https://ntrs.nasa.gov/search.jsp?R=19860013218 2020-03-20T15:05:52+00:00Z

NASA Technical Memorandum	· ·
NASA TM-86537	
	CORROSION FATIGUE OF 2219-T87 ALUMINUM ALLOY
	By Vernotto C. McMillan Corrosion Research Branch Materials and Processes Laboratory February 1986

. .

(NASA-TM-86537) CORROSION FATIGUE OF 2219-T87 ALUMINUM ALLCY (NASA) 20 p HC A02/MF A01 CSCL 11F N86-22689

Unclas G3/26 09051

National Aeronautics and Space Administration

George C. Marshall Space Flight Center

MSFC - Form 3190 (Rev. May 1983)

		TECHNICA	L REPORT STAND	ARD TITLE PAGE
1. REPORT NO.	2. GOVERNMENT AG		3. RECIPIENT'S CA	
NASA TM -86537				
4. TITLE AND SUBTITLE			5. REPORT DATE	
			February 1	
Corrosion Fatigue of 2219-T8	7 Aluminum All	loy	6. PERFORMING OR	GANIZATION CODE
7. AUTHOR(S)			8. PERFORMING ORG	ANIZATION REPORT #
Vernotto C. McMillan				
9. PERFORMING ORGANIZATION NAME AND AD	DRESS		10. WORK UNIT NO.	
George C. Marshall Space Fli	ght Center		11. CONTRACT OR GI	RANT NO.
Marshall Space Flight Center,				
marshall space right benter,	, AL 00012		13 TYPE OF REPORT	& PERIOD COVERED
12. SPONSORING AGENCY NAME AND ADDRESS				
TE, SI SHOOKING AGENCI HAME AND ADDRESS			The sheet set M	
National Association and Gue			Technical M	emorandum
National Aeronautics and Spa	ce Administrat	ion		
Washington, D.C. 20546			14. SPONSORING AG	ENCY CODE
15. SUPPLEMENTARY NOTES				
Prepared by Materials and Pr	ocesses Labora	atory. Science an	d Engineering	Directorate.
1 0			88	
16. ABSTRACT				
Composion fatimus studi	an mana ann du	stad on home sh		
Corrosion fatigue studi				
and anodized 2219-T87 alumin				
I been mechine warden a star				
beam machine running at a v				
tested were distilled water, 1				
tested were distilled water, 1	.00 ppm NaCl,	and 3.5 percent	NaCl. Results	s were
tested were distilled water, 1 compared to the endurance li	00 ppm NaCl, mit in air. Ar	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Results and effect of pro-	s were otective
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th comparing the fa	NaCl. Resulta le effect of pro tigue propertie	s were otective
tested were distilled water, 1 compared to the endurance li coatings on corrosion fatigue	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th	NaCl. Resulta le effect of pro tigue propertie	s were otective
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th comparing the fa	NaCl. Resulta le effect of pro tigue propertie	s were otective
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th comparing the fa	NaCl. Results te effect of pro tigue propertie	s were otective
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th comparing the fa	NaCl. Results te effect of pro tigue propertie	s were otective
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th comparing the fa	NaCl. Results te effect of pro tigue propertie	s were otective
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th comparing the fa	NaCl. Results te effect of pro tigue propertie	s were otective
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th comparing the fa	NaCl. Results te effect of pro tigue propertie	s were otective
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th comparing the fa	NaCl. Results te effect of pro tigue propertie	s were otective
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th	00 ppm NaCl, mit in air. Ar was made by lose without.	and 3.5 percent n evaluation of th comparing the fa	NaCl. Results the effect of pro- tigue propertie	s were otective es of
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th	00 ppm NaCl, mit in air. Ar was made by	and 3.5 percent n evaluation of th comparing the fa	NaCl. Results te effect of pro tigue propertie	s were otective
tested were distilled water, 1 compared to the endurance his coatings on corrosion fatigue specimens with coatings to th 17. KEY WORDS Corrosion Fatigue Aluminum Alloy	20. SECURITY CLAS	and 3.5 percent n evaluation of th comparing the fa 18. DISTRIBUTION STA Unclassified - SIF. (of this page)	NaCl. Results the effect of pro- tigue propertie	s were otective es of 22. PRICE
tested were distilled water, 1 compared to the endurance lin coatings on corrosion fatigue specimens with coatings to th 17. KEY WORDS Corrosion Fatigue Aluminum Alloy	00 ppm NaCl, mit in air. Ar was made by lose without.	and 3.5 percent n evaluation of th comparing the fa 18. DISTRIBUTION STA Unclassified - SIF. (of this page)	NaCl. Results the effect of pro- tigue properties TEMENT Unlimited 21. NO. OF PAGES	s were otective es of

.

.

TABLE OF CONTENTS

1 1

Page

INTRODUCTION	1
EXPERIMENTAL PROCEDURES	1
RESULTS AND DISCUSSIONS	1
CONCLUSIONS	2

PRECEDING PAGE BLANK NOT FILMED

LIST OF ILLUSTRATIONS

, e

Figure	Title	Page
1.	R. R. Moore High Speed Fatigue Testing Apparatus	3
2.	Corrosion Fatigue Test Arrangement	4
3.	Corrosion fatigue strength of 2219 Al (Bare)	5
4.	Corrosion fatigue strength of 2219 Al (Conversion Coated)	6
5.	Corrosion fatigue strength of 2219 Al (Anodized)	7
6.	SEM micrographs of fractured 2219 Al (Bare)	8
7.	SEM micrograph of fractured bare 2219 Al test sample exposed in 3.5 percent NaCl environment	9
8.	SEM micrograph of fractured conversion coated 2219 Al test sample exposed in 3.5 percent NaCl environment	10
9.	SEM micrograph of fractured anodized 2219 Al test sample exposed in 3.5 percent NaCl environment	11

LIST OF TABLES

Table	Title	Page
1.	Corrosion Fatigue of 2219-T87 Al (Bare)	12
2.	Corrosion Fatigue of 2219-T87 Al (Conversion Coated)	13
3.	Corrosion Fatigue of 2219-T87 Al (Anodized)	14
4.	Estimated Corrosion Fatigue Strength (CFS) of 2219 Al	15

SHORE TON I FOR FINAL TRADES

TECHNICAL MEMORANDUM

CORROSION FATIGUE OF 2219-T87 ALUMINUM ALLOY

INTRODUCTION

In recent years, the premature and sometimes catastrophic fracture of engineering materials has become an increasingly important consideration in engineering design and research. In many engineering applications, such as the External Tank and Solid Rocket Booster Structures, aluminum alloys are used in their construction. These structures are generally subjected to cyclic loading and exposed to corrosive environments. The combined action of cyclic loading and aggressive environment often results in a significant reduction in fatigue performance compared with that obtained under cyclic loading in inert environments. Due to the planned reusability of many components in the Space Transportation System and their unavoidable exposure to coastal environments, and seawater, it is imperative that we evaluate their fatigue life under these conditions and also the effect of protective coatings where applicable.

PROCEDURES

Tests were conducted using the R. R. Moore High Speed Fatigue Testing Machine. It is a rotating beam machine in which the specimen acts as a simple beam loaded symmetrically at two points. The method of loading and specimen configuration is shown in Figure 1.

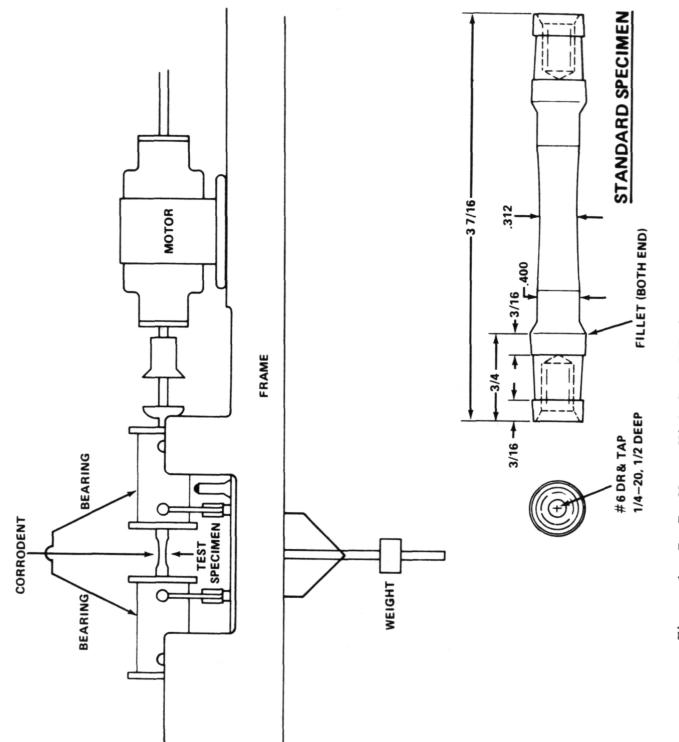
The material evaluated was 2219-T87 aluminun alloy. The initial cleaning of the specimens consisted of vapor degreasing followed by a 45 to 60 min. soak in hot alkaline cleaner. The specimens were rinsed in fresh water for a minimum of 15 min., allowed to dry, and finally wiped using alcohol. The specimens were loaded while rotating and the speed adjusted to 2500 rpm. The corrosive solution was dropped on the test section at a rate of 1 drop every 3 to 5 sec. The solutions used in the test were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. All exposed parts of the fatigue tester and test specimens (except for the reduced section) were coated to protect them from the test solution. The protective coatings evaluated in these tests were: chemical conversion and sulfuric acid anodize (0.1 to 0.3 mils thickness). A plastic enclosure was placed around the rotating test components. The solution run off was collected and allowed to drain off. Tests were run until failure or for 10^8 cycles (approximately 28 days). Fatigue tests in air were run (to a maximum of 10^8 cycles) for comparative purposes. The test arrangement is shown in Figure 2.

RESULTS AND DISCUSSION

The data from the test conducted on bare aluminum sample is shown in Table 1, and those with protective coatings in Table 2. This is also plotted in Figures 3, 4, and 5 along with curves showing the lower boundary of the data in each environment.

The corrosion fatigue strength, CFS (alternating stress that a given material will survive 10^8 cycles), of bare aluminum and coated aluminum were determined from these curves and is shown in Table 4.

To determine the relative effect of fatigue strength loss due to the presence of corrosive mediums, ratios of CFS to endurance limits in air were calculated. These results are recorded in Table 4. The corrosion fatigue strength of 2219-T87 aluminum alloy was increasingly reduced as the corrosivity of the environment was increased. A further indication of the effects of corrosion can be seen in Figures 6 through 9 which show SEM fractographs of 2219-T87 aluminum in air and salt water environments. Figure 6 illustrates fatigue fractures of bare 2219 aluminum in air (typical fatigue failure), and 100 ppm NaCl where the predominant failure mode was corrosion. Figures 7, 8, and 9 show corrosion fatigue fractures of bare, conversion coated, and anodized aluminum samples, respectively, all exposed in a 3.5 percent NaCl environment. These fractographs reveal the actual pits that initiated failure.


It is evident, from data in Table 4, that the anodized coating increased the corrosion fatigue strength of this alloy exposed in corrosive environments. However, as expected, it decreased the overall endurance limit in air, where the predominant failure mode is fatigue and not corrosion. The anodized sample had a fatigue strength of 103 MPa (15 ksi) in air, while the bare sample yielded a fatigue strength of 138 MPa (20 ksi) (a ratio of 0.75). The conversion coated samples produced increased corrosion fatigue strength, over bare uncoated samples, with no loss in the overall endurance limit in air.

CONCLUSION

The results of these series of tests clearly indicate the adverse effect of corrosive environments on the fatigue life of this alloy. In all cases the effects were related to the general corrosivity of the test solution; i.e., the effect of 3.5 percent NaCl was greater than 100 ppm NaCl which was greater than distilled water. The corrosion fatigue strength of bare 2219 aluminum ranged from 104 MPa (15 ksi) in distilled water (a ratio to the endurance limit of 0.76) to 20 MPa (2.9 ksi) in 3.5 percent NaCl (a ratio of 0.15).

The effect of the protective coatings is evident as shown in Tables 2, 3, and 4. The corrosion fatigue strength of the conversion coated sample in a 100 ppm NaCl environment was 46 MPa (6.7 ksi) (a ratio of 0.34 to the endurance limit in air). This represents an increase in corrosion fatigue strength of 15 MPa (2.2 ksi) over values for bare aluminum samples in equivalent environments. Even further improvements were obtained with the use of anodized coatings, which yielded a corrosion fatigue strength of 69 MPa (10 ksi) in a 100 ppm NaCl environment. This value represented an increase of 38 MPa (5.5 ksi) in CFS over bare aluminum samples. Similar results were obtained in the 3.5 percent NaCl environments with corrosion fatigue strengths of 20 MPa for bare, 24 MPa for conversion coated, and 30 MPa for the anodized sample.

The results of these series of tests indicate that a significant reduction in fatigue strength can be expected when components are exposed to corrosive atmospheres. It has been determined that protective coatings can be effective in prolonging corrosion fatigue life depending on two factors: the type of coating used and the corrosivity of the atmosphere.

۰ ج

Figure 1. R. R. Moore High Speed Fatigue Testing Apparatus.

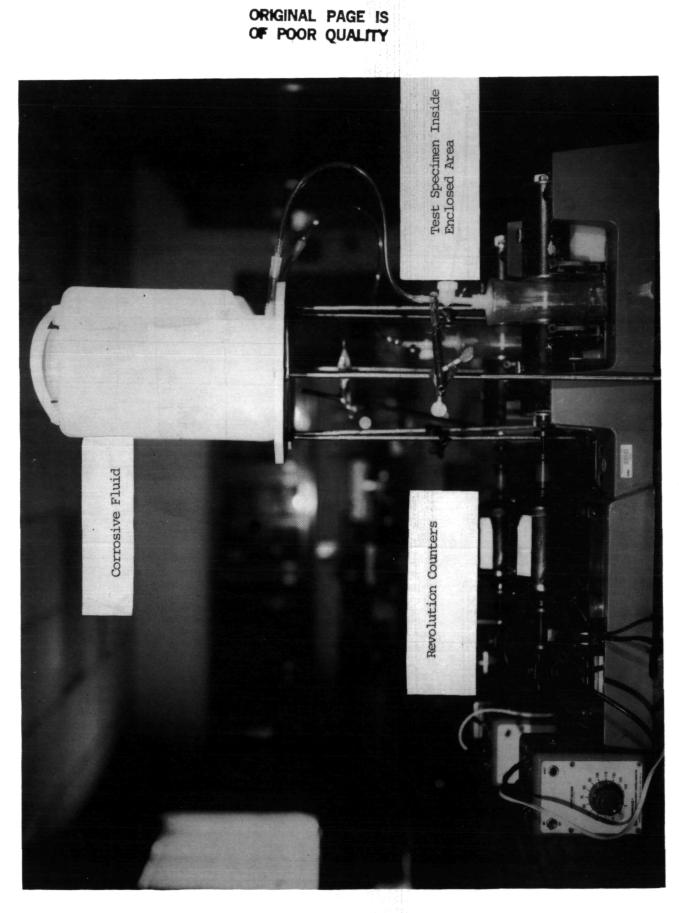


Figure 2. Corrosion Fatigue Test Arraugement.

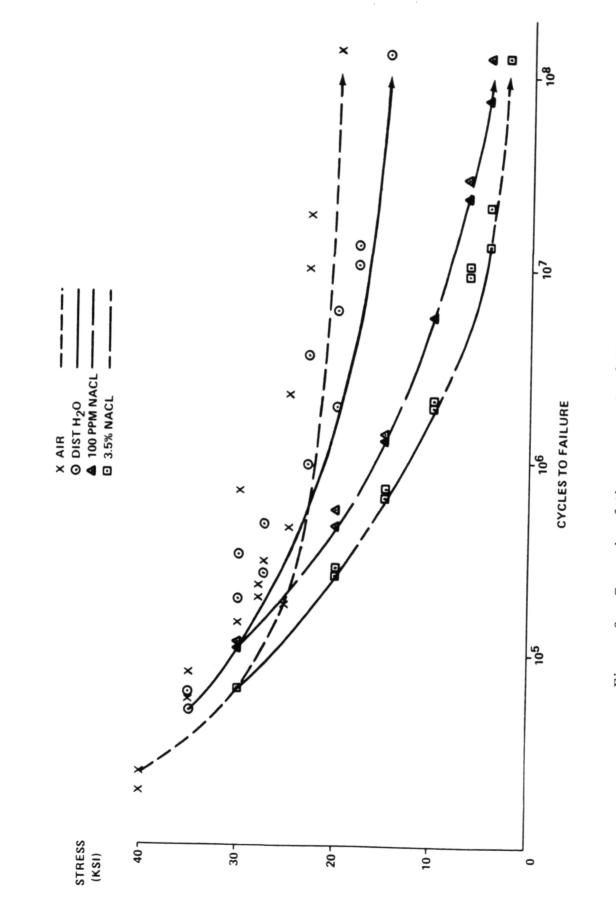


Figure 3. Corrosion fatigue strength of 2219 Al (Bare).

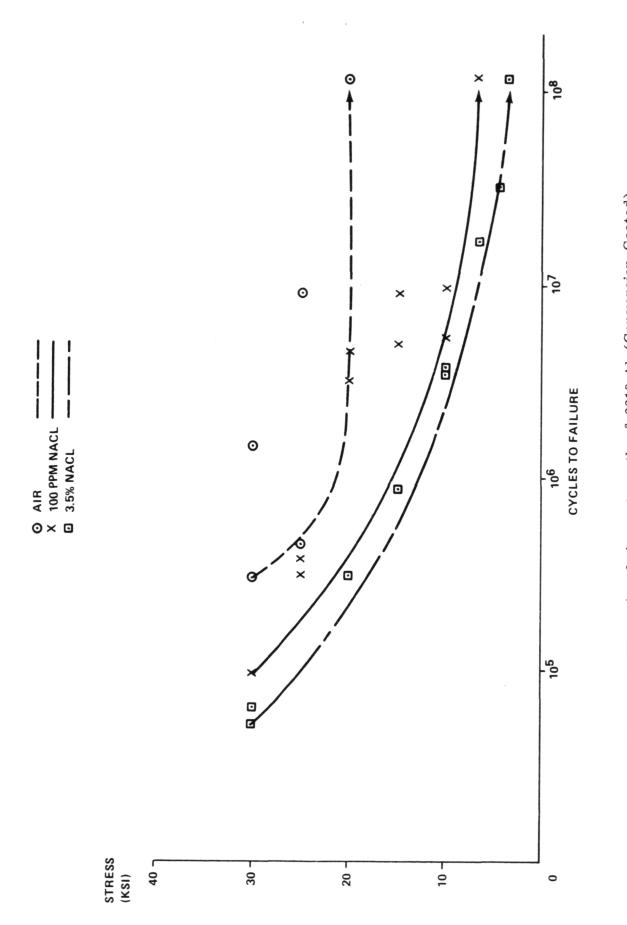
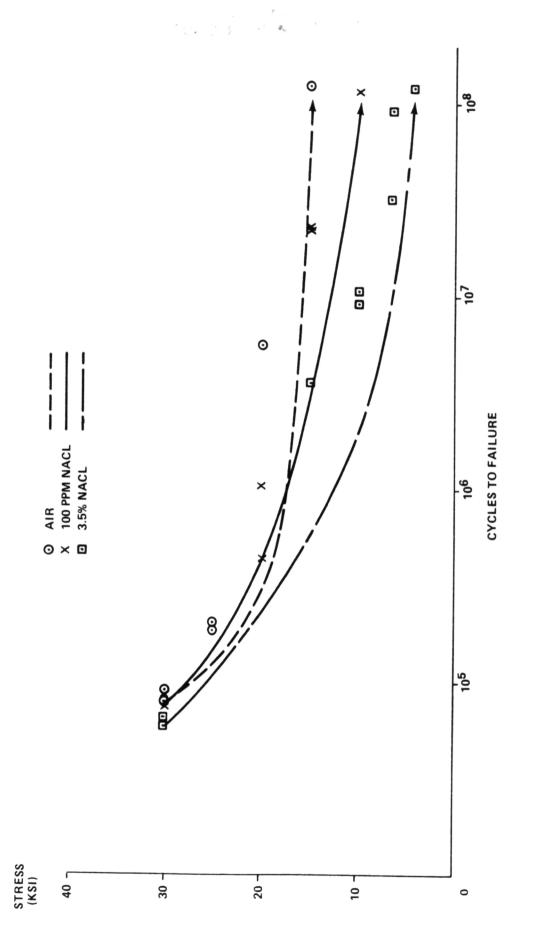
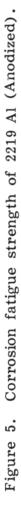




Figure 4. Corrosion fatigue strength of 2219 Al (Conversion Coated).

ĥ

7

l

-

ORIGINAL PAGE IS OF POOR QUALITY

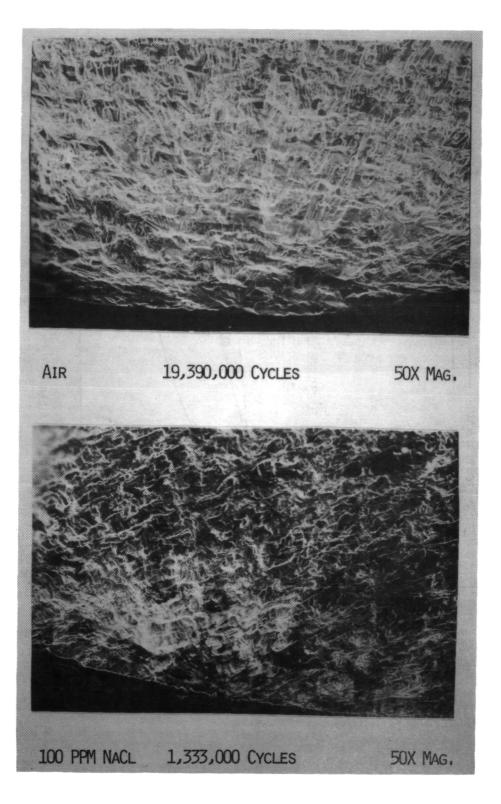


Figure 6. SEM micrographs of fractured 2219 Al (Bare).

ORIGINAL PAGE IS OF POOR QUALITY

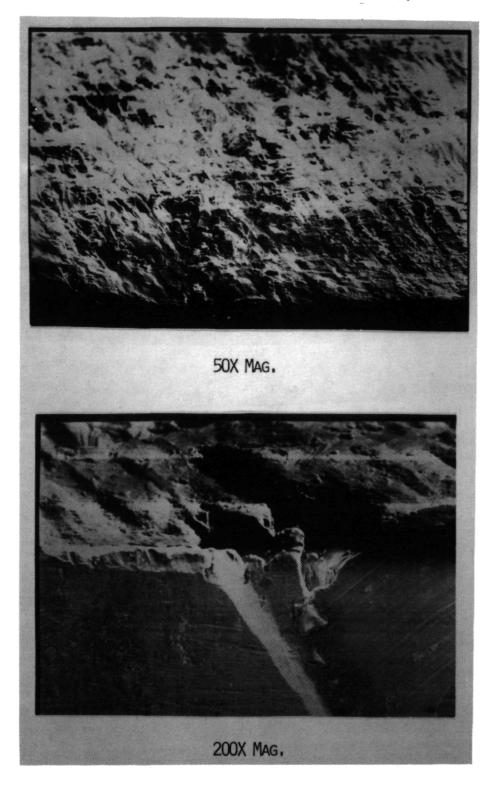


Figure 7. SEM micrograph of fractured bare 2219 Al test sample exposed in 3.5 percent NaCl environment.

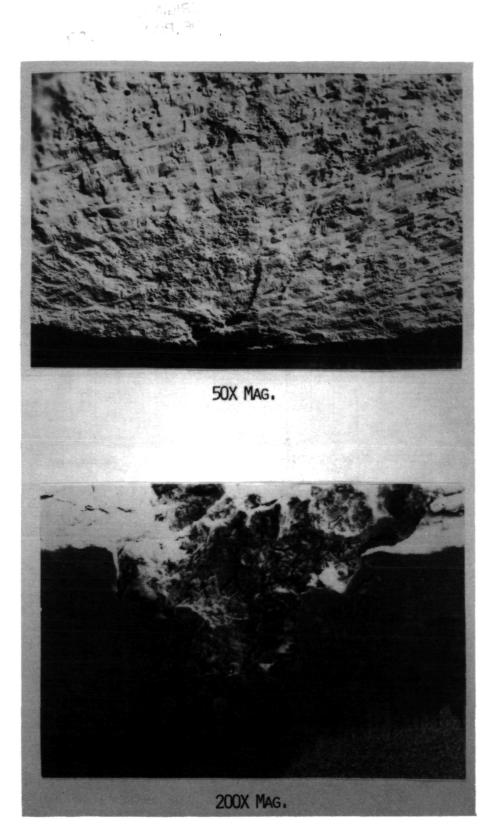


Figure 8. SEM micrograph of fractured conversion coated 2219 Al test sample exposed in 3.5 percent NaCl environment.

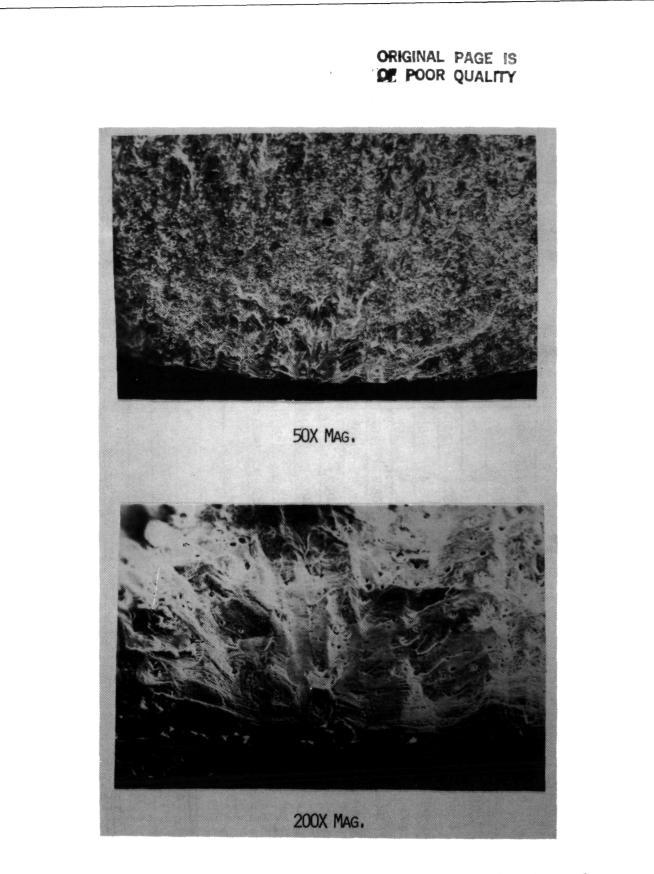


Figure 9. SEM micrograph of fractured anodized 2219 A1 test sample exposed in 3.5 percent NaCl environment.

TABLE 1. CORROSION FATIGUE OF 2219-T87 AI (BARE)

STRESS STRESS<		AIR	R		DISTILLE	LLED H ₂ 0		100 ppm NaCl	n NaCl		3.5% NaCI	NaCI	
(KSI) CYCLES MPa (KSI) CYCLES MPa (KSI) 6 (40) 19,000 241.2 (35) 56,000 206.7 (30) 110,000 206.7 (30) 2 (35) 78,000 206.7 (30) 137.8 (20) 206.7 (30) 2 (35) 58,000 206.7 (30) 137.8 (20) 206.7 (30) 7 (30) 142,000 206.7 (30) 137.8 (20) 137.8 (20) 7 (30) 142,000 189.5 (27.5) 474,000 103.4 (15) 1,296,000 137.4 (15) 7 (30) 692,000 189.5 (27.5) 474,000 103.4 (15) 1,333,000 137.8 (20) 5 (27.5) 81,000 189.5 (27.5) 474,000 103.4 (15) 1,333,000 103.4 (15) 5 (27.5) 81,000 185.5 (23) </th <th>STRESS</th> <th></th> <th></th> <th>STRESS</th> <th></th> <th></th> <th>STRESS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	STRESS			STRESS			STRESS						
(40) 19,000 241.2 (35) 50,000 206.7 (30) 110,000 206.7 (30) (40) 24,000 241.2 (35) 61,000 206.7 (30) 110,000 206.7 (30) (35) 78,000 206.7 (30) 191,000 137.8 (20) 37.8 (20) (30) 142,000 189.5 (27.5) 474,000 103.4 (15) 1,296,000 137.8 (20) (30) 692,000 189.5 (27.5) 474,000 103.4 (15) 1,296,000 137.8 (20) (30) 692,000 189.5 (27.5) 275.9 275.0 103.4 (15) 1,296,000 103.4 (15) (27.5) 81,000 189.5 (27.5) 3758,000 103.4 (15) 10 (27.5) 4,909,000 189.5 (27.5) 3538,000 103.4 (15) 1,333,000 103.4 (15) (27.5) 303,000 1	MPa	(KSI)	CACLES	MPa	(KSI)		MPa	(KSI)	CYCLES		(KSI)	CACLES	
	275.6	(40)	19,000	241.2	(35)	50,000	206.7	(30)	110,000	206.7	(30)	64,000	
	275.6	(40)	24,000	241.2	(35)	61,000	206.7	(30)	106,000	206.7	(30)	63,000	- 1
	241.2	(35)	78,000	206.7	(30)	191,000	137.8	(20)	560,000	137.8	(20)	282,000	1
	241.2	(35)	58,000	206.7	(30)	323,000	137.8	(20)	452,000	137.8	(20)	265,000	1
(30) 692,000 189.5 (27.5) 256,000 103.4 (15) 1,333,000 103.4 (15) (27.5) 81,000 189.5 (27.5) N/A 68.9 (10) 5,618,000 68.9 (10) (27.5) 303,000 158.5 (23) 3,538,000 46.2 (6.7) 29,89,000 46.2 (6.7) (27.5) 303,000 158.5 (23) 976,000 46.2 (6.7) 29,89,000 46.2 (6.7) (28) 196,000 137.8 (20) 1,901,000 46.2 (6.7) 23,428,000 46.2 (6.7) (28) 196,000 137.8 (20) 1,901,000 32.4 (4.7) 107,360,000 46.2 (6.7) (25) 195,000 124.0 (18) 10,605,000 32.4 (4.7) 107,360,000 32.4 (4.7) (25) 2,224,000 103.4 (15) 10,205,000 32.4 (4.7) 107,360,000 32.4 (4.7) </td <td>206.7</td> <td>(30)</td> <td>142,000</td> <td>189.5</td> <td>(27.5)</td> <td>474,000</td> <td>103.4</td> <td>(15)</td> <td>1,296,000</td> <td>103.4</td> <td>(15)</td> <td>725,000</td> <td></td>	206.7	(30)	142,000	189.5	(27.5)	474,000	103.4	(15)	1,296,000	103.4	(15)	725,000	
(27.5) 81,000 189.5 (27.5) N/A 68.9 (10) 5,613,000 68.9 (10) (27.5) 4,909,000 158.5 (23) 3,533,000 68.9 (10) 5,611,000 68.9 (10) (27.5) 303,000 158.5 (23) 3,533,000 46.2 (6.7) 29,899,000 46.2 (6.7) (28) 196,000 137.8 (20) 1,901,000 46.2 (6.7) 23,428,000 46.2 (6.7) (28) 196,000 137.8 (20) 1,901,000 32.4 (4.7) 75,555,000 32.4 (4.7) (25) 195,000 124.0 (18) 10,605,000 32.4 (4.7) 75,555,000 32.4 (4.7) (25) 2,224,000 124.0 (18) 13,130,000 32.4 (4.7) 107,360,000 32.4 (4.7) (25) 2,224,000 103.4 (15) 101,205,000 32.4 (4.7) 107,360,000 32.4 (4.7)	206.7	(30)	692,000	189.5	(27.5)	256,000	103.4	(15)	1,333,000	103.4	(15)	667,000	- 1
(27.5) 4,909,000 158.5 (23) 3,538,000 68.9 (10) 5,671,000 68.9 (10) (27.5) 303,000 158.5 (23) 976,000 46.2 (6.7) 29,889,000 46.2 (6.7) (28) 196,000 137.8 (20) 1,901,000 46.2 (6.7) 23,428,000 46.2 (6.7) (28) 196,000 137.8 (20) 6,164,000 32.4 (4.7) 75,555,000 46.2 (6.7) (25) 195,000 137.8 (20) 6,164,000 32.4 (4.7) 75,555,000 32.4 (4.7) (25) 195,000 124.0 (18) 10,130,000 32.4 (4.7) (25) 2,224,000 124.0 (18) 101,205,000 32.4 (4.7) (23) 10,910,000 103.4 (15) 101,205,000 32.4 (4.7) (23) 10,910,000 103.4 (15) 101,205,000 32.4 (4.7)	189.5	(27.5)	81,000	189.5	(27.5)	N/A	68.9	(10)	5,618,000	68.9	(10)	1,923,000	
(27.5) 303,000 158.5 (23) 976,000 46.2 (6.7) 29,889,000 46.2 (6.7) (28) 235,000 137.8 (20) 1,901,000 46.2 (6.7) 23,428,000 46.2 (6.7) (28) 196,000 137.8 (20) 6,164,000 32.4 (4.7) 75,555,000 32.4 (4.7) (25) 195,000 124.0 (18) 10,605,000 32.4 (4.7) 107,360,000 (a) 32.4 (4.7) (25) 2,224,000 124.0 (18) 13,130,000 32.4 (4.7) 107,360,000 (a) 32.4 (4.7) (25) 2,224,000 103.4 (15) 101,205,000 (a) 2 2 (4.7) (25) 2,224,000 103.4 (15) 101,205,000 (a) 2 2 (4.7) (23) 10,910,000 103.4 (15) 101,205,000 (a) 2 2 2 2 (23) 10,910,000 (a) 103.4 2	189.5	(27.5)		158.5	(23)	3,538,000	68.9	(10)	5,671,000	68.9	(10)	2,099,000	
(28) 235,000 137.8 (20) 1,901,000 46.2 (6.7) 23,428,000 46.2 (6.7) (28) 196,000 137.8 (20) 6,164,000 32.4 (4.7) 75,555,000 32.4 (4.7) (25) 195,000 124.0 (18) 10,605,000 32.4 (4.7) 75,555,000 32.4 (4.7) (25) 195,000 124.0 (18) 10,605,000 32.4 (4.7) 107,360,000 (a) 32.4 (4.7) (25) 2,224,000 124.0 (18) 10,1205,000 (a) 32.4 (4.7) 107,360,000 (a) 32.4 (4.7) (23) 561,000 103.4 (15) 101,205,000 (a) 2 2 (4.7) (23) 561,000 103.4 (15) 110,372,000 (a) 2 2 4.7) 1 (23) 19,910,000 103.4 (15) 110,372,000 (a) 2 2 4.7) 1 (23) 19,910,000 103.4	189.5	(27.5)	303,000	158.5	(23)	976,000	46.2	(6.7)	29,889,000	46.2	(6.7)	9,076,000	
(28) 196,000 137.8 (20) 6,164,000 32.4 (4.7) 75,555,000 32.4 (4.7) (25) 195,000 124.0 (18) 10,605,000 32.4 (4.7) 107,360,000(a) 32.4 (4.7) (25) 446,000 124.0 (18) 13,130,000 32.4 (4.7) 107,360,000(a) 32.4 (4.7) (25) 2,224,000 103.4 (15) 10,1205,000(a) 32.4 (4.7) 107,360,000(a) 32.4 (4.7) (23) 561,000 103.4 (15) 101,205,000(a) 32.4 (4.7) 107,360,000(a) 32.4 (4.7) (23) 10,910,000 103.4 (15) 101,205,000(a) 22.4 (4.7) 107,360,000(a) 22.4 (4.7) (23) 10,910,000 103.4 (15) 110,372,000(a) 22.4 (4.7) 107,360,000(a) 22.4 (4.7) (23) 19,390,000 103.4 (15) 110,372,000 (a) 21 21 21	192.9	(28)	235,000	137.8	(20)	1,901,000	46.2	(6.7)	23,428,000	46.2	(6.7)	10,463,000	
(25) 195,000 124.0 (18) 10,605,000 32.4 (4.7) 107,360,000 (a) 32.4 (4.7) (25) 446,000 124.0 (18) 13,130,000 32.4 (4.7) 107,360,000 (a) 32.4 (4.7) (25) 2,224,000 103.4 (15) 101,205,000 (a) 2 3 <td>192.9</td> <td>(28)</td> <td>196,000</td> <td>137.8</td> <td>(20)</td> <td>6,164,000</td> <td>32.4</td> <td>(4.7)</td> <td>75,555,000</td> <td>32.4</td> <td>(4.7)</td> <td>21,048,000 (b)</td> <td></td>	192.9	(28)	196,000	137.8	(20)	6,164,000	32.4	(4.7)	75,555,000	32.4	(4.7)	21,048,000 (b)	
(25) 446,000 124.0 (18) (25) 2,224,000 103.4 (15) (23) 561,000 103.4 (15) (23) 10,910,000 103.4 (15) (23) 19,390,000 103.4 (15) (23) 19,390,000 103.4 (15) (20) 107,410,000 (a) 107,429,000 (a) 102,429,000 (a)	172.3	(25)	195,000	124.0	(18)	10,605,000	32.4	(4.7)	107,360,000 (a)	32.4	(4.7)	13,118,000 (b)	
(25) 2,224,000 103.4 (15) (23) 561,000 103.4 (15) (23) 10,910,000 103.4 (15) (23) 19,390,000 103.4 (15) (20) 107,410,000 (a) 107,429,000 (a) 102,429,000 (a)	172.3	(25)	446,000	124.0	(18)	13,130,000							
 (23) 561,000 (23) 10,910,000 (23) 19,390,000 (20) 107,410,000 (a) (20) 102,429,000 (a) 	172.3	(25)	2,224,000	103.4	(15)	101,205,000 (a)							
(23) (23) (20) (20)	158.5	(23)	561,000	103.4	(15)	110,372,000 (a)							
(23) (20) (20)	158.5	(23)	10,910,000						-				
(20)	158.5	(23)	19,390,000										
(20)	137.8	(20)	107,410,000 (a)										
	137.8	(20)	102,429,000 (a)										

(a) TEST TERMINATED, SPECIMEN DID NOT FAIL(b) LOWEST LIMIT OF MACHINE

R

CORROSION FATIGUE OF 2219-T87 AI (CONVERSION COATED) TABLE 2.

	AIR	В		100 PPM NaCI	I NaCI		3.5%	3.5% NaCl
STRESS			STRESS			STRESS		
MPa	(KSI)	CYCLES	MPa	(KSI)	CVCLES	MPa	(KSI)	CVCLES
206.7	(30)	1,459,000	206.7	(30)	93,000	206.7	(30)	52,000
206.7	(30)	314,000	206.7	(30)	000'66	206.7	(30)	64,000
172.3	(25)	446,000	172.3	(25)	314,000	137.8	(20)	N/A
172.3	(25)	9,129,000	172.3	(25)	382,000	137.8	(20)	311,000
137.8	(20)	100,000,000 (a)	137.8	(20)	3,222,000	137.8	(20)	308,000
137.8	(20)	100,000,000 (a)	137.8	(20)	4,566,000	103.4	(15)	873,000
			103.4	(15)	9,122,000	103.4	(15)	858,000
			103.4	(15)	5,008,000	68.9	(10)	3,719,000
			68.9	(10)	5,255,000	68.9	(10)	3,378,000
			68.9	(10)	9,868,000	46.2	(6.7)	10,274,000
			46.2	(6.7)	106,275,000 (a)	46.2	(6.7)	17,484,000
			46.2	(6.7)	102,669,000 (a)	32.4	(4.7)	33,569,000 (b)
			32.4	(4.7)	102,670,000 (a)	32.4	(4.7)	32,241,000 (b)
			32.4	(4.7)	115,334,000 (a)			
		ATCO SPECIMEN DID NOT FAIL						

(a) TEST TERMINATED, SPECIMEN DID NOT FAIL(b) LOWEST LIMIT OF MACHINE

CORROSION FATIGUE OF 2219-T87 AI (ANODIZED) TABLE 3.

NaCI		CYCLES	65,000	59,000	227,000	441,000	3,606,000	20,476,000	9,111,000	10,796,000	32,342,000	90,573,000	63,581,000 (b)	101,695,000 (a)		
3.5% NaCI		(KSI)	(30)	(30)	(20)	(20)	(15)	(15)	(10)	(10)	(6.7)	(6.7)	(4.7)	(4.7)		
	STRESS	MPa	206.7	206.7	137.8	137.8	103.4	103.4	68.9	68.9	46.2	46.2	32.4	32.4		
NaCI		CYCLES	85,000	76,000	440,000	1,056,000	22,237,000	22,852,000	100,250,000 (a)	100,466,000 (a)						
100 PPM NaCI		(KSI)	(30)	(30)	(20)	(20)	(15)	(15)	(10)	(10)						
	STRESS	MPa	206.7	206.7	137.8	137.8	103.4	103.4	68.9	68.9						
В		CYCLES	79,000	91,000	185,000	201,000	5,740,000	283,000	99,686,000 (a)	99,370,000 (a)						
AIR		(KSI)	(30)	(30)	(25)	(25)	(20)	(20)	(15)	(15)						
	STRESS	MPa	206.7	206.7	172.3	172.3	137.8	137.8	103.4	103.4						

(a) TEST TERMINATED, SPECIMEN DID NOT FAIL(b) LOWEST LIMIT OF MACHINE

•

TABLE 4. ESTIMATED CORROSION FATIGUE STRENGTH (CFS) OF 2219 AI

ENVIRONMENT	BA	RE ALU	BARE ALUMINUM	CON	ALUMINUM	CONVERSION COATED ALUMINUM	ANOI	DIZED A	ANODIZED ALUMINUM
	MPa	(KSI)	KSI) CFS/E. L. (a)	MPa	(KSI)	(KSI) CFS/E. L. (a)	MPa	(KSI)	CFS/E. L. (a)
AIR	137.8	(20)	I	137.8 (20)	(20)	1.00	103.29 (15)	(15)	.749
DISTILLED H ₂ 0	104.0	(15.1)	.755	I	I	I	I	I	I
100 PPM NaCI	31.0	(4.5)	.225	46.14 (6.7)	(6.7)	.335	68.9 (10.0)	(10.0)	.500
3.5% NaCl	19.97	(2.9)	.145	24.10 (3.5)	(3.5)	.175	30.29 (4.4)	(4.4)	.220

(a) RATIO OF CFS TO THE ENDURANCE LIMIT OF BARE AL. IN AIR

APPROVAL

CORROSION FATIGUE OF 2219-T87 ALUMINUM ALLOY

By Vernotto C. McMillan

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

ranklar D. B. Franklin

Chief, Corrosion Research Branch

McKannan

Acting Chief Metallic Materials Division

R. J. Schwing

Director Materials & Processes Laboratory

☆ U.S. GOVERNMENT PRINTING OFFICE 1986-631-058/20097