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SUMMARY

The main objective of this investigation is to develop a two-equation

turbulence model for dilute vaporizing sprays or in general for dispersed two-

phase flows including the effects of phase changes. The model that accounts

for the interaction between the two phases is based on rigorously derived

equations for the turbulence kinetic energy (K) and its dissipation

rate (e) of the carrier phase using the momentum equation of that phase.

Closure is achieved by modeling the turbulent correlations, up to third order,

in the equations of the mean motion, concentration of the vapor in the carrier

phase, and the kinetic energy of turbulence and its dissipation rate for the

carrier phase. The governing equations are presented in both the exact and

the modeled forms.

It is assumed .that no droplet coalescence or breakup occurs. This

implies that the droplets are sufficiently dispersed so that droplet

collisions are infrequent. The droplets are considered as a continuous phase

interpenetrating and interacting with the gas phase, and are classified into

finite-size groups. Further, constant properties for both the carrier fluid

and droplets are assumed.

The Eulerian approach adopted here leads to two sets of transport

equations, one set for the carrier phase (primary air issuing from the pipe

plus the evaporated material) and the other for the droplets. These equations

are coupled primarily by three mechanisms, the mass exchange, the displacement

of the carrier phase by the volume occupied by droplets, and the momentum

interchange between droplets and the carrier phase.

An expression for calculating the turbulent Schmidt number of the

droplets (the ratio of droplet diffusivity to fluid point diffusivity) is

developed via comparison with the experimental data (Snyder and Luraley, 1971,



and Wells and Stock, 1983).

The governing equations are solved numerically using a finite-difference

procedure to test the presented model for the flow of a turbulent axisymmetric

gaseous jet laden with either evaporating liquid droplets or solid

particles. The predictions include the distribution of the mean velocity,

volume fractions of the different phases, concentration of the evaporated

material in the carrier phase, turbulence intensity and shear stress of the

carrier phase, droplet diameter distribution, and the jet spreading rate.

Predictions obtained with the proposed model are compared with the data of

Shearer et al. (1979) and with the recent experimental data of Solomon et al.

(1984) for Freon-11 vaporizing sprays. Also, the predictions are compared

with the data of Modarress et al. (1984) for an air jet laden with solid

particles. The predictions are in good agreement with the experimental data.
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NOMENCLATURE

a : droplet radius;

ai»ao '• major and minor radii of a droplet;

B : transfer number;

C : concentration of the vapor in the carrier phase;

c : concentration fluctuation of the vapor in the carrier phase;

Cp : drag coefficient of a liquid droplet;

Cpg . : drag coefficient of a solid particle;

C0b : drag coefficient of a gas bubble;

Cx : coefficient in the momentum equations;

c : coefficient in the turbulence model;

c ,c ,c _ : coefficients in e equation;
Pi £/ £J

d : droplet diameter;

D : nozzle diameter;

2
Et ' Eotvos number, P.(U-V) d/y;

E (u) : particles normalized energy spectrum function;
P

E(w) : fluids normalized energy spectrum function;

F : momentum exchange coefficient;

f : particle's free fall velocity;

g : gravitational acceleration;

I : evaporation rate;

K : kinetic energy of turbulence;

L • latent heat of vaporization per unit mass;

Lf : fluid Lagrangian length scale;

m : droplet mass;

ra : evaporation rate per droplet volume;

p : mean static pressure;
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p : static pressure fluctuation;

AP : static pressure difference;

r : distance in radial direction;

R : ratio between ai and aoj

Re : Reynolds number;

R,(T) : Lagrangian velocity autocorrelation for the gas;

R : universal gas constant;

R (T) : Lagrangian velocity autocorrelation for the droplet;

S : droplet surface area;

Sc : Schmidt number of the gas;

Sh : Sherwood number;

t : time;

Tg • : boiling temperature of the droplet;

XT : temperature at the droplet surface;

To : saturation temperature of the droplet;

U : mean velocity of the carrier phase;

U : total mean velocity of the carrier phase;

u : velocity fluctuation of the carrier phase;

V : mean velocity of the droplets;

V : total mean velocity of the droplets;

v : velocity fluctuation of the droplets;

We : Weber number;

W : molecular weight of the evaporating material;

XQ : ratio of the mass of the particles to that

of the gas at the nozzle exit;

Y : molecular fraction of the evaporating material;

2Y (t) : mean square displacement of the gas;

vii



2Y (t) ' mean square displacement of the particles;
P

z : distance in the axial direction;

Greek symbols

p : dynamic viscosity of the carrier phase;

v : kinematic viscosity of the carrier phase;

v : momentum eddy diffusivity of the carrier phase;

v : momentum eddy diffusivity of the droplets;
P

6 : molecular mass diffusivity of the vapor;

p : density;

a : coefficient;

T : droplet's relaxation time;
P

T : lagrangian time scale of the gas;
L

g, g ,B : coefficients;

n : Kolraogorov length scale;

Y : surface tension of the liquid-air interface;

$ : mean volume fraction of the droplets;

^ : volume fraction fluctuation of the droplets;

ty : gaseous phase stream function;

u : circular frequency;

e : rate of turbulence energy dissipation per unit volume;

e : mass eddy diffusivity of the carrier phase;

e, : mass eddy diffusivity of the praticles in the normal
n

direction to the mean relative velocity;

e : mass eddy diffusivity of the paritcles in the prarllel

direction to the mean relative velocity;

o : coefficient in K equation;
tC

o : coefficient in e equation;
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P
droplet' s Schmidt number;

coefficient in the dispersed phase momentum equation.

Subscripts

0 : conditions at the nozzle exit;

1 : carrier phase;

2 : dispersed phase;

c : conditions at the jet centerline;

c.s. : corresponding values for the single phase (air only);

L : conditions at the droplet surface;

r : radial direction;

z : axial direction.

Superscript

: droplets in kc size range.
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1.0 INTRODUCTION

1.1 The Problem Considered

Dispersed flow is a particular class of two-phase flows, characterized by

the dispersion of solid particles, liquid droplets, or gas bubbles in a

continuous fluid phase. Different flow regimes may be encountered. Of

particular interest here is the case where liquid droplets occupy a small

fraction, less than 1%, of the total volume of a gas-droplet mixture. This

spray regime (Fig. 1-1), which has been termed "thin spray" (O'Rourke, 1981)

or "dilute spray," (Mostafa and Elghobashi, 1984) is important in a variety of

applications. Steam generators, nuclear reactors, cooling systems, premixed-

prevaporized gas turbine combustors, diesel-engine sprays, spray-cooling and

spray-drying systems, and rocket plumes are some examples. Understanding the

interaction between the particles and surrounding gas is essential for

predicting dispersed two-phase flows.

A quantitative definition of "dilutness" in turbulent two-phase flows is

not readily available. For laminar flow the dilutness requires that the

center-to-center distance between particles should be larger than 2(a+6, )
b

where a is the particle radius and <J is the thickness of the boundary layer

around that particle. The experimental data of Tsuji et al. (1982) indicates

that the fluid dynamic force on a suspended particle can be assumed to be the

same as that on a single particle if the interparticle spacing is not less

than three particle diameters. This restriction gives an upper limit for the

volume fraction of the particles of 1% to satisfy the diluteness assumption.

For turbulent flow, another parameter plays a more significant role. This is

the ratio of the aerodynamic response time to the time between collisions

(Crowe, 1981). This ratio depends on the particles' loading ratio, the

relative velocity between particles and gas, and the gas velocity gradient.
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If this ratio is less than unity, a particle has time to respond to the local

gas velocity field before the next collision so its motion is dominated by

aerodynamic forces and the particle collisions can be neglected. Using this

restriction the particle number density, or the volume fraction, for a dilute

spray can be calculated.

In the dilute spray regime the interactions between droplets is

neglected. This implies that the droplet coalescence or break-up does not

occur. The droplets may exchange mass, momentum, and energy with the gas and

for dilute spray the exchange functions for isolated droplets can be used.

The droplets are classified into finite-size groups and each group is

considered as a distinctive phase. Further, constant properties are assumed

for all the phases to avoid the density fluctuations of the carrier phase at

this stage.

1.2 Previous Work

1.2.1 Fundamentals of Two-Phase Flow

The simplest analytical approach for calculating the properties of dilute

suspensions of two-phase flow is to assume dynamic equilibrium, where the

particles and gas velocities are equal at each point in the flow. The

suspensions can then be considered as a single homogeneous fluid that is

treated exactly as a single-phase flow. The mixture properties are those

based on the continuum mechanics that apply to molecular mixtures. The

infinitely fast interphase transport between the phases is the basic premise

of that approach. The equilibrium assumption is valid for small values of

Stokes number, less than 10 , and small values of particle/fluid material

density ratio, less than 102, (DiGiacinto et al., 1982). Stokes number is the

ratio of the particle relaxation time to the characteristic time of the



surrounding fluid. These two restrictions are not satisfied for the flow of

gaseous phase laden with liquid droplets or solid particles. Accordingly, the

local equilibrium approximation leads to unrealistic results for that type of

flow (Shuen et al., 1983). In spite of the inaccuracies in that approach, it

has been used by some workers (Shearer et al., 1979; Michaelides, 1984; and

Kamimoto and Matsuoka, 1977).

On the other hand, if both the density ratio and the Stokes number are

large, the particles will not be able to respond to the changes in the carrier

phase. In this case the difference between the velocities of the phases can

not be neglected and each phase should be treated separately (Crowe, 1982).

There are two approaches to handle the carrier phase in the separated

flow models, depending on the mass loading ratio, which is defined as the mass

flow rate of the particles to that of gas. If this ratio is small, less than

0.1, the velocity field of the carrier phase is not affected by the presence

of the particles while the motion of the particles is determined by the gas

flow properties (Rudinger, 1965). In this case the governing equations of the

carrier phase have no extra terms but rather they are identical to the well-

known Navier-Stokes equations. This approach is referred to as one-way

coupling (DiGiacinto et al., 1982) from gas to particles only arid has been

used by many workers (Cox and Mason, 1971; Batchelor, 1974; and Boyson and

Swithenbank, 1979). On the other hand, if the mass loading ratio is high^ the

particles may modify the gas flow field significantly. In this case the

particles are regarded as source of mass and momentum for the carrier phase.

This approach is referred to as two-way coupling (DiGiacinto et al., 1982; and

Crowe, 1982) from fluid to particles and vice versa.



There are two main approaches to handle the dispersed phase in the

separate two-phase flow models, namely the Lagrangian and the Eulerian

approaches. In the Lagrangian approach the dispersed phase is treated by

solving Lagrangian equations of motion for the particles with a prescribed set

of initial conditions. Once the flow properties of the particles are known,

the interface quantities between the two phases can be calculated. In the

Eulerian approach the dispersed phase is treated as an interacting and

interpenetrating continuum. In that approach the governing equations for the

two phases are quite similar to the well-known Navier-Stokes equations. These

equations are coupled primarily by three mechanisms, the mass exchange, the

displacement of the carrier phase by the volume occupied by particles, and

momentum interchange between particles and the carrier phase. Many two-way

coupling studies are presented in the literature, based either on the

Lagrangian or Eulerian approaches (Elghobashi and Megahed, 1981; Yeung, 1982;

Abbas et al., 1981; and Crowe et al., 1977).

Of most importance, the continuum assumption must be justified when using

the Eulerian approach. Batchelor (1974), Lumley (1978a), and Marble (1962)

have discussed the continuum concept for the dispersed phase. In summary, the

particles must be sufficiently small in order that a volume element, small

compared to the Kolmogoroff microlength scale, n, contains a large number of

particles. Thus a statistical average concerning the behavior of the

particles can be made within this volume element. This requires that the

average separation distance between the particles is at least one order of

magnitude smaller than n. Hinze (1972) stated that the continuum assumption

has proven to be applicable also to situations that do not strictly meet that

condition. Others (Crowe, 1982; Soo, 1967; and Yeung, 1978) showed that most

practical physical systems involving gas-particle mixtures satisfy the



continuum assumption. We may refer, amongst others, to theoretical

investigations by Marble (1970), Buckingham and Siekhaus (1981), Pourahmadi

and Humphrey (1983), Rizk and Elghobashi (1984), and Mostafa and Elghobashi

(1983) who used the Eulerian approach to study different flow conditions of

two-phase flows. Early work based on Lagrangian equations of motion are due

** v.

tb-El-$anhawy and Whitelaw (1980), Mongia and Smith (1978), Shuen et al.

(1983), El-Kotb et al. (1983), and El-Emam and Mansour (1983).

Arguments over the advantages and the disadvantages of Eulerian and

Lagrangian approaches persist in the literature. The Eulerian approach models

can easily incorporate particle diffusion effects since the randomness of the

particulate phase is accounted for by the way of the formulation. This

approach can be extended easily to multidimensional flows. Numerical

instabilities, false diffusion, and large storage requirements are the most

serious disadvantages of that approach. However, the use of advanced digital

computers and the ability to overcome the numerical problems (for example, by

choosing a suitable higher order finite-difference scheme) alleviate most of

these disadvantages. The Lagrangian approach exhibits no numerical diffusion

but the particle dispersion must be incorporated through an empirical

diffusion velocity or more expensive Monte Carlo methods (Chen and Crowe,

1984). Durst et al. (1984) showed that the Lagrangian approach, in cases,

where the particle loadings are high, is inferior to the Eulerian approach.

The Lagrangian approach calculations require interpolation between the meshes

since gas and particle properties are strongly coupled. In any case it

requires a toilsome computation for the source terms. If the interpolation

process is too crude, Aggarwal et al. (1983) have shown that errors of the

same order as the diffusion error in the Eulerian approach will be

encountered. Sirignano (1983) argued that the droplet properties should not



be averaged over the numerical cell as suggested by Dukowicz (1980), but

rather a linear interpolation should be made. In the present work attention

will be restricted to a formulation following the Eulerian approach.

The previous fundamental studies of the various aspects of two-phase flow

are concentrated on either the effects of various factors on the flow around a

single particle or on the governing equations of the dispersed phase. Fuchs

(1964) and Torbin and Gauvin (1959, 1960, 1961) did an extensive survey about

the dynamics of single particles. Those studies are very important to

fundamentally understand the two-phase flow. Most of the recent publications

in this regard will be discussed in section four.

On the other hand, several phenomenological attempts have appeared in the

literature to derive equations governing the macroscopic behavior of dispersed

two-phase flow. The equations cited most frequently are those of Drew (1971),

Kalinin (1970), Whitaker (1973), Gray (1975), Panton (1968), and Soo (1967).

Other deriviations include those by Nigmatulin (1967), Owen (1969), Rietema

and Van Den Akker (1983), Buevich and Markov (1973), and Jackson and Davidson

(1983). The resulting equations differ in various ways such as the

formulation for the pressure gradient term, the nature of the momentum, source

terms, or the proper coupling between the two fields.

Buevich and Markov (1973) obtained the conservation of mass, momentum and

moment of momentum for the two interpenetrating and interacting continua. All

the unknowns in the governing equations are expressed in terms of mean

stresses acting at the surface of an individual suspended sphere. Crowe

(1980) used the control volume, or Reynolds transport theorem approach, to

derive the continuity and momentum equations for a flowing vapor with

suspended burning, evaporating, or condensing droplets.



Solbrlg and Hughes (1975) derived the momentum equations and mechanical

constitutive equations that are required to describe transient, two-phase,
-i

single-component evaporating and condensing flows. Momentum field balance

equations were derived for each phase on the basis of a seriated-continuum

approach. A seriated continuum is distinguished from an interpenetrating

medium by the representation of interphase friction with velocity differences

in the former and velocity gradients in the latter. A two-phase mixture is an

example of a seriated continuum, whereas a mixture of gases is an example of

an interpenetrating continuum. The seriated continuum also considers embedded

stationary solid surfaces such as that which occurs in nuclear reactor

cores. There are some undetermined numerical coefficients that appeared in

the momentum equations of Solbrig and Hughes (1975). These coefficients must

be determined for the different flow regimes and geometry.

Panton (1968) formulated the flow properties for the non-equilibrium two-

phase flow of a gas-particle mixture. The conservation equations of continuum

fluid mechanics are assumed to apply to the flow field locally, both within

the particles and through the gas. Control volumes for each phase are defined

and integral forms of the conservation equation are applied. By inspecting

the equations, the proper area-averaged properties are defined so that they

are meaningful terms in the physical conservation laws. Because the detailed

flow is inherently unsteady, it was necessary to take the time average of the

equations. Thus, the dependent variables of the the final conservation

equations were area-time-averaged properties. New terms, even in laminar

flow, appeared in the momentum equations and were called the area-averaged

Reynolds stresses. The Reynolds stresses attributed to the fluctuations in

the gas velocity occur because of the presence of the particles. Every time a

particle passes the point under observation, a fluctuation in the gas velocity



occurs. Panton commented that these unknowns are the price to be paid for the

details of the flow.

Delhay (1980) surveyed two-phase flow modeling. He discussed the

different types of averaging — time, area and volume — in two-phase flow.

Also, the different two-phase flow and single fluid modeling were reviewed.

Delhay concluded that more work is needed to build the bridge between the

Lagrangian behavior of a particle and the Eulerian form of the constitutive

terms entering the averaged balance equations.

Drew (1971) derived averaged field equations for two-phase media. He

treated the separated surfaces between the two-phase media as transition

regions where the material properties have jump discontinuities. Postulating

the laws of balance of mass, linear momentum, angular momentum, energy, and an

entropy inequality, jump condition laws for each phase were derived. Solving

the differential equations and jump conditions, exact expressions for the

field quantities involved were found. Drew also defined and related the

appropriate average variables for each phase involved. He commented that for

any particular problem, his averaged field equations must be supplemented by

constitutive equations, which is not a simple task. Ishii (1975) discussed

the way of averaging used by Drew (1971), specifically the two integrals over

both space and time domains. Ishii commented that it is not quite convincing

why these four integrations are necessary to develop meaningful macroscopic

field equations. He pointed out that the time and space differential

operators in the averaged fields represent finite difference operators in the

physical interpretations.

Ishii (1975) presented a detailed discussion on the formulation of

various mathematical models of two-phase flows based on the conservation laws

of mass, momentum and energy. He considered the local instant formulation and



the time-averaged macroscopic models. He presented the two-fluid model, which

is formulated-by considering each phase separately. Thus, the model is

expressed by two sets of conservation equations of mass, momentum, and energy

with interaction terras appearing in the field equations. His formulation has

the advantage of treating large and small particles alike, with averaging

carried out across the interface. Ishii's formulation simplifies the

treatment of the dispersed phase by introducing a duality of discrete nature

and distributive representation. The discreteness is accounted for via

treating the virtual mass and unsteadiness of flow field of each finite size

particle. The distributive nature of the particle cloud is accounted for by

taking an elementary volume consisting of a sufficiently large number of

particles. Ishii also considered the diffusion model, which is formulated by

considering the mixture as a whole. Thus, it is expressed in terms of three

mixture conservation equations of mass, momentum, and energy with one

additional diffusion equation.

Sha and Soo (1978) discussed the basic concepts for the rigorous

formulation of a system of a single-component fluid in two phases. They

pointed out that the direct extension of continuum mechanics is inadequate

because of the mutually exclusive nature of the phases in a multiphase

system. Multiphase mechanics have their own distinct regime with additional

inertial and viscous interaction terms, applied to mixtures of phases that are

separated by interfaces and are mutually exclusive. This is in contrast to

the field equations of mixtures based on continuum mechanics, which directly

apply to molecular mixtures where the phases coexist at the same points in

space. Boure (1979), Crowe (1978), and No (1982) argued that the equations of

Sha and Soo (1978) are inconsistent and not valid even in one-dimensional

situations.

10



In section two, the governing equations of dispersed two-phase flow are

presented and compared with other equations in the literature.

1.2.2 Turbulent Evaporating Sprays

Modeling of evaporating and combusting sprays is an extremely difficult

problem due to the complex physical and chemical phenomena encountered in this

type of two-phase flow. A substantial number of reviews of this problem have

appeared in the literature. The recent reviews of Law (1982), Faeth (1977,

1983), Labowski and Rosner (1973), and Sirignano (1983) discussed the previous

work on the different phenomena associated with the spray evaporation and

combustion problem. The present study will be restricted to evaporating or

nonevaporating dilute sprays.

Krestein (1983) has analyzed a simple model of an evaporating spray to

predict the probability density function (pdf) of vapor concentration within

the spray. The model assumes that the droplets deposit linear streaks of

vapor as they traverse the motionless host gas, and that the vapor diffuses

radially from these streaks. Since it neglects droplet collisions,

saturation, and related effects, the model is applicable primarily to dilute

sprays. The results of this analysis can be used to estimate droplet

vaporization rates from experimentally measured pdf's of concentration.

Therefore the individual-droplet processes could be linked to fluctuating

ambient conditions in spray simulation codes.

O'Rourke and Bracco (1980) developed a numerical model for turbulent

dense sprays. The model is two-dimensional unsteady and uses atomization

experimental results as nozzle exit boundary conditions and a stochastic

algorithm to compute droplet events, including collisions and coalescence.

Westbrook (1976) presented a numerical solution technique for the spray

11



equation for' a type of stratified charge internal combustion chamber. He

neglected the gas entrainraent by the droplets and adopted the dilute spray

approximations. The gas motion was assumed to be consisted of a rotational

swirl with a constant angular velocity. Axial and radial components of the

gas velocity were assumed to be identically zero.

Martinelli et al. (1983) used O'Rourke's model after considering a
• .v

KHE submodel for gas turbulence to predict the data of Wu et al. (1984).

Agreement is good with mean quantities but the computed standard deviation of

the drop velocity distribution is generally smaller than the measured one.

Although the effects of turbulence on the droplet motion is considered in the

model, the direct effects of the droplets on the gas motion are neglected.

Yeul et al. (1982) have since reported measurements in evaporating

kerosene sprays from a twin-fluid injector in a co-flowing stream.

Measurements of droplet size were undertaken using a laser tomographic light-

scattering technique while mean velocities were measured using LDA. They did

not measure the turbulence characteristics or the droplet/velocity

correlations which are needed for the theoretical models evaluation. Wu et

al. (1984) reported LDV measurements for the distribution function of the

axial and radial components of the droplet velocity at various radial and

axial locations within steady sprays under the conditions of direct fuel

injection in internal combustion engines, but at room temperature. The

measurements were taken within 300 to 800 nozzle diameters from the nozzle

exit.

1.2.3 Turbulence Mathematical Models

Computational models are a very useful tool for a better understanding of

the features of the two-phase flow, considering the inability of the

12



analytical methods and the difficulty of experimental investigations.

Vasillev (1969) reviewed the development of the two-phase flow, relying

chiefly on the research that has been done in the Soviet Union. He cited the

papers on the governing equations for laminar and turbulent flows as well as

those on the effects of the dispersed phase on the turbulence intensity and

the spectrum of turbulence. He concluded that the presence of small suspended

particles leads to more rapid damping of the turbulent energy under isotropic

flow conditions. In the case of large values of density ratio it also causes

a noticeable distortion of the turbulence energy spectrum and a decrease of

its micro scales in comparison with the case of single-phase flow.

Rakhmatulin (1956) (cited by Vasiliev, 1969) suggested that the motion of

the mixture should be treated as an interpenetrating motion of several

continua. The equations of motion are written separately for each phase, and

the interaction between the phases is taken into account by considering the

interaction forces that appear as internal forces for the whole system. The

governing equations of Rakhmatulin (1956) were used by Bondarenko and

Shaposhnikova (1980) to analyze flow regimes in channels of different

shapes. Those equations were also used by Vasil'kov (1976) to predict a

turbulent submerged jet containing an admixture of solid particles.

Michaelides (1984) analyzed the gas-solid two-phase pipe flows using the

mixing length hypothesis. The mixture was taken to be a homogeneous fluid of

variable density across the pipe cross-section. These two assumptions make

the solution very restricted to dilute suspensions with comparable densities

between the solid and the gas.

Buckingham and Siekhaus (1981) described a K-e turbulence model that

allows for effects of particles on turbulence properties. The model is

applied to flows containing small solid particles, considering added
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dissipation due to particle interactions with the carrier phase in the

governing. Buckingham and Siekhaus did not compare the performance of their

model with any experimental data. The predictions suggest a damping of the

turbulence motions primarily because of inertial effects. Nagarajan and

Murgatroyd (1971) presented an analytical model for turbulent two-phase fully-

developed pipe flow. They assumed linear shear stress in the radial directi°n

and introduced several phenomenological coefficients in the model. This made

their model inapplicable to other two-phase flow problems.

Kramer and Depew (1972) developed a one-dimensional model for a fully

developed two-phase turbulent pipe flow. In their solution they expressed the

velocity fields in terms of various empirical coefficients and assumed a

linear mixing length to express the turbulent correlations. This has again

made the application of their model to any other problem very difficult.

Genchev and Karpuzov (1980) have proposed a turbulence model for fluid-*

particle flows in which the effects of particles on the turbulence transport

equations are considered. They assumed that the mean velocity of the

particles is equal to the fluid mean velocity and neglected the fluid-particle

turbulent correlations existing in the time-averaged equations (Elghobashi: and

Abou-Arab, 1983). Genchev and Karpuzov predicted a fully developed pipe flow

laden with solid particles of density ratio of order 10 and volume

concentration of order of 10 . They did not compare their predictions with

experimental data to evaluate the capabilities and the limitations of their

model.

Danon et al. (1977) described a K-L model for two-phase jets. The length

scale (L) was not modified from the value appropriate for a constant density

single phase jet; however, a term representing the added dissipation due to

the presence of particles was included in the governing equation for K. The
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model was evaluated using the data of Hetsroni and Sokolov (1971) for a round

jet containing oil droplets. The predictions using the basic model were not

in good agreement with these measurements. The comparison between the

predictions and measurements was improved by multiplying the rates of

production and dissipation of K by a coefficient that was a strong function of

the void fraction. These authors commented that there is a substantial and

unexplained influence of particles on turbulence properties of jets, even at

low particle concentrations.

Melville and Bray (1979) described a model for particulate flow, with

small interphase slip, employing constant eddy diffusivities for momentum and

particle transport. The predictions were evaluated using the measurements of

Laats and Frishman (1970a and 1970b) for a round jet containing powders of

various sizes.

Pourahmadi and Humphrey (1983) proposed a mathematical model for dilute

suspensions of two-phase flow based on the single-phase K-e model. They

considered the direct effects of the particle's sharing the same contrpl

volume with the gas on the governing equations of K and e. These authors

neglected all the third-order correlations without justification and used

stokes drag coefficient although the particle Reynolds number is generally

greater than unity in two-phase flow. They also used Peskin's formula for the

calculations of the particle's Schmidt number. This formula was tested by

Elghobashi et al. (1984) for glass particles and produced unrealistic values

for the particle's Schmidt number, negative or zero.

Elghobashi and Abou-Arab (1983) proposed a two-equation turbulence model

for incompressible dilute two-phase flow which undergoes no phase changes.

Using this model, Elghobashi et al. (1984) predicted the turbulent

axisyrametric gaseous jet laden with uniform size solid particles. They
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achieved good agreement with the experimental data of Modarress et al.

(1984). This model has been extended by Mostafa and Elghobashi (1985a) to

include the effects of phase changes.

Shuen et al. (1983) evaluated the performance of the available Lagrangian

methods for predicting the dispersed phase behavior by comparing the results

with measurements of particle-laden jets. They considered only dilute

suspensions of solid particles, and hence concluded that the effects of the

particles on the turbulence quantities are almost negligible. This allowed

them to recommend the use of the conventional K-e model for two-phase flows

without any modifications. Shuen et al. (1983) indicated that the suggested

method by Gosman and loannides (1981) for calculating particle trajectories,

the "stochastic or Monte-Carlo method," in contrast to other methods, provides

good predictions over their data base. In this method the isotropic turbulent

gas velocity field is split into mean and fluctuation. The mean value is

obtained from the solution of the mean equations while the fluctuating one is

estimated from random sampling of a Gaussian distribution of the kinetic

energy of turbulence. The Monte-Carlo method requires selection of

characteristic eddy length and time scales. Shuen et al. (1983), following

Gosman and loannides (1981), assumed that the eddies are uniform and their

size is proportional to a turbulent length scale, £ , given by

£ = C K3/2/e 1.1e e

Shuen et al. (1983) used the value of 0.16 for the constant Ce, which was

suggested by Gosman and loannides (1981) who later changed this value to 0.31

to get a better agreement with the experimental data (Crowe, 1982). Crowe,

(1982) recently argued that the value of Cg should be 0.46 to give a good
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agreement with the experimental results. This is unfortunate since Shuen et

al. (1983); Gosman and loannides (1981); and Crowe, (1982) have used the same

experimental data of Snyder and Lumley (1971) to obtain the value of the

empirical coefficient Ce.

In conclusion, after the literature on two-phase turbulent flow was

examined, it was found that there is still no complete mathematical model of

this class of flows comparable with the model of single-phase turbulent

flows. The main objective of this study is to develop such a model.

1.2.4 Turbulent Two-Phase Jet Flows

A turbulent nonreacting gaseous jet laden with solid particles or

evaporating droplets is a relatively simple flow that allows the study of the

interactions between the two phases and the turbulent dispersion of the

discrete phase. Most of the previous measurements (Rajani, 1972; Hetsroni and

Sokolov, 1971; and Laats and Frishman, 1970a) of the structure of particle-

laden jets considered the effects of the dispersed phase on the continuous

phase properties. Abramovich (1970) and Goldschmidt and Eskinazi (1966),

discussed the effects of the dispersed phase on the structure of a turbulent

gaseous jet. They showed that the particle concentration profiles in a two-

phase jet are narrower than the gas velocity profiles. This behavior was

explained later by Elghobashi et al. (1984).

Levy and Lockwood (1981) and Laats and Frishman (197Qa) found that the

gas mean velocity profiles in a two-phase jet are narrower than those of the

clear jet. Modarress et al. (1984) and Girshovich et al. (1981) further

showed that the solid or liquid particle velocity is higher than the gas

velocity in the developed region of the jet. Other studies (Al-Taweel and

Laundau, 1977; and Laats and Frishman, 1973) showed that the turbulent energy
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level decreases with the increase of the suspension of particles into a jet.

The effect of small droplets of cottonseed of 13 ym average diameter on the

flow structure of an axially symmetrical turbulent air jet has been studied by

Hetsroni and Sokolov (1971). They found that in the two-phase jet, the

velocity spread and the turbulence intensities were reduced in comparison with

the single-phase jet. They also found that even at low volumetric droplet

loadings, the jet was narrower than single-phase air jet. At a high loading,

the jet spread was wider upstream and narrower in the downstream region. The

intensity of velocity fluctuations was reduced throughout the jet. Hetsroni

and Sokolov (1971) measured time-averaged and fluctuating longitudinal

velocities by means of a hot-wire anemometer. The probe was not calibrated in

a two-phase flow but the authors stated that the calibration curves obtained

in single-phase flow could be used for two-phase flow with minor

corrections. Rajani (1972) pointed out the uncertainties regarding the

calibration of probes used in dust-laden flows that may lead to an

overestimation of the measured quantities. Therefore, their results should be

viewed with caution as pointed out by Melville and Bray (1979).

Field (1963) and Subramanian and Ganesh (1982a and 1982b) have provided

evidence of the overall effect of solid particles on a dust-laden jet by

measuring the rate of ambient air entrainraent by the jet. Field considered

Tycbpodium powder of 30 ym size while Subramanan and Ganesh used sand

particles of uniform size of 150-180 ym. They found that the entrainment was

affected by particle size, density and mass loading ratios, and the dispersed

phase initial conditions. Subramanian and Ganesh showed that the presence of

particles increases the entrainment rate. Since their measurements are in the

developing region (z/D_<_7), where z/D is the axial distance to nozzle

diameter ratio, and no nozzle exit conditions are reported, it is difficult to
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analyze that data.

Hayashi and Branch (1980) measured the concentration profiles of

particles in axisyrametric jets. The measurements were made by seeding 1%, 3%,

and 5% by weight of 24 un mean diameter spherical flash ash particles into

jets at Mach numbers of 0.2, 0.8, and 1.0. The particle concentration

profiles showed that particles concentrate on the axis of the jet at the exit

of the nozzle and the profiles are highly influenced by the initial

conditions. This observation is expected since the measurements were done in

the developing region, which is highly affected by the nozzle exit conditions.

Zuev and Lepeshinskii (1981) studied the two-dimensional steady isobaric

two-phase jets. They considered the effects of particle-particle interaction

on the governing equations from an analogy with the kinetic theory of gases.

They adopted the mixing length hypothesis to close the set of equations. Zuev

and Lepeshinskii did not compare the predictions using their model with any

experimental data to test their approach. Vasil'kov (1976) added terras that

take into account the interaction of the phases to the governing equations of

single-phase gas dynamics to predict a turbulent submerged jet containing an

admixture of solid particles. He assumed that the radial velocities of the

particles are equal to those of the gas and adopted the mixing length

hypothesis to close the set of the governing equations. Vasil'kov obtained a

\.

reasonable agreement between the*' predictions using his phenomenological model

and the data of Laats and Frishman (1970a and 1970b).

Popper et>al. (1974) studied the motion of oil droplets of 50 un, in a

round air jet using LDV. It was found that at the jet axis, the droplet

velocities are 5-9% lower than the corresponding velocities in a single-phase

air jet. In the developed region the droplet velocities were higher than the

air velocity at the same location.
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The effects of spherical glass particles of 110 un average diameter on

the flow structure of an axially symmetrical turbulent air jet has been

studied by Rajani (1972) for various solid/air loading ratios, from 0 to 1.3

kg/kg. Time-averaged velocity measurements were performed by laser Doppler

anemometer (LDA) and the particle concentration measurements by a scattered

light technique. Rajani devoted a large part of his work to the development

of the experimental techniques, their accuracy, and limitations. Therefore,

he reported very limited data, especially for the dispersed phase.

Yuu et al. (1978) examined the distribution of „concentrations of the dust

particles of the average diameter on a mass basis of 15 and 20 jm in a round

jet. The flow was highly dilute, since solid volume fraction in the injected

flow was in the range of 0.4 - 2x10 . The measurement of particle

concentrations was performed with a photoelectric dust counter and the mean

velocity was measured with a pitot-static probe. Using the concentration

data, they indicated that the particle diffusivity decreases with the increase

of the particle inertia and in general it is smaller than that of fluid scalar

quantities. Goldschmidt and Eskinazi (1966) measured the concentration of the

liquid droplets, of the average diameter on a weight basis of 3-.3 un in a two-

dimensional jet. They indicated that the droplets' mass tends not to diffuse

more than the fluid momentum.

Girshovich et al. (1981) and Laats and Frishman (1973) investigated

experimentally the effect of solid particles on both the mean and turbulence

axial velocity components of an air jet using LDV techniques. They studied

the effect of the circular tube diameter, initial velocities, initial

particles/air mass loading ratio, and particle diameters on the jet

performance. Laats and his coworkers found less rapid decay of centerline

velocity and a reduced velocity spread of the jet with the increase of the
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solid loading. They also found that the increase in the mean axial velocity

and the decrease in the turbulence intensity at the centerline for the carrier

phase depend on the loading ratio and the diameter of the particles.

Unfortunately Laats and his coworkers did not measure the initial conditions

at the nozzle exit and did not report the material density of the particles.

This fact renders their data inadequate for the evaluation of turbulence

models.

Levy and Lockwood (1981) measured fluid and solid phase mean and

fluctuating velocities in a.round gaseous jet using LDV techniques. They

studied sand particles ranging in size from 215 to 1060 vm with sand to air

mass ratios ranging from 1.14 to 3.5. Levy and Lockwood found that, relative

to the pure gas phase, the axial turbulence intensity was reduced by

introducing particles in the size range of 180-500 vm and was increased when

the particles are in the range of 500-1200 ]ta. But again they did not report

the nozzle exit conditions. Modarress et al. (1983) reported much needed

experimental data to help understanding the behavior of two-phase turbulent

jets and to validate the theoretical models for these flows (Fig. 1-1). They

investigated the effects of 50 Mn and 200 nn glass beads on the mean air

velocity and found that the turbulent stresses for mass loading ratio varies

from 0.32 to 0.85. Modarress et al. found that the increase in the centerline

mean air velocity and the diminishing of the turbulence quantities are

proportional to the loading ratio, the particle diameter, and the initial

conditions of each phase.

Shearer et al. (1979) measured the mean velocity, velocity fluctuations,

and Reynolds stress of single-phase constant density jets, as well as those of

an evaporating spray (Freon-11). Since their measurements were in the region

far downstream from the nozzle (170 _<_ z/D _<_ 510), the flow was highly dilute
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and the effects of the dispersed phase on the gas properties were very

slight. Solomon et al. (1984) measured the flow properties of the carrier

phase as well as those of the droplets in a turbulent round jet laden with

Freon-11 spray. They considered the dilute portion of the spray (50 _<_ z/D _<_

510) injected into a still air environment in order to provide data useful for

the evaluation of spray models. They measured all the radial profiles of the

main dependent variables at 50 nozzle diameters from the exit plane for two

mass loading ratios of 7.71 and 15.78. This information is essential for

accurately predicting such flow.

The last three experiments (Modarress et al., 1983; Shearer et al., 1979;

and Solomon et al., 1984) are used in the this work to test the proposed

turbulence model.

1.3 Summary of Approach N

The present contribution focuses on developing and testing a two-equation

turbulence model for predicting isothermal steady two-phase flows including

the effects of phase changes. A set of equations describes the conservation

of mass, momentum of each phase, vapor concentration, and kinetic energy of

turbulence and its dissipation rate for the carrier fluid. Closure of the

time-mean equations is achieved by modeling the existing turbulent

correlations up to the third order. The model considers turbulent non-

reacting axisymraetric jet flows laden with evaporating droplets or solid

particles. This flow regime is a relatively simple flow that allows the study

of the interactions between the droplets and the carrier phase, the turbulent

dispersion of the droplets. The radial profiles of the main dependent

;\

variables are easy to measure in this type of flow, thus it is convenient for

the turbulence model's validation.
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In the following sections, the transport equations governing the mean

quantities are presented first of all, followed by the development of the

proposed two-equation model. Then the mass and momentum exchange coefficients

are evaluated and an expression for the particle's Schmidt number is

developed. The work concludes with an evaluation of the model using the

recent measurements of Modarress et al. (1983), Solomon et al. (1984), and the

measurements of Shearer et al. (1979).
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2.0 GOVERNING EQUATIONS OF DILUTE SPRAT

The purpose of this section is to present the basic equations that govern

the turbulent dilute vaporizing sprays, and to discuss the problems that their

solution poses.

Section 2.1 states the assumptions for this study. Section 2.2 lists

the time-dependent equations. The discussion then turns to time-averaged

equations in section 2.3. Finally, the problem of closure is discussed in

section 2.4.

2.1 Assumptions

It is assumed that no droplet coalescensce or breakup occurs. This

implies that the droplets are sufficiently dispersed so that droplet

collisions are infrequent. This assumption renders the present study

restricted to dilute suspensions only. The initial breakup of liquid sprays

or jets is not considered. It is assumed that the initial profiles of volume

fractions and velocities are independently specified. Therefore, there is

two-way coupling between the droplets and the carrier phase. It is assumed

that the droplets of different sizes constitute different continuous phases.

This is from the point of view of the "continuum" mechanics of a cloud of

droplets, apart from the obvious definition of a multiphase system, a mixture

of phases of liquid droplet and gas (Soo, 1967). Therefore, the continuous

droplet-size distribution is divided into n,intervals; d is the average

diameter for droplets in the k diameter range. If ds and dL are the

smallest and largest droplet diameters, then the sizes are ordered as follows

ds = dn < dn-1 -— < d1 = dL "'•' 2.1
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Thus, n different diameter ranges constitute correspondingly n dispersed

phases and the evaporated mass with the surrounding gas constitute the carrier

phase.

It was also assumed that the droplets are sufficiently small in order

that a volume element, small compared to the Kolmogoroff microlength scale,

contains such a large number of droplets that a statistical average concerning

the behavior of the droplets can be made within this volume element. It was

further assumed that the droplets remain spherical during their entire

lifetime. This assumption is discussed in detail in section 4.2. Also, it

was assumed that the mean flow is steady and the material properties of the

different phases are constant.

This leads to two sets of transport equations, one set for the droplets

and the other for the carrier phase, which is defined as the atomizing air

plus the evaporated material. These equations are coupled primarily by three

mechanisms, the mass exchange, the displacement of the carrier phase by the

volume occupied by droplets, and momentum interchange between droplets and the

carrier phase. The momentum interchange is due to the aerodynamic forces

exerted on the dispersed phase and the momentum growth resulting from the

relative velocity between the generated vapor and the surrounding gas.

2.2 Time Dependent Equations .

As discussed in subsection 1.2.1 many authors derived continuity and

momentum equations for each phase by performing volume averaging (Sha and Soo,

1978; Hinze, 1972; and Jackson and Davidson, 1983) or averaging in space and

time (Panton, 1968; and Drew, 1971). Here the instantaneous, volume-averaged

equations, in Cartesian tensor notations, are presented based on those of

(Crowe, 1980; Hinze, 1972; Harlow and Amsden, 1975; and Jackson and Davidson,

1983).
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The continuity equation for the carrier phase is

2-2

The term on the right-hand side of Equation 2.2 represents the rate of change

of the added mass or the source term due to the evaporation process from all

droplets existing with the carrier phase in the same control volume. This

term also represents a sink term in the continuity equation of the droplets

(Equation 2.3).

The continuity equation for the kfc dispersed phase is

(P2*
kVk) ± - - A

k*k 2.3

The global continuity is

» + I <&k = i 2.4
k

The momentum equations for the carrier phase are

'x k

2.5
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The momentum equations for the k dispersed phase are

The set of equations (2.2 - 2.6) have (4k + 5) unknowns (3k of droplet

k k
velocities (V ), k of droplet volume fractions ($ ), 3 carrier phase

velocities (U.), carrier phase volume fraction ($ ), and the static pressure

(P)) and (4k + 5) equations. So it forms a closed set of equations since the

number of unknowns is equal to the number of equations.

Using the continuity equations for the different phases (Equations 2.2

and 2.3), Equations 2.5 and 2.6 as can be rewritten as

2'7

In the equations above and throughout this work the partial derivatives are

represented by a subscript consisting of a comma and an index; e.g., ( ),t

3t
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The subscripts 1 and 2 denote, respectively, the carrier fluid and dispersed

phase; the superscript k denotes the kth dispersed phase; U^ is the velocity

k
component of the carrier fluid; V. is the velocity component of the droplets

in the k diameter range; p and y are the material density and viscosity; P

is the pressure; 4 is the volume fraction; g^ is the gravitational
k

acceleration in the i direction; F is the interphase friction coefficient,

.kand m is the evaporation rate per droplet volume.
k

Note that the factors 4, and * lie outside the pressure gradients in

Equations 2.5 and 2.6, contrary to what some authors have proposed for

considering those factors within the gradients (Sha and Soo, 1978). Harlow

and Amsden (1975), Nigmatulin (1979), Solbrig and Hughes (1975) and Boure
k

(1979) argued that *. and * should be outside the pressure gradients as in

Equations 2.5 and 2.6.

k k k
The momentum growth terra (m * V.) in Equations 2.5 and 2.6 represents a

force on the fluid due to the difference between the velocity of vapor leaving

the droplet surface and that of the carrier fluid. If the flow from a droplet

is assumed to be uniform in all directions, then the average velocity of this

flow in any direction is zero. Therefore, the vapor leaves the droplet

surface with a velocity equal to that of the parent droplet (Nigmatulin, 1967;

Solbrig and Hughes, 1975; and Jackson and Davidson, 1983). In this case no

differences should be produced on the momentum equation of the droplets1

Equation 2.8 from those of solid particles (Crowe, 1980).
l

Solbrig and Hughes (1975) tested the relative importance of the transient
S"

force terms in the momentum equation of solid particles under different flow
.-(ft?--

conditions. They reached the same conclusion of many other workers (Sha and

Soo, 1978; Soo, 1967; and Hjelmfelt and Mockros, 1966) that the Basset or the

transient term and the virtual mass term in the momentum equations of the
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solid particles can be neglected if they are moving in a gaseous media.

Therefore those terms are neglected in the present study.

The concentration equation

To avoid the problem of density fluctuations of the carrier phase at this

stage, only isothermal flows are considered and vaporization is assumed to be

due to the vapor concentration gradient only.

The concentration C is defined as the ratio of the evaporated mass within

a control volume to the mass of the carrier phase in the same volume. The

instantaneous, volume-averaged concentration equation for the evaporating

material is

(P *,C) + (P.*.U.C) = (p,6*.C .)- + I *kmk 2.9
i A »*- * -i- J »j i i »J >J K

where 6 is the molecular mass diffusivity of the evaporating material in air.

k k
The source term in Equation 2.9 (£ * m ) represents the evaporated material

k
from the droplets of different sizes.

2.3 Time-Averaged Equations -~

Introduction of time-averaged quantities. For steady mean flow, the time

averaged or mean values of U.,V.,P and * are defined as the following:

Ut= Lim I J * Utdt , V±= Lim | J ̂  V.dt
o i

P = Lim i JT Pdt & I = Lim i JT Mt 2.10
T °
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Following common practice, all the quantities are separated into to a

fluctuating and a time average component as follows:

Ui - Ui + Ui • Vi = Vi + Vi

P = P + p, * = * + <J>

& C = "C + c 2.11

For brevity, the overbars indicating averaged values will be dropped from all

the quantities herein.

The mean continuity equation of the carrier phase. Introduction of Equation

2.11 into Equation 2.2, and subsequent time averaging yields:

m *

The mean continuity equation of the k phase. Introduction of Equation 2.11

into Equation 2.3, and subsequent time averaging yields:

k k k k k k
P2(* V1) ± + P2(<|> vi) 1 = - m » 2.13

•M

The mean global continuity.

* + 1 *k = 1 2.14
k

The mean momentum equations tor the carrier phase. Introduction of Equation

2.11 into Equation 2.5, and subsequent time averaging yields:
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r* TI / \ « • 1C K K

L t * I I L t ' \
k k

2-15

Multiply Equation 2.12 by U j , then subtract from Equation 2.15 and rearrange,

the result will be

/j - -*ip,i -*ip,i 'I

2-16

The mean momentum equations for the k phase. Introduction of Equaiton 2.11

into Equation 2.6, and subsequent time averaging yields:

, k k kN k k k k. k. .k k k
P9(* V . V . ) . - - » P . - <(, p .+ F $ (U -V ) - m $ V.

^ i j j j J 1 > x 1 : L !

• tC tC K. ^ K . K. K., . K. y K.
m * v . + U 2 ( * < V l f j + V J f l ) - + * < v l

k k k k k k k k k k k k .
V..V.. + V^ Vj + V^ v± + 4, v iVj)

32



Multiply Equation 2.13 by V j , then subtract from Equation 2.17 and rearrange,

the result will be

Fk<|)k(u1-vi) - m 4> v£ + U2[* (V£ +V.

. r**^ j.*^ "
+ V i* V j

k$kvk + <t>kvkvkj . + g.*k(p,-p.) + P,Vk(<j)kvk) 2.18
J 1 1 J » J i z i i i J » J

The mean concentration equations. Introduction of Equation 2.11 into Equation

2.9, and subsequent time averaging yields:

<pi*iu
J

c),J

+ C^u.. + <t> lUjc + ^UjC)^ 2.19

Multiply Equation 2.12 by C, then subtract from Equation 2.19 and rearrange,

the result will be

k kP.S.U.C = (p.5(*.C +'+c .)J . + I *m(l-C)
i i J »J *• L »J A >J »J i,

+ G^UJ + ̂ UjC + ̂ UjC) + PjCC+jUj)^ 2.20

In Equations 2.12 to 2.20 the overbars indicate Reynolds averaged

correlations.
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2.4 The Problem of Closure

In order to close the system of equations, the turbulent correlations in

Equations 2.12 - 2.20 must be modeled in terms of the time-averaged quantities

and some turbulence quantities that are governed by the laws prescribed by a

"turbulence model." Examination of the literature on the mathematical models

of two-phase flows shows that most of the existing models are based on ad hoc

modifications of the single-phase turbulence kinetic energy and length-scale

equations. As a result, those models fail to predict the physical behavior

of two-phase flows. The next section, 3, describes a two-equation turbulence

model suitable for dilute vaporizing sprays.

«

34



3.0 A TWO-EQUATION TURBULENCE MODEL

3.1 Introduction

The objective of this section is to develop a general and economical

turbulence model for free bounded dilute vaporizing sprays.

The first task is to select the type of model that is to be employed.

Thus, in Section 3.2, the necessity to consider a model that employs transport

equations for both the energy and the scale of turbulence will be pointed
a

out. Starting with the instantaneous two-phase momentum equations for an

isothermal flow, the transport equations for the turbulence kinetic energy and

its dissipation rate for the carrier phase are obtained in Section 3.3.

Closure of the proposed set of transport equations is achieved by modeling the

turbulent correlations up to a third order in Section 3.4. The modeled

equations in the Cartesian tensor notations are presented in Section 3.5.

Finally, the modeled equations in the cylindrical coordinates are presented in

Section 3.6.

3.2 Choice of Model Type

As discussed in Subsection 1.2.3, the previous attempts to model the

dilute suspensions of two-phase flow to account adequately for major exchanges

of momentum and mass between phases has not yet been established, even for

dilute systems containing particles smaller than the Kolmogorov length

scale. Few investigators have tried to consider the effects of the

particulate phase on the turbulence structure (Nagarajan and Murgatroyd, 1971;

and Genchev and Karpuzov, 1980) but they introduced many phenomenological

approximations and coefficients that render their schemes are applicable to

more general flow conditions and configurations. Melville and Bray (1979) and

Michaelides (1984) have employed the mixing length hypothesis to handle the
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gas solid two-phase flow in free jet and fully-developed pipe flows

respectively. This approach is limited to flows where turbulence structure

changes at a slow rate in the main flow direction. However, the empirical

constants involved vary from one flow situation to another and are thus valid

for restricted flow regions only. Danon et al. (1977) employed a one equation

model (K equation) to consider the effects of particles on the turbulence

quantities. The deficiencies of that model to obtain accurate predictions of

two-phase turbulent jet flows necessitated that they multiply the production

and the dissipation of K by coefficients that are dependent on particle size

and concentration. The encouraging results obtained by Elghobashi and Abou-

Arab (1983), Pourahmadi and Humphrey (1983), and Buckingham and Siekhaus

(1981) suggest that higher levels of closure are required to predict shearing

two-phase flow accurately. The model will be based on the two-equation (K-e)

model of turbulence for single-phase flows with universal constants (Launder

et al., 1972).

3.3. The Exact Equations for K and e

3.3.1 The Turbulence Kinetic Energy Equation (K)

The equation governing the mean kinetic energy (K = 1/2 u u.) of

turbulence is obtained by substituting with the mean and fluctuating values

instead of the local values in the instantaneous momentum equation of the

carrier fluid (Equation 2.7), then multiplying by u.̂ , and finally time-

averaging.

The resulting K equation reads:

Convection (I) Production
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(II) Turbulent Diffusion

fU u < j , , u . + U U, 4,0,11 Si 1*1 i,£ £ i.jTl P

(III) Production and Transfer

(IV) Extra Dissipation (e )
P

(V) Viscous Diffusion (VI) Extra Viscous Diffusion
and Dissipation and Dissipation

3.1

3.3.2 The Turbulence Energy Dissipation Rate Equation (e)

The exact equation for the dissipation rate per unit volume

(e = v,(u .u .)) is derived by differentiating the instantaneous equation
*• i»J i > J

(2.7) with respect to x^, then multiplying throughout by v,u. ., and finally

time averaging. The exact equation of e thus obtained is

f*.U e ) = f - 2v,u. .u ($ U ) . ..- 2v,u u .$ U. - 2V (<(> u ) .u. .Uv 1 SL ,SLJ *• 1 i,J i,£ 1 £ ,J 1 i,J £,J 1 i>£ 1 1 £ >.l i,J i>£
Convection (I) Production by the Mean Motion

(II) Production by Self-Stretching of
Vortex Tubes
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+ [-Zv,*,u. .u. u - 2v t, u. .u. .u
1 1 i,j i,lj I 1T1 i,j i,!j

(III) Turbulent Diffusion

+ [-2v <)> u. .(U U. ) . - 2v.u. .$. .U U. - 2v,U AU. .u. .
1^1 i,j I i.X. ,j 1 i,jvl,j 1 1,1 1 1*1 i,j i.lj

(IV) Production and Transfer

- [-2V u. .(p .ft̂  . - 2v,u. .(<|>.p .) - - 2v.u. .(*,? .) .
PL 1 i»J r,iTl ,.J 1 i.j U.i ,j 1 i.j vl ,1 ,J

(V) Spatial Transport by Pressure ( f l u c t u a t i o n and mean)

-2v,
m k) [u, ;U

k(U_--Vk)] ,+u. . Ku.-vk)»k] .+u. J-k/ k^
p l k 1 > J J - i . J i . J 1 1 , J i » J 1 1 , J

(VI) Extra Dissipation

(VII) Viscous Di f fus ion and Destruction

+ [2v1v1u.r"7[* (U. +U .)] + 2 v l V l u . . (4 , . (u . +u. .)) . ] 3.2i i i,j 1 i,«, z,i ,ji 1 1 i,j Yi i,a 1,1 ,jnj

(VIII) Extra Viscous Diffusion and Destruction

The terras in the K and e equations, (3.1) and (3.2), are classified into

groups enclosed by large curved brackets; each group is labeled according to

its particular contribution to the conservation of the transported quantity.

The turbulent correlations in Equations 3.1 and 3.2 that include the

k
fluctuation of the volume fraction, 4, or $ , or their gradients are due to

the presence of the particles in the same control volume with the carrier
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kphase; setting these correlations to zero, $ to unity and $ to zero' will

reduce Equations 3.1 and 3.2 to their familiar counterpart for single-phase

flows.

3.4 Closure of the Proposed Set of Transport Equations

The proposed model is restricted to high Reynolds number flows of dilute

vaporizing sprays. Therefore, the viscous diffusion in all the governing

equations is neglected due to its relatively small magnitude as compared with

the turbulent diffusion. Due to the diluteness assumption of the suspension

all fourth-order correlations containing the volume fraction fluctuations such

as (fc,u.u u. u. .u. (u A) . and *,u, .u. .u are neglected due to their91 i £ i,£ 1,3 i,jT £9r,3 91 i,J i»£j I

relatively small values. The continuity equation of single-phase flow is used

in the modeling approximations of some of the turbulent correlations.

3.4.1 Closure of the Continuity Equation of the Carrier Phase

The second term on the LHS of Equation 2.12 represents a mass flux

contribution to the turbulent diffusion of the carrier phase. Following Hinze

(1972), Melville and Bray (1979) and Elghobashi and Abou-Arab (1983), a

gradient-type diffusion is assumed for this correlation given by:

where e f is the mass eddy diffusivity of the turbulent flow of the carrier

phase. This quantity can be related to the momentum eddy diffusivity (v ) as

the following:

-
°c
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where o is the effective Schmidt number for the carrier phase. It may be

expected to be constant of value 0.7 in line with the average levels of

effective Schmidt number reported for a number of free shear flows (Launder,

1976; and Spalding, 1971).

The momentum eddy diffusivity of the carrier phase is related to fluid

kinetic energy (K) and the rate of dissipation (e) of K by:

v, = c K2/e 3.5
t p

The value of c in general is 0.09 but it can be a function of suitable flow
V

parameters to extend the range of applicability of the K-e model. For

example, in axisymmetric jet flows which are considered in this work, those

parameters are the deceleration of the velocity at the axis of'-the jet

(Equation 3.36) and the jet width (Equation 3.37).

Corrsin (1974) discussed the limitations of the simple gradient

hypothesis for modeling turbulent diffusion in turbulence. He pointed out

that this model may lead to inexact results if the size of the

energy-containing eddies is much smaller than the distance over which the

gradient of the considered quantity varies appreciably.

Lumley (1975) tried to overcome this problem by proposing a model for the

turbulent flux of passive scalar in inhomogenous flows. But since Lumley's

model is not well tested yet, the simple gradient hypothesis will be used in

the present work due to its fruitful results in many types of flows (Lunder et

al., 1972).

3.4.2 Closure of the Continuity Equation of the k Phase

k k
Similar to Equation 3.3 the correlation <J> v. on the LHS of Equation 2.13
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is modeled as

e, is the mass eddy diffusivity of the turbulent flow of the droplets. An

expression to obtain this quantity in terms of its counterpart for the carrier

k
phase and the droplets* Schmidt number a ig developed in section 5. The

droplets' Schmidt number is defined as

ap = eh / ef 3.7

3.4.3 Closure of the Momentum Equations of the Carrier Phase

Here, the modeling of the turbulent correlations needed to close the

momentum equations (2.16) are presented. The correlations of two scalars

containing the volume fraction in the momentum and concentration equations

such as $ c, $ p or ((i.cu. are neglected. This approximation is based on the

following: 1) the lack of understanding of the nature of those correlations,

thus the modeling which is supported by the experimental data (Lumley, 1978b)

is not available, and 2) their relatively small values compared to the

turbulent diffusion terms (Buckingham and Siekhaus, 1981; and Launder, 1976).

The correlation u u. in Equation 2.16 represents the transfer of momentum

by the turbulent motion. The oldest proposal for modeling this correlation is

that of Boussinesq (cited by Launder, 1976):

.+ U. .) + 6..K 3.8
j j,i 3 ij

The term involving the Kronecker delta, & , is necessary to make the
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expression applicable also to normal stresses (when i = j). The expression

(3.8) has been severely criticized by some workers, and it should not be used

without caution. The use of that expression is justified on the basis of an

approximate local equilibrium. If the addition of the droplets causes the

turbulence of the carrier phase to adjust more slowly to the mean velocity

field, or if it introduced additional mechanisms for generation of turbulent

energy, the expression (3.8) will be a poor approximation. Melville and Bray

(1979) argued that neither of these effects will happen if the mass loading

ratio is less than unity. The other approach is to solve a transport equation

for u .u ., which in turn contains.higher order correlations that require

modeling. To be consistent with the present level of closure the present

study will use (Equation 3.8).

The correlation ^u.u. will be modeled by adapting Launder's proposal

(1976) that gives

u u = - c (K /e ) ̂ ' + " 1 3 ' 9

where c is a constant of value 0.1.

k k
The correlation $ (u.-v.), which appears in the momentum equations of

both the carrier phase and the droplets, can be written as

K. / 1C \ (C ix K o i y\
4 > ( u . - v . ) = d > u . - < h v . 3.101 1 1 1

The second term on the RHS of Equation 3.10 was discussed previously. The

first term is modeled as

,*. 3.11
f ,1
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The last correlation to be modeled in the momentum equations of the carrier

phase is .u. ., which appears multiplied by ., and will therefore be
1 i >J i

neglected due to its relatively small value.

3.4.4 Closure of the Momentum Equations of the ktn Phase

Similar to the carrier phase treatment the correlations $ p . and

k k k<J> (v + v .) in Equation 2.18 are neglected. The two correlations
_ i » J 3 »*• _

4> v. and $ (u. - v . ) have already been discussed. The only two correlations

k k k k k
still to be modeled are those of the forms v.v. and $ v v.. Similar to the

^ kcarrier phase, the correlation v.v is modeled as
J

where Kk = \ vjvj 3.T3p 2 i i

The momentum eddy diffusivity of the droplets in the size range k (v ) is

related to its counterpart for the mass as the following:

ej/vk = l/o 3.14h p v

where a is a coefficient of value 0.7 as given by Melville and Bray (1979)

k k k k
Again, e, is determined in section 5. The correlation ^ v.v is modeled

similar to Equation 3.9 as

3'15
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3.4.5 Closure of the Vapor Concentration Equation

As discussed previously the correlations $.c . , <j»,c and <f>,cu. in Equation
1 »J * i J

2.20 are neglected compared with cu. or <J».u.. An investigation of the

behavior of cu. suggests that it can be modeled similar to Equation 3.3 as

cu. = - e-C . 3.16
J r »J

3.4.6 Closure of the Turbulence Kinetic Energy Equation

The exact equation of the turbulence kinetic energy K for the carrier

fluid is given by Equation 3.1. The terms are grouped according to their

physical contribution to the conservation of K. The modeling of the turbulent

correlations appearing in the K equation (14 correlations) are presented in

this section. ^.u.UjU. „ is neglected since it is a fourth order

. . £~~
correlation. The correlations u.u. , <j>.u. , <t>.u .u f land $ u. in Equation 3.1 were

i x li l i x i

discussed in subsection 3.4.2.

The pressure diffusion terms (u. p . and <J>.p . <J>.) in Equation 3.1 are
1 , 1 1 , 1 1

neglected, following the Imperial College group and the recommendations of

Hinze (1975), and because very little is known about it (Launder, 1976).

The turbulent diffusion correlation u.u.u. . can be written as

[Ujl(l/2 u)]^ 3.17

which modeled as

3-18

where o, is an empirical diffusion constant of order one
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•>

The correlation <j> u ,u . . can be written as [ < J > , ( l / 2 u ] , which can be
1 1 1, X 1 1 , Jt

2
neglected due to its relatively small value compared with [u (l/2u )] .

x i I X
k

Following Elghobashi and Abou-Arab (1983), the correlation u (v -u.) is

modeled as

r «i> • - K u - J" ((V V7V E(a)) da)J 3-19

where <u is the harmonic frequency of turbulence and E(w) is the Lagrangian

energy spectrum function of the carrier phase. ft, , Q», and fl_ are functions

of the carrier and dispersed phases properties, the droplet diameter, and the

harmonic frequency. They are discussed in detail in subsection 4.1.

k k
The correlation ^ u (v.-u ) is modeled as

The extra viscous diffusion and dissipation, two terms in group VI in

Equation 3.1, are neglected due to their relatively small magnitudes as

compared with the other similar terms (see Daly and Harlow, 1981, and Launder

et al., 1976; Launder et al. 1975).

Neglecting the viscous diffusion, the last correlation to be modeled in

the K equation, u,u.[(u. . + y. .)*.J , represents the dissipation rate of

K. When the local Reynolds number of turbulence is large the dissipatlve

motions can be assumed to be isotropic, therefore
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3.4.7 Closure of the Turbulence Energy Dissipation Rate Equation

The exact equation of the dissipation rate of turbulence energy, e, for

the carrier fluid is given by Equation 3.2. The terras are also grouped

similar to the K equation.

Tennekes and Lumley (1972) have shown, based on an order-of-magnitude

analysis, that the terms involving mean strain rates in Equation 3.2, groups

(I) and (IV), are negligible at high turbulent Reynolds number compared with

the production by self-stretching of vortex tubes. Therefore, groups (I) and

(TV) are neglected in this study.

The correlation 2v * u u. t4uo» which accounts for the diffusion

of e by velocity fluctuations, is handled as the following:

2Vi,jui,£ju* =

3-22

Group (V) represents the diffusional transport of e by pressure fluctuations.

Also, it contains a term that represents a transfer due to the mean pressure

gradient, 2vu. .(<)>,? ..) .. Following Rodi (1971), the present study neglects1»J A >i »J

the pressure diffusion terms (group V).

The viscous diffusion terms, part of group (VII) and group (VIII), are

neglected due to their relatively small values compared with the turbulent

diffusion.

The first term in group (II) expresses the generation rate of vorticity
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fluctuations through the self-stretching action of turbulence. Rod! (1971),

and Hanjalic and Launder (1972) have argued that this term should be

considered in conjunction with group (VII), representing the decay of the

dissipation rate ultimately through the action of viscosity. At a high

turbulent Reynolds number, these two terms are of opposite sign, however, and

their difference necessarily remains finite. Following Rodi (1971), the terms

are collectively approximated as follows:

- Ce2*l) 1C 3'23

where P^ is the total production of K [group (I) and (III) in Equation 3.1],

and c and c _ are constants of value 1.43 and 1.92 respectively.
£1 • EZ

The last correlations to be modeled in e equation are those of group

(VI), which represent the extra dissipation due to the relative velocity

between the phases. They are modeled collectively as one term which is given

by

£/K

where e (term IV in Equation 3.1) is the extra dissipation of K. The

constant c _ was optimized by Elghobashi et al. (1983) for a two-phase jet

flow. The value of this constant is 1.2.

3.5 Modeled Transport Equations in the Cartesian Tensor Notations

Using the modeling approximations discussed in subsection 3.4, the
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transport equations in the modeled form are obtained. Those equations are

given in Appendix B.

3.6 Modeled Transport Equations in the Cylindrical Coordinates

The flows considered in this work are

a) axisymmetric (without swirl),

k 3= U = 0, - (time-averaged quantites) = 0, 3.24

b) of the boundary-layer type,

Vz > Vr' Uz > Ur ' Ir » !z" ' 3'25

The present study adopts the notations commonly used for the boundary layer

flows: z, r, 8 for the coordinates; Uz, V_, Vfl for the velocity components of

k k kthe carrier phase; V , V , V« for the velocity components of the droplets of

class k.

Using expressions 3.24 and 3.25, the modeled transport equations for the

mean and turbulent quantities presented in Appendix B can be expressed in

cylindrical polar form. This can be done in a straightforward manner by the

methods of tensor calculus as exposed in Synge and Schild (1978), for

instance.

The mean continutiy equation of the carrier phase is

Pl Vt Pl Vt
P (*,U ) + -- (r*,U ) - p,(" », ) - -- (r-- ». )*V 1 z ,z r 1 r ,r lvo l,z ,z r o l,r ,r

c c

I mk*k 3.26
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The mean continuity equation of the k group is

~ / * T 7 \ . / * i , \ / P * x 2 / P
P2(* V.«+ r (r* V.r- P2(a" \z\z~ r~ (ra"c

3.27

The mean global continuity is

*, + 1 * = 1 3.28
1 k

The mean momentum equation for the carrier phase in the axial (z)

direction

P,*,U U + P. *,U U1 1 z z,z 11-
• "\U - - #,P -I * (F"-hn )(U -V )

r z,r 1 ,z £ z z'

V V

p rv U ) + P U f-- * ^ + CD i f - r v U f--*
^1 t z,r ; ,r P l u z , r ^ o l,r; <))P1 r ^-e t z , r v o l

3.29

The mean momentum equation for the carrier phase in the radial (r)

direction is

VlVr.r ' - »1
P,r " i '"(^"x VVr>

k c ' k c

V pl Vt 2 pl
+ P, -- *. U + -- (-- rU *, ) - | ~ (rK*,)1 o l.r r,r r a r l,r ,r 3 r 1 ,r

c c
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Pl 4 K2 Vt
< - r < * > > 3'3°

The mean momentum equation for the kc phase in the axial (z) directon is

p «kVkVk + p0*
kVkVk = - *kP + Fk*k(U - Vk)

2 z z,z 2 r z , r ,z z z

0rv 2 v pVk ) + p0V
k (v k *k ) + C jp0 i l^rvkVk ( v k *k ) Jz,r ,r 2 z,r P ,r (> 2 r *•£ p z,r P ,r ,r',r

(P2 - P1)g*k 3.31

The mean momentum equation for the k phase in the radial (r)

direction is

U W l f V l f k \c kk k
"P" » V V + P0* V V '- - *P + F * (U -V )
2 z r,z 2 r r,r ,r r r

a ,r a
c c

-5>-̂ -vk- -̂ -ArĈ -rvk-̂ )- -|S^(rKkk
a ,r r,r r v D r ,r',r 3 r p y,r

The mean concentration equation is

v
1 *kmk(l-C) + p C (--*). 3.33
k ' c 'r
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The turbulence kinetic energy equation (K) is

plVzK,z + "iW.r = plVtUz,rUz,r ~ 5 WF *l f r> . r D r , r

+ <Wl>V-) *l , r> , r U z , r U z , r ' * "V+ A<l-Jo"<-i~>E
C K 2

- "™ T>f If If 1r <- If If ml T>
+ A K ) [ (U -v;)(v K« ) - c ( _£ ) (v K«K ) (1- J (.1 5)E((o)dM)]

r r r ,r ip c r ,r ,r o »„

* — * - p,*,e , 3.34

The turbulence energy dissipation rate equation (e) is

e 4 c<k vt vt
P $U£ + o $ U e = c - o $ f v II U — — —-* (—) (— -

1 1 7 7 1 1 r r El If 11 l t 9 r 7 r 1ft V r ' v n1 1 ^ ) O 1 1 I. y L C-l R. J . J . 1. £i ) L £* j L J V. l_ U

' Ce3 I (A "^ ̂ t^ J0"(-5~

(U - Vk)(v k*k ) + c.(--)(v k*k ) (1- J °°(4---r r/v P ,r7 ^» c ' P ,r ,r Jo v fJ

The constants of the turbulence model

The constants in Equations 3.26 to 3.35 are two sets: one is identical to
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that of the single-phase K-e model and the other belongs to the two-phase

model. The former is well established and it was not changed here. The

latter is new (c£.,, o ) and has been obtained from one set of data (Elghobashi

et al . , 1984). The coefficients of the single-phase model and the optimized

values of the new coefficients are given in Table 3.1.

Table 3.1 Coefficients of the Turbulence Model

0.7 1 . Eq.(3.36) 1.3 0.1 .1.44 Eq.(3.38) 1.2 0.7

0.09 - 0.04f1; 3.36

dUz c , dUz ci- ,i_ e. , >_

n SR dz ' dz ' ,
U • ->K —- | . J • J /

Z ,C Z ,

U, _ and U _ are the axial velocities of the fluid at the jet centerline andz ,c z ,"*•

the ambient stream respectively, R is the local jet width (Launder et al..,

1972).

The constant c_~ in Table 3.1 is given by

c£2 = 1.92 - 0.0067 f "- 3.38

The quantities ft. , fi«, ft_ and E(U)), which are involved in the integration

terms in Equations 3.34 and 3.35 will be discussed in subsection 4.1. The

.k
evaporated mass per unit time and unit droplet volume (m ) is calculated in
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A.3. The interphase friction coefficient (F*) is evaluated in subsection

4.4. The last quantity in Equations 3.26 to 3.35 that should be calculated is

k
the momentum eddy diffusivity of the droplets (v ). This quantity is

calculated in section 5.
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4.0 SINGLE PARTICLE BEHAVIOR IN A TURBULENT FLOW

In this section some turbulent correlations that are needed in the

turbulence model closure are obtained. First the equation of motion of a

single particle in a turbulent flow will be discussed, then Chao's (1964)

solution for that equation will be presented, and finally the turbulent

correlation between the fluid velocity and the relative slip velocity will be

obtained.

4.1 Transport Behavior of a Single Particle

Tchen (1947) extended the Basset-Boussinesq-Oseen (BBO) equation for the

unsteady Stokes motion of a spherical particle in a stagnant fluid to that of

a particle in a moving fluid that reads:

3 3. 2ira ,. ' .» r , Nv = - — PU -- -- P(V - u) - S i r a (v - u)

v(t ) - u(t )
- 6lru a . _£_ - l l dt.

(P2 - Px) . 4.1

In Equation 4.1 u(t) is the velocity of the fluid in the neighborhood of the

particle, but far enough to be unaffected by it; v(t) is the velocity of the

particle; p^and p_ are, respectively, the density of fluid and the density of

the particle; a is the particle radius; g is the acceleration of gravity; and

l^and v. are, respectively, the dynamic and kinematic viscosities of the

fluid. The dot denotes (-7— + v -3—). The physical meaning of the different

terms of Equation 4.1 are discussed by many workers (Fuchs, 1964; Hinze,

1975). As a summary, the first term on the right hand side (RHS) of Equation
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4.1 is added to BBO equation on the basis of intuitive consideration by Tchen

(1947) to account for the unsteady motion of the fluid or its pressure

gradient. The second term is the inertia force due to relative acceleration

of the virtual mass attached to the particle; the third term is the Stokesian

drag; the fourth term is often referred to as the "Basset" force, which

results from the relative acceleration between the particle and the fluid; and

the last term is the gravity force. The importance of each term in Equation

4.1 under different flow conditions and the various approximations for

handling that equation is explored by Hjelmfelt and Mockros (1966). They

o
found that for high density ratios (e.g., those greater than 10 ) all the

terms on the RHS of Equation 4.1 are unimportant except for the drag term.

For the sake of generality, however, all the terms will be retained in the
r

present analysis.

Corrsin and Lumley (1956) argued that the first term on the RHS side of

Equation 4.1, which Tchen included to represent the force created by the

pressure gradient in the fluid, should be evaluated via the full Navier-Stokes

equation. Accordingly they proposed that Equation 4.1 should be replaced by:

dvi 4»a3 3ui 3ui
T P2 ~dt = — T Pl(-St + Uj 1x7 ~ Vl

J

dvi 3u

a ,t

/¥vx *

dv. 9u.

dt 3t Vj

/t - V

3ui
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4iTa
-5— g (P2 ~ Pj) 4.2

Maxey and Rlley (1983) derived an equation of motion for a solid particle in a

turbulent flow. They considered the Faxen terms to account for the unsteady

effects on Stokes drag law. For particles of size smaller than the

Kolmogoroff length scale, n, Hinze (1975) argued that the following two

conditions can be satisfied:

a)

v 3u .

-4 ~f - »Vl 3Z
U/3x

Thus, if the conditions 4.3 and 4.4 are satisfied, then the viscous stress

term-in Equation 4.2 and the Faxen terms on Maxey and Riley's equation can be

neglected. Therefore, in the case of particles with a diameter less than the

Kolmogoroff length scale, all the equations of Corrsin and Lumley, and Maxey

and Riley, become identical to Equation 4.1.

, Chaô ( 1964)_considered Equation A. 1 .with the two jres trictions 4.3 and 4.4,

to obtain the connection between some transport properties of a particle and

those of its surrounding fluid. Neglecting the gravity force and applying

such restrictions, Equation 4.1 reads as follows:

i i i i ir J-o (t-t )

in which a = 3v /a2 4.6

3pi
B = -z =—— 4.7
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Chao (1964) applied the Fourier transform of the velocity component Uj(t)

as defined by

u^u) = J "^ Ul(t) exp (-iuJt)dt . 4.8

and similarly for v.. Unlike u , v. is not only a function of u, but also a

function of the physical parameters a and 3.

The Fourier transform solution of Equation 4.8 with t. = - « gives

v = ' —— u 4.9

By introducing the energy spectrum function E(OJ), a relation is obtained

between the intensity of the particle turbulent motion and that of the

surrounding fluid:

^ = J •$- E(o))d(o 4.10
2 2

ui

where n = () + ̂ 6 () + 3(-) + T ( ) + 1 ; 4.11

The Lagrangian frequency function E(OJ) is in general affected by the

presence of the particles. In the low frequency range (inertial subrange),

the modulation of the Lagrangian frequency function of the carrier fluid by
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the particles can be neglected (Al-Taweel and Landau, 1977). Thus, in the

present work the Lagrangian frequency function is given by (Hinze, 1975)

2 TLE(u) = (-) ( —?) » 4.13
1 + 0) T

Ll

where o> ranges from 1 to 10 (sec ).

The local Lagrangian integral time scale T is calculated from (Mostafa
Li

and Elghobashi 1984b):

T = 0.233 K/e 4.14
Li

Chao proceeded his solution by defining a relative velocity GO. between

the particle and the local gas velocity as

= vi ~ ui

This value, when substituted into Equation 4.1, again with t = - OD, followed

by the 'Fourier' transformation and solving for u> , gives

The first term in the denominater of Equation 4.16, a0, was written wrongly

(as a only) by Chao (1964) and Soo (1967). Hetsroni and Sokolov (1971)

handled the incorrect form of Equation 4.16 to study the effect of the

dispersed phase on the fluid turbulence energy spectrum. Using that erroneous

equation Hetsroni and Sokolov obtained Equation 29 (in their article), which

relates the turbulence intensity of a two-phase flow to that of a single
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phase. If Equation 4.16 is used in the analysis of Hetsroni and Sokolov,

their Equation 29 will give equal turbulence intensities for the single- and

two-phase flows. Although Hetsroni and Sokolov's theoretical analysis gives

good qualitative results, it has no basis and therefore should not be taken

seriously.

Chao (1964) obtained the ratio between mean square relative velocity to

that of the surrounding fluid:

w Q
_J_ = J°° * E(w)du) 4.17
~T~ ° 2
Ui

where f20 = [ (l-B)o>/aB]
2 4.18

K

This solution applies to dilute suspensions, where there is no interactions

between the particles.

Elghobashi and Abou-Arab (1983) considered Chao's solution to get the

turbulent correlation u. (u,-v.) that is needed in their turbulence model.

This quantity is given by

«» fli - "R
______

ui(ui ~ vi) = ~ 2 ui (1 ~ ̂ 0 "i - E(w)dw) 4.19

This correlation will be used to close the time-mean equations in the present

work.

4.2 Droplet Shape

4.2.1 Theoretical Analysis

It is well known that the change in droplet shape affects not only the

interfacial area and drag force but also the evaporation rate. Most of the
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theoretical studies (Krestein, 1983; O'Rourke, 1981; Mostafa and Elghobashi,

1983) for liquid droplet-gas flow have been based on the assumption of

spherical droplets. This assumption must be justified, especially if the

droplet is suspended in a turbulent flow.

The shape of a liquid droplet moving in a continuous phase is determined

by the forces acting along the surface of the droplet. At any time the net

force is the balance of the pressure, gravity, buoyancy, drag, and inertial

forces of the exterior fluid. At the fluid-fluid interface there will be an

equilibrium of normal forces. The forces acting inward are due to the dynamic

stresses and static head of the exterior fluid and interfacial tension. Those

acting outward are due to the dynamic stress and static head of the interior

fluid. If the droplet is spherical, all the forces will lie on a radial line

and the interfacial tension force will be the same on all parts of the

surface.

For a liquid droplet moving in a gaseous flow, a study is presented here

of the physical factors that might be expected' to control the spherical

shape. Those factors are as follows:

1. Surf ace "tension"--"Th'is "":f orce~ is~"a~ consequence of the net inward

attraction exerted on the surface molecules by those which are lying

deeper within the droplet over the prevailing force in the gas

outside. This increment in total pressure, across the interface, Ap, at

a certain point on the droplet surface is given, in general, by

AP = Y(l/a1 + l/a2) 4.20

where Y is the surface tension of the liquid-air interface (N/m).

In the special case of a spherical droplet, ai = ao = a, and then
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AP = 2y/a 4.21

2. Internal hydrostatic pressure — There exists within the droplet a

vertical pressure gradient of exactly the sort found in any mass of

fluid at rest in a gravitational field. In the limit of large droplets,

the difference in hydrostatic pressure between top and bottom of a

droplet (2p ga) becomes quite important in controlling droplet shape.

3. The relative velocity between the droplet and the gaseous phase — The

fluid dynamic pressure exerted because of the relative velocity between

the gaseous phase and the droplet tends to cause a distortion in the

2
spherical shape. The effect of this inertial force (l/2p.(U-V) )

increases as the Reynolds number does. As the Reynolds number is

increased, droplet oscillation (unsteady state distortion in shape) will

set in; ultimately as Re increases droplet breakup will occur.

4. Internal circulation— Due to the vortical motion, there is a

centrifugal reaction that varies as the square of the circulation

velocity (Oliver and Chung, 1982). Many workers (Beard, 1976;

Pruppacher and Beard, 1970) reported that in the case of a water droplet

(of diameters less than 1 mm) falling at terminal velocity, internal

circulation has negligible effect on distortion.

After stating the factors that might be expected to control the shape of

a liquid droplet suspended in a moving gas, a study of the order of magnitude

of each factor is necessary. The equation for the shape was given by

Laplace's formula (McDonald, 1954) for the mechanical equilibrium of an

interfacial surface, which can be written at the droplet's equator as:
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" + ai} = ~a + (p2~
pl)ga

The first term on the RHS of Equation 4.22 is the spherical curvature

pressure, the second is the hydraulic head, and the third is the differential

dynamic pressure. From the above equation it can be seen that as long as the

spherical pressure (2y/a) is dominant, a variation in surface tension is

unimportant. In Table 4.1 the comparative values of the three terms in

Equation 4.22 are calculated for 100 y methanol and Freon-11 droplets (the

materials used in the present study) moving in air with a relative velocity of

5 m/s. Also, the dimensionless groups; defined by Equations 4.23a, 4.24 and

4.26 are given in Table 4.1. The physical corresponding properties of

methanol and Freon-11 are given in Appendix A.

Table 4.1 The Forces Acting Along the Surface of
Liquid Droplets and the Corresponding
Diraensibnless Groups.

Methanol

Freon-11

Re = We =

, v 1 9 P,(0-V)d p (U-V)2d
L\ f » ^ / \ / T T T 7 \ ^ ^
a (P2 p^ga 2 P J C U V) -- Y—

N/m2 N/m2 N/m2

872 0.4 14.73 32.72 0.135

300 0.744 14.73 32.72 0.39

Et =

g(P2-P l)d2

T

0.0036

0.02

Table 4.1 shows that, for liquid droplets of diameters less than

100 U and for the two different materials, the surface-pressure increment is

large compared with the minute hydrostatic pressure differences within the

droplet, or compared with the small aerodynamic pressures. Hence, these
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liquid droplets do simply assume the shape implying minimum surface free-

energy, thus accounting for their well-known spherical form.

Because of the need to answer the question of whether internal

circulations should be important in the droplet shape problem, the upper limit

to the centripetal force acting on the droplet surface due to the internal

circulation will be estimated here. Pruppacher and Beard (1970) reported that

for a water droplet falling at terminal velocity, the velocity at the equator

was found to be about 1/100 of the droplet's terminal velocity. For a

relative velocity of 5 ra/s, the maximum velocity at the equator is about 0.05

m/s. The centripetal force per unit area acting on the small lamina of the

internal boundary layer can be calculated. This lamina of radial distance can

be assumed to be equal to one tenth of the distance from the droplet surface

to the internal stagnation point. Thus, for a droplet of 100 pro diameter,

this distance is about 1.5 un. Since the centrifugal reaction resulting from

the vortical motion varies as the square of the circulation velocity, the

centripetal force per unit area acting on the internal lamina of the droplet

is found to be about 0.8 N/m . Thus, the order of magnitude of the

centrifugal pressure gradient appears to warrant neglect of internal

circulation compared to the other parameters.

A.2.2 Experimental Observations

Many researchers have investigated the different factors affecting the

droplet shape and the flow field inside and outside liquid droplets moving in

a continuous phase (gas or other liquid). Wellek et al. (1966) investigated

the effects of various properties, droplet size, and droplet velocity on

%
droplet shape for forty-five dispersed liquid drbplets falling through

stationary liquid continuous phases. The maximum ratio between the viscosity
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of the dispersed and continuous phases was that of ethylene glycol (droplet)

and hexane (liquid system). This ratio was about 47. Empirical relations

involving the Weber number, We, Eotvos number, Et, and viscosity ratio were

obtained. These relations enable the prediction of the eccentricity of

nonoscillating droplets over a wide range of Reynolds numbers (6.0 to

1354). This number is given by

P,(U-V)d
Re = —i 4.23a

One of their relations is:

a

R = -I = i.o + 0.091 We0'95 4.23b
a2

where the Weber number is given by

p (U-V)2d
We = — 4.24

aland R ffl is the ratio of the length" of the minor to the major axis of the
32

droplet. From Table 4.1 for a 100 W Freon-11 droplet moving with a relative

velocity 5 m/s in air at the atmospheric conditions (Re = 32.73 and We =

0.39), R = 1.037, which could be assumed a spherical shape. Garner and Lane

(1959) measured the distortion of liquid droplets falling in gases. They

reported the following linear relationship:

R = 1 + 0.13 Et . 4.25

where the Eotvos E is given by
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g(p -p )d2
Et = £—± 4.26

For the Freon-11 droplet with conditions summarized in Table 4.1, R is equal

to 1.003. Winnikow and Chao (1965) investigated the behavior of droplets

falling in water at Reynolds numbers ranging from 138-971. Their conclusion

about the deformation of nonoscillating droplets was that the droplets are

spherical up to Et = 0.2 Since Equation 4.23 gives the distortion ratio in

terras of the Weber number which is a function of the aerodynamic pressure,

Equation 4.23 is recommended for the calculation of the spherical shape limits

for present droplets in a moving gas. Pruppacher and Beard (1970) studied the

deformation of water droplets falling at terminal velocity in air of 20°C at

sea level pressure, and nearly water saturated by a wind tunnel means. They

concluded that droplets with an equivalent diameter smaller than 280 ym

equivalent to Reynolds number Re = 25 had no detectable deformation from

spherical shape. Droplets of sizes d < 400 Vim Re < 200 were slightly deformed

into an oblate spheroid (R = 1.02).

Beard (1976) also analyzed all the available theoretical and experimental

data on droplets falling in gases to derive a reliable method for obtaining

the terminal velocity and shape of a water droplet at any level in the

atmosphere. He concluded that droplets with diameters < 1 mm (Re < 300) are

essentially spherical. He also reported that the effects of a varying surface

tension and internal viscosity were shown to have a negligible influence on
\

the shape and terminal velocity of a falling droplet of diameters up to 1 mm.

Now, it is clear that the assumption of a spherical shape for methanol or

Freon-11 droplets of diameters up to 100 ym moving with a relative velocity up

to 5 m/s (or Re = 32.72) is realistic based on the previous force analysis and
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the experimental evidence of the other researchers.

4.3 Mass Transfer

There are many aerodynamic parameters that dominate the process of

evaporation of a spray injected into a moving airstream. Relative velocity

and free stream turbulence are the most important parameters.

First, the evaporation of a spherical droplet, motionless relative to an

infinite, uniform medium is considered in section 4.3.1. Then the evaporation

rate of a moving droplet in a gaseous medium is covered in section 4.3.2.

Finally, the effect of free stream turbulence on the evaporation rate is

discussed in subsection 4.5.

4.3.1 Quasi-Stationary Evaporation of Droplets Motionless Relative

to Media

One of the earliest investigations of evaporation in stagnant gases was

made in 1877 by Maxwell (cited by Fuchs, 1959) who solved the steady-state

conservation equations of mass and energy in the gas phase under the following

assumptions:

1. Spherical droplet

2. Incompressible droplet fluid and surrounding fluid

3. Spherical symmetry: forced and natural convection are neglected. This

reduces the analysis to one dimension.

4. The droplet fluid is of a single component.

5. Constant pressure process

6. Both droplet fluid and surrounding fluid .are mutually immiscible, and

there is no chemical reaction.
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7. No spray effects: the droplet is isolated and immersed in an infinite

environment.

8. The system involves only purified fluids (there is no surface-active

material).

9. Diffusion being rate-controlling: the rate of evaporation is completely

determined by the rate of diffusion of the vapor in the medium.

10. Constant and uniform droplet temperature: this implies that there is

no droplet cooling or heating.

11. Constant gas phase transport properties.

12. Saturation vapor pressure at droplet surface: this is based on the

assumption that the phase-change process between liquid and vapor

occurs at a rate much faster than those for gas-phase transport.

Therefore, the vapor at the surface is produced at the saturation

pressure corresponding to the droplet surface temperature Tg.

In the case of stationary evaporation, the rate of diffusion of the vapor

of the droplet across any spherical surface with radius r and concentric with

the droplet is constant and expressed by the equation:

2 dCr
IQ = 4Hr^Pl 6 _ Kg/s 4.27

where Cr is the concentration of the evaporated material at radius r and 6 is

the diffusivity of that material. Integrate Equation 4.27 with the following

boundary conditions:

C = C at r = « 4.28

C = CT at r = a 4.29
r L

67



This gives Maxwell's equation:

I = 4IIa 6 (C - CT) 4.30
o L

Strictly speaking, the evaporation of a droplet cannot be a stationary process

since the radius and hence the rate of evaporation is constantly decreasing.

Fuchs (1959) pointed out that when C,p, « p~, the evaporation can be regarded

as quasi-stationary; i.e., one can assume that the rate of evaporation at a

given moment is expressed by Equation 4.30. Since

- ••o dt

where t is the time and m = 4/3'Ha p is the mass of the droplet, Equation 4.30

can be rewritten in the form:

dT~= (CL ~c) 4>32

or

-||,ffi(cL-c, -

2
where S = 4Ha is the surface area of the droplet. Integration of these

equations gives:

a 2 - a
2 = !£ (CT - C )t 4.34

o PZ L °°

S - S = US. (C - C )t 4.35
o P2 L »
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where aQ and SQ are the initial radius and surface of the droplet. The

surface of the droplet is therefore a linear function of time.

The assumption of equilibrium between the liquid and its vapor at the

droplet interface suggests that the diffusive resistance of the gas to

evaporation is large compared with the interfacial resistance. This is

considered to be a good assumption under all conditions, except at very low

gas pressures or for droplets whose size is in the order of the mean free path

of the gas molecules (about 0.1 micron). Thus, equilibrium has been assumed

in most analysis dealing with evaporation of droplets.

4.3.2 Influence of the Stefan Flow on the Rate of Evaporation

Observe that Equation 4.30 was derived neglecting the radial convection

transport due to bulk flow of the gases away from the droplet. Unlike natural

and forced convection that can be neglected in a spherical case, radial

convection is always present, although its effects are small at low

evaporation rates.

Stefan at 1881 (cited by Fuchs, 1959) was the first to note the

importance of radial convection. To maintain full pressure in the medium

together with the partial vapor pressure gradient of the vapor, there must be

an equal and opposite partial gas pressure gradient of the remaining

components of the medium. Owing to the presence of the second gradient the

gas diffuses to the droplet surface, but because of the impermeability of the

latter the total gas flux towards the surface should equal zero. Hence, the

hydrodynamic flow of the medium compensates the diffusion of the gas. From

this discussion it follows that the rate of this flow m is governed by the

equation:
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,-ldC1 1.1
6 ̂ — = m C 4.36

where C is the concentration and 6=6 the diffusion coefficient of the

surrounding gas. Since

C + C1 = 1 4.37

or

dC1 dC
dr- = * dr 4'38

and the total flux of vapor has diffusion and hydrodynamic components,

Equation 4.27 is replaced by

dC

--
2 r 1
^ (6 --- - Cni ) 4.39

dC
) 4.40

Just as Equation 4.27 leads to Maxwell's equation, so Equation 4.40 gives:

a 6 hi (1+B); 4.41

where the transfer number B is given by

CL '

The evaporation rate per droplet volume (m) is given by

4 1 12 pl6
m = I /^ Ha = —=-±- £n (1+B) 4.43

o 3 ,2
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4.3.3 Quasi-Stationary Evaporation of Droplets Moving Relative to the

Media

The greatest practical interest centers on the evaporation of droplets

moving relative to the medium under the influence of gravity, inertia, etc.

This problem can be reduced to the calculation of the rate of evaporation from

a spherical droplet ventilated by a gas stream.

Following the majority of the workers in the field of evaporation of

droplets moving relative to the medium, the convection effects on the

evaporation rate can be expressed by

I = I f = I Sh 4.44
o o

where Sh is the Sherwood number and f is the wind coefficient. This denotes

the increase in the rate of evaporation due to the relative movement of the

medium.

Using Equations 4.43 and 4.44 one can write:

m = — r— L£n (1+B) Sh 4.45

d .

Using the principle xof dimensionless analysis one can show that Sh is a

function of Re and Sc. At the same time the majority of the theoretical and

experimental work in the field of evaporation of droplets expressed that

function by

Sh = 2 + BRe Sc1/3 4.46

where the Sherwood number is given by
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Sh = m /n d 6(C-C) 4.47LI

and the Schmidt number is given by

Sc = vi/6 4.48

The first accurate measurements of the rate of evaporation of droplets

suspended in a stream were those of Frossling 1938 (cited by Fuchs, 1959).

This extremely careful work has served as a model for all subsequent work in

this field. The experiments were carried out at 20° using droplets of water,

aniline and nitrobenzene, and spheres of napthalene with a = 0.1 - 0.9 ram

suspended from glass fibers of radius 25 ym. The droplets were placed 20 cm

above the exit of a vertical aerodynamic tube of 10 or 20 cm in diameter. The

Reynolds number was varied over the range of 2.3 - 1280 and the Schmidt number

range was 0.7 - 2.7. The rate of evaporation was determined by periodically

photographing the droplet with sevenfold magnification. The temperature

fluctuation of the air stream did not exceed ± 1%. The determination of the

rates of evaporation of droplets of organic substances in still air was

carried out in a closed cylindrical vessel 5 cm in diameter, the walls being

covered with active charcoal. Frossling examined the effects of different

factors that might affect the accuracy of the results such as imperfectly

spherical droplets, turbulence, compressibility of the air, nonideality of the

vapor, and the counter flow effects and indicated that they are less than the

experimental error (< ± 1%). His experiments confirm the accuracy of Equation

4.46 with an experimental value 3, = 0.552.

The fundamental experiments of Ranz and Marshall (1952) were done at room

temperature on benzene and water droplets with a = 0.06 - 0.11 cm. The
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droplets that suspended from the capillary end of a microburette of radius 30

- 50 Vm were ventilated by dry air from below. The study was restricted to a

Reynolds number range of 0 to 200. Evaporation rates were determined by

measuring the rate of feed through a burette necessary to maintain a constant

droplet diameter. Ranz and Mar hall's results also confirm the accuracy of

Equation 4.46 with an experimental value of 3. = 0.6.

Ahmadzadeh and Barker (1974) summarized the previous experimental data on

the evaporation from liquid droplets. All the experimental data in the range

of Re < 1000 give the value of 3j = 0.55 - 0.6.

Kinzer and Gunn (1951) used water droplets of a = 5 - 70 ym at 0 - 40°C

and 10 - 100% relative humidity and employed instantaneous photography to

measure the evaporation rate. The droplets fell freely in a tube of square

cross-section. For droplets of a = 0.02 - 0.5 mm the experiments were

conducted in tubes 200 m long. Insulated metal rings were placed horizontally

along the axis of the tube at equal intervals. The droplets emerged from a
x

capillary connected to the terminal of a battery and became charged when they

broke away. Kinzer and Gunn measured the rate of fall of the droplets by

passing them through a ring, thus creating an electric impulse that is

amplified and recorded on a moving tape. Since the decrease of terminal

velocity with time fall gave the rate of mass loss, they determined the rate

of evaporation as a function of the rate of the droplet fall. They also

measured the rate of fall and the evaporation rate by a photographic

technique. For Re = 100 - 1600 their results were fitted by Equation 4.46

with 3, = 0.46. When Re < 0.9, the constant 0. rises from zero to a maximum

value of approximately 0.92 at Re = 4 and then gradually falls to the

abovementioned value of 0.46 at Re = 100. This result contradicts the data of

other workers, where 3. has a value in the Re region of 1-100 equal to or less
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than the value at greater Re.

Galloway and Sage (1967) have reviewed the available information

concerning the effects of the molecular properties of the fluid, conditions of

flow, and level of turbulence on the evaporation rate from spheres. At normal

conditions and an intermediate range of Reynolds number, Equation A.46

with B = 0.6 represents the standard curve for all other date.

Yuen and Chen (1978) investigated the evaporation of liquid droplets at

high temperatures. The data on water and methanol droplets (porous spheres)

evaporating into the flow of air with the temperature of the latter within 150

- 960°C was obtained in an air tunnel. The experiments were carried out for

the Reynolds number range from 200 to 2000.

Yen and Chen pointed out that for low temperatures their results are

identical with the standard curve of Equation 4.46 with the same coefficient

as that of Prossi ing. .

Prakash and Sirignano (1980) studied the liquid droplet vaporization in a

hot convective gaseous environment. They developed a new gas-phase viscous,

thermal, and species concentration boundary layer analysis using an integral

approach.- The"gas-phase^an^lysis va«-':couplea'-l?ithni"'liq̂ l̂ -ph~ase""analysi8''for

the internal motion and heat transfer. The coupled equations were solved for

different hydrocarbon fuels in-air at 1000°K and 1-0 atm. They concluded that

the heat flux into the liquid phase should be considered in such analysis.

The temperature distribution inside the droplet is nonuniform for most of the

droplet lifetime. The Ranz-Marshall correlation seems to agree well when the

heat flux into the liquid phase is taken into account by modifying the heat of

vaporization. If the droplet has the same temperature as the surrounding gas

at the droplet generator exit, the heat flux into the liquid phase can be

neglected, and in this case the Ranz-Marshall correlation does not need any
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modifications.

Now after the discussion of the previous experimental work on the

evaporation of liquid droplets suspended in a moving stream, it is clear that

Equation 4.46 as:

1/2 11"\
Sh = 2 + 0.55 Re ' Sc ' 4.49

This equation along with Equation 4.45 will be used in the turbulence model to

calculate the evaporated mass from the droplets to the surrounding gas.

4.4 Drag Coefficient

The drag coefficient of spherical solid particles, nonevaporating

droplets, and evaporating droplets is discussed in this section.

4.4.1 Drag Coefficient of a Solid Particle

All the solutions with low inertia terms, Stokes and Oseen, are valid for

very low Reynolds numbers. The Stokes solution, which ignores completely the

inertia terras, is valid for Re < 1; Oseen considered the Navior-Stokes

equation with very limited inertia terms, but the drag coefficient is

unchanged. For a moderate Reynolds number 1 < Re < 200, there are a lot of

experimental results for the drag coefficient and the plot of these data

versus the Reynolds number is called the standard drag curve. The recommended

drag coefficient on a solid sphere in steady motion as the best approximation

for this curve is given by Clift et al., 1978

C__ = (24/Re) [1 + 0.135 (Re)°*82~°'05wJ 0.01 < Re < 20 4.50
I/O
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CDS = <24/Re) U + 0.1935 (Re)°*6305J 20 < Re < 200 4.51

where w = Log1Q Re and the particle Reynolds number is calculated from

Re = PX |U - vf d/vi 4.52

U = / U 2 + U 2 4.53

4.4.2 Drag Coefficient of a Nonevaporating Droplet

To satisfy the continuity of tangential shear stress across the liquid-

gas interface, a slight amount of internal motion seems certain to develop.

This internal circulation of the liquid droplet decreases the boundary layer

thickness of the exterior flow and may reduce the drag coefficient.

Pruppacher and Beard (1970) studied the internal circulation and shape of

a water droplet, which can be considered as a nonevaporating droplet falling

at terminal velocity in air at 20°C at sea level pressure, and nearly water

saturated. They concluded that the maximum surface velocity, at the equator,

of a droplet was found to be about 1/100 of the droplet's terminal velocity.

Due to this vanishingly small value, one can expect that the flow structure

around a nonevaporating liquid droplet falling in air will be approximately

the same as that for a solid particle, hence the drag coefficient will be the

same. Beard and Pruppacher (1969) measured the drag on water droplets falling

in water saturated air at terminal velocity in a wind tunnel for Reynolds

numbers between 0.2 and 200. They concluded that for this Reynolds number

range the drag on water droplets is in good agreement with that for the drag

on solid spheres measured or calculated by many other researchers. Beard
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(1976), depending upon all the available theoretical and experimental data,

concluded that droplets with diameters < 1 mm (Re < 300) are essentially

spherical and the drag may be closely approximated by the drag on a rigid

sphere. Ingebo (1956) investigated the drag coefficient for liquid droplets

and solid spheres accelerating in air stream using a high-speed camera

f\

technique. Accelerations of the order of 20,000 m/s^ were considered. The

sphere diameter range was from 20 to 120 microns. To ensure the spherical

shape for the liquid droplets (isooctane, water, and trlchloroethylene), the

Reynolds number was in the range 6 < Re < 400. The main purpose of Ingebo's

work was the study of the effects of the rate of acceleration, the liquid

status and the evaporation rate on the drag coefficient. His main conclusion

was that the unsteady-state drag coefficients are different than the steady-

state values, but when the acceleration rates were low, the unsteady-state

drag coefficients were in agreement with steady-state values of previous

investigations. The interesting result is Ingebo's conclusion that the drag

coefficient for slowly evaporating droplets, nonevaporating droplets, and

solid spheres are the same.

Rivkind et al. (1976) solved the Navier-Stokes equations for the flow of

fluid inside and outside a spherical droplet using the method of finite

differences. They considered the variables Re, W^/U, and P2/Pi
 as controlling

parameters of the problem. The drag coefficients of the droplets were

investigated for 0 < y»/V, < <*> and 0.5 < Re < 100. They concluded that the

density ratio has virtually no effect on flow characteristics. According to

their numerical results, they proposed that the drag coefficient of the

droplet can be defined in terms of the drag coefficients of the solid sphere

(CDS) and of the gas bubble (CDb) at the same Re by the formula
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cD.
Rivkind and Ryskin (1976) extended their previous .work to consider the

circulating flow inside and outside the droplet up to Re = 200. They again

recommended Equation 4.55 for the calculation of the drag coefficient of a

liquid droplet moving in gaseous flow. By calculating the drag coefficient of

water and methanol droplets moving in atmospheric air with a Reynolds number

up to 200, it was found that the difference between the values produced by

Equation 4.55 and those of a solid particle (Clift et al., 1978) is only 3%.

Hamielec and Johnson (1962) used the error distribution method to predict

the velocity profiles and terminal velocities for solid and fluid spheres

moving in viscous media under the influence of gravity. The error

distribution or Galerkin method is based on choosing a polynomial for the

stream function that satisfies all the boundary conditions together with an

integral form of the Navier-Stokes equation. By this method, Hamielec and

Johnson predicted reasonably accurate velocity profiles and terminal

velocities for circulating droplets and bubbles. Hamielec et al. (1963)

modified the work of Hamielec and Johnson (1962) to account for the finite

interfacial interface with trial stream functions. They predicted velocity

profiles for viscous, laminar, and incompressible flow around droplets,

bubbles and solid spheres. The drag coefficients, flow separation angles, and

forced convection transfer rates were calculated and compared with

experimental data for solid spheres, circulating droplets, and bubbles of some

other workers. They obtained good agreement up to Re = 100. Hamielec et al.

(1963) tried to correlate the available experimental data for the drag

coefficient of liquid droplets falling in water using a viscosity-ratio

correction factor. This relation is given by:
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3.05 783U,2 + 2142MR + 1080

Re?'74 (6° + 29V <4 + 3

10 < Re < 100

where V^ = y2/
yi

In the present study the drag coefficient of a water droplet moving in

atmospheric air was compared with a Reynolds number in the range

(10 < Re < 100) using Equation 4.55 and 4.56 with the experimental data of

Beard and Pruppacher (1969). It was found that the values produced by

Equation 4.55 are 3% less than the corresponding experimental values while

those produced by Equation 4.56 are 17% less. Therefore, Equation 4.55 is

recommended for the calculation of the drag coefficient of a moving

nonevaporating droplet in a media with comparable viscosity to that of the

droplet.

Nakano and Tien (1967) also used Galerkin's method to investigate the

effect of increasing the internal Reynolds number (0 < Re < 50) or, more

accurately, the flow behavior within the fluid sphere by including inertia

terms for both phases. Changes in the internal Reynolds number had little

effect on the external streamlines or on overall drag. Thus, they got almost

the same results as Hamielec and his coworkers.

Now, based on the previous theoretical and experimental work, it is clear

that the effect of internal circulation and low evaporation rate on the drag

coefficient of a liquid droplet moving in a gaseous stream is negligible.

This drag coefficient can be considered from the standard drag curve of a flow

over a solid sphere.

4.4.3 Drag Coefficient of an Evaporating Droplet

Hamielec et al. (1963) studied numerically the effect of mass transfer
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from a spherical particle at Reynolds numbers 1, 40, and 100 on the drag

coefficient. In all cases they showed that radial mass efflux decreases

friction drag and increases the pressure drag slightly. Due to the bulk flow

of vapor from the droplet surface, the boundary layer thickness decreases.

Thus, the velocity gradient or the surface shear stress decreases, so a

reduction in the friction drag is predicted. The slight increase in the

pressure drag may be attributed to the blowing effects on the angle of

boundary layer separation. On the other hand, Kassoy et al. (1966) have shown

that at low Reynolds number, the drag of a sphere at constant free stream

temperature decreases with decrease in temperature of the sphere. This is

attributed to the changes in the surrounding fluid properties that might be

more pronounced in the case of evaporation. Yuen and Chen (1976) have noted

that the changes in the composition of the gases near the droplet surface are

important and would tend to reduce the drag of an evaporating droplet since

the viscosity of most vapors is lower than the viscosity of air at the same

temperature. The effects of the temperature and concentration gradients due

to evaporation on the dependence of drag coefficient on Reynolds number are

accounted for by using the free stream density and the 1/3 rule for the

dynamic viscosity (Yuen and Chen, 1976).

Eisenklam et al. (1967) investigated experimentally the evaporation rates

and drag coefficients for evaporating and burning droplets of various fuels

freely falling in atmospheric air at temperatures of up to 1000°C, or burning

in cold oxygen atmospheres. They correlated the experimental data for the

drag coefficient CD using the formula
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The experimental data covers the Reynolds number range 0.005 - 15. The

correlation 4.57 was suggested by results from boundary layer theory and an

analogy with droplet heat transfer, for which case a similar correlation was

already in existence.

For intense mass transfer, such as when the droplet is burning, the

evaporation is expected to reduce film drag due to a thickening of the

boundary layer, and if the droplet is burning, the form drag is expected to be

reduced by the "filling in" of the wake by products of combustion. Further

effects are the alteration of the position of boundary layer separation and

the steep variations in properties due to the large temperature and

concentration gradients associated with intense mass transfer.

Yuen and Chen (1976) used Eisenklam's experimental data, along with their

own data that extended the Reynolds number range to about 500, to develop an

alternative correlation. They defined a reference Reynolds number

**r = Rero

where U is the viscosity of a reference mixture at the temperature

T = TT + (T - T_.)/3 4.59
r L °° L

and containing a vapor mole fraction ( Y.) given by ^

Xr - XL + (X, - XL)/3 4.60

The subscripts L and °° denote, respectively, the conditions at the droplet's

•U*-1 ,

surface and far away from it. Their correlation for the drag coefficient is
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then given by the rule that states that if

CDS = F(ReJ 4.61

I

is the standard drag coefficient curve for solid spheres as a function of free

stream Reynolds number, then

= F(Rer) 4.62

will be the drag coefficient of an evaporating spherical droplet.

Dukowicz (1984) calculated numerically the drag coefficient of

evaporating droplets in the Stokes flow regime. He tested Yuen and Chen

(Equation 4.62) and Eisenklam (Equation 4.57) correlations in the low Reynolds

number range. Dukowicz (1984) and Sirignano (1983) recommended the use of

Yuen and Chen's correlation for the calculation of the drag coefficient of an

evaporating spherical droplet.

4.5 Effect of Free Stream Turbulence on Drag and Evaporation Rate

The flow conditions about the particle, especially the free stream

turbulence intensities, may cause large variations in the drag coefficients

from those values given by the standard drag curve. Zarin and Nicholls (1971)

reported that at Re < 200, they have observed little or no change in Cpg

compared to the CDS'S measured at lower turbulence intensities (« 1%).

In general, the motion of a droplet in a turbulent flow depends upon the

characteristics of the droplet and of the turbulent flow. Droplets with small

size or small realization time (T ) compared with the turbulence time

scale (T) respond to the fluctuating motion of the carrier fluid. If
Li

T > T , very little fluctuation in the droplet velocity can be seen (Clift
P AJ
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et al., 1978). In this case the effect of turbulence is then to modify the

flow field around the droplet, so that the drag may be affected.

In the present study the value of the ratio T /T. is expected to be lessp L

than unity, and thus the effect of the free stream turbulence on the drag

coefficient should be very small. Experimental evidence supports this

assumption. For example, Clift et al. (1978) reported that the effect of the

free stream turbulence in the range of droplet Reynolds number 10 < Re < 50

is less than 5% (Figure 10.11 in that reference).

Regarding the evaporation rates, for Re < 50 and for turbulence intensity

less than 20%, the experimental data (Clift et al., 1978) showed a very small

increase in the evaporation rate. Therefore, in the present study the drag

coefficient and the evaporation rate will be mainly functions of the Reynolds

number only and not in terms of the turbulence intensity around the particle.
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5.0 EDDY DIFFUSIVITY OF A SINGLE PARTICLE

5.1 Introduction

Eulerian mathematical models of particle-laden turbulent flows require

knowledge of the statistics of particle motion in order to calculate the

particle response to fluid turbulence. Specifically, a reliable expression is

needed for calculating the Schmidt number, defined as the ratio of particle

diffusivity to fluid point diffusivity for heavy particles. So far, such an

expression is unavailable in the literature.

Tchen (1947) studied the diffusion of a rigid particle carried by a

turbulent flow. Hinze (1975) indicated that Tchen's assumption that the fluid

element should continue to contain the same discrete particle at any time is

hardly to be satisfied. Such an assumption cannot be valid if the ratio

between the material densities of the particle and fluid is large. In this

case the particle will be associated with more than one eddy along its path

which is termed the overshooting phenomena. Soo (1956), Friedlander (1957),

Chao (1964), and Gouesbet et al. (1984) solved Tchen's equation under the

assumption of no overshooting. For asymptotic times of dispersion, that

assumption implies a particle Schmidt number of unity which is physically

incorrect.

Peskin (1971) studied the particle diffusivity under the condition of

overshooting but restricted his analysis to small distances between the

discrete particle and the "originally surrounding fluid." As a result,

Peskin's formula predicts values of particle Schmidt number very close to

unity. Some other workers (Reeks, 1977, and Nir and Pismen, 1978)

investigated the particle diffusivity under the condition of overshooting but

restricted their study to the Stokes flow regime, which is hardly to be

satisfied for suspended heavy particles in a gaseous media.
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Csanady (1963) studied the differences between the diffusion of the fluid

points and heavy solid particles in the atmosphere. He attributed the

appreciable reduction of the dispersion rates of the heavy solid particles to

the rapid travel across the turbulence eddies. Meek and Jones (1973)

statistically analyzed the heavy particle behavior for a constant relative

velocity between the particle and its surrounding gas in homogeneous

turbulence. They obtained expressions for the particle dispersion coefficient

and its Lagrangian autocorrelation.

In this section a reliable expression for the calculation of the lateral

diffusivity of heavy particles suspended in a homogeneous turbulent field is

provided. The physical parameters that control the particle behavior in a

turbulent flow is discussed. Two widely used theories (Csanady, 1963, and

Meek and Jones, 1973) for the calculation of the statistical properties of

heavy particles in terms of those of the surrounding fluid are reviewed. The

empirical coefficient in Csanadyfs theory is determined via a comparison with

the experimental data. Finally, Meek and Jones' theory is examined and an

empirical coefficient is introduced and evaluated via a comparison with the

experimental data.

5.2 Physics of Particle Dispersion

The behavior of a single spherical particle suspended in a homogeneous

isotropic turbulent field depends on the properties of both the particle and

the turbulent flow. The first parameter that controls the particle dispersion

is the ratio of the particle size to the Kolmogorov, length scale, r\. If this

ratio is small the particle dispersion will be influenced by the entire

spectrum of eddy sizes and will follow the turbulence fluctuations of the

carrier fluid. If, on the other hand, that ratio is greater than unity, the
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particle will follow the slow large-scale turbulent motions of the fluid

(Alonso, 1981). In this case the main effect of the turbulence on the

particle is to modify the flow field around it, so that its drag may be

affected.

A more general parameter is the ratio between the particle relaxation

time, T , inversely proportional to the particle's inertia, and the fluid

Lagrangian integral time scale, T , is the controlling parameter of the
Li

particle response to the turbulence fluctuations. If the ratio T /T < 1, the
= p L

particle will be able to respond to the entire spectrum of fluid motion and

the ratio between the root mean square fluctuating velocity of the particle to

that of a fluid point is almost unity. On the other hand if T /T > 1 the
P. Ij

particle will respond very slowly to the fluctuating fluid motion.

If there is an appreciable relative mean velocity between the particle

~and the "surrounding fluid, the particle will move about from eddy to eddy,

whereas a fluid point would remain In the same eddy throughout the lifetime of

that eddy. This is what Yudine (1959) called the "crossing trajectories

effect." Yudine (1959) considered the physical consequences for finite free-

fall veTo'c it .ire s on the he a vy-par t i c 1 e'd 1 f f us i on.""' He " formu 1 at e d upper" and

lower limits for the changes in the dispersion coefficient due to the heavy

particles free fall velocity, f.

Taylor (1921) postulated a theory describing the statistical dispersion

of fluid points in a stationary homogeneous turbulent flow. His result

~2
relates the mean lateral square fluid point displacement, Y , to the mean

2square fluctuating velocity, u , and to the Lagrangian velocity correlation

coefficient, RL ( t), according to:

Y2 (t) = 2 u2 Qj
t
Qj

i: RL(T) dtdT 5.1
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The correlation coefficient is defined by

R (t) =u(t) u(t * T) 5.2
L ~~2

u

Taylor (1921) defined a turbulent diffusivity by

u2 QJ
T R^T) di 5.4

u2 T 5.5
Li

Snyder and Luraley (1971) showed that Taylor's theory is equally

applicable for the dispersion of alien particles, provided that the velocities

are interpreted as particle velocities, and that the Lagrangian time

scale, T , is interpreted accordingly. Snyder and Lumley (1971) and Wells and
L

Stock (1983) measured the dispersion of heavy particles in a grid-generated

turbulent flow. They reported the decrease of the particle integral time-

scale and the rapid decrease of the particle velocity correlation with

increasing T .

Calabrese and Middleman (1979) photographically measured the degree of

radial dispersion of medium-size particles emanating from a point source in

the turbulent core of a fully developed vertical pipe flow of water. They

defined the medium-size particles by n < d < Lf , where d and L, are the

particle diameter and Lagrangian length scale respectively. They were able to

calculate the radial mean-square particle displacement directly to find that

both heavy and buoyant particles experienced a decrease in mean-square
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displacement due to the crossing-trajectory effects.

5.3 Csanady's Theory

Csanady (1963) considered the differences between the diffusion of the

fluid points and heavy particles in the atmosphere. He proposed a functional

form for u(o) u(t), where u(t) is the fluctuating velocity of the air,

consistent with similar shapes for Eulerian and Lagrangian fluid point

correlations. Thus, Csanady was able to construct two relations for the

particle dispersion coefficient parallel to and normal to the direction of the

particle terminal velocity. Lumley (1978a) showed that Csanady's model gives

4/3 5.6

eh
ef (1

1
o ? 7 1 /?+ BJ f z /u2)1 / 2

E 9 9 9—T7T » ^17 = ^/^ 5.7f (i + e2 f2/u2)172 v

where e is the asymptotic diffusivity'for the fluid. The subscripts h and v

correspond respectively to horizontal and vertical dispersion of the particle

associated with long times relative to the integral-time scale of the

turbulence. Lumley stated that the value of & is much less well determined

than that of 3 and the value of 6. should be determined via a comparison with

well defined experimental data.

In the present work the value of B, is determined by comparing the

prediction using Equation 5.6 with the experimental data.
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5.4 Meek and Jones' Theory

Meek and Jones (1973) considered the motion of a heavy particle in a

homogeneous turbulent air flow. The particle motion was viewed from a

reference frame in which the average fluid velocity is zero. They started

with the definition of the particle velocity autocorrelation, which can be

expressed in terms of a normalized particle energy spectrum, E ** (w):

Rp>ii(T) « ^ Ep li(o») cos (OJT) do) 5.8

where <»> is the circular frequency.

Soo (1956) obtained an expression relating E ^ (u) ) to its fluid

counterpart, E ((»)), from the solution of the simplified particles equation of

motion and under the assumption of zero free-fall. This expression is given

by

5'9

where Q..(w ) is the particle response function defined as:

Qil(V===
[ -2 1. 5'10

18 V1
where a = =— ; 5.11

P2d
2

d and P~ are the particle diameter and density respectively and 11. is the

dynamic viscosity of the surrounding fluid. The Lagrangian frequency

function, E.. (u), can be approximated by various semiempirical forms. Hinze
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(1975) pointed out that the use of an exponential form for the fluid's

Lagrangian velocity autocorrelation provides reasonable agreement with the

experimental data. The associated energy spectrum is

5'12

Meek and Jones (1973) indicated that the use of a response function

derived for zero free-fall velocity, f^, requires some adjustment of 5.8 to

account for non-zero free-fall and the subsequent movement of the particle

from one eddy to another. They suggested that the nonezero free-fall velocity

spectrum E ^ (<"), be expressed in terms of the zero free-fall velocity

spectrum, E . . ( (0 ) , according to:
p,n o - •

= E ..(̂  )/z ; " 5.13

where Z = [ 1 + (fi/vjL)
2]1/2 . 5.14

Using the abover assumptions, thei particlei velocity autbcorrelation can be

written as

5.15•>. .

where 5.. = —— ; 5.16
1 L,ii

= TL,ii/Z ' 5'17
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The ratio of the fluctuating velocity variances is given by Soo (1956) as:

,
<—> = i + E » 5.18
2 qii
u

2
while the mean square particle displacement, Y (t), in the radial direction is

2

The particle eddy diffusivity is given by

For long times relative to the integral time scale of turbulence

where Z is given by (5.13).

5.19

v2 T
i . V Kl - et/Tll) - 5.2 (1 - e l l ! ! ] . 5.20i c,

The corresponding fluid point eddy diffusivity is given by

e (t) = u2t (i - e t/Tll) 5.21
i \-J • i. 'J. ' ^ r

Thus, the particle Schmidt number (0 = —) is given by:

eh(t) . -t/^i
f» •*• r / i -1 •!• \ >•*• /•« _ j . i . i A - 1 COO

J _)• Z/
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Peskin (1974) argued that a heavy particle initially coincident with the

fluid point naturally lags behind that fluid point as a result of inertia.

The fluid points encountered by the heavy particle are not statistically

equivalent and would only be so in a turbulent field with Infinitely large

space and time Eulerian correlation scales. Finite correlation scales imply

that the fluid point encountered by the heavy particle as it lags behind the

original coincident point are not statistically identical. Accordingly, the

heavy particle dispersion or diffusivity is determined by the Eulerian space-

time correlation. Peskin stated that Meek and Jones failed to account for the

most important effects of the space-time correlation of the turbulent flow on

the particle motion. The linear relation (Equation 5.9) between the particle

energy spectrum and the fluid Lagrang!an spectrum implies that the effects of

the space-time correlation are completely neglected.

Meek and Jones (1974) in their reply to Peskin (1974) argued that the

good agreement between their predictions and the experimental data of Snyder

and Lumley supports their solution, especially in homogeneous turbulence. To

achieve this agreement, they used Equation 5.19 and the fluid and particle

data of Snyder and Lumley (Equation 5.28 and Table 1 in Meek and Jones'

article, 1973). Using their equation and table, the present study can not

reproduce their Figure 2, especially for the solid glass particles.

5.5 Modifications of Meek and Jones' Theory:

As pointed out by Peskin (1974), the Eulerian space-time correla-

tion IL,(y(t) - X(T)), where y( T) and x( T) are the Lagrangian fluid and the

particle positions, should be considered in the analysis of heavy particle

dispersion instead of the Lagrangian autocorrelation. To do so the solution

should be restricted to a very short distance (y(T) - X(T)) between the
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particle and the fluid, otherwise the equations will be formidable. Peskin

imposed this restriction but his solution predicts values of a particle's

Schmidt number very close to unity even for a heavy particle. Yudine (1959)

in his discussion of the physical parameters controlling the heavy particle

diffusion pointed out that the dispersion process is controlled mainly by the

terminal velocity, f. He stated that the dispersion process depends upon the

terminal velocity in three ways: (1) the terminal velocity determines the

vertical displacement of the center of dispersion of the particle; (2) because

the terminal velocity is a certain measure of inertia, the particle does not

follow completely the high frequency fluctuations of turbulent fluid velocity;

and (3) if it has appreciable terminal velocity, a particle will fall from one

eddy to another, whereas a fluid' point would remain in the same eddy

throughout the lifetime of the eddy. Yudine concluded that, for large f, the

dispersion coefficient takes on an asymptotic form inversely proporational to

f.

Meek and Jones (1973) pointed out that the inertial effects can be

significant especially when f^ < v^. The inertial effects increase the

particle Lagrangian time scale compared to that of the fluid if there is no

crossing trajectories.

Csanady (1963) accounted for the crossing trajectory effect on a heavy

particle dispersion by including in his analysis the quantity f^/Ui and the

ratio between the Lagrangian to Eulerian integral time scales, &,.

Due to the close similarity between the two theories of Csanady and Meek

and Jones and based upon the previous discussion it is clear that the

parameters that should be considered in a heavy particle diffusion analysis

are the terminal velocity and a coefficient simulating the ratio between the

Lagrangian to Eulerian integral time scales. Therefore the following
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modification to the Z factor (Equation 5.14) is proposed:

2 —2 1/2
Z = (1 -l- <\f ±/v p . 5.24

where <x is an empirical coefficient to be determined via comparison with the

experimental data.

To determine P. in Equation 5.6 and (X in Equation 5.24 the predictions

will be compared using both Csanady's theory and the modified theory of Meek

and Jones with the experimental data of Synder and Lumley (1971) and Wells and

Stock (1983). Since the two theories have been developed for stationary,

homogeneous turbulence, the data should satisfy these two conditions.

Experimental evidence suggests that grid-generated turbulent flows approximate

the stationary requirements and corrections can be made for the inhomogeneity

(Pismen and Nir, 1979).

5.5.1 Snyder and Luraley's Experiment

Snyder and Lumley (1971) performed an experiment in which a single

spherical^sbTid particle was injected into a turbulent flow generated by a

grid. They considered particles of various sizes and densities ranging from

light particles that closely follow the fluid fluctuations to heavy particles

that experienced both inertia and crossing-trajectory effects. The particles

were injected above the gird at a distance of 20 grid spacing. They measured

the particles' Lagrangian autocorrelations at x/M = 73 as well as the mean

~~2
square displacement, Y , of the particles as they were individually convected

through the wind tunnel. Turbulence measurements were made and the turbulence

energy decay was given by
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-2- = 42.4 (£- 16)
T M 5.25

where U is the mean axial velocity (6.55 m/s) and x/M is the ratio of the

axial distance to the mesh size (2.54 cm). They also reported the rate of the

energy dissipation, e, along the centerline of the wind tunnel (see Table

5.1).

Table 5.1. Energy Dissipation Rate (e) of Snyder and Lumley (1971)

x/M

£ cm2/s3

41

5430

64

1610

73

1160

107

480

138

266

171

165

Table 5.2 lists the relevant characteristics for the particles studied by
Snyder and Lumley.

Table 5.2. Particle characteristics for the
data of Snyder and Lumley (1971)

hollow glass

3
density, p g/cm 0.26

2
diameter, d ym 46.5

drift velocity, f cm/s 1.67

corn pollen

1.0

87.0

19.8

glass

2.5

87.0

44.2

Snyder and Lumley estimated the Lagrangian time scale, T , at one station
L

only (x/M = 73),by considering the light particle results as representative of

Lagrangian correlations. In comparison with Snyder and Lumley's data, the

variation of T along the wind tunnel axis should be estimated from the
Li

measured turbulence quantities. T can be obtained from the relation (Hinze,
ij

1975)
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5.26

The ratio between the Lagrangian and Eulerian. time scales, as given in

Equation 5.26, depends on the local flow conditions and cannot be considered

as constant. Hinze (1975) pointed out that the experimental data show that

the value of the constant C varies between 3 and 10 depending on the Reynolds

number, thus (5.26) reads

TT = C' u
2/e, 5.27

where C1 varies from 0.2 to 0.66.

On the other hand, Calabrese and Middleman (1979), using Taylor's theory,

obtained the following expression:

- = 0.625 u2/e 5.28

Berlemont et al. (-1982) considered the closure relations of the K-g model and

obtained

TT = 0.2 u2/e 5.29

In the present work the coefficient C' in Equation 5.27 will be

determined from the dispersion data of the light particle (hollow glass) or

the particles with zero terminal velocity that are considered as

representative of Lagrangian correlations. Using Equations 5.18, 5.19 and

~2
5.26 for the hollow glass particles, Y is obtained and plotted in Figure 5.1
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with an optimized value of C1 = 0.35. Figure 5-1 also compares the prediction

using Meek and Jones' theory and its modified form with the experimental data

for the mean-square displacement of the corn pollen and the glass particles.

It is clear from this figure that Meek and Jones' theory does not provide good

agreement with the experimental data. With the present modification of Meek

and Jones' theory the present study predicts the experimental data for the

particles with different diameters and densities in Figure 5-1. This

agreement is obtained with a = 0.3.

Figure 5-2 shows a comparison between the theoretical and the

experimental data for the Lagrangian autocorrelations for the different

particles. The correlations decrease faster for the heavier particles (high

drift velocity compared with the turbulence intensity) due to the crossing

trajectory effects. It is also clear that the value of a. =0.3 produces

good agreement with the data for the autocorrelations.

5.5.2 Wells and Stock's Experiment

The effects of "crossing trajectories" and inertia on the dispersion of

particles suspended in a field of grid-generated turbulence were investigated

experimentally by Wells and Stock (1983). The flow conditions and grid size

and shape were very similar to those used by Snyder and Lumley (1971) except

that the main direction of the flow was horizontal instead of vertical. The

particles were glass spheres, with a diameter of 5 or 57 ym and a density of

2.45 gm/cm . The particles were charged by a corona discharge then injected

on the centerline of the flow. The test section was subjected to an electric

field, which provides a coulomb force to the particles to balance the

gravitational force. In this way, the drift velocity could be changed. The

particle concentration and velocity were measured with a laser-Doppler
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anemometry system. The data were reduced to yield the particle mean-square

displacement.

"̂ 2The measured turbulence intensity, — , and dissipation rate of kinetic

energy, e, were used to calculate T . Equation 5.27 was used with C' = 0.5LI

to reproduce the experimental data for the particles with f^ = 0 as shown in

~2
Figures 5-3 and 5-4. Figure 5-3 shows Y versus x/M for 5 urn particles with

two values for the terminal velocity: zero and 25.8 cm/s. The two figures

show good agreement between the predictions and the experimental data

using <X = 0.3 that was optimized for Snyder and Lumley's data.

Figure 5-3 displays the distribution of the Schmidt number, o , against

f̂ /uj. This figure compares the prediction using 5.24 with a. = 0.3,

Csanady's model (Equation 5.6), Snyder and Lumley's data, and Wells and

Stock's data. The diffusivity ratio for the experiments of Snyder and Lumley

and Wells and Stock were obtained using Equation 5.3 at different times or

x/M. The agreement between this work and the experimental data is very

good. The solid line in figure 5-5 was obtained using a value of g. in

Equation 5.6, equal to 0.55.

Comparison "of the™modifled form^of the Meek and Jones' theory (Equation

5.24) and that of Csanady (Equation 5.6) .shows both similarities and

differences (Mostafa and Elghobashi, 1985b). In Csanady's work, the only two

parameters controlling the dispersion of a heavy particle in a turbulent flow

are (f/v) and 8. . In that way the ratio f/u is considered as a measure of the

crossing-trajectories effects, together with the associated continuity

effect. In the present work, the ratios (f/u) and (v/u), and a are the

controlling parameters. The ratio v/u is a direct measure of the inertia

effect on the dispersion process as discussed by Meek and Jones and other
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workers (see Hinze , 1975) and it has a significant effect, especially when

f/v < 1.

5.5.3 The Final Expression for Particle's Schmidt Number

The expression for calculating the Schmidt number of a heavy particle

suspended in a turbulent flow (Equations 5.23 and 5.24) has been developed

assuming that the drift velocity is constant or is large enough to make the

Eulerian space-time correlation approximated by the Lagrangian autocorrelation

(Peskin, 1974, and Reeks, 1977). Therefore the developed expression can be

used for suspended particles in a turbulent flow if the relative mean velocity

is assumed to be constant during a period of time t > TT . At dispersion time
Lt

greater than the Lagrangian time scale of turbulence, that expression is given

by

k * +k 2 -TTT"172a k = [1 + 0.3 .(U - V ) /(vVl 5.30
P

T 2
5'312 1 + T /T

u P L ,

TT = 0.35 u
2/e 5.33

Li

The coefficient 0.35 in Equation 5.33 is the optimized value using the

experimental data of Snyder and Lumley (1971).
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6.0 NUMERICAL SOLUTION OF THE EQUATIONS

We have now available a turbulence model and a number of experimental

target values for free jet flows. The present section shows how the model

will reproduce these target values.

To apply the model, a solution method and boundary conditions are

needed. The first part of this section disucsses the of finite-difference

technique used in solving the differential equations. The second part

disucsses the solution procedure and the boundary conditions.

6.1 The Equations to be Solved

At this point, the reader may welcome a brief reminder of what

constitutes the prediction method applied in this section.

This method employs the mean equations of continuity and momentum for

each phase, the global continuity equation, the'concentration "equation','"and

the K and e equations. Thus, the equations to be solved are (6 + 3 k) in

k k
number; they are for the dependent variables Uz, Ur, V , V ,

P, * 4^, K and e.

6.2 Solution Method

The governing equations are solved simultaneously with the finite-,

difference method that Spalding (1979) has developed for laminar two-

dimensional parabolic dispersed-flow problems with interphase slip (GENMIX-

2P). Since the governing equations are parabolic in nature, the method

integrates by marching forward, i.e., downstream, starting at an initial

cross-section where the profiles for all dependent variables must be

specified. The GENMIX-2P computer code is generated from the GENMIX computer

code (Spalding, 1978), after excluding the effects of mass transfer, chemical
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reaction, and turbulence then adding two new subroutines. These two

subroutines are COMP2P and ADJ2P, which set up and solve the finite difference

equtions for the dispersed phase variables. All the necessary information

about GENMIX is documented (Spalding, 1978) and need not be repeated here.

Therefore, we will restrict the description here to the treatment of the

dispersed phase and how it is coupled with the carrier phase in the solution

procedure.

6.2.1 The Computational Mesh

The computer code GENMIX-2P employs the stream function y of the carrier

phase as a cross-stream variable that is defined as

v = /O
r pi*iVdr * 6>1

The governing equations are transformed into a coordinate system based on the

axial distance, z, and a normalized stream function, u .defined as

6.2

where y and <j» are the values of the stream function at the inner and outer
I EJ

boundaries of the flow, s measures the distance from an arbitrarily assigned

starting point that is often taken as the starting point of the marching

integration along the inner boundary of the grid. Lines of constant z are

normal to the I boundary. u is assigned the value 0.0 along the I boundary
n

of the grid. It's value then increases monotonically with distance from that

boundary, rising to the value 1.0 at the outer boundary of the grid.

The flow field of interest is subdivided into cells and each cell is
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treated as a control volume. For the carrier phase, these cells are formed by

the intersection of the constant z and o> lines as shown in Figure 6-1.
n

6.2.2 Finite Difference Equations (FOE) of the Dispersed Phase

The finite-difference equations for the carrier and dispersed phases are

formed from the differential forms by integration over the control volumes of

the carrier phase as shown in Figure 6-2. In this figure UP denotes upstream

station and DN stands for downstream. TE^ is the tangent of the

constant <0n line just above the grid point i, but it is not distinguished from

the angle or its sine. oC. is the inclination of the streamlines of the

dispersed phase at i ~ i + 1 interface. For simplicity, in this section only,

one class of particles will be considered. Therefore, the superscript k will

be replaced by the subscript 2 to represent the dispersed phase. ol. equals

TE^ plus an increment allowing for cross-flow, which takes account of

local Pi*iU . Therefore, it represents the tangent of the streamline angle,

but it is not distinguished from the angle or its sine. S* is the outlet flow

area of the ith control volume and Az = z - z }.

For the variables *9 1 . and V |. the control volumes over which
^ 1 Z 1

integration of the equations is carried out are those of U |. of the carrier
Z 1

phase. For V | . the control volume is the one bounded by I + 1,1 at the

upstream and downstream stations. Let Q represents any variable of the

dispersed phase such as Vz, Vr or o2 and *- • The result of integrating the

equations can be most conveniently expressed as follows,

The A£ and B^ coefficients represent the effects of transport of the dispersed
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Figure 6-1 ILLUSTRATION OF THE z-WCOORDINATE SYSTEM

107



Figure 6-2 ILLUSTRATION OF THE CONTROL VOLUMES USED
FOR THE DERIVATIONS OF THE FINITE DIFFERENCE EQUATIONS
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phase across constant u> lines. The coefficient C^ represents the effects of

upstream convection from the different sources. These sources result from the

pressure gradient, the gravity force, the interphase friction in the case of

Vz and Vf, and the different turbulent correlations that result from the

presence of the particles. The coefficient D^ represents the effect of

outflow from the control volume. In the following the forms of the

coefficients A^, B^, C^ and D^ for the variables o2 (=V /V ), V and *2 are

presented:

For o2;

A± - max [0, (DFa- 0.5 CONa) i+3/2> - CONai+3/2]vJ 1+3/2 , 6.4

B, = max [0, (DFa + 0.5 CONa) . ]V |, ., /, , 6.5
1 1 * A / £* Z 1 • 1 / £

Ci ' P2 (*2SVzVz )li+l/2° f ii | + (VIWri+l/2Az

*2l 1+1/2- Mp2-pl )*2li+l/2 VOL + FUz*2li+l/2aliVOL

Di ' (p2*2S Vzli+ l /2 + Ai /Vzli+3/2 + B i / Vzli+ l /2 +

Vli+l/2VOL] V zl i + l /2

where VOL is the total volume of the cell and,

- [FV°c(1 - 1/ap > V ]i+l/2 /Vzli+lVOL

6.8
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V

+ V
,2 - v V' p z,i -- -

6.9

For_Vz:

6.10

- 0-3

6.U

fn (DFV + 0.5max [0, vurv

where

- TE)t
CONV,
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DFV.

TE)i-H/2/V2lz
j -

6.15

For

max [0, (DF* - 0.5 » ~ CON*1-n/2
1 > 6'16

max [0, (DF* + 0.5 6'17

6'18

6-19

where

COm
6-20

DF$i -
P P

TE./DZ] 6.21

Note that the AA and Bj formulae (6.4, 6.5, 6.10, 6.11, 6.16 and 6.17)

are hybrid in nature to account for high lateral convection (see Spalding,

2
1978). v in Equations 6.9 and 6.15 is calculated from Equation 4-10.
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The equation set generated by Equation 6.3 for the different nodes at any

station is solved by using the Tri-Diagonal Matrix Algorithm (TDMA) to obtain

the dependent variable Q^ at the different nodes (see Roache, 1972).

At the beginning of the calculations, *. is unknown. Thus, the COMP2P

subroutine uses a guess-and-correct procedure for 4 or *«. The procedure of

correcting *. or *2 takes place in the subroutine ADJ2P. There are three

procedures for correcting * : direct substitution, computed under relaxation,

and use of pressure corrections. In the direct substitution procedure the

computed values of *. are used as the guessed ones for the start of the new

solution loop. The disadvantage of this procedure is the possible non-

convergence, when the changes are large. The advantages of this method are

its simplicity and the consequent economy. This method can be expected to

—3work satisfactorily when *_ values are small (9 < 10 ).

The computed under-relaxation method starts the next iteration loop

with * , given b y . ' - . - •

\ = *1 + C(*l ~ *1)> 6*22

where the * denotes old values and C is an under-relaxation factor,

conveniently taken as: C -.*,i ojj- The under-relaxation factor is expected

to be slight for dilute suspension, i.e., this method reduces to the direct

substitution method.

The pressure corrections method devises and solves a pressure correction

equation driven by errors: (1 - *~ ~ *])• This method is suitable for' large

values of *„ , which are outside the scope of the present study.
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6.3 The Solution Procedure

The steps to obtain the solution at a given axial location are:

1. Guess the downstream $ distribution (from the upstream values).

2. Solve for U downstream: obtain r'S and U >S.z r

3. Solve for K and e to obtain the eddy diffusivities.

4. Calculate the local dimenslonless quantities, Re , Sck, and Sĥ .

Then obtain the mass transfer rate; m , hence the sink terms in the mass

conservation equation for each group or the total source term in the

continuity equation for the carrier phase.

5. Obtain the downstream diameter distribution from the upstream values and

the local evaporated mass.

6. Calculate the size range for each group from knowing the largest and

smallest droplet diameters, and the number of sizes to be considered (it

could be different from the upstream value).

7. Label the droplets according to their local diameters and the size

ranges for each group.

8. Obtain p(r) from the gas-phase lateral momentum equation.

k k k k k's9. Solve for downstream (v /V ), V and $ and get $,. $
r z z z 1

*
10. Compare the new $ with the guessed $ .

11. Make corrections and repeat steps 1-7 until the solution converges

before marching to the next station.

In general, two iterations are needed at each station to achieve convergence.

6.4 The Boundary Conditions

The parabolic flows considered in this report require the prescription of

three boundary conditions for each dependent variable. At the predictions

starting plane the profiles of all the dependent variables must be specified
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from the experimental data. At the axis of symmetry (r = 0) all the radial

gradients are"set to zero, in.addition to the vanishing radial velocity. The

jet boundaries are determined.via the adjustment of the entrainment rate and

the specification of the radial gradient of U to fixed small value. Justz

outside these boundaries the values,of the other dependent variables will be

those corresponding to the ambient conditions. For example, all V "s
Z

and $ are equal to zero there..

In the next section the results presented are obtained using 40 lateral

nodes to span the flow domain between the centerline of the jet and its outer

edge. Grid-dependence tests were conducted with 30, 40, and 50 lateral nodes

and different axial step sizes and it was concluded that the 40 node grid

results are virtually grid-independent.
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7.0 RESULTS

First, a turbulent round gaseous jet laden with monosize solid particles

is considered. This flow allows the study of the interaction between the two

phases and the particles dispersion due to the turbulence without the

complexity of mass transfer. The predictions are compared with the data of

Modarress et al. (1984) in section 7.1. Since no experimental data exists for

an evaporating spray in the developing region (z/D < 20), the model is

considered to predict an idealized flow of a turbulent round jet laden with

multisize evaporating methanol droplets in section 7.2. Two more cases are

considered in sections 7.3 and 7.4. Both of these two cases are for a Freon-

11 spray issuing from an air atomizing nozzle where experimental data are

available. The first flow is that of Shearer et al. (1979) where the data are

available at distances equal to or greater than 170 nozzle diameters. The

second flow is that of Solomon et al. (1984) where the data are available at

distances equal to or greater than 50 nozzle diameters. In both cases the

predictions are compared with the measurements. . Table C-l (Appendix C)

summarizes the different cases considered in this study.

7.1 The Flow of Modarress et al. (1984)

Modarress et al. (1984) reported much needed experimental data to help

understand the behavior of two-phase turbulent jets and validate their

theoretical models. They investigated the effects of 50 ym and 200 urn glass

particles on the mean air velocity and the turbulent stresses at two different

mass loading ratios, 0.32 and 0.85. Figure 1-2 shows a sketch of the two-

phase turbulent jet considered by Modarress et al. (1984). Air carrying

uniform-size glass particles issues vertically downwards from a cylindrical

pipe of diameter D, 0.2 m. The jet is enclosed in a cylindrical container
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with a diameter equal to 30 D to avoid ambient disturbances. An air stream of

low velocity surrounds the nozzle and extends to the container wall to provide

the required entrained mass by the jet, thus preventing the occurrence of

internal circulation in the measurements region. Table C-2 (Appendix C) lists

the experimental conditions at 0.1 D downstream of the pipe exit. These

values represent the initial conditions for the dependent variables required

in the numerical calculations.

In what follows the predicted distributions are compared with the

measured distributions of the mean velocities, volume fractions of the two

phases, turbulence intensity and shear stress of the gaseous phase and the jet

spreading rate. Figures 7-1 and 7-2 show the effects of the particles; mass

loading ratio (XQ = 0.32 versus 0.85) on the mean velocities for 50 y

particles (Case 1 and 2). Figures 7-2 and 7-3 show the effects of the

particles; diameter (50 V versus 200 y) at almost the same loading ratio (0.8)

on the mean velocities of the two phases. First the main effects of the

particles on the carrier phase velocity are discussed, then the behavior of

the particles' velocity and volume fraction at the different mass loading

ratios are discussed.

Figures 7-1 to 7-3 show the radial profiles of the mean axial velocities

of the two phases at z/D = 20, normalized by the corresponding mean centerline

velocity of the single-phase jet, Uz c.s« The flow conditions are those of

Cases 1, 2 and 3 in Table C-2 (Appendix C). Also shown is the mean velocity

profile of the turbulent single-phase jet having the same Reynolds number

(14100) at the pipe exit.

It can be seen from these figures that the mean velocity of the carrier

phase is highly affected by the presence of the particles in the inner region,

especially at the jet centerline (30% higher than that of the single phase for
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Case 1, 75% for Case 2, and 25% for Case 3). This behavior can be explained

by the fact that particles are confined to the inner region of the jet. Due

to this confinement and the high inertial forces of the particles, their

centerline velocity decays with the downstream distance at a slower rate than

that of the fluid (see Figure 7-8), and thus they become a source of momentum

to the fluid. Also due to the confinement, the number density of the

particles which is a strong parameter in the momentum transfer between the

particles and the carrier phase at any cross section is maximum at the jet

centerline. The "confinement of the particles is evident in Figures 7-2 and 7-

3 where the concentration of the solid .particles vanishes at a radial distance

of r/z = 0.06, while the fluid spreads to at least three times this

distance. This confinement can be explained by the fact that heavy particles

do not respond well to fluid turbulence fluctuations (v « v ), thus the main

force that accelerates the particles in the radial direction is the viscous

drag. This drag force is proportional to (Ur-Vr), and since Ur is negative in

the outer region of the jet and Vr < Ur), the resulting force will be directed

inwards thereby limiting the radial spread of the particles.

The influence-of the loading -ratter of "-the' dtspersed~phase~oh the mean"

velocities at z/D = 20 for 50 y particles is displayed in Figures 7-1 and 7-

2. The inlet conditions for the two cases (1 and.2) are .identical except for.

the loading ratio. By increasing the loading ratio from 0.32 (Case 1) to 0.85

(Case 2) the carrier phase velocity at the centerline increases from 30% to

75% relative to the corresponding velocity of the single-phase jet. It can be

seen also from those two figures that the ratio between the centerline

velocity of the dispersed phase to that of the single phase is 1.5 for Case 1

and 2 for Case 2. This can be explained by the fact that the initial momentum

of the dispersed phase is proportional to the mass flow rate of that phase
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since they have the same velocity distribution. Therefore, the initial

momentum of the dispersed phase for Case 1 is about 2.7 times that for Case

2. This enhances the momentum transfer from the particles to the air, thereby

enhancing the increase in the axial velocity of the latter compared with that

of the single phase. Now, since the axial air velocity at any point on the

jet axis at the higher loading case is greater than the corresponding value at

the lower loading case, the momentum drain from the particles is expected to

be inversely proportional to the particles' loading ratio. This explains the

higher centerline velocity of the particles at the higher mass loading ratio.

The influence of the particles' diameter of the dispersed phase on the

mean velocities at z/D = 20 is displayed in Figures 7-2 and 7-3 (Cases 2 and

3). The main difference between the two cases is the particle diameter, so

any quantitative change in the mean velocity profiles is attributed to two

factors: 1) the interphase surface area or the momentum exchange coefficient,

and hence the source terms of the momentum equations, and the K and e

equations; 2) the particles' response to the turbulent fluctuations, thus the

additional turbulence dissipation caused by the fluctuating particle slip

velocity and its correlation with the fluid velocity fluctuation. The surface

area in Case 2 is four times that in Case 3, since, for nearly the same

loading ratio, the number of the 50 y particles is 64 times that of the

200 y particles. This increase in the number of particles or the interphase

area results in augmenting the momentum source, of the carrier fluid

consequently reducing the rate of decay of its centerline velocity (see Figure

7-8).

Figure 7-4 shows the reduction in the shear stress due to the existence

of the particles with the air in the same control volume for 50 y and

200 y particles. Due to the reduction in the turbulence kinetic energy
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compared with that of the single phase, which is associated with additional

turbulence dissipation, the carrier phase momentum diffusivity is reduced.

Figure 7-4 shows that the reduction in the shear stress for 50 u particles is

greater than that of 200 u particles. This reduction in the turbulent

diffusion coefficient reduces the rate of decay of the centerline air mean

velocity (see Figure 7-8).

It is also clear from Figures 7-1, 7-2, and 7-3 that the single-phase jet

is wider than the particle-laden jet; this will be discussed later in this

section. Figures 7-1, 7-2, and 7-3 display in general good agreement between

the measured and predicted velocity and concentration profiles.

In order to distinguish between the dispersed phase effects on the mean

motion (inertia and drag) and on turbulence (diffusion), the mean velocity

profiles obtained by solving the governing equations for the mean motions

(Equations 3.26 to 3.33 together with the single-phase K and e equations

(i.e., Equations 3.34 and 3.35 without the additional production and

dissipation terms due to the dispersed phase) are shown in Figure 7-1 and 7-

2. The resulting increase in the fluid centerline velocity, as compared with

that of the single-phase jet, is only half that measured and predicted by the

new K-e model. Stated differently, the modulation of the fluid mean velocity

profile by the dispersed phase is not only due to the particles' inertia and

drag but equally due to the additional turbulence dissipation. This in turn

reduces the fluid momentum diffusivity resulting in a peaked velocity profile

near the jet centerline. The additional turbulence dissipation is caused

mainly by the fluctuating particle slip velocity and its correlation with the

fluid velocity fluctuation that appeared in Equations 3.34 and 3.35. The

consequent reduction in the fluid turbulence intensity and shear stress is

displayed in Figures 7-4 and 7-5 where the agreement between the measurement
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and prediction is good.

Figure 7-6 compares the concentration distribution of 50 y particles

(Case 2) with that of 200 y (Case 3) particles. Since the mass eddy

•*••*• 2 —2diffusivity is inversely proportional to (U-V) /v (Equation 5.30), it is

consequently higher for the 200 y than that of the 50 y particles, so one

would expect that the particles of 50 y will diffuse in the radial direction

more than the of 200 y. This is evident in Figure 7-6 where the agreement

between the measurement and prediction is good.

Figure 7-7 shows the effect of the dispersed phase on the spreading rate

of the jet by comparing the different Yj/2 ~ z distributions of the three

cases, where Y]/2 is the radius at which the fluid mean axial velocity is half

that at the centerline. While for a turbulent single-phase jet the value of

the slope (dYj/2/dz) is constant (= 0.08), the value for a two-phase jet is a

function of the dispersed phase properties such as particle diameter and

density and loading ratio. This dependence is displayed in Figure 7-7. For

Case 3 (d = 200 U, X = 0.8) the predicted slope value is 0.053, for Case 2

(d = 50 y, X = 0.85) it is 0.046, and for Case 1 (d = 50 y, X = 0.32) it is

0.064. Cases 3 and 2' have nearly the same loading ratio but the particle

diameter in the latter is one quarter that of the former, the result being a

reduction of the spreading rate by more than 13%.

Figure 7-7 also shows the discrepancy that results in predicting the

spreading rate if the single-phase K-e model is used instead of the proposed

model. The former predicts for Case 1 a slope of 0.072 while the latter

agrees with the experimental value of 0.064. As explained earlier this is due

to the fact that the additional dissipation of turbulence energy as a result

of the dispersed phase is accounted for in the proposed model.

Figure 7-8 shows the decay of the mean centerline velocities of the two
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phases for Cases 1 and 3 compared with the single-phase values. Here U is

the carrier-phase centerline velocity at the pipe exit. It can be seen from

Figure 7-8 that the two phases reach a local equilibrium situation, equal

velocities, at about 10 pipe diameters and after that the relative velocity

between the two phases along the jet centerline increases by increasing the

downstream distance from the pipe exit. This behavior was previously analyzed

in the discussion of Figures 7-1 through 7-3.

7.2 The Methanol Spray

The flow considered in the present study is identical to the flow of

Modarress et al. (1984) except that the solid spheres are replaced by methanol

droplets of a given size distribution at the exit of the pipe (Figure 1-2).

The goal here is to mimic the flow of an idealized spray that has well-defined

initial conditions. In the present study the good agreement between

prediction and experimental data in the cases of a round gaseous jet laden

with solid particles allows the use the of the latter while adding the

complexity of mass transfer and the resulting size changes in the same jet.

A turbulent round jet laden with multisize evaporating liquid droplets is

considered in this section. Atmospheric air carrying methanol liquid

droplets of diameters 100, 80, 60, 40 and 20 Wn issues vertically downwards

from a cylindrical pipe of diameter D (= 0.02 m). The initial mean velocity

and the turbulence intensity distributions are assumed to be those of the

fully developed pipe flow as in the work of Modarress et al. (1984). The

ratio between the velocity of the dispersed phase to that of the carrier phase

at the centerline is equal to 0.7. The carrier fluid Reynolds number is equal

to 30,000. The temperature of methanol droplets is assumed to be uniform at

the steady state saturation conditions. The initial mass flow rates of the
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different size groups are assumed to be equal and have a plug profile for

volume fractions. Three different mass loading ratios of 0.1, 0.25, and 0.5

(Case 6) are considered.

In what follows, the predicted mean velocities, volume fractions of each

phase, turbulence intensity, and shear stress of the carrier phase under the

three mass loading ratios are presented.

The normalized radial profiles of the mean quantities of the different

phases at 20 pipe diameters from the exit plane at XQ = 0.5 are shown in

Figure 7-9. The mean velocities of the carrier phase and those of the five

groups (k = 1,2,...,5) of droplets are normalized by the centerline velocity "

of the single phase jet, Uz c.s.« Here k = 1 refers to the group that has the

largest diameters, and k = 5 the smallest ones. It can be seen from this

figure, as one expected, that the difference between the velocity of the

carrier phase and that of the largest diameter group is greater than that of

any other group. This is attributed to the balance between the inertia of the

droplet and the momentum exchange force. The inertia force is proportional to

(d ) whereas the momentum exchange force is proportional to the droplet

diameter with an exponent ranging from 1 to 1.7 (for a Reynolds number less

than 100). If all the turbulent correlations in Equation 3.31 due to their

small values compared with the mean momentum exchange term are now dropped,

k
the equation becomes independent of 4 . If the droplet size is then increased,

the inertia becomes much greater than the momentum exchange force, and as a

result the relative velocity between the droplets and the carrier phase (U_ -

V k) increases. The volume fraction profile of each group normalized by thez

centerline value of the first group is shown also in Figure 7-9. Since the

reduction rate of the droplet diameter due to the evaporation process is

inversely proportional to the square of the diameter, the smaller the droplet
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diameter is, the more reduction in the volume fraction. Figure 7-9 also shows

that the smaller the mean droplet diameter is, the less peaked the volume

fraction profile of its group. This is attributed to the turbulent diffusion -

k 'coefficient (v ) of the droplet which decreases with the increase of the

relative velocity or the droplet diameter (Equation 5.30). It can also be

seen from Figure 7-9 that the mean velocity of the carrier phase is affected

by the presence of the dispersed phase especially in the inner region.

Elghobashi et al. (1983) discussed in detail how the entrainment and the

negative radial velocity of the carrier phase in the jet outer region

influence the volume fraction distribution of the dispersed phase. They

showed that the entrainment flow creates an inward force exerted on the

droplets towards the jet centerline. This force combined with the small

turbulent diffusivity of the droplets, compared with that of the carrier

phase, renders the volume fraction profile of the dispersed phase

significantly narrower than the velocity profile of the carrier phase. Since

the momentum exchange between the two phases is a linear function of the

droplets volume fraction, it could be expected, that the momentum transfer to

the carrier phase is maximum at the jet centerline. At the same time the

reduction in the turbulence kinetic energy of the carrier phase and the

increase of the dissipation rate of that energy due to the presence of the

dispersed phase in the same control volume lead to a less turbulent diffusion

coefficient for the carrier phase and hence a less radial diffusion of that

phase compared with the single phase. These two factors make the velocity of

the carrier phase at the jet centerline much greater than that of the single-

phase jet (30% higher) and less than its corresponding value in the jet outer

region.

The influence of the loading ratio of the dispersed phase on the carrier
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fluid turbulence intensity and shear stress is displayed in Figures 7-10 and

7-11. The reduction in the turbulence energy or the increase in the

dissipation rate of that energy is caused by the fluctuating relative velocity

between the droplets and the carrier phase and the turbulent correlation

between this velocity and other fluctuating quantities, volume fractions and

carrier fluid velocity. It can be stated that the reduction in the turbulence

intensity and the shear stress is proportional to the mass loading ratio but

not linearly.

The concentration of the evaporated material in the carrier phase is

shown in Figure 7-12 at two different axial locations (z/D = 10 & 30) and at

XQ = 0.5. Due to the continuous air entrainment by the jet and the turbulent

diffusion of the vapor, the concentration of the evaporating material in the

carrier fluid at z/D = 30 is less than the corresponding values at z/D = 10 at

the same distance from the jet axis, although the total evaporated mass

increases with downstream distance. This is also true even at the jet

centerline as will be seen in the discussion of Figure 7-15.

It can be seen from Figure 7-12 that C is minimum in the jet outer region

and maximum at the jet centerline. Since C^, according to the assumption of

this study and the droplets' material, has a constant value of 0.12, the

transfer number (Equation 3.42) is maximum in the outer region of the jet.

Therefore, the diminution rate of the droplet diameter is greater in the outer

than in the inner region.

Figure 7-13 shows the centerline decay of the mean axial velocities of

the different groups and the carrier phase compared with the single phase

values for XQ = 0.5. Here U . is the carrier-phase centerline velocity at

the pipe exit. It can be seen that the relative velocity between the droplets

and the carrier phase or the disequilibrium of the flow along the jet
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centerline, increases with increasing the droplet's diameter. It is worth

noting that the carrier-phase centerline velocity is about 30% higher than the

corresponding value of the single phase in the range 7 < z/D < 30 as

previously discussed.

Figure 7-14 exhibits the centerline decay of the volume fraction and mean

droplet diameter based on the total surface area of the droplets for the five

groups. The mean diameter is a quantity that is not used in any calculations

but facilitates the display and discussion of the results. In the present

work, it was possible to calculate the local diameter distribution within each

group, thus from the maximum and minimum diameters at any station and the

number of sizes to be solved, the diameter range for each group can be fixed

(e.g., at z/D = 10, group k = 1 contains droplets ranging from 95 to 78

microns). -It can be seen from Figures 7-9 and 7-14 that the smaller the

droplet diameter is, the higher the evaporation rate, hence the rapid decay of

the volume fraction and the mean diameter.

Figure 7-15 shows the axial distribution of the total volume fraction of

the droplets and the centerline concentration of the methanol vapor in the

carrier phase (C ") for different mass loading ratios. Here *0 /*» is the>c • o 2,c 2,o

total volume fraction of the dispersed phase at the centerline divided by that

value at the pipe exit. The concentration of the evaporated material in the

carrier phase first increases until z/D = 10 then monotonically decreases due

to the continuous air entrainment by the jet and turbulent diffusion of the

vapor.

The variation of the maximum turbulence intensity and maximum shear

stress of the carrier phase with the axial distance is displayed in Figures 7-

16 and 7-17 for the different mass loading ratios. It can be seen that the

reduction in the turbulence quantities is proportional to the mass loading
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ratio but again not linearly. These two figures also show that farther

downstream from the pipe exit, the turbulence quantities are approaching their

values for a single-phase jet due to the continuous diminution of the

droplets' volume fraction.

The rate of evaporation is a function of both the transfer number and

droplet Reynolds number, which are maximum in the outer region and minimum at

the centerline. So the rate of evaporation is maximum in the outer region or

the minimum droplet diameter. This explains the radial distribution of the

droplet diameter at the various sections as shown in Figure 7-18. Also

displayed is the monotonic reduction in droplet diameters with distance

downstream for the five groups.

Figure 7-19 shows the effect of the evaporating spray on the spreading

rate of the jet by comparing the different Y. ,„ ~ z distribution, where Yi /o

is the radius at which the carrier-fluid mean axial velocity is half its value

at the centerline. While for a turbulent-single phase jet the value of the

slope (dYi /2/dz) is constant (= 0.08), that for a two-phase jet is a function

of the dispersed phase properties such as droplet diameter, density and mass

loading ratio. This dependence was discussed in the work of Mostafa and

Elghobashi (1983). In the developing region, the spreading rate of the spray

case is much less than that of the single phase. As vaporization proceeds the

effects of the droplets on the carrier fluid diminish allowing the fluid

behavior to approach that of a single-phase jet.

7.3 The Flow of Shearer et al. (1979)

Shearer et al. (1979) measured the carrier phase properties in a

turbulent two-phase round jet using a laser doppler anemometer, the droplet

size distribution and the liquid mass flux using the inertial impaction
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method. The Freon-11 spray was generated by an air-atomizing nozzle of 1.194

mm outer diameter (D). The ratio of the mass flow rate of Freon-11 spray at

the nozzle exit to that of the air (XQ)- is equal to 6.88 and the initial

average velocity, Uz o = 74.45 m/s. They also measured the mean mixture

fraction by isokinetically sampling the flow at the gas velocity. Shearer et

al. (1979) measured the radial profiles of the mean and rms velocity, and the

Reynolds stress at three stations (z/D = 170, 340, and 510) for both

isothermal single- phase and vaporizing spray jet flows. For computational

purposes, the profiles of turbulence dissipation rate (e) at z/D = 170 are

obtained from the shear stress measurements and the axial velocity gradient at

the same station (z/D = 170). Also, the velocity distribution of the droplets

(one group with an average diameter = 27 pra) is assumed to be the same as that

of the carrier phase. This assumption will be discussed at the end of the

next section. From the measurements of the droplets' mass flux and velocity

distribution, the volume fraction (*-) is obtained. The profile of the freon

vapor concentration in the carrier phase (C) is obtained from the mixture

fraction measurements and the state relations given by Shearer (1979). Table

C-3 (Appendix C) summarizes all the starting profiles needed for the

computation for both the single-phase jet and 'the evaporating spray cases.

Temperature measurements of the carrier phase (with a bare wire

chromelalumel thermocouple) showed only 5°C difference either in the radial or

the axial directions (between z/D = 170 & 510). On the other hand, Shearer's

analysis (1979) showed that the droplet's temperature at z/D = 170 is equal to

the Freon's saturation temperature (240.3°K). In the present calculations it

was assumed that the temperature of the carrier phase is equal to the

surrounding air temperature (296°K) and the droplet's surface temperature is

equal to the saturation one (240.3°K). At these conditions, the density of
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the liquid Freon-11 is equal to 1518 Kg/ra and the vapor concentration at the

droplet's surface (Cr in Equation 3.42) is equal to 0.292. In what follows we

compare the predicted with the measured distributions of the mean velocity and

shear stress of the carrier phase at z/D = 340 and 510.

Figure 7-20 shows the measured and predicted centerline decay of the mean

axial velocity of the carrier phase compared with the single-phase values.

Due to the fact that the inertia of the droplets is much greater than that of

the carrier phase (P2/
pi = 1500) , the centerline velocities of the droplets

in the region z/D < 170 are greater than those of the gas. As a result, the

centerline velocity of the carrier phase would be expected to be greater than

that of the single phase. This is due to 1) the continuous momentum transfer

from the droplets to the gas since Vz c is greater than Uz c in the region

close to the nozzle (z/D < 170) and 2) the reduction of the turbulence

intensity (and hence turbulent diffusion) in the spray case compared with that

of the single-phase jet (as will be seen later in Figures 7-23 and 7-24).

Figures 7-21 and 7-22 show the normalized radial profiles of the mean

axial velocities at 340 and 510 nozzle diameters from the exit plane for both

the single-phase jet and the evaporating spray cases. It can be seen from

these figures that the jet width in the spray case is narrower than the

single-phase one. This result can be attributed to the increase of the

centerline velocity of the carrier phase compared with its corresponding value

in the single-phase jet. The experimental data show that with increasing the

distance downstream from the nozzle exit, the jet behavior approaches that of

the single phase (Figure 7-22). The.effect of the droplets on the radial

shear stress distribution is displayed in Figures 7-23 and 7-24. It should be

noted that the starting values of the turbulence quantities and mean velocity

distribution of the vaporizing spray case differ (less shear stress) from
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those of the single phase. This may have some effects on the profiles

downstream (z/D = 340). In general, there is a reduction in the shear stress

or an increase in the dissipation rate of the turbulence kinetic energy due to

the presence of the liquid droplets in the same control volume with the

carrier phase. As vaporization proceeds the effects of the droplets on the

turbulence quantities diminish allowing the fluid behavior to approach that of

a single-phase jet (Figure 7-24). .

In the present case it was assumed that the velocities of the droplets,

are equal to those of the gas. To study the effect of this assumption on the

results, the droplets' velocity was increased by 20%; the effect on the

carrier phase profiles was negligible. This result can be attributed to two

factors: 1) the droplets1 diameter, at the starting station, is equal to

27 Mm or less, so the reduction rate of the mean slip velocity between the

droplets and gas is considerable due to the vaporization; 2) since the

droplets' mass fraction was measured, an increase in the velocity necessitates

a reduction in the volume fraction. Thus, the effects of increased velocity

are counterbalanced by those of decreased volume fraction.

It is important to note that the effects of density fluctuation in the

calculation were neglected here. This assumption can be justified in the

present study since the mean density gradient is very small compared with the

velocity gradient. This is due to the negligible evaporated mass compared

with the entrained air, so the properties of the carrier phase are almost

those of the standard air.

7.4 The Flow of Solomon et al. (1984)

Solomon et al. (1984) presented some comprehensive measurements of the

detailed structure of a two-phase turbulent round jet. Experiments considered

153



the same test rig of Shearer et al. (1979) to perform some detailed

measurements of the droplets' properties. Two mass loading ratios (XQ = 7.71

and 15.78) were considered. Solomon et al. measured the carrier phase

properties using a laser doppler anemometer, the droplet size and velocity

using the shadow photograph technique, the liquid mass flux using inertial

impaction method, and the mean mixture fraction by isokinetically sampling the

flow. The radial distributions of these quantities were reported at four

stations (x/D = 50, 100, 250, and 500) for the two mass loading cases. They

classified the droplets into finite-size groups and measured the velocities

and the number density distribution of each group. For computational

purposes, the profiles of the turbulence dissipation rate (e), the volume

k '
fraction of each droplets group (* ), and the freon vapor concentration in the

carrier phase (C) are obtained from the different measured quantities at z/D =

50. e is obtained from the distributions of the turbulent shear stress, the

mean axial velocity gradient, and the turbulence kinetic energy at the same

station. Seven groups (17.5, 22.5, 27.5, 32.5, 42.5, and 52.5 pm) are

considered for XQ = 7.71 (Case 6) and ten groups (15, 25, 35, 45, 55, 65, 75,

k
85, 95, and 100 Mm) are considered for XQ = 15.78 (Case 7). * is obtained

from the distributions of the liquid mass flux, and the mean velocity of the

different droplets groups and their relative number density at z/D = 50. C is

obtained from the mixture fraction measurements and the state relations given

by Solomon et al. (1984). Table C-4 (Appendix C) summarized all the starting

radial profiles of the main dependent variables at z/D = 50. This information

is essential for accurately predicting the present flow to validate the

turbulence model put forth in the present study.

Temperature measurements of the carrier phase (with a bare wire

chromelalumel thermocouple) showed a maximum temperature difference of only
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20°C either in the radial or in the axial directions. The analysis of Solomon

et al. showed that the droplet's temperature reaches the Freon's saturation

temperature at z/D = 50. It was assumed in the present calculations that the

temperature of the carrier phase is equal to that of the surrounding air

(300°K) while the droplet surface temperature is equal to that of the

saturation conditions (240.3°K).

A comparison of the predicted with the measured distributions of the mean

velocity, turbulence intensity and shear stress of the carrier phase, and the

mean velocity of the droplets of the different-size groups follows.

. Figures 7—25 and 7-26 show the measured and predicted centerllne velocity

distributions of the carrier phase and those of the different droplet groups

for cases 6 and 7. Here k = 1 refers to the group that has the largest

diameters, and k = 7 or 10 the smallest ones. The mean velocities are

normalized by the average velocity at the nozzle exit (U = 64.5 m/s-for case

6 and 29.64 m/s for case 7). It can be seen from the figures that the

relative velocity between the carrier phase and the group of largest diameters

is greater than that of any other group. This behavior is already explained

in the analysis of Figure 7-9 (section 7.2). Figures 7-25 and 7-26 also show

the continuous reduction in the relative velocity between the carrier phase

and the group of smallest diameters as the distance measured from the nozzle

exit plane increases. This cari be attributed to the fact that the smaller the

droplet diameter, the higher the reduction rate in the droplet diameter

itself. Thus, by increasing the downstream distance, the smallest diameters

group satisfies the local equilibrium conditions where the velocity of the

droplet becomes equal to that of the carrier phase. It can be seen also from

Figures 7-25 and 7-26 that the relative velocity between the carrier phase and

the group of largest diameters increases with an increase in the downstream

155



tr
a.

o.
x

1 I ; I ' !I : I : I :
I I i I I I

4 9 Q 4 0 -

N
C/J

— N IO
o

_ CO

g y
<• t

o
o
_J
UJ

o >

^ 2'<
UJ

o0 z10 ±

UJ

8
CNJ

UJ
I-

u
H
UJ

UJ

u.o

ffi
(T

8 i;
UJCO
x<

r^

UJ

o 2u,

156



O
UJ
K
£L

a.
UJ

1 'M l ' I
I i . i • i : :

I
I - • « • • I
i I i I i I '

•»
o

O «"
o y

o
o
UJ

UJ
z

O u
o ztc —

cr
UJ

z
UJ
o

o HJ
«• X

z
o

o
o
Cd

CO

ec

— rT

UJ
UJ CO

vD
CN

UJ

0 §
0 Oo —

u.

157



distance. This behavior is already explained in the analysis of Figure 7-13

(section 7.2). Figures 7-25 and 7-26 display in general good agreement

between the measured and predicted mean centerline velocities.

The influence of the loading ratio of the dispersed phase on the

centerline mean velocity distributions of the carrier phase is illustrated in

Figure 7-27. In this figure the increase in the mean centerline velocity of

the carrier phase compared with the corresponding value of the single-phase

jet is proportional to the mass loading ratio (but not linearly). This

proportionality is analyzed in detail in the discussion of Figures 7-1 and 7-2

in section 7.1. Figures 7-28 to 7-30 show the normalized radial profiles of

the mean axial velocities of the carrier phase at 100, 250, and 500 nozzle

diameters from the nozzle exit plane for both the two loading ratios (Cases 6

and 7). It can be seen from these two figures that the jet width decreases

with the increase of the mass loading ratio.

Figure 7-28 shows a maximum discrepancy of 30% between the predicted and

measured velocities although the agreement is very good in Figures 7-29 and 7-

30. Probably the measured quantities are overestimated at this station since

Solomon et al. reported the same discrepancy between the measurements arid

their predictions at the same station, using the Lagrangian frame of work.

The influence of the dispersed phase on the carrier fluid turbulence

kinetic energy and shear stress is displayed in Figures 7-31 to 7-36. It can

be stated that the reduction in the turbulence energy and the shear stress is

proportional to the mass loading ratio but not linearly. These figures also

show that farther downstream from the nozzle exit (z/D = 500), the turbulence

quantities are approaching their corresponding values for a single-phase jet

(based on the experimental data of Shearer et al., 1979).

To understand the nature of the turbulent interaction between the carrier
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FIGURE 7-29 THE RADIAL DISTRIBUTION OF THE
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FIGURE 7-30 THE RADIAL DISTRIBUTION OF THE
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fluid and the vaporizing droplets, the main features of this type of flow are

summarized as follows:

1. The toal mass of the dispersed phase continuously decreases and so does

the volume fraction. Due to the reduction of the volume fraction, the

momentum exchange terras (mean and/or fluctuating) are reduced.

2. The velocity of the evaporating material as it leaves the droplet

surface is different from that of the carrier fluid. Thus, there is an

additional momentum transfer that depends on the evaporation rate and the

relative velocity.

3. The momentum exchange coefficient is inversely proportional to the

droplet diameter with an exponent ranging from 2 to 1.3 (for a Reynolds

number less than 100). Hence, as the diameter is reduced the momentum

exchange coefficient increases.

4. The vaporization reduces the droplets' diameter and thus the total

relative mean velocity (U - V) and the higher the turbulent diffusivity of

the dispersed phase is.

Figures 7-31 to 7-36 display in general good agreement between the

measured and predicted turbulence kinetic energy and shear stress of the

carrier phase.

The predictions of the axial distribution of the Sauter mean diameter at

the jet centerline compared with the experimental data is displayed in Figure

7-37. This diameter is given by

1 (d )3n /V
SMD = 9 7.1

k (V VV1

where n. is the number of the droplets of diameter d^. It is clear that there

is also!-%bod agreement between the predictions and the data for the averaged
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diameter.

It is important to note that the present study neglected the effects of

density fluctuations in these two cases as in Case 5 (Shearer et al., 1979)

and for the same reasons. It should be mentioned also that the prediction of

Cases 6 and 7 are obtained with the coefficients of the turbulence model given

by Table 3.1. The optimized value for C - in these two cases is equal to 2.
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8.0 CONCLUSIONS AND RECOMMENDATIONS

-The main objectives of the present study were as follows:

1. to develop a mathematical model of turbulence for.dilute two-phase flows

starting from the exact transport equations of the turbulence kinetic

energy and its dissipation rate;

2. to develop a reliable formula for the calculation of the lateral

diffusivity of heavy particles suspended in a homogeneous turbulent

field, and

3. to predict two-phase turbulent flows with phase changes based on modeled

transport equations of mass, momentum of each phase, the concentration

of vapor, and a two-equation turbulence model.

In the presented model, the third-order correlations containing particle

volume fraction fluctuations are retained. The numerical results for all the

predicted cases showed that those third-order correlations are negligible

compared with the second-order ones (two orders of magnitude less). This

means that the present study has only one new empirical coefficient in its

turbulence model (Co). This coefficient is determined from one set of data

(Case 1) and used very successfully in all other cases of the same

experiment. A sensitivity study was conducted to investigate the influence of

the value of C , on the model predictions. By changing the value of C _ by
fcj CJ

10%, the maximum change in any radial profile is less than 3%.

The study of the effects of the dispersed phase on the carrier phase flow

properties, mean and fluctuating components, shows the following results:
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1. The momentum interchange between the two phases which reflects the

degree of disequilibrium between the phases, is a function of the

dispersed phase properties such as droplet diameter, density, and mass

loading ratio. In the case of heavy particles suspended in a turbulent

gaseous media, the momentum interchange terms and all the corresponding

turbulent correlations should be considered in the governing equations

of both the mean motion and the turbulence model.

2. The effect of partial or complete droplet evaporation is reflected on

the velocity distribution of the different size groups. The smaller the

diameter of the droplet is, the less the relative velocity between

droplets and the fluid, and the higher the turbulent diffusivity of that

group.

3. Due to the co-existence of the dispersed phase and the carrier phase in

the same control volume, a significant reduction in the turbulent shear

stress and the kinetic energy of turbulence of the carrier phase is

observed. The reduction in the turbulence energy or the increase in the

dissipation rate of that energy is caused by the fluctuating relative

velocity between the particles and the carrier phase and the turbulent

correlation between this velocity and other fluctuating quantities such

as volume fractions and carrier fluid velocity. The reduction in the

kinetic energy of turbulence is proportional to the loading ratio but

not linearly.

A reliable expression for calculating the Schmidt number, defined as the

ratio of particle diffusivity to fluid point diffusivity, of heavy particles
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suspended in a turbulent flow is developed (Equations 5.30 to 5.33). The

predictions using that,formula are compared.with recent well-defined -_ _

experimental data for the dispersion of a single particle. The agreement

between the predictions and data is very good.'

Using the turbulence model presented in this work, predictions of the

different cases for either solid particles or evaporating sprays, are

generally in good agreement with the most recent well-defined experimental

data.

Further extension of the present work includes:

1. obtaining optical measurements for the flow properties of the ideal

spray experiment of Case 4 to validate the present model and to support
.. l ' ' - ' - • . . i . :

the turbulent spray models in general.

2. predicting a ducted recirculating turbulent two-phase flow (elliptic

flow). The predictions should be compared with a well defined data set.

3. predicting a ducted turbulent two-phase flow with heat transfer. The

interaction between the evaporating droplet and the duct walls, and the

heat and mass transfer to the wall, should be considered in the model.

The density fluctuation effects should also be considered.

4. predicting the dense portion of the spray. Droplet-droplet interaction

effects, collision, and shattering must be considered in the model.
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APPENDIX A

Material Properties of the Spray

Table A-l
Physical Properties of Liquid Droplets*

Property Methanol Freon .11
(CH40) (CCL3F)

o

Saturated vapor pressure (P), N/ra 0.207s

Latent heat of vaporization (L), KJ/Kg 50.0 181.32

Density (p ), Kg/V 810 1518r.3

Saturation temperature (Tc), °K 292 : 240.3
o .

Boiling temperature (TB>, °K 347.71 296.7

Molecular weight, Wy 32 137.37

Viscosity of liquid material, (u2>, 10
4Kg/ms 5.09 4.05

Surface tension (y), 103N/m 21.8 7.5

Diffusivity of the evaporating material (5), 105m2/s 1.35 - ; 2.85

* Obtained at 30°C and P = 1 atra. (Vargaftik 1975 and ASHRAE 1969)
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APPENDIX B '

Modeled Transport Equations in Cartesian Tensor Notations

Substituting in the time-averaged equations presented in the subsections

2."3 & 3.3 by the modeling approximations for various turbulent correlations

discussed in the subsection 3.4, the modeled transport equations in Cartesian

tensor notations are obtained and "will be presented in this Appendix.

The continuity equations of the carrier phase

vt k k/ U x r-t • [^ IS.

V ' ' k

The continuity equations of the kc phase

K-

/ *^ ^\ / P ' •* v

P2(* V^ -P2<r V,i
),i

• 1C 1C

The mean global continuity is

The momentum equation of the carrier phase

Pl*lUi,jUj = " *lP,i - I AFV) (U.-Vk)
tC

.k°p k „ ,vt .
m —.4 - p.U.( — $ .) ..
o ,1 Ml i o 1,J. ,J

Fk -- (l-ak) $ k + p v - X O • +U .) + --

+ -- U.# . + c -- (-) [(U. +U .)(«„*. .)•
ac J l,i $ ac e i,£ £,i t 1,;] ,£

Third Order Correlation
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+ (U .+U. )(v̂ , .) J) •£,i j,£- t 1,1 ,£ ' ,j
Third Order Correlation

The momentum equation of the k phase

k k
.k °p k ,k,ap k . k,
m E# -p2V.(-

Evt* .) . + gi$ (
c c

Fk -£

v t - l f k - v ^ ^ f V If V !<•
-- Vk$% + c -i (-) [(V? +V. '.)(o* v.* ,)
a J »i ()) a e i,i £,i P t ,j ,

The conentration equation

k kpi*iujc ,j = I * "> '(i-O

p l v t
ac t l,j t 1 ,j ,j 1 ac

The turbulence kinetic energy equation (K)

v t
$ U K = * (-- K ) + {*,U. v f c (U. +

Production (P )
M K-

c

Third Order Correlation

'L'sV̂ .j
Third Order Correlation

Third Order Correlation Third Order Correlation
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extra dissipation (e )

Third. Order Correlation

- ^e B-7

dissipation

The dissipation rate equation (e)

Pk
(cel -I
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APPENDIX C

Initial Conditions of the Different Cases

Table C-2. Experimental Flow Conditions of Modarress et al. (1984)*

Gas-Phase (Air): Case 1 Case 2 Case 3

Centerline velocity, Uv _ (m/s)x 12.6 12.6 13.4

Exponent, n, of power law velocity

Profile UY/UV „ - (l-(2r/D))
1/n < 6.6 -• . >

A X y C ' . ' , - - • ' • .

Turbulence Intensity

(ux/Ux c) < (0.04 + 0.1 r/D)— --> :

Density, P^ (Kg/m3) < 1.178--— >

Mass flow rate i^ (Kg/s) 3.76xlO~3 3.76xlO~3 4xlO~3

Reynolds number Re = (4m /Try D) 13300 13300 . 14100

Uniform mean velocity of surrounding

stream, Uv _ (m/s) < 0.05 >x,s>

Intensity of turbulence in

surrounding (ux S/UX s) < 0.1-

* Measured at 0.1D Downstream of Pipe Exit
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Solid-Phase (Glass Beads): Case 1 Case 2 Case 3

Particle diameter (microns) 50 50 200

Particle density, P~ (Kg/ra3) 2990-

Centerline velocity, VY _ (m/s) 12.A
A, C_

12.4 10.2

Exponent, n, of power law velocity

profile <- 27.6-

Mass flow rate ra_ (Kg/s) 1.2xlO~3 3.2xlO~3 3.2xlO~3

Ratio of mass flow rates

0.32 0.85 0.8

Ratio of volumetric fractions =

y^ = (-2/S)(p1ux>av./p2vx>av.) 1.1x10' 2.9x10-4 3.52x10-4
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Table C-l: The Considered Cases

Dispensed
Case Phase

Number Material

Diameter
of

Particles
d ra

Mass
Loading
Ratio
' X

Region
- of
Study
z/D

Reference

4

5

Glass

Glass

Glass

Methanol

Freon-11

Freon-11

Freon-11

50

50

200

20-100

27

17.5-52.5

15-100 "

0.32 0.1-20 Modarress
et al. (1984)

0.85 . 0.1-20 Modarress
et al. (1984)

0.8 0.1-20 Modarress
: et al. (1984)

0.1-0.5 0.1-20 Idealized Flow

6.88 170-510 . Shearer
et al. (1979)

7.71- 50-500 Solomon
. • et al. (1984)

15.78 50-500 Solomon
" . et al. (1984)
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