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A COMPUIER PROGRAM I0 CALCULAIL IHE RFSISIIVIIY OF A IHIN FILM DEPOSII_D

ON A CONDUCIIVE SUBSIRAIE FROM FOUR-POINI PROBE MEASUREMENI_

Lawrence G. Oberle and Gustave C. Fral_ck

National Aeronautics and Space Administration
Lewis Research Center 4
Cleveland, Ohio 44135

SUMMARl

lhls paper deals with the use of the four-polnt probe to measure the
_i resistivity of a thin film of conducting material deposited on another layer
; of conducting materlal. Such measurements occur, for instance, in silicon
! carbide (SIC) research, where It ls necessary to grow the SiC on a silicon (S1) i
! substrate, lhe presence of the silicon substrate wlll introduce errors in the

measured resistivity of the SIC.
I

Starting from baslr principles, and expression for the ratio of measured
voltage difference to injected current [AV/l] is developed. Thls expression

,_ involves the probe spacing, relative thicknesses of the layers and the sub- _.Lt_

o_ strate resistivityas parameters as well as the unknown resistivity of the iL'%J

, deposited layer. The unknown resistivity can be found by Iteratlvely evaluat-
"' Ing the theoretical expression, lhts must be done numerically. A full

description of the numerical techniques involved, and the computer programs
used, Is given.

Finally a comparison wlth previously published results is presei_ted,
j

together with a detailed description of how to use the programs to ',nd resls-
tlvlties, as well as plot curves displaying the change in AVll as a function I
of the thicknesses of 'he layers, and their reslstlvltles. I

w

INTRODUClION i

One of the ways In which a semiconductor material is characterized is by I"_
the measurement of its resistivity. In the development of slllcon carbide for
use as semiconductormaterial for high temperature appllcatlons, It became
necessary to measure the resistivityof the thln film while it still was
attached to the silicon upon which It had been grown epitaxlally. A method of
calculatlng the "true" resistivity of a deposited layer on a substrate of
finite and different resistivitywas discussed by Brown and Jakeman (ref. 1).
lhe theory was presented In a cursory fashion, and no mention was made of a
technique (i.e., and analysis, or series of programs) to determine the resis-
tivity, or conductivity. Our intent is to remedy thls defect wlth a presenta-
tion of th_ theory in depth, and a 11brary of programs k'hlchcalculate the
correction factors necessary for evaluation of the equation presented by Brown.

The situation Is as shown In figure I. Current of magnitude I is injected
at probe A and withdrawn at probe B, and the voltage difference, AV, between
probes I and 2 is measured. The subject of thls paper is the determination of
the unknown conductivity, ol, or resistivity, Pl, of the thln fllm In terms of
the known quantltltes AV/I, el, _2 (the thicknesses of the respective layers),
and o2 (the conductivity of the substrata).
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THEORY

Governlnq Equations and Boundary Conditions

It is assumed that the materials obey Ohm's Law, i.e.,

J : oE (I)

where -_ is the current density in A/m2, o Is the cond'JctIvlty(_-m)-l, and
E is the electrlc field In V/m.

The current density J satisfies the continuity equation for the electric
. charge in the form

T + :o (2)

where _ is the electric charge density, in C/m3. For steady currents, there
is no accumulation of charge at any point, so a_/at is zero, and

v • J = o (3)

Prom equation (1)

v • (oE): 0 (4)

The electric field E is derivable from a potentlal function V, since
TxT_0,

E = - VV (5)

Combining equations (4) and (5),

: v • (ovv)= 0
I

or if a is constant,

' v2 V : 0 (B)

lhus the potential V satisfies Laplace's equations inside the two layers.
The boundary conditions satisfied by V may be found by analogy with electro-
statics. For a charge-free region, Gauss's law (ref. 2) is given by

,;
: v • (cE): 0 (v)
,,!

_ where ¢ ts the permtttlvtty. Comparing equation (7) with equation (4), It
1 is seen that o tn the steady current problem plays the role of c In the
I electrostatic case_ Equation (7) leads to the boundary condition (ref. 3).
I

avI av2

h
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where alan Indlcates the normal derivative at the boundary. Replaclng c ._
by o, our boundary conditions become

avI av2
Vl = V2' °l an = o2 an (8)

Equations (6) and (B), together wlth the field about a point current source
(from appendix B), are sufficient tc flnd the function V.

Solution of Equations

The method of attack Is to flnd the potential due to a single point cur-
rent source and then use superposltlon to flnd the potentials due to the two
sources at A and B.

i

lhe z _ 0 plane Is at the top of the upper plane In figure I, and the
posltlve z axls extends Into the materlal. The two planes are bounded at
z = O, z = _I, and z _I �_2-Sinc_ we are considering only the source at i
A for the tlme being, the problem has azimuthal symmetry; that is, the poten-
tla) ha no angular dependence about the z-axis. It is therefore convenient _
to use cyl_ndrlcal coordlnate_.

In cylindrical coordinates, laplace's equation v2 V = O, assumes the form

I a aV 1 a2V
rar _rr * - 2 ---- �------0 (9) i

r ao2 az2

where r Is the d_stance from the z-axls and o Is the angular displacement.
Equation (9) may be solved by separation of variables; that Is V(r,e,z) Is
written as

V(r,O,z) : R(r) (_(0) Z(z) (I0)

In which case equation (9) dssumes the form ,,
"- }

, -- d-2e d2l (11)
rR d r2e do2 = - / jz 2

lhe left stde of equation (11) _s a function of r and O, and the right
slde Is a _.'nctlonof z only. in order for equation (ll) to be true for all
values of r >__O, -_ .<e < _, .- < z < ®, both sides must equel a constant.
Hence equation (11) Is written

1 d [r dR] 1 d2e 1 d2Z _ k2rR dr d-r *-2-e- --- Zw de2 dz 2

lherefore Z satisfies the equatlon

L

3

1

¼
I
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d?l k2L
d/_

whlch has the solutlon

Z _ Ekekz + Fkekz (121

the solution for e Is found In a slmllar fashion. Moving the k2 to the
left slde and multlplylng by r2, equatlon (11) becomes

R dr d-r + = - o dO2

so that e satisfies the equation

t

d2e__= _ n2e f

dO2

If the potential Is to he _lng]e valued In O, n must be an integer, and

e(O) Cn cos (no) + On sln (nO) (14)
s'

ihe above choice of separation constants leads to solutlons which are periodic
In 0 and can be made to vanish at z = t ®.

lhts leaves only the equation for R(r). Multiplying by R, equation (13) ican be rewritten as

r drr + r R = 0 (15) ;
t

This Is Bessel's differential equation, and R ts wrltten ,

R(r) : AnJn(kr ) + BnYn(kr) (16)

where Jn and Yn are the Bessel functions of order n of the first and
second kind. Both are oscillatory functions whtch vanlsh are r = ®, but only
Jn ts finite at r _ O. In our problem, V(O,e,z) must be < ®, so Yn ts
excluded. Further, since there ls no angular dependence, n = O, and our
solutton ls written In terms of Jo(kr).

For problems involving boundary conditions on cylindrical boundaries at
flnlte values of r and no angular dependence, the solutton V(r,z) Involves
a sum over discrete values of k. As an example, If V ls to vanish on a
cylinder of radius a, the solution inside the cyllnder ts

V(r,z) =_-_. Ate-ktlZlJo(klr) (11)
t=1

where akI = x 1, the t th zero of Jo(X). In this way each term In
equatlon (iT) vanishes at r _ a.

4 ',
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Now, a_, ,l _ ®, k I XI/d b(,come_ a (ontlnuou_ variable, and the

solution (eq. (17)) be(.ome_

; V(r,z) =f f(k)e -klzlJo (kr) dk (18)
0 4

lhts Is the form of the solutlon to be used In finding the potential inside the
two conducting layers shown In figure 1, which are assumed to extend radially
to infinity. It can be verified that equation (18) satisfies Laplace's
equation.

|

Application to the Four Point Probe

lhe potential from the point current source at A wt11 be found first;
the total potential due to the source at A and slnk at B may then be con-
structed by algebraic addition.

According to appendix B, and the previous dlsc'',sion, the potential In
the top ]aver due Just to the source at point A ls

'1

"! --Q- f kZJo(kr ) dk (ig)
_ VA : - .... = Q e-
" Vr 2 z2+ 0

where

I

Q : 2_al (?0)

To VA are then added terms of the form (eq. (18)) due to the currents flowing
along the discontinuities at z = O, and z = _1- If this were an electro- _-.
statlcs problem, these additional terms would be due to charge distributions '_
at the discontinuities. Combining equations (18) and (19), the potential tn
the top region ts

c[, ].: V1 = l(k)ekZ + gl(k)e-kZ 3o(kr) dk + Q (21)
: _r 2 + z2

= ® , gl(k)e , Qe- 3o(kr ) dk (221
:I S l(k)ekZ -kz kz

Ltkewtse, in the bottom layer the potential ts

' =_ * g2(k)e-kZ 3o(kr) dk (23)

5
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Once the fun( tlons tl, f2, .ql, and g2 are determined, the potential every
where inside the two layers will be known, although, since we need only the
potential at z L), only I I and gl ,ire needed.

At t -- O, the first ol the boundary conditions, equation 18), reduces to

4

avl (r,O) = 0 (24)az

since In the region z < O, o = O. At z = _l, equation (8) gives

Vl(r,_ _) = V2(r,o_l) (25)

aVl(r,W I) aV2(r,w])
--= (26)°i ..... at °2 az

i

lhe ronductlvlty for z > _I + '_2 is zero, so again
!
i

aVp(r,_l _ _2 )
- : 0 (27)

at

lhe four conditions (24) to (21) are sufficient to determine the four unknown ,
functions fl, gl, t2, and g2, which appear in equations (21) to (23).

Applying equation (24) to (21),

]

no

az k 1 gl e (r 2 2)3/2

and, at z = O, f-_'!

az- - k l(k) gl(k) Jo(kr) dk = 0 (28)
0

Since equation (28) must be true for all r > O,

fl(k) gl(k) = 0 (29)

Note that equation (22) was not used In setting avl(r,O)/az = 0 since

f e-kZJo(kr) dk Is not dlfferentlable at z = 0.
0

i

0 ,
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lhe next two boundary cond%tions (25) and (26) give, respectively .I

fle + gle _ Qe Jo(kr) dk

4

fo Jo(kr) dk= f2e + g2e

and

oI k fle gle - Qe Jo(kr) dk

= o2 k 2e g2e Jo(kr) dk i

Again, since these equations are to be true for all r, the integrands must be
J

equal, whence

kwI -k_l k_l -kWl -kWl
fle + gle - f2e g2e = Qe (30)

}

and

k_ 1 -k_ 1 k_ 1 -kw I {-k'l_ i
alfle algle a2f2e + a_g2e = alQ _ / (31)

Finally, applying equations (23) and (21), "'i

k(w1+_2) k(Wl+_ 2)

f2e g2e : 0 (32)

! Rewriting equation (32) as

f2e = e g2e

equations (30) and (31) become, after substitution,

kw l -k_ I -kw 1 _ e-2k_2] -k@1fle , gle g2e 4 = -Oe (33)

and
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I

ke_,i k_ I -k_i [ 2k_?J k_, ,iolfle _igle _ o2g?+, I e = olQe I (34)

Elimtnatlnq g2 between equations (33) and (34),

k_l o2(1 2k_2)]fl e [o1(1 . e 2k_2) + e

e k_l (i + e 2k_)2)gl [_1 °2(1 e 2k°2)] :

k_1 o2(1

Upon rearrangement, thl_ becomes

fie (o 1 + Op) + ("1 ,,?)e ql e (_1 o;,) _ (_l + _p)P
k

k_ 1 [ - 2k_]Qe (o I _?) * (o 1 + o2)e

Finally, making use of equation (29) (that fl : gl), multiplying through -_

k_ 1
by e , and dividing through by the quantity (o 1 _ o2),

]

or

(

,,(k) [' / .....1 Qf(k,)e R+e j
i

where we have made use of the definition

'_I °2 P2 Pl
R = ---- _ (36)

°1 _ 02 P2 + #I

lhe quantities Pl = 1/"1' and P2 - 11°2 are the reslstivities.

Me are Interested in the potential difference between the two probes at
points 1 and 2 in figure 1, when a current l ts injected at point k and

i

8 _"i
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withdrawn at point B. From equatlon_, (71) and (_91, the potential on the
plan_ z 0 due t(_ the current entering at A is

_:" V(r O) _ + 21] f(kS)Jo(kr) dk
' -- r 0

Since the potentials add algebralcal ly, the potential at point 1 due to ,

source QA at point A, and a source QB at point B, separated from
point A by the distance Is

o/ %/0": -- _ _QA f(ks).lo(kS) dk + _-_ + QE f(ks)Jo(2ks) dk (37) !
Vp} s

J

Likewise, the potential at point 2, due to the same sources, Is fi

*, L

: QA QB

]._, Vp2 = _-_ * 2QA f(ks)Jo(2ks ) dk + ---s �2QBf(ks)Jo(kS) dk (38) :I

i

lhe measured quantity Is the voltage difference between points I and 2

• [ ]" aV : Vpl Vp2 --?-s......+ 2(QA QB) f(ks) 3o(kS) Jo(?ks) dk ;

In our case, the sources are equal and opposite in slgn (QA -"- QB _ Q), and !

; aV : _ _ 4Q f(ks) o(kS) Jo(2ks) dk (39) ,:

Making the change of variable (t = ks) and defining the dimensionless
quant I t I es

w2
X = -s-" W _ -- (40)

2_I' uI

._ equation (39) becomes, after using the deflnltlon of O founO In equatlon (20)

i [ 2wso1 I _ 4 g o(t) - Jo(2t dt (41)

!

wlth the symbolism
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I

e _i-x + Re

P L'R - -I
(Wx) /

+ e J

The difference Jo(t) Jo(2t) which appears In equation (4]) may be
evaluated using an tntegra] rep;'esentatlon for Jo(t) (ref. 4).

1- f" cos It sin(e)] de (43)J°(t) = " 0

whence

=- cos sin(O cos t sin(e e (44)
0

Uslng the identity

cos(Q) cos(g) . ? sIn --2 s%n ....

equation (44) becomes
l

Do(t) jo(2t) 2 sln t sin(e sin t sin(A de (45)

and equation (41) becomes !

[ ,16V 1_ 8 i

I : 2,rols I + -_ g sln t sin(e sin t sin(e de dt ¢

where g(x) Is deflned as in equatlon (42). The double integral,
equation (46), is the basts for the programs described in appendix C; the
detalls of which are four_dtn the next sectlon.

PROGRAMNING

Solutlon for the Double Integral

1he Integral of equatlon (46) cannot be evaluated analytlcally. However,
Gausslan quadrature (ref. 5) provides a fast, accurate method of evaluatln_
the double Integral numerlcally. In an "m" polnt Gausslan quadrature, the
Integrand Is evaluated at polnts determlned by the roots of an mth order
legendre polynomlal, and sued, wlth predetermlnedwelghtlng factors, to
provlde an approxINtlon to the Integral over the range of Integratlon. For
the purposes of our program It was decldpd that a 6 point quadrature would
yield sufficient accuracy.

I0

h'
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Before the Integral over t can be evaluated, the lntegral over e .j
! must be performed. Therefore, wc rewrite equation (46) as

I 2_s 1 + 4 g Kl(t ) dt (47)
4

where, using equatl_n (45)

Kl_t) = J (t) Jo(_t)• 0

or

2_y= sln[_t sin(e)] slnI2t sln(_)] de (48) :Kl(t) = f 0

Because of the change of variable in equatton (41), Kl(t) is a function of t i
only, and is evaluated at the same points, regardless of the value of s, pl,
P2, _1, or w2. The points at which Kl(t) Is evaluated are determined by
the zeroes of the lntegrand of equation (47). Two fac+ors Influence the evalu-
ation of this Integral. First, an lntegral with upper limit cf = ls dif-
ficult to integrate numerically because the algorithm to be used requires the
upper limit be specified. Second, Gaussian quadrature yl _ds more accurate "
results tf the integration ls performed over subintervals uetermlned by the
zeros of the tntegrand. Both factors are taken Into account wlth the declst.n
to integrate between the zeroes of the tntegrand, and ._o sum these results
unttl the change In the total Is negligible.

The problem of solvlng equation (46) ls then divided tnto three parts:
flndtng the zeroes of the lntegrand

ra-!

K2(t) = gLJKl(t) (49)

evaluating

J rz 1,1

, . j dt (SO) ,
l=o zl i

and flnally, solvtng

AV "1 [1 _]_-- . _ + 4P (51)

for P1, uhere P ts found by Increasing 3 unttl IP_ PJ_ll ts less than
the resolution of Jthe computer.

The vartable g[t/_], as given by equatlon (42), t, a monotonically
decreasing function of t, and has only the one zero (at t • ,_). Therefore,
the zeroes of K2 are identical to the zeroes of K1. The first program-
mlng step, then, t._ to determine the zeroes of gl(t). The n_ber of zeroes

11

h
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,, of Kl(t) is determined by the relative _ es of the other perameters. We "
_' found that for all cases attempted, 50 zeroes was sufficient to accurately

evaluate the integral. Because equation (48) ls a funrtlnn of t only, the
zeroes of the lntegrand are constant, and can be found once and stored In a
file. Wlth the zeroes of the lntegrand known, the points at which Kl(t ) is
evaluated are known, and the value of Kl(t) at these points can be found,
and stored in a file.

lhe order of programming Is thus: PROGRAM

I. Determlne first "J" zeroes of Kl(t) ZERO

I 2. Determine va!ues of Kl(t) at evaluation points BESCAL

r 3. Plot AV/I versus e21Pl for various s, _I, _2. and P2 FPPPLI

;
4. Determine Pl for given AV/I, P2, _I, _2, and s FOUR

i lhe ]Istlnfjsfor these pro_jrams,written In FORIRAN II (ref. 6) for an IBM-PC,
can be obtained by contacting COSMIC (the Computer Software Management and
Information Center [IEW No. 143BgJ). An explanation of the pre.edure required
for running these programs is found _n appendix C.

Program Explanation

lhe first two programs, ZERO end BFSCAL use the subroutine BESDIF to
evaluate equation (48), at a given value of t. BESDIF uses the 6 point
Gausslan quadrature over 30 sublntervals spanning the range from 0 to _.

, ZERO uses an interval halving technique tn flnd the first "J" zeroes of the

difference, Jo(t) - Jo(2t) (with I" arbitrarily recommended to be 50). The
first zero Is known to occur at t _ O. lhe program stores thls initial value
in the ASCII flle ZERO.DAT, and begins the algorithm to identify the rest of
the zeroes. Starting at t : I, wlth an interval of l, ZERO ralculates Kl(t)

until the result changes slgn At that point the interval Is , Ived, the I E
direction of increment is reversed, and the program calculates values of Kl(t) I"
untll the slgn changes agaln, lhls process repeats until the desired accuracy
(a recommended 5 digits) is achleved. When the /ero is found sufficiently
accurately, the value of t wh|ch produced the zero Is stored, the interval
Is reset to I, and the program repeats until the desired number of zeroes Is
found.

lhe program BESCAI, u_Ing the location of these zeroes, then calculates
the values of Kl(t ) necessary for the other two programs to evaluate the i
tntegral of equation (46). For each tnterval between zeroes, BESCALcal- i
culates and stores the values of KI(L) In the flle TWOBES.DAI.

With the locations of the zeroes known, and the values of Kl(t ) known
at the points of evaluation, the two main programs, FPPPLT and FOURcan be i
executed. FPPPLI calculates an array of ,umbers suitable for plotting. The
plots appearing In this report were generated using an off-the-shelf spread
sheet program (ref. 7). The plots produced are log(aV/I) versus log(p2/pl)
for censtant W, s and P2, and for various values of X. Thts program was
used by the authors primarily as a check of the algorithms used.

12
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FDIJR, the more useful of the two programs, (.alcu]ates a Pl to corre-

spond to a glwm _], _,2,p2, s, and AV/I. lhls is arcompli_he_ by muItlplylng

both sldes of equation (41) by 2_s/p2

'_ = -- _ 4 g • Kl(t) dt (5P)
P2 P2

lhe ]eft side of equation (52) can be evaluated from experimentally determined

parameters. The right slde of equation (52) is calculated from an initial

guess of Pl' keeping in mind that g(x) is a function of Pl' as given by

' equations (42) and (36). Theoretlca]]y the right slde of equation (52) can be
re-evaluated repeatedly until the equality Is achieved. In practice the inter
mediate functions i' and F are calculated as"

F' : °2 (53)

, and
_f

#: F = --- I * 4 g • (t) dt (54)
:' P2
-!

if IF' - FI is less than the required tolerance, then the value of

Pl used is displayed as the "correct" resistivity. Otherwise, the guess for

Pl Is modified according to the sign of the quantity F' - F, and if neces-

sary, the interval is halved, until the error is less than the required toler-

ance. Because most of the "number crunching" needs be performed once for all

possible values of the varlabies, the calculation speed of the algorithm is

very high.

RESULIS

lhe curves of figure 2 were produced using data generated by the program
FPPPLT. lhe parameters were chosen to correspond to the parameters chosen by

:. Brown (ref. 1), in order to compare figure 2 with Brown's results. The shapes
of the curves are identical to those produced by Brown. The difference in the

;: plots is that the graphs of this paper are of AV/I versus p2/Pl, and In
:, Brown's report, the plots are of the function F (identical tc F In this

paper) versus _i/o2. The abscissa is the same In both cases, but the
ordinate in Brown's paper does not correspond to a measurable quantity. Since

! - f' Is a function of the probe spacing, and the resistivity of the substrate,

these two parameters were set to one In figures 2(a) to (c) With this choice1

of parameters,

AV

F = i--(2.) (55)

13
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laking this into account, the plots of this paper are identical wlth Brown's
plots.

Figure 3 shows the variation of AV/l as a function of the ratio of the
resistivltles of the layers as well as a function uf the thickness of the
deposited layer. When the resistivitles are approximately equal (p2/Pl _ 1),
AV/I ls a function of the thickness of the deposited layer only In the sense
that AV/! is dependent on the thickness of the sum of the two layers

(_1 + _2)- Intuitively, this can be seen to be correct, for if the resis-
tlvities are equal, the division between the materials disappears, and the
measurement of AV/! is that of a single layer. Since the deposited layer
varies from less than 2 percent to less than 10 percent of the total thickness,
the variation in AV/i is relatively small. As the ratio p2/Pl increases,
the thickness of the deposited layer comes more lnto play. In general, It can
be seen that the thicker the deposited layer, the lower the measured value of
AV/I. In addition, the slope of the curve steepens as the ratio p2/Pl
increases, lhis implies that the algorithm is more accurate for values of
Pl << P2-

1
In order to verify the algorithm in the program FOUR, the two examples

from Brown's paper were chosen to be used in our calculation, lable I
.: reproduces the applicable numbers from Brown's table If, augmented by the

results obtalned using the program fOUR.

1he results of our program agree closely with the results published by
Brown, and with the known values for the substances In question. The sltght
discrepancies are caused by the increased resolution of our machine, and by
assumed roundoff errors associated wlth the numbers published by Brown. With i
out knowing the algorithm used by Brown, it ts difficult to make Judgments

about his techniques. However, it must be noted that advances In computer
technology, in the 20 years since Brown reported his results, have made the
evaluation of these equations much easier, and more accurate than before. In
addition to this is the fact that the program FOUR solves the equation for p,
and Brown's results are given in terms of 1/p = a.

1
CONCLUSIONS

As can be seen from the plots, and from the numbers generated to produce

table I, the algorithm devised solves the problem as well as the unknown algo
rlthm designed by Brown. Along with a detailed explanation of the software

generated _n this effort, we tried to explain the process of arriving at the

integral presented by Brown, starting from the governln_ equation, and boundary
conditions. It is hoped that the details in the solution are sufficient to
enable the reader to use these results in the solution of the class of problems
where resistivity measurements are needed for a substance deposited on a sub-
strate of higher resistivity than the deposited layer.

14
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APPENDIX A

NOMENCLAIURE

A probe at whlch current Is injected

An coefficient of 1st independent solution to Bessel's equation, V

B probe at which current Is withdrawn

Bn coefflclent of 2nd independent solution to Bessel's equation, V

Cn coefficient of 1st independent solution for e(O)

c constant to be determlned In solvlng for potential due to an
isolated point source

Dn coefflc_ent of 2nd independent solution for _(O)

E electric f_eld, V/m

Ek coefflclellt of 1st independent solution for Z(z)

F intermediatefunction used In computing resistivity

F' intermediate function calculated from measured parameters

Fk coefficient of 2nd independent solution for Z(z)

f function to be determined In solvlng the potential problem In the
continuous case

fl function solved in the depostted layer due to current input at
point A

f2 function solved in the substrate due to current input at point A

g function f redefined In terms of x rather than ks

gl function (akin to fl) in the deposlted layer due to current
withdrawn at B

92 function (akin to f2) in the substrate due to current withdrawn
at B

I current injected at probe A, A

3" current density, A/m2

3n Bessel function of the first kind of order n

Jo Bessel function of the first kind of order 0

J number of zeroes of Kl(t) to be found

15
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ff
' t

K1 difference Jo(t) - Jo(2t) ,i

K2 g(t/x) Kl(t)

k separation constant, m-1

nl order of legendre polynomial used In Gausslan quadrature

n separation ronstant, m-1

value of _m[K2 dt using "m" zeroes
Pm

0 Psuedo charge (analogous to charge In electrostatics)
q = 1/(2_I), Vim

i QA Psuedo charge at point A, V/m
i
!
I QB Psuedo-charge at point B, V/m

! R resistivity variable (P2 Pi)/(P2 _ Pl )
; R(r) potential function In the r direction, V
!

r radial coordinate

] *unit vector In r direction

i s spacing between any two adjacent probes In four point apparatus, m -;

: s elemental area on surface of sphere

V(r,e,z) potential function, V

, VA potential function at probe A, V

i V potential function at point I, V i
Pl

' V potential function at point 2, V t
I P2
t_ V1 potential function tn ueposlted layer, V}
] t
z V2 potential function In sub_trate, V I
i
|
I

W r_tlo of suhstrate thickness to thickness of deposited layer

Yn Bessel function of the second kind of order n

Z(7) potential function In the z direction

z axial coordinate

I:1 absnlute value of z

16
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• .,_,_.._. ,i,_.i ....... (i

AV voltage (Jlfter,'nce between probes I and 2, V

c permltttvlty, f/m

c permitttvlty of first layer, f/m" I

c2 permittlvity of second layer, [/m

e(e) potential function In Lhe o dlrectlon

o angular coordlnate

X twice the ratio of probe spacing to deposited layer thickness

p resistivity, £-m

Pl reslstlvlty In the deposited layer, Q-m
hi

;I P2 resistivity In the substrate, C_m

; o conductivity, (_ m) I, s_-lm-1

a conductivity of the depo, Ited layer, £-Im-I
1

i o conductivity of the substrate, Q-Im-I

:I 2

electric charge density, C/m 3

! wI thickness of the deposited layer, m
!

• o 2 thickness of the substrate, m

_'I a partial derivative operatorf

I
V veLtor differential operator

, V 2 Laplacian operator

ll
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APPENDIX B

lhe Electric Potential due to an isolated Point Current Source

Consider a point current source of output I located at an origin within a
medium of uniform conductivity, c. By symmetry, the current density vector,
J must vary as l/r2, where r Is the distance from the source, since the
total current passing through any sphere surrounding the source ls I, and the
area of the sphere is proportional to r 2 That Is

fear:-ds = I (g.1)
s

where ds ls the element of area on the surface of the ,phere,

2
ds_: _ r sin e de d_ (B.2)

Slnce -_= _-_, the electrlc field -_ ls also dlrected along _ and ts

proportional to 1/r 2 Thus

-- c ; (B.3)
! r

The unknown constant, c, in equation (B.3) can be determined from
equations (B.1) and (B.2):

s I!IIE 1"c ; ;r_'. ds= o • sin e dO d

sphere _ r2

= oc JO °f sln e dO d_ = 4 _oc = I (B.4)

Or

!

c = 4.o (B.5)

Then, from equatlon (B.3), the electric fleld becomes:

e___) ;
4fo 2 (B.6)

r

lhls Is the electrlc field about an Isol_ated current source of strength I.
Since the potentlal, V, is related to E by -E'---_-'V,the potential

(referenced to zero at infinity) Is:

°

IB
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+j
I
---" o

V = 4_dr ( fi -I)

lhe electric field, as given by equatlon (B.6), and the corresponding
potential, from equation (B.7), apply to the case of an lsolated point source
_rom which Lhe current density is independent of direction. In our case,
however, the current (ln cross section) is confined to the upper half plane
(o = 0 for z < 0). Then the ]_mits on e in equation (B.4) are 0 and _/2,
and equation (8.5) becomes:

!
c = 2_a (B.8)

and the potential In the Lop layer due Just to the current _nJected at paint
A is:

I

V : 2,_1 r (B.9)

In cylindrical coordinates, where r is the d_stance from the z-axis,
equation (B.9) becomes:

V : "....... I .... = I _ -kzj

2e°l _rr2 + 72 2_al JO e o(kr) dk (B.IO)

19
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APPENDIXC 'j

;' Operation ot Proqrams and Sample Outputs

It Is assumed that the programs are all compiled using the Microsoft
FORTRAN-77compiler on an IBM PC or compatible computer. 1he executable

] programs are then generated by using the Microsoft Linker to llnk the object 4
; code In the followlng manner:

! PROGRAM lINKED OBJECT MODULES

! 1. ZERO ZERO, BESDIF

i 2. BESCAL BESCAL, BESDIF
I

i 3. FPPPL] FPPPLI, QUAD, Xl
J

| 4. FOUR FOUR, QUAD, XI

l Io run these programs on an IBM PC s_mply enter the name of the program
to be run. ZERO and BESCAt need only be run once to generate the reqtlred
constants for the other two programs. The followlng pages show example outputs
of the program as run on an IBM PC.

lhe first program to be run Is the program ZERO. The prompts are:
4

ENTER REQUIRED NUMBER OF DIGII_ [DEF = 50]:
(Your response: an integer greater than 0.)
ENTER REQUIRED DIGIIS [DEF = 5]: (accuracy)

(Your response: an integer between 1 and 6, Incluslve.)
The program proceeds to display the number of zeroes requested, as well
as storing them in the flle "ZERO.DAI"

lhe next program Is MESCAL. There are no prompts, but the program dls
plays the interval for which It is presently computing the necessary values ! i

of K1(t). These values are stored in the f11e "TWOBES.DAT" I:_itlhe third program, FOURts the program which will be most useful to the

researcher. The prompts which appear In thls program are: i

INITIALIZINGQUADRAIURE VALUES (readlng the flles "ZERO.DAT" and
"TWOBES.DAI'.) i

I
Enter PROBE SPACING <0.159>, cm:
Enter MEASURED VOLTAGE/CURRENI<36.77>, Q:
Enter 1HICKNESSof SI <381.00>, pm:
Enter THICKNESSof SIC <6.00>, pm:
Enter RESISTIVIIY of SiC <0.22 E + 02>, Q-cm:
Enter INIIIAL GUESSfor RESISTIVIIY OF SiC <0.1E + 01>, Q-cm:
Enter INITIAL DELTARESISIIVIIY <0.1E + 01>, _-cm:
Enter MAXIMUMNo. of ITERATIONS <100>:
CHANGES[Y/N] <N>: (If changes are requested the Frogram loops through
these prompts again.)
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]he routines then produces a table slmllar to the one below:

| fc fe ERR RH01

1 1.30009 1.6697 0.22138 0.1000E*O0
2 3.69198 1.6697 1.21111 .600E+O0

11 1.59509 1.6697 .04470 .1313E+00
12 1.66295 1.6697 .00406 .1391E,00

The calculated SIC RESISTIVI1Y = 0.13906E,00 _-cm.

Folloulng the solution appears the prompt:

ANOTHERNEASUREMEN1? [Y/N] <Y>:
(If the response is "Y" the program returns to the original prompts; If
the response Is "N" the program ends.)

The fourth program tn the package, FPPPL1, ls similar In operation to the
program FOUR. This routine produces a file which can be used by a package such
as "SYNPHONY"to produced plots of the relationship described tn thts paper.
1he prompts are:

INITIALIZING QUADRATUREVALUES(reading the ftles "ZERO.OAT" and
"TNOBES.OAI".)

Enter No. of INCREREN1S<20>: (number of potnts to plot)
Enter PROBESPACING<1.00>, cm:
Enter THICKNESSof SUBSIRAIE <300.00>, pm:
Enter THICKNESSof DEPOSITEDLAYER<20.00>, pm:
Enter RESISTIVITY of SUBSTRATE<0.10 E 4�<�Ä�t�Q-cm:
Enter BEGINNING log(RHO1/RH02) <0.00>:
Enter ENDINGlog(RHO1/RH02) <-3.00>:
CHANGES[Y/N] <N>: (If changes are requested the program loops through
these prompts agatn.)

At thts point the routine requires a flle name under uhtch to store the
data. 1he prompt for thls ts:

ENTERFORUNIT 2 1HE NAREO_ THE OUIPU1 FILE
MHICHMILL ACCEPT1HE DA1A TO BE PLOT1ED.
Ftle name mtsslng or blank - please enter name.
UNII 2? (Your response ls to be a legal ftle name, such as "TEST.OAT".)

21
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TABLE I. - COMPARISON OF IHEORY WIIH EXPERIMENI j

FOR A BRASSSHIM ON A MERCURYSUBSTRATE

[o 1 - k/(Q-cm)]
S, _ W o2. AV/], Known Oerlved Oerlved
cm k/(_-cm) pV/A value BROWN FOUR

/

0.127 4,72 23.2 10.4 63.0 143.0 149.0 150.0 I :

0.063 2.27 19.0 10.4 82.0 141.0 137.0 138.0 t '_

Note: k/(_-cm); denotes thousands of (Q-cm) -1, i.e.,
1 k/(Q-cm) = 103 (Q-cm) -1

i
Also: For o : 10 k/(Q-cm) t

p = lie _ 10-q. (g-cm)

t,

2Z i
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ORIGINAL PAGE _3
OF POOR QUALITY

, 41,

Z axis

o .o 1 uI Region1(deposdedlayer)$

I -
a • o2 u2 Region2lsubstrate_

i i
0"0

F_gure 1. - Theoreh_l setug for four-pore! probe measurement of de_slt_ layer on
substrate of finite conductivity.
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