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The aim in nondestructive evaluation (NDE) by sound and ultrasound is to
extract material and fracture properties from pulses sent by and received at trans-
ducers. The analysis is usually given either in the time domain or the frequency
domain. The introduction of the size factor, the wavelength, in the model mechanics
problems in NDE plays the important role of relating the far-field measurable quan-
tities such as phase velocities and attenuation to the near-field physical situation
such as local geometric dimensions and elastic properties. This aspect of the anal-
ysis thus allows "nondestructive" testing methods to be employed for "experimental"
validation of the predictions by the theories (refs. 1 to 3).

Solution to the elastic wave scattering due to a single embedded inhomogeneity
is available by different methods that are appropriate at different frequency
ranges. The methods that offer a solution in an analytic form and are useful for
inhomogeneous media with multiple components are the long-wave approximation, the
polarization approach, and the extended method of equivalent inclusion (refs. 4
and 5).

Several averaging schemes or theorems exist in the literature for finding the
dynamic effective moduli and mass density. Some efforts concentrate on the average
stress g and strain ¢ fields or on the average displacement field u; others use
a variational approach. These theories are appropriate mostly at Rayleigh or long-
wave 1imits and do not exhibit dispersive effects. Dispersiveness and attenuation
are important in evaluating dynamic material properties.

This study dealt first with the scatter of elastic waves due to a thin, flat
ellipsoidal inhomogeneity, either penny shaped or elliptical. An average theorem
appropriate for dynamic effective mass density and effective moduli was developed
via a self-consistent scheme. Effective material properties of two-component media
consisting of randomly distributed spheres are given here as a special case.

PRELIMINARIES
Displacement Field due to Presence of Mismatch

The inhomogeneous media considered in this paper are assumed to consist of a
homogeneous matrix of elastic moduli (9 and mass density p° and a distribu-
tion of inhomogeneities with moduli C(7) and mass density o(F) occupying
regions Qp, r =1,2,..., n (fig. 1). The total displacement field u can be
separated into two parts.

yﬁ:y_(” +y_(m) (1)

where the superscripts (i) and (m) denote “incident" and "mismatch," respectively.
It is clear that when no mismatch components (i.e., inhomogeneities) are present,
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the total displacement field is entirely the same as the incident displacement wave
field. On the other hand, if there is no incident wave field, the only field that
exists is the null field.

Eigenstrains

The eigenstrains ¢*, which are also termed transformation strains, are
defined as the part of the total strain ¢ that must be subtracted before the
remaining part can be related to stresses g through Hooke's law

* e

€rs ¥ frs T Cps (2)
e 1

“r jkrs %3k (3)

where (- 1 are the elastic compliances. The method of equivalent inclusion is a
method that allows the inhomogeneous media to be replaced by media of homogeneous
matrix effective moduli with distributed transformation strains in the regions
originally occupied by inhomogeneities; hence

0 in @
- . (4)

€
rs e*
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For the two problems to be equivalent, the transformation strains must give rise to
a field that is exactly the same as the "mismatch" field wu(™ . This leads to
equivalence conditions that ensure that identical field quant1t1es at any given
point will be obtained in the two problemst (ref. 4):

AlykrsY r S(r) * Cikrs® r§1)(r) -AC4ypsU iig(r) in @ (5)
przugm)(F) + Cjkrse:g?l)((F) —Apm U:(]'rl)(r) 1" o (6)

Two types of transformation strains, or eigenstrains, arise in elastodynamic
situations due to the mismatch in elastic moduli Ac and mass density Ap. It is
often convenient and useful to define associated quantities such as

*(1)

mj Cjkrs rs (7)
*(2)

Ty = Cjkrsers,k (8)

where m ik and are moment density tensor and equivalent force or
e1genforce, respec%1ve1y.

tThe conditions (eqs. (5) and (6)) are similar to those of Willis (1980)
and those of Mura, Proc. Int. Conf. on Mechanical Behavior of Materials, 5, Society
of Materials Science, Japan, 12-18 (1972).
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Volume Average and Time Average

The volume average and time average of a field quantity, say F(r,t), are
denoted by using brackets <>y and <)y, respectively, and are defined as

Frt)y = ¢ frvtav (9)

Gty = 7 fF(r b (10)

where V and T are volume and time period, respectively, and v is velocity
field.

Volume Integrals of Ellipsoid Associated with Inhomogeneous
Helmholtz Equation

Volume integrals of an ellipsoid associated with the integration of the
inhomogeneous Helmholtz equation are used in this work. The inhomogeneous scalar
Helmholtz equation takes the form

V2% + k28 = -4wy(r) (1)

where +y(r) is the source distribution or density function and v2 and k
are the Laplacian and wave number, respectively. A particular solution to
equation (11) is

~ 1yR-1 3 i _ i

a(r) = Jo v(r" )R- exp(ikR)AV', R = |r - r' (12)
in which (4wR)-] exp(ikR) is the steady-state scalar wave Green's function and

Q 1is the region where the source is distributed. The source distribution function
y(r) can be expanded in basic functions or polynomial form, depending on the geom-
etry of the volumetric region . For an ellipsoidal region, the choice of using

a polynomial expansion separates this work from other theories of elastic wave
scattering:

v(r') = (x")My')H(z")? (13)

in which A, u, and v are integers and k s either longitudinal or transverse
wave number.

For elastic wave scattering in an isotropic elastic matrix, two types of
volume integrals and their derivatives must be evaluated: The wy-integrals are
given by

w(r) = ./;2 R™! exp(iaR)dV" (14a)
w (1) = fQ xR™ exp(iaR)dv! (14b)
Yeg (D) ='4;x§xi...x;R_1 exp(iaR)dV’ (14c¢)
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a_
V(L) = o (L) (15a)

W plD) = —3-% ¥ (D) (15b)

where a2 = mz/VZ = pwz/(x + 2u). The other type, the ¢-integrals, are
obtained by rep15c1ng a with B in equations (12) and (13), where

B2 = pwz/(p). Details of the integration are given in reference 6. 1In this
work, only the 1imiting values at r > 0 and r » » are of interest.

ISOLATED, FLAT ELLIPSOIDAL INCLUSION
Formulation

Consider the physical problem of an isolated inhomogeneity embedded in an
infinite elastic solid that is subjected to a plane time-harmonic incident wave
field as depicted in figure 1. Replacing the inhomogeneity with the same material
as that of the surrounding medium, with moduli Cyyps and mass density p, and
including in this region a distribution of eigenstrains and eigenforces, the
physical problem is now replaced by the equivalent inclusion problem.

The total field is now obtained as the superposition of the incident field and
the field induced by the presence of the mismatches in moduli and in mass density

* *
written in terms of eigenstrains e1§1) and eigenforces “j
F = £f1) + i(m) (16)

where F denotes either the displacement field uj, the strain field 45, or
the stress field o4j.

For uniform distributions of eigenstrains and eigenforces, the fields can be
obtained as

uf™ (2) = cwysye) = Ceerds e (17)
S [“rfqmr)l + uf,"';,] / 2 (18)

(m) (m)
opq = Cpqmnemn (19)

where a comma denotes partial differentiation and
Syn(D) = fggjmu - rhdv: (20)

in which g3y 1s the spatial part of the steady-state elastic wave Green's func-
tion and © 1is the region occupied by the inhomogeneity. The integrals Sim
and their derivatives must be evaluated for the regions r >r' and r <r'
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(ref. 6). The solution form represented in equations (14) to (18) gives the fields
inside and outside an isolated inhomogeneity of arbitrary shape.

Far-Field Scattered Quantities

Let the incident displacement field be longitudinal and of frequency o and
amplitude ugy:

uj = uoqj exp(iax1k1 - lwt) (21)

where 12 = -1 and q4 3s the unit vector in the normal direction of the plane
time-harmonic incident wave and k4 1s wave vector. For a 1inear isotropic

medium, the spatial part of the free-space Green's function is well known. Substi- -
tuting gjm(r - r') in equations (18) and (20) and using the 1imiting concept

1im  agr} = Ay constants (22)
az~0
" g tant 23
m a3e1j = Byj constants (23)
a3»0

the scattered displacement u&s)(r,t) from a thin, elliptical flat crack can
easily be obtained as

ety W

(aa1)3uo (aa1)3u0
r-o
= [(CGm exp 1ar)/ar + (DHm exp 1Brﬂl3r exp(-iwt) (24)
where
6, = -(a,/a;) [—&m&jA; s Q- 2a2/32)nt;j v 2?1898 0,0 ; kj] (25)

Ho = (ay/a;) [-(B/a)3(ummj . j)Aj - 2(s/a)2nk3: v 2(B/a)%e 0,8 ) kj]

C = [jo(are) + Jolary,) ]/3
D - [Jo(Bre) ' j2<ﬁre>]/3
2
e

sin are/(are)3 - cos are/(are)
) (26)
3
sin Bre/(Bre) - cos Bre/(Bre)

2.2
a1n1 =0

» 44

in which m,3,k =1,2,3 and (aj,ap), %y, «, and B denote the semiaxes of the
flat ellipsoid, direction cosines of scattered displacements, longitudinal wave
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number, and shear wave number, respectively. Also, A} and Bj; are the reduced
nondimensional forms of Aj and Bjk, respectively, defined as follows:

AS = Aj/(Aszuo), bp = p' - p (27)
Bijk = -Bjk/(iaug) (28)

Expressions for the differential cross section dP(w)/dQ and the total
cross section P(w) can be obtained as (ref. 5):

Plu) _ Lie,0) + (asB)o’ (0,0) (29)
L T
Plw) = f[o (0,¢) + (a/B)o (e,¢)]dsz (30)
pX
where d@ s the differential element of solid angle and
a?6"(0,0) = (aa))°[CG,1(TE] (31)
8% (0,8) = (aay) °[OH (O, ] (32)

in which the overbars denote complex conjugates. The constants AY and B*k
must be evaluated from the equivalence conditions (egs. (5) and (6;) with tge use
of the 1imiting concepts in equations (21) and (22) and of the integration method
developed in reference 6.

Determination of AE and ng

In equations (21) to (25) the scattered displacement field is §1ven in terms
of the "reduced' forms of the eigenforces and eigenstrains (i.e., Ay and ng).
These constants must in turn be determined from the equivalence conditions. By

writing the incident wave field in a Taylor series, the governing simultaneous
algebraic equations can be easily obtained. Since f44[0] and Fmij[O] vanish
automatically, these governing equations become uncoup?ed and lead to a three-by-
three system for A3 and a six-by-six system for ng. For a 1inear elastic
medium, they are

Bpulunfys[0A] + A = -qg (33)
{Ak&stDmmjj[O] + 2Asttjk[0]}B§k + (XastBEm + ZuBgt)

= ~(BONSgqmdm + 2MudgQt) (34)

where the subscripts s,t,m,j,k = 1,2,3 denote sum from 1 to 3 and

bupwlfig(r) = -B2p3s + ¥omj - ¢omj (35)
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4rpwlDstik(r) = 2u(w,stik *+ ¢,stik) - uBZ(&,3tdks + &,3s8kt) - Mely,mndjk (36)
in which
AN = -\, Ay = -y, bDp = -p
The ¢~ and wy-integrals and their derivatives are evaluated by the method
suggested in reference 6. Retaining terms up to «ay or Bay; of the fourth
order, the constants are obtained as
Ag = ~q3/{ugw? 8pfy[0] + 1}, no sum on } (37)
f3001 = (f17100], f22[0], f33[0]) (38)
{B¥} = [by31-" [cj1,1,3 = 1,2,3 (39)
{BYy} = -Q1Qj/[1 + E(o4[0] + ¢j[0])], no sum on 1,3
1% 3; 1,3 =1,2,3; € = 1/8n (40)
where in equation (37) B? = B?], 85 = 852, B§ = B§3, and
cj = (AN + 2Au)<l + q?), j=1,2,3 (41a)
byy = (N + 2u) ¢ KCw,jj[O] +2(n o+ 2u)§¢,11[0] + 2ugy, (0] (41b)
byp = A+ x§¢,jj[0] + 2uly,,[0] + 2ENg,,,[0] (41c)
byg = %+ Ay, 4501 + 2ugw,q (0] + 2056, 33[0] (41d)
by = A+ ch,jj[O] t 2ul¥, 5,[0] + 28Ae, (0] (41e)
byy = (A + 2u) + xcw,jj[O] + 2uCw, 55[0] + 2E(N + 2u)9,,,[0] (41f)
byg = A + ch,jj[U] t 2uC¥,5,[0] + 28Nd, 44[0] (419)
b31 = N+ xcw,jj[O] + 2uC¢.33[0] + 2xg¢,]1[0] (47h)
byy = N+ ACw, 44101 + 2uzy,45[0] + 20Ee, 5, [0] (411)
bag = (A + 2u) + kﬁw,jj[O] + 2uCy,44[0] + 284, 45(N + 20)[0] (413)
Note that bys # bsyy. In equation (38), ¢7 = $171[0], ¢ = ¢p2[0], and
$3 = $33[0]. "The ¥- and ¢-functions are given as
4ﬂpw2f [0] = —BZ¢[0]6 + ¢,, [0] - ¢,,.[0] (42)
Js Js s s
B2e[0] - «a1a282;10 - [(Ba1)%/16] I, + 1(8/3)B$ (43)
6117001 = - B}a$a294>/G2] I, (44)
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815501 = -[(«a$a234)/1z] I (45)

¢’33[0] =0 . (46)
in which
® dq 2
I f A _ g k) & (47)
0 0 A(y) a,
- d 2 [E(e, ) k2
I, - varm el B el (G (48)
0 (a] + ¢>A(w) 1 k k
(+4]
v dy 2 |F(e,k)  E(e,K)|
I2=f 2 =a[(2l“(2)i| (49)
o (25 +w)aw MLk K
o 0
F - do JE = (1 _ 12 sin%0) 240 (50)
(1 - k2 s1n2w 172 '
0 0
and as ag 0, 6 » n/2, k2 - (1 - ag/af) and k‘2 = (1 —.k2) > ag/af, if

ay >ap. If ag~»>0 and a; = ap, we have I, =w/ay and Iy = Ip = n/2ay.
The y-functions are obtained by replacing B with o 1in the ¢-functions
(fig. 2).

Numerical Calculations and Graphical Displays

It is clear from equations (37) to (40) that the uniformly distributed eigen-
strains and eigenforces in their reduced forms, Bys and Aj, respectively, depend
only on the characteristics of the incident wave f4e1d and %he geometric factors of
the inhomogeneity for a given material system. It is observed from equations (37)
to (41) that By and By as functions of dimensionless wave number ody oOr adp
would exhibit large peak values at certain incident wave frequencies when by > 0.
The values of these critical frequencies depend only on the matrix elastic mo uld,
the crack dimensions, and the measurement direction. For a given aspect ratio ay/a
and a measurement direction, the difference in frequencies at subsequent peak values
is proportional to ajy, the largest dimension of the inclusion.

Computational data of elastic wave scattering due to a flat embedded inhomoge-
neity in any given isotropic material system can be obtained by employing equations
(24) to (26) and (33) to (50). Scattered displacement amplitudes can easily be
obtained for any given aspect ratio. In figures 3 and 4, computational data for the
back-scattered situation are displayed for a tungsten disk in an aluminum matrix
for aspect ratios aj/a; = 0.01 and aj/ay = 0.50. In figures 5 to 8, critical
frequencies were observed in B¥j, but no critical frequencies were identified for
Ai (j =1,2,3). The critical frequencies for ClG6pl and DiHyl are, however,
clearly identified. The position along the «aj axis at which the first critical
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frequency occurred depended on the aspect ratio and matrix elastic moduli. A suf-
ficiently small increment in oa; must be used in order not to miss any peak
values. Since the solution form given in equations (24) to (26) and (33) to (50)
is analytic in frequency, this can easily be achieved. Most of the scattered
energy is carried by the transverse components of the scattered displacement (1.e.,
|DHpl > 1CGy|, figs. 3 and 4).

DYNAMIC MODULI AND DAMAGE OF COMPOSITES

Consider the problem of an inhomogeneous medium as illustrated in figure 9,
under a plane time-harmonic incident wave field. The true composite thus occupies
the whole region and possesses effective moduli C* and mass density p*. To
determine the effective moduli and mass density, an average strain energy and
kinetic energy were used. The effective properties were found to depend on a
fourth-rank tensor A and a second-rank tensor D. A self-consistent scheme was
then developed for determining these tensors.

Average Theorem

To determine the effective moduli and mass density, the following definitions
were used:

<&y = LK (51)
<ge> = L¥epe> (52)
PYy = PV (53)
PYoY> = pFVIYD (54)

where g, ¢, v are the stress, strain, and velocity fields, the ~ denotes a
tensorial quantity, and the angular brackets <{> denote the volume average of a
field quantity (eq. (9)). The left and the right sides of equations (52) and (54)
can be shown to be equivalent under the so-called Hi1l's condition (ref. 7), {odle>
= {ge>. From equations (53) and (54), it is clear that the kinetic energy per unit
volume of the effective medium can be made equal to that of the physical medium if,
and only if, a frequency-dependent mass density is defined. This is the same as
requiring, by again using the Hi11's conditions <p,¥-¥> = {pV)V), the average
1inear momentum per unit volume to be the same as the effective linear momentum per
unit volume (eq. (53)). These conditions (eqs. (53) and (54)) are not met if the
static definition of effective mass density is used.

Let f, denote the volume fraction of the rth inclusion material. Then
the volume averages of the stress and velocity fields o and u, respectively, are

n

@ = X foh (55)
r=0
n

ay =y falh (56)
r=0



where gfr) = er)ﬁf’), (r) =0,1,2,...,n and for a time-harmonic situation

4=V =-lou (57)

Equations (52) and (54) can be rearranged, by using equations (55) and
(56), as

n
Co> = e+ 2 1L o (58)
r=
0 4 (r),(r)
uey) = oo XD+ Z] fode TV (59)
r=

Consider now the case where the solution form possesses a linear relation between
the velocity and strain fields in the rth component and the average velocity and
strain fields of the effective medium, that is,

g = AlN¢ey (60)
v(r) ='g(r)<!> (61)

where A(T) and p(r) are tensors of fourth and second rank that must be
determined with a suitable scheme. Substituting equations (60) and (61) 1in
equations (58) and (59) leads to

i n
(o> = | X , AQ(r)Afr{]<£><s> (62)
r=1
[ n
wy =%+ X F, Ap(r)er)]<x><M> (63)
r=1

Comparing these equations with equations (52) and (54) gives the following
expressions for the dynamic effective moduli and mass density:

n
* Y (r)(r)
C =0 + f_ ACY A 64

n
b s 36 aplTol)
r=1

(65)

(r) (r)
D = Djj /3

Note that the tensors Afr) and er) are frequency dependent and replace the

static expressions when frequency approaches zero and when proper care is taken.
The assumption of a general linear dependence between !(r) and <v> (eq. (61)

must be specialized such that the second-rank tensor D will degenerate into a

scalar. This specialization is automatic for randomly distributed spheres where
ij = Démj, in which D = Dyq = Dop = D33.
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To determine the explicit form of the tensors A(T) and 0(F), the strain
and velocity fields in the rth component are determined by us1ng the method of
“equivalent inclusion as presented in the previous section.

Self-Consistent Scheme fpr Determining Effective Properties

The tensor fields A(r) and D(r) are of ranks four and two, respectively,
and are functions of wave numbers, geometric properties, and effective and inclusion
material properties. Let the average strain and velocity be the same as those
derived from the incident wave field. Then the governing conditions for determining
Ar) and 0(r) for the rth inclusion are simply obtained by rewr1t1ng the
equ1va1ence “conditions for an effective medium with mass density p* and modulf
c*:

fg(r)[i(i) + £(m)] . pv*[£(‘i) + (M _ e in @ (66)
p(r)mz[’gﬁ) + ’g’(m)] = p*wz[’g’(i) + ’Q(m) '.1',] in Q@ (67)

in which the superscripts (m) and (i) denote mismatch and incident, respec-
tively. Slightly different approaches for finding effective moduli for heterogene-
ous materials that apply to static cases with different constituents and situations
are given in references 7 and 8. The strengths and dynamic responses of composites
have been investigated (refs. 9 and 10) and reviewed (refs. 11 and 12).

Effective Properties of Two-Component Media: Randomly DBistributed Spheres

Let the moduli, mass density for the matrixr 1nc1us1on mater1a1 particles and
the effective med1um by denoted by Cﬁkrs' p%; Cjkrs, o'; and Cjkr and p*,
respectively. By using the elastodynamic solution for a single ellipsoidal inhomo-
geneity, the displacement and strain fields inside an inhomogeneity are found, when
the average displacements are made equal to the plane time-harmonic incident wave
field:

[,g,(mm] =t - s(mul i e (68)

[a(."‘) (L)]

Employing the volume-averaging process as described by equation (9) and substituting
in equations (58) and (59), the effective properties are easily defined as follows:

]

A~ s(ryulh) in o (69)

1
p* =+ f oD, D=7y (70)

C¥ = C + f ACA (71)

~ ~

where f 1is the volume fraction of inclusion material. The tensor fields b
and A are

g = -<fmj(£)>/§fm[o1 ¢ da(p' - p*)u°}  no sumon M, (72)
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t
Aman = <ijk,n(L) ¥ Fnjk,m(£)>5jkpq/2p*w2 (73)_

in which the tensors f and F are defined as

drpuFg (1) = B8 + v - 0y _(18)

brpolF (1) = =(haBugsyy ¢ 20070, 180g = 2k + 2ubuy) (75)

The - and, by implication, the ¢-integrals given in equations (14) and
(15), etc., are the volume integrals associated with the inhomogeneous Helmholtz
equation. They can be carried out for an ellipsoidal region by expanding (exp
ikR)/R 1in Taylor series expansions with respect to r' for r > r' and with
respect to r for r <r'. Here k can be either « or B. Details are given
in reference 6. This type of expansion for the integrand is particularly useful in
dst$rm1n1ng the coefficients of a "polynomial* distribution of wg and

(1),

The fourth-rank tensor Sjy is the connecting tensor between the
eigenstrains and the applied strains, that is,

(1) (a)
5k = S3kpa®pq
(76)

S =S C, a.,

tkpq = Sikpg'®r 340 @)

for the case of uniform eigenstrains and eigenforces. 1In developing these
expressions, the volume average of the ¢-integrals must be evaluated. Finally,

note that ,* and C* are complex, where the real and imaginary parts are
associated with the velocity and attenuation, respectively.

Example: Spherical Inclusion Materials
Let the spherical inclusion materials of radius a be randomly distributed

over the whole volume of the matrix. If the matrix and the inhomogeneities are
isotropic, the effective medium is also isotropic. It is easy to show that

D, =38 =& .D (77)
M| 0] ¢ dn(et - p)e) ™
and
S =S =S, =S
Jkpq kipg Jkap pajk
$1111 = S2222 = S3333 ° ¢
, (78)

So323 = 31313 = S1212 ° Cq
S1122 = 31133 % S2233 = &2
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where
* * * * 2 * % * 2
C, = (c] v Gy - 2ec2) (c1) + 01Ty - 2<02)
* * ( *\ 2 * % *\?2
02 = (C1G - C2> C1> + C1C2 - 2((;2>

Cq = {2Fqpp (10T + w¥/(n' - wh)}

*
C, = GFyqq 1001 + (6 + 1)Fypy ([0] + H

cy - F117,1000 + 26GF 55 4L0] - F
F = o(A% + 2u%)/G
6 = (A = AL - A+ 2(0' - wh)]
H o= A*/6

Following the theory developed in the previous sections, the effective moduli
and mass density are found to be

p* = p + f gD (79)
Y o= A+ f[Ax(A”” + 2A”22) + 2 AuAsz] (80)

whos o B au(Ary, F Aypy) (81)

Kt =K+ f[(A1111 v 2R 1000+ (2/3)(3Ayq0n * Aypyp A1221)°{] (82)

Clearly, the velocities are dispersive. At frequencies above the Rayleigh limit,
this phenomenon is pronounced. From figures 10 to 12, the bulk moduli, shear
moduli, and longitudinal velocities are shown as functions of the volume concentra-
tion of spherical inclusion materials for aluminum spheres in germanium for differ-
ent dimensionless wave numbers «a. For a given fixed concentration, the moduli

K* and w* and the velocities v and vy are increased as the dimensionless
wave number aa 15 increased. The dispersiveness of effective shear modulus 1is
minimal and that of effective bulk modulus is more pronounced (figs. 12 and 13).

As an example of detecting localized damage by void nucleation, let all small
voids be locally nucleated within a localized small region @ of radius R
(fig. 14). The effective moduli of this composite can therefore be obtained from
equations (64) and (65). If void nucleation outside the region @ can be ignored,
the scattering of the composite sphere can easily be obtained. By using the com-
puter program developed in reference 17 for that of a single spherical inclusion,
the scattering cross section for a composite sphere consisting of small voids in
titanium is displayed as a function of dimensionless wave number for different con-
centrations of voids (fig. 15). As the volume fraction of voids inside  is
changed, the effective properties p*, A%, and u* are also changed. Hence, the
attenuation effect is pronounced as the concentration of voids is increased. The
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scattering cross section, which is essentially proportional to the attenuation
(ref. 1) increases with increasing concentration f,. It appears that these
curves can be used to locate and calibrate porosity in a structural component.

CONCLUDING REMARKS

The velocity and attenuation of ultrasonic waves in two-phase media were
studied by using a self-consistent averaging scheme. The effective medium had to
possess the same strain and kinetic energy as the physical medium. The concept of
volume averaging for physical quantities was employed. The solution depended on
the scattering of a single inhomogeneity. The theory is general and can be applied
to any multicomponent material system. Since the scattering of an ellipsoidal
inhomogeneity is known, the average theorem presented in this report can be used to
study the velocity and attenuation of distributed inhomogeneities of shapes such as
disks and short fibers. The orientation of these inhomogeneities as well as their
sizes, as in the spherical geometry, will necessarily induce anisotropy in the
effective medium. The scheme developed herein was not compared with test data.

The use of a self-consistent scheme in determining static material properties for
composites has been explored (ref. 13).

Results for randomly distributed spherical inciusions of radius a are pre-
sented. Effective moduli and mass density were found to be dispersive. A simple
model of localized damage was studied. 1t is well known that porosity is directly
related to the strength of rocks and ceramics. Therefore the theoretical study of
velocity and attenuation in two-phase media may be a viable means for data analysis
in ultrasonic evaluation of dynamic material properties for composite bodies
(ref. 14) and polycrystals (ref. 15). As in determining the static properties of
materials, the problem may be more in the mechanics than in the manufacturing
(ref. 16). Deformation processes such as rolling, sheet metal forming, and drawing
often involve large plastic flow, moisture absorption, and thermal cycling. Resid-
ual stresses and anisotropy are introduced into the material and 1imit the amount
of deformation to fracture with a directional dependence. Theoretical development
in acoustoelasticity appears to be lacking (ref. 18).
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Figure 14. - Schematic diagram of localized damage in infinite solid.
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