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A Spectral Multi-Domain Technique With Application to Generalized Coordinates 

Michele G. Macaraeg and Craig L. Streett 
NASA Langley Research Center 

INTRODUCTION 

Spectral collocation methods have proven to be efficient discretization 
schemes for many aerodynamic (see e.g., refs. 1-5) and fluid mechanic (e.g., 
refs. 6-9) problems. The high-order accuracy and resolution shown by these 
methods allows one to obtain engineering-accuracy solutions on coarse meshes, or 
alternatively, to obtain solutions with very small error. One drawback to these 
techniques has been the requirement that a complicated physical domain must map 
onto a simple computational domain for discretization. This mapping must be 
smooth if the high-order accuracy and exponential convergence rates associated 
with spectral methods are to be preserved (ref. 2). Additionally even smooth 
stretching transformatlons can decrease the accuracy of a spectral method, if 
the stretching is severe (ref. 5). A further difficulty with spectral methods 
has been in their implementation on parallel processing computers, where effi
cient spectral algorithms have been lacking. 

The above restrictions are overcome in the present method by splitting the 
domain into regions, each of which preserve the advantages of spectral colloca
tion, and allow the ratio of the mesh spacings between regions to be several or
ders of magnitude higher than allowable in a single domain. Such stretchings 
would be required to resolve the thin viscous region in an external aerodynamic 
problem. Adjoining regions are interfaced by enforcing a global flux balance 
which preserves high-order continuity of the solution, regardless of the type 
(diffusion- or advection-dominated) of the equations being solved. This inter
face technique maintains spectral accuracy, even when mappings and/or domain si
zes are radically different across the interface, provided that the discretiza
tion in each individual subdomain adequately resolve the solution there. Addi
tionally, the present technique allows spectral collocation methods to effi
ciently utilize parallel processing (ref. 10) where the application of conven
tional single-domain spectral discretizations have not been found to be effi
cient. 

A number of other spectral multi-domain techniques have appeared in the lit
erature. Application of finite element methodology, using Galerkin spectral 
discretization in the variational formulation within the elements, is a popular 
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techn1que (refs. 11-12). One drawback with such techniques is that a split 
Galerk1n-collocat1on d1scretization must be used for convect1on-d1ffus1on 
problems. These spectral-element methods also seem to work best 1n pract1ce 
when used in a manner Slmilar to classical finite element techniques: low-order 
internal discretizat10n uS1ng many elements with no 1nternal stretchings to 
1mprove resolution. In other words, resolution 1S increased 1n such methods by 
packing more elements in appropriate areas, rather than by 1ncreas1ng the order 
of discretization or applying an appropriate stretching with1n an element. The 
use of low-order spectral d1scretization over many elements does not take 
advantage of the exponential order convergence propert1es of spectral methods 
even if the split Galerkin-collocation discretization can d1splay such 
properties. Techn1ques which the authors are aware of for 1nterfac1ng 
collocat1on-d1scret1zed domains seem to 1nvolve explic1t enforcement of cont1n
uity of the solution and its first derivative across the interface (refs. 
13-14). It is not clear how well these techn1ques perform for strongly convec
tion-dom1nated problems; the second author's experience with such techn1ques 
(ref. 1) has shown them to be not ent1rely sat1sfactory. 

Results 

In this section, the present global flux-balance spectral multi-domain method 
will be shown as appl1ed to a number of one- and two-dimens10nal test problems. 
(Deta1led explanat10n concerning the implementation of the algorithm is given 1n 
ref. 10.) The one-dimens1onal examples will serve to show that th1S method can 
mainta1n the exponent1al-order error convergence which 1S characterist1c of 
collocat1on methods, even when adJo1ning doma1ns have radically different dis
cret1zations in terms of domain size, number of points, or stretch1ngs. 

The first example 1S the equation 

Uxx = cos ~; xE[-2,2], U(-2) = U(2) 0 (1) 

for Wh1Ch the exact solution is: 
U(x) = -~ cos(~) (2) 

n 
Eq. (1) is discretized in two unstretched domains: x(l)E [-2,0]; X(2)E 
[0.2]. w1th Nl and N2 points. respectively. In table I is listed the maXlmum 
relative error as a function of N1 and N2. Note that the error decay is clearly 
faster than algebra1c down to machine zero when Nl = N2. Also shown 1n table I 
1S the behav10r of the solution when one d1scretization 1S held fixed (N1) and 
the other refined (N2). The overall error rema1ns constant at a level essen
tially one-half of that seen when both domains were discret1zed at the coarser 
level. This is expected behavior, since the error 1n the 1nterface cond1tion 
has components from both domains; 1f one discret1zat10n is very much coarser 
than the other, 1tS error will dominate the overall error of the solution. When 
both have equal error, then they must contribute equally to the overall error. 

The next example w1ll illustrate the capabil1ty of the method for resolv1ng 
very h1gh gradients 1n a Solut1on while 1mposing an interface cond1t10n Wh1Ch 
preserves spectral accuracy. Consider the viscous Burger's equat1on: 

1 2 Ut + ~ (U )x = v Uxx ; x E [-1,1] (3) 

U(-l,t) = U(l,t) = 0 U(x,O) = -Sln(nX) 

This problem has been studied extensively by a number of authors, uS1ng tech
n1ques ranging from standard f1nite difference, to single-domain spectral collo
cation and spectral element (ref. 15). The Solut1on to this problem develops a 
very steep gradient region in the center of the domain; the slope at x = 0 
reaches a maximum, then decreases as the init1al energy is d1ss1pated away. For 
the parameters stud1ed in ref. 15 (v = O.Ol/n), this maximum 1S reached at t 
0.5; a very accurate analytical solution gives a value of 152.00516 for this 
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max1mum slope. The evolution of this solution calculated from the present 
method 1S shown in fig. 1 at time increments of 0.1. 

In the present study of this problem, three domains were used, the middle 
doma1n spanning a very small reg10n (,!.0.05) around the "shock." Additionally, a 
mapp1ng was appl1ed in the middle domain to improve resolution. The maximum 
stretching allowable in this mapping is subJect to the same restrict10n as 
stretchings 1n single-domain d1scret1zat10ns; e.g., maX1mum metric ratios on the 
order of 103• 

From the comparison study contained in ref. 15 the two methods giv1ng the 
best accuracy for a given number of grid points were single domain spectral 
collocation and spectral element. The collocation scheme used a mesh stretching 
with a maximum-to-minimum metric ratio of about 100. Beyond this stretching a 
degradat10n in accuracy was found to occur. The spectral element d1scretizat1on 
utilized four elements w1th 16 nodes in each. The behavior of the error in max-
1mum slope from these methods and the present scheme are shown in table II. As 
can be seen, the present method w1th Just 35 total points (12 points 1n the 
outer domaln, 13 points ln the middle domain, 12 pOlnts 1n the left outer 
domain, hereafter denoted 12/13/12) yield results of equivalent accuracy to the 
spectral element and single-domaln spectral collocation methods of ref. 16 both 
using 64 total p01nts. Further mesh ref1nements uS1ng the present method show 
exponential-order error convergence, as seen in table II by the order-of
magn1tude decrease in relative error as the mesh is refined to 20/21/20, and 
aga1n with mesh reflnement to 32/33/32. For the same total number of points, 
the present method is an order of magnitude more accurate than the single-domain 
collocat1on or spectral element solutions of ref. 15. 

In order to demonstrate the capabil1ty of the present method to handle 
rad1cally-d1fferent mapp1ngs between adjacent domains, a solution to the above 
V1SCOUS Burger's equation for v = 10- , 1S shown ln fig. 2. The maximum slope 
for th1S solution is greater than 5000. The discretization used was 12/31/12; 
the stretchlng in the middle doma1n was so severe that the ratio of largest mesh 
spac1ng in the outer doma1ns to the smallest in the middle domain 1S greater 
than 105. A factor of 5000 magn1f1cation of the h1gh-gradient region of this 
Solut10n 1S shown in fig. 3. The emphas1s in this plot is the oscillation-free 
resolution of this reg1on. (Linear interpolation between p01nts is used for 
plotting, making the plot appear somewhat jagged.) 

To demonstrate the maintenance of conservation by the present interface 
technique, an init1al condition was applied to the V1SCOUS Burger's equat10n to 
generate a moving "shock" which passed through the interface, as shown 1n fig. 
4. No oscillations, reflections, or abrupt changes in wave speed are seen as 
the "shock" passes through the 1nterface. A very skewed d1scretization of 
12/17/27 was used for this case. Note that a multi-domain method formulated 
only for hyperbolic or for ell1ptic equat10ns would be unable to perform well on 
this problem, since the dissipat1on-dominated region passes through the 
interface. 

Two-d1mensional examples show similar performance of the present method. 
Shown in flg. 5 are constant-value contours for the Solut10n of the Poisson 
equation: 

Uxx + Uyy = cos(~). cos(~); X € [-2,2], Y € [-1,1] (4) 

U{x,-l) = U(x,l) = U{-2,y) = U{2,y) = 0 

using two domains interfaced at x = 0 (the dashed llne 1n f1g. 5). Note that 
the contours pass smoothly through the interface. 

Table III contains the maximum relative error for various mult1-domain 
discretizat10ns of eq. (4). Exponent1al-order error convergence is again 
apparent from the rap1d decrease with mesh ref1nements. The first group of re
sults in table III 1S for equal discretization in both doma1ns, whereas the 
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second group shows the effect of having d1fferent discretizations in the 
direction along the interface. Only a small amount of accuracy is lost through 
the 1nterpolat1on between two radically-d1fferent discretizations across the 
interface. 

An example of d1scret1zat1on on four domains w1th a corner pOint is shown 1n 
f1g. 6, where isolines of the spectral solution to 

v2u = cos(~) cos(~) X E [-2,2], y E [-2,2] (5) 

U(x,-2) = U(x,2) = U(-2,y) = U(2,y) = 0 

are displayed. An influence-coefficient matrix algorithm described in ref. 10 
was used to compute th1S solution. This algorithm was developed for parallel
processor appl1cat1ons. 

Spectral discretizat10n of problems with discontinuous coeff1cients or source 
terms (or equivalently, discontinuous transformation metrics), or discontinuities 
in boundary condition tYP1cally yields solutions with large oscillations and 
low-order error convergence. The present multi-domain technique may be used to 
isolate such d1scontinuities and recover exponential-order convergence. Figs. 7 
and 8 111ustrate such an application; shown are solutions to Laplace1s equation 
in which a jump in boundary conditions is enforced on one side of the doma1n. 
When the d1scontinuity lies at a point 1nterior to one of the discret1zations 
(f1g. 7), oscillations are seen clearly in the solution 1solines. When the d1S
continuity occurs where the interface meets the boundary, however, the contour 
lines are smooth (fig. 8). 

Another example of the appl1cation of the multi-domain technique to isolate a 
discontinuity is in Solut1on of the following equation: 

v • (kvU) = 0; x E [-2,2], y E [-1,1] (6) 
U(x,-l) = U(x,l) = U(-2,y) = 0 U(2,y) = cos (~) 

where k = k1, -2 2 x 2 0, and k = k2 = 10 k1, 0 < x 2 2, with the inter-
face at the line of coeff1cient discontinuity as shown in fig. 9. The computed 
solution is everywhere smooth, and the grad1ent jump at x = 0 is automatically 
enforced. 

To demonstrate the generality of the technique, eq. (4) was solved on the 
skewed two-domain mesh shown in fig. 10. This mesh, containing 17 x 16 and 18 x 
17 points in the left and right doma1ns, respect1vely, was generated by first 
choosing the interface line, in th1S case a CUb1C polynomial. Chebyshev distr1-
butions with respect to arc length were used to establ1sh the mesh points on the 
1nterface, as well as along the domain boundar1es at x = +2. One curvilinear 
coordinate fam1ly was generated by connecting these corresponding pOints with 
straight lines. Mesh points along these coordinate llnes were then established 
with Chebyshev distributions with respect to arc length, resulting in a sheared 
non-orthogonal mesh. Eq. (4) was wr1tten in general1zed contravariant flux form; 
the metrics were evaluated by spectral differentiation of the coord1nate distri
butions. The flux component normal to the interface was taken to be continuous 
1n the 1nterface condition. As can be seen 1n the isolines of the solution 
shown in f1g. 11, the Solut10n 1S everywhere smooth and regular. 

Conclusions 

The present global flux balance spectral multi-doma1n method has demonstrated 
maintenance of exponent1al-order accuracy herein on a variety of advection- and 
d1ffusion-dominated test problems. Extremely large difference in d1scretization 
across an 1nterface, through domain size, number of points and stretchings, have 
been shown to not d1srupt this property of the present method. Add1tionally, 
this techn1que can be used to isolate certain types of coefficient, mapping or 

4 



boundary condit10n d1scont1nuities. A further application of the present method 
lies in implementation of spectral methods on parallel-processing computers, 
where the global nature of collocation methods have limited the1r effect1ve
ness. The solution algorithm described is well-suited for machines with only 
nearest-ne1ghbor connect10ns between procesS1ng un1ts. 

Further areas of applications being examined for the present method include 
1mplementat10n (1) 1n a t1me-dependent incompressible Navier-Stokes code for 
transit10n simulat10n, which w1ll be run on the large scale Navier-Stokes 
Computer parallel computer under construct10n at Princeton Un1vers1ty (private 
communication with D. Nosenchuck, Princeton University), and (2) in an 
external-aerodynam1c compressible Navier-Stokes scheme which will interface a 
fine discret1zation of a nearfield region and a coarse discret1zation of the 
farf1eld to reduce storage and increase convergence rate. 

References 

1 Gottlieb, D. L.; Lustman, L.; and C. L. Streett: Spectral Methods for 
Two-Dimens10nal Shocks. ICASE Report No. 82-83, Nov. 1982. 

2 Streett, C. L.: Spectral Method for the Solution of Transonic Potential 
Flow About an Arb1trary Two-Dimensional A1rfo1l. AIAA Paper No. 
83-1949-CP. Paper presented at the AIAA 16th Computat10nal Fluid 
Dynamics Conference, Danvers, MA, July 13-15, 1983. 

3 Hussa1ni, M. Y.; Streett, C. L. and Zang, T.: Spectral Methods for Partial 
4 Differential Equations. NASA CR-172248, August 1983 

Streett, C. L.; Zang, T. A.; and Hussaini, M. Y.: Spectral Multigrid 
Methods with Appliations to Transonic Potential Flow. Journal of 
Computat10nal Physics, Vol. 56, 1984. 

5 Streett, C. L.; Zang, T. A.; and Hussaini, M. Y.: Spectral Methods for 
Solution of the Boundary-Layer Equation. AIAA Paper 84-0170. Paper 
presented at the AlAA 22nd Aerospace Sciences Meeting, Reno, NV, Jan. 
9-12, 1984. 

6 Macaraeg, M. G.: Numerical Experiments of Axisymmetric Flow in a 
Nonun1form Gravitat10nal Field, AIAA Journal, July 1986. 

7 Macaraeg, M. G.: The Effect of Power Law Body Forces on a Thermally
Driven Fluid Between Concentric Rotating Spheres. Journal of the 
Atmospheric Sciences, Vol. 43, Feb. 1986. 

8 Macaraeg, M. G.: A Mixed Pseudospectral/Finite Difference Method for the 
AXisymmetric Flow 1n a Heated, Rotat1ng Spherical Shell. Journal of 
Comutational Physics, Vol. 61, 1985. 

9 Mal1k, M. R.; Zang, T. A.; and Hussa1ni, M.: A Spectral Collocat10n 
Method for the Navier-Stokes Equations. NASA CR-172365, June 1984. 

10 Macaraeg, M. G.; Streett, C. L.: Improvements in Spectral Collocat10n 
Through a Mult1ple Doma1n Technique. Applied Numer1cal Mathematics, 
1986. 

11 Patera, A. T.: A Spectral Element Method for Fluid Dynamics: Laminar Flow 
1n a Channel Expansion. Journal of Computational PhYS1CS, Vol. 54, 
1984. 

12 Ghaddar, N.; Patera, A. T.; and 111k1C, B.: Heat Transfer Enhancement in 
Oscillatory Flow 1n a Grooved Channel. AIAA Paper 84-0495. Paper 
presented at the AIAA 22nd Aerospace SC1ences Meeting, Reno, NV, Jan. 
9-12, 1984. 

13 Metivet, B.; and Morchoisne, Y.: Multi-Domain Spectral Techniques for 
V1SCOUS Flow Calculations. Proceed1ngs of the 4th Conference on 
Numerical Methods 1n Fluid Dynam1cs, Oct. 1981. 

14 Migl10re, H. H.; and McReynolds, E. G.: Mult1-Element Collocat10n Solution 
for Convect1ve Dom1nated Transport. Numer1cal Methods 1n Lam1nar and 
Turbulent Flow. C. Taylor, J. Johnson, and W. Smith, eds., 1983. 

15 Basdevant, C.; Deville, M.; Haldenwang, P.; Lacroix, J.; Orland1, D.; 
Quazzani, J.; Patera, A.; and Petret, R.: Spectral and F1n1te 
D1fference Solutions of the Burgers' Equation. Computers and 
Flu1ds, Vol. 14, 1986, pp. 23-41. 

5 



Table 1.- Maximum relative error vs. domain discretization for equation (1). 
Numerials in parentheses are powers of ten. 

u - u exact 

N
1

,N
2 

u exact 
00 

5, 5 1.78 ( -3) 
7, 7 9.81 ( -5) 
9, 9 2.79 ( -8) 

11,11 4.85 (-11) 
13,13 2.10 (-13) 

5, 7 8.82 ( -4) 
5, 9 8.88 ( -4) 
5,11 8.88 ( -4) 

7, 9 4.89 ( -5) 
7,11 4.90 ( -5) 
7,13 4.90 ( -5) 

9,11 1.39 ( -8) 
9,13 1.39 ( -8) 
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Table 11.- Maximum slope and percent relative error in maximum slope for viscous 
Burgers' equation (eq. (3) ); comparison of present method with results from 
reference 15 • 

Method Discretization Max. slo2e % Relative error 

3 domains: 
Present 12/13/12 152.03544 1.99 (-2) 

Present 20/21/20 152.00011 3.23 (-3) 

Present 32/33/32 152.00513 2.14 (-4) 

Spectral 4 elements: 
element 16/16/16/16 152.04 2.29 (-2) 

(ref. 15) 

Spectral 1 domain: 
colloc. 64 152.025 1.31 (-2) 
(ref. 15 ) 

exact 152.00516 
(ref. 15 ) 
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Table 111.- Maximum error vs. domain discretization for equation (4) • 

u - u exact 

(N 1 N 1)' (Nx2 ,Ny2 ) u exact x , y Q) 

( 6, 6), ( 6, 6) 0.16809 ( -3) 
( 8, 8), ( 8, 8) .13260 ( -5) 
(10,10), (10,10) .71081 ( -8) 
(12,12), (12,12) .27290 (-10) 
(16,16), (16,16) .71054 (-13) 

( 6, 6), ( 6,12) .44939 ( -3) 
( 8, 8), ( 8,16) .54130 ( -5) 
(10,10), (10,20) .33158 ( -7) 
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U xx + U yy = cos(7rx/4)·COS(7Ty/4) 
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Figure 6. - Computed solution to equation (5) on four domains; interfaces at 
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16 Abstract 
Spectral collocation methods have proven to be efficient discretization schemes for 
many aerodynamic (see e.g., refs. 1-5) and fluid mechanic (e.g., refs. 6-9) problems. 
The high-order accuracy and resolution shown by these methods allows one to obtain 
engineering-accuracy solutions on coarse meshes, or alternatively, to obtain solu-
tions with very small error. One drawback to these techniques has been the require 
ment that a complicated physical domain must map into a simple computational domain 
for discretization. This mapping must be smooth if the high-order accuracy and 
expontentlal convergence rates associated with spectral methods are to be preserved 
(ref. 2). Additionally even smooth stretching transformations can decrease the 
accuracy of a spectral method, if the stretching is severe (ref. 5). A further 
difficulty with spectral methods has been in their implementation on parallel 
processing computers, where efficient spectral algorithms have been lacking. 

The above restrictions are overcome in the present method by splitting the domai 
into regions, each of which preserve the advantages of spectral collocation, and 
allow the ratio of the mesh spacings between regions to be several orders of magni-
tude higher than allowable in a single domain. Such stretchings would be required 
to resolve the thin viscous region in an external aerodynamic problem. Adjoining 
regions are interfaced by enforcing a global flux balance which preserves high-order 
continuity of the solution, regardless of the type (diffusion- or advection-domina-
ted) of the equations being solved. 
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