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FOREWORD

The work reported here concerning formulation and solution
of a two phase mixed Stephan problem is relevant to alloy
solidification and crystal growth processes such as those being
investigated in low gravity experiments aboard orbiting
laboratories. The work was supported by the Atmospheric Science

Division of the Systems Dynamics Laboratory at the Marshall Space
Flight Center.
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CHAPTER 1
INTRODUCTION

Heat transfer problems dealing with the melting or freezing of
a substance have received a lot of attention for more than a century.
The problem is characterized by a moving surface of separation between
the two phases, with release or absorption of latent heat at this inter-
face. Of interest are the position of this interface with respect to
time and the temperature distributions in both phases. This class of
problems are generally referred to as the Stefan problem.

The simplest problem in this area is the one-dimensional solid-
ification in a semi-infinite region. The first published work is by
G. Lame and B. P. Clapeyron (1831) [17],1 which dealt with determining
the thickness of the solid crust generated by the cooling of a liquid
initially at constant temperature. They found the position of the
interface to move proportionally to the square root of time, but they
did not find the constant of proportionality. The first known solu-
tions for this problem were found by Neumann (1860) and Stefan (1889)
[6]. The solution takes the form of error integrals and the position
of the interface was found to be S(t) = ZA/E;E; where Kg is the thermal
diffusivity, and X is determined by the conservation of energy equation
at the interface.

Further complications arise when the material freezing is an

alloy. The classical Stefan problem normally has three unknowns,

1Numbers in brackets refer to similarly numbered references in
the List of References.




namely, the interface position and the temperatures of both phases.

The melting temperature of an alloy is strongly dependant on the com-
position at the interface. Therefore, freezing (or melting) can occur
over a range of temperature. That, and the concentration distributions
of the two phases, adds three more unknowns to the problem. Work done
by Tao [18] considers this problem with an arbitrarily prescribed heat
flux at the lower boundary. His closed form solution is comprised of
an infinite sum of error functionms.

When considering a slab of finite depth, the similarity trans-
formation, in general, cannot be applied and no known closed form
solution exists. Boley [3] has formulated a solution for the system
as it first undergoes solidification. However, once the effects of
freezing have reached the upper surface the solution is no longer
valid. To describe the system for all time, we must resort to numer-
ical approximation techniques. Meyer [11,12] has developed an
algorithm using the Implicit Imbedding technique that solves the prob-
lem of the slab, but does not take into consideration the case of alloy
solidification.

The study presented here considers alloy solidification in a
finite slab, with heat dissipation from both the upper and lower sur-
faces by convection. Though the governing equations are linear, these
interfacial conditions are not, making this a non-linear problem.
Another complication will be added, that of allowing for density dif-
ferences between solid and liquid phases. This causes a moving upper
boundary as well as the moving interface. We see this solution as an

extension of Meyer's method. Two methods of solutions will be



presented. One, a purely numerical technique, makes use of a Runge-
Kutta integrator to solve the equations generated by Meyer's method.
This solution failed at the low diffusion rates of solids because of
the stiffness of the equations. The second solution is an analytical
method. Closed form solutions were found of the basic equations,
though quadrature techniques were still required. This enabled us to
reach lower diffusion rates, though not as low as desired, because of
accuracy limitations of the quadrature technique.

Stefan type problems have significant importance to many indus-
trial processes. In the production of steel billets [14], carbon
within the metal oxidizes at the surface setting up strong concentra-
tion gradients that cause more carbon to diffuse to the surface. This
outer layer is no longer of the same type steel and would have to be
ground off. Determining and minimizing the depth of this layer is
necessary for the reduction of costs. Corrosion problems are similar
in behavior. In the manufacture of glass [14], heat transfer rates
must be optimized to limit crystal growth and reduce the formation of
gas bubbles. Recently, much interest has been generated in the
possibility of processing materials in space. 1In the reduced gravity
environment, it would be possible to produce large crystals of uniform

properties and to manufacture materials with unique properties.



CHAPTER II
PROBLEM FORMULATION

In this chapter we will discuss the formulation of the basic
equations for the two phase mixed Stefan problem. Exact solutions by
Neumann and Stefan and the numerical technique by Meyer will be
reviewed. For the mixed Stefan problem we will consider a slab con-
sisting of a binary liquid alloy, initially at constant temperature,

T The slab is of finite depth, dO’ and infinite width (Figure 1).

0
Heat is to be removed from both the upper and lower surfaces, with
solidification starting at the lower surface. The problem is charac-
terized by a moving interface, S(t), between the solid and liquid
phases, with latent heat release at the interface. The equations will
allow for different densities for the solid and liquid causing a

volume change and therefore a moving upper surface during freezing.

The upper and lower surfaces will be closed to any mass flow and mass
diffusion in the solid and liquid will be investigated. Since the sub-
stance is an alloy, the freezing temperature will be dependant on the
composition at the interface. A sketch of this model is shown in
Figure 1.

The governing equations for the temperature and concentration

distributions when there is a change in volume during solidification

(ps/p2 # 1) take the form [6]:

5 (1)
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"’:tg -2 - D ; aaczl =dy 2 (2)
pl 0z
in the liquid, and
aT azT
—S = S (3)
at s 2
0z
BCS 82CS
ot - ds 2 (%)
9z

in the solid. C denotes the solute concentration and T the temperature.

S(t) is the interface position and p, ¥ and d denote the density, thermal
diffusivity and solute diffusivity. The subscripts s and % denote solid

and liquid, respectively.

The interface conditions are:

oT 3T

s L _ ds
ks 5z~ f¢ 5z Pt e (5)
acC aC
s L ~y ds
psds 3z pzdz oz psC2 (1 k) dt (6)

Equations (5) and (6) are the conservation of energy and mass equations
at the interface. k, k and % are the thermal conductivity, the partition
coefficient and the latent heat. Also at the interface, both the solid
and liquid must be at the equilibrium melting temperature, Tm, and the

proper value of solute concentration which may be described by



T =T, - mC 7N

C = kC (8)

Equation (7) implies that the melting temperature of the alloy
is a linear function of concentration. Looking at the phase diagram,
Figure 2 [1], we can see that this is a simplification of the actual
relationship. The decrease in the melting temperature with increase
in concentration can be rather closely approximated by a linear func-
tion. However, at a certain concentration the melting temperature
will begin to increase. Since the method of solution does not depend
on this equation, a more complicated expression could be substituted,
but will not be for this work.

The boundary conditions at the upper and lower surfaces take

the form:

at z = 0

aT

ks 9z = h1 (Ts - Tl) (9
aC

3z 0 (10)

pS

at z=d, - (— =-1) 8(t)
0 P
2
9T _ -

-kz 5z - h2 <T2 TZ) (11)
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— =0 (12)

where subscripts 1 and 2 denote lower and upper surfaces, respectively.
Equations (9) and (l11) represent heat dissipation from the surfaces by

convection into a medium at temperatures T1 and Tz, respectively.

The Solutions of Neumann and Stefan

The first solutions for the Stefan problem, in a semi-infinite
space, were found by Neumann in 1860 and Stefan in 1889 [6]. The
governing equations are (1), (2), and interface condition (5). They do

not allow for a density change between the solid and liquid, i.e.,

Py = pl. The boundary conditions at zero and = are
T2 =T at z » =
T =0atz=20
s
The solutions
TQ = T - Berfc 2 )]
ZVKSt

TS = Aerf z )
ZVKSt

satisfy the basic equations and boundary conditions at zero and «,
where A and B are constants of integration. Using the interface con-

dition



s 2 m
we have
Aerf ( s ) = T - Berfec ( = ) = Tm
ZVKSt 2¢Kst

For this to be valid for all t, we must have

= A = constant

or

s = ZAVKSt
rewriting the solution at the interface, we have

K
Aerf(A) = T - Berfc (\f=2) =T
K’L m

which determines the constants A and B as follows:

T-T
m

’Ks
erfc (A Efo

2

Now, using the interface condition (5), we can evaluate the constant X:

10



2
K_A

K T -1 ®XPC

)
_A/n

_s m A
erf(}) s V¥ Tm 7 CPSTm
erfe(A |—)
“2

Stefan's solution assumes the liquid is initially at the melting

temperature (T = Tm), giving the equation for X as

=

C
Pg m

rexp(A)erf (1) =

B

Adding the change in density term (ps/p2 - 1), so that the basic
equation matches equation-(l), changes the solution in the liquid

region to the following:

P K
T =T - Berfc | Z_ 4 AC—i - 1) /'—il
s ) e

ZVKlt

with

T-T
- m
o} ,K
erfc(x—§ -EE)
Py 2

and the equation to determine A:

B

11



A pS KS
) (T - Tm)kzeXP(- —ZK—') -
exp(-17) _ ) Os _ adm
erf(}) cC. T

P
K
KS pS L Py m
kaserfc(A ;r-———)
2 Py

Numerical Technique, the Method of Meyer

When considering a slab of finite depth, a numerical technique
must be employed. 1In a series of papers Meyer [11,12] has developed
one such technique using the Invariant Imbedding Method. This tech-
nique also allows for the use of non-linear boundary conditions. The
governing equations are (1) and (3), with interface conditions (5),
and boundary conditions (9) and (11). Since numerical methods are
used, it is convenient to first nondimensionalize the equations. The

following substitutions were made:

ps ds
R=3, PTa
2 2
d
C =‘£L P = I Lewis Number
C 2 K
0 2
o d
m s 3
M=T, -T P = — = Lewis Number
1 0 ] Kg
s hids
K =— B, = —— = Biot Modulus
e ik

12



7z = — L =
dO Cp (T1 - TO)
L
A:E \P—TZ_TO
kl T, - To
T - TO Ky
SO Tt
1 0 dO

After nondimensionalization, the governing equations, interface

and boundary conditions take the form

2
20, & -1 &8 %, 3%, -
aT dt 95z 2
24
BOS BZGS
vl K > (14)
9z
90 30
s L _ das
A 5z~ 5z - RL at (15)
BOS(O) B1
T2z " x OV (16)
E?&Efﬁz = -B.(0. + V) (17)
3z 2 7

Meyer's method consists of first discretizing the time operator

in the following manner:

13



yielding a set of ordinary differential equations, solvable at discrete
time steps, N. Next, equations (13) and (l4) are rewritten as a first

order system.

= '

UZ OZ

N N-1
99' " GRI - (R - 1) (SN - SN-I) U = U' (18)
At At 2 2
U =a9'
[ S
03 - 95'1
= '

B va— KUS (19)

where prime denotes differentiation with respect to z. With the con-

servation of energy equation at the interface taking the form

00 90 N N-1
S L _ S -5
A dz 9z RL AT (20)

Now, the Invariant Imbedding technique is used to solve for Uz

and US. The solution of U2 is assumed to take the form

N _N_N N
U, =Y, 0, +2Z,

*

then

14



These equations are substituted into (18) to yield

eN eN—l
N' N N,2 N N_N N’ L 2 N N N
+ + + Z =— - ——— - FY - F Z
Yz OZ (YQ ) 02 YR Zz 2 At At R™g 02 R
where
e o (®R-1D (s - sV 1
R At
rearranging,
eN-l
' N N,2 N N N _ N' N _N N 2
YQ Gz + (Yl ) Gz + FRYQ @2 = ZR Yg 22 FRZ2 it

from this we get the equations for Y2 and Zl'

N N.2 1
Yo == G - Ry, +47
o N-1
N' N N N 9
z) =-Y, z) - Fz =

is substituted into (17) to yield

15
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(22)



N N N _ N
Y, (Zp) 0, (Zp) +2Z, (Z)) =-3B, (0, (Z) +¥)
and therefore
N -
Y2 (Zf) B2
N
Zy (2g) = - By¥

where Zf‘= 1 - (R - I)SN. Similarly,

N
dy
s __1 N,2
dz  KAT (Ys ) (23)
at z=0Y =-El
A
N N-1
dz ¢)
s N N S
dz - Y Zs T TKAT (24)
B
_ N1
at z =0 Z = i

After solving equations (21)-(24), the temperature distributions can

be obtained by solving the following equations:

16



d@N

)
=4
=4
2

dz " Y, 9 t*Zy (25)
N

do
s LN N N

=Y, o, +2 (26)

Meyer's Method for the Mixed Problem

Meyer's method can easily be applied to alloy solidification.
Equations (2) and (4), interface conditions (6), (7) and (8), and
boundary conditions (10) and (12) are nondimensionalized, time operator

discretized, and then written as a first order system yielding:

=
Vo =€y
N N-1
@ "% @®-1n " -s"h v =py 27
AT At L 22
v =c¢'
S S
¢l - cf"l
= KP V' (28)
At S s
dc_ dc N _N-1
s 2 _R ,. s 8 -5
e PR PR P, (-1 — 29
0, = 0; - MC, (30)
c, = kc, (31)

17



3C§
32z =0
ac N
2 =0
oz

Vz and Vs are assumed to have solutions of the form

N
Vl

(3]
]
1]

18
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(33)

(34)

(35)

(36)



drR C
s _ N _UN s
iz - % Rg KP AT (37)
at z=0 RN =0
s

After solving equations (34)-(37), the concentration distributions can

be obtained by solving the following equations:

N
dc
2 _ N _N N
iz x2 c2 + Rl (38)
N
dc
s _ N N N
et X, Cg +Rg (39)

Calculation of Initial Condition

In order to solve equations (22), (24), (35) and (37), temper-
ature and concentration distributions from the previous time step are
needed. This necessitates initial distributions for both the temper-
ature and concentration at the onset of solidification. For the present
case, we will assume that no mass diffusion occurs prior to freezing.

Thus, the concentration distribution is taken to be

throughout the liquid, up until solidification starts.
Since the initial temperature, 00, may not initially be equal to
the melting temperature, Gm, such an assumption may not be made. We

must therefore derive an equation for the temperature as a function of

19



position and time, which is appropriate to the specific cooling at the

upper and lower surfaces. The governing equation [6] for this is

90 90
L _ 3
ot . 2 (40)
o9z
with boundary conditions
862
*5—Z—=B1(O£— 1) at z =0 (41)
302
5z = " Bz(ezi-W) at z = 1 (42)
and with initial conditions ez = 0 at T = 0. The solution is derived

using separation of variables. The solution of the homogenous part

takes the form

Oz (z, ©) = Z(2)T(T)

then

ZT' = Z"T

or

20



dT 2 a2 2

Z
== AT 2= %z
dt d22
T = Alexp(—sz) Z = Azsin(xz) + A3cos(Az)
and
Gz = [Azsin(kz) + A3cos(xz)] exp(—AZT) (43)
3@2 2
vl A[A cos(Az) - A sin(A2z)] exp(-1"T) (44)
z 2 3
at z =0
18}
2 _
3z Blez
AA exp(—AZT) = B.A exp(—kzr)
2 173
By
A, =5 Ay (45)
at z =1
90
—2' -
5z -~ B29

A[Azcos(x) - A3sin(k)] exp(—AZT) =-Bz[A2sin(A) + A,cos(A)] exp(—Azr)

3

using (45)

21



B,A

BlA3cos(A) - AA3sin(k) = - B2 [ k sin(})) + A3cos(k)]
XZ - B1B2
(B1 + Bz)cos(x) = [ x sin(}) 1
A (B, + B.)
tan() = =L 2 (46)
N Xz - B.B
N 172
So the solution of the homogenous part is
* By 2
ez(z, )= & AN [i; sin(xNz) + cos(ANz)] exp(—quT) (47)
N=1

Where the eigenvalues, AN, are determined from (46).

For the non-homogenous part, assume the solution takes the form

0 = + Bz
P ¢ B

Then, using (41) and (42) we get

B =B (a=1)

and

B=-By(a+p+Y)

combining and solving for o,

22



. Bl(l + BZ) - BZW
Bl(l + B2) + B2
Now for the total solution we have
® B 2
OIL(Z’ =oa + gz + El AN [K 31n(>\Nz) + cos(xNz) ] exp(-)\NT)
N=

Now using the initial condition

we can solve for the AN

o B
1 .
0=qo +Rz+ I AN [—)‘E 31n(ANz) + cos()\Nz)]
N=1

-a-Bz= I ANEN(z)
N=1

fol (ma- BZ)EN(Z)dz

AN fé E2N (z)dz
B1 8 aBl (OLBI-B)
-ZXN{[a+B(1+‘2—)] +[—2'>\— (1 - B)) —)\—]COS(KN) + 3 }
A N N N
_ N
AN 2 2
2 2 Ay~ By 2
[B1 + )‘N + % (7——) sin (ZAN) + 2Blsin ()\N)]
N

23



Now, to calculate the distribution for the first state, N = 0, we must

find T = 7

sol such that the temperature at z = 0, is equal to the melt-

ing temperature, Om. The initial temperature distribution is then

equal to G(Z’Tsol)'

24



CHAPTER III

SOLUTION AND RESULTS

Numerical Method

In order to solve for the temperature and concentration distri-
butions in both the liquid and solid phases, equations (21)-(24) and
(34)~-(37) must first be solved. These equations comprise of a set of
coupled, nonlinear ordinary differential equations with their proper
boundary conditions. Such a set of boundary value problems are most
suitably solved with a Runge-Kutta-Fehlberg [10] integrator. For the
present problem, a RK7(8) was used. Before integrating these equa-
tions, a new interface position, SN, and concentration, C;‘, must be
assumed. Once these equations are solved, the temperature and con-
centration gradients at the interface may be obtained from equations
(25), (26), (38) and (39). The conservation of energy (20) and mass
(29) equations at the interface are then used to check these results.
If the initial guess on SN and C;q was in error, these equations will
not be satisfied. A better estimate for the correct values of SN and
C;q can be obtained from these equations through a Newton-Rhapson
method. This process of evaluating the temperature and concentration
gradients and reestimating the interface position and concentration
is repeated until convergence to the correct values occurs. Now,
equations (25), (26), (38) and (39) can be integrated for the tem-

perature and concentration profiles from the interface to the lower

surface for the solid and from the interface to the upper surface for

25




the liquid. The time is then advanced by one time step, At, and the
process repeated for the new interface position.

This method (Antar [2]) gave satisfactory results down to a
Lewis number, PS, of order 10—4. At lower Lewis numbers overflow

problems occurred due to the stiffness of equation (36). This can

easily be seen by using the following values as an example:

p =107
S
K=2.7
At =1

To demonstrate the problem, we will use a fourth order Runge-Kutta
technique as outlined in ref [4], and the above values with the

boundary condition of zero,

if

y' = f(z,y) witha <z <b

y(a) = boundary value

b-a

N where N = number of intervals

h =

then an approximate solution to y is w, found in the following manner:

w, = boundary wvalue

0

kl = hf(xi,wi)

26



k2 = hf(xi + > 2 W +-§k1)
h 1
k3 = hf(xi +7 > W, +—2-k2)
k4 = hf(xi+1 s W, + k3)
= l-(k + 2k, + 2k, + k,)
Yitl © 6 1 2 37 %

for each i =0, . . . , N - 1.
Applying this to equation (36) with 50 intervals we arrive at the

following values:

For i =0
2
k1 =47.407 x 10
3
k2 =-2,003 x 10
4
k3 = -1,931 x 10
6
k4 = -7.,460 x 10
and
6
v, = -1.250 x 10
For i =1
k= -3.127 x 10"

27



18

k, = -4.889 x 10
ky = -1.195 x 1033
k, = -2.865 x 108

The calculation for k, causes overflow on the VAX 11/780, which has an

4
38
upper bound of order 107 .

Analytical Method

Inspection of equations (21) and (34) reveals them to be of

the following general type:

Y = A - By - 42
dz A By y

There exists a closed form solution [16] for this type of equation.
Finding closed form solutions avoids the use of numerical integrators,
therefore rendering the problem of stiffness more manageable. The

solution is found by using the transformation
u'
Y=y
The equations then take the form

u'" + Bu' -Au =0

whose solution is found in the following manner.

The characteristic equation is
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r2 +Br -A=0

1,2

r, , =3 (-B = /B2 + 4a)

u = Clexp(rlz) + Czexp(rzz)

then
_ rlexp(rlz) + Crzexp(rzz)
y exp(rlz) + Cexp(rzz)
where
(r; -y
C - m exp((rl - rz)z)

Similarly, equations (23) and (36) have the form

dy _ ) _ 2
dz A y

and can be solved using the same transformation
u'
Ay
yielding

u'' = Au

u = Clexp(/zé) + Czexp(—/zé)
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JE exp (YAz) - Cexp(-vAz) ]
exp (VAz) + Cexp (-/Az)

y=

with

C = [.ZE_:_X 1 exp(2VAz)
/A + vy

Equations (22), (24-26), (35), (37-39) are of a more complicated type
d
= -F(2)y - G(2)

but can be easily solved using the Variation of Parameters technique

[91].

1

z z z
y = exp(- f F(z)dz) [C - f G(z")exp (f F(z)dz)dz' ]

z, zZ, z,
1 1 1

Equations (22), (24), (35) and (37) contain functions whose
values are known only at certain points, requiring quadrature evalu-
ations to determine their solutions. These techniques, though, are
known to be highly stable, allowing solutions to be obtained at lower
Lewis numbers. The same iterative technique as described earlier is
used to determine the interface position and the temperature and con-
centration profiles at each time step.

Now the solutions of equations (21)-(24) and (34)-(37) are:

N rlexp(rlz) + Clrzexp(rzz)

YQ - exp(rlz) + Clexp(rzz) (48)
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(rl - Bz)
Cl = - Tr—z—-—_——g—z—)— exp((rl - rz)zf)
z z ON_I z
N _ f N f £ N .
z, = exp(- fz (Fp#¥,)dz) [ C,- fz o exp(fz' (Fp+Y, )dz)dz']  (49)
C, = - ByY¥

exp(§z) - Csexp(-dz)

¥g =38 [exp(az) + CSexp(—Gz) ] (50)
c - 8K - B1
5 6K + B1
§ = 1
vKAT
N Z N z o) 2" N
= - — ———— 1
ZS exp( _f YS dz) [C6 f KAt exp(j 'YS dz)dz' ] (51)
0 0 0
C = ...___B_l_
6 A
N rlexp(rlz) + C3r2exp(r2z)
Xz = exp(rlz) + C3exp(rzz) (52)

31



F F
1 R fR 2 4
r,=5l-5t (G + ]
1,2 2 P, P, P AT
!
C3 = - ;; exp((r1 - rz)zf)
N-1
F z z. F
N_ Z "R, _N £ £ "R, N .
Ry =exp(- [ (G-+X, )dz) [ "5 exp(-f' (7 +X,)dz)dz
z 2 z 2 ' z 2
xN = & tanncS2)

cosh(—a—z— )dz

4
S

N -1
R, =( )
S cosh(—ai) {)

VP_
S

KPSAT

(53)

(54)

(55)

Now the solution to equations (25), (26), (38) and (39) can be found

using the Variation of Parameters technique [9].

Z, z,
i i

z z z
N, | N N _ N .
GJL (z) —exp(f Y,Q, dz) [C9 +IZ ZS?, exp( f Y!L dz)dz' ]
i

N Z N Z N Z N
OS (2) =exp(f YS dz) [C10 +f ZS exp(—f YS dz)dz' ]

zZ, Z, z,
1 1 1

Z'

N Z_ N Z N N ,
CSL (2) =exp(J'z XJL ) [ Cll+fz R!L exp(-f XSL dz)dz' ]

. . z,
1 i 1

z \J

V4
¢l (2) =exp([ X)) [ Cpp +f

z, zZ, .
1 1 1
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z
N N
RS exp(-j' XS dz)dz' ]
z

(56)

(57)

(58)

(59)



The constants, C, and Cll’ represent the temperature and con-

9
centration of the liquid at the interface. The constants, C10 and
C12, represent the temperature and concentration of the solid at the
interface. C9 and C10 must be equal. Since only the conditions at
the interface are known, the integrations in equation (56) and (58)
are performed from the interface up, and, in equations (57) and (59),
from the interface down.
Asymptotic approximations were used whenever possible to

reduce the chance of overflow errors. For example, equation (50) is

evaluated as

whenever

Also, exponents were combined as much as possible. In equation (59),
for example,
z
f qudz
s
z,
i
was evaluated first, then treated as a constant so that it could be
carried within the integral and added to the exponent before the
exponents are evaluated.
Many of the integrals could not be solved exactly because they

contain the concentration or temperature functions whose values are

known only at certain points. They were therefore solved using a 15
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point Gauss-Legendre quadrature, with maximum interval size of 0.1,
and a cubic spline interpolation [4] between the known points.
b 15 ri(b -a)+b+a

[ Paydx = 2=8) IowF( : )

2
a i=1

The roots and weights (ri,wi) were obtained from Table 2.2 in ref
[51.

This method gave good results down to a Lewis number, PS, of
order 10_6. Below this value, problems occur due to the accuracy of

the integrator, when applied to equation (59). The error occurs when

z ]

z
N N
J R exp(-fz X, dz)dz' (60)

2y i

is evaluated. To demonstrate this, using the functions

X:I = S 1:anh(—(Sz )
VP /P
s s
and
cosh(—Z )
N 1 s
R = dz
cosh(—gz—) 0 KPsAT
Ps
tanh(-gEL)
VP
RN = -5 2
s rf;
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we evaluate equation (60) in closed form. Note that these equations
are the same as (54) and (55), except for the missing concentration

term in (55). The exact solution of (60) then is

sech(—-) - 1
P

when evaluated from zero to one. For large values of G/VPS the solu-
tion approaches the value of -1.0. Evaluating equation (60) numer-
ically, using a 15 point Gauss-Legendre quadrature with 10 intervals,

and the following parameters

K=2.7
p =107
s
At =1
z, =0
i
z =1

we get the value of -1.36, which is a difference of .36 from the true
value. Table 1 lists the results of different interval sizing at

different values of PS.
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Table 1

The Effects of Different Interval Sizing on the Accuracy
of a Gauss-Legendre Quadrature Technique

Number of Difference

Value Intervals in from

of Pg Quadrature Actual Value
107 10 2.33 x 1072
1077 10 3.62 x 107}
107”7 100 1.22 x 1074
1077 250 1.30 x 107/
1078 100 3.15 x 1072
1078 250 5.24 x 107
1078 500 4.60 x 1070

Reasonable accuracy is obtained for PS of order 10“7 using 250
intervals. However, combined with a 15 point quadrature formula,
this means 3750 function evaluations (actually, equation (55) has an
additional integration, requiring 56,250 evaluations), which means a

high probability of round-off error occurring during the computations.
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Computation Results

As previously discussed, the numerical technique gave good
results down to a Lewis number, Ps’ of 10‘4. Alloys having this high
rate of diffusion in its solid phase are rare. For more common
alloys, such as lead~tin (Pb-Sn), the Lewis number is of order 10”10
[7]1. Because of this restriction the analytical technique was
derived. With this technique, we were able to get results down to

a Lewis number, PS, of order 10_6. The following parameters, based

on the temperature differences

Ty - T = 5°
T -T, = 2°
T, -T_= 4°
were used in the calculations.
K = 2.326 B, = 1.00
M = -0.22 B, = 0.01
L = - 27.7 R = 1.00 or 1.06
P, = 1072 P, = 1074 > 107°
k = 0.580 ¥ = - 0.14286
A = 2.703 At =1
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4

A more realistic liquid Lewis number, P is of order 10  '[8]. Compu-

2’
tations were performed at a Lewis number, Pl’ of 10_2 in order to keep
at least the ratio of liquid to solid diffusion rates realistic. Com-
parison of the two techniques at PS = 10—4 is shown in Figures 3, 4
and 5. The interface position and the temperature and concentration
at the interface as a function of time are shown to match excellently.
The solid lines represent the analytical solution while the circles
represent the numerical solution.

The next series of plots, Figures 6, 7 and 8, show concentra-
tion distributions at different Lewis numbers at time step intervals
of 25, with the first time step at 25 and the last at 200. The inter-
face position is seen as the vertical lines with the solid phase to
the left and the liquid phase to the right. The effects of lower
Lewis numbers are very apparent. In Figure 6, at Lewis number 10_4,
there is significant diffusion in the solid, while in Figure 8, at
Lewis number 10_6, almost no diffusion is noticeable. The only
movement is at the lower surface, which has had more time for diffu-
sion to occur.

Figures 9-20 show how the interface, concentration and tem-
perature vary with time and the temperature with interface position

=5 and 10_6. We can see in

at the three Lewis numbers, 10_4, 10
Figures 9, 13 and 17, that the velocity of the interface is decreas-
ing as the alloy solidifies. The upward motion of the interface has
all but stopped. This is due to equation (7), which determines the

melting temperature of the alloy. As seen in the phase diagram, the

melting temperature decreases, as concentration increases, to a
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certain value and then begins to increase. Allowances for this have
not been made and since the concentration of the liquid will be ever
increasing, the melting temperature will continually decrease, which
can be seen in Figures 10, 12, 14, 16, 18 and 20. It is also
interesting to note that the velocity of the interface is proportional
to the Lewis number. The lower Lewis numbers cause slower solidifica-
tion. Due to the slower diffusion rates, the interface concentration
is higher and therefore the melting temperature is lower, requiring
more time for the alloy to reach the melting temperature since the
heat rates remain the same.

Figures 21-23 illustrate the effects of different densities
in the solid and liquid phases. The interface moves at a slower rate
when the density of the solid is greater than that of the liquid.

The temperature and concentration with respect to time does not change
significantly.

Figures 24-29 show the overall temperature and concentration
distributions for the different Lewis numbers. The concentration
distributions are represented by the solid lines and the temperature
distributions by the dashed lines.

In Figure 30 we see the comparison of results obtained from
the analytical method at PS = 10_6 (Figure 30-A) with intuitive
results [13] deduced from the phase diagram to the limit of zero

diffusivity in the solid (Figure 30-B).
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