to Bessel's equation, V
C_{n}	coefficient of ist independent solution for $\boldsymbol{\theta}(\boldsymbol{\theta})$
C	constant to be determined in solving for potential due to an isolated point source
D_{n}	coefficient of 2 nd independent solution for $\theta(\theta)$
\vec{E}	electric field, V / m
E_{k}	coefficient of lst independent solution for $Z(z)$
F	intermediate function used in computing resistivity
F^{\prime}	intermediate function calculated from measured parameters
F_{k}	coefficient of 2 nd independent solution for $Z(z)$
f	function to be determined in solving the potential problem in the continuous case
f_{1}	function solved in the deposited layer due to current input at point A
f_{2}	function solved in the substrate due to current input at point A
g	function f redefined in terms of x rather than $k s$
91	function (akin to f_{f}) in the deposited layer due to current withdrawn at B
92	function (akin to f_{2}) in the substrate due to current withdrawn at B
I	current injected at probe A, A
\vec{J}	current density, A / m^{2}
J_{n}	Bessel function of the first kind of order n
${ }^{3} 0$	Uessel function of the first kind of order 0
j	number of zeroes of $K_{1}(t)$ to be found

K_{1}	difference $J_{0}(t)-J_{0}(2 t)$
K_{2}	$g(t / \lambda) K_{1}(t)$
k	separation constant, m^{-1}
81	order of legendre polynomial used in Gaussian quadrature
n	separation ronstant, m^{-1}
P_{m}	value of $\Sigma_{m} \int K_{2}$ dt using "m" zeroes
Q	Psuedo charge (analogous to charge in electrostatics) $Q=I /\left(2 \pi \sigma_{1}\right), V / m$
Q_{A}	Psuedo charge at point $A, V / m$
Q_{B}	Psuedo-charge at point $B, V / m$
R	resistivity variable ($\left.\rho_{2} \cdot \rho_{1}\right) /\left(\rho_{2}+\rho_{1}\right)$
$R(r)$	potential function in the r direction, V
r	radial coordinate
\hat{r}	unit vector in r direction
5	spacing between any two adjacent probes in four point apparatus, m
\vec{s}	elemental area on surface of sphere
$V(r, \theta, z)$	potential function, V
$V_{\text {A }}$	potential function at probe \wedge, V
$V_{p_{1}}$	potential function at point I, V
$v_{P_{2}}$	potential function at point $2, V$
v_{1}	potential function in ueposited layer, V
v_{2}	potential function in substrate, V
W	riitio of suhstrate thickness to thickness of deposited layer
Y_{n}	Bessel function of the second k ind of order n
7(7)	potential function in the z direction
7	axial coordinate
$\|7\|$	absolute value of 2

$\Delta V \quad$ voltage difterrnce between probes 1 and $?, V$
c permittivity, F / m
$c_{1} \quad$ permittivity of first layer, f/m
$\varepsilon_{2} \quad$ permittivity of second layer, f / m
$\theta(\theta) \quad$ potential function in the θ direction
$\theta \quad$ angular coordinate
$\lambda \quad$ twice the ratio of probe spacing to deposited layer thickness
$\rho \quad$ resistivity, $\Omega-m$
$\rho_{1} \quad$ resistivity in the deposited layer, $\Omega-m$
P. resistivity in the substrate, $\Omega \mathrm{m}$
$\sigma \quad$ conductivity, ($\Omega \mathrm{m}$) $1, \Omega^{-1} \mathrm{~m}^{-1}$
$\sigma_{1} \quad$ conductivity of the depo ited layer, $\Omega^{-1} \mathrm{~m}^{-1}$
${ }^{\sigma}$
conductivity of the substrate, $\Omega^{-1} \mathrm{~m}^{-1}$
φ
electric charge density, $\mathrm{C} / \mathrm{m}^{3}$
$\omega_{1} \quad$ thickness of the deposited layer, m
c. 2 thickness of the substrate, m
a partidl derivative operator
$\overrightarrow{\mathbf{v}} \quad$ vector differential operator
$\vec{v}^{2} \quad$ Laplacian operator

Ihe tlectric Potential due to an Isolated Point Current Source

Consider a point current source of output l located at an origin within a medium of uniform conductivity, σ. By symmetry, the current density vector, J must vary as $1 / r^{2}$, where r is the distance from the source, since the total current passing through any sphere surrounding the source is I, and the area of the sphere is proportional to r^{2}. That is

$$
\begin{equation*}
\oint_{\text {sphere }} \cdot \overrightarrow{d s}=1 \tag{B.1}
\end{equation*}
$$

where $d \vec{s}$ is the element of area on the surface of the, phere,

$$
\begin{equation*}
d s+\hat{r} r^{2} \sin \theta d \theta d \varphi \tag{B.2}
\end{equation*}
$$

Since $\vec{J}=\vec{\sigma}$, the electric field \vec{E} is also directed along \hat{r} and is proportional to $1 / r^{2}$. Thus

$$
\begin{equation*}
\vec{t}=\frac{c}{r^{2}} \hat{r} \tag{B.3}
\end{equation*}
$$

The unknown constant, c, in equation ($B .3$) can be determined from equations (B.1) and (B.2):
$\oint_{\text {sphere }} \overrightarrow{\mathrm{J}} \cdot d \vec{s}=a \int_{0}^{2 \pi} \int_{0}^{\pi}\left[\frac{c}{2} \hat{r}\right] \cdot\left[\hat{r} r^{2} \sin \theta d \theta d \varphi\right]$

$$
\begin{equation*}
=\sigma c \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta d \theta d \varphi=4 \pi \sigma c=I \tag{B.4}
\end{equation*}
$$

or

$$
\begin{equation*}
c=\frac{1}{4 \pi \sigma} \tag{B.5}
\end{equation*}
$$

Then, from equation (B.3), the electric field becomes:

$$
\begin{equation*}
\vec{E}=\frac{1}{4 \pi \sigma} \frac{\hat{r}}{r^{2}} \tag{B.6}
\end{equation*}
$$

Ihis is the electric field about an isolated current solrce of strength I. Since the potential, V, is related to $\overrightarrow{\mathrm{E}}$ by $\overrightarrow{\mathrm{E}}=-\vec{\nabla} \mathrm{V}$, the potential (referenced to zero at infinity) is:

$$
\begin{equation*}
V=\frac{1}{4 \pi \sigma r} \tag{B.7}
\end{equation*}
$$

The electric field, as given by equation (B.6), and the corresponding potential, from equation (B.7), apply to the case of an isolated point source irom which the current density is independent of direction. In our case, however, the current (in cross section) is confined to the upper half plane ($\alpha=0$ for $z<0$). Then the limits on θ in equation (B.4) are 0 and $\pi / 2$, and equation (8.5) becomes:

$$
\begin{equation*}
c=\frac{1}{2 \pi \sigma} \tag{B.8}
\end{equation*}
$$

and the potential in the top layer due just to the current injected at point A is:

$$
\begin{equation*}
v=\frac{1}{2 \pi \sigma_{1} r} \tag{8.9}
\end{equation*}
$$

In cylindrical coordinates, where r is the distance from the z-axis, equation (B.9) becomes:

$$
\begin{equation*}
V=\frac{I}{2 \pi \sigma_{1} \sqrt{r^{2}+\tau^{2}}}=\frac{I}{2 \pi \sigma_{1}} \int_{0}^{\infty} e^{-k z} J_{0}(k r) d k \tag{B.10}
\end{equation*}
$$

Operation of Programs and Sample Outputs
It is assumed that the programs are all compiled using the Microsoft FORTRAN-77 compller on an IBM PC or compatible computer. The executable programs are then generated by using the Microsoft Linker to link the object code in the following manner:

PROGRAM IINKED OBJECT MODULES

1. ZERO ZERO, BESOIF
2. BESCAL BFSCAL, BESDIF
3. FPPPLT FPPPLT, QUAD, XI
4. FOUR FOUR, QUAD, XI
lo run these programs on an $1 B M P C$ simply enter the name of the program to be run. ZERO and BESCAL need only be run once to generate the reqiired constants for the other two programs. The following pages show example outputs of the program as run on an IBM PC.

The first program to be run is the program ZERO. The prompts are:
ENTER REQUIRED NUMBER OF DIGIIS [DEF = 50]:
(Your response: an integer greater than 0.)
ENTER REQUIRED DIGITS [DEF = 5]: (accuracy)
(Your response: an integer between 1 and 6 , inclusive.)
The program proceeds to display the number of zeroes requested, as well
as storing them in the file "ZERO.DAT".
The next program is BESCAL. There are no prompts, but the program dis plays the interval for which it is presently computing the necessary values of $K_{1}(t)$. These values are stored in the file "TWOBES.DAT".

The third program, F OUR is the program which will be most useful to the researcher. The prompts which appear in this program are:

INITIALIZING QUADRATURE VALUES (reading the files "ZERO.DAT" and
"TWOBES.DAT".)
Enter PROBE SPACING <0.159>, cm:
Enter MEASURED VOLTAGE/CURRENI <36.77>, Ω :
Enter THICKNESS of Si <381.00>, $\mu \mathrm{m}$:
Enter THICKNESS of S1C <6.00>, $\mu \mathrm{m}$:
Enter RESISTIVITY of SIC $<0.22 \mathrm{E}+02>$, $\Omega-\mathrm{cm}$:
Enter INITIAL GUESS for RESISTIVIIY OF SIC <0.1 E + 01>, $\Omega-\mathrm{cm}$:
Enter INITIAL DELTA RESISIIVIIY <0.1 E + Ol>, Ω-cm:
Enter MAXIMUM No. of ITERATIONS <lOO>:
CHANGES $[Y / N]<N\rangle:$ (if changes are requested the rogram loops through these prompts again.)

The routines then produces a table similar to the one below:

1	$f c$	$f e$	ERR	RHO1
1	1.30009	1.6697	0.22138	$0.1000 E+00$
2	3.69198	1.6697	1.21111	$.600 E+00$
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot
11	1.59509	1.6697	.04470	$.1313 E+00$
12	1.66295	1.6697	.00406	$.1391 E+00$

The calculated SIC RESISTIVITY $=0.13906 t+00 \Omega \cdot \mathrm{~cm}$.
Following the solution appears the prompt:
ANOTHER MEASUREMENI ? [Y/N] <Y>:
(If the response is "Y" the program returns to the original prompts; if the response is " N " the program ends.)

The fourth program in the package, fPPPLI, is similar in operation to the program four. This routine produces a file which can be used by a package such as "SYMPHONY" to produced plois of the relationship described in this paper. ine prompts are:

INITIALIZING QUADRATURE VALUES (reading the files "ZERO.DAT" and "TWOBES.DAT".)

Enter No. of INCREMENIS <20>: (number of points to plot)
Enter PROBE SPACING <1.00>, cm:
Enter THICKNESS of SUBSIRAIE <300.00>, $\mu \mathrm{m}$:
Enter THICKNESS of DEPOSITED LAYER <20.00>, $\mu \mathrm{m}$:
Enter RESISTIVITY of SUBSTRATE <0.10 E +01>, Ω-cm:
Enter BEGINNING $\log ($ RHOI/RHO2) <O.OO>:
Enter ENDING log(RHOI/RHO2) <.3.00>:
CHANGES [Y/N] <N>: (if changes are requested the program loops through these prompts again.)

At this point the routine requires a file name under which to store the data. The prompt for this is:
enter for unit 2 the name or the outpui file WHICH WILL ACCEPT THE DATA TO BE PLOTIED.
file name missing or blank - please enter name.
UNII 2? (Your response is to be a legal flle name, such as "TEST.DAT".)

1. Brown, M.A.C.S.; and Jakeman, E.: Theory of the four point probe technique as applied to the measurement of the conductivity of thin layers on conducting substrates. Brit. J. Appl. Phys.. vol. 17, no. 9, Sept. 1966, pp. 1143-1148.
2. Jackson, J.D.: Classical Electrodynamics, 2nd edition, John Wiley and Sons, 1975, p. 30.
3. Panofsky, W.K.H. ; and Phillips, M.: Classical Electricity and Magnetism Addison-Wesley, 1962, pp. 28-40.
4. Spiegel, M.R.: Mathematical Handbook of Formulas and Tables, McGraw-Hill. 1968, p. 143.
5. Carnahan, B.; Luther, H.A.: and Wilkes, J.O.: Applied Numerical Methods, John Wiley and Sons, 1969, pp. 101.111.
6. Microsoft fORTRAN Reference Manual, Microsoft Corp., 1984.
7. Symphony Reference Manual, l.otus Development Corp., 1985.

TABLE 1. - COMPARISON OF THEORY WITH EXPERIMENT
FOR A BRASS SHIM ON A MLRCURY SUBSIRATE

$\begin{aligned} & \mathrm{s}, \\ & \mathrm{~cm} \end{aligned}$	λ	W	$\stackrel{\sigma_{2}}{k /(\Omega \cdot \mathrm{cm})}$	$\begin{aligned} & \Delta V / I, \\ & \mu V / A \end{aligned}$	Known value	$\begin{gathered} {\left[\sigma_{1}-k /(\Omega-c m)\right]} \\ \text { Derived } \\ \text { BROWN } \end{gathered}$	Derived FOUR
0.127	4.72	23.2	10.4	63.0	143.0	149.0	150.0
0.063	2.27	19.0	10.4	82.0	141.0	137.0	138.0

Note: $k /(\Omega-\mathrm{cm})$; denotes thousands of $(\Omega-\mathrm{cm})^{-1}$. i.e.. $1 k /(\Omega-\mathrm{cm})=10^{3}(\Omega-\mathrm{cm})^{-1}$

Also: for $\sigma=10 \mathrm{k} /(\Omega-\mathrm{cm})$

$$
\rho=1 / \sigma=10^{-4},(\Omega-\mathrm{cm})
$$

ORIGINAL PACE: 'S OF POOR QUALITY

Figure 1. - Theoretical setup for four-point probe measurement of deposited layer on substrate of finite conductivily.

fiqure 2 - AVII wersus ratio of restivivites.

figure 3. - $\Delta V / I$ versus ratio of resitivities. $H_{2} \cdot 300, s=0.159$; $P_{2} \cdot 2$.

