@ https://ntrs.nasa.gov/search.jsp?R=19860013846 2020-03-20T15:36:29+00:00Z

N86-23317

A VIEW OF SOFTWARE DEVELOPMENT ENVIRONMENT ISSUES

Barry Boehm
TRW

84

OUTLINE

e Nature of the challenge
e Orange-Book issues (ret. 1)
~ Pros, cons, assessment
e Additional SDE issues
— DOD coordination
— Scope of SDE
—~ Reuse support

e Summary

NATURE OF THE CHALLENGE

The SSDS is a mission support system for:
e Thousands of operators and decision makers
e At on-line terminals

e At many geographical locations

Performing complex, interacting functions

With imprecisely defined requirements
e In a dynamic, less-than-predictable environment

e Requiring essentially error-free performance

It is essential for coordinating the mission

It requires significant investments in time, dollars, talent

85

86

SDE Design Considerations

DIFFERENT

METHODOLOGIES HOST COMPUTERS CosT

VARIED HIGHER

FAVORITE LIFE CYCLE DATA PROTECTION

DIFFERENT VARIETY OF
SPECIAL TARGET USERS AND
TOOLS COMPUTERS LOCATIONS

USER ACCESS

™IS
ORDER LANGUAGES INTERFACE
LOCAL PROCESSOR SOFTWARE SUPPORT ENVIRONMENT :AEIQ;I-;:\'I“(E)PERAHON
ENVIRONMENTS DESIGN s
UNIFORM, READABLE AUTOMATlON oF
MANTTAINASLE CODE PORTABLE COMPATIBLE Low LIFE el
DATA BASE T
CODE S\ CYCLE cOSTS e
FLEXIBLE LOW RESIDUAL STANDARD HIGH PROGRAMMING
DESIGN CODE ERROR RATE USER PRODUCTIVITY
TECHNIQUES INTERFACE
DESIRED
CHARACTERISTICS

ISSUES 1,2,3: UNIFORM, NASA-FURNISHED, MANDATED SDE

PRO:
e Better software coordination
— Fewer errors, interface problems
e Less duplication of effort
e Conceptual integrity
— Reinforcement of management approach
— SDE/user interface
e Controllability
— Response to problems
— Technology insertion
e Better life-cycle support

— Ability to recompete maintenance

ISSUES 1,2,8: UNIFORM, NASA-FURNISHED, MANDATED SDE

CON:
e Contractor incompatibilities
~ Competitive bias
e Technology insertion
- Disincentives to experiment
e Implied SDE warranty
e SDE size, development risk
e Breadth of user community

— Centers, contractors, researchers

{

Levels of expertise

Special functions: simulation, test, etc.

|

Large up-front training cost

ISSUES 1,2,8: UNIFORM, NASA-FURNISHED, MANDATED SDE

PRO CON
eBetter s/w coordination eContractor incompatibilities
eLess duplicatlon eTechnology Insertion
eConceptual Integrity eImplled SDE warranty
eControllabliity oSDE size, development risk
eLife-cycle support eBreadth of user community
ASSESSMENT

e Go for it — in ways which minimize cons
— Pre-delivery contractor option to use own SDE
— SDE modularized for technology insertion
~ Establish levels of warranty

— Incremental development to reduce risk

ISSUE 4: PRECEDE SDE DEVELOPMENT WITH DEVELOPMENT OF

FUNCTIONAL CAPABILITIES, PROTOTYPE, DETAILED SPECS

PRO CON

eFamiliar acquisition approach eVery high schedule risk

eProvides criteria for eNot clear more prototypes
choosing developer will add much information
ASSESSMENT

e Better to go for early initial capability
e Use DOD JSSEE Spec as basis for defining requirements

e Run competitive flyoff for production - engineered initial SDE capability

ISSUE b BUILD LAYERED SDE

PRO CON
eAccommodate change, ePerformance penalties
growth, technology
insertion eMay pick wrong layers
ASSESSMENT

e Build layered SDE
— Use info-hiding to modularize around major sources of change
e Methodologies (requirements, design, management)
e Mainframes, workstations
e Networks, peripherals

e Language, operating system?

88

MODULARIZING AROUND SOURCES OF CHANGE

IN SOFTWARE METHODOLOGY

e Make minimal assumptions on nature of elements (requirements, design,

code, test, management)

— Resolvable into separately identifiable items

e Develop traceability tool to track relations between items

Design

Requirements

1. —— 1. e .
2, AR —| 2. ~—— [
o se—= e b

w N
\
'}

ISSUE 8: AFFILIATE WITH DOD ENVIRONMENT

PRO CON

eTechnical synergy eNot clear which one

el.ess contractor confusion eSchedule mismatches

eControl; coordination

ASSESSMENT

e Propose coordinated, potentially joint SDE
e Volunteer to develop a pre-1990 initial SDE capability based on JSSEE

spec
89

90

ISSUE 7: FURNISH FULL-UP SDE:

SOFTWARE, CPU, WORKSTATION, LAN

PRO CON
eFewer coordination eExpensive to furnish
problems

eTechnology insertion problems

eContractor SDE incompatibilities

ASSESSMENT

e Build SDE on standard, portable operating systems
e Support recommended hardware subset(s)

e Allow use of equivalent capabilities

ISSUE 8: SUPPORT LIBRARY OF REUSABLE COMPONENTS

PRO CON
eMajor source of future eAdded investment
s/w cost savings
eHidden incompatibilities

eComponent warranties

eVersion control

eComponent pollution

ASSESSMENT

e Go for it — in ways which minimize cons
— Levels of warranty
— Strong documentation, CM

— Selective incorporation

SUMMARY

e Building an SDE is in the same ballpark as building SSDS
— Very complex, but essential

e Worth going for uniform, NASA-furnished, mandated SDE
~ In ways which minimize risks

e Value of further SDE prototyping unclear
— Several de facto prototypes exist
—~ Very high schedule risk

e Worth coordinating with DOD
— JSSEE spec a useful starting point

e Furnish SDE as standard s/w on portable operating system

— Support but not mandate CPU, LAN, workstation

91

KEY ISSUES ADDRESSED
PROGRAMMATICS

Uniform, NASA-Furnished, Mandated SDE

The issue raised addresses the realization of SDE capabilities. Should NASA provide
and require the use of a standardized SDE for Space Station software acquisition?
Examination of this issue reveals considerations which require focused attention.

Uniformity will yield fewer interface and coordination problems and will provide
conceptual integrity. These benefits, however, are at the expense of multi-
contractor incompatibilities and their combined strengths for technological
development.

A mandated, government—furnished SDE provides direct control by NASA for problem
solutions, evolutionary as opposed to revolutionary growth (mature expansion), and
more opportunity for SDE-related cost containments. However, any GFE item bears an
implied warranty. This needs to be addressed by defining levels of warranty for
components of the SDE. Another issue is how a government-furnished SDE would be
sized to efficiently service the wide breadth of the anticipated user community.
Here, the SDE needs to be organized to be easily subsetable to specialized user
communities, host computers (maxis versus work stations), or user expertise levels.

SDE Operations Concept

The scope of SDE application is indeed broad. Each of the major workpackage con-
tractors is likely to have unique, embedded software development methodologies and
supporting facilities, In turn, their subsystem development organization and/or
subcontractors will have established computer system development tools, experience,
and expectations. Further, the ultimate users of the Space Station will include a
significant portion of small groups or individuals interested ounly in their experi-
ment or production package and not in any required supporting software. Effectively
scoping the range of SDE requirements requires the near-term definition of how all
users——big and small, sophisticated or naive, experienced or novice—-may use the
system. An Operations Concept, addressing how all users expect to use the systemn
during its entire lifecycle, has been found extremely useful in establishing a basis
for subsequent hardware/software requirements specification.

The conclusion reached gave an affirmative answer to the issue: NASA should provide
and mandate the use of a uniform SDE. The government furnished SDE should be ef-
fected in a manner which mitigates benefits and risks, specifically by establishing a
widely accepted SDE Operations Concept.

Incrementally Developed

If the SDE is constructed as a set of functional modules enclosed by a communicatiomns
structure, the modules can be acquired, inserted, and replaced on an incremental
schedule. The general driving requirement for module acquisition and insertion is
at the communications interface. 1Initial priorities should be established by NASA so
that incremental implementation will support program requirements as they become
needed. Some, indeed, are needed now.

The SDE must be subsetable, modularized, and concentrically layered to assist all
mission, management, and communication requirements. This form of structural

92

detail seems most likely to be able to achieve the desired flexibility and
versatility over the range of specific SDE instances.

A strategy for incremental development is recommended which minimizes the dependence
of the SDE development schedule on requirements to be derived by Space Station Phase

B contractors:

Increment 1: O0S, DBMS, utilities, basic CM, office automation, and management
functions

Increment 2: Basic requirements and design specification, planuning and analysis
support

Increment 3: Basic code, unit test, integration and test support

Increment 4: Basic real-time 0S, DBMS, and utilities for flight and ground
target computers

Increment 5, 6,...: User-prioritized additiouns and extensions to
the above

This strategy allows NASA to get an early start on the portions of the SDE needed for
initial Space Station program development support.

SDE SCOPE

Focus on Products

No clearly superior methodology for software design refinement has emerged, yet many
have proven useful for unique or particular application arenas. For all methodolo~-
gies, certain intermediate products or design representations are recognized. Focus-—
ing upon these products, as distinct from the methodology or process employed in
establishing these products, permits considerable methodological flexibility and
allows for future technology insertion. Where a generally agreed upon management
model can be established, the SDE may support the process directly. We conclude that
the SDE shall be nonprescriptive of a specific requirement or design methodology.

Supporting Software Reuse

Complete rebuilding of large software systems is no longer economically feasible.
Full advantage must be taken of viable existing elements. Suitable reusable compon-
ents may be commercially available off the shelf (COTS), may reside at one or more
NASA centers, or may be adaptable from past contractor efforts. Making use of such
elements requires careful initial attention to the framework or architecture of the
SDE, including the definition of appropriate interfaces and the levels in the hier~
archy. Clearly, multiple source languages and/or object code bodies should he
accommodated in many instances. Certainly, the desired SDE subsetability considera-
tions relate to the kind of structure promoting reuse described here.

We conclude that the SDE interface and architectural definitions should foster
software reuse.

93

SDE STRUCTURE

Furnished as Portable Software Package

The SDE should consist of device-independent (loosely coupled hardware dependencies)
functions such that changes in hardware do not have an effect on software function-
ality. Hardware availability should not drive the software requirements, but some
well defined, vendor dependent elements may facilitate widespread use of currently
available components. In some areas, such as target machine support, requirements
may dictate a hardware component of the SDE.

Virtualized Operating System

The operating system which supports the SDE should be device and veundor independent
insofar as possible. As a present starting point, UNIX appears to be the only can-
didate that meets this requirement and should be selected. Prevailing personal
computer operating systems meet the spirit but not the large machine scope of this
requirement. For the future, the SDE can implement other hardware—independent
operating systems (e.g., CAIS or MAPSE for Ada) as they become available.

Single, Subsetable SDE Host

The central issue of the SDE structure is architecture. Associated subissues (incre-
mental development, choice of modular or layered, ease of user accommodation) are
facets of the SDE architecture issue perceived functionally as requirements.

Selection of the subsetable functions and interfaces is the most critical. A primary
capability is to allow for support of multiple host targets. These subsetable func-
tions must also support, by interface management, fully generalized and specific
functions within the layered architecture. A major objective is to maximize common-
ality of widely used functions. There is a potential, as the SDE evolves over time,
to yield unmanageable interface/function diversification. The result is that inter-
faces could multiply and become deeply nested, thus driving incremental mainframe
costs of ownership for certain levels of capability.

The definitions of subsetable SDE elements, interface specification, communications/
tasking network definition, and management provide the baseline from which to pro-
ceed. Plugability as to function, via the suitable interfaces, will result in
achieving, integrating, and managing associated issues of portability, user inter-
faces, and mission requirements.

Instrumented for Self-Diagnosis

A rational basis for extension or improvement of the SDE can only come from an un-—
derstanding of its strengths and deficiencies. Knowing how the SDE elements are
employed by the spectrum of users throughout the life cycle of each particular soft-
ware deliverable is a vital part of this understanding. We conclude that the SDE
should automatically collect data that characterizes its use throughout the entire
development process.

94

LANGUAGE PANEL SUMMARY

This panel was charged with making recommendations on the various language issues
involved in the development of Space Station. This charge included the full set of
development and user languages covering the entire life cycle of development and all
types of user applications.

The selection and standardization of languages and interfaces for the Space Station
program are critical needs to insure the success of this predominately engineering
activity. While the Language Panel recognizes that the project life cycle will re-
quire a family of languages for the various classes of users and developers, it is
crucial to begin making decisions which will focus planning efforts by limitiang the
range of possible selections. Requirements for the Space Station information system
long-term maintenance and evolution will make it imperative that a high-order devel-
opment language be utilized. It is recommended that the primary high-order language
for source code development be Ada. (Ada is a registered trademark of the Department
of Defense, Ada Joint Program Office.) Issues related to the utilization of Ada
should be addressed as soon as possible. These include developing a traunsition
strategy, providing education, accommodating the utilization of software already in
existence, and developing fall-back options for high risk areas. One high-risk area
is satisfying the requirements for run-time support for target systems, especially
when the targets are distributed. Requirements for design specification languages or
interfaces that complement Ada should be determined.

During its discussions, the panel operated under the basic assumption that Space Sta-
tion is an engineering activity. Therefore, where appropriate, selection and stan-
dardization of languages and interfaces should begin constraining the degrees of
freedom. The selection of languages and interfaces impacts the coastruction of a
Software Development Envirounment (SDE), which is a substantially more critical com—
ponent of Space Station software.

Although there were panels to discuss management, standards, environments, and lan-
guages, no panel was specifically charged with methodology issues. This is of real
concern, and the language panel tried to address this issue whenever it was appropri-
ate. The panel also felt that methodology should be discussed in any future meetings
on software.

The panel was able by consensus to arrive at a total of 11 recommendations. These
recommendations were discussed in the open forum, and there was felt to be reasonable
agreement of the attendees at the open meeting.

These recommendations fall into 5 categories., Recommendation 1 deals with an impor-
tant aspect of the whole software development process. Recommendations 2, 3, 4, and
5 deal with the choice of the software development language. Recommendations 6, 7

and 8 deal with languages at early phases of the life cycle. Recommendations 9 and

10 deal with user languages. The last recommendation says that NASA must track lan-
guage technology in the future.

RECOMMENDATIONS

1. NASA should avoid premature commitment to hardware implementation decisions.
System and software architecture should be defined first.

95

2, NASA should declare Ada now as the preferred high-order language for source code
development and address the following issues as quickly as possible:

. transition strategy

. procurement issues

. interfaces to existing NASA software

. development of guidelines for applying Ada to various
application areas

. development of appropriate run-time support eunvironments for
NASA applications

. education

. & liaison to DoD

» a seat on the Ada board

. benchmarks for performance

. Drototyping

» development of appropriate tools to partition and allocate
Ada entities across distributed applications

« introduction and utilization of reusable components

. investigation of fallback position options for high risk
areas

3. The commitment to Ada requires an education program in software engineering
methodologies with Ada, which should begin as soon as possible. The education
includes the study of relevant examples. It should cover multiple levels of
management, application programmers, etc.

4, NASA must define its requirements for the run~time support library and kermnel for
the target systems, including distributed targets.

5. NASA needs to define the requirements for the interface to the run-time system.

6. The first version of the SDE should not be constrained to have a single require-
ments language, AI expert systems language, or prototyping language.

7. NASA should determine the requirements for and select or develop requirements and
design specification languages or interfaces that complement the SDE and Ada.

8. The design language should be syntactically and semantically consistent with the
development language and should have on-line support for interface checks, etc.

9. ¥For all levels of user interfaces, there should be a set of standards to provide
commonality across all phases of the Space Station life cycle.

10. NASA should identify all categories of users and user interfaces, and quickly
proceed with rapid prototyping to determine the real requirements.

11. Since Space Station software will evolve over 30 years, NASA should track lan~-
guage technology and act appropriately.

96

LANGUAGE ISSUES FOR SPACE STATION

Professor Victor Basili began by reviewing the essential considerations and initial
recommendations of 1984 workshop (ref. 1) given in the next three figures. He com—
mented that language was to be considered as a notation and tool for supporting

. application domains
. phases of the life cycle
. methods

in such a way that it satisfies criteria of ease of use, readability, efficiency,
modifiability, portability, low cost, etc.

Therefore we need to (1) categorize applications, e.g. flight software, support
systems, and operations, (2) categorize phases of the life cycle, e.g. requirements,
design, code, and test, and (3) delineate methodologies and recommend languages or
criteria for selecting a family or set of languages for use in Space Station.

One of the concerns in choosing languages is that because they are an integral part
of the software development environment, the decisions on languages cannot be made
independent of the decisions about that environment. In turn, the environment will
and should be influenced and constrained by the methodological and technolegical
issues decided upon for Space Station. These methodological issues will certainly be
influenced by the management and staundardization issues.

Environment

Languages

Methodologies and Technology Issues

Management and Standardization

97

98

ESSENTIAL CONSIDERATIONS

REQUIREMENTS
HAVE DEFINED CANDIDATE LANGUAGES FOR OPERATION
NEED STUDY FOR DEVELOPMENT

USE OF LANGUAGES
COBOL. FORTRAN., HAL/S PRIMARY
C, PASCAL. PL/1 SOME GAINS

SOFTWARE HERITAGE AND REUSABILITY
LONG LIFE OF SPACE STATION-SPACE TRANSPORTATION
SYSTEM -

EVOLUTION OF LANGUAGES
STRATEGY FOR CHANGING LANGUAGES OVER TIME

GENERAL AND SPECIAL PURPOSE LANGUAGES
HOW MANY LANGUAGES ARE NECESSARY?
HOW DO WE HANDLE A MULTIPLICITY OF LANGUAGES?

STANDARDIZATION
SHOULD THE LANGUAGE DEFINITION BE STANDARDIZED?

CO

10,

11,

ESSENTIAL CONSIDERATIONS

ASSEMBLY LANGUAGE
HOW MUCH., IF ANY. ASSEMBLY LANGUAGE SHOULD BE
ALLOWED?

TOOLS
WHAT IS THE EFFECT OF LANGUAGE SELECTION ON
AN INTEGRATED SET OF TOOLS?

MULTI-LINGUAL ENVIRONMENTS
HOW ARE LANGUAGES CHOSEN TO BE COMPATIBLE WITH
EACH OTHER AND THE SOFTWARE (HARDWARE) NETWORK
ARCHITECTURES TO BE USED?

DISTRIBUTED PROCESSING
HOW WILL THE LANGUAGE SUPPORT DISTRIBUTED PROCESSING?

TRANSPORTABILITY
HOW WILL THE LANGUAGE ADDRESS TRANSPORTABILITY CONCERNS?

LESSONS LEARNED

HOW DO WE MAKE USE OF THE DATA ON LESSONS LEARNED
ABOUT SOFTWARE MANAGEMENT?

99

100

INITIAL RECOMMENDATIONS FOR PANEL CONSIDERATION

REVISIT “HieH ORDER LANGUAGE"” WHITE PaPER (AUDREY DOROFEE)
use ANST STANDARDS

COLLECT DATA ABOUT DEVELOPMENT TO DETERMINE
EVOLUTIONARY APPLICATIONS

ESTABLISH GENERIC REQUIREMENTS OF TOOLS
STANDARDIZE ON LANGUAGE - STUDY ADA
USE OF ASSEMBLY LANGUAGE SHOULD BE MINIMIZED

EVALUATE ADVANTAGES AND DISADVANTAGES OF A CANDIDATE
SET OF LANGUAGES

EVALUATE DISTRIBUTED PROCESSING MACHINES WITH RESPECT
TO LANGUAGES AND TOOLS

EVALUATE LANGUAGES FOR REQUIREMENTS AND SPECIFICATION,
DESIGN, AND SPECIAL APPLICATIONS

Basili proposed that the panel proceed by (1) generating a set of goals based upon
the requirements for Space Station, (2) refining (and defining) those goals for the
various languages into a set of technology questions that should be answered, and (3)
selecting languages or giving selection criteria based upon the answers to these
questions.

Sample goal areas include theoretical, technical, methodological, political, manage-

ment, and application oriented issues., Sample questions in these areas (adapted from
questions posed by Susan Gerhart on Prolog) are:

Theory:

. Is the language well defined?

. What are the functional capabilities of the language and its limitatiouns?
Technology:

. How stable is the technology behind the language design, the compiler
design?

. Are there production quality compilers or interpreters?
. Are there performance issues that need to be addressed?
. Are there adequate development environments?

. How does the technology behind the language compare with the technology
bahind other languages in its class?

. What kinds of tools exist?

. Is there control of the definition of the language?

Methodology:
. What methodologies does the language support?

» Can the language be combined or interfaced with other languages and
systems?

o Will the programs in the language make use of existing software
in other languages?

. How are the usual desirable properties of programs, such as correctness,
robustness, efficiency, modifiability, etc., addressed in the language?

. Can the language be integrated with other phase languages across the
entire life cycle?

101

. How are other technologies supported by the language, e.g. transport-
ability, distributed processing, prototyping, etc.

Applications:
. What application areas does the language address?
. What application libraries exist?
. What application areas have used the language?
Management:
. How does one manage (plan, control, direct) projects in the language?

. Can modern software engineering practices be brought to bear on projects
in the language?

. What is involved in the traianing of personnel in the language?
Evaluation:

. Are there marketing and technical projections for the language?

. How does one become proficient in the language?

., What evaluatious or case studies have been done, and what are the
concerns and benefits they point out?

Social, Political, Historical:
. Is the language politically sound?
. What coantroversies has it gone through?

. What is the extent of its use?

102

RATIONALE FOR RECOMMENDATIONS

1. Recommendation:

NASA should avoid premature commitment to hardware implementation decisions. System
and software architecture should be defined first,

Rationale:

A recurriag problem with large systems, particularly those with a loang development
cycle, is that the hardware is selected (or mandated) before the system architecture
is designed. As a result, the software architecture is overcounstrained, memory and
performance become serious constraints as the requirements evolve, and the hardware
is obsolete before the system is operational.

By delaying selection of the hardware until the system and software architecture is
understood, NASA can make intelligent engineering trade-offs between hardware and
software. System and software architecture should allow

. early prototyping using available hardware or emulation,

. use of the wost advaunced hardware available when it is time
to commit, and

. replacement of this hardware later with minimum impact.
This recommendation complements the SDE panel recommendation that the SDE support
multiple targets. It does not conflict with the aggressive adoption of standards;
rather, it serves to focus on adoption of standards at the appropriate level (e.g.,
bus standards and protocols). It is also consistent with the choice of Ada as the
implementation language, provided that portability guidelines are developed and
stressed.

2. Recommendation:

NASA should declare Ada now as the preferred high-order language for source code
development and address the following issues as quickly as possible:

. transition strategy
. procurement issues
. interfaces to existing NASA software

. development of guidelines for applying Ada to various
application areas

. development of appropriate run—time support environments for
NASA applications

. education

» a liaison to DoD

103

. a seat on the Ada board
. benchmarks for performance
. prototyping

. development of appropriate tools to partition and allocate
Ada entities across distributed applications

. introduction and utilization of reusable components

. investigation of fallback position options for high risk
areas

Rationale:

Many aspects of Space Station software would be simpler if it were all written in a
single programming language: compilers, support tools, training, software reusabil-
ity, maintenance. Such uniformity is of course not completely realizable, for no
single language would be appropriate in every case, and NASA already has software in
several languages. Nevertheless, selecting one high~order language as the preferred
language for new software and supporting this choice with the SDE aund training would
focus the Space Station software effort and foster the aforementioned benefits of
commonality. Calling this selection a prefereunce instead of a requirement would
leave room for NASA to allow the use of other languages when it is more appropriate,
while firmly establishing the direction of NASA's economic and organizational
support.

If a single high-order language is to be preferred, it should be evaluated according
to several criteria outlined elsewhere. One of these criteria is support for modern
software engineering methods. It would certainly be a mistake for NASA to prefer a
language that did not support these methods, for such a language would inevitably
tend to impede their use. A high-order language supporting abstraction, information
hiding, communicating sequential processes, and similar concepts would be a welcome
improvement over older languages that do not adequately support these methods.

After reviewing the alternatives, the panel concluded that Ada is the language show-
ing the greatest potential in this regard. Ada's strong data typing, packages,
generics, and overloading support abstraction and information hiding. The exception
handling capability supports the reporting and handling of errors and unlikely situ-
ations in a manner consistent with abstraction. Tasking supports communicating
sequential processes at a higher level (analogous to procedure call) than other syn-—
chronization mechanisms, such as semaphores., Arithmetic is well defined and supports
efficient fixed-point operatious. Representation clauses support interrupt handling,
hardware input—output interfaces, and similar implementation-dependent matters.
Separate compilation supports efficient software development and distribution.
Although Ada is a large and complex language, its features are useful.

Unlike most languages supporting modern software engineering methods, Ada is not a
product of the academic community, with informal support and uncontrolled changes;
nor is it a proprietary language with limited availability. Ada is a government and
ANSI standard, and as such it is stable and supported. This support is rapidly grow-
ing. More and more compilers and programming environments for various host and
target machines are coming onto the market. Applications are also being written in
Ada. (The company of one panel member has already generated more than one million

104

lines of Ada code.) Resources supporting Ada application developments are already in
the range of one half billion dollars per year. The research community has taken a
great interest in Ada and distributed systems, program design, program validation,
and other areas applicable to Space Station. By selecting Ada, NASA can capitalize
on this substantial investment and begin to influence the course of future Ada work.

If NASA is to choose Ada, it should do so now, so that activities dependent on this
choice can begin. NASA and contractors need time for education, planning, and the
specification of Ada-related requirements. Ada vendors need time to become aware of
the new market provided by Space Station and to adapt compilers and run-time support
packages to Space Station requirements. NASA must also address the series of issues
enumerated in this recommendation, which are discussed below.

The first thing NASA must do is to formulate a strategy for the transition to Ada.
Naturally, these plans will involve the management, standards, and SDE issues con-
sidered by the other panels. In particular, the SDE must include a full set of
software development tools compatible with Ada.

Procurement issues must be addressed, including

. development of Ada compilers and run-time packages for new
environments

. contractual obligation to use Ada and the SDE —- who will bear
the risks?

. contractual obligation to use Ada properly -— how can the use of
appropriate software engineering methods be guaranteed?

. waivers —— when is another language preferable for new software?

. procurement of off-the-shelf software —— should it too be
written in Ada, in case NASA should have to take over its
maintenance? How would this affect its cost and availability?

NASA must decide how to apply its large base of existing software to Space Station:

— NASA could continue to use stand-alone software, as long as
maintenance costs were not excessive.

— Other software could be used directly within an Ada environment,
if suitable implementations of the "interface"” pragma existed in
that environment. NASA would probably have to fund the development
of Ada interfaces to HAL/S and any other NASA-specific languages.
Perhaps it would be better to rewrite such software in Ada:
this would often be straightforward, the resulting Ada code
would be much more portable, and it might even be economical
if the software had to be changed anyway.

— Software that is not directly reusable may contain the only existing
documentation for algorithms applicable to Space Station.
Important algorithms that would be difficult to re-derive
should not be lost; Ada or an Ada-based PDL would be an ideal
medium for preserving and documenting them, as well as using them.

105

A caveat is in order, however: Most older software was developed without benefit of
concepts that enhance reusability and ease of change, such as abstraction, informa-
ticn hiding, and even good documentation. Consequently, the strategies noted above
may prove difficult. O01d software should be evaluated and adapted using the same
criteria applied to new software; to do otherwise would defeat much of the purpose of
using Ada and would prolong reusability, portability, and maintainability problems
into the 2lst century.

Training in the proper use of Ada is of such importance that the panel wmade a separ—
ate recommendation in this area (see recommendation 3).

Any major Ada user should have close ties with the Ada community at large. Con-
sequently, NASA should establish a liaison with DoD and the Ada Joint Program Office.
Furthermore, any ageucy comnitting such an important and visible project to Ada de-
serves a voice in Ada's future development. Therefore, NASA should seek a seat on
the Ada board. '

Currently, Ada compilers are validated by the DoD with respect to correctness only;
they do not have to pass any performance benchmarks. Since performance will be a
major issue in many Space Station applications, NASA should initiate or jointly
sponsor a benchmarking activity for evaluation of Ada compilers and support librar-
ies, It should test the performance of Ada programs in distributed systems and high-
speed real-time systems as well as in more routine contexts. Such benchmarks will
also help to identify high-~risk areas needing atteantion.

Ada's support for abstraction and information hiding makes it especially good for
rapid prototyping. Once a design has heen produced in the form of a collection of
Ada package specifications (with associated semantics), the component packages can be
implemented in parallel, each without regard for how the others are implemented.

Such a prototype can then be transformed into a finished product by independently
changing the implementations of each of its components. With the interface pragma or
a special interface package, the SDE might also support the rapid implementation of
an Ada package using a separate program, perhaps in a very high level language (e.g.,
Prolog). NASA should use early prototyping to investigate application areas such as
fault-tolerant and distributed systems. This would help determine how well Ada sup-—

ports these applications and would consequently reduce the present uncertainty in
this regard.

The use of Ada in distributed systems, including the need for tools to allocate Ada
entities across such systems, is addressed further in recommendations 4 and 5.

Space Station applications should share the same software wherever possible. Re-
usable software can reduce the cost of software requirements specification, decom-
position, and design (because it is often easier to recognize what is needed than to
define it), coding and testing (because neither is needed in order to use an
existing, tested implementation), and maintenance (because changes to one reusable
module are cheaper than changes to several nearly identical ones). Ada is an
excellent tool for supporting reusability, since reusability is directly related to
abstraction and information hiding. However, it is no trivial matter to design
abstractions that are amenable to reuse., To support reusable software, NASA should

. develop or adopt a taxonomy of software abstractions,

. ldentify specific reusable abstractions,

106

. develop a library of Ada package specifications for these
abstractions, catalogued according to the aforementioned taxonomy
(so that projects can find packages useful to them)

. develop a prototype package body for each library package
(so that projects can test code that uses these packages),

. publicize the 1library and encourage —— perhaps even reward —-
the use of its packages,

. develop efficient package bodies for each library package
(so that projects can test their products for performance and
release them), and

. devise a plan for adding to this software library.

The SDE should support the use of reusable components from this library and the
search of the library catalog for components of interest. 1In addition, it should
allow the library to contain more than one implementation version of a single Ada
package, so that users can select from implementations optimized in different ways
(e.g., execution speed versus memory required).

The choice of Ada is not without risk, although much of it is in areas that will be
risky whether Ada is used or not. In particular, in some quarters there is uncer—
tainty about (1) the applicability of Ada to distributed, fault-tolerant, and hard
real-time systems, (2) the efficiency of Ada run-time support environments and of
code generated by Ada couwpilers, especially for tasking in real-time and distributed
systems, and (3) the development of good Ada implementations for the particular
machine architectures that might be used for Space Stationm.

Prototyping, benchmarking, and work on run-time support environments should resolve
the first two issues. Postponement of hardware selection and the eventual use of
off-the—-shelf machine architectures should minimize the last problem, by reducing the
chance that an unexpectedly difficult architecture will be selected with insufficient
time to produce a good implementation for it. Nevertheless, at least until these
problems have been put to rest, fallback policies should be established in each of
these problem areas.

3. Recommendation:

The commitment to Ada requires an education program in software engineering method-
ologies with Ada, which should begin as soon as possible. The education includes the
study of relevant examples. It should cover multiple levels of management, appli-
cation programmers, etc.

Rationale:

The rationale behind this recommendation may be perceived from three perspectives:
systems engineering, methodology, and language.

From a systems engineering perspective, Space Station software is just one important
part of a complex system. Software management, development, acquisition, and evolu-
tion are all subordinate to a total systems engineering activity requiring management
and technology trade-offs. These trade~offs are constrained by practices,

107

obligations, and requirements at the project, systems, subsystems, and institutional
levels. To make intelligent decisions at all levels of management and engineeriung,

NASA personnel need to understand, to different degrees and from different perspec-

tives, the programming and engineering capabilities and limitations of Ada, and the

management implications of using Ada.

For example, if it went uncorrected, the myth that Ada is inherently inefficient
could distort evaluations of trade-offs between hardware and software, or between Ada
and some other programming language. As a more positive example, an understanding of
how Ada and the technique of information hiding can support abstract interfaces to
hardware would make the strategy of postponing hardware selection appear much more
practical.

From the methodological perspective, Ada is more than a mere programming language.
It embodies and supports modern software engineering concepts, such as rich data
structures, data abstraction, information hiding, modular packaging, exception
handling, and communicating sequential processes. It has features that enforce dis-
ciplined engineering, such as strong typing. It (or a derivative) can be used as a
high-level program and system design language. It is to be used in conjunction with
an Ada Programming Support Environment comprising powerful tools for software devel-
opment. Together, these form a system supporting modern software engineering
methods. To ensure that developers and contractors take full advantage of these
methods and Ada's support for them, NASA personnel must themselves understand them.

Although the aforementioned software engineering concepts are well known in the aca-
demic and research communities, they have not penetrated the software community at
large to any great degree. Consequently, many software professionals will come to
the Space Station project without experience in applying these concepts, and some-
times without even a basic understanding of them. Therefore, NASA will need a
training program that provides

— good definitions of these concepts,

- examples of their use, and

- practice in applying them to program design and
implementation with Ada.

The shortage of professionals trained in these methods extends to the education and
training community itself, so NASA should establish a quality assurance program to
guide and audit this training.

For example, the important concepts of abstraction, information hiding, and com—
municating sequential processes can be briefly defined and related to Ada as follows:

— Abstraction supports the orderly decomposition of a software
system into components that can be understood solely by reference
to their interface specifications, which include black-box
descriptions of the associated behavior; implementation
details are suppressed. In addition to facilitating the
program design process, this enhances software reusability,
since each abstraction is a potentially reusable design. Each
of Ada's compilation units (package, task, subprogram, and
generic) supports a kind of abstraction.

- Information hiding emphasizes the importance of concealing the
details of the implementation of an abstraction. Because these

108

details are hidden, users of the abstraction cannot make
unwarranted assumptions about the implementatiom; this makes it
easier to change the implementation without affecting the software
that uses it. Information hiding involves designing the
abstractions used to build a system so that each aspect of the
system that is judged likely to change is hidden behind a single
abstraction; by anticipating changes, it makes those changes
easier. Ada's packages, visibility rules, and private types
support information hiding.

- Communicating sequential processes (CSP's) allow the decowmposition
of a system into tasks that logically run in parallel,
occasionally communicating with one another. Complex real-time
systems can be built using CSP's, and distributed systems can
be implemented by assigning CSP's to different processors;
however, many more mundane problems also have natural solutions
involving CSP's. Ada's tasks support communicating sequential
processes,

Viewed simply as a rich language, Ada can either be applied properly to solve complex
problems, or it can be misused to complicate solutions. A programmer experienced
with conventional languages wmay be tempted to use Ada as a conventional language with
new syntax. This mode of application would be most unfortunate, for it would defeat
the fundamental purpose of Ada's existence, which is to foster the use of methods
mentioned above. To fully exploit Ada's many features, programmers (both NASA per—
sonnel and contractors) need training on its proper usage.

The study of relevant examples will be an important part of all this training.
Obviously, examples of Ada programs will be relevant in this case. However, bad Ada
programs should not be used as examples —— other than examples of what not to do.
Unfortunately, there is a real danger here: some books on Ada utterly fail to address
the software engineering principles that Ada was developed to support, and instead
teach little more than mechanical translation of bad programs in other languages into
bad programs in Ada.

On the other hand, some of the best and most relevant examples may not even use Ada.
Examples of good software engineering methods are rare, and fully worked out examples
of systems of reasonable size are rarer still. Some of these may use other lan—
guages, but they will nevertheless be worthy of study by those involved in software
design, for it is the method of decomposing software into modules and defining the
interfaces of those modules -— the software architecture of the system — that is the
most important aspect of an example. A good architecture will be valid regardless of
the implementation language, and it will be easy to map into Ada.

NASA should search the literature for examples of good software design applicable to
the use of Ada before trying to develop them in house or under contract. Even if an
example is not fully implemented, it may still contain useful material.

At this time the pool of trained Ada professionals, particularly lead designers, is
very small. The typical training time for a lead designer may be as much as a year.
NASA must rapidly select or develop training methods that will ensure a sufficient
supply of trained professionals for the Space Station program. Training may prove to
be the largest startup cost of the transition to Ada. The duration and success of
this training will have a strong effect on the long software life cycle projected for
Space Stationm.

109

4, Recommendation:

NASA must define its requirements for the run-time support library and kernel for the
target systems, including distributed targets.

Rationale:

To derive the maximum benefits from the choice of Ada as the preferred high order
language for source code developmeut, NASA should move quickly to determine and
catalog its requirements for the run—-time support environment of target processors to
be embedded within the applications needed for the Space Station program (e.g.,
highly data-driven applications versus critical, real-time applications). Although
such requirements are not unique to NASA, the panel feels that

. the development schedule for the Space Station program plus

. the lack of an appropriate catalog of requirements for the
run—-time support environment of processors embedded in large,
complex, distributed applications

should cause NASA to quickly take a leading role in defining such requirements.

The run~time support environment (RTSE) provides resource management and other ser-
vices to the object code modules of the application programs. This support is typi-
cally provided by a run-time kernel, which separates both the application modules and
the ruan-time library modules from the bare target processor. The kernel contains a
minimal set of functions that are used frequently and must be executed sequentially.

The run-time library may be divided into a basic library set and an extended library
set, The basic library countains modules that provide services to the object code
modules produced by a host Ada Programming Support Environmeant (APSE) for a broad
class of applications. The full set of basic library modules need not be present on
all target processors. For example, if the applicatiom program objects assigned to a
given target processor do not require Ada's tasking or heap managemeunt, then the
basic library modules responsible for those facilities may be omitted from the run-—
time environment.

The extended library contains modules that may be used to support APSE-produced ob-
ject code in specific applications having requirements beyond those addressed in the
Ada Language Refereuce Manual (ref. 3). For example, many applications would benefit
from a run-time "monitor” that gathers and reports performance statistics and facili-
tates remote diagnostics and reconfiguration. Other wmodules might support multi-
level security and access control, or transactions with nested atomic actions. All
such modules could be tramsparent at the Ada source code level and thus facilitate
the cost effective utilization of reusable components across a broader spectrum of
applications.

Clearly, regardless of the efficiency and reliability of the object code produced by
a host APSE, the performance and reliability of the executing program are dependent

on the run—-time kernel and library.

Another important reason why NASA should begin quickly to define its requirements is
the complexity spectrum of implementing RTSE's shown below:

110

. Single "stand-alone"” embedded processor to support

- subsets of Ada
- full Ada

. Multiprocessor applications, which support the partitioning
and allocation of objects within the Ada programs for execution in
target environments implemented with

- shared memory

- shared bus

- "n level” redundancy

— combinations of the preceding

. Distributed network applications, which support the
partitioning and allocation of objects within the Ada programs
among geographically separate processing resources for execution.
Such implementations may include

- Local area networks composed of single processor
nodes and multiprocessor clusters

— Remote area networks of local area networks, single
processor nodes and multiprocessor clusters.

Ada was designed to serve as a "common language for programming large scale and real
time systems" (Foreword, ref. 3). The objects of an Ada program can be distributed
"whenever an implementation can detect that the same effect can be guaranteed” as for
execution by a single processor (Section 9, ref. 3). However, the current implemen-
tations of Ada compilers and environments respond only to the requirements for a
Minimal tool set (MAPSE). Those requirements address a single, stand-alone target
processor, and therefore only the simplest RTSE on the complexity scale. Specifi-
cally, the MAPSE does not require the tools needed for

. allowing the software engineer to scan the Ada source code
and identify which program objects should be allocated
to which target resources and then

. building the load modules of application code and,
possibly, run—time library modules to be exported to the various
target processors.

(It should also be noted that such tools have not been created in the HAL/S environ-
ment or in other environments that were not designed to support large, complex dis-
tributed applications.) The construction of such tools as a necessary part of the
Space Station program's Software Development Enviromment is dependent upon an under-
standing of NASA's requirements for a catalog of features and options for the run-
time kernel and run—-time library.

5. Recommendation:

NASA needs to define the requirements for the interface to the run—time system.

111

Rationale:

Whereas recommendation 4 addressed the need for NASA to begin defining its spectrum
of requirements for the fuunctionality, performance, and reliability of the run—time
support environments needed for the Space Station program, this recommendation
focuses specifically on the requirements for the interface of the object code of the
application programs to the run~time kernel and run—time library.

A major goal of the Space Station program is to support technology transparency. The
economics of thirty or more years of Space Station evolution, operation, and mainten-—
ance will require that diverse instruction set architectures (ISA's) coexist in the
target environment. Some of these ISA's will participate in subsystem activities
that provide an integrated, end-to~end information system from earth stations,
through entities in various earth orbits, to a permanent preseance on the moon. Some
of them will participate in subsystems that must operate continuously during diag-
nostics, repair, expansion, recoafiguratioun, software and hardware updates, and other
system activities. Thus, the ability to map the object code modules of applications
programs to an interface model of a virtual Ada machine is highly desirable.

Hiding machine dependencies as much as possible (consistent with NASA's requirements
for RTSE functionality, performance, and reliability) and encapsulating code that
must be machine dependent will enhaunce the transportability, reusability, and inter-
operability of Ada source code modules and thus help control the costs of software
ownership and incremental development.

Organized, intermational working groups are now addressing these interface issues,
NASA should take a leading role in advancing this work.

6. Recommendation:

The first version of the SDE should not be constrained to have a single requirements
language, AL expert systems language, or prototyping language.

Rationale:

There are a number of requirements methodologies, languages, and tools that might be
of use for Space Station software development. The panel considered whether NASA
should select a preferred or standard set of requirements languages, to facilitate

communication among space station participants and contractors. However, the panel
decided not to recommend this because

Space Station needs in this regard are not yet well defined;

~ requirements methodologies, languages, and tools have not yet

reached the degree of maturity required for selecting standards;
and

it is not clear that any of the currently available items is
adequate for Space Station needs,

Similar cousiderations make it premature to select other specialized languages, such
as expert system languages aund prototyping languages.

112

However, because all these types of development aids have potential for improving the
productivity of the software and system life cycle, their use should be explored.

For this purpose, the SDE should initially offer a selection of languages of each
type. Many of the criteria for language selection given elsewhere should be applied
to the evaluation of these languages. [See also recommeundation 7.]

7. Recommendation:

NASA should determine the requirements for, and select or develop requirements and
design specification languages or interfaces that complement the SDE and Ada.

Rationale:

The specification of both system and software requirements and designs for a system
as complex as the Space Station is a major undertaking that is crucial to system
success or failure. Previous programs at NASA and elsewhere have identified require—
ments specification in particular as an extremely difficult activity in the system
1life cycle. It often has been characterized as a chaotic decision—making process
exacerbated by a lack of adequate methods, languages, notations, and tools. Research
and development efforts over a decade or more have resulted in a number of approaches
and tools, some of which have merit for the Space Station effort.

The panel considered whether NASA should simply rely on existing languages and tools
to meet Space Station needs. The panel did recommend that several of these aids
should be part of the initial SDE [see recommendation 6].

However, the magnitude of the Space Station undetrtaking and the benefits of good re-
quirements and design specification aids argue strongly for a focused, early effort
to define and then acquire a set of tools tailored to meet the specific needs of the
Space Statiou program. The panel expects that many of these tools will be commer-
cially available, but some may have to be developed. NASA's goal should be a set of
standardizable requirements languages and interfaces that can be used tc facilitate
communication among all Space Station participants.

If Ada is to be the primary software implementation language, then any requirements
and design methods eventually adopted should be consistent with the use of Ada.
(Recommendation 8 addresses program design languages in more detail.) Similarly, SDE

support for these methods is crucial if they are to be used efficiently and in a
disciplined manner.

8. Recommendation:

The design language should be syntactically and semantically consistent with the
development language and should have on-line support for interface checks, etc,

Rationale:

The use of a program design language (PDL) is a recognized component of good software
engineering practice. A common excuse for avoiding the practice is that, as the

software evolves, the PDL is an added cost and often becomes inconsistent with the
code.,

113

These difficulties can be overcome if the PDL is coasistent with the development lan—
guage because the PDL is embedded in the implementation. As such a software struc—
ture evolves, the PDL is maintained naturally., Further, designs using such a PDL can
be checked for semantic consistency.

Given Ada's facilities for structuring software, the use of an Ada-compatible PDL
would allow semantic consistency to be maintained throughout the software implemen-
tation. The SDE should therefore support the use of an Ada-based PDL. The IEEE is
currently completing a standard for the use of Ada as a PDL; NASA should investigate
whether this standard is appropriate.

In cases where Ada is not used as an implementation language, an explicit decision
should be made whether to use Ada as a PDL or to use a PDL consistent with the imple-
mentation language. 1In fact, this decision should be considered in the trade-off
analysis leading to selection of a language other than Ada for a particular
application.

9. Recommendation:

For all levels of user interfaces, there should be a set of standards to provide
commonality across all phases of the Space Station life cycle.

Rationale:

The need for a set of standards for user interfaces is driven by the following
considerations:

the long life cycle of the Space Station and its support systems
and environments,

- the constantly changing and growing set of users,

-~ the use of common or government furnished support systems and
environments,

~ the need to minimize program costs, including software, training,

and customer costs,

~ the high degree of commonality in the functions performed by
various types and groups of users, and

~ the high degree of coordination and integration of activities
and products required throughout the program.

A set of standards for user interfaces (i.e., methods and languages) will

- permit users to migrate among sites and across support systems and
environments without the need for extensive retraining,

- provide a greater degree of portability and reusability of user
generated procedures and programs,

114

- decrease communications, coordination, and data exchange problems
among user groups,

- provide a central core to which unique user interface requirements
can be added, aund

- minimize the amount and cost of user interface software, documents,
tools, aud training.

10. Recommendation:

NASA should identify all categories of users and user interfaces, and quickly proceed
with rapid prototyping to determine the real requirements.

Rationale:

User interfaces are an essential part of any support system, enviroument, or tool.
The definition and design of user interfaces come early in the life cycle of support
systems, environments, and tools. 1If there is to be a set of standards for Space
Station user interfaces (as in recommendation 9), all user categories must be identi-
fied, and their interface requirements must be defined and analyzed to derive that
set of standards.

To be of maximum benefit to the program, these standards wmust be ready in time to be
applied to the work that has already begun on common and goverament furnished support
systems and environments. These systems and environments will not only have their
own user interfaces, they will also support the development of software, tools, aund
systems having still more user interfaces, It is therefore imperative that users and
user interface requirements be identified as soon as possible.

Rapid prototyping would probably be the most viable method leading to the definition
of interface requirements and the derivation of standards.

11. Recommendation:

Since Space Station software will evolve over 30 years, NASA should track language
technology and act appropriately.

Rationale:

Thirty years 1is an unprecedented lifetime for software. No project of such duration
should ignore the advance of relevant technology. Developments in software tech-
nology over the past thirty years —- especially those of the past decade —— presage
even greater changes during the next thirty.

Some phases of the software life cycle do not have good language support at this
time. The requirements definition phase is a case in point; should better language
support emerge for requirements definition, NASA and the Space Station project would
surely benefit from it. Similar reasoning applies to aspects of software outside the
traditional life cycle, such as prototyping.

On the other hand, obstraction and information hiding will in any event continue to
be fundamental principles for structuring software. This generality is important,

115

because it supports the decomposition of a software engineering problem into sub-
problems that can be implemented independently, each in the most appropriate lan-
guage. For instance, it should eventually be a straightforward matter to implement
an Ada package specification as a program in a fifth-generation artificial iuntellig-
ence language. This sort of flexibility should also be a goal of this SDE.

Languages evolve to support software technology and consequently serve as indicators

of the state of that technology. WNASA needs to track all software techmnology; track-
ing language technology is an important subset of such activity.

116

SOFTWARE STANDARDS PANEL SUMMARY

The unique and challenging nature of the Space Station Program requires that software
standards be effectively used to control costs, facilitate enhancements and ensure
safety. The Software Standards Panel identified and developed recommendations in
four areas to help the Space Station Program achieve these objectives. The areas in
which recommendations are offered are policy, organization, process and candidate
software standards for the Space Statioun Program. The consensus process employed by
the panel involved:

A. Initial survey of general software standards issues.

B. Analysis of the specific software standards issues stated in reference 1.
C. Restatement of issues and discussion in open panel session.

D. Consideration of alternate recommendations.

E. Development, presentation and discussion of specific recommendations in open
panel session.

A list of the recommendations arrived at in the above manner is given in the follow-
ing section. The panel did not attempt to recommend the selection of specific soft-—
ware standards, but did recommend that NASA move at once to act on the selection of
standards in specific areas. A minority of the standards panel, as well as large
number of audience participants, took the position that current software standards
have grown into areas that are not consistent with the traditional concept of stan-
dards. 1In other words, the current definition (usage and implementation) has been
bent far beyond a useful definition of "standards". A critical re-examination of
standards, at this time, would be in order.

RECOMMENDATIONS

The Software Standards Panel recommends that the Space Station Program Office take
the following actions:

1. Establish a Program policy supporting software standards.

2. Establish an organizational structure to support software standards at each level
within the Space Station Program.

3. Capitalize on existing software standards to meet Program requirements.

4. Establish software standards early in specific candidate areas.

117

