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A COMPUTER PROGRAM 10 CALCULATE THE RESISTIVIiY OF A THIN FILM DEPOSITHD
ON A CONDUCTIVE SUBSTRATL FROM FOUR-POINI PROBE MEASUREMENTS

Lawrence G. Oberle and Gustave C. Fralick
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMAR ¢

This paper deals with the use of the four-point probe to measure the
resistivity of a thin film of conducting material deposited on another layer
of conducting material. Such measurements occur, for instance, in silicon
carbide (SiC) research, where i1t i1s necessary to grow the SiC on a silicon (S))
substrate. The presence of the silicon substrate will introduce errors in the
measured resistivity of the SiC.

Starting from basic principles, and expression for the ratio of measured
voltage difference to injected ~urrent [AV/I] 1s developed. This expression
involves the probe spacing, relative thicknesses of the layers, and the sub-
strate resistivity as parameters, as well as the unknown resistivity of the
deposited layer. The unknown resistivity can be found by iteratively evaluat-
ing the theoretical expression. This must be done numerically. A full
description of the numerical techniques involved, and the computer programs
used, 1s given.

Finally a comparison with previously published results is presented,
together with a detailed description of how to use the programs to ¢ .nd resis-
tivities, as well as plot curves displaying the change in AV/I as a function
of the thicknesses of "he layers, and their resistivities.

INTRODUCTION

One of the ways in which a semiconductor material is characterized is by
the measurement of its resistivity. In the development of silicon carbide for
use as semiconductor material for high temperature applications, it became
necessary to measure the resistivity of the thin film while it still was
attached to the silicon upon which i1t had been grown epitaxially. A method of
calculating the "true" resistivity of a deposited layer on a substrate of
finite and different resistivity was discussed by Brown and Jakeman (ref. 1).
The theory was presented in a cursory fashion, and no mention was made of a
technique (1.e., and analysis, or series of programs) to determine the resis-
tivity, or conductivity. Our intent is to remedy this defect with a presenta-
tion of the theory in depth, and a library of programs which calculate the
correction factors necessary for evaluation of the equation presented by Brown.

The situatton 4s as shown in figure 1. Current of magnitude I is injected
at probe A and withdrawn at probe B, and the voltage difference, AV, between
probes 1 and 2 1s measured. The subject of this paper is the determination of
the unknown conductivity, oy, or resistivity, py, of the thin f1Im in terms of
the known quantitites av/l, «), wp (the thicknesses of the respective layers),
and o2 (the conductivity of the substrate).
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THEORY
Governing Equations and Boundary Conditions
It s assumed that the materials obey Ohm's lLaw, 1.e.,

7 = of (1)

where T is the current density in A/m, o 1s the conductivity (Q-m)", and
£ 1s the electric field in V/m.

The current denstty T satisfies the continuity equation for the electric
charge in the form

<|
<
&

= 0 (2)

Q
(ol

where ¢ 1s the electric charge density, in c/m3. For steady currents, there
s no accumulation of charge at any point, so a¢/3t 1is zero, and

Veld:=0 (3)
tFrom equation (1)
V. (cf) =0 (4)

The electric field E. s derivable from a pctential function V, since
X 0

t -0,

=W (5)
Combining equations (4) and (5),
Ve (aW) =0
or if o s constant,
V2V -0 (6)

Thus the potenttal Vv satisfies Laplace's equations inside the two layers.
The boundary condttions satisfied by V may be found by analogy with electro-
statics. For a charge-free region, Gauss's law (ref. 2) is given by

— —

Ve (ct) =0 (n

where ¢ 1is the permittivity. Comparing equation (7) with equation (4), it
s seen that o 1Iin the steady current problem plays the role of ¢ 1in the
electrostatic case. Equation (7) leads to the boundary condition (ref. 3).

I
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where 3/3n 1indicates the normal derivative at the boundary. Replacing ¢ 1
by o, our boundary conditions become -

aV v
1 )

-0, g F (8)

V, =V 2 an

1 2’ %1 an
tquations (6) and (8), together with the field about a point current source <
(from appendix B), are sufficient tc find the function V.

Solution of tquations '

The method of attack is to find the potential due to a single point cur- |
rent source and then use superposition to find the potentials due to the two

sources at A and B.

The z =0 plane is at the top of the upper plane in figure 1, and the
positive 7z axis extends into the material. The two planes are bounded at p
2 =0,27=wy,and 7 «w) *+w. Since we are considering only the source at ;
A for the time being, the problem has azimuthal symmetry; that is, the poten.
tia! ha no angular dependence about the z-axis. It is therefore convenient
to use cylindrical coordinates.

In cylindrical coordinates, laplace's equation v - 0, assumes the form

P T

2 2
1a v 1,8V aVv
r ar [ ar] * r 2 2 * 2 0 (9)

where r 1s the distance from the z-axis and o 1s the angular displacement.
Equation (9) may be solved by separation of variables; that is V(r,e,z) is
written as

V(r,0,z) - R(r) ©(s) I(z) (10) ;

in which case equation (9) dassumes the form

1 ["dB] L1 de 14 (1) j
rR L dr re do’ iz '

~!—
INYT

the left side of equation (11) is a function of r and o, and the right

side 1s a v nction of z only. 1In order for equation (11) to be true for all
values of r >0, - <0 <w, @< 7z <o, both sides must equel a constant. ;
Hence equation (11) is written

1 [,d_g] L Lde 141
rR dr dr 128 d02 Vi dzz

Therefore Z satisfies the equation
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dzf
which has the solution
7 - EgekZ v Fre-ke (12)

The solution for @ 1is found in a similar fashion. Moving the k? to the
left side and multiplying by r2, equation (11) becomes

2
rd [ 22 1d%@ _ 2
R dr [ dr] + kort o= - = N (13)

so that © satisfies the equation

If the potential is to be single valued in ©, n must be an integer, and
8(0) - Cp cos (n8) + Dy sin (n6) (14)

The above choice of separation constants leads to solutions which are periodic
in 6 and can be made to vanish at z = t+ o,

This leaves only the equation for R(r). Multiplying by R, equation (13)

can be rewritten as
d | dr 22 2|, .
rar L-dr] + [k r-n ] R =0 (15)

This 1s Bessel's differential equation, and R 1s written
R(r) = Apdp(kr) + BpYp(kr) (16)

where J, and Y, are the Bessel functions of order n of the first and
second kind. Both are oscillatory functions which vanish are r = o, but only
Jn s finite at r - 0. 1In our problem, V(0,6,z) must be < », s0 Y, 15
excluded. Further, since there 1s no angular dependence, n = 0, and our
solution 1s written in terms of J,(kr).

For problems involving boundary conditions on cylindrical boundaries at
finite values of r and no angular dependence, the solution V(r,z) involves
a sum over discrete values of k. As an example, 1f V 1s to vanish on a
cylinder of radius a, the solution inside the cylinder is

V(r.2) = % A,‘e'k1'ZIJo(k1r) a7
11

where aky = xy, the 1M zero of Jo(x). In this way each term in
equation (17) vanishes at r = a.
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Now, ds a » o, ky - xy3/d becomes a continuous variable, and the

solution (eq. (17)) becomes
vir,2) = f f(k)e""”Jo(kr) dk (18)
0

This 1s the form of the solution to be used in finding the potential inside the
two conducting layers shown in figure 1, which are assumed to extend radially
to infinity. 1t can be verified that equation (18) satisfies Laplace's
equation.

Application to the Four Point Probe
The potential from the point current source at A will be found first;
the total potential due to the source at A and sink at B may then be con-

structed by algebraic addition.

According to appendix B, and the previous disc' <sion, the potential in
the top laver due just to the source at point A s

VA N ----__QA : Q/ e_kZJ (kr) dk (]9)
2 2 0
r- + 2 0
where
__1_. {
Q- 2no 20

1

To Vp are then added terms of the form (eq. (18)) due to the currents flowing
along the discontinuities at z = 0, and z = w). If this were an electro-

statics problem, these additional terms would be due to charge distributton:
at the discontinuities. Combining equations (18) and (19), the potential 1n
the top region is

v, ={ [f](k)ekz R g](k)e"‘z] 3 (kr) dk + —~2—Q——£ (21)
Vr + 27
. f‘“[f](u)e“ v g e Oe'“]a (kr) dk (22)
0 o]

Likewise, in the bottom layer the potential is

v, ={ [fz(k)e"’ ' gz(k)e""] Jy(kr) dk (23)
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Once the tunctions f,;, f, q), and gy dre determined, the potential every
where inside the two layers will he known, although, since we need only the
potential at 7 - 0, only t; and ¢, are needed.

At 7 - 0, the ftirst of the boundary conditions, equation /8), reduces to

ﬁl (r,0)

52 =0 (24)

since in the region z <0, o = 0. At z = w), equation (8) glves

Vi(re,) = Vo(rie) (25)
Moy AWpirey) (26)
% az ) az

The conductivity for 7z > w} + wp s zero, so again

V. (r,w, + w,)
2 1 2"
27 = 0 (21)

The four conditions (24) to (2/) are sufficlent to determine the four unknown
functions f,, g3, f,, and gp, which appear in equations (21) to (23).

Applying equation (24) to (21),

©

av
1 kz -kz L S
2z - f "[‘19 Sy e plkr) dk - T
0 (r +27)
and, at z -0,
aV](r.O) )
Yl k[%](k) g](k)] Jo(kr) dk = 0 (28)
0
Since equation (28) must be true for all r > 0,
f](k) - gl(k) =0 (29)

Note that equation (?2) was not used in setting avy(r,0)/73z = 0 since

J e¥7a (kr) dk s not differentiable at z - 0.
0

[
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The next two boundary conditions (25) and (26) give, respectively

km1 -kw.l —kw]
f1e + 9,e + Qe Jo(kr) dk

0

[ee]

[ ku] —~ku.|
= fze + g,e Jo(kr) dk

0

i kw] - kw] -kw]
% k fle - 9,¢ - Qe Jo(kr) dk
0

[ kw] -kw]
: o, k f2e - gze Jo(kr) dk

0
Again, since these equations are to be true for all r, the integrands must be
equal, whence
ku] —kw] ku] —ku] -ku]
f.e +g.e - f.e - g, = - Qe (30)
and
ke, ko, ke, ko, ( —ku])

o]f]e - 9,9,e . °2f20 + 0,9,e = o]Q e (31)

Finaily, applying equations (23) and (27),
k(o) ta,) k(o +e,)

g,e =0 (32)

foe -9

Rewriting equatior (32) as

kKw -2kw ~-kw
1 2 1
fze = e [gze ]

equations (30) and (31) become, after substitution,

ku] -ku‘ —ku] —2k02 —ku1
f]e + g,e - 9,e 1 + e = -Qe (33)

and

- .
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kr.nl kw| -kw] [ 2kw? J km'
o f e a,9,¢ boo,g,¢e 1 - e B “109 (34)

Eliminating gq; between equations {33) and (34),

kw ( -2Kw ) ( -2kw )]
1 2 2
fle [o] 1 ¢+ e + 02 1 - e
-kw - 2kw -2k
- 9,8 ] [n](l t e 2) - 02<] - e ?)]

-k -2Kw ) < -2kw )]
1 2 2
- Qe [d] (] + e - d? ] - e
Upon rearrangement, this becomes

kw] ?kw2 - kul ~2ku2
f]e (o] + q?) + (uI u?)e q,e (o] o?) + (o] + d?)P

-km] —2kw2
= Qe (ol - ay) ¢ (a] + °2)e

Finally, making use of equation (29) (that f,; = gy7), multiplying through
kw

by e ]. and dividing through by the quantity (o] 3 02),

qﬁ 2kw
2

£(k) = o e R_+ e_ ——

1 2ko, ~2ka, .2sz‘!
e 1 + Re - IR + e

or

B0 e L 0 (ks) (3%)

1 + Re  °
?kSuI/S —2‘(5«)2/5 1
e R + e

where we have made use of the definition

1% P2 h (36)

R =

%Gt PR

The quantities Py * \/n], and Py - l/o2 are the resistivities.

We are interested in the potential difference between the two probes at
points 1 and 2 in fiqure 1, when a current 1 1is in)ected at point A and
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withdrawn at point B. From equattons (21) and (¢9), the potential on the
plane 7z - 0 due to the current entering at A s

V(r.0) - 2 R 20{ F(ks)J (kr) dk

Since the potentials add algebraically, the potential at point 1 due to
source Qp at point A, and a source Qg at point B, separated from
point A by the distance is

) O
o tat 2y | Rk gk gl e ag | Rl I (k) ok (3D
0 0

Likewise, the potenttal at point 2, due to the same sources, 1is

0, il 0g
sz = 2—5- + 20,\ [ f(kS)J0(2ks) dk + -S— + 208_[ f(kS)Jo(kS) dk (38)
1] 0

The measured quantity is the voltage difference betwcen points 1 and 2

0y - O fm
AV = vp - vp ST 2(()A 05) f(ks) Jo(ks) Jo(?ks) dk
] 2 0
In our case, the sources are equal and opposite in sign (Qa = - Qg = Q), and
av - 344 fm f(ks) [J (ks) - 3 (2ks)] dk (39)
S 0 0 0

Making the change of variable (t = ks) and defining the dimensionless
quantities

S
A= W--= (40)
Qu‘ wy

equation (39) becomes, after using the definition of @ found in equation (20)

av 1 t
1 2ws 0, 1+ 4 f 9[\] [Jo(t) : Jn(2t)] dt (41)
0

with the symbolism

- —_ ..
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g(x) - -~ T Wl (42)
o 1+ Re (WO 9
R + ef(wx)
The difference Jy(t) Jo(2t) which appears in equation (41) may be
evaluated using an integral representation for Jo(t) (ref. 4). »
1 4
J (t) = - f cos [t stn(e)] de (43)
0 "0
whence

3,(0) - 3 (2t) -

A -

{“ [Cos [t sin(e)] -€0$ [2t s'ln(e)]] 0 (44)

Using the identity

a

cos(a) cos(B) - 2 sin [“ -

N+
=
| S——
[Yal
—
>
| s |
e~
ro
1)
| W

equation (44) becomes

2 3 ] ‘
Jo(t) - J0(2t) <, { [s1n[—2t s1n(e)] s1n[§t s1n(9)]] de (45) ‘

and equation (41) becomes

© " .
a0 8 t 3 I} . j
[ - 2'015 1 ¢ . f g[x] f s1n[2t stn(e)] s1n[2t sin(e)] de dt i :

0 0 :

where g(x) 1s defined as in equation (42). The double integral,
equation (46), s the basis for the programs described in appendix C; the
details of which are found in the next section.

PROGRAMMING
Solution for the Double Integral

The integral of equation (46) cannot be evaluated analytically. However,
Gaussian quadrature (ref. 5) provides a fast, accurate method of evaluatin;
the double integral numerically. In an "m* point Gaussian quadrature, the
integrand s evaluated at points determined by the roots of an mth order
Legendre polynomial, and summed, with predetermined weighting factors, to
provide an approximation to the integral over the range of integration. For
the purposes of our program it was decided that a 6 point quadrature would
yleld sufficient accuracy.

10
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Before the integral over t can be evaluated, the integral over ©
must be performed. Therefore, we rewrite equation (46) Aas

P f t :
I " 2ws 1+ 4 ! g[x] K](t) dt (47)
where, using equatinn (45)

Ky(t) = 3 (1) - 3 (2t)

or

S -,
K (1) :% _(]; s1n[gt s\n(e)J s‘in[%t s1n(‘5)] de (48)

Because of the change of variable in equation (41), Ky(t) s a function of t
only, and 1s evaluated at the same points, regardless of the value of s, p1,
p2, w], Or wp. The points at which K (t) 1s evaiuvated are determined by
the zeroes of the integrand of equation (47). Two factors influence the evalu-
ation of this integral. First, an integral with upper 1imit cf o 1s dif-
ficult to Integrate numerically because the algorithm to be used requires the
upper 1imit be specified. Second, Gaussian quadrature y! 'ds more accurate
results if the integration 1s performed over subintervals uetermined by the
zeros of the integrand. Both factors are taken into acccunt with the decisi.n
to integrate between the zeroes of the integrand, and *o sum these results
until the change in the total is negligtible.

The problem of solving equation (46) 1s then divided into three parts:
finding the zeroes of the integrand

t
Ky(t) = g[\] Ky (t) (49)
evaluating
Y M
i
P = I’ (50)
27
and finally, solving
P
AV 1
WL [1 v wj] (51)

for py, where Py 1s found by increasing J wuntil [Py - Pyyy| s less than
the resolution of the computer. ’

The variable g[t/n], as given by equation (42), i< a monotonically
decreasing function of t, and has nanly the one zero (at t = »). Therefore,
the zeroes of K, are identical to the zeroes of K;. The first program-
ming step, then, i¢ to determine the zeroes of K (t). The number of zeroes

n
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of Ky(t) 1s determined by the relativc < es of the other parameters. We
found that for all cases attempted, 50 zeroes was sufficlent to accurately
evaluate the integral. Because equation (48) is a function of t only, the
zeroes of the integrand are constant, and can be found once and stored in a
file. With the zeroes of the integrand known, the points at which K (t) 1is
evaluated are known, and the value of Ky(t) at these points can be found,
and stored in a file.

Ihe order of programming is thus: PROGRAM
1. Determine first "3" zeroes of K (t) ZERO
2. Determine values of K;(t) at evaluation points BESCAL

3. Plot AV/1 wversus pp/py for various s, wy, wp. and pp FPPPLT
4. Determine py for given AV/I, py, w1, wp, and s FOUR

The listings for these programs, written in FORIRAN.// (ref. &) for an IBM-PC,
can be obtained by contacting COSMIC (The Computer Software Management and
Information Center [LEW No. 14389]). An explanation of the pre.edure required
for running these programs is found 'n appendix C.

Program Explanation

The first two programs, ZERQO and BFSCAL use the subroutine BESDIF to
evaluate equation (48), at a given value of t. BLSDIF uses the 6 point
Gaussian quadrature over 30 subintervals spanning the range from 0 to .

ZERO uses an interval halving technique ton find the first "j" zeroes of the
difference, Jy(t) - Jo(2t) (with 1" arbitrarily recommended to be 50). The
first zero is known to occur at t - 0. The program stores this initial value
in the ASCII file ZERC.DAT, and begins the algorithm to identify the rest of
the zeroes. Starting at t - I, with an interval of 1, ZERO ralculates K,(t)
until the result changes sign At that point the interval is . lved, the
direction of increment is reversed, and the program calculates values of K,y(t)
until the sign changes again. This process repeats until the desired accuracy
(a recommended 5 digits) 1s achieved. When the sero i1s found sufficiently
accurately, the value of t which produced the zero is stored, the interval
is reset to 1, and the program repeats unttl the desired number of zeroes is
found.

The program BESCAl, using the location of these zeroes, then calculates
the values of K;(t) necessary for the other two programs to evaluate the
integral of equation (46). For each interval between zeroes, BESCAL cal-
culates and stores the values of Ky(t) in the file TWOBES.DAT.

With the locations of the zeroes known, and the values of Ky(t) known
at the points of evaluation, the two main programs, FPPPLT and FOUR can be
executed. FPPPLT calculates an array of numbers suitabie for plotting. The
plots appearing in this report were generated using an off-the-shelf spread
sheet program (ref. 7). The plots produced are log(av/I) versus log(pp/py)
for constant W, s and pp, and for vartous values of A. This program was
used by the authors primarily as a check of the algorithms used.

12
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tOUR, the more useful of the two programs, calculates a p7 to corre:

spond to a given wy, wy, p2, S, and AV/1. This is arcomplished by mulitiplying

both sides of equation (47) by 2ﬂS/p2

o

av) 2xs 1 t :
[1] sl LICK f g[)\J- K (t) dt (57)
2 2 A

The left side of equation (52) can be evaluated from experimentally determined
parameters. The right side of equation (52) is calculated from an initial
quess of Py keeping in mind that gq(x) 1is a function of Py as given by

equations (42) and (36). Theoretically the right side of equation (52) can be
re-evaluated repeatedly until the equality is achieved. In practice the inter
mediate functions ' and F are calculated as:

A
£ [f!] 2ws (53)
P2
and
A t
Fo=-— 11+ 4 qH . K, (t) dt (54)
Py A 1
0
if |F' - F] s less than the required tolerance, chen the value of

2 used s displayed as the "correct" resistivity. Otherwise, the guess for
2 s modified according to the sign of the quantity F' - F, and if neces-

sary, the interval is halved, until the error is less than the required toler-
ance. Because most of the "number crunching* needs be performed once for all
possible values of the variables, the calculation speed of the algorithm is
very high.

RESULTS

The curves of figure 2 were produced using data generated by the program
fFPPPLT. The parameters were chosen to correspond to the parameters chosen by
Brown (ref. 1), in order to compare figure 2 with Brown's results. The shapes
of the curves are identical to those produced by Brown. The difference in the
plots 1s that the graphs of this paper are of AV/I versus pp/p), and 1n
Brown's report, the plots are of the function F (identical tc F 1in this
paper) versus oy/op. The abscissa 1s the same in both cases, but the
ordinate in Brown's paper does not correspond to a measurable quantity. Since
F' s a function of the probe spacing, and the resistivity of the substrate,
these two parameters were set to one in figures 2(a) to (c). With this choice
of parameters,

o>
<

F-t

- (2%) (55)

—

13

. PO
’l‘ l’\“r \~'1 A



taking this into account, the plots of this paper are identical with Brown's
plots.

Figure 3 shows the variation of aAV/1 as a function of the ratio of the
resistivities of the layers as well as a function of the thickness of the
deposited layer. when the resistivities are approximately equal (pp/py = 1),
AV/1 1s a function of the thickness of the deposited layer only in the sense
that AvV/1 1is dependent on the thickness of the sum of the two layers
(v + wp). [Intuitively, this can be seen to be correct, for if the resis-
tivities are equal, the division between the materials disappears, and the
measurement of AV/1 1s that of a single layer. Since the deposited layer
varies from less than 2 percent to less than 10 percent of the total thickness,
the variation in av/1 1s relatively small. As the ratio p3/py 1increases,
the thickness of the deposited layer comes more into play. In general, 1t can
be seen that the thicker the deposited layer, the lower the measured value of
AV/1. In addition, the slope of the curve steepens as the ratio pp/p
increases. 1This implies that the algorithm is more accurate for values of

Py << P2

In order to verify the algorithm in the program FOUR, the two examples
from Brown's paper were chosen to be used in our calculation. Table 1
reproduces the applicable numbers from Brown's table 11, augmented by the
results obtained using the program FOUR.

The results of our program agree closely with the results published by
Brown, and with the known values for the substances in question. The slight
discrepancies are caused by the increased resolution of our machine, and by
assumed roundoff errors associated with the numbers published by Brown. With
out knowing the algorithm used by Brown, it is difficult to make judgments
about his techniques. However, it must be noted that advances in computer
technology, in the 20 years since Brown reported his resuylts, have made the
evaluation of these equations much easier, and more accurate than befare. 1In
addition to this i1s the fact that the program FOUR solves the equation for p,
and Brown's results are given in terms of 1/p = o.

CONCLUSIONS

As can be seen from the plots, and from the numbers generated to produce
table 1, the algorithm devised solves the problem as well as the unknown algo
rithm designed by Brown. Along with a detailed explanation of the software
generated in this effort, we tried to explain the process of arriving at the
integral presented by Brown, starting from the governing equation, and boundary
conditions. 1t s hoped that the detalls in the solution are sufficient to
enable the reader to use these results in the solution of the class of problems
where resistivity measurements are needed for a substance deposited on a sub-
strate of higher resistivity than the deposited layer.
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APPENDIX A

NOMENCLATURE
probe at which current i1s injected
coefficient of 1st independent solution to Bessel's equation, V
probe at which current is withdrawn
coefficient of 2nd independent solution to Bessel's equation, V
coefficient of 1st independent solution for 6(6)

constant to be determined in solving for potential due to an
jsolated point source

coefficient of 2nd independent solution for ©(e)
electric field, V/m

coefficient of 1st independent solution for Z(2)
intermediate function used in computing resistivity
intermediate function calculated from measured parameters
coeffictent of 2nd independent solution for Z(z)

function to be determined in solving the potential probiem in the
continuous case

function solved in the deposited layer due to current input at
point A

function solved in the substrate due to current input at point A
function f redefined in terms of x rather than ks

function (akin to fy) in the deposited layer due to current
withdrawn at B

function (akin to f) in the substrate due to current withdrawn
at 8

current injected at probe A, A

current density, A/m2

Bessel function of the first kind of order n
Bessel function of the first kind of order 0

number of zeroes of Kj(t) to be found

15
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V(r,e,z)

difference Jo(t) - Jo(2t)

g(t/a) Ky(t)

separation constant, m-!

order of legendre polynomial used in Gaussian quadrature

separation constant, m !

value of anjkz dt using "m" zeroes

Psuedo charge (analogous to charge in electrostatics)

Q = 1/(2%ay), V/m

Psuedo- charge at point A, V/m

Psuedo-charge at point

B, V/m

resistivity variable (p2 : p])/(pz + p])

potential function in the r direction, V

radial coordinate

unit vector in r

spacing between any two adjacent probes in four point apparatus, m

direction

elemental area on surface of sphere

potenttal function,

potenttal function
votenttal function
potential function
potential function
potential function
ratio of substrate
Bessel function of
potential function
axial coordinate

absonlute value of

v

at

at

at

in

in

thickness to thickness of deposited layer

the second kind of order

in

2

probe A, V
point 1, V
point 2, V
ceposited layer, V

substrate, V

the ¢z direction

16
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voltage difference between probes 1 and 2, V

permittivity, F/m

permittivity of first layer, f/m

permittivity of second layer, f/m

potential function in the o direction

angular coordinate

twice the ratto of probe spacing to deposited layer thickness
resistivity, @-m

resistivity in the deposited layer, Q-m

resistivity in the substrate, @ m

conductivity, (e m !, @ Im!

conductivity of the depo: ited layer, @ 'm!
conductivity of the substrate, @ Im-!

electric charge density, C/m3
thickness of the deposited layer, m

thickness of the substrate, m
partial derivative operator

vector differential operator

- ————— e

Laplactan operator
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APPENDIX B
The tlectric Potential due to an Isolated Point Current Source
Consider a point current source of output I located at an origin within a
medium of uniform conductivity, o. By symmetry, the current density vector,
J must vary as 1/r2, where r 1is the distance from the source, since the

total current passing through any sphere surrounding the source is I, and the
area of the sphere is proportional to r2. That is

) - ds = 1 (B.1)
sphere
where ds 1s the element of area on the surface of the >phere,

45" = 7 r% sin o do de (B.2)

Since J - &E: the electric field € 1is also directed along r and is
proportional to l/r2. Thus

L =, r (B.3)

The unknown constant, c, in equation (B.3) can be determined from
equations (B.1) and (B.2):

2w
— — Ul C ~ -~ e
Jeds = o J’[’Er]-[rr sinedod(p]
sphere 0 4
0

2w
:ocf J;“s1ned0d¢=41rac=l (B.4)
0
or

c (B.5)

* two
Then, from equation (B.3), the electric field becomes:

£ - iio ;é (B.6)

This 1s the electric field about an isolated current_sovrce of strength I.
Since the potential, v, is related to t by E = - W, the potential
(referenced to sero at infinity) is:

18
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The electric field, as given by equation (B.6), and the corresponding
potential, from equation (B.7), apply to the case of an isolated point source
rrom which the current density 1s independent of direction. In our case,
however, the current (in cross section) is confined to the upper half plane
(o0 = 0 for z < 0). Then the 1imits on © 1in equation (B.4) are 0 and /2,
and equation (B.5) becomes:

L (B.8)

= 2wo

and the potential in the top layer due just to the current injected at point
A is:

.
V- 2wo1r (8.9)

In cylindrical coordinates, where r 1is the distance from the z-axis,
equation (B.9) becomes:

R GRS SN Al ¥
V = * ve e Jo(kr) dk (B.10)
2na 2 2 1
1Vr 7
0
19



APPENDIX C
Operation of Programs and Sample Outputs
It is dassumed that the programs are all compiled using the Microsoft
FORTRAN-77 compiler on an 1BM PC or compatible computer. The executable

programs are then generated by using the Microsoft Linker to 1ink the object
code in the following manner:

PROGRAM | INKED OBJECT MODULES

1. IERO ZERO, BESDIF

2. BESCAL BESCAL, BESDIF
3. FPPPLT FPPPLT, QUAD, XI
4. FOUR FOUR, QUAD, XI

1o run these programs on an IBM PC simply enter the name of the program
to be run. ZERO and BESCAL need only be run once to generate the reqtired

constants for the other two programs. The following pages show example outputs

of the program as run on an IBM PC.
The first program to be run is the program ZtERO. The prompts are:

ENTER REQUIRED NUMBER OF DIGLIS [DEF = 50]:

(Your response: an integer greater than 0.)

ENTER REQUIRED DIGITS [DEF = 5]: (accuracy)

(Your response: an integer between 1 and 6, inclusive.)

The program proceeds to display the number of zeroes requested, as well
as storing them in the file "ZERO.DAT".

The next program is BESCAL. There are no prompts, but the program dis
plays the interval for which 1t is presently computing the necessary values
of Kj(t). These values are stored in the file "TWOBES.DAT".

The third program, FOUR is the program which will be most useful to the
researcher. The prompts which appear in this program are:

INITIALIZING QUADRATURt VALUES (reading the files “Z2ERO.DAT" and
“TWOBES.DAT".)

tEnter PROBE SPACING <0.159>, cm:

Enter MEASURED VOLTAGE/CURRENI <36.77>, Q:

Enter THICKNESS of S1 <381.00>, um:

Enter THICKNESS of SiC <6.00>, um:

Enter RESISTIVITY of SiC <0.22 £ + 02>, Q-cm:

Enter INITIAL GUESS for RESISTIVIIY OF SAC <0.1 E + 01>, Q-cm:

Enter INITIAL DELTA RESISTIVITY <0.1 E + 01>, R-cm:

Enter MAXIMUM No. of ITERATIONS <100>:

CHANGES [Y/N] <N>: (1f changes are requested the rrogram loops through
these prompts again.)

20
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The routines then produces a table similar to the one below:
{ fc te ERR RHO1

1 1.30009 1.6697 0.22138 0.1000E+00
2 3.69198 1.6697 1.21111 .600E+00

1 1.59509  1.6697  .04470  .1313E+00
12 1.66295 1.6697  .00406  .1391E+00

The calculated S1C RESISTIVITY = 0.13906t+00 Q- cm.
following the solution appears the prompt:

ANOTHER MEASUREMENT 2 [Y/N] <Y>:
(If the response is "Y" the program returns to the original prompts; if
the response 1s "N" the program ends.)

The fourth program in the package, FPPPLT, is similar in operation to the
program FOUR. This routine produces a file which can be used by a package such
as “SYMPHONY" to produced plotis of the relationship described in this paper.
The prompts are:

INITIALIZING QUADRATURE VALUES (reading the files “ZERO.DAT" and
"TWOBES.DA1".)

Enter No. of INCREMENTS <20>: (number of points to plot)

Enter PROBE SPACING <1.00>, cm:

Enter THICKNESS of SUBSTRATE <300.00>, um:

Enter THICKNESS of DEPOSITED LAYER <20.00>, um:

Enter RESISTIVITY of SUBSTRATE <0.10 E +01>, Q-cm:

Enter BEGINNING 10g(RHO1/RH02) <0.00>:

Enter ENDING log(RHO1/RH02) <-3.00>:

CHANGES [Y/N] <N>: (1f changes are requested the program loops through
these prompts again.)

At this point the routine requires a file name under which to store the
data. The prompt for this 1is:

ENTER FOR UNIT 2 THE NAME OF THE OUTPUT FILE

WHICH WILL ACCEPT THE DATA TO BE PLOTIED.

File name missing or blank - please enter name.

UNLI 27 (Your response 1s to be a legal file name, such as “TEST.DAT".)

21
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TABLE 1. - COMPARISON OF THEORY WITH EXPERIMENT
FOR A BRASS SHIM ON A MLRCURY SUBSTRATE

fo7 - k/(Q-cm)]

S, A W o2, av/1, | Known Derived Derived
cm k/(Q-cm) w¥/A | value BROWN FOUR
0.127 4.72 23.2 10.4 63.0 143.0 149.0 150.0
0.063 2.21 19.0 10.4 82.0 141.0 137.0 138.0

Note: k/(Q-cm); denotes thousands of (Q-cm)-', 1.e.,
1 k/(Q-cm) = 103 (Q-cm)-!

Also: for o = 10 k/(Q-cm)
p = 1/a = 10-4, (R-cm)
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