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SUMMARY

The main objective of this investigation is to develop a two-equation
tufbulence model for dilute vaporizing sprays or in general for dispersed two-
phase flows including the effects of phase changes. The model that accounts
for the interaction between the two phases is based on rigorously derived |
equations for the tﬁrbulence kinetic energy (K) and its dissipation
rate (g¢) of the carrier phase using the momentum equation of that phase.
Closure is achieved by modeling the turbulent correlations, up to third order,
in the equations of the mean motion, concentration of the vapor in the carrier
phase, and the kinetic energy of turbuleunce and its dissipation rate for the
carrier phase, ‘The governing equations are presented in both the exact and
the.modeled forms.

It is assumed .that no droplet coalescence or Ereakup occurs. This
implies that the droplets are sufficiently dispersed so that droplet
collisions are infrequent. The droplets are considered as a continuous phase
interpenetrating and interacting with the gas phase, and are classified into
finite~size groups. Further,hconstant properties for both the carrier fluid
and droplets are assumed.

The Eulerian approach adopted here leads to two sets of transport
equations, one set for the carrier phase (primary air issuing from the pipe
plus the evaporated material) and the other for the droplets. These equations
are coupled primarily by three mechanisms, the mass exchange, the displacement
of the carrier phase by the volume occupied by droplets, and the momentum
interchange between droplets and the carrier phase.

An expression for calculating the turbulent Schmidt number of the
droplets (the ratio of droplet diffusivity to fluid point diffusivity) is

developed via comparison with the experimentél data (Snyder and Lumley, 1971,



and Wells and Stock, 1983).

The governing equations are solved numerically using a finite-difference
procedure to test the presented model for the flow of a turbulent axisymmetric
'gaseous jet laden with either evaporatiﬁg liquid dropiets or solid
particles. The predictions include the distribuﬁioh of tﬁe mean velocity,

" volume fractions of the different phases, concentration of the evaporated
material in the carrier phase, turbulence intensity and shear stress of the
carrier phase, droplet diameter distribution, and the jet spreading rate.

" Predictions obtained with the proposed model are compared with the data of
Shearer et'alf (1979) and with the recent exberimental data of Solomon et al.-
(1984) for Freon-11 vaporizing sprays. Also, the predictions are compared
with the data of Modarress et al. (1984) for an air jet laden with solid

particies. The predictions are in good agreément with the experimental data.
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NOMENCLATURE

; - droplet radius;

aj,a, : major and minér radii of a droplet;

B : transfer number;

C ’ : concentration of the vapor in the carrier phase;

c : concentration fluctuation of the vapor in the carrier phase;
Cp ¢ drag coefficient of a liquid droplet;

Cps : drag coefficient of a soiid particle;

Cpb : drag coefficient of a gas bubble;

ch : coefficient in the momentum equations;

cu : coefficient in the turbulence model;

°£1’cez’ce3 ¢ coefficients in € equation;

d : droplet diameter;

D . - . : nozzle diameter;

Et : Eotvos aumber, pl(U—V)Zd/Y;

E?kub : particles ﬁormalized energy spectrum function;
E(w) ¢ fluids normalized energy spectrum function;
F ‘ ¢ momentum exchange coefficient;. -

£ . : particle's free fall velocity;

g : gravitational acceleration;

1 : evaporation rate;

K : kinetic energy of turﬁulence;

L : latent heat of vaporization per unit mass;
L¢ : fluid Lagrangian length scale;

m : droplet mass;

m : evaporation rate pef droplet volume;

P : mean static pressure;
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P : static preSSuré-fluctuation;

AP . : static pressure difference;
r : distance in radial direction;
R : ratio between a; and as;
Re : Reynolds number;
RL(T) : Lagrangian velocity autocorrelation for the gas;
Ry : universal gas constant;
Rp(r) : Lagrangian velocity autocorrelation for the droplet;
S N : droplet surface area;
Sc : : Schmidt number of the gas;
Sh » : Sherwood number;
t : time;
Tg : : boiling temperature of the droplet;
Ty, : temperature at the droplet surface;
Tg : saturation temperature of the droplet;
U : mean velocity of the carrier phase;
‘ﬁ : total mean velocity of the carrier phase;
u : velocity fluctuation of the carrier phase;
\Y : mean velocity of the droplets;
v : total mean velocity of the droplets;
v : velocity fluctuation of the droplets;
We : Weber number;
W, : molecular weight of the evaporating material;
X, : ratio of the mass of the particles to that
of the gas at the nozzle exit;
X, : molecular fraction of the evaporating material;
‘Yz(t) : mean sqﬁare displacement of the gas;
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Yi(r.)‘

z

Greek symbols'

Bh’ev

: mean square displacement of the particles;

e

distance in the axial direction;
dynamic viscosity of the carrier phase;
kinematic viscosity of the carrier phase;
momentum eddy diffusivity of the carrier phase;
momentum eddy diffusivity of the droplets;

molecular mass diffusivity of the vapor;

: density;

coefficient;

droplet's relaxation time;

lagrangian time scale of the gas;
coefficients;

Kolmogorov length scale;

éu;face tenéioﬁrof the liquid;air_interface;
mean volume fraction of the droplets;

volume fraction fluctuation of the droplets;

: gaseous phase stream function;

: circular frequency;

X3

: mass eddy diffusivity of the carrier phase;

rate of turbulence energy dissipation per unit volume;
mass eddy diffusivity of the praticles in the normal
direction to the mean relative velocity;

mass eddy diffusivity of the paritcles in the prarllel

direction to the mean relative velocity;

¢ coefficient in K equation;

coefficient in e equation;



o : droplet's Schmidt number;

P
g, : coefficient in the dispersed phase momentum equation.
Subscripts
o : conditions at the nozzle exit;
1 : carrier phase;
2 : dispersed phase;
c : conditions at the jet centerline;
CeSe : corresponding values for the single phase (air only);
L : conditions at the droplet surface;
r ¢ radial direction;
z : axial direction.
Superscript
k : droplets in kth Qize range.
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1.0 INTRODUCTION

1.1 The Problem Considered

Dispersed flow is a particulér class of two-phase flows, characterized by
the dispersion of solid particles, liquid droplets, or gas bubbles in a
continuous fluid phase. Different flow regimes may be encountered. Of
particular interest here is the case where liquid droplets occupy a small
fraction, less than 1%, of the total volume of a gas—drople£ mixture. This
spray regime (Fig. 1-1), which has been termed "thin spray" (O'Rourke, 1981)
or "dilute spray,” (Mostafa and Elghobashi, 1984) is important in a variety of
applications. Steam generators, nuclear readctors, cooling sysfems, premixed-
prevaporized gas turbine COmbustors,.diesel—eﬁgine sprays, spray-cooling and
spray-drying systems, and rocket plumes are some examples. Understanding the
inte;action between the particles and surrounding gas is essential for
predicﬁing dispersed two—phase flows.

A quantitative definition of "dilutness” in turbulent twonhase flows is
not readily available. For laminér flow the dilutness requires fhat the
center-to-center distance between particles should be larger than 2(a+6b)
where a is the particle radius and Gb is the thickness of the béundary layer
around that partiéle. The experimental data of Tsuji et al. (1982) indicates
that the fluid dynamic force on a suspended particle can be assumed to be the
same as that on a single particle if the interparticle spacing is not less
than three particle diameters. This reét;iction gives an upper limit for the
volume fraction of the particleé of 1% to satisfy the diluteness assumption.
For turbulent flow, another parameter plays a more significant role. This is
the ratio of the aerodynamic response time to the time between collisions
(Crowe, 1981). This ratio depends on the particles' loading ratio, the

relative velocity between particles and gas, and the gas velocity gradient.
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If khis ratio is less than unity, a particle has time to respond to the local
gas velocity field before the next collision so its motion is dominated by
aerodynamic forces and the particle collisions can be neglected. Using this
restriction the particle number density, or the.volume fraction, for a dilute
spray can be calculated.

In the dilute spray regime the interactions between drdplets is
neglected. This implies that the droplet coalescence or break-up does not
occur. The droplets may exchange mass, momentum, and energy with the gas and
for dilute spray the exchange functions for isolated droplets can be used.
The droplets are classified into finite-size groups and each group is
considered as a distinctive phase.' Further, constant properties are assumed
for all the phases to avoid the density fluctuations of the carrier phase at

this stage.

1.2 Previous Work

1.2.1 Fundamentals of Two-Phase Flow

The simplest analytical approach for calculating the broperties of dilute
suspensions of two-phase flow is to assume dynamic equilibrium, where the
particles aﬁd gas velocities are équal ét each point in the.flow. The
suspensions can then be considered as a single homogeneous fluid that is
treated exactly as a single-phase flow. The mixture properties are those
based on the continuum mechanics that apply to molecular mixtures. The
infinitely fast interphase transport between the phases 1is the basic premise
of that approach. The equilibrium assumption is valid for small values of
Stokes number, less thaﬁ 10—1, and small values of particle/fluid material
density ratio, less than 102, (DiGiacinto et al., 1982). Stokes number is the

ratio of the particle relaxation time to the characteristic time of the



surrounding fluid. These two restrictions are not satisfied for the flow of
gaseous phase laden with liquid droplets or solid particles. Accordingly, the
local equilibriumrapproximation leads to unrealistic results for that t&pe of
flow (Shuen et al., 1983). 1In spite of the inaccuracies in that approach, it
has been used by some workers (Shearer et al., 1979; Michaelides, 1984; and
Kamimoto and Matsuoka, 1977).

On the other hand, if both the density ratio and the Stokes number are
large, the particles will not be able to respond to the changes in the carrier
phase. 1In this case the difference between the velocities of the phases can
not be neglected aﬁd each phase should be treated separately (Crowe, 1982).

There are two approaches to handle the carrier phase in the separated
flow models, depending on the mass loading ratio, which is defined as the mass
flow rate of the particles to that of gas. If this ratio is small, less than
0.1, the velocity field of the carrier phase is not affected by the presence
7of the particles while theimotion of the particles isideterminéd by the gas
flow properties (Rudinger, 1965). In this case the governing equations of the
carrier phase have no extra terms but rather they are identical to the well-

known Navier-Stokes equations. This approach is referred to as one-way

7c0uplingLEDiGiaéiﬁto et éi.; 1982):Erom gas to particiés only";ﬁd has been
used by many workers (Cox and Mason, 1971; Batchelor, 1974; and Boyson and
“Swithenbank, 1979). On the other hand, if the mass loading ratio is high; the -
particles may modify the gas flow field significantly. 1In this case the
particles are regarded as source of mass and momentum for the carrier phase.
This approach is referred to as two-way coupling (DiGiacinto et al., 1982; and

Crowe, 1982) from fluid to particles and vice versa.



There are two main approaches to handle the dispersed phase in the
separate two-phase flow models, namely the Lagrangian and the Eulerian
approaches. In the Lagrangian approach ;he dispersed phase is treated by
solving Lagrangian equations of motion for the particles with a prescribed set
of initial conditions. Once the flow properties of the particles are known,
the interface quantities between the two phases can be caiculated. In the
Eulerian approach the dispersed phase is treated as an interacting and
interpenetrating continuum. In that approach the governing equations for the
two phases are quite similar to the well-known Navier—-Stokes equations. These
equations are.coupled primarily by three mechanisms, the mass exchange, the
displacement of the carrier phase by the volume occupied by particles, and
momentum interchange between particles and the carrier phase. Many two-way
coupling studies are presented in the literature, based either on the
Lagrangian or Eulerian approaches (Elghobashi and Megahed, 1981; Yeung, 1982;
Abbas et al., 1981; and Crowe et al., 1977).

Of most importance, the continuum assumption must be justified when using
the Eulerian approach. Batchelor (1974), Lumley (1978a), and Marble (1962)
have discussed the continuum concept for the dispersed phase. 1In summary, the
particles must be sufficiently small in order that a volume element, small
compared to the Kolmogoroff microlength scale, n, contains a large number of
particles. Thus a statistical average conéerning the behavior of the
particles can be made within this volume element. fhis requires that the
average separation distance between the particles is at least one order of
magnitude smaller than n. Hinze (1972) stated that the continuum assumption
has proven to be applicable also to‘situations that do not strictly meet that
condition. Others (Crowé, 1982; Soco, 1967; and Yeung, 1978) showed that most

practical physical systems involving gas-particle mixtures satisfy the



continuum assumption. We may refer, amongst others, to theoretical
investigations by Marble (1970), Buckingham and Siekhaus (1981), Pourahmadi
and Humphre; (1583), Rizk and Elghobashi (1984), and Mostafa and Elghobashi
(1983) who used the Eulerian approach to study different flow conditions "of
igyb—phﬁgg flows. Early work based on Lagrangian equations of motion are due
“gg-El;ééﬁhawy and Whitelaw (1980), Mongia and Smith (1978), Shuen et al.
(1983), El1-Kotb et al. (1983), and El-Emam and Mansour (1983).

Arguments over the advantages and the disadvantages of Eulerian and
Lagrangian approaches persist in the literature. The Eulerian approach models
can easily incorporate particle diffusion effects since the randomness of the
particulate phase is accounted for by the way of the formulation. This
approach can be extended easily to multidimensional flows. Numerical
instabilities, false diffusion, and large storage requirements are the most
serious disadvantages of that approach. However, the use of advanced digital
computers and the ability to overcome the numerical problems (for example, by
choosing a suitable higher order finite-difference scheme) alleviate most of
these disadvantages. The Lagrangian approach exhibits no numerical diffusion
butrthe part%gle difpgrsioq;gust berfncorpqgéted tyfgugh nggmpiriygl
diffusion v;;ocify érrmore exbénsive Mbnte Carlo methods (Chen and Crowe,

1984). Durst et al. (1984) showed that the Lagrangian approach, in cases.

Qhefe the particle loédingsrére higﬁ;ris inferior to the Eulerian apbroach;
The Lagrangian approach calculations require interpolation between the meshes
since gas and particle properties are strongly coupled. In any case it
requires a toilsome computation for the source terms. If the interpolation
process is too crude, Aggarwal et al. (1983) have shown that errors of the
same order as the diffusion error in the Eulerian approach will be

encountered. Sirignano (1983) argued that the droplet properties should not



be averaged over the numerical cell as suggested by Dukowicz (1980), but
rather a linear iaterpolation should be made. Iﬁ the present work attention
will be réstricted to a formulation following the Eulerian approach.

The previous fundamental studies of the various aspects of two-phase flow
are concentrated on either the effects of various factors on the flow aroﬁnd a
single particle or on the governing equations of the-dispersed phase, Fuchs
(1964) and Torbin and Gauvin (1959, 1960, 1961) did an extensive survey about
the dynamics of single particles. Those studies are very important tb
fundamentally understand the two-phase flow. Most of the recent puBlications
in this regard will be discussed in section four.

On the other hand, several phenomenological attempts have appeared in the
literature to derive equations govgrning the macroscopic behavior of dispérséd
two-phase flow. The equations cited most frequently are those of Drew (1971),
Kalinin (1970), Whitaker (1973), Gray <1975), Panton (1968), and Soo (1967).
Other deriviations include those by Nigmatulin (1967), Owen (1969), Rietema
and Van Den Akker (1983), Buevich and Markov (1973), and Jackson and.Davidson
(1983). The resulting equations differ in various ways such as the 1
formulation for the pressure gradient term, the nature of thé momentum, sourée
terms, or the proper coupling between the two fields.

Buévich and Markov (1973) obtained the conservation of mass, momentum and
moment of momentum for the two interpenetrating and interacting continua. All
the unknowns in the governing equations are expressed in terms of mean
stresses acting at the surface of an individual susﬁended sphere. Crowe
(1980) used the control volume, or Reynolds transport theorem approach, to
derive the continuity and momentum equations for a flowing vapor with

suspended burning, evaporating, or condensing droplets.



Solbrig and Hughes (1975) derived the momentum equations and mechanical
constitutive equations that are required to describe transient, two-phase,
single-component evaporating and condensing flows. Momentum field balance
equations were derived for each phase on the basis of a seriated-continuum
approach. A seriated continuum is distinguished from an interpenetrating
medium by the representation of interphase friction with velocity differefces
in the former and velocity gradients in the latter. A two-phase mixture is an
example of a seriated continuum, whereas a mixture of gases is an example of
an interpenetrating continuum. The seriated continuum also considers embedded
stationary soiid surfaces such as that which occurs in nuclear reactor
cores. There are some undetermined numerical coefficients that appeared in
the momentum equations of Solbrig and Hughes (1975). These coefficients must
be determined for the different flow regimes and geometry.

‘Paptpn (19@8) fprmulate@ the flow Qroggrties forrthe nonfequi;ib;iumrtwo—
phase flow of a gas—-particle mixture. The conservation equations of continuum
fluid mechanics are assumed to apply to the flow field locally, both within
the pa;ticles and through the gas. Control volumgs for each phase are defined

and.integrél forms of the conservation equation are applied. By inspecting

the equaéioﬁé; ghe bfépéf area;éveraged propergies are défined soithat they
are meaningful terms in the physical conservation laws. Because the detailed
flow is inherently unsteady, it was necessary to take the time averagé of the
equations. Thus, the dependent variables of the the final conservation
equations were area-time—-averaged properties. New terms, even in laminar
flow, appeared in the momentum equations and were called the area-averaged
Reynolds stresses. The Reynolds stresses attributed to the fluctuations in
the gas velocity occur because of the presence of the particles. Every time a

particle passes the point under observation, a fluctuation in the gas velocity



occurs. Panton comﬁented that these unknowns are the price to be paid for the
details of the flow.

Delhay (1980) surveyed fwo—phase flow modeling. He discussed the
different types of averaging —-- time, areé and volume -— in two-phase flow..
Also, the different two-phase flow and single fluid modeling were reviewed.
Delhay concluded that more work is needed to build the bridge'between the
Lagrangian behavior of a particle and the Eulerian form of the constitutive
terms entering the averaged balance equations.

Drew (1971) derived avéraged field equa;ions for two-phase media. He
treated the separated surfaces between the two-phase media as transition
regions where the material properties have jump discoﬁtinuit;es. Postulating
the laws- of balance of mass, linear momentum, angular momentum, energy, and an
entropy inequality, jump condition 1aws-for each phase were derived. Solving
the differential equations and jump conditiouns, exact ekpressions for the
field quantities involved were found. Drew also defined and related the
appropriate aVerage variables for each phase involved. He commented‘that for
any particular problem, his averaged field equations must be supplemented by
constitutive equations, which is not a simple task; Ishii (1975) discussed
the way of averaging used by Drew (1971), specifically the two integrals over
both space and time domains. Ishii commented that it is not quite convincing
why these four integrations are necessary to develop meaningful macroscopic
field equations. He pointed out that the time and spaceAdifferential
operators in the averaged fields represent finite difference operators in the
physical interpretations.

Ishii (1975) presented a détailed discussion on the formulation of
various mathematical models of two-phase flows based on the conservation laws

of mass, momentum and energy. He considered the local instant formulation and



the time—averaged macroscopic models. He presented the two-fluid model, which
is formulated by considering each phase separately. Thus,‘the model-is
expressed by two sets of conservation equations of mass, momentum, and energy
with interaction terms appearing in the field equations. His formulation has
the advantage of treating large and small pargicles alike, with averaging
carried out across fhe interface. 1Ishii's formulation simplifies the
treatment of the dispersed phase by introducing a duality of discrete nature
and distributive representation. The discreteness is accounted for Qia
treating the virtual mass and unsteadiness of flow field of each finite size
particle. The distributive nature of the particle cloud is aécounted for by
taking an elementary volume consisting of a sufficiently large number of
particles. 1Ishii also considered the diffusion model, which is formulated by
considering the mixture as a whole. Thus, it is expressed in terms of three
- mixture conservation equations of mass, momentum, and,enefgy,with one.
additional diffusioﬁ equation.'

Sha and Soo (1978) discussed the basic cbncepts for the rigorous
formulation of a system of a single-component fluid.in two phases. They
pointed out thft the q;;ect extension of continuum mechanics is 1nadgggqtev
because of the mutually exclusive nafure of the phases in a multiphase
system. Multiphase mechanics have their own distinct regime with additional
7 inertiéi and viscous inferaction terms, épplied to mi#ﬁurés of pﬁases that aré
separated by interfaces and are mutually exclusive. This is in contrast to
the field equations of mixtures based on continuum mechanics, which directly
apply to molecular mixtures where the phases coexist at the same points in
space. Boure (1979), Crowe (1978), and No (1982) argued that the equations of

Sha and Soo (1978) are inconsistent and not valid even in one-dimensional

situations.
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In section two, the governing equations of dispersed two-phase flow are

presented and compared with other equations in the literature.

1.2,2 Turbulent Evaporating Sprays

Modeling of evaporating and combusting sprays is an extremely difficult
problem due to the complex physical and chemical phenomena encountered in this
type of two-phase flow. A substantial number of reviews of this problem have
appeared in the literature. The recent reviews of Law (1982), Faeth (1977,
1983), Labowski and Rosner (1973), and Sirignano (1983) discussed the previous
work on the different phenomena associated with the spray evaporation and
combustion problem. The present study will be restricted to evaporating or
nonevaporating dilute sprays.

Krestein (1983) has analyzed a éimple model of an evaporating spray to
predict the probability density function (pdf) of vapor concentration within
the spray. The model assumes that the droplets deposit linear streaks of
vapor as they traverse the motionless host gas, and that the vapor diffuses
radially from these streaks. Since it neglects droplet collisions,
saturation, and related effects, the model is applicable primarily to dilute
sprays. The results of this analysis can be used to estimate droplet
vaporization rates from experimentally measured pdf's of concentration.
Therefore the individual-droplet processes could be linked to fluctuating
ambient conditions in spray simulation codes.

O'Rourke and Bracco (1980) developed a numerical model for turbulent
dense sprays. The model is two-dimensional unsteady and uses atomization
experimental results éslnozzle exit boundary conditions and a stochastic
algorithm to compute droplet events, including collisions and coalescence.

Westbrook (1976) presented a numerical solution technique for the spray
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equation for-a type of stpétified charge internal combustion chamber. He
neglected the ;ésrentr;inmeqt by the droplets and adopted the diiu;e spfay
approximations. The gas motion was assumea'to be EOnsisted'of a rotational
swirl with a anstant angular veloc%ty. Axial and radial componenps of the
gas velocity were assumed to be identically zero.

Martinelli et al. (1983) used O0'Rourke's model after considering a

K- submodél for gas turbulence to predict the data of Wu et al. (1984).

Agreement 1s good with mean quantities but the computed standard deviation of
the drop velécity distribution is generally smaller than the measured one.
Although the effects of turbuleace on the droplet motion is considered in the
model, the direct effects of the droplets on the gas motion are neglected.

Yeul et al. (1982) have since reported measurements in evaporating
kerosene sprays from a twin-fluid injector in a co-flowing stream.
Measurements ofrdrqplet sizg were undertakqn using a laser tomographic light-
scattering technique while mean velocities were measured using LDA. They did
not measﬁre the turbulence characteristics or the droplet/velocity
correlations which are needed for the theoretical models evaluation. Wu et
al. (1984) reported LDV measurements for tﬁg distfibgtion fungti9p of the
axialV;ndiraéiai cémﬁéné;tgwof thérdfoplet velocity at various radial and
axial locations within steady sprays under the conditions of direct fuel
injection in internal combustion engines, but at room témperafure. The
measurements were taken within 300 to 800 nozzle diameters from the nozzle

exit.

1.2.3 Turbulence Mathematical Models
Computational models are a very useful tool for a better understanding of

the features of the two-phase flow, considering the inability of the




analytical methods and the difficulty of experiméntal investigations.
Vasiliev (1969) reviewed the development of the two-phase flow, relying
chiefly on the reseérch that has been done in the Sovigt Union. He cited the
papers on the governing equations for laminar and turbulent flows as well as
those on the effects of the dispersed phase on the turbulence intensity and
the spectrum of turbulence. He concluded that the presence of small suspended
particles leads to more rapid damping of the turbulent energy under isotropic
flow conditions. In the case of large values of density ratio it also causes
a noticeable distortion of the turbulence energy spectrum and a decrease of
its micro scales in comparison with the case of single-phase flow.

Rakhmatulin (1956) (cited by Vasiliev, 1969) suggesfed that ;he motion of
the mixture shoﬁld be treated as an interpenetrating motion of several
continua. The equations of motion are written separately fdr each phase, andv
the interaction between the phases is taken_inﬁo account by considering the
interaction forces that-appear as internal forces for the whole system. The
governing equations of Rakhmatulin (1956) were used by Bondarenko and
Shaposhnikova (1980) to analyze flow regimes in channels of different
shapes. Those equations were also used by Vasil'kov (1976) to bredict a
turbulent submerged jet containing an admixture of solid particles.

Michaelides (1984) analyzed the gas-solid two-phase pipe flows using the
mixing length hypothesis. The mixture was taken to be a homogeneous fluid of
variable density across the pipe cross-section. These two assumptions make
the solution very restricted to dilute suspensions with comparable densities
between the solid and the gas.

Buckingham and Siekhaus (1981) described a K-¢€ turbulence model that
allows for effects of particles ou turbulence properties. The model is

applied to flows containing small solid particles, considering added
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dissipation‘dué,éb pafticlé 1ntéractions with the carrier phése in the
governing.l;Buckingham and Siekhaus did not compare the performance of their
model with any experimental data. The predictions suggest a damping of the
turbulence motions primarily becaﬁse of inertial effects. Nagarajan and
Murgat?oyd (1971) presented an analytical model for turbulent two-phase fully-
developed pipe flow. They assumed linear shear stress in the radial direction
and introduced several phenomenological coefficients in the model. This made
their model inapplicable to other two-phase flow problems.

Kramer and Depew (1972) developed a one-dimensional model for a fully
developed two-phase turbulent pipe flow. In their solution they expressed the
velocity fields in terms of various empirical coefficients aund assumed:-a
linear mixing length to express the turbulent correlations. This has again
made the application of their model to any other problem very difficult.

“Genchev and Kafpuzov (198d) have proposed-agturbulénce»model for fluid--
particle flows in which fhe effects of particles on the turbulence transport
equations are considered. They assumed that the meén velocity of the
particles is equal to the fluid mean velocity and neglected the fluid-particle
turbuleﬁg cgrrﬁlationg existing in thgﬁtime—averaqu¢equations (Elghobashi--and
Abou-Arab, 1983). Genchev and Karpuzov predicted a fully developed pipe flow
laden with solid particles of density ratio of order 103 and volume‘
coﬁééﬁ&rétiéﬁ ég order of 10-3. They di& ﬁot compare théir predictions with
experimental data to evaluate the capabilities and the limitations of their
moael;

Danon et al. (1977) described a K-L model for two-phase jets. The length
scale (L) was not modified from the value apprbpriate for a constant density
single phase jet; however, a term representing the added dissipation due to

the presence of particles was included in the governing equation for K. The
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model was evaluated uéing the data of Hetsroni and Sokolov (1971) for a round
jet containing oil droplets. The predictions using the basic model were not
in good agreement with these measurements. The comparison between the
predictions and measurements was improved by multiplying the rates of
production and dissipation of K by a coefficient that was a strong function of
the void fraction. These authors commented that there is a substantial and
unexplained influence of particles on turbulence properties of jets, even at
low particle concentrations.

Melville and Bray (1979) described a model for particulate flow, with
small interphase slip, employing constant eddy diffusivities for momentum and
particle transport. The predictions were evaluated using the measurements of
Laats and Frishman (1970a and 1970b) for a round jet containing powders of
various sizes.

Pourahmadi and Humphrey (1983) proposed a mathematical model for dilute
suspensions of two-phase flow based on the single-phase X-¢ model. They
considered the direct effects of the particle's sharing the same control
volume with the gas on the governing equations of K and ¢. These authors
neglected all the third-order correlations without justification and used
stokes drag coefficient although the particle Reynolds number is generally
greater than unity in two—phase flow. They also used Peskin's formula for the
calculations of the particle's Schmidt number. This formula was tested by
Elghobashi et al. (1984) for glass particles and produced unrealistic values
for the particle's Schmidt number, negative or zero.

Elghobashi and Abou-Arab (1983) proposed a two—equation turbulence model
for incompressible dilute two-phase flow which undergoes no phase changes.
Using this model, Elghobashi et al. (1984) predicted the turbulent

axisymmetric gaseous jet laden with uniform size solid particles. They
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achieved good agreement with the experimental data of Modarress et al.
(1984)., This model has been extended by Mostafa and Elghobashi (1985a) to
include the effects of phase changes.

Shuen et al. (1983) evaluated the performance of thé available Lagrahgian
methods for predicting the dispersed phase behavior by comparing the results
with measurements of particle-laden jets. They considered only dilute
suspensions of sblid particles, and hence concluded that the effects of the
particles on the turbulence quantities are almost negligible. This allowed
them to recommend the use of the conventional K-€ model for two-phase flows
without any modifications. Shuen et al. (1983) indicated that the suggested
method by Gosman and Ioannides (1981) for calculating particle trajectories,

the "stochastic or Monte-Cgrlo method,” in contrast to other methods, provides
good predictions over their data base. 1In this method the isotropic turbulent
,géé velocity field is split into mean and fluctuation. The mean value is
obtained from the solution of the mean equations while the fluctuating one is
estimated from random sampling of a Gauséian distribution of the kinetic
energy of turbulence. The Monte-Carlo method requires selection of
characteristic eddy length and%timeisca;gs. Shuen et al. (1983), following

Gosman and Ioannides (1981), assumed that the eddies are uniform and their

size is proportional to a turbulent length scale, lé, given by
g =c k% 1.1
e e .

Shuen et al. (1983) used the value of 0.16 for the constant C,, which was
suggested by Gosman and Toannides (1981) who later changed this value to 0.31
to get a better agreement with the experimental data (Crowe, 1982). Crowe,

(1982) recently argued that the value of Co should be 0.46 to give a good

16



agreement with the experimental results. This is unfdrtunate since Shuen et
(1983); Gosman and Ioannides (1981); and Crowe, (1982) have used the same
experimental data of Snyder and Lumley (1971) to obtéin the value of the
empirical coefficient Co-
In conclusion, after the literature on two-phase turbulent flow was
examined, it was found that there is still no complete mathematical model of
.this class of flows comparable with the model of single-phase turbulent

flows. The main objective of this sﬁudy is to develop such a model.

1.2.4 Turbulent Two—Phase Jet Flows

A turbﬁlent nonreacting gaseous jet laden with solid particles or
evaporating droplets is a relatively simple flow that allowé the study of the
interactions between the two phases and the turbulenf dispersioh of the
discrete phase. Most of the previous measurements (Rajani,“i972; Hetsroni and
Sokolov, 1971; and Laats and Frishman, 1970a) of the structure of particle-
laden jets considered.the effects of the‘dispersed phase on the continuous
phase properties. Abramovich (1976) and Goldschmidt and Eskinazi (1966),
discussed thé effects of the dispersed phase on the structure of a turbﬁlent
gaseous jet. They showed that the particle concentration profiles in a two-
phase jet are narrower than the gas velocity profiles. This behavior was
explained later by Elghobashi et al (1984)

Levy and Lockwood (1981) and Laats and Frlshman (1970a) found that the
gas mean velocity profiles in a two-phase jet are narrower than those of the
clear jet. Modarress et éi; (1984) and Girshovich et al. (1981) further
showed that the solid or liquid pafticle velocity is higher than the gas
velocity in the developed region of the jet. 6ther studies (Al-Taweel and

Laundau, 1977; and Laats and Frishman, 1973) showed that the turbulent energy
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level decreases with the increase of the suspension of particles into a jet.
”Thg gffgctrofAsmallrd;op}gtﬁrqf-cqptqqgegq qf 13 pm ave;;gerdiame;erron F@gAV
flow structufelof an axially symmetricai turbulent air jet hés been studied by
Hetsroni and Sokolov (1971). They found that in the two-phase jet; the -
velocity spread and the turbulence intensities were reduced in comparison with
the single-~phase jet. They'also found that even at low volumetric droplet
loadings, the jet was narrower than single-phase air jet. At a high loading,
the jet spread was wider upstréam and narrowef in the downstream region.: The
intensity of velocity fluctuations was reduced throughout the jet. vHetsroni
and Sokolov (1971) measured time-averaged and fluctuating longitudinal
velocities by means of a hot-wire anemometer. .The prose was not calibrated in
a tw0fphase flow but the authors stated that.the calibration curves obtained
in single-phase flow could be Qsed f;r two—phase flow with‘minor‘ |

correctlons. RaJanl (1972) polnted out the uncertaintles regardlng the

calibration of probes used in dust-laden flows that may lead to an
overestimation of the measured quantities. Therefore, their results should be

viewed with caution as pointed out by Melville and Bray (1979).

Field (1963) and Subramanian and Ganesh (1982a and 1982b) have provided

Vevidencéﬂbf tgé o;éfali éffect of solid particles on a dust -laden Jet by
measuring the rate of ambient air entrainment by the jet. Field-considered
“lycopodium powder of 30 ym size while Subramanan and can'e’gh"'use‘d sand
particles -of uniform size of 150-180 ym. They found that the entrainment was
affected b§ particle size, density and mass loading ratios, and the dispersed
phase initial conditions. Subramanian and Ganesh showed that.the presence of-
particles increases the entrainment rate. Since their measurements are in the
developing region (z/D < 7), where z/D is the axial distance to nozzle

diameter ratio, and no nozzle exit conditions are reported, it is difficult to
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analyze that data.

Hayashi and Branch (1980) measured the concentration profiles of
particles in axisymmetric jets. The measurements were made by seeding 1%, 3%,
and 5% by weight of 24 im mean diameter spherical flash ash particles into
jets at Mach numbers of 0.2, 0.8, and 1.0. The particle concentration
profiles showed that particles concentrate on the axis of the jet at the exit
of the nozzle and the profiles are highly influenced by the initial

conditions. This observation is expected since the measurements were done in

“the developing region, which is highly affected by the nozzle exit conditioms.

Zuev and Lepeshinskii (1981) studied the two-dimensional steady isobaric
two—-phase jets. They considered the effects of particle-particle interaction
on the governing equations from an analogy with the kinetic theory :of gases.
They adopted the mixing length hypothesis to close the set of equations. Zuev.
and Lepeshinskii did not compare the predictions using their model with any
experimental data to test their approach. Vasil'kov (1976) added terms that
take into account the interaction of the phases to the governing equations of
single-phase gas dynamics to predict a turbulent submerged jet containing an
admixture of solid particles. He assumed that the radial velocities of the
particles are equal to thése of the gas and adopted the mixing length
hypothesis to close the set of the governing equations. Vasil'kov obtained a
reasonable agreement between thé“predictions'using his phenomenological model
and the data of Laats and Frishman (1970a and 1970b).

Popper et .al. (1974) studied the motion of oil droplets of 50 im, -in a
round air jet using LDV. It was found that at the jet.axis, the droplet
velocities .are 5-97 lower than the corresponding velocities in a single-phase

air jet. 1In the developed region the droplet velocities were higher than the

air velocity at the same location.
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The effects of spherical glass particles of 110 ium average diameter on
the flow structure of an axially symmetrical turbulent air jet has been.
studied by Rajani (1972) for various solid/air loading ratios, from O to 1.3
kg/kg. Time-averaged velocity measurements were performed by laser Doppler
anemometer (LDA) and the particle concentration measurements by a scattered
light technique. Rajani devoted a large part of his work to the development
of the experimental techniques, their accuracy, and limitations. Therefore,
he reported very limited data, especially for the dispersed phase.

Yuu et al. (1978) examined the distribution of:concentrations of the dust
particles of the average diameter on a mass basis of 15 and 20 ym in a round
jet. The flow was highly dilute, since solid volume fraction in the‘injected
flow was in the range of 0.4 - 2x107°. The measurement of particle
concentrations was performed with a photoelectric dust counter and the mean
velocity was measured with-a pitot-static probe. Using the concentration’
data, they 1nd1§ated that the particle diffusivity decre;ses with the increase
of the particle inertia and in general it is smaller than that of fluid scalar
quantities. Goldschmidt and Eskinazi (1966) measured the concentration of the
liquid drgplgts,of the average diameter qn,arweight basis-of 3.3 -m in a two=
dimensional jet. They indicated that the droplets' mass tends not to diffuse
more than the fluid momentum. 7

Girshovich et al;-(l981) and Laats and Frishman (1973) investigated
experimentally the effect of solid particles on both the mean and turbulence
axial velocity components of an air jet using LDV techniques. They studied
‘the effect of the circular tube diameter, initial velocities, initial
particles/air mass loading ratio, and particle diameters on the jet
performance. Laats and his coworkers found less rapid decay of centerline

velocity and a reduced velocity spread of the jet with the increase of the
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solid loading. They also found that the increase in the mean axial velocity
and the decrease in the turbulence intensity at the centerline for the carrier
phase depend on the loading ratio and the diameter of the particles.
Unfortunately Laats and his coworkers did not measure the initial conditions
at the nozzle exit and did not report the material demsity of the particles.
This fact renders their data inadequate for the evaluation of turbulence
models.

Levy and Lockwood (1981) measured fluid and solid phase mean and
fluctuating velocities in a.round gaseous jet using LDV techniques. They
studied sand particles fanging in size from 215 to 1060 mm with sand to air
mass ratios ranging from 1.14 to 3.5. Levy and Lockwood found that, relative
to the pure gas phase, the axial turbulence iﬁtensity was reduced by
introducing particles in the size range of 180-500 pm and was increased when
the-particles are in the range of 500-1200 um. ‘ But again they did not report
the nozzle exit conditions. Modarresé et al. (1983) reported much needed
experimental data to help understanding the behavior of two-phase turbulent
jets and to validate the theoretical models for these flows (Fig. 1-1). They
investigated the effects of 50 um and 200 m glass beads on the mean air
velocity and found that the turbulent stresses for mass loading ratio varies
from 0.32 to 0.85. Modarress et al. found that the increase in the centerline
mean air velocity and the diminishing of the turbulence quantities are
proportional to the loading ratio, the particle diameter, and the initial
conditions of each phase.

Shearer et al. (1979) measured the mean velocity, velocity fluctuations,
and Reynolds stress of single-phaseﬁconstant density jets, as well as those of
an evaporating spray (Freon-11). Since their measurements were in the region

far downstream from the nozzle (170 < z/D < 510), the flow was highly dilute
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and the effects of the dispersed phase on the gas properties were very
slight, Soloﬁon et al. (1984) measured the flow properties of the carrier
phase as well as those of the droplets in a turbulent round jet laden with
Freon-11 spray. They considered the dilute portion of the spray (50 < z/D £
510) injected into a still air environment in order to provide data useful for
the evaluation of spray models. They measured all the radial profiles of the
main dependent variables at 50 nozzle diameters from the exit plane for two
mass loading ratios of 7.71 and 15.78. This information is essential for
accurately predicting such flow.

The last three experiments (Modarress et al., 1983; Shearer et al., 1979;
and Solomon et al., 1984) are used in the this work to test the proposed

turbulence model.

1.3 Summary of Approach N

The present contributioﬁ focuses on developing and testing a two-equation
turbulence model for predicting isothermal steady two-phase flows including
the effects of phase changes. A set of equations describes the conservation
of mass, momentum of each phase, vapor concentration, and kinetic energy of
turbulence and its dissipation rate for the carrier fluid. Closure of the
time-mean equations is achieved by modeling the existing turbulent
correlations up to the third order. The model considers turbulent non-
reacting axisymmetric jet flows laden with evaporating droplets or solid
particles. This flow regime is a relatively simple flow that allows the study
of the interactions between the dropiets and the carrier phase, the turbulent
dispersion of the droplets. The radial profiles of the main dependent
variables are easy to measure in this type of flqw, thus it is convenient for

the turbulence model's validation.
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In the following sections, the tranéport equations governing the mean

’ qu;ntities are presented first of all, followed by the development of the
proposed two;equation model. Then the mass and ﬁomentum exchange coefficients
are evaluat;d and an expression for the particle’s Schmidt number is |
developed. The work concludes with an evaluation of the model using the
recent measﬁréments of Modarress et al. (1983), Solomon et al. (1984), and the

measurements of Shearer et al. (1979).
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2.0 GOVERNING EQUATIONS OF DILUTE SPRAY

The purpose of this section is to present the basic equations that govern
the turbulent dilute vaporizing sprays, and to discuss the problems that their
solution poses.

Section 2.1 states the assumptions for this study.  Section 2.2 lists
the time-dependent equations. The discussion then turns to time-averaged
equations in section 2.3. Finally, thé problem of closure is discussed in
section 2.4,

2.1 Assumptions

It is assumea that no droplet coalescensce or breakup occufs. This
implies that the droplets afe sufficiently dispersed so that droplet
collisions are infrequent. This assuﬁption rendefs the present study
restricted to diiute suspension; only. The initial breakup of 1liquid sprays
or jets is not considered. It is assumed that the initia} profiles of volume
fractions and velocities are independently specified. Therefore, there is
two-way coupling between the droplets and the carrier phase. It is assumed
that the droplets of different sizes constitute different continﬁous phases.
This is from the point of view of the‘"continuum" mechanics of a cloud of
droplets, apart from tﬁe obviéus definition of a multiphase system, a mixture
of phases of liquid droplet and gas (Soo, 1967). Therefore, the continuous
droplet-size distribution is divideg\into n}}ntervals; d¥ is the avérage
diameter for droplets in the kth Aiaﬁeter‘r;ﬁge. 1f d5 and d" are the

smallest and largest droplet diameters, then the sizes are ordered as follows

d% = gn ¢ a1 == ¢ gl = 4L o 2.1
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Thus, n different diameter ranges constitute correspondingly n dispersed
' pﬁases and the evaporated mass with the surrounding gas conséituféktﬁe carriég
phase._

It was also assumed that the droplets are sufficiently small in order
that a volume element, small compared to the Kolmogoroff microlength scale,
contains such a large number of dfoblets that a statistical average concerning
the behavior of the droplets can be made within this volume element. It was
further assumed that the droplets remain spherical during their entire |
lifetime. This assumption is discussed in detail in section 4.2. Also, it
was assumed that the mean flow is steady and the material properties of the
different phases are cons&ant. o

This leads to two sets of transport éqﬁatioﬁs, one set for the droplets
and the other for the carrier phase, whicﬁ is definéd_as the atomizing air

"plus the evaporated material. Thesérequétioné are céubled primarily'bQ tﬁ;eé-
mechanisms, the mass exchange, the displacement of the carrier ph#se by'the ‘
volume occupied by droplets, and momentum interchange beéween droplets and the
carrier phase. The momentum-interchanée is dué to the aerodynamic forces
exerted on the dispersed phase and. the mbﬁeﬁfum growth resulting from the
relative velocity between the generated vapor and the surrounding gas.

2.2 Time Dependent. Equations .

As discussed in subsection 1.2.1 many authors derived continuity and
momentum equations for each phase by performing volume averaging (Sha and Soo,
1978; Hinze, 1972; and Jackéon and Davidson, 1983) or averaging in space and
time (Panton, 1968; and Drew, 1971). Here the instantaneous, volume-averaged
equations, in Cartesian tensor notations, are presented based on those of

(Crowe, 1980; Hinze, 1972; Harlow and Amsden, 1975; and Jackson and Davidson,

1983).
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The continuity equation for the carrier phase is

K k
(P8 + (P 8V 5 = 2.2

&~
=13
©

The term on the right-hand side of Equation 2.2 represents the rate of change
of the added mass or the source term due to the evaporation process from all
droplets existing with the carrier phase in the same control volume. This
term also represents a sink term in the continuity equation of the droplets

(Equation 2.3).

The continuity equation for the kth dispersed phase is

k k ke _  .kgk . .
(p2¢),t+(02¢vi),i_ m ¢ 2.3

The global continuity is
o + ) o =1 2.4

The momentum equations for the carrier phase are
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The momentum equations for the kth dispersed phase are

k k k k k
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The set of equations (2.2 - 2.6) have (4k + 5) unknowns (3k of droplet
velocities (V:), k of droplet volume fractions (¢k), 3 carrier phase
Qelocities (Ui)’ carrier phase volume fraction (01), and the static pressure
(P)) and (4k + 5) equations. So it forms a closed set of equations since the
‘-number of unknowns is equal to the number of equationms.
Using the continuity equations for the different phases (Equations 2.2

and 2.3), Equations 2.5 and 2.6 as can be rewritten as
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In the equations above and throughout this work the partial derivatives are

represented by a subscript consisting of a comma and an index; e.g., ( ),t
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The subscripts 1 and 2 denote, respectively, the carrier fluid and dispersed
phase; the superscript k denotes the kth dispersed phase; U; is the velocity
component of the carrier fluid; V: is the velocity component of the droplets
in the kth diameter range; p and u are the material density and viscosity; P
is the pressure; ¢ is the volume fraction; gy is the gravitational
acceleration in the i direction; Fk is the interphase friction coefficient,
and ﬁk is‘the evaporation rate per droplet volume.

Note that the factors @1 and ¢k lie outside the pressure gradients in
Equations 2.5 and 2.6, contrary to what some authors have proposed for
considering those factors within the gradients (Sha and Soo, 1978). Harlow
and Amsden (1975), Nigmatulin (1979), Solbrig and Hughes (1975) and Boure
(1979) argqed that 61 and 0k should be outside the pressure gradients as in
Equations 2.5 and 2.6.

- The momentum growth term (ﬁk¢kV§) in Equations 2.5 and 2.6 represents a
force on the fluid due to the difference between the velocity of vapor leaving
the droplet surface and that of the carrier fluid. 1If the flow from a droplet
is assumed to bé uniform in all directions, then the average velocity of this
flow in any direction is zero. Therefore, the wvapor leaves the droplet
surface with a velocity equal to that of the parent droplet (Nigmatulin, 1967;
Solbrig and Hughes, 1975; and Jackson and Davidson, 1983). In this case no
differences should be produced on the momentum equation of the droplets'
Equation 2.8 from those of solid particles (Crowe, 1980).

Solbrig and Hughes (1975) tested the relative imggrtance of the transient

&

force terms in the momentum equation of solid particles under different flow
.

conditions. They reached the same conclusion of many other workers (Sha and
Soo, 1978; Soo, 1967; and Hjelmfelt and Mockros, 1966) that the Basset or the

transient term and the virtual mass term in the momentum equations of the
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solid particles can be neglected if they are moving in a gaseous media.

Therefore those terms are neglected in the present study.

The concentration equation

To avoid the problem of density fluctuations of the carrier phase at this
stage, only isothermal flows are considered and vaporization is assumed to be
due to the vapor concentration gradient only.

The concentration C is defined as the ratio of the evaporated mass within
a control volume to the mass of the carrier phase in the same volume. The

instantaneous, volume-averaged concentration equation for the evaporating

'

material 1is

2.9

(p <!>IC)’t + (910 U.C)’

1 i 373

" where 6 is the molecular mass diffusivity of the evaporating material in air.
The source term in Equation 2.9 () 0kﬁk) represents the evaporated material

k
from the droplets of different sizes.

2.3 Time-Averaged Equations -

Introduction of time-averaged quantities. For steady mean flow, the time

averaged or mean values of ﬁi,ﬁ;;ﬁ and ¢ are defined as the following:

1 T 1 , T
U,= Lim = | _ U.dt V,= Lim = | _ V.dt
i Troo T o 1 ’ i T oo o 1
P=rLimi JTrpdt & ¥=riml T at 2.10
T o T ‘o
T')m T+Q
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Following common practice, all the quantities are separated into to a

fluctuating and a time average component as follows:

2~
It
a-]]
+
3
-4
[
L=
+
©

2.11

24
(@]
1
O
+
(]

For brevity, the overbars indicating averaged values will be dropped from all

the quantities herein.

The mean continuity equation of the carrier phase. Introduction of Equation

2.11 into Equation 2.2, and subsequent time averaging yields:

. ok
pl(GbiUi)’i + pl($ uii g = & m ¢ ‘ 2.12

The mean continuity equation of the kth phase. Introduction of Equation 2.11

into Equation 2.3, and subsequent time averaging ylelds:

k k k k ok )
pz(Q Vi),i + 02(¢ vi),i =-m ¢ 2.13
The mean global continuity.
ol+z¢k=1 2.14

W

The mean momentum eduations ror the carrier phase. Introduction of Equation

2.11 into Equation 2.5, and subsequent time averaging yields:
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' L k_k k . k
T - - - - +
p,@,U Uj) 3 o P,i 1P 4 £¢ F(U,=v) {m ¢kvi

KK K KKK
- F - +Ym¢ v, + U, .+U, + .tu, .
% A % ¢ vy (0 (U 5705 )+ ey ey gy )

pl(Qlu u, Ui¢1u5 Uj¢1u' o9y us ) r

1]

Multiply Equation 2.12 by U;, then subtract from Equation 2.15 and rearrange,

the result will be

k ok .k k
Ug=-&P, —¢P; Yoo (F+)(u-v))

k k k .k k k
- - +
{ F¢ (ui Vi) + { m¢ v, + ”I(QI(Ui,j Uj,i)

+ + - +U
¢y Cuy y*u, 1)) 5 —eylousu+ Uy u,

+ + 14) 2.1
qu,lu ¢ Y, )j G 1(4’1“3'),3' , | 6

The mean momentum equations for the kth phase., Introduction of Equaiton 2.11

into Equation 2.6, and subsequent time averaging yields:

k_k k k .k k k
= - - + F U —V -

Py @ ViV ® P, B P 2 (u v v,

k k k k k k k, k k. k, k k
Y Ee oy m e vy gV gt Vi ) ey ey )

K k k k k k k k k k k k .
- 2.17
p (& VISt Vi vyt Ve vy g vivj) P (oyp )
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Multiply Equation 2.13 by V., then subtract from Equation 2.17 and fearrange,

the result will be

p. V. Vi =-0P -¢kpi+Fk¢k(Ui-Vl.()
, 1

k k k .k k k k., k k
+F ¢ (ui-vi) -m ¢ A + uz[o (Vi,j+vj,i)

k, k k k k k k k k
+ ¢ (vi,j+vj,i)J,j - 92(0 vivj + Vi¢ vj
k k k k k k k k, k k
+ Vj¢v + ¢viij’j + 8,9 (pymp)) + o,V (¢ vJ.)’J. 2.18

i

The mean concentration equations. Introduction of Equation 2.11 into Equation

2.9, and subsequent time averaging yields:

k.k
du.Cc) ., = 8(®.C .+ $.c . . dm
(9)8,050) 5 = (o83, 5+ B D) 5 L
- pl(¢1ch + C¢1uj + ¢1ujc + <l>1ujc)’j 2.19

Multiply Equation 2.12 by C, then subtract from Equation 2.19 and rearrange,

the result will be

R ‘ k.k
duU.Cc . = |p,.8(d.C .+ ¢.c , , + dm (1-C)
pllJ »J (1(1 »J 4’1 »J)),J %

- . N 2-2
pl(¢1ch + Cd)luj + ¢1ujc + ¢1ujc)’j + pIC( ¢1uJ)’J 0

In Equations 2.12 to 2.20 the overbars indicate Reynolds averaged

correlations.
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2.47 The Problem of Closure

In order to close the system of equations, the turbulent correlations in
Equations 2.12 - 2.20 must be modeled in terms of the time-averaged quantities
and some turbulence quantities that are governed by the laws prescribed by a
“turbulence model.” Examinagion of the literature on the mathematical models
of two—phase'fiQws shoWg_th;t most of the existing models are based on ad hoc
modifications of fhe single-phase turbulence kinetic energy and length-scale
equations. As a result,'those models fail to predict the physical behavior
of two-phase flows. The next section, 3, describes a two-equation turbulence

model suitable for dilute vaporizing sprays.
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3.0 A TWO-EQUATION TURBULENCE MODEL

3.1 Introduction

The objective of this section is to develop a general and economical
turbulence model for free bounded dilute vaporizing sprays.

The first task is to select fhe type of model that is to be employed.
Thus, in Section 3.2, the necessity to consider a model that employs transport
equationf for both the energy and the scale of turbulence will be pointed
out. Starting with the instantaneous two-phase momentum equations for an
isothermal flow, the transport equations for the turbulence kinetic energy and
its dissipation rate for the carrier phase are obtained in Section 3.3.
Closure of the prqposed set of.transport equations 1s achieved by modeling the
turbulent correlations up to a third order in Section 3.4. The modeled
equations in the Cartesian tensor notations are presénted in Section 3.5.
Finally, the modeled equations in the cylindrical coordinates are presented in

Section 3.6.

3.2 Choice of Model Type

As discussed in Subsection 1.2.3, the previous attempts to model the
dilute suspensions of two-phase flow to account adequately for major exchanges
of momentum and mass between phases has not yet been established, even for
dilute systems containing particles smaller than the Kolmogorov length
scale. Few investigators have tried to consider the effects of tﬁe
particulate phase on the turbulence structure (Nagarajan and Murgatroyd, 1971;
and Genchev and Karpuzov, 1980) but they introduced many phenomenological
approximations and coefficients that render thelr schemes are applicable to
more general flow conditiops and configurations. Melville and Bray (1979) and

Michaelides (1984) have employed the mixing length hypothesis to handle the



gas solid two-phase flow in free jet and fully-developed pipe flows
respectively. fhis approach is limited toiflows whéfe turbulence structure
changes at a slow rate in the main flow direction. However, the empirical
constants involved vary from one flow situation to another and are thus valid
for restricted flow regions only. Danon et al. (1977) employed a one equation
model (K equation) to consider the effects of particles on the turbulence
quantities. The deficiencies of that modei to obtain accurate predictions.of
two-phase turbulent jet flows necessitated that they multiply the production
and the dissipation of K by coefficients that are dependent on particle size
and concentration. The encouraging results obtained by Elghobashi and Abou-
Arab (1983), Pourahmadi and Humphrey (1983),.and Buckingham and Siekhaus
(1981) suggest that higher levels of closure are required to predict shearing
two-phase flow accurately. The model will be based on the‘two~equation (K-¢€)
7moéelrof turbulence for single-phaserflows Qith uni?éréal constants (Launder

et al., 1972).

3.3. The Exact Equations for K and ¢

3.3.1 ThéfiurbulenézrKinetié;Ehergy ﬁ;;agion iK)i

The equation governing the mean kinetic energy (K = 1/2 EIEI) of
turbulence is obtained by substituting with the mean and fluctuating values
instead of the local values in the instantaneous momentum equation of the
carrier fluid (Equation 2.7), then ﬁultiplying by uj, and finally time-
averaging.

The resulting K equation reads:

(#,0gCuguy/2) g) = (= &)Uy gujuy = Uy pépujug)

Convection ’ (I) Production
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- pl(' ®)P sUs * P g0)uy TP g 0 uguu,  topeuuy ]

"(II) Turbulent Diffusion

- +
%l UpUs 8194

(111) Production and Transfer

k .k k k k k k k
{ (F-+m) (¢ ui(Vi— Ui) +o u(v,mu ) + ¢ ui(v.i - ui))

(IV) Extra Dissipation (ep)

ooy o+ ey 1900 )o@ (2 0 0) o vpuley (o (v 90) )

(V) Viscous Diffusion (VI) Extra Viscous Diffusion
and Dissipation ) and Dissipation

3.1

3.3.2 The Turbulence Energy Dissipation Rate Equation (g)
The exact equation for the dissipation rate per unit volume

(e = 3 i )) is derived by differentiating the instantaneous equation
’

(2.7) with respect to xj, then multiplying throughout by v Yy 3 and finally
’

time averaging. The exact equation of ¢ thus obtained is

s U =(-n3u, u <¢u>..—2—“u'.u B U -2 (.6 .6 .U
(@00 =0 By 50 @00 57 208 59,500 0" 211 50,5010,
Convection (I) Production by the Mean Motion
- w, .u. (. - b.uu. .l - 2y.u. .u U
219,50, 90% 0 5 T 2%, T Pt ("1 1,00,
+ [ =24 .
(13V1“1 »J ,2(u2°1) lui ‘ui,z(uz¢l),3)
(I1) Production by Self-Stretching of
3, Vortex Tubes
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(I11) Turbulent Diffusion

+ [-2v. ¢ (uu.).-z

19, %1, 23%]

1 1 271,80, 1 1,J¢1,jU£Ui,2

(1IV) Production and Transfer

1 11,3

1 e ——
+ = - . . .o .
. [-2v.u. (p’]_gl),‘J Zvlul’

j(4>1p L)

s 1 )j

- 2v

- 2v1ui .(¢1P L)

Vg0

b ’l ’J

(V) Spatial Transport by Pressure (fluctuation and mean)

_zv ’ . _—
) F a9 (v, L [e5W.-v!)]
pl 1,] 1 1 s ] 1,

(V1) Extra Dissipation

+ 2 -
vlvl i J[(ll,l 1,1)0 ],31

[(ui-v?)ok]’

(VII) Viscous Diffusion and Destruction

+ [Zvlvlu j[QI(Ui,2+U2,i)],J£ 2\:1\)1 (¢1(u.

(V11I1) Extra Viscous Diffusion and Destruction

The terms in the K and ¢ equations, (3.1) and (3.2), are classified into

+u L)) . ]

1,2 f,1 ,3J%

N

tu.
J 1,

k k
j[¢ (ui-vi)]

3.2

groups enclosed by large curved brackets; each group is labeled according to

its particular contribution to the conservation of the transported quantity.

The turbulent correlations in Equations 3.1 and 3.2 that include the

: . . k . .
fluctuation of the volume fraction, ¢, or ¢ , or their gradients are due to

the presence of the particles in the same control volume with the carrier
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phase; setting these correlations to zero, ¢ . to unity and ¢k to zero will

11
reduce Equations 3.1 and 3.2 to their familiar counterpart for single-phase

flows.

3.4 Closure of the Propoéed Set of Transport Equatioﬁs

The.proposed model is restricted to high Reynolds number flows of dilute
vaporizing sprays. Therefore, the viscous diffusion in all the governing
equations is neglected due to its relatively small magnitude as éompared with
the turbulent diffusion. Due to the diluteness assumption of the suspension

all fourth-order correlations containing the volume fraction fluctuations such

as u,uu u, .u u . and u, .u, .u are neglected due to their
$1%% Y10 %1,3%,0 00,5 *1%,35%,05% g
relatively small values., The continuity equation of single-phase flow is used

in the modeling approximations of some of the turbulent correlations.

3.4.1 Cloéure of the Continuity Equation of the Cérrier Phése

The second term on the LHS of Equation 2.12 represenﬁs a mass flux
contribution to the turbulent diffusion of the carrier phase. Following Hinze
(1972), Melville and Bray (1979) and Elghobashi and Abou-Arab (1983), a

gradient—-type diffusion is assumed for this correlation given by:

¢ . 3.3

where € is the mass eddy diffusivity of the turbulent flow of the carrier
phase. This quantity can be related to the momentum eddy diffusivity (vt) as

the following:

™
Hh

I
|»—-

3.4

<
[md

Q
(¢]
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where o, is the effective Schmidt number for the carrier phase. It may be
expected to be constant of value 0.7 in line with the average levels of
effective Sghmidt number reported for a numbef of free shear flows (Launder,
1976; and Spalding, 1971).

The momentum eddy diffusivity of the carrier phase is related to fluid
kinetic energy (K) and the rate of dissipation (e¢) of K by:

v = cu Kz/e 3.5
The value of cu in general is 0.09 but it can be a function of suitable flow
parameters to extend the range of applicability of the K-e¢ model. For
example, in axisymmetric jet flows which are considered in this work, those
parameters are the deceleration of the velbcity at fﬁé axis of -the jeér
(Equation 3.36) and the jet width (Equation 3.37).

Corrsin (1974) discussed the limitations of the simple gradient
hypothesis for modeling turbulent diffusion in turbulence. He pointed out
" that this model may lead to inexact results if the size of the -
energy-containing eddies is much smaller than the distance over which the
gradient of the considered quantity varies appreciably.

Lumley (1975) tried to overcome this problem by proposing a model for the
turbulent flux of passive scalar in inhomogeﬁous flows. But since Lumley's
model is not well tested yet, the simple gradient hypothesis will be used in
the present work due to its frqitful results in many types of flows (Lunder et
al., 1972).

3.4.2 Closure of the Continuity Equation of the kth Phase

Similar to Equation 3.3 the correlation ¢ka on the LHS of Equation 2.13
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is modeled as

3.6

C
£h is the mass eddy diffusivity of the turbulent flow of the droplets. An
expression to obtain this quantity in terms of its counterpart for the carrier

phase and the droplets' Schmidt number g§ is developed in section 5. The

droplets' Schmidt number is defined as
g_= eh/e 3.7

3.4.3 Closure of the Momentum Equations of the Carrier Phase
Here, the modeling of the turbulent correlations needed to close the
momentum equations (2.16) are presented. The correlations of two scalars

containing the volume fraction in the momentum and concentration ‘equations

such as ¢lc, ¢1p or ¢1cuj are neglected. This approximation is based on the
following: 1) the lack of understanding of the nature of those correlations,
thus the modeling which is supported by the experimental data (Lumley, 1978b)
is not available, and 2) their relatively small values comparéd to the
turbulent diffusion terms (Buckingham and Siekhaus, 1981; and Launder, 1976).
The correlation'G;G; in Equation 2.16 represents the transfer of momentum
by the turbulent motion. The oldest proposal for modeling this correlation is

that of Boussinesq (cited by Launder, 1976):

2
: 3.8
Gin

[
-
e
-
Wi

The term involving the Kronecker delta, Gij’ is necessary to make the
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expression applicable also to normal stresses (when i = j). The expression
(3.8) has been severely criticized by some workers, and it should not be used
without'caution. The use of that expréssion is justified on the basis of an
approximate local equilibrium. If the addition of the droplets. causes the
turbulence of the carrier phase to adjust more slowly to the mean velocity
field, or if it introduced additional mechanisms for generation of turbulent
energy, the expression (3.8) will be a poor approximation. Melville and Bray
(1979) argued that neither of these effects will happen if the mass loading
ratio is less than unity. The other approach is to solve a traﬁsport equation
for ﬁ;ﬁg} which in turn contains higher order correlations that require
‘modeling. To be consistent with the pfesent level of élosure the presenﬁ
study will use (Equation 3.8).

The correlation EIE;EE will be modeled by adapting Launder's proposal

(1976) that gives

—_— - ( .
¢1uiuj c (K/e) [uiuz(uj¢l),£ + ujul(ui¢1)’2] 3.9

where ¢ 1s a constant of value 0.1.
. k k . . .
The correlation ¢ (ui-vj), which appears in the momentum equations of

both the carrier phase and the droplets, can be written as

K ky _ k. _ KK
o (ui vi) S 4u. -6 vy 3.10

The second term on the RHS of Equation 3.10 was discussed previously. The

first term is modeled as

ofu. = - e 0%, | 3.11



The last correlation to be modeled in the momentum equations of the carrier

phase 1is which appears multiplied by 1 and will therefore be

11,5

neglected due to its relatively small value.

3.4.4 Closure of the Momentum Equations of the kth phase

Similar to the carrier phase treatment the correlations ¢kp 1 and
b

¢k(vk +v& ) in Equation 2.18 are neglected. The two correlations

1,5 7 3,1
k k k k
¢ vy and ¢ (ui - vi) have already been discussed. The only two correlations
k k k k k ' .
still to be modeled are those of the forms vivj and ¢ Vivj° Similar to the
carrier phase, the correlation v?v? is modeled as
k k k. k k 2 k o ’
v,v, = = v (V, , 4V, + =z 6 K 3.12
13 p( 1,] J,i) 3 1jp
k 1k k ‘ , .
where Kp =3 ViVy 3.13

The momentum eddy diffusivity of the droplets in the size range k (vE) is

related to its counterpart for the mass as the following:

]V = 1/g 3.14
' %p v _
where o, is a coefficient of value 0.7 as given by Melville and Bray (1979).

Again, EE is determined in section 5. The correlation ¢Fv§v§ is modeled

similar to Equation 3.9 as

kv?v? = c¢(K/€) (v?vi(v§¢k)’l + v?vi(v§¢k)’2) 3.15
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3.4.5 Closure of the Vapor Concentration Equation
~ As discussed previously the correlations ¢lc j° ¢1c and ¢1cuj in Equation
’
2.20 are neglected compared with cuj or ¢luj.r_An investigation of the

behavior of cuj suggests that it can be modeled similar to Equation 3.3 as

]

3.4.6 Closure of the Turbulence Kinetic Energy Equation

The exact equation of the turbulence kinetic energy K for the carrier
fluid is given by Equation 3.1. Tbe terms are grouped according'to their
physical contribution to the conservation of K. The modeling of the turbulent
correlations appearing in the K equation (14 correlations) are presented in

this section. ¢luiuzui % is neglected since it is a fourth order
] .

correlation. TheAcorreIatidns'uiuz, $,u;, $u ujand ¢ku£ inAEquationr3:1 were
discussed in subsection 3.4.2.

The pressure diffusion terms (GIE?; and ?qE:I$I) in'Equation 3.1 are
neglected, following the Imperial College group and the recommendations of
Hinze (1975), and because very little is known about it (Launder, 1976).

The turbulent diffusion correlation ujupu, o can be written as
b ]

2
[ug(1/2 i)l o 3.17
which modeled as
[(% /9K o] 4

where % is an empirical diffusion constant of order one.
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The correlation ¢o1u1ui g can be written as [¢1(1/2uf] i which can be
- ? b

neglected due to its relatively small value compared with [uz(I/Zui)]
y

k—
1

£

Following Elghobashi and Abou-Arab (1983), the correlation ui(v ui) is

modeled as

u u

k L
(it e = =KL - (8- R)/9,) E(w) dw) 3.19
where @ is the harmonic frequency of turbulence and E(w) is the Lagrangian
energy spéctrum function of the carrier phase. 91, 92, and QR are functions
of the carrier and dispersed phases properties, the droplet diameter, and the

harmonic frequency. They are discussed in detail in subsection 4.1l.

The correlation ¢kui(v:—ui) is modeled as

#u, (V5= up) = - e - upuy (089 o+ (- w9 )
= - e D e, | 3.20

The extra viscous diffusion and dissipation, two terms in group VI in
Equation 3.1, are neglected due to their relatively small magnitudes as
compared with the other similar terms (see Daly and Harlow, 1981, and Launder

et al., 1976; Launder et al. 1975).

Neglecting the viscous diffusion, the last correlation to be modeled in

the K equation, ului((ui,z + “z,i)°1J,z represents the_dlssipation.rate of

K. When the local Reynolds number of turbulence is large the dissipative

motions can be assumed to be isotropic, therefore

\)pi[(ui’z + “2,1)°1J,2 ~- &€ : 3.21
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3;4.7 Closure of the Turbulence Energy Dissipation Rate Equation

The exact equation of the dissipation rate of turbulence energy, €, for
the carrier fluid is given by Equation 3.2. The terms are also groupedﬂ
similar to the K equation, -

Tennekes and Lumley (1972) have shown, Based on an order-of-magnitude
analysis, that the terms involving mean strain rates in Equation 3.2, groups
(1) and (IV), are negligible at high turbulent Reynolds number compared with
the production by self-stretching of vortex tubes. Therefore, gfoups (I) and
(IV) are neglected in this study. -

The correlation 2V ¢'E—:;E;:;;G;, which accounts for the diffusion

1114
of € by velocity fluctuations, is handled as the following:

2Vjuy Uy ggUe = (VY 59y 5u) g

(euy)

CWvdepey, s

Group (V) represents the diffusional transport of € by pressure fluctuations.
Alsé, it contains a term that represents a traansfer due to the mean pressure
gradient, ZVE;:;($IP,i)’j. Following Rodi (1971), the present study neglects
the pressure diffusion terms (group V).

The viscous diffusion terms, part of group (VII) and group (VIII), are
neglected due to their relatively small values compared with the turbulent
diffusion.

The first term in group (II) expresses the generation rate of vorticity
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fluctuations through the self-stretching action of turbulence. Rodi (1971),
and Hanjalic and Launder (1972) have argued that this term should be
considered in conjunction with group (VII), representing the decay of the
dissipation rate ultimately thrOugh the action of viscosity. At a high
turbulent Reynolds number, these two terms are of opposite sign,lhowevér, and
thelr difference necessarily remains finite., Following Rodi (1971), the terms

are collectively approximated as follows:

)
T 2V 50,0 e®) 5 T 2V 5y e e 0% 5
2
= (egPi/e = cep®) R 3.23

where P, is the total production of K [group (I) and (III) in Equatiom 3.1],
and Cey and_c62 are constants of value 1.43 and 1.92 respectively.

The last correlations to be modeled in € equation are those of group
(VI), which represent the extra dissipation due to the relative velocity

between the phases. They are modeled collectively as one term which is given

by

" Ce35 e/K
where €p (term IV in Equation 3.1) is the extra dissipation of K. The

constant c¢_, was optimized by Elghobashi et al. (1983) for a two-phase jet

€3

flow. The value of this constant is 1.2.

3.5 Modeled Transport Equations in the Cartesian Tensor Notations

Using the modeling approximations discussed in subsectiom 3.4, the
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transport equations in the modeled form are obtained. Those equations are

giveniin Appendix B.

3.6 Modeled Transport Equations in the Cylindrical Coordinates
The flows considered in this.work are

a) axisymmetric (without swirl),

V% = Ue = 0, %E (time-averaged quantites) = O, 3.24

b) of the boundary-layer type,
VA I AR TIPS T RS A 3.25

The pfesent study adopts the notations commonly used for the boundary layer
flows: z, r, 8 for the coordinates; U,, Ves Vg for the velocity components of
k _k

the carrier phase; V:, Vr, Ve for the velocity components of the droplets of

class k.

Usinévexﬁreséion§'3.24 and 3}25,Wihe‘ﬁodeied ﬁranéporf eqﬁatidns fér fﬁe
mean and turbulent quantities presented in Appendix B can be expressed in
cylindrical polar form. This can be done in a straightforward manner by the
methods of tensor calculus as exposed in Synge and Schild (1978), for

instance.

The mean continutiy equation of the carrier phase is

= ) @ 3.26
k
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The mean continuity equation of the kth group is

k k
p v P v
k_k 2 k k P .k 2 P .k k. k
$ == - — -~ =% (r-=t = -
92( vz),z+ r (ro Vt),r °2(oé ¢,z),z r (roc Q,r),r me .
3.27
The mean global continuity is
¢ +) 0 = 3.28
k .
The mean momentum equation for the carrier phase in the axial (z)
direction
k, k .k k
p1°1UzUz,z + p1¢1UrUz,r o <I>IP,z - % o (F +m )(Uz_vz)
v ~ v
1 t 1 K t :
+ ;(¢1p1rvtuz,r),r + °1Uz,r(6: ¢1,r) + C¢Pl r (E rthz,rKGZQI,r),rJ,r
3.29

The mean momentum equétion for the carrier phase in the radial (r)

direction is

pl‘bleUr + p, 0 UI_Ur = - 0P

k, _k .k k
»Z 11 »T 1 ,r % ¢ (F )(Ur_vr)
k v
-y R ¢kr ) -t (1—<:?‘)<x>kr
k c k c L
v p v p
t 1 , ¢t 2 "1
+ pl 3; ol,rUr,r * r (Eé rUrq’l,r),r 3r (rK¢l),r
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2 v
1 ,4 K t
tepr3E T (3; ¢1,r),r),r

3.30

The mean momentum equation for the kth phase in the axial (z) directon is

o, 8VEYE 4 o ekyiyR o g 4 FReRu - v
2 zZ 2,2 2 r z, s 2 z z
1,.k Kok k k Lk 1 (K k. k k k
LG LR
+ r( rpzov pvz,r),r + psz,r(vP Q,r) + c¢92 r ervpvz,r(vP ¢,r),r),r
+ (p, - p)ge | 3.31
2 1 o

The mean momentum equation for the kth phase in the radial (r)

direction is

I AR T i AT SN LT C L
2 zZr,z 2 rr, 4 r r
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The mean concentration equation is

1 Yt
o Urc,r =T (plr¢1 3: C,r),r

11

UzC,z + p1¢1

k.k £ o

+ ) dm (1-C) + plc’r 5 ). , 3.33
k c
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The turbulence kinetic energy equation (K) is

A Ve v :
. - -2 .t
p1°IUzK,z + pIQIUrK,r a plletUz,rUz,r 3 p1c¢(c )(°§ ol,r),rUt,r
Y ‘ 8 -%
+p c¢( ) t(o 1 r),rUz,rUz,r - l ko® (F +m )(1 -1y (--;--)E (w)dw)
f L UK ) - e b RE ) (1) iz-:f‘—‘»:( Ddu)]
K r r P ,r c¢.cu P ,r’,r o 2 ot
1 Ve
+ (plo1 3-'rK,r),r - pl°Ie , | 3.34

. The turbulence energy d1581patibn rate equation (g) is

- N . 6% e M
] = - ) - - —_—Y(—-= C
p1 IUze,z + plolure,r ~ c81 K pl°1 [vEUz,rUz,r 3 &1 ( u)(o ‘°l,r),rur,r
c \). - . . Q. -
o Ky y (o | Ce £ %) (oq1- ) LR
+ 3 (3) Ve (0 ¢1,r),rUz,rUz,r] Ce3 ¥ [} (¢ + m ) (& K(1 jo ( )E(ude)
1 c : k 2
v 9 -
Ky, kK e, k,k - =%
- (U= V(e ) + c¢<5;>(vp ¢ (-, (- ;—->E(w>dw>l
v 2
1 t €
eI st T et R 3.35

The constants of the turbulence model

The constants in Equations 3.26 to 3.35 are two sets: one is identical to
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that of Ehe single-phase_K-e model and the other belongs to the two-phase
model. The former is well established and it was not changed here. The
latter is new (c€3, oc) and has been obtained from one set of data (Elghobashi
et al., 1984). The coefficients of the single-phase model and the optimized

values of the new coefficients are given in Table 3.1.

Table 3.1 Coefficients of the Turbulence Model

oc % <y Oc ) Ceq Cen C€3‘ o,
0.7 1. Eq.(3.36) 1.3 0.1 1.44 Eq.(3.38) 1.2 0.7
d z,c | dUz’c | o2
_ dz dz
£, = | 0.5R 5 — | . 3.37
z,c z,®

U, . and U, are the axial velocities of the fluid at the jet centerline and
’ B -

the ambient stream respectively, R is the local jet width (Launder et al.,

1972).

The constant Cen in Table 3.1 is given by

Ceg = 1.92 - 0.0067 £ - 3.38

The quan;ities Ql’ 92, QR and E(w), which are involved in the integration
terms in Equatiouns 3.34 and 3.35 will be discussed in subsection 4.1. The

evaporated mass per unit time and unit droplet volume (ﬁk) is calculated in
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4.3. The interphase friction coefficient (Fk) is evaluated in subsection
4,4, The last quantity in Equations 3.26 to 3.35 that should be calculated 1is
the momentum eddy diffusivity of the droplets (vpk). This quantity is

calculated in section 5.
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4.0 SINGLE PARTICLE BEHAVIOR IN A TURBULENT FLOW

InAthi; section some turbﬁlent correlations that afe needed in the
turbulence model closure are obtained. First the equation of motion of a
single particle in a turbulent flow will be discussed, then Chao's (1964)
solution for that equation'will be presented, and finally the turbulent
correlation between the fluid velocity and the relative slip velocity will be
obtained.

4.1 Transport Behavior of a Single Particle

Tchen (1947) extended the Basset-Boussinesq-Oseen (BBO) equation for the
unstea&y Stokes motion of a spherical particle in a stagnant fluid to that of .

a particle in a moving fluid that reads:

4 4“3 o llﬂa CR Zﬂa s _ _ -
3 Py V = —3 PO - 35— pl(v a) 6ﬂula (v = u)

¢ G(tl) - ﬁ(tl)

- 6Tu .a . l dt
By e
3 o B ]
4ma> - X
-8 (p, - 9) . 4.1

In Equation 4.1 u(t) is the velocity of the fluid in the neighborhood of the
particle, but far enough to be unaffected by it; v(t) is the velocity of the
particle; pland p2 are, respectively, the density of leid and tﬁeAdensity of
the particle; a is the particle radius; g is the acceleration of gravity; and
uland vl are, respectively, the dynamic and kinematic viscosities of the
fluid. The dot denotes (%? + v %;). The physical meaning of the different

terms of Equation 4.1 are discussed by many workers (Fuchs, 1964; Hinze,

1975). As a summary, the first term on the right hand side (RHS) of Equation
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4.1 is added to BBO equation on the basis of intuitive consideration by Tchen
(1947) to account for the unsteady motion Af the fluid or its pressure
gradient. The second term is the inertia force due to relative acceleration
of the virtual mass attached to the particle; the third term is the Stokesian
drag; the fourth term ié often referred to as the "Basset" force, which
results from the relative acceleration between the particle and the fluid; and
the last term is the gravity force. The.importance of each term in Equation
4.1 under different flow conditions §nd the various approximations for
handling that equation is explored by Hjelmfelt and Mockros (1966). fhey
found that for high density ratios (e.g., those gfeate:‘than 1Q3) all the
terms on the RHS of Equation 4.1 are unimportant éxcept fo; the drag term.

For the sake of generality, however, all the terms will be retained in the

-

present analysis.

Cofrsin and Lumley (1956) argued that the first term on the RHS side of
Equation 4.1, which Tchen included to represent the force created by the
pressure gradient in the fluid, should be evaluated via the full Navier-Stokes

equation. Accordingly they proposed that Equation 4.1 should be replaced by:

3 dv, 3 du du a2u

4Ta i _ 4ma i i~ i
57 P ae - 3 At Y N Y1 —asz)
) 2_"a3 . (dvi ) aui .y aui)
3 1° dt ot j 8xj
- 6T ula (vi - ui)
dvi _ Bui ) 3ui) ae
ac ~ 3t V3 & 1
67 wa le J
fiﬁl Yt - tlf
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3
4Ta .
- 3 g (pz - pl) R 4.2

Maxey and Riley (1983) derived an equation of motion for a solid particle in a
tﬁrbuient fiéw.' They considered the faxen tefmé to account fbr the unstea&} 7
effects on Stokes drag law. For particles of size smaller than the
Kolﬁogoroff length scale, n, Hinzé'(1975) argued that the following two

conditions can be satisfied:

a2 aui

v1'5§; . :

vy aui/axi

b) — —
vl azuilaxf

1 ' | A
Thus, if the conditions 4.3 and 4.4 afe satisfied, then the viscous stress
r—tgrm;in—Equation~4.2 and- the- Faxen terms on Maxey and- Riley's equation- can be
‘Vneglected. Therefore, in the case of particles with a diameter less than the
Kolmogoroff length scale, all the equations of Corrsin and_Lumley, and Maxey
and Riley, become identical to.Equation 4.1. |
T"Chgo;(49§4):pqnsideredeQUapiqnzAjlfwith,thegtqugest;ictiqnsgA.3 and 4.4
to obtain the connection between some transpbrt properties of a particle and
.those of its surrounding fluid.' Neglgcting ;he gravity force and agplying

such restrictions, Equation 4.1 reads as follows:

¢ (V4= upidey

3 . 3 l'/‘ _
Vi - Bui + G.B(Vi - ui) + B(-i:) J—O Tj— =0 4.5
in which a = 3V1/a2 : 4.6
B = 29351 5 4.7
2

1
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Chao (1964) applied the Fourier transform of the velocity component ui(t)
as defined by

51(w) =) u, (t) exp (-iwt)dt 4.8

~

and similarly for vy

~

Unlike G;, vy is not only a function of w, but also a

function of the physical parameters a and B.

The Fourier transform solution of Equation 4.8 with to

= - o gives
[a+_/3°m ] +1i[w+ y 3ov
v .= 2 2 73 4.9
i y Jaw w 3aw

By introducing the energy spectrum function E(w), a relation is obtained

between the intensity of the particle turbulent motion and that of the

surrounding fluid:

2
L) L
— = E(w)dw 4.10
S22 ° %
. .
: _ 02 - 0. 3/2 w1/2 )
where 91 = (3" + V6 (3 + 3(%> +_{—€ (3 +1 4.11
2,02 -1 ,w3/2 W~ w1/2 y
= P HTEE (P +3(__?a)+«6(‘;’) +1 4.12

The Lagrangian frequency function E(w) is in general affected by the

presence of the particles. 1In the low frequency range (inertial subrange),

the modulation of the Lagrangian frequency function of the carrier fluid by
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the particles can be neglected (Al-Taweel and Landau, 1977). Thus, in the

present work the Lagrangian frequency function is given by (Hinze, 1975)

T
Bw = (&) (—— , | | 413

+Ww T
! L

where ® ranges from 1 to 104 (sec'l).

The local Lagrangian integral time scale T is calculated from (Mostafa

and Elghobashi 1984b):

= 0.233 K/ ¢ : ' 4.14

Chao proceeded his solution by defining a relative velocity w, between

the particle and the local gas velocity as

W o=v, - u a 4.15
This value, when substituted into Equation 4.1, again with t, == followed
by the Fourier transformation and solving for w , gives E
~ - (1 - Biw ~ , !
“ uy 4.16

e+ 83T 4 arw+ 83D

The first term in the denominater of Equation 4.16, af, was written wrongly
(as a only) by Chao (1964) and Soo (1967). Hetsroni and Sokolov (1971)
handled the incorrect form of Equation 4.16 to study the effect of the
dispersed phase on the fluid turbulence energy spectrum. Using that erroneous
equation Hetsroni and Sokolov obtained Equation 29 (in their article), which

relates the turbulence intensity of a two-phase flow to that of a single
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pﬁase. If Equation 4.16 is used in the analysis of Hetsroni and Sokolov,
their Equation 29 will give equal turbulence intensi;iesvfor the single~ and
two-phase flows. Although Hetsronli and Sokolov's theoretical analysis gives
good qualitative results, it has no basis and therefore should not be taken
seriously.

Chao (1964) obtained thé ratio between mean square relative velocity to

that of the surrounding fluid:

mf - QR :
— = E(w)dw 4.17
- o8
u,
1
where 7, = [(1-8)w/ aB]? 4.18

This solution applies to dilute suspensions, where there is no interactions
between the particles.

Elghobashi and Abou-Arab (1983) considered Chao's solution to get the
turbulent correlation G;?G;:;I) that is needed in their turbulence model.

This quantity is given by
Q
(1 - Jo —a E(w)dw) 4.19

This correlation will be used to close the time-mean equations in the present

work.

4.2 Droplet Shape
4.2.1 Theoretical Analysis
It is well knownlfhat the change in droplet shape affects not ounly the

interfacial area and drag force but also the evaporation rate. Most of the
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1983) for lidﬁia dfdplét-ééé flow have been based dnrfﬁéréééuﬁptioniof

theoretical studies (Krestein, 1983; O'Rourke, 1981; Mostafa and Elghobashi,
spherical drbplets. This assumpgion must be justified, especially if the
droplet is suspended 1n a turbulent flow.

The shape of a liquid'droplet moving in a continuous'phage is determined
by the forces acting along the surface of the droplet. At any time the net
fbrce is the balaﬂce of the pressure, gravity, buoyancy, drag, and inertial
forces of the exterior- fluid. At the_fiuid-fluid interface there will be én
equilibrium of normal forces. The forces acting inward are due to the d&namic
stresses and static head of the exterior fluid and interfacial tension. Those
acting gutward are due to the dynamic stress and sfatic head of the interior

fluid. 1If the droplet 1is spherical, all the forces will lie on a radial line

‘and the.interfacial tension force will be the same on all parts of the

‘surface.

" For a 1iquid droplet moving in a gaseous flow, a study is presented here
of the physical factors that might be expected to control the spherical
shape. Those factors are as follows:

1. sSurface tension =- This force is a consequence of the net inward

attraction exerted on the surface molecules by those which are lying
deeper .within the droplet over the prevailing force-in the gas
outside. This increment in total pressure, across the interface, Ap, at

a certain point on the droplet surface is given, in general, by
Ap = Y(l/a1 + 1/a2) ' 4.20

where Y is the surface tension of the liquid-air interface (N/m).

In the special case of a spherical droplet, a; = ap; = a, and then
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2.

3.

AP = X/a ' 4,21

Internal hydrostatic pressure —-— There exists within the droplet a
vertical pressure gradient of exactly the sort found in any mass of
fluid at rest in a gravitational field. 1In the»limit of lérge droplets,
the difference in hydrostatic pressure between top and bottom of a
droplet (&gzga) becomes quite important in controlling droplet shape.

The relative velocity between the droplet and the gaseous phase —- The

fluid dynamic pressure exerted because of the relative velocity between
the gaseous phase and the droplet tends to cause a distortion in the
spherical shape. The effect of this inertial force (l/a)l(U—V)z)

increases as the Reynolds number does. As the Reyholds number is

- increased, droplet oscillation (unsteady state distortion in shape) will

set in; ultimately as Re increases droplet breakup.will occur.

Internal circulation —-- Due to the vortical motion, there is a

centrifugal reaction that varies as the square of the circulation
velocity (Oliver and Chung, 1982). Many workers (Beard, 1976;
Prdppacher and Beard,‘1970) reported that iu the case of a water droplet
(of diameters less than 1 mm) falling at terminal velocity, internal
circulation has negligible effect on distortion.

After stating the factors that might be expected to control the shape of

a 1iquid droplet suspended in a moving gas, a study of the order of magnitude

of each factor is necessary. The equation for the shape was given by

Laplace's formula (McDonald, 1954) for the mechanical equilibrium of an

interfacial surface, which can be written at the droplet's equator as:

7
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v e b = 24 (op-0)8a + Lo (1-1)? 4.22
1 2
The first term on the RHS of Equation 4.22 is the spherical curvature
pressure, the second is the hydraulic head, and the third is the differential
dynamic pressure. From the above equation it can be seen that as long as the
spherical pressure (2Y/a) is dominant, a variation in surface tension is
unimportant. TIn Table 4.1 the comparative values of the three terms in
Equatiqn 4.22 are calculated for 100 u methanol and Freon-l11 droplefs (tHe
materials used in the preseht study) moving in air with a relative velocity of
S m/s. Also, the dimensionleésAgroups; defined by Equations 4.23a, 4.24 and
4.26 are given in Tabie 4.1. The physical corresﬁonding properties of A
methanol and Freon-11 are given in AppendixrA. - ‘ .
Table 4.1 The Forceé Acting Along the Surface of

Liquid. Droplets and the Corresponding
Dimensionless Groups.

Re = We = Et =
_ - . _ T . = .'2’('11 - - d2
2y 1 9 P, (U-V)d °1(U'V)' g(pz-pl)
a (py-p))ga §°1(U'V) "'i;”‘ YT Ty T
N/m?2 N/m2 N/m2
Methanol 872 0.4 14.73 32.72 0.135 0.0036
Freon-11 300 - 0.744 . 14.73 32.72 0.39 0.02

Table 4.1 shows tﬁat, for 1iquid droplets of diameters less than
100 u and for the two different materials, the surface-pressure increment is
large.compared with the minute hydrostatic pressure differences within the

droplet, or compared with the small aerodynamic pressures. Hence, these
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liquid droplets do simply assume the shape implying minimum surface free-
energy, thus accounting for their well-known spherical form.

Because of the need to answer the question of whether internal
circulations should be important in the droplet shape problem, the upper limit
to the centripetal force acting on the droplet surfacé due to the internal
circulation will be estimated heref Pruppacher and Beard (1970) reported that
for a water droplet falling at terminal velocity, the velocity at the equator
was found to be about 1/100 of the droplet's terminal velocity. For a
relative velocity of 5 m/s, the maximum velocity at the equator is about 0.05
m/s. The centripetal force per unlt area acting on the small lamina of the
internal boundary layer can be calculated. This lamina of radial distance can
be assumed to be equal to oné tenth of the distance from the droplet surface
to the internal stagnation point. Thus, for a droplet of 100 um diameter,
this distance is about 1.5 un. Since the centrifugal reaction resulting from
the vortical motion varies as the square of the circulation velocity, the |
centripetal force per unit area acting on the internal lamina of the droplet
is found to be about 0.8 N/mz. Thus, the order of magnitude of the
centrifugal pressure gradient appears to warrant neglect of internal

circulation compared to the other parameters.

4.2.2 Experimental Observations

Many researchers have investigated the different factors affecting the
droplet shape and the flow field inside and outside liquid droplets moving in
a continuous phase (gas or other liquid). Wellek et al. (1966) investigated
the effects of various properties, droplet size, and droplet velocity on
droplet shape for forty-five dispersed liquid d;%blets falling through

stationary liquid continuous phases. The maximum ratio between the viscosity
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of the dispersed and continuous phases was that of ethylene glycol (droplet)
and hexane (liquid system). This ratio was about 47. Empirical relations
involving the Weber number, We, Eotvos number, Et, and viscosity ratio were
obtained. These relations enable the prediction of the eccentricity of
nonoscillating droplets over a wide range of Reynolds numbers (6.0 to
1354). This number is given by

p,(U-V)d

Re = ———m—— 4.23a
1

One of their relations is:

a
R = ;1 = 1.0 + 0.091 wel*? 4.23b

2

where the Weber number is given by

pl(U-V)Zd
We = ——— . 4.24
Y .
!
and R~=f;—fis the: ratio of~the length.of the minor to the major "axis of the
9 .

droplet. From Table 4.1 for a 100 u Freon-11 droplet moving with a relative
velocity 5 m/s in air at the atmospheric conditions (Re = 32.73 and We =
0.39), R = 1.037, which could be assumed a spherical shape. Garner and Lane
(1959) measured the distortion of liquid droplets falling in gases. They
reported the following linear relationship:

R=1+0.13 Et ' : 4.25

where the Eotvos E is given by
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g(p,-p )d>

Et = — 4.26
For the Freon-11 droplet with conditions summarized in Table 4.1, R is equal
to 1.003. Winnikow and Chao (1965) investigated the behavior of droplets
falling in water at Reynolds numbers ranging from 138-971. Their conclusion
about the deformation of nonoscillating droplets was that the droplets aré
spherical up to Et = 0.2 Since Equation 4.23 gives the distortion ratio in
terms of the Weber number which is a function of the aerodynamic pressure,
Equation 4.23 is recommended for the calculation of the spherical shape limits
for present droplets in a moving gas. Pruppacher and Beard (1970) studied the
deformation of water droplets falling at terminal velocity in air of 20°C at
sea level pressure, and nearly water saturated by a wind tunnel means. They
conciuded that droplets with an equivalent diameter smaller than 280 m
equivalent to Reynolds number Re = 25 had no detectable deformation from
spherical shape. Droplets of sizes d < 400 um Re < 200 were slightly deformed
into an oblate spheroid (R = 1.02).

Beard (1976) also analyzed all the available theoretical and experimental
data on drbplets falling in gases to derive a reliable method for obtaining
the terminal velocity and shape of a water droplet at'anyllevel in the
atmosphere. He concluded that droplets with diameters <:i mm (Re < 300) are
essentially spherical. He also reported that the effects of a varyiﬁg surface
tension and internal viscosity were‘shown to have a negligible influence on
the shape and terminal velocity of a falling droplet of diameters up to 1 mm.

Now, it is clear that the assumption of a spherical shape for methanol or
Freon-11 droplets of diameters up to 100 uﬁ moving with a relative velocity up

to 5 m/s (or Re = 32.72) is realistic based on the previous force analysis and
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the experimental evidence of the other researchers.

4.3 Mass Transfer

There are many aerodynamic parameters that dominate the process of
evaporation of a spray injected into a moving airstream. Relative velocity
and free stream turbulence are the most important parameters.

First, the evaporation of a spherical droplet, motionless relative to an
infinite, uniform medium is considered in section 4.3.1. Then the evaporation
rate of a moving droplet in a gaseous medium 1s covered in section 4.3.2.

Finally, the effect of free stream turbulence on the evaporation rate is

discussed in subsection 4.5.

4.3.1 Quasi-Stationary Evaporation of Droplets'Motionlegs Relative

to Media '

One of the earliest investigations of evaporation in stagnant gases was
m;de in 1877 by Maxwell (cited by Fuchs, 1959) who solved the steady-stéte
conservation equations of mass and energy in the gas phase under the following
assumptions:

1. Spherical droplet

2. Incompressible droplet fluid and surrounding fluid

3. Spherical symmetry: forced and natural convection are neglected. This
reduces the analysis to one dimension.

4, The droplet fluid is of a single component.

S. Constant pressure process '

6. Both droplet fluid and surrounding fluid are mutually immiscible, and

there is no chemical reaction.
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7. No spray effects: the droplet is isolated and immersed in an infinite
environment.

8. The system involves only purified fluids (there is no surface-active
material),

.9. Diffusion being rate-controlling: the rate of evaporation is completely
determined by the rate of diffusion of the vapor in the medium.

10. Constant and uniform droplet temperature: this implies that there is
no droplet cooling or heating.

1}. Constant gas phase transport properties.

12. Saturation vapor pressure at droplet surface: this is based on the
assumptiop that the phase-change process between liquid ‘and vapor
occurs at a rate much faster than those for gés-phase transport.
Therefore, the vapor at the surface is produced at the saturation
pressure corresponding to the droplet surface temperature Tge.

In the case of stationary evaporation, the rate of diffusion of the vapor
of the droplet across any spherical surface with radius r and'concentric with

the droplet is constant and expressed by the equation:

dc

IO = 41Ir pl tSd—l_r Kg/s 4,27

where C_ is the concentration of the evaporated material at radius r and 6 is
the diffusivity of that material. Integrate Equation 4.27 with the following

boundary conditions:

C = C at r = ® 4.28

C =¢C at r = a : 4.29
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This gives Maxwell's equation:
Io = 4Ma 6§ (C - CL) . 4.30

Strictly speaking, the evaporation of a droplet cannot be a stationary process
since the radius and hence the rate of evaporation is constantly decreasing.
Fuchs (1959) pointed out that when Cp.py << Py, the evaporation can be regarded

as quasi-stationary; i.e., one can assume that the rate of evaporation at a

glven moment is expressed by Equation 4.30. Since

where t is the time and m = 4/,3Ha3p2 is the mass of the droplet, Equation 4.30

can be rewritten in the form:

3 .
da 28 )
T -5 (G- O 4.32
2
orY
ds _ 81§ ,. _ . - o , )
at "o, (€, - © 4.33

where S = 4“32 is the surface area of the -droplet. 1Integration of these

equations gives:

s, -5 =38 (¢ -cyr 4.35
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where aj and S, are the initial radius and surface of the droplet. The
surface of the droplet is therefore a linear function of time.

The assumption of equilibrium between the liquid and its vapor at the
droplet interface suggests that the diffusive resistance of the gas to
evaporation is large compared with the interfacial resistance. This is
considered to be a good assumption under all conditions, except at very low
gas pfessures or for droplets whose size is in the order of the mean free path
of the gas molecules (about 0.1 micron). Thus, equilibrium has been assumed

in most analysis dealing with evaporation of droplets.

4.3.2 Influence of the Stefan Flow on the Rate of Evaporation

Oﬁserve that Equation 4.30 was derived'neglecting the radial coavection
transport due to Bulk flow of the gases away from the droplet. Unlike natural
aﬁd.forced conQection that can be neglected in a spherical case, radial
convection is always present, although its effects are small at low
evaporation rates.

Stefan at 1881 (cited by Fuchs, 1959) was the first to note the
imﬁortance of radial convection. To maintain full pressure in the ﬁedium
together with the partial vapor pressure gradient of the vapor, there must be
an equal and opposite partial gas pressure gradient of the remaining
components of the medium. Owing to the presence of the second gradient the
gas diffuses to the droplet surface, but bécause of the impermeability of the
latter the total gas flux towards the surface sﬁahld equal zero. Hence, the
hydrodynamic flow of the medium compensates the diffusion of the gas. From

this discussion it follows that the rate of this flow ml is governed by the

equation:
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1
1dC 1.1 _
S =mc 4.367

where C is the concentration and 61 = Srthe diffusion coefficient of the

surrounding gas. Since

c+cl =1 4.37
or

acl _ _ ac

dr = dl'.' 4.38

and the total flux of vépor has diffusion and hydrodynamic components,

Equation 4.27 is replaced by

, dc, . . L
Io = 4“”1‘- (8 3T " Crm ) ' 4.39
dc ' .
S 2 1 r -
= A4loy S (e g . 4-40

Just as Equation 4.27 leaas to Maxwell's equation, so Equation 4.40 gives:
I, ="4Tp a & (14B); = o A

where the transfer number B is given by

c. -¢C
B = I—L-—C— 4.42
. L '

The evaporation rate per droplet volume (m) is given by

4 . 3 12 916
m=1/>Ma =——— fn (1+B) 4,43
o3 d2
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4.,3.3 Quasi-Stationary Evaporation of Droplets Moving Relative to the
Media

The greatest practical interest centers on the evaporation of droplets
moving relative to the medium under the influence of gravity, inertia, etc.
This problem can be reduced to the calculation of the rate of evaporation from
a spherical droplet ventilated by a gas stream.

Foliowing the majority of the workers in the field of evaporation of
droplets moving relative to the medium, the convection effects on the

evaporation rate can be expressed by
I=1 f£f=1_6¢h ' | hobb
o o

where Sh is the Sherwood number and f is the wind coefficient. This denotes
the increase in the rate of evaporation due to the relative movement of the
‘medium.

Using Equations 4.43 and 4.44 one can write:

128p
2

& = gn (1+B) Sh 445

d

Using the principleﬁgf dimensionless analysis one can show that Sh is a

function of Re and Sc. At the same time the majority of the theoretical and
experimental work in the field of evaporation of drcplets expressed that

function by

Sh =2 + BlReI/Z sc1/3 4.46

where the Sherwood number is given by
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o 2mes

o,

Sh =@ /md 6(C -C) b.47
and the Schmidt number is given by

Se = v1/6 : 4.48

The first accurate measurements of the rate of evaporation of droplets
suspended in a stream were those of Frossling 1938 (cited by Fuchs, 1959).
This extremely careful work has served as a model for all subsequenf work in
this field. The expefiments were carried out at 20° using droplets of water,
aniline and nitrobenzene, and sphereé of napthalene with a = 0.1 - 0.9 mm
suspended from élass fibers of radius 25 um. The droplets were placed 20 cm
above the exit of a vertical aerodynamic tube of 10 or 20 cm in diameter. The
Réynblds number was véried over thé range of‘2.3 ~ 12éoiénd the ééﬁmidt number
range was 0.7 - 2.7. The rate of evaporation was determined by periodically

photographing the droplet with sevenfold magnification. The temperature

fluctuation of the air stream did not exceed + 1%. The determination of the

rates of évgbofation 6¥fdfopleféjofﬂorganicm;ubstancég inrstill;éir Qas
carried out in a closed cylindrical vessel 5 cm in diameter, the walls being
covered with active charcoal. Frossling examined the effects of different
factors that might affect the accuracy of the results such as imperfectly
spherical droplets, turbulence, compressibility of the air, nonideality of the
vapor, and the counter flow effects and indicated that they are less than the
experimental error (< t 1%). His experiments confirm'the accuracy of Equation
4.46 with an experimental value 81 = 0.552,

The fundamental experiments of Ranz and Marshall (1952) were done at room

temperature on benzene and water droplets with a = 0.06 - 0.11 cm. The
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droplets that suspended from the capillary end of a microburette of radius 30
- 50 um were ventilated by dry air from below. The study was restricted to a
Reynolds number range of 0 to 200. Evaporation rates were determined by
measuring the rate of feed through a burette necessary to maintain a const;nt
droplet diameter. Ranz and Mar hall's results also confirm the accuracy of
Equation 4.46 with an experimental value of Bl = 0.6.

Ahmadzadeh and Harker (1974) summarized the previous experimental data on
the evaporation from liquid droplets. All the experimental data in the range
of Re < 1000 give the value of*Bi = 0.55 - 0.6.

Kinzer and Gunn (1951) used water droplets of a = 5 - 70 m at 0 - 40°C
and 10 - 100% relative humidity and employed instantaneous photography to
measure the evaporation rate. The droplets fell freely in a tube of square
cross-section. For droplets of a = 0.02 - 0.5 mm the experiments were
conducted in tubes 200 m long. Insulated metal rings were placed horizontally
along the axis of thé tube at equal intervals. The droplets emerged from a
capillary connected\to the terminal of a battery and became charged when they
broke away. Kinzer and Gunn measured the rate of fall of the droplets by
passing them through a ring, thus creating an eleétric impulse that is
amplified and recorded on a moviﬁg tape. Since the decrease of terminal
velocity with time fall gave the rate of mass loss, they determined the rate
of evaporation as a function of the rate of the droplet'fall. They also
measured the rate of fall and the evaporation rate by a photographic
technique. For Re = 100 -~ 1600 their results were fitteQ by Equation 4.46
with Bl = 0.46. When Re < 0.9, the constant 81 rises erQ;zero to a maximum
value of approximately 0.92 at Re = 4 and then gradually falls to the

abovementioned value of 0.46 at Re = 100. This result contradicts the data of

other workers, where Bl has a value in the Re region of 1-100 equal to or less
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than the value at greater Re,

“Galloway and Sage (1967) have reviewed the available information
concerning the effects of thg molecular ptqurtigsApfrtbe f;“?dz,CQOAiti°?s of
flow, and level of turbulence on the evaporation rate from spheres. At normal
conditions and an intermediate range of Reynolds number, Equation 4.46
with 81A= 0.6 represents the standard curve for all other date.

Yuen and Chen (1978) investigated the evaporation of liquid droplets at
high temperatures. The_data on water and methanol droplets (porous spheres)
evaporating into the flow of air with the temperature of the latter within 150
- 960°C was obtained in an air tunnel. The experiments were carried out for
the Reynolds number range from 200 to 2000.

Yen and Chen pointed out that for low temperatures their results are

identical with the standard curve of Equation 4.46 with the .same coefficient

as that of Frossling.
Prakash and Sirignano (1980) studied the liquid droplet vaporization in a
hot convective gaseous environment. They developed a new gas-phase viscous,

thermal, and species concentration boundary layer analysis using an integral

- approachi: - The gas=phase analysis was coupled with a liquid-phase analysis for =~

the internal motion and heat transfer. The coupled equations were solved for
different hydrocarbon fuels in air at 1000°K and 10-atm. .They.concluded that
the heat flux into the liquid phase should be considered in such analysis.

The temperature distributién inside the droplet is nonuniform for most of the
droplet lifetime. The Ranz-Marshall correlation seems to agree well when the
heat flux into the liquid phase is takén into account by modifying the heat of
vaporization. 1If the droplet has the same temperature as the surréunding gas
at the droplet generator exit, the heat flux into the liquid phase can be

neglected, and in this case the Ranz-Marshall correlation does not need any
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modifications.

Now after the discussion of the previous experimental work on the
evaporation of 1liquid droplets suspended in a moving stream, it is clear that
Equation 4.46 as:

/2 g 1/3 449

Sh = 2 + 0.55 Re
This equation along with Equation 4.45 will be used in the turbulence model to

calculate the evaporated mass from the droplets to the surrounding gas.

4.4 Drag Coefficient
The drag coefficient of spherical solid particles, nonevaporating

droplets, and evaporating droplets is discussed in this section.

4.4.,1 Drag Coefficient of a Solid Particle

All the solutions with low inertia terms, Stokes and Oseen, are valid for
very low Reynolds numbers. The Stokes solution, which ignores completely the
inertia terms, is valid for Re < 1; Oseen considered the Navior-Stokes
equation with very limited inertia terms, but the drag coefficient is
unchanged. For a moderate Reynolds number 1 < Re < 200, there are a lot of
‘ expérimental results for the drag coefficient and the plot of these data
versus the Reynolds number is calléd the standard drag curve. The recommended
drag coefficient on a soiid sphere in steady motion as the best approximation
for this curve is given by Clift et al., 1978

0.82—0.05w)

g = (24/Re) (1 + 0.135 (Re) 0.01 < Re < 20 4.50
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Cpg = (24/Re) (1 + 0.1935 (Re)?+6303) 20 < Re < 200 4.51

where w = Log;y Re and the particle Reynolds number is calculated from

Re = p |0 - vl d/u, : | 4.52
s 2 2 '
=7
g=vu’+u’ . 4.53
~ 2 2 -
F=vv v ‘ | 4.54

4.4.2 Drag Coefficient of a Nonevapofating Droplet

To satisfy the continuity of tangential shear-stress across the liquid-
gas interface, a slight amount of internal motion seems certain to develop.
This internal circulation of the liquid droplet decreaseslthe boundary layer
tﬁiéknéss of ﬁhe exferior"flow and may reduce the drag coeffigient; |

Pruppacher and Beard (1970) studied the internal circulation and éhape of
a water droplet, which can be considered as a nonevaporating droplet falling

at terminal velocity in air at 20°C at sea level pressure, and nearly water

saturated. They cdﬁéluded”tﬁatlfhe'ﬁéximu&yéhrféée veibcify;iat fhé eqﬁatof,
of a droplet was found to be about 1/100 of the droplet's terminal velocity.
Due to this vanishingly small value, one can expect that the flow structure
around a nonevaporating liquid droplet falling in air will be approximately
the same as that for a solid particle, hence the drag coefficient will be the
same. Beard and Pruppacher (1969) measured the drag on water droplets falling
in water saturated air at terminal velocity in a wind tunnel for Reynolds
numbers between 0.2 and 200. They concluded that for this Reynolds number
range the drag on water droplets is in good agreement with that for the drag

on solid spheres measured or calculated by many other researchers. Beard
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(1976), depending upon all the available theoretical and experimental data,
concluded that droplets with diameters < 1 mm (Re < 300) are essentially
spherical and the drag may be closely approximated by the drag on a rigid
sphere. 1Ingebo (1956) investigated the drag coefficient for liquid droplets
and solid spheres accelerating in air stream using a high-speed camera
technique. Accelerations of the order of 20,000 m/s2 were considered. The
sphere diameter range was from 20 to 120 microns. To ensure the spherical
shape for the liquid droplets (isooctane, water, and trichloroethylene), the
Reynolds number was in the.range 6 < Re < 400. The main purpose of Ingebo's
work was the study of the effects of the rate of acceleration, the liquid
status and the evaporation rate on the drag coefficient. His main conclusion
was that the unsteady-state drag coefficlents are different than the steady-
state vélues, but when the acceleration rates were low, the unéteady-state
drag coefficients were in agreement with steady-state values of previous
investigations. The interesting result is Ingebo's conclusion that the drag
coefficient for slowly evaporating droplets, nonevaporating droplets, and
solid spheres are the same.

Rivkind et al. (1976) solved the Navier-Stokes equations for the flow of
fluid inside and outside a spherical droplet using the method of finite
differences. They considered the variables Re, uz/ul and p2/pl as controlliﬁg
parameters of the problem. The drag coefficients of the droplets were
investigated for 0 < uzlul < @ and 0.5 < Re < 100. They concluded that the
density ratio has virtually no effect on flow characteristics. According to
their numerical results, they proposed that the drag coefficient of the
droplet can be defined in terms of the drag coefficients of the solid sphere

(CDS) and of the gas bubble (CDb) at the same Re by the formula
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c - 22%s * M auss
D N ul + u2" , - N 7
Rivkind and Ryskin (1976) extended their previous work to consider the

circulating flow inside and outside the droplet up to Re = 200. They again
recommended Equation 4.55 for the calculation of the drag coefficient of a
liquid droplet moving in gaseous flow. By calculating the drag coefficient of
water and methanol droplets moving in atmospheric air with a Reynolds number
up to 200, it was found that the difference between the values produced by
Equation 4.55 and those of a solid particle (Clift et al., 1978) is only 3%.
Hamielec and Johnson (1962) used the error distribution method to predict
the velocity profiles and terminal velocities for solid and fluid spheres
moving in viscous media under the influence of gravity. The error
distribution or Galerkin method is based on choosing a polynomial for the
stream function that satisfies all the boundary conditions together with an
" “integral form of the Navier-Stokes equation. By this method, Hamielec and
Johnson predicted reasonably accurate velocity profiles and terminal
‘velocities for circulating droplets and bubbles. Hamielec et al. (1963)
modified the work of Hamielec and Johnson (1962) to account for the finite
interfacial interface with trial stream- functions. - They prédféted‘veléﬁity
pfofiles for viscous, laminar, and imcomp?essible flow around droplets,
bubbles and solid spheres. The drag coefficients, flow separation angles, and
forced convection transfer rates were calculated and compared with
experimental data for solid spheres, circulating droplets, and bubbles of some
other workers. They obtained good agreement up to Re = 100. Hamielec et al.
(1963) tried to correlate the available experimental data for the drag
coefficient of liquid droplets falling in water using a viscosity-ratio

correction factor. This relation is given by:
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2
_3.05 78317 + 2142uR+ 1080
D Le0-7% (60 + 291) (4 + 3u)
10 < Re < 100

c J 4.56

where uR = u2/u1

In the present study the drag coefficient of a water droplet moving in
atmospheric air was compared with a Reynolds number in the range
(10 € Re < 100) using Equation 4.55 and 4.56 with the experimental data of
Beard and Pruppacher (1969). It was found that the values produced by
Equation 4.55 are 3% less than the corresponding experimental values while
those produced by Equation 4.56 are 17% less. Therefore, Equation 4.55 is
recommended for the calculation of the drag éoefficientAbf a moving
nonevaporatihg droplet in a media with comparable Qiscosity to that.of the
droplet. |

Nakano and Tien (1967) also used Galerkin's méﬁhod to investigate the
effect of increasing the internal Reynolds number (O < Re < 50) or, ﬁdre
accurately, the flow behavior within the fluid sphefe by inéiudiﬁg inertia
terms for both phases. Changes in the internal Reynolds numbef had littlé
effect on the external streamlines or én overall drag. Thus, they gdt.almost
the same results as Hamielec and his coworkers.

Now, based on thebprevious theoretical and experimental work, it is clear
that the effect of internal circulation and low evaporation rate on the drag
coefficient of a 1liquid dfoplet moving in a gaseous stream is negligible.

This drag coefficient can be considered froﬁ;the standard drag curve of a flow

over a solid sphere.

4.4.3 Drag Coefficient of an Evaporating Droplet

Hamielec et al. (1963) studied numerically the effect of mass transfer
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from a spherical particle at Reynolds numbers 1, 40, and 100 on the drag
coefficient. 1In all cases they showed that r;diélvmassﬂefflﬁx decreases
friction drag and incfeases the pressure drag slightly. Due to the bulk flow
of vapor from the droplet surface, the boundary layer thickness decreases.
Thus, the velocity gradient or the surface shear stress decreases, so a
reduétion in the friction drag is predicted. The slight increase in the
pressufg drag may be attributed to the blowing effects on the angle of
boundary layer separation. On the other hénd, Kassoy et al. (1966) have shown
that at low Reynolds number, the drag of a sphere at constant free stream
temperature decreases with decrease in temperature of the sphere. This is
attributed to the changes in the surrounding fluid properties that might ﬁe
more pronounced in the case of evaporation. Yuen and Chen (1976) have noted
that the changes in the composition of the gases near the droplet surface are
important and would tend to reduce the drag pf an_evapopating droplet since N
the viscosity of most vapors is lower tban the viscosity of air at the same
temperature. The effgcts of the temperature and concentration gradients due
to evaporation on the dependence of drag coefficient on Reynolds number are
accounted for by using the free stream density and the 1/3 rule for the
dynamic viscosity (Yuen and Chen, 1976).

Eisenklam et al. (1967) investigated experimentally the evaporation rates
and drag coefficients for evaporating and burning droplets of various fuels
'freely falling in atmospheric air at temperatures of up to 1000°C, or burning

in cold oxygen atmospheres. They correlated the experimental data for the

drag coefficient Cp using the formula

CD = CDS/(l + B) 4,57
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The experimental data covers the Reynolds number range 0.005 - 15. The
correlation 4.57 was suggested by results from boundary layer theory and an
analogy with droplet heat transfer, for which case a similar correlation was
already in existence.

For intense mass transfer, such as when the droplet is burning, the
evaporation is expected to reduce film drag due to a thickening of the
boundary layer, and if the droplet is burning, the form drag is éxpected to be
reduced by the "filling in" of the wake by products of combustion. Further
effects are the alteration of the position of boundary layer separation and
the steep variations in properties due to the large temperature and
concentration gradients associated with intense mass transfer.

Yuen and Chen (1976) used Eisenklam's experimental data, along with their
own data that extended the Reynolds number range to about 500, to develop an

alternative correlation. They defined a reference Reynolds number

Re = Re, M /M. 4.58

where u is the viscosity of a reference mixture at the temperature

and containing a vapor mole fraction (Xr) given by E
Xo= % *F (X, - x)/3 . 4.60

The subscripts L and « denote, respectively, the conditions at the droplet's

surface and far away from it. Their correféﬁion for the drag coefficient is
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then given by the rule that states that if

is the standard drag coefficient curve for solid spheres as a function of free

stream Reynolds number, then
C, = F(Re ) . 4.62

will be the drag coefficient of an evaporating spherical droplet.

Dukowicz (1984) calculated numerically the drag coefficient of
evap&rating droplets in the Stokes flow regime.- He tested Yuen and Chen
(Equation 4.62) and Eisenklam (Equation 4.57) correlations in the low Reynolds

number range. Dukowicz (1984) and Sirignano (1983) recommended the use of

Yuen and Chen's correlation for the calculation of the drag coefficient of an

evaporating spherical droplet.

4.5 Effect of Free Stream Turbulence on Drag and Evaporation Rate

The flow conditions about the particle, especially the free stream
turbulence intensities, may cause large variations in the drag coefficients
from those values given by the standard drag curve. Zarin and Nicholls (1971)
reported that at Re < 200, they have observed little or no change in Cpg
compared to the CDS's measured at lower turbulence intensities (= 1%).

In general, the motion of a droplet in a turbulent flow depends upon the
characteristics of the droplet and of the turbulent flow. Droplets with small
size or small realization time (Tp) compared with the turbulence time
scale (TL) respond to the fluctuating motion of the carrier fluid. 1If

Tp > T, » very little fluctuation in the droplet velocity can be seen (Clift
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et al., 1978). 1In this case the effect of turbulence is then to modify the
flow field around the droplet, so that the drag may be affected.

In the present study the value of the ratio 'rp/rL is expected to be less
than unity, and thus the effect of the free stream turbulence on the drag
coefficient should be very small. Experimental evidence supports this
assumption. For example, Clift et al. (1978) reported that the effect of the
free stream turbulence in the range of droplet Reynolds number 10 € Re < 50
is less than 5% (Figure 10.11 in that reference).

Regarding the evaporation rates, for Re < 50 and for turbulence intensity
less than 20%, the experimental data (Clift et al., 1978) showed a very small
increase in the evaporation rate. Therefore, in the present study the drag
coefficient and the evaporation rate will be mainly functions of the Reynolds

number only and not in terms of the turbulence intensity around the particle.
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5.0 EDDY DIFFUSIVITY OF A SINGLE PARTICLE

5.1 Introductién

Eulerian mathematical models of particle-laden turbulent flows require
knowledge of the statistics of particle motion in order to calculate the
particle response to fluid turbulence. Specifically, a reliable expression is
needed for calculating the Schmidt number, defined as the ratio of particle
diffusivity to fluid point diffusivity for heavy particles.’ So far, such an
expression 1is unavailable in the literature.

Tchen (1947) studied the diffusion of a rigid particle carried by a
turbulent flow. Hinze (1975) indicated that Tchen's assumption that the fluid
element should continue to contain the same discrete particle at any time is
hardly to be satisfied.- Such an assumption carnnot be valid if the ratio
between the material densities oflthe particle and fluid is large:. 1In this
case the ﬁarticle will be aséociated with ﬁdre than onéreddy aiong ifs—path
which is termed the overshooting phenomena. Soo (1956), Friedlander (1957),
Chao (1964), and Gouesbet et al. (1984) éolved Tchen's eqﬁation under the
assumption of no overshooting. For asymptotic times of dispersion, that
assumption implies a particle Schmidt nimber of unity which is physically
incorrect.

Peskin (1971) studied the particle diffusivity under the condition of
overshooting but restricted his analysis to small distances between the
discrete particle and the "originally surrounding fluid.” As a result,
Peskin's formula predicts values of particle Schmidt number very close to
unity. Some other workers (Reeks, 1977, and Nir and Pismen, 1978)
investigated the particle diffusivity under the condition of overshooting but
restricted their study to the Stokes flow regime, which is hardly to be

satisfied for suspended heavy particles in a gaseous media.
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| Csanady k1963) studied the differences between the diffusion of the fluid
points and heavy solid particles in the atmosphere. He attributed the
appreciable reductioﬁ of the dispersion rates of the heavy solid particles to
the rapid travel across the turbulence eddies. Meek ana Jones (1973)
statistically analyzed the heavy particle behavior forla constant relative
velocity between the particle and its surrounding gas in homogeneous
turbulence. They obtained expressions for the particle dispersion coefficient
and its Lagrangian autocorrelation.

In this section a reliable expression for the calculation of the lateral
diffusivity of heavy particles suspended in a homogeneous turbulent field is
provided. The physical parameters that control the partiéle behavior in ;
turbulent flow 1s discussed. Two widely used theories (Csana&y, 1963, and
Meek and Jones, 1973) for the calculation of the statistical properties of
heavy particles in terms of those of the surrounding fluid are reviewed. The
empirical coefficient in Csanady's theory is determined via a comparison with
the experimental data. Finally,.Meek and Jones' theory is examined and an
empirical coefficient is introduced and evaluate& via a comparison with the

experimental data.

5.2 Physics of Particle Dispersion

The behavior of a single spherical particle suspended in a homogenéous
isotropic turbulent field depends on the properties of bothlthe particle and
the turbulent flow. The first parameter that controls the particle dispersion
is the ratio of the particle size to the Kolmogorov, length scale, n. If this
ratio is small the particle dispersion will be influenced by the entire
spectrum of eddy sizes and will follow the turbulence fluctuations of the

carrier fluid. 1If, on the other hand, that ratio is greater than unity, the
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particle will follow the slow large-scale turbulent motions of the fluid

"(Alonso, 1981). 1In this case the main effect of the turbulence on the

earticle is to modify the flow field around it, so that its drag may be
affeceed.

A more general parameter is the ratio between the particle relaxation
time, Tp, inversely proportional to the particle's inertia, end the fluid
Lagrangian integral time scale,-TL, is the eontrolling paramete; of the'
particle response to the turbulence fluctuations. If tﬁe ratio Fp/TL <1, the
particle will be able to respond to the entire spectrum of fluid motion and

the ratio betwéen the root mean square fluctuating velocity'of the particle to

that of a fluid point is almost unity. On the other hand if rp/TL > 1 the

- particle will respond very slowly to the fluctuating fluid motion.

If there is an appreciable relative mean velocity between the particle

" “and the surrounding fluid, the petficle'will’mbve”eﬁdutfffdm'éddy to eddy,

whereas a fluid point would remain in the same eddy thpoqghodt the,lifetime'of
that eddy. This is what Yudine (1959) called the crossing traJectories
effect.” Yudine (1959) considered the physical consequences for finite free—
fall ;elocitte5”on‘the*heavyiparticlefdiffusibﬁ;ﬁ‘He formulated upper’énd ’:;
lower 1limits for the changes in the dispersion coefficient due to the heavy
particles free fall velocity, f.

Taylor (1921) postulated a theory describing the statistical dispersion

of fluid points in a stationary homogeneous turbulent flow. His result

relates the mean lateral square fluid point displacement, Yz, to the mean

square fluctuating velocity, u2, and to the Lagrangian velocity correlation

coefficient, Ry (T), according to:

(t) = ZIZE OJtOJT RL(t) d1dT | 5.1

86



'The correlation coefficient is defined by

u(t) u(t + 1)

R (T) = 502

L 2

u
Taylor (1921) defined a turbulent diffusivity by
1d 2 :
2 (T, '

u® )7 R (7) dr 5.4
= u? T 5.5

Snyder and Lumley (1971) showed that Taylor's theory is equally
applicable for the dispersion of alien particles, provided that the velocities
are interpreted as particle velocities, and that the Lagrangian time

scale, TL is interpreted accordingly. Snyder and Lumley (1971) an& Wells and
Stock (1983) measured the dispersion of heavy particles in a grid-generated

. turbulent flow. They reported the décrease of the particle integral time-
scale and the rapid decrease of the particle velocity correlation with
increasing Tp.

Calabrese. and Middleman (1979) photographically measured the degree of
radial dispersion of medium-size particles emanating from a point séurce in
the turbulent core of a fully developed vertical pipe flow of water. They
defined the medium~size particles by n< d < Lf , where d and Lf are_the
particle diameter and Lagrangian length scale respectively. They wefe able to

calculate the radial mean-square particle displacement directly to find that

both heavy and buoyant particles experienced a decrease in mean-square
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displacement due to the crossing-trajectory effects.

5.3 Csanady's Theory

Csanady (1963) considered the differences between the diffusion of the
fluid points and heavy particles in the atmosphere. He proposed a functional
form for‘E(ET—E(ET, where u(t) is the fluctuating‘velocity of the air,

consistent with similar shapes for Eulerian and Lagrangian fluid point

~ correlations. Thus, Csanady was able to construct two relations for the

particle dispersion coefficient parallel to and normal to the direction of the

particle terminal velocity. Lumley (1978a) showed that Csanady's model gives

€

h 1

e 1+ 8 £2uD)l/2 n

€

v 1

— 2)1/2 » B, =2/3 | | 37

f. (1+8 f/

where ef is the asymptotic diffusivity for the fluid. The subscripts h and v

correspond respectively to horizontal and vertical dispersion of the particle

associated with long times relative to the integral -.time scale of the
turbulence. Lumley stated that the value ofpﬁﬂ is much less well determined
than that of Bv_and the value of Bh should be determined via a comparison nith
well defined experimental data.

In the present work the value of Bh is determined by comparing the

prediction using Equation 5.6 with the experimental data.
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5.4 Meek and Jones' Theory

Meek and Jones (1973) considered the motion of a heavy particle in a
homogeneous turbulent air flow. The particle motion was viewed from a
reference frame in which the average fluid velocity is zefo. They started
with the definition of the particle velocity autocorrelation, which can be

expressed in terms of a normalized particle energy spectrum, Ep ii (w):
b

R

p,ii(r) = o Ep,ii(w) cos (wT) dw . 5.8

where ® is the circular frequency.

Soo (1956) obtained an expression relating Ep,ii (u%) to its:fldid
counterpart, Eii(w)’ from the solution of the simplified particles equation of
motion and under the assumption of ze;o free-fall, This expressiod is given
by \

B (8) = q(e) B (w), . 5.9

p,il

where Qii(ub) is the particle response function defined as:

2
u .
i1
Q (w) = [ L, 5.10
iit 0 —_— 2
2 1+ ( w )
Vii o2
1
18 ul
where a = 3 S5.11
1 2
Dzd

d and 92 are the particle diameter and density respectively and M is the
dynamic viscosity of the surrounding fluid. The Lagrangian frequency

function, Eii (w), can be approximated by various semiempirical forms. Hinze
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(1975) pointed out that the use 6f an exponential form for the fluid's
A*Légféhgfah veldéity autocorrelation pfo#idés rééébﬁableiégrééﬁént with ﬁﬁé

experimental data. The associated energy spectrum is

T .
E, (w) = L,ii 5.12
11 ™ (1l + (1)21’2 )
L,ii

Meek and Jones (1973) indicated that the use of a response function
derived for zero free-fall velocity, f;, requires some adjustment of 5.8 to

account for non-zero free-fall and the subsequent movement of the particle

from one eddy to another. They suggested that the nonezero free-fall velocity

spectrum Ep,ii (w), be expressed in terms of the zero free-fall velocity

spectrum, Ep,ii(uB)’ according to:

Ep’ﬁ(w) = Ep,ii(wo)/z ; 5.13

where Z =[1 + (fi/vi)2 1/2 . ' 5.14

e ' “Using the above assumptions, the-particle~velocity autocorrelation can be

written as

-1 =t _ - T/E . T :
R 44 (O ==~ "1 - g8 "hut), 5.15
ii
where Eii = TT—J?———— : 5.16
1 L,ii
11 = 1172 - 5.17
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The ratio of the fluctuating velocity variances is given by Soo (1956) as:

while the mean square particle displacement, Yi(t), in the radial direction
22 T e/t 2 —t/(E )
Yo(t) = ——— [(1-& T - &, (1 - . 5.19
p I -¢&, 11
The particle eddy diffusivity is given by
' v? 11 -t/ T, . 2 ~t/(E T, .) :

The corresponding fluid point eddy diffusivity is given by

. —2 . e . _
ee(t) = u't -2 0 | | 5.21
*h
Thus, the particle Schmidt number (ob = ET) is given by:
: £
e (t) : —t/1 -7/ (&, T, )
o (t) = = ‘ (a-e H-g a-e T 5

() (- 511)22

For long times relative to the integral time scale of turbulence

5.23

where Z is given by (5.13).
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fluid point naturally lags behind that fluid point as a resultrof inertia;

The fluid points encountered by the heavy particle are not statistically
equivalent and would only be so in a turbulent field witn'infinitely large
space and time Eulerian correlation scales. Finite correlation scales imply
that the fluid point encountered by the heavy particle as it lags behind the
original coincident point are not statistically identical. Accordingly, the
heavy particle dispersiqn or diffusivity is determined by the Eulerian space-
time correlation. Peskin stated that Meek and Jones failed to account for the
most important effects of the‘space-time correlation of the turbulent flow on
the particle motion. The linear relation (Eqdation 5.9) between the particle
energy spectrum and the fluid Lagrangian spectrum'implies that the effects of

the space~time correlation are completely neglected.

Meek and Jones (1974) in their reply to Peskin (1974) argued that the

good agreement between thelr predictions and the experimental data of Snyder

and Lumley supports their solution, especially in homogeneoue turbulence. To

achieve this agreement, they used Equation 5.19 and the fluid and particle

'trdata of Snyder and Lumley (Equation 758 and Table 1 in Meek and Jones'

article, 1973). Using their equation and table, the present study -can not

reproduce their Figure 2, especially for the solid glass particles.

5.5 Modifications of Meek and Jones' Theory:

As pointed out by Peskin (1974), the Eulerian space-time correla-
tion RE(y(T) - x(7)), where y(T) and x(T) are the Lagrangian fluid and the
particle positions, should be considered in the analysis of heavy particle
dispersion instead of the Lagrangian autocorrelation. To do so the solution

should be restricted to a very short distance (y(1) - x(T)) between the
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particle and tﬁe fluid, otherwise the equations will be formidable. Peskin
imposed this restriction but his solution predicts values of a particle's
Schmidt number very close to unity even for a heavy particle. Yudine (1959)
in his discussion of the physical parameters controlling>the heavy particle
diffusion pointed out that the dispersion process is controlled mainly by the
terminal velocity, f. He stated that the dispersion process depends upon‘the
terminal velocity in three ways: (1) the terminai velocity determines the
vertical displacement of the center of dispersion of the particle; (2) because
the terminal velocify is a certain measure of inertia, the particle does not
follow completely the high frequency fluctuations of turbulent fluid velocity;
and (3) if it has appreciable terminal velocity, a particle will fall from one
eddy to another, whereas a fluid point would remain in the same eddy
throughout the lifetime of the eddy. Yudine concluded that, for large f, the
dispersion coefficient takes on an asymptotic form inversely broporational to
f.

Meek and Jones (1973) pointed out that the inertial effects can be
significant especially when £ < vye The'inertial effects increase the
particle Lagrangian time scale compared to that of the fluid if there 1is no
crossing trajectories.

Csanady (1963) accounted for the crossing trajectory effect on a heavy
particle dispersion by including in his analysis the quantity fi/“i and the
ratio between the Lagrangian tolEulerian integral time scales, Bh.

Due to the close similarity between the two theories of Csanady and Meek
and Jones and based upon the previous discussion it is clear that the
parameters that should be considered in a heavy particle diffusion analysis
are the terminal velocity and a coefficient simulating the ratio between the

Lagrangian to Eulerian integral time scales. Therefore the following
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modification to the Z factor (Equation 5.14) is proposed:

y —5 1/2
2= +af" /v | _ 5.24

where ah is-an empirical coefficient to be determined via comparison with the
experimental data.

To determine Bh in Equation 5.6 and ah in Equation 5.24 the predictions -
wiil be compared using both Csanady's theory and the modified theory of Meek
and Jones with the experimental data of Synder and Lumley (1971) and Wells and
Stock (1983). Since the two theories have been developed for statiomary,
homogeneous turbulence, the data should satisfy these two conditions.
Experimental evidence suggests that grid—generéted turbulent flows approximate

the stationary requirements and corrections can be made for the inhomogeneity

“(Pismen and Nir, 1979).

5.5.1 Snyder and Lumley's Experiment

Snyder and Lumley (1971) performed an experimeht in which a single

spherical solid particle was injected Into a turbulent flow generated by a

grid. They considered particles of various sizes and densities ranging from

. 1light particles that closely follow the fluid fluctuations to heavy particles

that experienced both inertia and crossing—trajectqry effects. The particles
were injected above the gird at a distance of 20 grid spacing. They measured
the particles' Lagrangian autocorrelations at x/M = 73 as well as the mean
square displacement, ;z, of the particles as they were individually convected

through the wind tunnel. Turbulence measurements were made and the turbulence

energy decay was given by
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= 42.4 (% - 16) 5.25

“l 1S

where U is the mean axial velocity (6.55 m/s) and x/M is the ratio of the
axial distance to the mesh size (2.54 cm). They also reported the rate of the
energy dissipation, €, along the centerline of the wind tunnel (see Table

5.1).

Table 5.1. Energy Dissipation Rate (€) of Snyder and Lumley (1971)

x/M 41 64 73 ‘ 107 138 ST

e cm?/s> 5430 1610 1160 480 266 165

Table 5.2 lists the relevant characteristics for tﬁe‘particles studied by
Snyder and Lumley.

Table 5.2. Particle characteristics for the
data of Snyder and Lumley (1971)

hollow glass corn pollen . glass
density, o g/cm3 0.26 1.0 2.5
diameter, 3 um ‘ 46.5 87.0 87.0
drift velocity, f cm/s 1.67 19.8 : ‘ 44,2

Snyder and Lumley estimated the Lagrangian time scale, T , at one statiomn

L
only (x/M = 73) by considering the light particle results as representative of
Lagrangian correlations. In comparison with Snyder and Lumley's data, the
variation of 23 along the wind tunnel gxis should be estimated from the
measured turbulence quantities, TL can be obtained from the relation (Hinze,
1975)
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2 - ) .
=cu /e 4 5.26

The ratio between the Lagrangian and Eulerian time scales, as given in
Equation 5.26, depends on the local flow conditions and cannot be considered
as constant. Hinze (1975) pointed out that the experimental data show that
the value of the constant C varies between 3 and 10 depending on the Reynolds
number, thus (5.26) reads

2
1, = C' u/e, 5.27
L
‘where C' varies from 0.2 to 0.66.
On the other hand, Calabrese and Middleman (1979), using Taylor's theory,
-obtained the following expression: -

5 2

= Q0 = 028
L 12 0.625 u /g 5
_Berlemont- et al. - (1982) considered -the closure relations of the-K— model and
obtained

T, T 0.2 uz/e | 5.29
In tﬁe present work the coefficient C' in Equation 5.27 will be
determined from the dispersion data of the light particle (hollow glass) or
the particles with zero terminal velocity that are considered as
representative of Lagrangian correlations. Using Equations 5.18, 5.19 and

5.26 for the hollow glass particles, Yi is obtained and plotted in Figure 5.1
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with an optimized vélue of C' = 0.35. Figure 5-1 also compares the prediction
using Meek and Jones' theory and its modified form with the experimental data
for the mean-square displacement of the corn pollen and the glass particles.
It is clear from this figure that Meek and Jones' theory does not provide good
agreement>with the experimental data. With the present modification of Meek
and Jones' theory the present study predicts the experimental data for the
particles with different diameters and densities in Figure 5~1. This
agreement is obtained with o = 0.3. | |
Figure-5—2 shows a comparison between the theoretical and the
‘experimental data for the Lagrangian autocorrelations for the different
particles. The correlations deérease faster for the heavier particles (high
drift velocity compared with the turbulence intensity) due ﬁo the crossing
_trajectory effects. \It is aléﬁ cleaf that the value of o = 0.3 produces

good agreement with the data for the autocorrelations.

5.5.2 Wells and Stock's Experiment

The effects of "crossing tféjectories“ and inertia on the dispersion of
particles Susbended in a field of grid-generated turbulence were investigated
experimentally by Wélls and Stock (1983). The flow conditions and grid size
and shape were very similar to those used by Snyder and Lumley (1971) except
that’the main direction of the»flow was horizontal instead of wvertical. The
particles were glass spheres, with a diémeter of 5 or 57 um and a density of
2.45 gm/cm3. The particles were charged by a corona discharge then injected
on the centerline of the flow. The teét section was subjected to an electric
field, which provides a coulomb force to the particles to balance the

gravitational force. 1In this way, the drift velocity could be changed. The

particle concentration and velocity were measured with a laser—Doppler
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anemometry system. The data were reduced to yield the particle mean-square

“displacement.

2
The measured turbulence 1ntensity,_%: , and dissipation rate of kinetic

energy, €, were used to calculate IL . Equation 5.27 was used with C' = 0.5

to reproduée fhe experimental data for the particles with f; = 0 as shown in
Figures 5-3 and 5-4. Figure 5-3 shows ;Z-versus x/M for 5 um particles with
two values for thé terminal velocity: zero and 25.8 cm/s. The two figures
show good agreement between the predictions and the experimental data
using,ah = 0.3 that was optimized for Snyder and Lumley's data.

Figure 5-3 displays the distribution of the Schmidt number, op, against
fi/“i‘ This figure compares the prediction using 5.24 with o = 0.3,

Csanady's model (Equation 5.6), Snyder and Lumley's data, and Wells and

Stock's data. The diffusivity ratio for the experiments of Snyder and Lumley

“and Wells and Stock were obtained using Equation 5.3 at different times or

x/M. The agreement between this work and the experimental data is very
good. The solid 1ine in figure 5;5 was obtained using a value of Bh in
Equation 5.6, equal to 0.55.

“Comparison of ‘the modified form 6f the Meek and Jones' theory (Equation
5.24) and that of Csanady (Equation 5.6) shows both similarities and
differences (Mostafa and Elghobashi, 1985b). In Csanady's work, the only two
parameters controlling the dispersion of a heavy particle in a turbulent flow
are (f/v) and Bh. In that way the ratio f/u 1s considered as a measure of the
crossing-trajectories effects, together with the associated continuity
effect. In the present work, the ratios (f/u) and (v/u), and o are the
controlling parameters. The ratio v/u is a direct measure of the ineftia

effect on the dispersion process as discussed by Meek and Jones and other
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workers (see Hinze, 1975) and it has a significant effect, especially when

f/v < 1.

5.5.3 The Final Expression for Particle's Schmidt Number

The expression for calculatihg the Schmidt number of a heavy particle
suspended in a turbulent flow (Equations 5.23 and 5.24) has been developed
assuming that the drift velocity is constant or 1s large enough to make the
Eulerian space-time correlation approximated by the Lagrangian autocorrelation
(Peskin, 1974, and Reeks, 1977). Therefore the developed expression can be
used for suspended particles in a turbulent flow if the relative mean velocity
is assumed to be constant during a period of time t 3 T, At dispersion time

greater than the Légrangian time scale of turbulence, that expression is given

.by

. k 2 -1/2 : :
Opk = [1 + 0.3.(0 - V) /(vk)zl ' 5.30
(..__) = , . 5.31
2 1+ 1 k/r '
u P L
2

k
K 92(d ) » ,
Tp = Tﬁﬁ; ’ . 5.32

2 . : . _
TL = 0.35 u /e 5-33

The coefficient 0.35 in Equation 5.33 is the optimized value using the

experimental data of Snydef and Lumley (1971).

103



6.0 NUMERICAL SOLUTION OF THE EQUATIONS
" We have now available a turbulence model and a number of experimental
target values for free jet flows. The preseant section shows how the model
will reproducé these target values. o .
To apply the model, a solution method and boundary conditions are
needed. The first part of this section disucsses the of finite-difference
technique used in solving the differential equations. The second part

disucsses the solution procedure and the boundary conditions.

6.1 The Equations to be Solved
At this point, the reader may welcome a brief reminder of what
constitutes the prediction method applied in this section.

This method employs the mean equations of continuity and momentum for

-each phase, the global continuity equation, the concentration equation, and

the K and € equations. Thus, the equations to be solved are (6 + 3 k) in

k Jk

number; they are for the dependent variables U,, Up, Vz, Vf ,

P, °1, dk, K and €.
| 6.2 Solution Method

The governing equations are solvédAsimultaneously with the finite-.
difference method that Spalding (1979) has developed for laminar two-
dimensional parabolic dispersed-flow problems with interphase slip (GENMIX-
2P). Since the governing equations are parabolic in nature, tﬁe method
integrates by marching forward, i.e., downstream, starting at an initial
cross—-section where the profiles for all dependent variables must be
specified. The GENMIX-2P computer code is generated from the GENMIX computer

code (Spalding, 1978), after excluding the effects of mass transfer, chemical
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reaction, and turbulence then adding two new subroutines. These two
subroutines are COMP2P and ADJZf, which set up and solve the finite difference
equtions for the dispersed phase variables. All the necessary infofmation
about GENMIX is documented (Spalding, 1978) and need not be repeated here.
Therefore, we will restrict the description here to the treatment of the
dispersed phase and how it is coupled with the carrier phase in the solution

procedure.

6.2.1 The Computational Mesh
The computer code GENMIX-2P employs the stream function y of the carrier

phase as a cross-stream variable that is defined as
=(Fo8,Urd | 6.1
\y-fo p1¢12 r . R

The governing equations are transformed into a coordinate system based on the

axial distance, z, and a normalized stream function, W ,defined as

I .

W, =TT 6.2
n WE WI

where wI énd wE are the values of the streaﬁ function at the inner and outer

boundaries of the flow. s measures the distance from an arbitrarily assigned
starting point that is often taken as the starting point of the marching
integration along the inner'boundary of the grid. Lines of constant z are
normal to the I boundary. wnlis assigned the value 0.0 along the I boundary
of the grid. 1It's value then increases monotonically with distance from that
boundary, rising to the value 1.0 at the outer boundary of the grid.

The flow field of interest is subdivided into cells and each cell is
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treated as a control volume. For the carrier phase, these cells are formed by

the intersection of the constant z and w lines as shown in Figure 6-1.

6.2.2 Finite Difference Equations (FDE) of the Dispersed Phase

The finite-difference equations for the carrier and dispersed phases are
formed from the differential forms by integration over the control volumes of
the carrier phase as shown in Figure 6-2. TIn this figure UP denotes upstream
station and DN stands for downstream. TE; 1is the tangent of the
cqnstant @ line just above the grid point i, but.it is not distinguishéd from
the angle or its sine. oai is the inclination of tﬁe streamlines of the
dispersed phase at i ~1 + 1 interface. For simplicity, in this section only,
one class of particles will be considered.. Therefore, the superscript k wi;l

be replaced by the subscript 2 to represent the disperéed phase. a.li equéls

'7Téiigiﬁéwan increment allowing for cross-flow, which takes account of

local pl¢le. Therefore, it represents the tangent of the streamline angle,

but it is not distinguished from the angle or its sine. Si is the outlet flow

area of the ith control volume and Az = ZD - zU.

For the variables )| and V_[, the control volumes over which
integration of the equations is carried out are those of Uzli of the carrier
phase. For Vrli the control volume is the one bounded by i + 1,i at the
upstream and downstream stations. Let Q represents any variable of the
dispersed phase such as V,, V. or o and 02. The result of integrating the

equations can be most conveniently expressed as follows,

S L e o S M 6.3
Q D, *

The A; and B; coefficients represent the effects of transport of the dispersed
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phase across éonstant w lines. The coefficient C; represents the effects of
upstream convection from the different sources. These sources result from the
pressure gradient, the gravity fqrce, the interphase friction in the case of
v, and V., and the different tﬁrbulent correlations that result from the
presence of the particles. The coefficient Dy represents the effect of
outflow from the control volume. 1In the following the formé of the

coefficients Ay, By, C; and D; for the variables a2 (=Vr/Vz), v, and 02 are

presented:
For o2:
A; = max [0, (DFa- 0.5 CONa)i+3/2, - CON“1+3/21VZI1+3/2 , 6.4
B, = max [0, (DFa + 0.5 CONa)i+l/2]V'z|i+1/2 , 6.5

U

- W U )
Cy = 0 (08V V)| ) p @y + (P-Py, Ty /002

% | y41/2 Ex(P=P ) &l 41/ VOL + FU & | ) pal VoL 6.6

_ u
Dy = 1P %SV, |10 + A /Y liusyn * B/l *

OF [ 4172V Vo lih/n o 6.7
where VOL is the total voluﬁe of the cell and,

CONy 5/ = P, le (r<1>2vz)|i+1 (2 - TE);,, 6.8

DRy 39 = = [FV/0(1 = 1/0 )8 1y /5/V,]44 V0L

109



- pyte tyy (%% % Jin 7 TE/ @) 141

-
®
+ pybe Ty g 7 "pvz,rm]1+1/°21+1\1+3/2

- pZAZ Tivl {“ploc (¢2,r - d,2,2'1‘1?‘)11&1

2
+ pZAz Cy {rK/ € (vt/ °c¢2,r) . [2v vpVZ,rTE] }1+1+

+ i b2ty % °c°2lvz\1+1 6.9
_F_Q_E__Vz:
T oAy = max {0,(DFV - 0.§ CONV) 541/2 - C°“"1+1/2} , 6.10
B, = max [0, (DFV‘+ 0.5 CONV)i—UZ] . 6.11
gz(pz—pl) VoL 02\1 + [Nzuz]jL voL , 6.12
D, = pztsozvz]‘i s A+ BT (Fo,], VOL , 6.13
where
(2 - TE); > 6.14

CONVi = pzAz [r‘bzvz]iﬂlz
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] /(ri+l -r,)

DFVi f - A? (r¢2) $

i+1/2 [Vpov i+1/2

YT TR eV, la) T amy e tey ey TRV L,

+ A2920¢[IK/5 (vp¢2’r),r (“pvz,r)]i+1/2 . 6.15

For ¢ .:

2
Ay = max (0, (DR = 0.5 COND), \/» » ~ CONo, 1] 6.16
Bi = max {0, (DFp + 0.5 CONb)i_I/Z] . ‘ 6.17
C. =o. [5V4.10 | ‘ ’ ’ : 6.18
g TP Ve | .
D, =o. [SV ], +A .+B, .+ Dz@S) ) 6.19
i~ P2 2’1 Ti-1l7 Ci+l
where
oM, =p, Az (V) .. 2~ TE), , 6.20

DFii =0y Az (rvp/op) '[1/(r:1.+1 - ri) -

i+1/2
. U .
(CREN Y4 he '
TE, /Dz] 2 000 - 6.21

Note that the A; and B; formulae (6.4, 6.5, 6.10, 6.11, 6.16 and 6.17)
are hybrid in nature to account for high lateral coﬁvection (see Spalding,

e

1978). v2 in Equations 6.9 and 6.15 is calculated from Equation 4-10.
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The equation set generated by Equafion 6.3 for the different nodes at any
- -station is solved by using“tﬁé'Tri4DiagohaI'Matfii Algorithm (TDMA) to obtain

the dependent variable Q; at the different nodes (see Roache,.1972).

At tﬁe beginning of tﬁe calculatiégs, ¢1 is unknown. Thus, the COMP2P
subroutine uses a gueSs—énd-correct procedure for ?1 or ¢2.4 The procedure of
correcting ¢1 or °2 takes place in the subroutine ADJéP. There are three
procedures for correcting 01: direct substitution, computed under relaxation,
and use of pressure corrections. In the direct substitution procedure the
computed values of 01 are used as the guessed‘pnes for the gtart of the new
solution 1oép."The disadvantage of this procedure -is ;he possible non-
éonvergeqce,_when the changes are 1arge. The advantages of this method are
its simplicity and the congequent econom}. fﬁis method can be expected to
work satisfactorily when 0& values are smali (@2 < 10—3).
,,”f—The-computed*undef—relaxation method starts ﬁhé’ﬁékt iteration loop’
with Ql givén by - |
o = ¢’;+c(¢i»- ¢:)_, S I 6422

where thet* denotes old values and 7 is an‘underfrelaxafion fagtor,
co@vgp;enqu taken as: g = Qll old: The under-relaxation factor is expectedv
to be slight for dilute sdspension,.i.e., this method reduces to the d;rect
substitution method. |

The pressure corrections method.devises and solves a pressure correctioﬁ
equation driven by errors: (1 - @é - @1). This method is suitable for large

values of 02 , which are outside the scope of the present study.
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5.

7.

8.
9.
10.

11.

6.3 The Solution Procedure
The steps to obtain the solution at a given axial location are:
Guess the downstream °l disﬁribution (ffom the upstream vaiues).
Solve for Uz downstream: obtain r’® and Ur’s.
Solve for K and ¢ to obtain the eddy diffusivities.
Calculate the local dimensionless quantities, Rek, Sck, and Shk.
Then obtain the mass transfer rate; ;k, hence the sink terms in the mass
COnservatioﬂ equation for each group or the total source term in the
continuity equation for the carrier phase.
Obtain the downstream diameter distribution from the upstream values and
the local evaporated mass.
Calculate the size range for each group from knowing the largest and
smallest droplet diameters, and the number of sizes to be éonsidered (it
could be different from the upstream value).
Label the-droplets according to their local diameters and the size
ranges for each group.
Obtain p(r) from the gas-phase lateral momentum equation.

'
Solve for downstream (V: /V:), V: and ¢: and get - ¢k s

*
Compare the new ol with the guessed Ql .
Make corrections and repeat steps 1-7 until the solution converges

before marching to the next station.

In general, two iterations are needed at each station to achieve convergence.

6.4 The Boundary Conditions

The parabolié flows considered in this report require the prescription of

three boundary conditions for each dependent variable. At the predictions

starting plane the profiles of all the dependent variables must be specified
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from the experimental data. At the axis of symmétry (r = 0) all the radial
gradients are set to zero, in. addition to the vanishing radial velocity. The
jet boundaries are determined via the adjustment of the entrainment rate and
the Specification of the radiél gradient of Uz to fixedismall value. Juét
outside these boundaries the values.of the other dependent variables will be
those corresponding to the ambient conditions. For example, all Vz's _

and 02 are equal to zero there.. .

In the next section the results presented are obtained using 40 latéral
nodes to span the flow domain between the centerline of the jet and its outer
. edge;- Grid-dependence tests were conducted with 30, 40, and 50 lateral nodes
and different axial step sizes and it was concluded that the 40 node grid

results are virtually grid-independent.
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7.0 RESULTS

First, a turbulgnt round gaseous jet laden with monosize solid particles
is considered. This flow allows the study of the ianteraction between the two
phases and the particles dispersion due to the turbulence without the
complexity of mass transfer. The predictions are compared with the data of
Modarress et al. (1984) in section 7.1.; Since no experimental data exists for
an evaporating spray in the developing region (z/D < 20), the model is
considered to predict an idealized flow of a turbulent roﬁnd jet laden with
multisize evaporating methanol droplets in section 7.2. Two more cases are
considered in sections 7.3 and 7.4. Both qf these two cases are for a Freon-
11 spray issuing from an air atomizing nozzle where experimental data are
available. The first flow is that of Shearer et al. (1979) where ;he data are
a;ailable at distances equal to or greater than 170 nozzle diameters. Ihg
second flow is that of Solomon et al. (1984) where the data age_avaiygble at’
distances equal to or gre;ter than 50 nozzle diameters. In boﬁh cases the
predictions are compared with the measurements. . Table C-l:(Appendix C)
summarizes the different cases considered in this study.

7.1 The Flow of Modarress et al. (1984)

Modarress et al. (1984) repérted much needed experimental data to»help
understand the behavior of two-~phase turbulent jets and validate their
theoretical models.. They investigated the effects of 50 um and 200 um glass
particles on the mean air velocity and the turbulent stresses at two dffferent
mass loading ratios, 0.32 and 0.85. Figure 1-2 sbows a sketch of the two-
phase turbulent jet considered by Modarress et al. (1984). Air carrying
uniform—size'glassvparticles issues vertically downwards from a cylindrical

pipe of diameter D, 0.2 m. The jet is enclosed in a cylindrical container
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with a diameter equal to 30 D to avoid ambient disturbances. An air stream of

lowreelocity sdffounds the nozzle and extends to the container wall to provide
the required entrained mass .by the jet, thus preventing the-occurrence of-
internal circulation in the measurements regioc. Table C—2‘(Appendix C) lists
the experimental conditions at 0.1 D downstream of the pipe exit. These
values represent the initial conditions for the dependent variables required
in the numerical calculations.

In what follows the predicted distributions are compared with the
measured distributions of the mean velocities, volume fractions of the two
phases, turbulence intensity and shear stress of the gaseous phase and the jet'
spreading rate. Figures 7-1 and 7-2 show the effects of the particles; mass
loading ratio (X, = 0.32 versus 0.85) on the mean velocities for 50 u

particles (Case 1 and 2) Figures 7-2 and 7- 3 show the effects of the

particleS° diameter (50 M versus 200 u) at almost the same loading ratio (0.8)
on the mean velocities of the two phases. First the main effects of the
particles on the carrier phase velocity are diScussed then the behavior of

the particles' velocity and volume fraction at the different mass loadlng

ratios are discussed.

Figures 7-1 to 7-3 show the fadial profiles of the mean axiel velocities
of the two phases at z/D = 20, normalized by the corresponding mean centerline
velocity of the single-phase jet, Uz,c.s' The flow conditions are those of
Cases 1, 2 and 3 in Table C-2 (Appendix C). Also shown is the mean velocity
profile of the turbulent single-phase jet Having the same Reynolds number
(14100) at the pipe exit. '

It can be seen from.these figures that the mean velocity of the carrier
phase is highly affected by the presence cf the patticles in the inner region,

especially at the jet centerline (30% higher than that of the single phase’for
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‘force that accelerates the particles in the radial ditection ié(thé”ViééOus

Case 1, 75% for Case 2, and 257 for Case 3). This behavior can be explained

by the fact that particles are confined to the inner region of the jet. Due

to this confinement and the high inertiél forces of the particles, their
centerline vélocitf deca?s with the downstream diséance ét'a élower rate than
thﬁt of the fluid (see Figure 7-8), and thus they becbme a source of momentum
to the fluid. Also due to the confinement, the number density of the
particles which is a strong parameter in the‘momeﬁtum transfer between the
particles and the carrier phase at ahy cfosé section is maximum at the jet
centerline. The"bonfinement of the. particles is evident in Figures 7-2 and 7-
3 where the concentration of the solid particles vanishes at a radial distance
of'r/z = 0.06, while the fluid spréads to at least tﬁree times'this

distance. This confinément can be e#plained by the fact that heavy particles

do not respond well to fluid turbulence fluctuations (\)p <KL V£), thus the main

drag. This drag force is proportioﬂal to (Ur-vr), and since U, is negative in
the outer region of the jét-and Ve < Ur)' the'résulting force will Be dirécted
inwards thereby limiting the radial spread of the particles.

The influence of the loading-ratio-of—-the:dispersed-phase~on the mean

velocities at z/D = 20 for 50 u particles is displayed in Figures 7-1 and 7-

2. The,inlet conditions for the two cases (1 and.2) are identical except for.

the loading ratio. By increasing the loading ratio from 0.32 (Case 1) to 0.85
{Case 2) the carrier phase velocity at‘the centerline increases from 307 to
75% relafive to the corresponding velocity of the single—phasé-jét. It can be
seen also from those two figures that the ratio between the centerline
velocity of the dispersed phase to that of the single phase is 1.5 for Case 1
and 2 for Case 2. This can be explained by the fact that the initial momentum

of the dispersed phase is proportional to the mass flow rate of that phase
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8ince they have the same velocity distribution. Therefore, the initial
momentum of the dispersed phase for Case 1 is about 2.7 times that for Case
2. This enhances the momentum transfer from the particles to the air, thereby
enhancing the increase in the axial velocity of the lattef compared with that
of tﬁe single phase. Now, since the axial air velocity at any point on the
jet axis at the higher loading case 1is greatér than the corresponding value at
the lower ioading case, the momentum dréiﬁ from the particles is expected to
be inversely proporliohal to the particles' loading ratio. This explains the
higher centerline velocity of the particles at the higher mass loading ratio.

The influence of the particles' diameter df‘the-dispersed phase on the
mean velocities at;z/D = 20 is d;splayed‘in_F;gurés 7-2 and 7-3 (Cases 2 and
3). The main différence between the‘two cases is the'ﬁarticle diameter, so
any quantitative cﬁange in the mean veipcity pr;filéé fs attributed to two
factorsﬁ 1) the 1nterpha$e surface aréé Sr fhe momentum‘éxghanée cbefficient,
and ﬁence the sourée terms of thé momentum equations, ana the.K anéie
equations; 2) the pafticles' réqunge to the turbulent fluctuations, thus the
additional turbulence dissipation caused by the fluctuating particle slip
velocity and its cdrrelation.with the fluid velocity fluctugtion. The surface
area in Case 2 is féur times that in Case 3, since, fdr nearly the same
loading ratio, the number of the 50 u particles is 64 times that of the
200 u particles. This increase in the ﬁumbér;ofvparticles or the interphase
area results in augmenting the momentum source. of the carrier fluid
consequently redﬁcing the rate of décéy of its Ce;terline velocity (see Figure
7-8).

Figure 7-4 shows the reduction in the shear stress due to the existence
of'the'particles with the air in the same control volume for 50 u and

200 u particles. Due to the reduction in the turbulence kinetic energy
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compared with that of the single phase, which is assoclated with additional
turbulence dissipation, the carrier phase momentumvdiffusivity is reduced;
Figure 7-4 shows that the reduction in the shear stress for 50 u particles is
greater than that»of 200 4 particles. This reduction in the turbulent
diffusion coefficient‘reduces the rate of decay of the centerline air mean
velocity (see Figure 7-8).

It is also clear from Figures 7-1, 7-2, ;nd 7-3 that the single—pbase jet
is wider than the particle-laden jet; this will be discussed la;er in this
section. Figures 7-1, 7-2, and 7-3 display in generél good agreement ﬁetween
the measured and predictedlvelocity aﬁd concentration profiies.

In order to distinguish between ﬁhe dispersed phase effects on the mean
motion (inertia and drag) and on turbulence (diffusion), the medn velocity
profiles obtained by solving the governing equations for.the medh motions
(Equations 3.26 to 3.33 together with the single-phase K énd € equations
({.e., Equations 3.34 and 3.35 without the additional productioﬁiand
dissipation terms due to the dispersed phase) are shown in Figuré 7-1 and 7-
2. The resulting }ncrease in the fluid centerline velocity, as pompared with
that of the single-phase jet, is only half that measured apd predicted by the-'
new K-€ model. Stated differently, the modulation of the fluid mean velocity
profilebby.the diépersed phase is not only due to the particles' inertia and '
drag but equally due to the additional turbulence dissipation.v .This in turn
reduces the fluid momentum diffusivity resulting in a peaked velocity profile
near the jet centerline. The additional turbulence dissipation is caused
mainly by the fluctuating particle slip velocity and its correlation with the
fluid velocity fluctuation that appeared in Equations 3.34 and 3.35. The
consequent reduction in the fluid turbulence intensity and shear stress is

displayed in Figures 7-4 and 7-5 where the agreement between the measurement
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and prediction is good.

Figure 7-6 compares the concentration distribution of 50 p particles
(Case 2) with that of 200 u (Case 3) parficles. Since the mass eddy
diffusivity is inversely proportional to (6;6)2/;2 (Equation 5.30), it is
consequently higher for the 200 u than that of the 50 u particles, so one
would expect that the particles of 50 u wiil diffuse in the radial direction
more than the of 200 u. This is evident in Figure 7-6 where the agreement
between the measurement énd prediction is good. |

Figure 7-7 shows the effect of the dispersed phase on the>spreading rate
of the jet by comparing the different Y1/2 ~ Z distributions>of thelthree
cases, where Y172 is the radius at which the fluid mean g%ial vélocity is half
- that at the centerliﬁe. While for a turbulent single-phase jet the value of
the slope (le/z/dz)iis constant (= 0.08), the value for a two-phase jet is a
functioﬁ of the dispersed phase properties such as particle diametéer and
density and loading ratio. This dependence is displayed in Figure 7-7. For
Case 3 (d = 200 u, Xo:= 0.8) the pfedicted slope value is 0.053, for Case 2

(d=50u, X = 0.85) it is 0.046, and for Case 1 (d = 50 p, X

o.f 0.32) it is

0.064. Cases 3 and 2thave nearly the same loading'ratio but thg pafticle
diameter in the latter is one quarter that of the former, the result being a
reduction of the spreading rate by more than 132.

Figure 7-7 also shpws the discrepancy-that.reéults in predicting the
spreading rate if the single-phase K—e‘model_is used instead of the proposed
model. The former predicts for Case lla slope of 0.072 while the latter
agrees with the experimental value of 0.064. As éxplained earlier this is due
to the fact that the additional dissipatién of turbulence energy as a result

of the dispersed phase is accounted for in the proposed model.

Figure 7-8 shows the decay of the mean centerline velocities of the two
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phases for Cas?s 1 and 3 compared with ;he single-phase values. Here Uz;o is
the carrier—phése centerline velocity at the pipe exit. 1t can be seen from

‘ Figure 7-8 that: the two phases reach a local equilibrium situation, equal
velocities, at about 10 pipe diameters and after that thevrelative velocity
between the two phases along the jet centerline increases by increasing the
downstream distance from the pipe exit. This behavior was previously analyzed

in the discussion of Figures 7-1 through 7-3.

7.2 The Methanol Spray

The flow considered in the present study is identical to the flow of-
Modarress et al. (1984) except that the solid spheres.are replaced by methanol
droplets of a given size distribution at the exit of the pipe (Figure 1-2).
The goal here is to mimic the‘flow of an idealized spray that has well-defined
.initiai conditions. In the present study the good agreement between
prediction and’experimental data in the cases of a round gaseous jet laden
with solid particles allows the use the of the latter while adding the
complexity of mass transfer and the resulting size éhanges in the same jet.

A turguient round jet laden with ﬁ;lti;ize évaporating liquid dropléts is
considered in this section. Atmospheric air carrying methanol liquid
droplets of diameters 100, 80, 60, 40 and 20 wm issues vertically downwards
from a cylindrical pipe of diameter D (= 0.02 m). The initial mean yélocity
and the turbulence intensity distribufions are assumed to be those of the
fully developed pipe flow as in the work of Modarress et al. (1984). The
ratio between the velocity of the dispersed phase to that of the carrier phase
at the centerline is equal to 0.7. The carrier fluid Reynolds number is equal
to 30,000."The temperature of methaﬁol droplets is assumed to be uniform at

the steady state saturation conditions. The initial mass flow rates of the
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different size groups are assumed to be equal and have a plug profile for = .

volume fractions. Three different mass loading ratios of 0.1, 0.25, and 0.5
(Case 6) are considered.

In what follows, the predicted mean velocities, volume fractions gf each
phase, turbulence intensity, and shear stress of the carrier phase under the
three mass loading ratios are présénted.

The normalized radial profiles of the mean quantities of the different
phases at 20 pipe diameters from the exit plane at X, = 0.5 are shown in
Figure 7-9. The méan yelocities of the carrier phase and those of the five

groups (k = 1,2,...,5) of droplets are normalized by the centerline velocity

of the single phase jet, Uz;c.s.' Here k = 1 refers to the group that has the

largest diameters, and k = 5 the smallest ones. It can be seen from this

figure, as one expected, that the difference between the velocity of the .

carrier phase and that of the largest diameter group is greater than that of
any other group. This is attributed to the balance between the inertia of the

droplet and the momentum exchange“force, The inertia force is propoftional to

(dk)3 whereas the momentum exchange force7{ﬂ7?;Qpprﬁ}qu}h}gﬂ&igﬁ@gggleEi;;

diameter with an éxpopeﬁt;réﬁging froﬁ”irto 1.7 (for a Reynolds number less
than 100). If all thé turbulent correlations in Equation 3.31 due to their
smali valﬁes compared with ;He mean momentum exchaﬁéé term arérnow d?opped,
the equation becomes indebendent of ¢k. If the droplet size is then increased,
the inertia becomes much greater than the momentum exchange force, and as a
result the relative velocity between the droplets and the carrier phase (Uz ;
Vzk) increases. The volume fraction profile of each group normalized by the
centerline value of the first group is shown also in Figure 7-9. Since the

reduction rate of the droplet diameter due to the evaporation process is

inverselyrproportional to ;hetsqug:e of the diameter, the smaller the droplet
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diameter is, the more reduction in the volume fraction. Figure 7 9 also shows

‘that the smaller the mean droplet diameter is, the less peaked the volume

fraction profile of its group. This is attributed to the turbulent diffusion-

coefficient (vﬁ) of the droplet which decreases with the increase of the
relative velocity or the droplet diameter (Equation 5.30). It can also be
seen from Figure 7-9 that the mean velocity of the carrier phase is affected

by the presence of the dispersed phase especially in the inner region.

VElghobashi et al. (l983) discussed in detail how the entrainment and the

negative radial velocity of the carrier phase in the jet outer region

influence the volume fraction distribution of the dispersed phase. They

showed that the entrainment flow creates an inward force exerted on the
droplets towards the jet centerline. This force combined with the small

turbulent diffusivity of the droplets, compared with that of the carrier

' phase, renders the volume fraction profile of the dispersed phase

significantly narrower than the velocity profile of the carrier phase. Since

-the momentum exchange between the two phases is a linear function of the

droplets volume fraction, it could be expected, that the momentum transfer to

- the carrier phase is maximum at the jet centerline. At the same time the

reduction. in the turbulence kinetic energy of the carrier phase and the
increase of the dissipation rate of that energy due to the presence of the
dispersed phase in the same control volume lead to a less turbulent diffusion
coefficient for the carrier phase and hence a less radialvdiffusion of that
phase compared with the single phase. These two factors make the velocity of
the carrier phase at the jet centerline much greater than that of the single-
phase jet (30%Z higher) and less than its corresponding value in the jet outer
region. |

The influence of the loading ratio of the dispersed phase on the carrier
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fluid turbulence intensity and shear stress 1s displayed in Figures 7-10 and
7-11. The reduction in the turbulence energy or the increase in the
dissipation rate of that energy is caused by the fluctuating relative velocity
between the droplets and the carrier phase and the turbulént correlation
between this velocity and other fluctuating quantities, volume fractions and
carrier fluid velocity. It can be stated that the reduction in the turbulence
intensity and the shear stress is proportional to the mass loading'ratio bﬁt
not linearly.

The concentration of the evaporated material in the carrier phése is
shown in Figure 7-12 at two different axial locations (z/D = 10 & 30) and at
X, = 0.5. Due to the continuoué.air entrainment by the jet and the turbulent
diffusion of the vapor, the concentration of the evaporating material in the
carrier fluid at z/D = 30 is less than the corresponding values at z/D = 10 at
the saﬁe distance from the jet axis, although the total evaporated mass
increases with downstream distance. This is also true even at the jet
centerline as will be seen in the discussion of Figure 7-15.

It can be éeen from Figure 7-12 that C is minimum in the jet outer region
and maximum at the jet centerline. Since CL’ according to the assumption of
this study and the droplets' material, has a constant value of'O.li, the
transfer number (Equation 3.42) is maximum Iin the outer region of the jet.
Therefore, the diminution rate of the droplet diameter is greater in the outer
than in the inner region.

Figure 7-13 shows the centerline decay of the mean axial velocities of
the different groups and the carrier phase compared with the single phase
va;ues for XO = 0.5; Here Uz,0 is the carrier-phase centerline velocity at
the pipe exit. It can be seen that the relative velocity between the droplets

and the carrier phase or the disequilibrium of the flow along the jet
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centerline, increases with increasing the droplet's diameter. It is worth
noting that the‘éérrier*phase centerline vélocity is‘ab0ut 30% higher Ehéﬁ_thé
corresponding value of the single phase in the range 7 < 2z/D < 30 és
previously discussed. ‘

Figure 7-14 exhibits the centérline decay of the volﬁme fraction and mean
droplet diameter based on thé total surface area of the droplets fdr the five
groups. The mean diameter is a quantity that is not used in any calculations
but facilitates the display and discussion of the results. In ﬁhe preseﬁt
work, it was possible to caiculate the local diameter distribution within each
group, thus from the maximum and minimum diameters at any station and the
number of sizes to be solved, the diameter rangelfor each group cah be fixed
-(e.g., at z/D =A10, grodp k = 1 contains dtOpléts ranging from 95 to 78
microﬁs). It can be seen from Figures 7-9 and 7-14 that the smaller the
droblet>diaméter”ié,-iﬁe higher the evaporéﬁion rate,ihence the rapidldecay of
the volume fraction an& the mean diameter.

‘Figure 7-15 shows the axial distribution of the total volume fraction of
the droplets and the cénterline concentration of the'methanollvapor in the
éarrier phase (C’éjéfa;Taiffetent mass loading ratios. Here ¢2’c/¢2’éiisﬁéié
total volume fraction of the dispersed phase at the centerline divided by that
value at‘the pipe exit.  The concentration of the evaporated material in the’
carrier phase first increases until z/D = 10>then monotouically deéreases due
to the continuous air entrainment By the jgt and turbulent diffusion of the
vapor. | | |

| The variation of the maximum turbulence intensity and maximum shear
stress of the carrier phase with the axial distance is displéyed in Figures 7-
16 and 7-17 for the different mass loading ratios. It can be seen that the

reduction in the turbulence quantities is proportional to the mass loading
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ratio but again notvlinearly. These two figures also show that farther

" downstream from the pipe exit, ;he turbulence quantities are approaching their
values for a single-phase jet due to the continuous diminution of the
droplets' vqlume fraction.

The rate of evaporation is a function of»both the transfer nﬁmber and
droplet Reynolds number, which.are maximum in tﬁg outer region and minimum at
the centerline. So the rate of evaporation is maximum in-thé outer region or
the minimum droplet diameter. This explains the radial distribution of the
_droplgt diameter at-the various Sections as showﬁ in Figure 7-18. Also
displayed is the mdnotonic reduction in droplet diameters with distance
downstream for the five groups.

Figure 7—19.shows the effeét of the evaporating spray on thé spreading
rate of the jet Sy comparing the differgnt.Y1/2:~ z diétributioﬁ; where Y172
is the radius at\which the carrier—fluid mean 5;131 velocity is h?lf its value
at‘the centerliﬁg. .While for a turbulent—sing}e phase jet the value of the
slope (le/z/dz) isAconstant (= 0.08), thét for a twé—phase jet i; a function
of the dispe?sed phase properties such as droplet diameter, densiﬁy and mass
loadiqg ratié. vThis dependence was discussed in the work of Mostafa and
Elghobashi (1983). In the developing region, the spreading rate of the spray
case is much lesé than that ofhth;‘gingle phase. As vaporization:pfoceeds the
effects of the droplets on the carrier fluid diminish allowing thé fluid

behavior to approach that of a single-phase jet.

7.3 The Flow of Shearer et al. (1979)
Shearer et al. (1979) measured the carrier phase properties in a
turbulent two-phase round jet using a laser doppler anemometer, the droplet

size distribution and the 1liquid mass flux using the inertial impaction
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method. The Freon-11 sprfyrvasrggne;ayéd by an a;rfatomizingﬁppgzle;pf71.194,
mm outer diameter (D). The ratiorﬁf the mass flow ratelof Fréoﬁ—ll spray at
the nozzle exiﬁ to thatvof the air (Xo)fis equal:to 6.88 and the initial -
average velocity, Uz,o~= 74.45 m/s. They also measured the mean‘mixtute

- fraction by isokinetiéaliy sampling the flow ét the gas velocity. Sﬁearer et
al. (1979) measured the radial profiies.of the mean and fms Velocity, and the
Réynolds stress at three stations (z/D = 170, 3;0, and 510) for boﬁh
isothermal siﬁgle—_phase and vaporizing spray jet flows. For computational

purposes, the profiles of turbulence dissipation rate (e) at z/D = 170 are

obtained from the shear stress measurements and the axial velocity gradient at
the same station (z/D = 170). Also, the veidcity distribution of the droplets

(one group with an average diameter = 27 mm) is assumed to be the same as that

~ next section. From the measurements of the droplets' mass flux and velocity
distribution, the volume fraction (¢2) is obtained. The profile of the freon

vapor concentration in the carrier phase (C).is obtained from the mixture

fraction measurements and the state relations given by Shearer (1979).

c-3 (App;ﬁ&ix:é) ;um&;fizés all fhe starﬁing profiles'needed for the
computation for both the single-phase jet and -the evaporating spray cases.
Temperaturé measutemenfs of:the‘carriér phase-(wifhrarbére wiré

chromelalumel thermocouple) showed only 5°C difference either in the radial or
the axial directions (between z/D = 170 & 510). On the other hand, Shearer's
Aanalysis (1979) showed that the droplet's temperature at ;/D = 170 is equal to
the Freon's saturation temperature (240.3°K). In the present calculations it
“was assumed that the temperat;re of the carrierAphasé is equal to the
surrounding air temperature (296°K) and the droplet's surface temperature is

equal to the saturation one (240.3°K). At these conditions, the density ofA>
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the 1iquid Freon-11 is equal to 1518 Kg/m3 and the vapor concentration at the:

.droplet's surface (CL in Equation 3.42) is equal to 0.292. In what follows we

compare the predicted with the measured distributions of the mean velocity-and
: shéar stress of the carrier phase at z/D = 340 and 510.
| Figure 7-20 shows thé measured and predicted centerline decay of the mean ..
axial velocity of the carrier phase compared with the single;phase values.
Due to the fact that the inertia of the droplets is much greater than that of
the carrier phase (pz/plv= 1500) , the centeriine Velqcities of the droplets
in the region z/D_< 170 are greater than those of the gas. As a fesult, the
centerline veldciﬁy of the carrier phase would be éxpected to bé greater than .
that of the single phase. Tﬁis is due to 1) the continuous mdmentum transfer
from the droplets't;'the'gas since Vz’c is greater thén Uy,e in Ehe’region
close to the nozzle (z/D.< 170) and 25 the reduction of the turbulende
1ntén$ity (and hence turbulent diffuéion) in the spray case'comﬁared with ﬁhat-
of the single-phase jet (ds Wiil be seen later.in Figures 7-23 énd 7-24).,
Figures 7—21 and 7-22 show the nofmalited radial profiles of the mean
axial velocities at 340 and 510 nozzle diameters from the exit’élane'fof both
the single-phase jet and the evaporating spray cases. It can be_seenifrom
these figures'that’thé jet width in the spray case'is narrower than the |
single-phase 6ne. This result can be attributed to the iuncrease of the.
centefline velocity of the carrier phase compared with its correqunding Vaiue
in the single-phase jet. The experimental data show tﬁét.with'increasing the
distance downstream from the nozzle exit, ;he je;fbehévior approaches that of
the single phase (Figure 7-22). The effect of the droplets oh the radial
shear stress distribution is displayed in Figures 7-23 and 7-24. 1t should be
noted that the starting values of the turbulence quantities and mean velocity

distribution of the vaporizing spray case differ (less shear stress) from
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FIGURE 7-21 RADIAL VARIATION OF THE MEAN AXIAL '

VELOCITY AT z/D = 340 (CASE 5 ) _
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FIGURE 7_23 RADIAL VARIATION OF THE SHEAR STRESS
AT z/D = 340 (CASE 5 )
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those of the single phase. This may have some effects on the brofiles
dowanstream (z/D = 340). ‘In geeerel, there is a reduction in the shear stress
or an increase in the dissipation rate of the turbulence kieetic energy due to
the presence of the liquid droplets in the same control volume with the
carrier phase. As vaporization proceeds the effects of the droplets on the
turbulence quantities diminish allowing the fluid behavior toeapproach that of
a single-phase jet (Figure 7-24).

| Ie-the presept case it was assumed that the velocities of tﬁe droplets.
are equal to those of the gas. To study the effect of this assumption on the
results, the droplets' velocity was increased by 20%; the eféect on the
carrier phase profiles was negligible. This result can be attributed to two
factors: 1) the droplets' diameter;'at the starting station, is equal toi
27 um or less; so the reduction raﬁe of the mean slip velocity between the
droplets and gas is considerable due to the vaporization; 2) since.the
droplets' mass fraction was measured, an increase in the velocity necessitates
a reducfion in the volume fraction. Thus, the.effects of incfeased_veiocity
are counterbalanced by those of decreased volume fraction.

It is important to note that the effects of density fluctuatien in the
calculation were neglected here. This essumption cae be justified in the
present sfudy since the mean deneity gradient is very small compared with the
velocity gradient. This is due to the negligible evaporated mass compared
with the entrained air, so the properties of the carrier phase are almost

those of the standard air.
7.4 The Flow of Solomon et al. (1984)

‘Solomon et al. (1984) presented some Comprehensive measurements of the

detailed structure of a two-phase turbulent round jet. Experiments considered
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the same test rig of Shearer et al. (1979) to perform some detailed
measurements of tﬁe droplets' properties.' Two mass loading ratios (X, = 7.71
and 15.78) were considered. Solomon et al. measured fhe-carriér phase
‘_properties using a laser doppler anemometer, the droplet size and velocity
using the shadow photograph technique, the liquid mass flux using inertial
impaction method; and the mean mixture fractioﬁ by isokinetically sampling'thé
flow. The radial distributions of these.quantities were reported at fOur
stations (x/D = 50, 100, 250, and 500) for the two maés.loadihg cases. They
classified the‘dropleﬁs into finite-size groups and méasured'the velocities
and the numbér density distribution of éach group. For cdmputatiénal
purposes, the profiles of the turb@lence dissipation rate (e), the volume
fraction of each droplets group (ék), and éhe'freon Qapor cdncentrafion in the
ca;r%er phase (C) are obtaihed_from the different meésured quantities at z/D =
50. € is ob£ained from the distributions of the:turbuienf shéaf stress, the
mean axial velocity gradient, and the tﬁrbulence'kinetic energy at the same
station. Seven groups (17.5, 22.5, 27.5, 32.5, 42.5, and 52.5.um)_are o
considered forixo =7.71 (Cé§¢ §) and tén'gfoupg (15, gS, 35,‘45,>55{ 65,'75{
85, 95, and 100 um) are considered for X, = 15.78 (Case 7). ¢k is ébtained
from the distributions of the liquid mass flux, and the mean velocity éf thé
different droplets grdUpS'and their telati;e number density at z/D = 50. é is
obtained from the mixture fraction measurements and the staté relations given
by Solomon et al. (1984)., Table C-4 (Appendix C) summarized all tﬁe ;tartihg
radial profiles of the main dependent variables at z/D = 50. This information
is essential for accurately predicting the present flow to validate the
turbulence model put forth in the present study.

Temperature measurements of the carrier phase (with a bare wire

chromelal@mel thermocouple)_sﬂowed a maximum temperature difference of only
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20°C either in the radial or in the axial directions. The analysis of Solomon
et al. showed that the droplet's temperature reaches the Freon's saturation
temperature at z/D = 50. It was assumed in the bresent calculations that the
temperature of the carrier phase is equal to that of the surrounding air
(300°K) while the droplet surface temperature is equal to that of the
saturation conditions.(240.3°K). |

A comparisoﬁ of the predicted with the measured diétributioné of the mean
velocity, turbulence intensity and shear stress of thefcarrier.phasgl and the
mean velocity of the droplets of the different-size groups follows.

. Figures 7-25 and 7-26 show the measured and bredicted centerliné velocity
distributions of the carrier phase andvthose of’the different droplet groups
for cases 6 and 7; Here k = 1 refers to the group tﬁét has the largest
diameters, and k'= 7 or 10 the smallest ones. The mean velocities are
normalizea by the avérage velocity at the noizié exit (U, = 64.5 m/s-for case
6 and 29.64 m/s fqr case 7). It can be seen from the figures that thé
relative velocity:between the carrie; phase.and the group of largest diameters
is greater than that of any other grouﬁ.l This behavior is already explained
" in the analysis of Flgure 7-9 (section 7.2). Figures 7-25 and 7-26 also show
~ the continuous reduction in the.;éiafiQe velocity between the carrier. phase
and the group of smallest diameters as the distance measured from the nozzle
exit plane increases. This caglbe attributed to the fact that the smaller the
droplet diameter;rthe higher the reduction r;te in the droplet diametér
itself. Thus, byfincréasing the downstream distance, the smallest diameters
group satisfies the local equilibrium conditiéns where the velocity of the
droplet becomes equal to that of the carrier phase. It can be seen also from
Figures 7-25 and 7-26 that the relative velocity between the carrier phase and

the group of largest diameters increases with an increase in the downstream
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distance. This behavibr is alreédy explained in ﬁhé analysis of Figure 7-13
(settioﬁ 7f2)" Figures 7-25-and 7-26 dispiaf 1qrgenera1 égéd agreémént. o
between the measured and pred;cted mean cgntgrline‘velocities, '

The inflpence of fhé loading rafio of thg dispersed phaéé on the
centerline mean velocity distribuﬁions Of the carrler phase is iliustrated in
Figure 7-27. 1In this figure the luncrease in the mean ceﬁ;efline'velgcityiof
tﬁe carrier phase compared with the corresponding value of the sipglefphase
jet is ptdportioﬁal £o tﬁe mass loading ratio (but nof lineérly)f_ This
proportionality is analyzed in detail in the discussion of ?1gdres 7-1 and 7-2
in section 7.1. Figures 7-28 £o~7-30 show the normalized radial profiles of
the mean axial velocities'of the carrier'bhase at 100, 250, and 500 nézzle,
diameters. from the ndzzié-exit plane for both thg two loading ratios (Cases 6.
and 7>w It can be seen from these two figurés_tﬁat the jet width decreases
with the increase of the mass loading ratio.

>Figure 7—28 shows a maximum discrepancy of 30% between the predicted and
measured velocities although the agreement is very good in Figures 7-29 and 7-
30. Probably the measutea quantities are overestimated at this station since

“Solomon gt”al{.reported"the~§éhe'diécré§ancj betﬁéeh the measurements add
their predictions at the same station, using the Lagrangian frame of work.

The influence of the dispersed phase on the carrier fluid turbulence
kinetic energy and sheér-stress_is displayed in Figurés 7-31 to 7-36. It can
be stated that the redqction in che-turbulence energy and the shear stress is
pfoportional to the mass loading ratio but not linearly. Thése figﬁéés also
show that farther downstream from the nozzle gxit (z/D = 500), the turbulence
quantities are ;pproachiﬁg their corresponding values fof a single-phase jet
(based on the experimental data of Shearer et al., 1979).

To  understand the nature of the turbulent 1ntera¢tion between the carrier
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fluid and the vaporizing droplets, the main features of this type of flow are

summarized as fqilows:

1. The toal mass of the dispersed phase cdntinuously decreases and so does
the volume fraction. Due to the reduction of the volume.fraction, the .
momentum exchange terms (mean and/or fluctuating) are reduced.

. 2. The velocity of the evaporating material as it leaves the droplet
surfaée is different from that of the carrier fluid. Thus, there is an
additional‘mbmentum trapsfer tﬁat depends on the evapoféﬁion rate and the
relative velocity. | |

3. The momentum éxchange cpefficient:is inversely prQﬁdrtional'to the
droblet diametef with an.expénent rénging,fromiz to 1.3 (for a Reynolds
number less than IQO).- Hencé, as ;he'diameter is reduced the momentum
exchange cbefficientrincreaség. |

4. The vaporizafion.reduces the droplets’ diameter and thus the total
rélative‘mean Qelbcity (ﬁ;—lg) and the highér the turbulent diffusivity of
the dispersed phase is. |
| Figures 7-31 to 7-36 display in.genefal good agreementibetheen the

measured and predic;ed turbulence kinetic energy and shear stress of the

carrier phase.
The prédictioﬁs of thg axial distribution of the Séuter mean diameter at
the jet centepline compared with the experiméntél data 1is dispiéyed in Figure

7-37. This diameter is given by |

.
L (d,)"n, /v
17 MY g

SMD = -
by (d)Tag /vy

where n; is the number of the droplets of diameter dq. It is clear that there

Bbd agreement between the predictions and the data for the averaged
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diameter.

It is important to note that the present study neglected the effects of
density fluctuations in these two cases as in Case 5 (Shearer et al., 1979)
and for the same reasons. It should be mentioned also that the prediction of
Cases 6 and 7 afe obtained with the coefficients of cﬁe turbulence model given

by Table 3.1. The optimized value for C€3 in these two cases is equal to 2.
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8.0 CONCLUSIONS AND RECOMMENDATIONS

-The main objectives of the present study were as follows:

1. to develop a mathematical model of turbulence for dilute two-phase flows
starting from the exact transport equations of the turbulence kinetic

energy and its dissipation rate;

2., to develop a reliable formula for the calculation of the lateral
diffusivity of heavy particles suspended in a homogeneous turbulent

field, and

3. to predict two-phase turbulent flows with phase changes based on modeled
transport equations of mass, momentum of each phase, the concentration

of vapor, and a two-equation turbulence model.

In the presented model, the third-order correlations containing particle
volume fraction fluctuations are retained. The numerical results for all the
predicted cases showed that those third-order correlations are negligible
compared with the second-order onés (two orderé of magnitude less). This
means that thg present study has only one new empirical coefficient in its
turbulence model (C€3). This coefficient is determined from one set of datg
(Case 1) and used very successfully in all other cases bf the same
experiment. A sensitivity study was conducted to investigate the influence of
the value of Ce3 on the model predictions. By changing thg value of CeB by
10%, the maximum change in any radial profile is less than:3Z.

The study of the effects of the dispersed phase on the carrier phase flow

properties, mean and fluctuating cowmponents, shows the following results:
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1. The momentum interehange between the two phases which reflects the
degree of disequilibrium between the phases, is a funetion of the
dispersed phase properties such as droplet diameter, density, and mass
loading ratio. 1In the case of heavy partieles suspended in a turbulent
gaseous media, the momentuﬁ interchange serms and_all the corresponding

turbulent correlations should be considered in the governing equations

of both the mean motion and_the turbulence model.

2. The effect of partial or complete droplet epaporetion is reflecred on
rhe velocity distribution of the different size éroups. The smaller the
diameter of the droplet is, the less the relative velocity between
droplets and the fluid, and the higher the turbulent diffusivity of that

group.

3. Due to the eo—existence of the dispersed phase end the carrier phase in
the.same control volume, a significant reduction in the turbulent shear
‘stress and the kinetic energy of turbulence of the carrier phase is
observed. The reddetion in the tdrbulence energy or the increase in the
dissipetion rate of that eneréy is csused by the fluctuating relative
veloeity Betﬁeen the particles and the earrier phase and the turbulent
correlation between this velocity and other fluctuaring quantities such
as volume fractions and carrier fluidvpeiocity. The reduction in the

kinetic energy of turbulence is proportional to the loading ratio but

not linearly.

A reliable expression for calculating the Schmidt number, defined as the

ratio of particle diffusivity to fluid point diffusivity, of heavy particles
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suspended in a turbulent flow is developed (Equations 5.30 to 5.33). The
predictions using that. formula are. compared with recent well-defined . . _ _
experimental data for the dispersion of a single particle. The agreement

between the predictions and data is very good.’

Using the turbulence model presented in this work, predictions of the

.different cases for either solid particles or evaporating sprays, are

generally in good agreement with the most recent well-defined experimental

3

data.

Further extension of the present work includes:

l. obtaining optical measurements for the flow properties of the ideal

spray experiment of Case 4 to validate the-present model and to support

the turbulenf spray models in general.

2. predicting a ducted recirculating turbulent two-phase flow (elliptic

flow). The predictions should be comﬁared with a well defined data set.

3. predicting a ducted turbulent two-phase flow with heat transfer. The

interaction between the evaporating droplet and the duct walls, and the
heat and mass transfer to the wall, should be considered in the model.

The density fluctuation effects should also be considered.

4. predicting the dense portidn of the spray. Droplet-droplet interaction

effects, collision, and shattering must be considered in the model.
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APPENDIX A
 Material Properties of the Spray

Table A-1 A
Physical Properties of Liquid Droplets*

Property : ' Methanol: ’ Freon 11
‘ ' (CH,0) (CCL4F)
Satﬁrated vapof pressure (PS),,N/m2 ' 0.207
Latent heat of vaporizatioﬁ (L), KI/Kg 50.0 7 181.32
© Density (p,), Kg/m® S 810 1518
Saturation temperature (TS)’ °K ‘ | | -292 _ ,f'?_ 240.3
Boiling temperature (TB), °K : o ) o 347.71 129647
Méleﬁular weigﬁt, W; | : ' | 32 . 137.37
viscosity of liquid materia1, (uy)s 104Kg/ms L '5.09 . 4.05
Surface tension‘(Y),»IO3N/m ’ - ' 21.8 V 7.5
Diffusivity of the evapdrating materia} (s), 105m2/s‘.11.35- T - L. 5

* Obtained at 30°C and P = 1 atm. (Vargaftik 1975 and ASHRAE 1969)
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o - APPENDIX B ~
Modeléd Transport Equations in Cartesian Tensor Notations -
Substituting in’ fhe time-averaged .equatiohs. presented in the subsections
2.3 & 3.3 by the modeling approximations for various turﬁulent correlations :
discﬁsse;i invthe subsection 3.4, the modeled transpo;'t -equations in Cartesian

tensor notations are obtained and will be presented in this Appendix.

The continuity equations of the carrier phase

v Lk k

t —
pl(‘blui),i pl((—y—_q’l,i),i =y mo
- _ c k
. The continuity equations of the kth phase -

. o.k

ok ok 9. k __ sk k .
The mean global contir'mity is
&, + ). ¢=k,'.= 1 B-3
L k

The momentum equation of the carrier. phase

' ek, kok k
Py 1U1,jUj‘ = - QIP-,i - E qs (F +m ) (Ui.—vi)
k
‘kop k ' \’t.
Sy R me Uy ) s
E‘_:( oc'(b,l P1 1(o»c ‘bl,_]v),_]
' kvt ke k Ve
= + B S . _L
+§( F. ;. (l-up) ® i pl(\’tq’l(Ui:,j' Uj,i-) + 5 LI

V. Ve K
+ —= U, .+ -— (= U, +U L)
o J¢1,1 °¢ 9. (e) [< i,2 2,1)(“t¢1,3),2

Third Order Correlation
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Third Order Correlation

The momentum equation of the kth phase

o k k k
p 5@ Vi,jvj =" -9 P,i -~ Fo (Ui-Vi)
Kk k
k% k k,%p k : k
rEgs T eYiGo v ) 8 ey )
Ve o kik . ke Kok oo V% ke
- -t 4.0 v+ v )+ -ty
o, (1o, s °2°p("t° Vi3 i1 o, 1?3
v V :
t k k k- ., k k
+ ==V, + V +V .
o, 3.7 oc( 2 1 1,070,020 Vet 50

Third Order Correlétiqn

k~ :
’1 J!l)(o 91)921)’j »
ird Order Correlation

k
+
w £

The conentration equation

L K.k
plQlUjC,j =£¢ m (1-C).

v

) o~ pIC("E 01 )

to @ '*"“’l,j,j 3

¢ t I’J

‘The turbulence kinetic energy equation (K)

v

t
U K = -- K o+ U + U |,
¢1 2 2 ‘pl(dk ’2):2 {01 iykvt( i,e - 9.:1)

Production (Pk)

: v
K
+c = -~-= ) )'.+U.+U. ( ) .
¢ I ( i,J J, v ‘Pl,z ( 2] J,z) "tol.i ,J)}‘
Third Order Correlation Third Order Correlation
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Py (v - 1)) =E &,
i i Oc p ,1

o~

extra. dissipation (€ B

k
. : o
+ R(1- Jo ("lﬁ']}') E( w)d w) L(bk -c P

K (5, ok

4o Ve ) )

Third. Order Correlation

~ & € o - - B=7

1
dissipation
The dissipation rate equation (¢€)
% e
$UgE g = °1(7’Z'€~’ P2 A
P; 2:
- + (c -EA c By == B=8
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APPENDIX C

Initial Conditioné of the Different Cases

Table C-2. Experimgntal Flow Conditions of Modarress et al. (1984)*

Gas-Phase (Air): : Case 1 Case 2 5 Case 3 -

Centerline velocity, U, . (a/s) 12,6 12.6 13.4

Exponent, n, of power law velocity-

Profile U /Uy . = (1-(2t/D))!/n mmmmmmmmmmmsn 6ufmmmmmmmmmes)

Turbulence Intensity

(ux/ﬁx,c) _ ". _. T (0.04 + 0.1 ;[p)ff-—-7->_,¢_
Density, °i (Kg/m>) - o ‘ »{ ————————————— 1.178=======mm==>
Mass flow rate m, (Kg/;) 3.76x1073 3.7631073  ax107d
Reynolds number R, = (4t /7u D) 0 13300 . . 14100

Uniform mean velocity of surrounding

stream, Uy, o (m/s) - < 0.05———~~——————— >

Intensity of turbulence in

surrounding (u, _/U

X, S x,s)

* Measured at 0.1D Downstream of Pipe Exit
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Solid-Phase (Glass Beads): ~  Case 1 Case 2 Case 3

Particle -diameter (microns) T 50 50 . 200
Particle density, f, (Xg/m3) (oo 2990-—===========>
Ceﬁterline velocity, Vx’c (m/s) 12.4 12.4 .7 10.2

Exponent, n, of power law vélocity

profile : B e 27 Jpmmmm >

Mass flow rate fi, (Kg/s) - - 1.2x1073 3.2x1073 . 3.2x1073
Ratio of mass flow rates

® =, /i ' S 0.32 0.85 0.8

o 271 - , . :
Ratio of volumetric fractions =

- (R /8 ~ 1. Ix10-4 =6 5is0x1070

¢2/¢1 = (mz/ml)(plux,av./p2vx,av.) 1.1x10 . 2.9x10 | 3.52x10
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. Table C-~1: The Considered Cases

Dispensed Diameter Mass Region :
Case Phase of Loading - - of -~ Reference
Number Material Particles Ratio ~ Study ;
-d m © X z/D
. 0 !
1 Glass 50 0.32 0.1-20 Modarress
: et al. (1984)
2 . -Glass 50 . 0:85 _-0.1-20-‘: Modarress
) et al. (1984)
3 Glass 200 . 0.8 - 0.1-20  Modarress
- - et al. (1984)
4 Methanol 20-100 . 0.1-0.5 0.1-20 Idealized Flow . -
5 Freon-11 27 "6e88 ' 170-510‘ . Shearer :
’ ' et al. (1979)
6 Freon-11 17.5-52.5 7.71°° - 50500 - Solomon
: - et al. (1984)
7 Freon-11 15-100 15.78 Solomon

50-500, -

et al. (1984)
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