
5101-275
Flat-Plate Solar
Array Project

DOE/JPL-1012-116
Distribution Category UC-63b

The RANDOM Computer Program
A Linear Congruential Random Number Generator

R.F. Miles, Jr.

AS.4'^CE- 176:6 64 )>^r> THE
P80GB;AMiv .a"

'N86-22152

February 15, 1986

Prepared for
U.S. Department of Energy
Through an Agreement with
National Aeronautics and Space Administration

by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 85-97

https://ntrs.nasa.gov/search.jsp?R=19860012681 2020-03-20T15:08:45+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42841714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


5101-275 DOE/JPL-1012-116

Flat-Plate Solar Distribution Category UC-63b
Array Project

The RANDOM Computer Program
A Linear Congruential Random Number Generator

R.F. Miles, Jr.

February 15, 1986

Prepared for

U.S. Department of Energy

Through an Agreement with
National Aeronautics and Space Administration

by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 85-97



Prepared by the Jet Propulsion Laboratory, California Institute of Technology,
for the U.S. Department of Energy through an agreement with the National
Aeronautics and Space Administration.

The JPL Flat-Plate Solar Array Project is sponsored by the U.S. Department of
Energy and is part of the National Photovoltaics Program to initiate a major
effort toward the development of cost-competitive solar arrays.

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily stale or reflect those of the United States Government
or any agency thereof.

This document reports on work done under NASA Task RE-152, Amendment
419, DOE/NASA IAA No. DE-AI01-85CE89008.



ABSTRACT

The RANDOM Computer Program is a FORTRAN program for generating random
number sequences and testing linear congruential random number generators
(LCGs). This document discusses the linear congruential form of a random
number generator, and describes how to select the parameters of an LCG for a
microcomputer. This document describes the following:

(1) The RANDOM Computer Program.

(2) RANDOM.MOD, the computer code needed to implement an LCG in a
FORTRAN program.

(3) The RANCYCLE and the ARITH Computer Programs that provide
computational assistance in the selection of parameters for an LCG.

The RANDOM, RANCYCLE, and ARITH Computer Programs are written in
Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only
minor modifications, the RANDOM Computer Program and its LCG can be run on most
microcomputers or mainframe computers.

111



CONTENTS

1. INTRODUCTION 1-1

2. DISCUSSION OF THE LINEAR CONGRUENTIAL
RANDOM NUMBER GENERATOR (LCG) 2-1

3. IMPLEMENTATION OF THE LCG 3-1

4. STATISTICAL TESTS FOR THE LCG 4-1

5. THE RANDOM COMPUTER PROGRAM 5-1

6. USER INSTRUCTIONS FOR THE RANDOM COMPUTER PROGRAM 6-1

7. THE RANCYCLE COMPUTER PROGRAM 7-1

8. THE ARITH COMPUTER PROGRAM 8-1

9. THE COSMIC DISKETTE 9-1

10. REFERENCES 10-1

APPENDIXES

A. THE RANDOM COMPUTER PROGRAM A-l

B. THE MICROSOFT FORTRAN CODE FOR THE LCG B-l

C. EXAMPLE OF A RANDOM COMPUTER PROGRAM RUN C-l

D. THE RANCYCLE COMPUTER PROGRAM D-l

E. EXAMPLE OF A RANCYCLE COMPUTER PROGRAM RUN E-l

F. THE ARITH COMPUTER PROGRAM F-l

G. EXAMPLE OF AN ARITH COMPUTER PROGRAM RUN G-l

Table

5-1. RANDOM Function and Variable Type,
Location, and Definition 5-2

PRECEDING PAGE BLANK MOT

V



SECTION 1

INTRODUCTION

The RANDOM Computer Program is a FORTRAN program for generating random
number sequences and testing linear congruential random number generators
(LCGs). This document discusses the linear congruential form of a random
number generator, and describes how to select the parameters of an LCG for a
microcomputer. This document describes the following:

(1) The RANDOM Computer Program.

(2) RANDOM.MOD, the computer code needed to implement an LCG in a
FORTRAN program.

(3) The RANCYCLE and the ARITH Computer Programs that provide
computational assistance in the selection of parameters for an LCG.

The RANDOM, RANCYCLE, and ARITH Computer Programs are written in
Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only
minor modifications, the RANDOM Computer Program and its LCG can be run on
most microcomputers or mainframe computers.

The following topics are discussed in the various sections:

(1) Section 2: The mathematical form of the LCG and the selection of
its parameters.

(2) Section 3: The implementation of an LCG using an IBM PC micro-
computer, or a compatible microcomputer, equipped with the Intel
8088 microprocessor and the Intel 8087 numeric data processor.
This discussion is relevant to the entire family of
8086/8088/80186/80286 microprocessors.

(3) Section 4: The statistical tests of the LCG that are part of the
RANDOM Computer Program.

(4) Section 5: The RANDOM Computer Program.

(5) Section 6: Instructions for the user of the RANDOM Computer
Program.

(6) Section 7: The RANCYCLE Computer Program for testing an LCG for a
full-cycle sequence.

(7) Section 8: The ARITH Computer Program for testing a FORTRAN
compiler and the associated microcomputer configuration for the
correct arithmetic needed for the LCG.

1-1



(8) Section 9: The microcomputer diskette that contains the RANDOM
Computer Program.

(9) Section 10: The References.

The following topics are discussed in the various appendixes:

(1) Appendix A: The Microsoft FORTRAN code for the RANDOM Computer
Program.

(2) Appendix B: RANDOM.MOD includes the Microsoft FORTRAN code module
for the LCG, the required initialization code, and the metacommands
required for any program using the LCG.

(3) Appendix C: An example of a RANDOM Computer Program run.

(4) Appendix D: The Microsoft FORTRAN code for the RANCYCLE Computer
Program.

(5) Appendix E: An example of a RANCYCLE Computer Program run.

(6) Appendix F: The Microsoft FORTRAN code for the ARITH Computer
Program.

(7) Appendix G: An example of an ARITH Computer Program run.

1-2



SECTION 2

DISCUSSION OF THE LINEAR CONGRUENTIAL RANDOM NUMBER GENERATOR (LCG)

This discussion of the mathematical form and the selection of the
parameters of the Linear Congruential Random Number Generator (LCG) is derived
primarily from Knuth (Reference 1), to which the reader is referred for more
detail. The LCG is one of the most discussed random number generators in the
literature, not only because of its speed and excellent statistical properties,
but also because a significant amount of theory has been developed for it.
There also is available a microcomputer implementation of a multiplicative
random number generator (References 2 and 3).

The purpose of the LCG is to generate a sequence of numbers that have
random properties. Define the nth number of the sequence as Xn. The prop-
erty that shall be used to define "random" is that the sequence {X̂ ,... jX̂ }̂
(k < n) shall contain no information for predicting X^, other than estimates
of the range of X^, which is known a priori. Since the primary motivation
for generating the random numbers shall be simulation and the use of cumula-
tive distribution functions for representing random variables (References 4
through 6), it is desirable to generate random number sequences {F̂ ,...,Fn}
uniformly distributed over the range [0,1). So while these sequences of
fractional numbers could be described more precisely as "random fraction
sequences uniformly distributed over the range [0,1)," both the Xj^ and the
Fn sequences shall be referred to as "random number sequences."

The LCG is based on a modulo operator. A modulo operator differs from
ordinary division in that the result of the modulo operation is only the remainder
of the division, while the quotient is discarded. Thus, modulo operations,
performed on the sequence of positive integers {0,1,2,3,4,5,...} for modulus 3,
generates the sequence {0,1,2,0,1,2,...}. Note that only the numbers {0,...,m-l}
can be generated for modulus m.

The formula for the LCG is:

Xn+1 = (aXn + c ) mod m,

where a is called the multiplier, c the increment, and m the modulus. The
rest of this Section discusses how to select values for these three parameters.

Given X^ the formula is a function that uniquely determines Xn+]̂ .
Thus, the LCG clearly does not generate random number sequences, because with
only the knowledge of X^ we can calculate XK+I . For example, ^+1 = 3
with Xn = 2 for the LCG:

3) mod 4-

The requirement for generating truly random number sequences, therefore,
must be relaxed somewhat. The requirement can be restated as "sequences of
numbers that display the same statistical properties as random number
sequences." In the literature, such sequences are called "pseudo-random."

2-1



Because we are interested in numbers generated over the interval [0,1), the
numbers generated by the LCG are divided by the modulus m :

Fn =

Fn now is generated over the interval [0,1), with the smallest fraction
generated being 0.0 and the largest fraction generated (m-l)/m.

The use of the LCG, however, guarantees neither desirable statistical
properties nor a uniform distribution. For example, with the random number
seed, X0 = 0, (the arbitrary number input to start the sequence) the LCG:

Xn+1 = <4xn + A) mod 8,

generates the sequence {4,4,4,4,...}. Thus, if the desirable statistical
properties and a uniform distribution are to be obtained, some constraints or
functional relationships must be established among the parameters of the LCG.
These constraints and functional relationships can be determined either
empirically by trial and error, or by the more desirable application of
theory. In practice, modulo theory is used to restrict the possible parameter
values of the LCG, and empirical results are used to improve on the LCG's
statistical properties.

Knuth (Reference 1) has proven the theorem that an LCG will be a
full-cycle generator (every value between 0 and m-1 will be generated before
the sequence repeats) if and only if:

(1) The increment c is relatively prime to m ( c and m have no prime
factors in common).

(2) a-1 is a multiple of p , for every prime p dividing m.

(3) a-1 is a multiple of 4, if m is a multiple of 4.

Full-cycle LCGs are desirable because they not only generate random
number sequences of maximum length for a given modulus, but they also permit
any number to be used as the random number seed without concern for being
trapped in a short cycle.

Only LCGs will be considered for which m = 2 , where q is an integer
greater than 2. Thus Conditions (1) and (2) of the above Knuth Theorem can be
satisfied by making a and c odd. Knuth recommends satisfying Condition (3) by
requiring that:

a mod 8=5.

In spite of these constraints, a full-cycle LCG does not guarantee
desirable statistical properties. Thus, because the LCG:

Xn+1 = <5xn + 5) mod 4,

satisfies the three separate criteria of the Knuth Theorem, it is a full-cycle
generator. It generates the repeating sequence {0,1,2,3,0,...}, however,
which certainly does not look like a random number sequence (even though it is
as probable as any other sequence).

2-2



Knuth specifies additional criteria, based on both theory and empirical
results, that are most likely to result in a LCG with desirable statistical
properties:

(4) The modulus m should be large, preferably as large as is practical.

(5) The multiplier a should be larger thanml/2, preferably larger
thanm/100, but smaller than m-m1/2.

(6) The multiplier a should not have a regular pattern, e.g.,
a = 121212 would not be desirable.

(7) Set c/m «0.211,324,865,405,187, . . .

(8) Use only the most significant digits of Fn.

These shall be the first eight criteria used to construct the LCG.
Based on specific hardware and software implementation, one further criterion,
however, must now be developed. The additional criterion is discussed in
Section 3.

2-3



SECTION 3

IMPLEMENTATION OF THE LCG

The single criterion presented in this section is specifically
applicable to the Microsoft implementation of FORTRAN (References 7 and 8).
It is run on a microcomputer using the Intel 8088 microprocessor, the Intel
8087 numeric data processor (References 9 through 17), and the IBM Disk
Operating System (References 18 and 19). Although the Intel 8087 numeric data
processor is not mandatory, its use, for only a small increment in microcom-
puter cost, allows a significant gain in speed to carry out computationally
intensive simulations. The use of other computers and software will have a
similar, but not necessarily the same, implementation criterion for
construction of a satisfactory LCG.

Calculations must be exact, for the theory of the LCG to be valid.
Even an error of 1 in the units digit will render the theory invalid, and
will result in sequences that are not full-cycle. The Microsoft FORTRAN
Manual states that the double-precision, real-number data type corresponds
to the IEEE format, which has a precision of approximately 15.9 digits
(Reference 7). This corresponds to the 52 bits of the significand and the
sign bit of the 8087 numeric data processor for the long-real data type
(i2̂ 2 = ±4.5x10^5). This places an absolute upper limit on the product of
a times Xjj for the LCG. One must be alert, nevertheless, to round-off errors
as this limit is approached. These considerations lead to the following
Criterion 9 for the Microsoft FORTRAN Compiler:

(9) The product of a times m shall be less than 2^2 - c . This is
equal to 4.5x10^-^-c .

All the criteria now are in hand for a set of rules to construct the
LCG for the Microsoft FORTRAN Compiler. Set m > 220,m < 229, andm/100<
a< (m-ml/2) sucn that a m<(2^

2 - c ) to satisfy Criteria 4, 5, and 9.
The multiplier a should satisfy:

a mod 8 = 5 ,

to satisfy Criteria 2 and 3, and should not have a regular pattern to satisfy
Criterion 6. The increment c should be odd to satisfy Criterion 1 and should
satisfy the c/m ratio of Criterion 7. Only the most significant digits of Fn
should be considered to satisfy Criterion 8. These rules cover the nine
criteria.

For compilers other than the Microsoft FORTRAN Compiler, use the ARITH
Computer Program to establish the precision limits of the arithmetic. This
will determine the equivalent of Criterion 9. The ARITH Computer Program is
discussed in Section 8 and listed in Appendix D.

3-1



The following parameter values satisfy the LCG construction rules for
the Microsoft FORTRAN Compiler:

a = 671,093
c = 7,090,885

m = 33,554,432 = 225.

These parameters pass the statistical tests described in Section 4 and have
been used in the SIMRAND I Computer Program (References 20 through 23).

A 43% increase in speed of the random number generator can be obtained,
if the LCG code is written without the use of the FORTRAN internal modulo
function. Because of their size, the random numbers and the LCG parameters
will have to be of the double-precision floating-point data type. Assuming
RANDOM has previously been assigned a value 5^, the Microsoft FORTRAN code
for the LCG to generate the next number X^+i in the sequence is :

RANX = RANA*RANDOM + RANG
RANDIV = RANX/RANM
RANT = DINT(RANDIV)
RANSUB = RANT*RANM
RANDOM = RANX - RANSUB

where, by the previous notation, .

RANA - a
RANG = c
RANM.= m

and

RANDOM = Xn (initial equation)
RANDOM = X-n+1 (final equation).

3-2



SECTION 4

STATISTICAL TESTS FOR THE LCG

This section discusses the following five statistical tests that are
performed in the RANDOM Computer Program:

(1) A Cycling Test.

(2) A Chi-Square Test for uniform distribution.

(3) A Kolmogorov-Smirnov Test for uniform distribution.

(4) A Median Runs Test.

(5) A Serial Test for correlation between the most significant digit
of Fn and the most significant digit of

Although Knuth (Reference 1) considers these tests to be inadequate for
rigorous investigations of LCGs, they have value because they are fast, easily
understood, and should suffice for the validation of LCGs for most simulation
work. LCGs for rigorous investigation should be written in the assembly
language of the specific computer, and should use considerably larger modulus
numbers than those proposed here.

At a minimum, these statistical tests will provide some assurance of
uniform distributions, and also provide two tests for reasonable statistical
properties. All LCGs probably will fail some statistical tests. Simulations
usually are done with only a subset of the full-cycle random number sequence.
Because subsets are less robust when subjected to a statistical test than is
the full-cycle sequence, a subset of an excellent LCG may exhibit undesirable
statistical properties. Thus, the best approach to obtain confidence in
simulation results is to replicate the simulations with different random
number seeds and different LCG parameters.

The Cycling Test checks for cycling of the LCG. If LCG-construction
rules are followed, the LCG will generate the full-cycle sequence, which will
have a non-repeating number of elements equal to the modulus. Given that the
theoretical conditions for a full-cycle sequence are met, the reason for this
procedure is to test the hardware and software for arithmetical errors. With
errors, the LCG most probably will generate a non-repeating sequence less than
the full cycle, and may not repeat the random number seed. The Cycling Test.
compares all numbers generated by the LCG with the random number seed. If the
LCG generates a number equal to the random number seed, the program aborts
with a count of the number of elements in the sequence that were generated.
The full cycle can be tested by requesting the program to generate more
numbers than the modulus. If the LCG operates correctly, the program should
run through the full cycle, abort, and display a count equal to the modulus.
The RANCYCLE Computer Program described in Section 7 specifically was written
to carry out this full-cycle test efficiently. The Cycling Test is valid for
any LCG for which the multiplier a and the modulus m are relatively prime.

4-1



The Chi-Square Test is the standard one-sample test with 100 categories
(Reference 24), in which each category has an interval of 0.01 over the range
[0.00,1.00). The null hypothesis is that the distribution is uniform. The
uniform distribution hypothesis can be rejected at a significance level of
0.10 for a Chi-Square value = 117, or at a significance level of 0.01 for a
Chi-Square value = 135. With the LCG parameters given earlier and a random
number seed of 1, a sequence of 10,000 random numbers generated by the LCG
yielded a Chi-Square value of 78.7. This is not large enough to reject the
uniform distribution hypothesis at the 0.10 level of significance.

The Kolmogorov-Smirnov Test, which uses the same data as the Chi-Square
Test, serves as a second test for a uniform distribution (Reference 24). The
Kolmogorov-Smirnov Test measures the maximum absolute difference between the
observed cumulative distribution function and that for a uniform distribution.
The uniform distribution hypothesis can be rejected at a significance level of
0.10 for a Kolmogorov-Smirnov value = 1.22/nl'^ or at a significance level
of 0.01 for a Kolmogorov-Smirnov value = 1.63/n^-'^, where n is the number of
random numbers generated. With the LCG parameters given earlier, and a random
number seed of 1, a sequence of 10,000 random numbers generated by the LCG
yielded a Kolmogorov-Smirnov value of 0.0088. This is not large enough to
reject the uniform distribution hypothesis at the 0.10 level of significance
(0.0122 for a sample size of 10,000).

The Median Runs Test (Reference 25) is based on a statistic which is a
function of the number of runs in a sequence. Elements of a tested sequence
either lie below, at, or above the median. A "run" is a maximal subsequence
of elements of like kind. Thus, the subsequence which defines a run either
contains only elements which lie below the median or contains only elements
which lie at or above the median. Because the test is made for the null
hypothesis of a uniformly distributed random number sequence, the median is
0.5. This test will identify sequences that have either too many or too few
runs. For large samples from a uniformly distributed random number.sequence,
the number of runs is approximately normally distributed with a mean of half
the sample size. The RANDOM Computer Program gives a Median-Runs statistic z
for the sequence, which can be compared'against significance levels for the
normal distribution. The statistic z is distributed approximately as the
standard normal distribution (with mean = 0.0 and standard deviation = 1.0).
The runs-distribution hypothesis can be rejected at a significance level of
0.10 for |z| = 1.64, or at a significance level of 0.01 for |z| = 2.58. With
the LCG parameters given earlier and a random number seed of 1, a sequence of
10,000 random numbers generated by the LCG yielded 5,065 runs, and a z value
of +1.30. This is not large enough to reject the runs-distribution hypothesis
at the 0.10 level of significance.

The Serial Test measures the correlation between the first significant
digit of Fn and the first significant digit of Fn+j. The Chi-Square Test
is used with a 10x10 array of 100 categories, with the rows corresponding to
Fn and the columns Fn+i. If there is no correlation between the first
significant digits of Fn and Fn+i (the null hypothesis), then the (Fn,Fn+i)
pairs of digits should be uniformly distributed over the array for a uniformly

4-2



distributed random number sequence. The same significance levels are appro-
priate as for the Chi-Square Test described above. The sample size for the
Serial Test will only be half that for the previous tests. This is because
the pairs (Fn»^n+l^

 anc* ^n+l»^n+2^ are correlated, so it is necessary to
use only every other (Fn,Fn+i> pair that is generated by the LCG. With the
LCG parameters given earlier, and a random number seed of 1, a sequence of
10,000 random numbers generated by the LCG yielded a Serial-Test Chi-Square
value of 78.96. This is not large enough to reject the no-correlation
hypothesis at the 0.10 level of significance.

4-3



SECTION 5

THE RANDOM COMPUTER PROGRAM

As stated above, the RANDOM Computer Program has been written
specifically for the Microsoft implementation of FORTRAN. It runs on a
microcomputer using the Intel 8088 microprocessor, the Intel 8087 numeric data
processor, and the IBM Disk Operating System (Version 2.10). The Program
comprises 16 modules. Table 5-1 gives the type, location, and a brief
description of each of the Program functions and variables. Module 1
initializes the Program while Module 2 contains all the keyboard input.
Module 4, containing Module 5 through Module 9, is a DO loop for generating the
LCG random number sequence and the data for the five tests. Module 5 contains
the LCG and calculates the Fn sequence from the X^ sequence. Module 9
displays the results for one pass through the DO loop, if that option is
exercised. Module 10 through Module 14 calculate and display the statistics
resulting from the tests. Module 15 contains the "GENERATOR CYCLED AT COUNT
= ..." message that is displayed if Module 5 detects cycling. Module 16 stops
the Program. Appendix A lists the FORTRAN code for Version 1.00x2 of the
RANDOM Computer Program. The compiled source-code files (object-code files)
can be linked into an executable file using either the Microsoft Linker
provided with the Microsoft FORTRAN Compiler, or the Phoenix Software PLINK86
Linker (Reference 26), but not the IBM DOS 2.10 Linker. Appendix B gives, in
RANDOM.MOD, the Microsoft FORTRAN code module for the LCG, the required
initialization code, and the metacommands required for any program using the
LCG. Appendix C gives an example of the user input and the RANDOM Computer
Program output. The example of Appendix C generates the results used in the
description of the statistical tests of Section 4.

5-1



Table 5-1. RANDOM Function and Variable Type, Location, and Definition

Name

ABS

AFAULT

A INT

AREAD

CHISQR

DELTA

DEV

DINT

FKOL

FLOAT

FMRUNS

FRUNHI

FRUNLO

FRUNS

I

IHIS

USER

IRNBIN

IRNHIS

Type

FUNCTION

CHAR*1

FUNCTION

CHAR*1

REAL

REAL

REAL

FUNCTION

REAL

FUNCTION

REAL

REAL

REAL

REAL

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

INTEGER*4

, Module
Location

12

1,2

3,6,8

1,2,9

11,14

11,14

12

5

12

11,12,13,14

13

13

13

13

1,11,12

11,12

14

6

1,6,10,11,12

Definition

Absolute value.

Use default LCG parameters if .TRUE.

Truncate to REAL.

Include intermediate screen output if
.TRUE. • '

Summation for Chi-Square Test.

Category difference in Chi-Square Test.

Absolute deviation in
Kolmogorov-Smirnov Test.

Truncate REAL*8 to REAL*8.

Maximum absolute deviation in
Kolmogorov-Smirnov Test.

Convert INTEGER to REAL*4.

Expected number of runs in Median Runs
Test.

FRUNHI = FLOAT(IRUNHI)

FRUNLO = FLOAT (IRUNLO)

FRUNS = FLOAT (IRUNS)

Indexing variable for the IRNHIS(I)
array.

IHIS = IRNHIS(I).

USER = ISER(ISER1,ISER2).

Category identifier for Chi-Square Test

IRNHIS(I) is the histogram array for

IRUNHI INTEGER*4 1,7,9,13

the Chi-Square and Kolmogorov-Smirnov
Tests.

Number of elements in the sequence
equal to or greater than 0.5.

5-2



Table 5-1. (Cont'd)

Name

IRUNLO

IRONS

ISER

ISER1

ISER2

ISERW

KOUNT

Type

INTEGER*4

INTEGER*4

INTEGER*^

INTEGER***

INTEGER*^

INTEGER***

INTEGER*^

Module
Location

1,7,9,13-

1,7,9,13

1,8,9,14

1,3,4,8,9,1**

1,4,8,9,14

14

A, 5, 7, 9

Definition

Number of elements in the sequence less
than 0.5.

Number of runs in the sequence for the
Median Runs Test.

ISER(ISER1,ISER2) is the 10x10 array
for the Serial Test.

First element in the pair-wise
correlation for the Serial Test.

Second element in the pair-wise
correlation for the Serial Test.

Row label in writing ISER(ISER1 , ISER2) .

Indexing variable for the DO loop for

KOUNT1

LIN

LRUNHI

MOD

NKOUNT

RANA

RANG

RANDIV

RANDOM

INTEGER*4 5,15

LOGICAL*4 1,8

LOGICAL*4 1,7

FUNCTION

INTEGER*4 2,4,11,12

REAL*8

REAL*8

REAL*8

REAL*8

1,2,5

1,2,5

1.5

1,2,4,5,9,15

generating the random number sequence.

KOUNT1 = KOUNT. Used for transferring
KOUNT outside the DO loop if cycling
occurs.

If LIN = .TRUE., the random number pair
is used in the Serial Test. LIN
alternates in value for each pass
through the DO loop.

If LRUNHI = .TRUE., the run is at or
above 0.5.

Modulo Function (remainder arithmetic)
used to display every 1,000th pass
through the DO loop to the screen.

User input for the length of the random
number sequence.

Multiplier a for the LCG.

Additive constant c for the LCG.

Intermediate calculation in the LCG.

Element of the X^ random number
sequence.

5-3



Table 5-1. (Cont'd)

Name

RANM

RANSUB

RANT

RANX

RNFRAC

Type

REAL*8

REAL*8

REAL*8

REAL*8

REAL

Module
Location

1,2,3,5

1,5

1,5- •

1,5

3,5,6,7,8,9

Definition

Modulus m for the LCG. •

Intermediate calculation in the LCG.

Intermediate calculation in the LCG.

Intermediate calculation in the LCG.

Element of the Fn random number

RNSEED REAL*8

SNGL FUNCTION

SQRT FUNCTION

SRUNS REAL

VRUNS REAL

ZRUNS REAL

sequence. 0.0 < RNFRAC < 1.0.

1,2,3,4,15 User input random number seed for the
LCG.

3,5 Convert REAL*8 to REAL*4.

13 Square root.

13 Standard deviation for the Median Runs
Test. SRUNS = SQRT(VRUNS).

13 Variance calculated for the Median Runs
Test.

13 z-scale value for the Median Runs Test.

5-4



SECTION 6

USER INSTRUCTIONS FOR THE RANDOM COMPUTER PROGRAM

The RANDOM.FOR source code is compiled into the executable file
RANDOM.EXE. The user executes the RANDOM Computer Program by typing "RANDOM".
The Program displays the default LCG parameters as given in Section 3. The
user may select the default LCG parameters, or enter new parameter values. The
Program then asks for the number of random numbers (length of the random number
sequence) to be generated. This number should be of the order of 1,000 or more
for all the statistical tests to be valid. The Program then asks whether an
intermediate screen output is to be displayed. Because it slows down the
Program significantly, this option should be used only when the user wishes to
examine every random number that is generated. If the intermediate screen
output is not selected, then only every 10,000th random number will be
displayed. The Program then asks for the random number seed Xo. The Program
then enters into a DO loop that generates the random number sequence and
accumulates the data for the statistical tests. If the random number seed is
generated, the Program will abort with the message, "GENERATOR CYCLED AT
COUNT = ..." If the Program proceeds normally, after the requested sequence
of random numbers has been generated, the Program exits the DO loop and
performs and displays the results of the statistical tests. The Program output
also displays the last, random number generated. It is this random number that
should be used as the random number seed for the next run when a simulation is
being replicated. Assuming that the total number of random numbers generated
does not exceed the modulus of the LCG, this ensures that the same sequence of
random numbers will not be used repetitively in the replication. The Program
then terminates by returning to the operating system prompt.

6-1



SECTION 7

THE RANCYCLE COMPUTER PROGRAM

The RANCYCLE Computer Program is identical to the RANDOM Computer
Program, except that the statistical tests have been eliminated to gain speed
of operation. This program should be used to test an LCG for a full-cycle
sequence. Used with an IBM PC-XT microcomputer, with a clock frequency of
4.7 Megahertz, the RANCYCLE Computer Program will generate four million random
numbers per hour. Appendix D gives the FORTRAN code for Version l.OOxl of the
RANCYCLE Computer Program. An example of the user input and the RANCYCLE
Computer Program output is presented in Appendix E.

7-1



SECTION 8

THE ARITH COMPUTER PROGRAM

The ARITH Computer Program tests the four FORTRAN double-precision
arithmetical operations (+,-,*,/) and the FORTRAN double-precision modulo
function (DMOD) and truncation function (DINT). The user can run the ARITH
Computer Program to estimate the largest parameter values that can be entered
into the LCG. The ARITH Program is menu driven. The user may select one of
the following seven options:

****** THE ARITH MENU ******

+

*

M
T
Q

Addition
Subtraction
Multiplication
Division
Modulo (DMOD)
Truncation (DINT)
Quit

After an option is selected, the Program asks for one or two numbers.
The Program displays the calculation, and the user examines the unit's digit
for the correct value. Errors of one or two units in the unit's digit can be
expected to occur as the limits of the precision of the hardware and software
configuration are reached.

Appendix F gives the FORTRAN code for Version l.OOxl of the ARITH
Computer Program. An example of the user input and the RANCYCLE Computer
Program output is presented in Appendix G.

8-1



SECTION 9

THE COSMIC DISKETTE

The RANDOM Computer Program is available on microcomputer diskette from
COSMIC (Computer Software Management & Information Center), NASA's clearing-
house where software is transferred from government agencies to industrial or
other users (Reference 27). The RANDOM Computer Program files are contained
as auxiliary files on the diskette for the SIMRAND I Computer Program
(Reference 23). The microcomputer diskette is an industry-standard 5-1/4
inch, double-sided, double-density, soft-sector diskette, with 40 tracks and
9 sectors per track. It can be read with the Microsoft MS-DOS (Version 2.0 or
later) operating system (References 18 and 19).

Along with the files for the SIMRAND I Computer Program, the micro-
computer diskette contains all the files associated with the RANDOM Computer
Program: RANDOM.FOR, RANDOM.MOD, RANDOM.EXE, RANCYCLE.FOR, RANCYCLE.EXE,
ARITH.FOR, and ARITH.EXE. Because of the way the executable files (.EXE) have
been compiled, the files require the operation of the Intel 8087 numeric
coprocessor. All of these files are read-only protected. The RANDOM Computer
Program can be run by typing "RANDOM" at the operating system prompt. The two
executable auxiliary files, RANCYCLE.EXE and ARITH.EXE, can be run by typing
"RANCYCLE" or "ARITH" at the operating system prompt.

9-1



SECTION 10

REFERENCES

1. Knuth, D. E., The Art of Computer Programming, Volume II; Seminumerical
Algorithms, Addison-Wesley, Reading, Massachusetts, 1969.

2. Lewis, P. A., Orav, E. J., and Uribe, L., Introductory Simulation and
Statistics Package, Wadsworth Advanced Books & Software, Monterey,
California, 1984.

3. Lewis, P. A., Orav, E. J., and Uribe, L., Advanced Simulation and
Statistics Package, Wadsworth Advanced Books & Software, Monterey,
California, 1985.

4. Fishman, G. S., Principles of Discrete Event Simulation, John Wiley, New
York, 1978.

5. Rubinstein, R. Y., Simulation and the Monte Carlo Method, John Wiley,
New York, 1981.

6. Yakowitz, S. J., Computational Probability and Simulation,
Addison-Wesley, Reading, Massachusetts, 1977.

7. Microsoft FORTRAN Compiler for the MS-DOS Operating System; User's
Guide, Version 3.30, Microsoft Corporation, Bellevue, Washington, 1985.

8. Microsoft FORTRAN;- Reference Manual, Microsoft Corporation, Bellevue,
Washington, 1985.

9. The iAPX 86/88, 186/188 User's Manual; Programmer's Reference. Intel
Corporation, Santa Clara, California, 1985.

10. Bradley, D. J., Assembly Language Programming for the IBM Personal
Computer, Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

11. Lafore, R., Assembly Language Primer for the IBM PC, New American
Library, New York, 1984.

12. Morgan, C. L., and Waite, M., 8086/8088 16-Bit Microprocessor Primer,
BYTE/McGraw-Hill, Peterborough, New Hampshire, 1982.

13. Morse, S. P., The 8086 Primer; An Introduction to Its Architecture,
System Design, and Programming, Hayden Book Company, Rochelle Park, New
Jersey, 1980.

14. Rector, R., and Alexy, G., The 8086 Book, OSBORNE/McGraw-Hill, Berkeley,
California, 1980.

15. Scanlon, L. J., IBM PC Assembly Language: A Guide for Programmers,
Robert J. Brady Co., Bowie, Maryland, 1983.

10-1



16. Startz, R., 8087 Applications and Programming for the IBM PC and Other
PCs, Robert J. Brady Co., Bowie, Maryland, 1983.

17. Willen, D. C., and Krantz, J. I., 8088 Assembler Language Programming;
The IBM PC, Howard W. Sams & Co., Indianapolis, Indiana, 1983.

18. Microsoft Corp., Disk Operating System, Version 2.10 (First Edition),
IBM No. 1502343, International Business Machines, Boca Raton, Florida,
September 1983.

19. Microsoft Corp., Disk Operating System; Technical Reference, Version
2.10 (First Edition), IBM No. 1502346, International Business Machines,
Boca Raton, Florida, September 1983.

20. Miles, R. F., Jr., Introduction to SIMRAND; SIMulation of Research ANd
Development Projects, JPL Publication 82-20, Jet Propulsion Laboratory,
Pasadena, California, March 1, 1982.

21. Miles, R. F., Jr., "The SIMRAND Methodology: Simulation of Research and
Development Projects," Large Scale Systems, Vol. 7, pp. 59-67, 1984.

22. Miles, R. F., Jr., The SIMRAND Methodology; Theory and Application for
the Simulation of Research and Development Projects, JPL Publication
85-98, Jet Propulsion Laboratory, Pasadena, California, February 15,
1986.

23. Miles, R. F., Jr., The SIMRAND I Computer Program; Simulation of
Research and Development Projects, JPL Publication 85-96, Jet Propulsion
Laboratory, Pasadena, California, February 15, 1986.

24. Lindgren, B. W., Statistical Theory, MacMillan Publishing Co., New York,
1976.

25. Siegal, S., Nonparametric Statistics for the Behavioral Sciences,
McGraw-Hill, New York, 1956.

26. PLINK86; Linkage Editor for Intel 8086/8088. Phoenix Software
Associates Ltd., North Easton, Maine, Version 1.47, 1985.

27. COSMIC, Suite 112, Barrow Hall, The University of Georgia, Athens,
Georgia 30602, Phone: (404) 542-3265.

10-2



APPENDIX A

THE RANDOM COMPUTER PROGRAM



APPENDIX A
The RANDOM Computer Program

RANDOM.FOR

PROGRAMMER:
RALPH F. MILES, JR.
SYSTEMS DIVISION
JET PROPULSION LABORATORY
PASADENA, CA 91109

VERSION: 1.00X2
DATE: 04/21/85

THE PROGRAM "RANDOM.FOR" GENERATES, DISPLAYS, AND TESTS RANDOM
NUMBER SEQUENCES COMPATIBLE WITH MICROSOFT FORTRAN-77 AND THE
8086/8088 MICROPROCESSOR.WITH THE 8087 NUMERIC COPROCESSOR.

VER.

1.00X1
1.00X2

DATE

01/19/85
04/24/85

CONFIGURATION CHANGES

•
*

«
«
«
•
•

ORIGINAL.
MODULE 1;

MODULE
MODULE
MODULE
MODULE
MODULE

« MODULE
« MODULE
« PROGRAM

2:
4:
5:
8:
9:

13:
14:

CHANGES

DELETE KOUNT1. CYCLE CHECK IN
MODULE 5. DELETE LWRITE. ADD LIN.
WRITE DEFAULT PARAMETERS WITH F11.1
DELETE KOUNT1.
KOUNT1 = KOUNT IF CYCLE.
IF STATEMENT FOR LIN.
USE MOD FN TO TEST FOR WRITE.
DELETE IF (LWRITE) ... ENDIF.
MINOR FORMAT CHANGE.
FLOAT(NCOUNT) -> FLOAT(NCOUNT)/2.
ICORR? -> ISER

$TITLE:»RANDOM.LST«
$NODEBUG
$NOFLOATCALLS
$STORAGE:4

PROGRAM RANDOM

«•*** INITIALIZE PROGRAM. {MODULE 1}

CHARACTER*1 AFAULT,AHEAD

A-3
PRECEDING PAGE BLANK Pa'OT



DOUBLE PRECISION RANA,RANG, R ANM,RNSEED,RANX,RANDIV,RANT,RANSUB,
» RANDOM '
LOGICAL LRUNHI,LIN

DIMENSION IRNHIS(100),ISER(10,10)

« INITIALIZE HISTOGRAM FOR CHI SQUARE AND K-S TESTS.
DO 100 1=1,100

IRNHIS(I) = 0.0
100 CONTINUE

» PARAMETERS FOR MEDIAN RUNS TEST. "
IRUNS = 0
IRUNHI = 0 -
"IRUNLO = 0

* INITIALIZE LIN AND HISTOGRAM ARRAY FOR SERIAL TEST.
LIN = .TRUE.
DO 110 ISER1 =1,10

DO 110 ISER2 =1,10 :

ISER(ISER1,ISER2) = 0
110 CONTINUE

« DEFAULT LINEAR CONGRUENTIAL GENERATOR PARAMETERS.
RANA = 671093.0
RANG = 7990885.0
RANM =33554432.6 ,

«»» {END MODULE 1} , ;

»«*»« KEYBOARD INPUT. {MODULE 2}

.WRITE («,120) , '
120 'FORMAT dx,«GENERATOR is: (RANA»RANDOM + RANG) MOD RANM.•)

WRITE (*,130) RANA,RANG,RANM :- , .
130 FORMAT (1X,'DEFAULT PARAMETERS FOR GENERATOR ARE:'/

» 5X, 'RANA = ',F11.1/
* 5X, 'RANG = '.F11.1/
« 5X, 'RANM = ',F11.1//
« 1X,'USE DEFAULT PARAMETERS FOR GENERATOR (Y/N): »\)
READ («,UO) AFAULT

140 FORMAT (A1)

IF (AFAULT .NE. 'Y') THEN

.., WRITE ..(•_, 150). . ...
150 FORMAT (1X/5X,'ENTER RANA: «\)

READ («,160) RANA
160 FORMAT (BN,F10.0)

WRITE («,170)
170 FORMAT (1X,5X,'ENTER RANG: »\)

A-4



READ («,180) RANG
180 FORMAT (BN.F10.0)

WRITE («,190)
190 FORMAT (1X,5X,'ENTER RAHM: »\)

READ (*,200) RANM - '
200 FORMAT (BN,F10.0)

ENDIF

WRITE («,210)
210 FORMAT (/1X,'TOTAL NUMBER OF RANDOM NUMBERS TO GENERATE: «\)

READ (»,220) NKOUNT
220 FORMAT (BN,I10)

WRITE («,230)
230 FORMAT (/1X,'INCLUDE INTERMEDIATE SCREEN OUTPUT (Y/N): «\)

READ (»,240) AREAD
240 FORMAT (A1) "

WRITE (*,250)
250 FORMAT (/1X,'ENTER RANDOM NUMBER SEED: »\)

READ («,260) RNSEED
260 FORMAT (BN,F10.0) ' ;

«»« {END MODULE 2}

•«•«* INITIAL DATUM FOR SERIAL TEST ARRAY. {MODULE 3>

RNFRAC = SNGL(RNSEED/RANM)

ISER1 = AINT(RNFRAC»10) +1

••• {END MODULE 3)

»*«•« GENERATE RANDOM NUMBERS AND TEST DATA. {MODULE 4}

RANDOM = RNSEED

DO 280 KOUNT = 1,NKOUNT

•«»«« GENERATE ONE RANDOM NUMBER. {MODULE 5}

• FOR ACCURACY, DO MODULO ARITHMETIC W/0 MODULO FUNCTION.
RANX = RANA»RANDOM + RANG
RANDIV = RANX/RANM
RANT = DINT(RANDIV)
RANSUB = RANT«RANM .:. .
RANDOM = RANX - RANSUB

» TEST FOR CYCLING OF THE RANDOM NUMBER GENERATOR. -

A-5



IF (RANDOM .EQ. RNSEED) THEN
KOUNT1 = KOUNT
GO TO 410

ENDIF

RNFHAC = SNGL(RANDOMXRANM)

IF (RNFRAC .GE. 1.0) RNFRAC = 0.9999

••• (END MODULE 5}

•*•«• DATA FOR CHI SQUARE TEST. {MODULE 6}

IRNBIN r AINT(100»RNFRAC) + 1

IRNHIS(IRNBIN) = IRNHIS(IRNBIN) + 1

»•» {END MODULE 6}

»»»•* DATA FOR MEDIAN RUNS TEST. {MODULE 7)

IF (RNFRAC .GE. 0.5) THEN
IRUNHI = IRUNHI + 1

ELSE
IRUNLO = IRUNLO + 1

ENDIF

IF (KOUNT .EQ. 1) THEN

IF (RNFRAC .GE. 0.5) THEN
LRUNHI = .TRUE.
IRUNS = 1

ELSE
LRUNHI = .FALSE.
IRUNS = 1

ENDIF

ELSE

IF (LRUNHI) THEN

IF (RNFRAC .LT. 0.5) THEN
IRUNS = IRUNS + 1
LRUNHI = .FALSE.

ENDIF

ELSE

IF (RNFRAC .GE. 0.5) THEN
IRUNS * IRUNS + 1
LRUNHI = .TRUE.

ENDIF .

A-6



»*•

*«*«»

*

»»»

ENDIF

ENDIF

{END MODULE 7}

DATA FOR SERIAL TEST. {MODULE 8}

INCLUDE ONLY EVERY OTHER PAIR FOR RANDOMNESS.

ISER2 = AINT(RNFRAC»10) + 1

IF (LIN) THEN

ISER(ISER1,ISER2) = ISER(ISER1,ISER2) + 1
LIN = .FALSE.

ELSE

LIN = .TRUE.

ENDIF

{END MODULE 8}

•*•»• WRITE VARIABLES FOR ONE LOOP. {MODULE 9)

IF ((AHEAD .EQ. «Y») .OR. (MOD(KOUNT,10000) .EQ. 0)) THEN

WRITE («,270) KOUNT,RANDOM,RNFRAC,IRUNS,IRUNHI,IRUNLO,
» ISER1,ISER2,ISER(ISER1,ISER2)

270 FORMAT (1X,1COUNT:1,18,6X,'RANDOM NUMBER: ',F10.0,6X,
'RANDOM FRACTION: ',F6.4/

1X,'MEDIAN RUNS TEST: »,
'IRUNS: ',I8,6X,«IRUNHI:',I8,6X,'IRUNLO:',I8/

1X,'SERIAL TEST: ',
'ISER1: ',I8,6X,'ISER2: ',I8,6X,'ISER: ',187)

ENDIF

»«« {END MODULE 9)

» PREPARE FOR NEXT SERIAL DATA.
ISER1 r ISER2

280 CONTINUE

•»• END (KOUNT) DO LOOP. {END MODULE U}

A-7



••*»* WRITE RUN HISTOGRAM. {MODULE 10}

WRITE («,290)
290 FORMAT (/1X,'RUN HISTOGRAM FOR FRACTIONAL (0.0 -1.0) ',

* 'RANDOM NUMBERS')

WRITE (»,300) (IRNHIS(I),I=1,100)
300 FORMAT (1X,10I7)

••* {END MODULE 10}

*»»«« CHI SQUARE TEST. {MODULE 11} : - . . . -

CHISQR =0.0 :

DO 310 1=1,100 ;

IHIS = IRNHIS(I)
DELTA = FLOAT(IHIS) - FLOAT(MOUNT)/100

CHISQR = DELTA«DELTA/(FLOAT(NKOUNT)/100) + CHISQR

310 CONTINUE

WRITE (»,320) CHISQR
320 FORMAT (/1X,'CHI SQUARE:',F8.4)

«»* {END MODULE 11}

««««« KOLMOGOROV-SMIRNOV ONE-SAMPLE'TEST. {MODULE 12}

IHIS =0 ; .

FKOL =0.0

DO 330 1=1,100 : ' '•

IHIS = IHIS + iRNHIS(I) .
DEV = ABS(FLOAT(IHIS)/NKOUNT .- FLOAT(I)/100)"

IF (FKOL .LT. DEV) FKOL = DEV

330 CONTINUE

WRITE («,340) FKOL
340 FORMAT (/1X,'KOLMOGOROV-SMIRNOV MAXIMUM DEVIATION:' ,F8.1»)

•»* {END MODULE 12}

*•»«« MEDIAN RUNS TEST. {MODULE 13} ,. :

FRUNS = FLOAT(IRUNS)

A-8



FRUNHI = FLOAT(IRUNHI)
FRUNLO = FLOAT(IRUNLO)

FMRUNS = (2*FRUNHI«FRUNLO)/(FRUNHI + FRUNLO) +1

VRUNS - ((2»FRUNHI»FRUNLO)«(2«FRUNHI«FRUNLO - FRUNHI - FRUNLO))/
« ( ( (FRUNHI + FRUNLO)»»2)»(FRUNHI + FRUNLO -1))

SRUNS = SQRT(VRUNS)

ZRUNS = (FRUNS - FMRUNS)/SRUNS

WRITE («,350) FRUNS,FMRUNS,SRUNS,ZRUNS
350 FORMAT (/1X, 'MEDIAN RUNS TEST:1/

« 1X,'FRUNS:',F12.2,8X,'FMRUNS:',F12.2,8X,'SRUNS:',F12.2/
« 1X,'Z-SCORE FOR THE RUNS:',F14.4)

•*» {END MODULE 13}

««»«« SERIAL (CHI SQUARE) TEST. {MODULE 14}

» USE FLOAT(NCOUNT)/2 AS THE NUMBER OF PAIR OBSERVATIONS.

CHISQR =0.0

DO 360 ISER1 =1,10
DO 360 ISER2 =1,10

USER = ISER(ISER1,ISER2)
DELTA = FLOAT(IISER) - (FLOAT(NKOUNT)/2)/100

CHISQR = DELTA«DELTA/((FLOAT(NKOUNT)/2)/100) + CHISQR

360 CONTINUE

WRITE («,370) CHISQR
370 FORMAT (/1X,'SERIAL TEST VALUE (CHI SQUARE):',F10.4)

WRITE (*,380)
380 FORMAT (1X,1SERIAL TEST HISTOGRAM:')

DO 400 ISER1 =1,10
ISERW = ISER1 - 1
WRITE (*,390) ISERW,(ISER(ISER1,ISER2),ISER2=1,10)

390 FORMAT (1X,11,':',1017)
400 CONTINUE

»*« {END MODULE 14}

««**« GENERATOR CYCLE MESSAGE. {MODULE 15}

410 CONTINUE

A-9



IF (RANDOM .EQ. RNSEED) THEN
WRITE (»,420) KOUNT1

1»20 FORMAT (//1X, 'GENERATOR CYCLED AT COUNT = »,I10//)
ENDIF

»«» {END MODULE 15}

«•*»» STOP PROGRAM. {MODULE 16}

STOP

END

»•• {END MODULE 16} ;

RANDOM. FOR «**•*•***•*****•••****•••******

A-10



APPENDIX B

THE MICROSOFT FORTRAN CODE FOR THE LCG



APPENDIX B
The Microsoft FORTRAN Code for the LCG

•a**********************************************************************

RANDOM.MOD

PROGRAMMER:
RALPH F. MILES, JR.
SYSTEMS DIVISION
JET PROPULSION LABORATORY
PASADENA, CA 91109

VERSION: 1.0X2
DATE: 04/2V85

THIS CODE IS EXTRACTED FROM RANDOM.FOR, AND CONTAINS ONLY THOSE
LINES OF CODE FROM DESIGNATED MODULES THAT MUST BE INCORPORATED
(OR SOME EQUIVALENT LINES OF CODE MUST BE INCORPORATED) INTO A
MICROSOFT FORTRAN-77 PROGRAM TO USE THE RANDOM NUMBER GENERATOR OF
RANDOM.FOR. THE VERSION NUMBER AND DATE ARE KEPT CONSISTENT WITH
CHANGES TO RANDOM.FOR EVEN IF NO CHANGES ARE MADE TO THE EXTRACTED
CODE LINES.

•ft**********************************************************************

$TITLE:'RANDOM.LST'
$NODEBUG
$NOFLOATCALLS
$STORAGE:H

***** INITIALIZE PROGRAM. {MODULE 1}

DOUBLE PRECISION RANA,RANG,RANM,RNSEED,RANX,RANDIV,RANT,RANSUB,
» RANDOM

» DEFAULT LINEAR CONGRUENTIAL GENERATOR PARAMETERS.
RANA = 671093.0
RANG = 7090885.0
RANM = 33554432.0

••• {END MODULE 1}

***** KEYBOARD INPUT. {MODULE 2}

WRITE (»,210)
210 FORMAT (/1X,'TOTAL NUMBER OF RANDOM NUMBERS TO GENERATE: »\)

READ («,220) NKOUNT
220 FORMAT (BN,I10)

WRITE (*,250)
250 FORMAT (/1X,'ENTER RANDOM NUMBER SEED: *\)

READ (»,260) RNSEED

PRECEDING PAGE BLANK HQJ
a~j



260 FORMAT (BN,F10.0)

««* {END MODULE 2}

»»««« GENERATE RANDOM NUMBERS. {MODULE 4}

RANDOM = RNSEED

DO 280 KOUNT = 1.NKOUNT

••••• GENERATE ONE RANDOM NUMBER. {MODULE 5}

* FOR ACCURACY, DO MODULO ARITHMETIC W/0 MODULO FUNCTION.
RANX r RANA»RANDOM + RANC
RANDIV = RANX/RANM
RANT = DINT(RANDIV)
RANSUB = RANT«RANM
RANDOM = RANX - RANSUB

RNFRAC = SNGL(RANDOM/RANM)

IF (RNFRAC .GE. 1.0) RNFRAC = 0.9999

•«• {END MODULE 5}

280 CONTINUE

«•• END (KOUNT) DO LOOP. {END MODULE 4}

••»»• STOP PROGRAM. {MODULE 16}

STOP

END .

•»» {END MODULE 16}

•••••••••••••••••••••••*t«»»ft RANDOM.MOD **•*•*•*•*****••••****••**•••**

B-4



APPENDIX C

EXAMPLE OF A RANDOM COMPUTER PROGRAM RUN



APPENDIX C
Example of a RANDOM Computer Program Run

A:> RANDOM

GENERATOR IS: (RANA*RANDOM + RANG) MOD RANM.
DEFAULT PARAMETERS FOR GENERATOR ARE:

RANA = 671093.0
RANC = 7090885.0
RANM = 33554432.0

USE DEFAULT PARAMETERS FOR GENERATOR (Y/N): Y
TOTAL NUMBER OF RANDOM NUMBERS TO GENERATE: 10000
INCLUDE INTERMEDIATE SCREEN OUTPUT (Y/N): N
ENTER RANDOM NUMBER SEED: 1

COUNT: 10000
MEDIAN RUNS TEST:
SERIAL TEST:

RANDOM NUMBER: 14745073.
IRUNS: 5065 IRUNHI:
ISER1: 4 ISER2:

RANDOM FRACTION: .4394
4929 IHUNLO: 5071

5 ISER: 61

RUN HISTOGRAM FOR FRACTIONAL (0.0 - 1.0) RANDOM NUMBERS
88
109
102
113
96

101
103
108
84
100

100
88
105
96
102
98
94
92
108
93

105
103
106
110
103
93
71
97
104
100

112
107
93
107
104
95
93
97
90
86

108
108
102
94
103
112
106
98
95
108

84
95
113
116
103
107
93
94
89
102

89
103
97
100
103
93
100
119
94
107

101
104
112
98
101
93
103
102
106
104

103
87 .
79
109
110
92
101
95
80
90

97
102
122
96
83
105
104
111
104
115

CHI SQUARE: 78.7200

KOLMOGOROV-SMIRNOV MAXIMUM DEVIATION: .0088

MEDIAN RUNS TEST:
FRUNS: 5065.00 FMRUNS:
Z-SCORE FOR THE RUNS: 1.3005

4999.99

SERIAL TEST VALUE (CHI SQUARE):
SERIAL TEST HISTOGRAM:
0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

45
46
48
47
55
45
47
43
54
51

58
53
54
52
54
57
60
52
39
37

60
42
45
60
62
53
57
46
45
55

57
56
44
50
41
55
55
49
55
62

78.9600

39
60
51
61
46
58
51
52
46
48

49
49
58
44
50
50
38
37
43
39

47
38
56
41
38
48
44
57
45
52

SRUNS:

51
52
56
55
44
57
56
48
53
57

49.99

54
48
47
46
51
59
45
45
44
47

47
46
47
59
54
50
49
55
44
53

Stop - Program terminated.

C-3 PRECEDING PAGE BLANK ^OT FILMED



APPENDIX D

THE RANCYCLE COMPUTER PROGRAM



APPENDIX D
The RANCYCLE Computer Program

l*«*«««*««*»««

RANCYCLE.FOR

PROGRAMMER:
RALPH F. MILES, JR.
SYSTEMS DIVISION
JET PROPULSION LABORATORY
PASADENA, CA 91109

VERSION: 1.00X1
DATE: 02/22/85

THE PROGRAM "RANCYCLE.FOR" TESTS THE PARAMETERS OF THE LINEAR
CONGRUENTIAL GENERATOR OF RANDOM NUMBERS, THE FORTRAN IMPLEMENTA-
TION, AND THE MICROCOMPUTER HARDWARE FOR THE CYCLE LENGTH. A
GOOD GENERATOR SHOULD GENERATE A MAXIMUM CYCLE LENGTH.

CONFIGURATION CHANGES

VER. DATE CHANGES

1.00X1 02/22/85 * ORIGINAL.

$TITLE:'RANCYCLE.LST1

$NODEBUG
$NOFLOATCALLS
$STORAGE:4

PROGRAM RANCYC

**••«*•••«•••«•*«•«««««••««••««*«•*«•••«•««««••««««*«««•««•««*•«««*««•««

««««« INITIALIZE PROGRAM. {MODULE 1}

CHARACTER'1 AFAULT,AHEAD
DOUBLE PRECISION RANA,RANG,RANM,RNSEED,RANX,RANDIV,RANT,RANSUB,
» RANDOM

* DEFAULT LINEAR CONGRUENTIAL GENERATOR PARAMETERS.
RANA = 671093.0
RANG = 7090885.0
RANM a 33554432.0

»»• {END MODULE 1}

PRECEDING PAGE BLANK HOT

D-3



•••«• KEYBOARD INPUT. {MODULE 2}

WRITE (*,120)
120 FORMAT (1X,'GENERATOR IS: (RANA»RANDOM + RANG) MOD RANM.«)

WRITE («,130) RANA,RANG,RANM
130 FORMAT (1X,'DEFAULT PARAMETERS FOR GENERATOR ARE:'/

• 5X, 'RANA = ',F11.1/
• 5X, 'RANG = »,F11.1/
• 5X, 'RANM = »,F11.1//
• 1X,'USE DEFAULT PARAMETERS FOR GENERATOR (Y/N): »\)
READ («,140) AFAULT

140 FORMAT (A1)

IF (AFAULT .NE. »Y') THEN

WRITE («,150) • . . .
150 FORMAT (1X,5X,'ENTER RANA: '\)

READ (»,160) RANA
160 FORMAT (BN,F10.0)

WRITE (»,170)
170 FORMAT (1X,5X,'ENTER RANG: '\)

READ (*,180) RANG
180 FORMAT (BN,F10.0)

WRITE («,190)
190 FORMAT (1X,5X,'ENTER RANM: »\)

READ (»,200) RANM
200 FORMAT (BN.F10.0)

ENDIF

WRITE (*,210)
210 FORMAT (/1X,'TOTAL NUMBER OF RANDOM NUMBERS TO GENERATE: «\)

READ (»,220) NKOUNT
220 FORMAT (BN,I10)

WRITE («,230)
230 FORMAT (/1X,'INCLUDE INTERMEDIATE SCREEN OUTPUT (Y/N): »\)

READ («,240) AHEAD
240 FORMAT (A1)

WRITE («,250)
250 FORMAT (/1X,»ENTER RANDOM NUMBER SEED: «\)

READ (»,260) RNSEED
260 FORMAT (BN,F10.0)

«•» {END MODULE 2}

«**** INITIAL DATUM. {MODULE 3)

D-4



RNFRAC = SNGL(RNSEED/RANM)

••• {END MODULE 3}

•***• GENERATE RANDOM NUMBERS AND TEST DATA. {MODULE 4}

RANDOM = RNSEED

DO 280 KOUNT = 1.NKOUNT

GENERATE ONE RANDOM NUMBER. {END MODULE 5)

FOR ACCURACY, DO MODULO ARITHMETIC W/0 MODULO FUNCTION.

RANX = RANA*RANDOM + RANG
RANDIV r RANX/RANM
RANT = DINT(RANDIV)
RANSUB = RANT«RANM
RANDOM = RANX - RANSUB

TEST FOR CYCLING OF THE RANDOM NUMBER GENERATOR.
IF (RANDOM .EQ. RNSEED) THEN

KOUNT1 = KOUNT
GO TO 410

ENDIF

RNFRAC = SNGL(RANDOMXRANM)

{END MODULE 5)

«•**« WRITE VARIABLES FOR ONE LOOP. {MODULE 9)

IF ((AHEAD .EQ. «Y«) .OR. (MOD(KOUNT,10000) .EQ. 0)) THEN

WRITE (»,270) KOUNT.RANDOM,RNFRAC
270 FORMAT (1X,»COUNT:*,18,6X,'RANDOM NUMBER: *,F10.0,6X,

• 'RANDOM FRACTION: f,F6.4/)

ENDIF

«»» {END MODULE 9)

280 CONTINUE

••• END (KOUNT) DO LOOP. {END MODULE 4}

*•**« GENERATOR CYCLE MESSAGE. {MODULE 15)

410 CONTINUE

D-5



IF (RANDOM .EQ. RNSEED) THEN
WRITE (»,420) KOUNT1

420 FORMAT (//1X, 'GENERATOR CYCLED AT COUNT = ',110/7)
ENDIF

««« {MODULE 15}

•**** STOP PROGRAM. {MODULE 16}

STOP

END

•«* {END MODULE 16}

RANCYCLE.FOR »»»»»»«»«••»«•»»»»»»»»»»»»»»»

D-6



APPENDIX E

EXAMPLE OF A RANCYCLE COMPUTER PROGRAM RUN



APPENDIX E
Example of a RANCYCLE Computer Program Run

A:> RANCTCLE

GENERATOR IS: (RANA«RANDOM + RANG) MOD RANM.
DEFAULT PARAMETERS FOR GENERATOR ARE:

RANA = 671093.0
RANG = 7090885.0
RANM = 33554432.0

USE DEFADLT PARAMETERS FOR GENERATOR (Y/N): Y
TOTAL NUMBER OF RANDOM NUMBERS TO GENERATE: 100000
INCLUDE INTERMEDIATE SCREEN OUTPUT (Y/N): N
ENTER RANDOM NUMBER SEED: 1

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

COUNT:

10000

20000

30000

40000

50000

60000

70000

80000

90000

COUNT: 100000

RANDOM NUMBER: 14745073.

RANDOM NUMBER: 18354145.

RANDOM NUMBER: 11285969.

RANDOM NUMBER: 14970817.

RANDOM NUMBER: 4701617.

RANDOM NUMBER: 10297249.

RANDOM NUMBER: 15439249.

RANDOM NUMBER: 24780673.

RANDOM NUMBER: 30391665.

RANDOM NUMBER: 11759457.

Stop - Program terminated.

RANDOM FRACTION: .4394

RANDOM FRACTION: .5470

RANDOM FRACTION: .3363

RANDOM FRACTION: .4462

RANDOM FRACTION: .1401

RANDOM FRACTION: .3069

RANDOM FRACTION: .4601

RANDOM FRACTION: .7385

RANDOM FRACTION: .9057

RANDOM FRACTION: .3505

PRECEDING PAGE BLANK WOT FILMED

E-3



APPENDIX F

THE ARITH COMPUTER PROGRAM



APPENDIX F
The ARITH Computer Program

••••••••••i
ARITH.FOR

PROGRAMMER:
RALPH F. MILES, JR.
SYSTEMS DIVISION
JET PROPULSION LABORATORY
PASADENA, CA 91109

VERSION: 1.00X1
DATE: 06/13/85

THE PROGRAM "ARITH.FOR" TESTS THE FOUR FORTRAN DOUBLE-PRECISION
ARITHMETICAL OPERATIONS (+,-,»,/) AND THE FORTRAN DOUBLE-PRECISION
FUNCTIONS MODULO (DMOD) AND TRUNCATION (DINT).

CONFIGURATION CHANGES

VER. DATE CHANGES

1.0X01 06/13/85 * ORIGINAL.

$TITLE:»RANDOM.LST'
$DEBUG
$NOFLOATCALLS
$STORAGE:4

PROGRAM ARITH

«••«• INITIALIZE PROGRAM. {MODULE 1}

CHARACTER*! MENU
DOUBLE PRECISION ARITH1,ARITH2,ARITH3

««* (END MODULE 1}

«•*•» MENU DISPLAY. {MODULE 2}

100 CONTINUE

WRITE (»,110)
110 FORMAT (1X,/////////////////////////

F~3 PRECEDING PAGE BLANK NOT FILMED



24X, «•»«»•« THE ARITH MENU «•»••»

2UX,'+ Addition
24X,«-
24X,'«
24X,'/
24X, »M
2l»X,»T
24X,'Q

Subtraction
Multiplication
Division
Modulo (DMOD)
Truncation (DINT)
Quit

2UX ' _———__—___————
/ ̂ ^

V

'/
'/
V
V
'/
'/
V

• '/

WRITE (*,'(20X,A\)') 'Enter a Menu Character & <RETURN>: •
READ (»,'(BN,A1)») MENU

»»» {END MODULE 2}

«««•« QOIT THE PROGRAM. {MODULE 3)

IF (MENU .EQ. »Q») THEN

WRITE («,120)
120 FORMAT (1X,/////////////////////////)

GOTO 999

ENDIF

»«» {END MODULE 3}

•»««» PERFORM ADDITION. {MODULE H}

IF (MENU .EQ. •+•) THEN

WRITE («,130)
130 FORMAT (1X,/////////////////////////

» 30X,»«•*»«• ADDITION •»««•« •)

WRITE («,140)
140 FORMAT (/////1X,5X,'Enter the first number for addition: «\)

READ («,150) ARITH1
150 FORMAT (BN,F20.0)

WRITE (»,160)
160 FORMAT ( //1X,5X,'Enter the second number for addition: '\)

READ (»,170) ARITH2
170 FORMAT (BN.F20.0)

ARITH3 = ARITH1 + ARITH2

WRITE (»,180) ARITH3

F-4



180 FORMAT ( //1X,5X,«The addition of the two numbers is: ',
* F20.0)

WRITE («,'(//1X,A\)») 'Enter <RETURN> to continue: •
READ («,'(BN,A1)') MENU

ENDIF

*»» {END MODULE 1}

««»»« PERFORM SUBTRACTION. {MODULE 5}

IF (MENU .EQ. »-') THEN

WRITE (»,190)
190 FORMAT (1X,/////////////////////////

» 30X, •«•«••« SUBTRACTION «»«».«« •)

WRITE («,200)
200 FORMAT (/////1X.5X,

* 'Enter the first number for subtraction: 'V)
READ («,210) ARITH1

210 FORMAT (BN,F20.0)

WRITE (»,220)
220 FORMAT (//1X,5X,'Enter the second number for subtraction: '\)

READ («,230) ARITH2
230 FORMAT (BN.F20.0)

ARITH3 = ARITH1 - ARITH2

WRITE (*,240) ARITH3
240 FORMAT (//1X,5X,'The subtraction of the two numbers is: ',

» F20.0)

WRITE (»,'(//1X,A\)') 'Enter <RETURN> to continue: '
READ (»,'(BN,A1)«) MENU

ENDIF

»*» {END MODULE 5}

«*««« PERFORM MULTIPLICATION. {MODULE 6}

IF (MENU .EQ. '«') THEN

WRITE («,250)
250 FORMAT (1X,/////////////////////////

• 30X,'»«•«** MULTIPLICATION »*«»«« •)

WRITE («,260)
260 FORMAT (/////1X,5X,

F-5



» 'Enter the first number for multiplication: '\)
READ. (»,270) ARITH1

270 FORMAT (BN,F20.0)

WRITE (*,280)
280 FORMAT ( //1X,5X,

• 'Enter the second number for multiplication: '\)
READ (»,290) ARITH2

290 FORMAT (BN,F20.0)

ARITH3 = ARITH1 • ARITH2

WRITE («,300) ARITH3
300 FORMAT ( //1X,5X,

• 'The multiplication of the two numbers is: *,F20.0)

WRITE (»>«(//1X,A\)') 'Enter <RETURN> to continue: '
READ («,'(BNfA1)«) MENU

ENDIF

««« {END MODULE 6}

»«»*« PERFORM DIVISION. {MODULE 7)

IF (MENU .EQ. '/•) THEN

WRITE (*,310)
310 FORMAT (1X,/////////////////////////

« 3QX,'«•«»»• DIVISION "•••• ')

WRITE (*,320)
320 FORMAT (/////1X,5X,'Enter the first number for division: «\)

READ (*,330) ARITH1
330 FORMAT (BN,F20.0)

WRITE (»,31»0)
340 FORMAT ( //1X.5X,'Enter the second number for division: »\)

READ (»,350) ARITH2
350 FORMAT (BN,F20.0)

ARITH3 = ARITH1 / ARITH2

WRITE (»,360) ARITH3
360 FORMAT ( //1X,5Xf'The division of the two numbers is: ',

» F30.10)

WRITE («,'(//1X,A\)«) 'Enter <RETURN> to continue: '
READ («,»(BN,A1)') MENU

ENDIF

"« {END MODULE 7)

F-6



***«* PERFORM MODULO FUNCTION. {MODULE 8}

IF (MENU .EQ. «M«) THEN

WRITE (»,370)
370 FORMAT (1X,/////////////////////////

« 30X,««««••* MODULO •«•»»«')

WRITE (»,380)
380 FORMAT (/////1X.5X,

• 'Enter the argument of the modulo function: *\)
READ («,390) ARITH1

390 FORMAT (BN,F20.0)

WRITE («,400)
400 FORMAT ( //1X,5X,

* 'Enter the modulus of the modulo function: *\)
READ («,410) ARITH2

410 FORMAT (BN,F20.0)

ARITH3 = DMOD(ARITH1,ARITH2)

WRITE (»,420) ARITH3
420 FORMAT ( //1X,5X,'The remainder is: »,F20.0)

WRITE (»,'(//1X,A\)«) 'Enter <RETURN> to continue: '
READ («,'(BN,A1)«) MENU

ENDIF

»»« {END MODULE 8}

•»**« PERFORM TRUNCATION. {MODULE 9)

IF (MENU .EQ. 'T') THEN

WRITE (»,430)
430 FORMAT (1X,/////////////////////////

* 3ox,'»«*««» TRUNCATION «»»««» ')

WRITE («,440)
440 FORMAT (/////1X.5X,

* 'Enter the decimal number for truncation: f\)
READ («,450) ARITH1

450 FORMAT (BN,F30.10)

ARITH3 = DINT(ARITHI)

WRITE (»,460) ARITH3
460 FORMAT ( //1X,5X,

* 'The truncation of the decimal number is: »,F30.10)

F-7



WRITE (»,'(//1X,A\)') 'Enter <RETDRN> to continue: '
READ («,'(BN,A1)») MENU

ENDIF

«»» {END MODULE 9}

••*«* (jo TO MENU. {MODULE 10}

GOTO 100

«»• {END MODULE 10}

»»»*» STOP PROGRAM. {MODULE 11}

999 CONTINUE

STOP

END

«•» {END MODULE 11}

****•**•««•«*•**«*•••«»«§«*•*« ARITH.FOR *******************************

F-8



APPENDIX G

EXAMPLE OF AN ARITH COMPUTER PROGRAM RUN



APPENDIX G
Example of an ARITH Computer Program Run

A: > ARITH

•*»••• THE ARITH MENU •»••••

Addition
Subtraction
Multiplication
Division

M Modulo (DMOD)
T Truncation (DINT)
Q Quit

Enter a Menu Character 4 <RETURN>: +

••§»** ADDITION «»»»«•

Enter the first number for addition:

Enter the second number for addition: 4321

The addition of the two numbers is: 5555,

Enter <RETURN> to continue:

»•«•«« THE ARITH MENU «»«««»

Addition
Subtraction
Multiplication
Division

M Modulo (DMOD)
T Truncation (DINT)
Q Quit

Enter a Menu Character & <RETURN>: Q

Stop - Program terminated,

PRECEDING PAGE BLANK

G-3



TECHNICAL REPORT STANDARD TITLE PAGE

1 Reoort No. 2. Government Accession No.
^ 85-97

4. Title and Subtitle

The RANDOM Omputer Program

7. Author(i)
R.F. Miles, Jr.

9. Performing Organization Name and Address

JET PROPULSION LABORATORY
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91109 .

12. Sponsoring Agency Nome and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date

Februarv 15 r 1986
6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.
NAS7-918

13. Type of Report and Period Covered

JPL Publication

14. Sponsoring Agency Code

15. Supplementory Notes Sponsored by the U.S. Department of Energy through Interagency
Agreement DE-AI01-85CE89008 with NASA; also identified as DOE/JPL 1012-116 and as
JPL Project No. 5101-275 (RTOP or Customer Code 776-52-61).

16. Abstract

The RANDOM Computer Program is a FORTRAN program for generating random
number sequences and testing linear congruential random'number generators
(LCGs). This document discusses the linear congruential form of a random
number generator, and describes how to select the parameters, of an LCG for a
microcomputer. This document describes the following:

(1) The RANDOM Computer Program.

(2) RANDOM.MOD, the computer code needed to implement an LCG in a
FORTRAN program.

(3) The RANCYCLE and the ARITH Computer Programs that provide
computational assistance in the selection of parameters for an LCG.

The RANDOM, RANCYCLE, and ARITH Computer Programs are written in
Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only
minor modifications, the RANDOM Computer Program and its LCG can be run on most
microcomputers or mainframe computers.

17. Key Words (Selected by Author(s))

Computer Programming and Software
Systems Analysis

18. Distribution Statement

Unclassified-unlimited

19. Security Clossif. (of this report)

Unclassified

20. Security Clossif. (of this page)

Unclassified

21. No. of Pages

72

22. Price

JPL 0184 R9IW




