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FOREWORD 

The work reported here concerning formulation and solution 
of a two phase mixed Stephan problem is relevant to alloy 
solidification and crystal growth processes such as those being 
investigated in low gravity experiments aboard orbiting 
laboratories. 
Division of the Systems Dynamics Laboratory at the Marshall Space 
Flight Center. 
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CHAPTER I 

INTRODUCTION 

Heat transfer problems dealing with the melting or freezing of 

a substance have received a lot of attention for more than a century. 

The problem is characterized by a moving surface of separation between 

the two phases, with release or absorption of latent heat at this inter- 

face. Of interest are the position of this interface with respect to 

time and the temperature distributions in both phases. This class of 

problems are generally referred to as the Stefan problem. 

The simplest problem in this area is the one-dimensional solid- 

ification in a semi-infinite region. The first published work is by 

G. Lame and B. P. Clapeyron (1831) [17],l which dealt with determining 

the thickness of the solid crust generated by the cooling of a liquid 

initially at constant temperature. They found the position of the 

interface to move proportionally to the square root of time, but they 

did not find the constant of proportionality. The first known solu- 

tions for this problem were found by Neumann (1860) and Stefan (1889) 

[ 6 ] .  The solution takes the form of error integrals and the position 

of the interface was found to be S(t) = 2 X G ,  where K~ is the thermal 

diffusivity, and X is determined by the conservation of energy equation 

at the interface. 

Further complications 

alloy. The classical Stefan 

arise when the material freezing is an 

problem normally has three unknowns, 

'Numbers in brackets refer to similarly numbered references in 
the List of References. 
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namely, the interface position and the temperatures of both phases. 

The melting temperature of an alloy is strongly dependant on the com- 

position at the interface. Therefore, freezing (or melting) can occur 

over a range of temperature. That, and the concentration distributions 

of the two phases, adds three more unknowns to the problem. Work done 

by Tao [18]  considers this problem with an arbitrarily prescribed heat 

flux at the lower boundary. 

an infinite sum of error functions. 

His closed form solution is comprised of 

When considering a slab of finite depth, the similarity trans- 

formation, in general, cannot be applied and no known closed form 

solution exists. 

as it first undergoes solidification. However, once the effects of 

freezing have reached the upper surface the solution is no longer 

valid. To describe the system for all time, we must resort to numer- 

ical approximation techniques. Meyer [11,12] has developed an 

algorithm using the Implicit Imbedding technique that solves the prob- 

lem of the slab, but does not take into consideration the case of alloy 

solidification. 

Boley [ 3 ]  has formulated a solution for the system 

The study presented here considers alloy solidification in a 

finite slab, with heat dissipation from both the upper and lower sur- 

faces by convection. Though the governing equations are linear, these 

interfacial conditions are not, making this a non-linear problem. 

Another complication will be added, that of allowing for density dif- 

ferences between solid and liquid phases. This causes a moving upper 

boundary as well as the moving interface. We see this solution as an 

extension of Meyer's method. Two methods of solutions will be 

2 



presented. One, a purely numerical technique, makes use of a Runge- 

Kutta integrator to solve the equations generated by Meyer's method. 

This solution failed at the low diffusion rates of solids because of 

the stiffness of the equations. The second solution is an analytical 

method. Closed form solutions were found of the basic equations, 

though quadrature techniques were still required. This enabled us to 

reach lower diffusion rates, though not as low as desired, because of 

accuracy limitations of the quadrature technique. 

Stefan type problems have significant importance to many indus- 

trial processes. In the production of steel billets [ 1 4 ] ,  carbon 

within the metal oxidizes at the surface setting up strong concentra- 

tion gradients that cause more carbon to diffuse to the surface. This 

outer layer is no longer of the same type steel and would have to be 

ground off. Determining and minimizing the depth of this layer is 

necessary for the reduction of costs. Corrosion problems are similar 

in behavior. In the manufacture of glass [ 1 4 ] ,  heat transfer rates 

must be optimized to limit crystal growth and reduce the formation of 

gas bubbles. Recently, much interest has been generated in the 

possibility of processing materials in space. 

environment, it would be possible to produce large crystals of uniform 

properties and to manufacture materials with unique properties. 

In the reduced gravity 

3 



CHAPTER I1 

PROBLEM FORMULATION 

I n  t h i s  chapter  w e  w i l l  d i s cuss  t h e  formulat ion of t h e  b a s i c  

equat ions f o r  t h e  two phase mixed Stefan  problem. Exact s o l u t i o n s  by 

Neumann and S te fan  and t h e  numerical technique by Meyer w i l l  be 

reviewed. For t h e  mixed Stefan  problem we  w i l l  cons ider  a s l a b  con- 

s i s t i n g  of a b inary  l i q u i d  a l l o y ,  i n i t i a l l y  a t  cons tan t  temperature ,  

To. The s l a b  is of f i n i t e  depth,  do, and i n f i n i t e  width (Figure 1). 

Heat i s  t o  be removed from both t h e  upper and lower su r faces ,  wi th  

s o l i d i f i c a t i o n  s t a r t i n g  a t  t h e  lower sur face .  The problem i s  charac- 

t e r i z e d  by a moving i n t e r f a c e ,  S ( t ) ,  between t h e  s o l i d  and l i q u i d  

phases,  wi th  l a t e n t  h e a t  release a t  t h e  i n t e r f a c e .  The equat ions  w i l l  

a l low f o r  d i f f e r e n t  d e n s i t i e s  f o r  t h e  s o l i d  and l i q u i d  causing a 

volume change and t h e r e f o r e  a moving upper su r face  during f r eez ing .  

The upper and lower su r faces  w i l l  be  c losed t o  any mass flow and mass 

d i f f u s i o n  i n  t h e  s o l i d  and l i q u i d  w i l l  be  inves t iga t ed .  Since t h e  sub- 

s t ance  i s  an a l l o y ,  t h e  f r eez ing  temperature w i l l  be  dependant on t h e  

composition a t  t h e  i n t e r f a c e .  A sketch of t h i s  model is shown i n  

Figure 1. 

The governing equat ions  f o r  t h e  temperature and concent ra t ion  

d i s t r i b u t i o n s  when t h e r e  i s  a change i n  volume during s o l i d i f i c a t i o n  

(ps /p  # 1) t ake  t h e  form [61: R 

4 
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in the liquid, and 

2 
a Ts 

az 

- -  - K  - aTS 

at s 2  

2 
a cs  

- ds 2 
az at 

- -  

(3)  

( 4 )  

in the solid. C denotes the solute concentration and T the temperature. 

S(t) is the interface position and p ,  K and d denote the density, thermal 

diffusivity and solute diffusivity. The subscripts s and R denote solid 

and liquid, respectively. 

The interface conditions are: 

aTS a T R  dS 
ks az - kt az = psR dt 

acS 

Psds Ti- - PRdR az - 

( 5 )  

Equations (5) and ( 6 )  are the conservation of energy and mass equations 

at the interface. k, k and R are the thermal conductivity, the partition 

coefficient and the latent heat. Also at the interface, both the solid 

and liquid must be at the equilibrium melting temperature, Tm, and the 

proper value of solute concentration which may be described by 

c, 

6 



II T = Ti - mC m (7) 

Equation (7) implies that the melting temperature of the alloy 

Looking at the phase diagram, is a linear function of concentration. 

Figure 2 [ l ] ,  we can see that this is a simplification of the actual 

relationship. The decrease in the melting temperature with increase 

in concentration can be rather closely approximated by a linear func- 

tion. However, at a certain concentration the melting temperature 

will begin to increase. Since the method of solution does not depend 

on this equation, a more complicated expression could be substituted, 

but will not be for this work. 

The boundary conditions at the upper and lower surfaces take 

the form: 

a t z = O  

aT - = h2 (T, - T2) -kg az 

7 
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where subscripts 1 and 2 denote lower and upper surfaces, respectively. 

Equations (9) and (11) represent heat dissipation from the surfaces by 

convection into a medium at temperatures T and T2, respectively. 1 

The Solutions of Neumann and Stefan 

The first solutions for the Stefan problem, in a semi-infinite 

space, were found by Neumann in 1860 and Stefan in 1889 [6 ] .  The 

governing equations are (l), (2), and interface condition (5). They do 

not allow for a density change between the solid and liquid, i.e., 

The boundary conditions at zero and are - Ps  - Pg’ 

Ts = 0 at z = 0 

The solutions 

TR = T - Berfc (- = >  
2 f i  

S 

Ts = Aerf (- = >  
2 f i  

S 

satisfy the basic equations and boundary conditions at zero and m y  

where A and B are constants of integration. Using the interface con- 

dition 
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T s = T  = T  a t z = s  
R m  

we have 

S S Aerf (- ) = T - Berfc (-) = Tm 
2Q 2 4 7  

For t h i s  t o  be  v a l i d  f o r  a l l  t ,  w e  must have 

S - =  X = cons tan t  
2 q -  

o r  

s = 2hQ 

r ewr i t i ng  t h e  s o l u t i o n  a t  t h e  i n t e r f a c e ,  w e  have 

p) K R = T m Aerf(X) = T - Berfc ( A  

which determines t h e  cons t an t s  A and B as follows: 

m 
e r f  ( A )  A =  

T - Tm 
B -  

e r f c  
R 

Now, us ing  t h e  i n t e r f a c e  condi t ion  ( 5 ) ,  we can eva lua te  t h e  cons tan t  A :  

10 



2 exp(-A ) 
e r f  ( A )  

m - -  
m T 

S 
k 

S t e f a n ' s  s o l u t i o n  assumes 

temperature (T = Tm), g iv ing  t h e  

exp(- - R 
K ARJ;; 

ps  

=-  
C T  

t h e  l i q u i d  i s  i n i t i a l l y  a t  t h e  melt ing 

equat ion f o r  A as 

2 u 
Aexp(A )er f (A)  = - 

a ? G  

Adding t h e  change i n  dens i ty  t e r m  (p / p  - l) ,  so  t h a t  t h e  b a s i c  s R  

equat ion matches e q u a t i o n , ( l ) ,  changes t h e  s o l u t i o n  i n  t h e  l i q u i d  

reg ion  t o  t h e  following: 

Ts = T - Berfc  [- + A ( - -  p~ 1) J21 
2J"R" P R  R 

w i t h  

m T - T  
B =  

er f c ( A- 

and t h e  equat ion  t o  determine A :  

11 



Numerical Technique, the Method of Meyer 

When considering a slab of finite depth, a numerical technique 

must be employed. In a series of papers Meyer [11,12] has developed 

one such technique using the Invariant Imbedding Method. This tech- 

nique also allows for the use of non-linear boundary conditions. 

governing equations are (1) and ( 3 ) ,  with interface conditions (5), 

and boundary conditions (9) and (11). Since numerical methods are 

used, it is convenient to first nondimensionalize the equations. The 

following substitutions were made: 

The 

C c = -  
cO 

m cO 
M TI - To 

K K = K  S 

R 

Lewis Number 

Lewis Number ds 
ps K 

= - =  
S 

hido 

= kR 
B. = - = Biot Modulus 

12 



z z = -  
do 

S A = -  
k 

kg 

T - To 
o =  

T1 - To 

T2 - To 
T1 - To 

Y =  

K 

After nondimensionalization, the governing equations, interface 

and boundary conditions take the form 

2 aos a os 
a T  
- -  - K -  2 

a Z  

aos aoR dS 
az az dT 

A - - - =  RL - 

Meyer's method consists of first discretizing the time operator 

in the following manner: 

13 



yielding a set of ordinary differential equations, solvable at discrete 

time steps, N. Next, equations (13) and (14) are rewritten as a first 

order system. 

N N- 1 N- 1 
uII = u’n. (R - 1) (SN - S ) 

0% - oII - 
AT AT 

N N- 1 os - os 
AT = KU’, (19) 

where prime denotes differentiation with respect to z .  

servation of energy equation at the interface taking the form 

With the con- 

R Now, the Invariant Imbedding technique is used to solve for U 

and Us. The solution of U is assumed to take the form R 

N 
+ zII 

then 

14 



N' 

N N  N' 
R + zR *;' = Y;1 + Y  

These equat ions  are s u b s t i t u t e d  i n t o  (18) t o  y i e l d  

N- 1 
N N  N 

FRYR OR - FRZQ 
N' 

AT AT 

where 

- (R - 1) (SN - SN-') 
FR - AT 

rear ranging ,  

N- 1 
0 N R  N N  -- Y ' N  0 + (YR N 2  ) 0; + F Y N O N  = - Z N' - YR Z R  - FRZR 

R R  R R  R R AT 

R' from t h i s  we g e t  t h e  equat ions  f o r  Y and Z R 

N 1  + -  - AT 
N' N 2  
R Y = - (YR ) 

N-1 
N u R  -- N' N N  

- FRZR AT 
ZR = - YE 

The boundary condi t ions  are der ived  s i m i l a r l y .  

N N = YII" 0 + Z R  
UaN R 

is  s u b s t i t u t e d  i n t o  (17) t o  y i e l d  

15 



and theref ore 

N ZR (Zf) = - B2Y 

N where Z '= 1 - (R - 1)s . Similarly, f 

N N N  N us = Ys os + zs 

yields the following equations and boundary conditions: 

1 N 2  us 1 - 
dY ," 
- - - -  
dz K A T  

N B1 
0 Y s  

= -  
A at z = 

N- 1 
dZ," N N  OS Ys zs - ___ - = -  
dz KA 'c 

After solving equations (21)-(24), the temperature distributions can 

be obtained by solving the following equations: 

16 



N 
- -  doR N dz - Y; 0; + z R 

N 
N N  N dos - -  dz - Ys os + zs 

Meyer's Method for the Mixed Problem 

Meyer's method can easily be applied to alloy solidification. 

Equations (2 )  and ( 4 ) ,  interface conditions ( 6 ) ,  ( 7 )  and (8), and 

boundary conditions (10) and (12)  are nondimensionalized, time operator 

discretized, and then written as a first order system yielding: 

N- 1 N- 1 
VR = P V '  (R - 1) (SN - S 

c; - CR - 
AT AT R R  

Vs = C I S  

cs N - c;-1 
= KP V' 

AT s s  

Om = Oi - MCR 

cs = iCR 

17 



ac," 
az 

0 - =  

ac,N 
a Z  

- -  - 0  

V and Vs are assumed to have solutions of the form R 

N N  N 
= XI1 CI1 + RR 

N N  V," = Xs Cs + R," 

Then the equations to solve for XR , Xs , RE and R," are 

at z = Zf x; = 0 

FR N N  dR: 

dz 
- -  - - [ P + X ~ ] R ~  -- 

PRA T R 

at z = Zf R: = 0 

at z = 0 x , " = o  

(32) 

(33)  

(35) 

18 



cSN-1 
N N  -- - - xs 

dR: 

dz 
- -  

Rs U S A ~  ( 3 7 )  

at z = 0 R : = O  

After solving equations ( 3 4 ) - ( 3 7 ) ,  the concentration distributions can 

be obtained by solving the following equations: 

N N  N dC: 

dz 
- -  - Xg CR + Rg 

N N  N dC: 

dz 
- -  - Xs Cs + Rs 

Calculation of Initial Condition 

( 3 9 )  

In order to solve equations ( 2 2 ) ,  ( 2 4 ) ,  (35) and (37), temper- 

ature and concentration distributions from the previous time step are 

needed. T h i s  necessitates initial distributions for both the temper- 

ature and concentration at the onset of solidification. For the present 

case, we will assume that no mass diffusion occurs prior to freezing. 

Thus, the concentration distribution is taken to be 

throughout the liquid, up until solidification starts. 

Since the initial temperature, Oo, may not initially be equal to 

such an assumption may not be made. We Qm’ the melting temperature, 

must therefore derive an equation for the temperature as a function of 

19 



p o s i t i o n  and t i m e ,  which is  appropr i a t e  t o  t h e  s p e c i f i c  cool ing  a t  t h e  

upper and lower su r faces .  The governing equat ion [ 6 ]  f o r  t h i s  is 

wi th  boundary cond i t ions  

aog 
az ( 4 1 )  - -  - B l ( O l l  - 1 )  a t  z = 0 

aoR 
az - = -  B 2 ( O g + Y )  a t  z = 1 

and wi th  i n i t i a l  cond i t ions  0 = 0 a t  T = 0. The s o l u t i o n  i s  der ived 

using sepa ra t ion  of v a r i a b l e s .  The s o l u t i o n  of t h e  homogenous p a r t  

t akes  t h e  form 

R 

then 

ZT' = Z"T 

o r  

2 - A  
T '  Z "  
T Z  

20 



2 T = Alexp(-A T) 

and 

2 - -A T dT 
dT 
_ -  2 - -  - -A z dLZ 

2 dz 

Z = A2sin(Xz) + A cos(Xz)  3 

OR = [A2sin(Az) + A3cos(Az)] exp(-A 2 T )  

2 aoR 
- -  - A[A2cos(Az) - A3sin(Az)]  exp(-X T )  
32 

a t z = O  

2 2 
AA2exP(-A T) = B 1 3  A exp(-A T) 

B1 A2 = A A3 

( 4 3 )  

( 4 4 )  

( 4 5 )  

a t z = 1  

X[A2cos(A) - A3sin(A)]  exp(-A 2 T) = - B  [A s in(A)  + A3cos(A)] exp(-A 2 T) 
2 2  

u s i n g  ( 4 5 )  

21 



sin(A) + A3cos(X) 3 lA3 B1A3cos(X) - XA3sin(X) = - B2 [ - X 

2 X - B1B2 
(B1 + B2)cos(X) = [ h sin(X) 3 

So the solution of the homogenous part is 

are determined from (46). , Where the eigenvalues, 

For the non-homogenous part, assume the solution takes the form 

Then, using (41) and (42) we get 

B = B1(a - 1) 

and 

combining and solving for a, 

22 



B1(l + B2) - B2Y 

B 1 ( l  + B2) + B2 
a =  

Now for t h e  t o t a l  s o l u t i o n  we have 

Now us ing  t h e  i n i t i a l  condi t ion  

% we can so lve  for t h e  

B1 
W 

0 = a + Bz + 1 p” [x sin(A z) + cos(A,z)] N N N= 1 

W 

- a - Bz = C %EN(z) 
N- 1 

L 

[ B 1  2 + A i  + % (  A N  -B; ) s i n  (2AN) + 2B1sin 2 (A,)] 

A N  

23 



NOW, to calculate the distribution for the first state, N = 0, we must 

find T = such that the temperature at z = 0, is equal to the melt- 

ing temperature, . The initial temperature distribution is then 

equal to O ( Z , T  

Om 

sol) 
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CHAPTER I11 

SOLUTION AND RESULTS 

Numerical Method 

In order to solve for the temperature and concentration distri- 

butions in both the liquid and solid phases, equations ( 2 1 ) - ( 2 4 )  and 

( 3 4 ) - ( 3 7 )  must first be solved. 

coupled, nonlinear ordinary differential equations with their proper 

boundary conditions. Such a set of boundary value problems are most 

suitably solved with a Runge-Kutta-Fehlberg [ l o ]  integrator. For the 

present problem, a RK7(8) was used. Before integrating these equa- 

C:, must be tions, a new interface position, S , and concentration, 

assumed. Once these equations are solved, the temperature and con- 

centration gradients at the interface may be obtained from equations 

( 2 5 ) ,  ( 2 6 ) ,  ( 3 8 )  and ( 3 9 ) .  The conservation of energy ( 2 0 )  and mass 

( 2 9 )  equations at the interface are then used to check these results. 

If the initial guess on SN and C was in error, these equations will 

not be satisfied. A better estimate for the correct values of SN and 

C: can be obtained from these equations through a Newton-Rhapson 

method. This process of evaluating the temperature and concentration 

gradients and reestimating the interface position and concentration 

is repeated until convergence to the correct values occurs. Now, 

equations ( 2 5 ) ,  ( 2 6 ) ,  ( 3 8 )  and ( 3 9 )  can be integrated for the tem- 

perature and concentration profiles from the interface to the lower 

surface for the solid and from the interface to the upper surface for 

These equations comprise of a set of 

N 

N 
R 
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the liquid. The time is then advanced by one time step, AT, and the 

process repeated for the new interface position. 

This method (Antar [2]) gave satisfactory results down to a 

-4 Lewis number, Ps, of order 10 

problems occurred due to the stiffness of equation (36). 

easily be seen by using the following values as an example: 

. At lower Lewis numbers overflow 
This can 

-5 P = 10 
S 

K = 2.7 

AT = 1 

To demonstrate the problem, we will use a fourth order Runge-Kutta 

technique as outlined in ref [ 4 ] ,  and the above values with the 

boundary condition of zero, 

if 

y’ = f(z,y) with a - -  < z < b 

y(a> = boundary value 

b - a  
N where N = number of intervals h = -  

then an approximate solution to y is w, found in the following manner: 

w = boundary value 0 

kl = hf(xi, wi) 



h 1 
2 i 2 1  k2  = hf(xi + -  , w + - k  ) 

h 1 k3 = hf(x + ?  , w + y k 2 )  i i 

k4 = hf(xi+l , w i + k3) 

= - 1 (kl + 2k2 + 2k3 + k4) 
W i+l 6 

f o r  each i = 0, . . . , N - 1.  

Applying this to equation (36) with 50 intervals we arrive at the 

following values: 

For i = 0 

2 k l  = + 7 . 4 0 7  x 10 

3 k2 = -2 .003  x 10 

4 kg = - 1 . 9 3 1  x 10 

6 k4 = - 7 . 4 6 0  x 10 

and 

6 w1 = - 1.250 x 10 

For i = 1 

10 k l  = - 3 . 1 2 7  x 10 
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18 k2 = -4.889 x 10 

35 k3 = - 1.195 x 10 

k, = -2.865 x 10 68 
4 

The calculation for k causes overflow on the VAX 11/780, which has an 

upper bound of order 10 . 
4 

38 

Analytical Method 

Inspection of equations (21) and ( 3 4 )  reveals t h e m  t o  be of 

the following general type: 

There exists a closed form solution [16 ]  for this type of equation. 

Finding closed form solutions avoids the use of numerical integrators, 

therefore rendering the problem of stiffness more manageable. 

solution is found by using the transformation 

The 

U' 
Y=, 

The equations then take the form 

U" + Bu' - AU = 0 

whose solution is found in the following manner. 

The characteristic equation is 

28 



r2 + Br - A = 0 

= - 1 (-B 2 7 + 4A) r 1,2 2 B 

u = Clexp(rlz) + C2exp(r2z) 

then 

rlexp(rlz) + Cr2exp(r2z) 
= exp(rlz) + Cexp(r2z) 

where 

Similarly, equations (23) and (36 )  have the form 

and can be solved using the same transformation 

U' 
Y = y  

yield ing 

u" = Au 

u = clexp(Jji;Z) + C2exp(-fiz) 

29 



with 

Equations (22) ,  (24-26), (35 ) ,  (37-39) are of a more complicated type 

- -  dy - - F  (z)y  - G ( z )  
dz 

but  can be e a s i l y  solved us ing  t h e  Var i a t ion  of P a r a m e t e r s  technique 

[91 

z Z 2' 

y = exp(- F(z)dz)  [ C - I G(z')exp (I F(z)dz)dz '  ] 
Z Z Z i i i 

Equations (22),  (24) ,  (35)  and (37) conta in  func t ions  whose 

va lues  are known only a t  c e r t a i n  po in t s ,  r equ i r ing  quadra ture  evalu- 

a t i o n s  t o  determine t h e i r  so lu t ions .  These techniques,  though, are 

known t o  be h igh ly  s t a b l e ,  a l lowing s o l u t i o n s  t o  be obtained a t  lower 

L e w i s  numbers. 

used t o  determine t h e  i n t e r f a c e  p o s i t i o n  and t h e  temperature and con- 

c e n t r a t i o n  p r o f i l e s  a t  each t i m e  s t ep .  

The same i te ra t ive  technique as descr ibed earlier is  

Now t h e  s o l u t i o n s  of equat ions (21)-(24) and (34)-(37)  are: 

r l exp( r l z )  + C 1 2  r exp(r2z)  

exp(r lz )  + Clexp(r2z) 
Y; = 
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L L 

N- 1 

AT 
exp( jzf (FR+Y; ) d z ) d z ' ]  (49) = exp(-  (F,+Y;)dz) [ C2- 1 - Z f  Zf OR 

2' Z Z 

C2 = - B2Y 

6K - B, 
I 

bK + B1 c5 = 

N- 1 

KAT 

2 0  2' 

e x p ( l  Y;dz)dz' ] = e x p ( - I  Ys dz)  [ C6-l - 
0 0 

N ' N  S 

Z s  
0 

- B1 C6 = - A 
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1 FR 
= T [ - P f  r 1Y2 R 

N "f FR N z cN-l  "f FR N 
RR = exp(- I (-+Xx, )dz)  f *exp(- I (-+xR )dz)dz '  

z p R  z z' p R  

6z = -  t anh (  - ) 
?T 

N 

S S 

(53) 

(54) 

Now t h e  s o l u t i o n  t o  equat ions (25),  (26),  (38) and (39) can be found 

us ing  t h e  Var ia t ion  of Parameters technique [ 9 ] .  

(56) 
N z N ' N  ' N  

OR ( z )  = e x p (  I YR dz) [ C g  + I  Z R  exp( - f YR dz)dz '  3 
z z 2. i i 1 

(57) 
N ' N  N ' N  

Os (2) = exp( Ys dz) [ Cl0 + I z  Zs exp( - Ys dz)dz'  ] 
z i z i z. 

1 

(59) 
N z '  N ' N  z N cs (2) =exP(  I Xs [ C I 2  + I  Rs exp( - I  Xs dz)dz '  ] 

z z z i i i 

32 



The cons t an t s ,  C and Cll, r ep resen t  t h e  temperature and con- 9 

c e n t r a t i o n  of t h e  l i q u i d  a t  t h e  i n t e r f a c e .  

C12, r ep resen t  t h e  temperature and concent ra t ion  of t h e  s o l i d  a t  t h e  

i n t e r f a c e .  Cg and C must be equal .  Since only t h e  cond i t ions  a t  

t h e  i n t e r f a c e  are known, t h e  i n t e g r a t i o n s  i n  equat ion (56) and (58) 

are performed from the  i n t e r f a c e  up, and, i n  equat ions  (57) and (59) ,  

from t h e  i n t e r f a c e  down. 

The cons t an t s ,  Cl0 and 

10 

Asymptotic approximations w e r e  used whenever p o s s i b l e  t o  

reduce t h e  chance of overflow e r r o r s .  For example, equat ion (50) i s  

evaluated as 

N Ys = 6 

whenever 

Also, exponents were combined as much as poss ib l e .  I n  equat ion  (59) ,  

f o r  example, 

w a s  evaluated f i r s t ,  then t r e a t e d  as a cons tan t  so  t h a t  i t  could be 

c a r r i e d  wi th in  t h e  i n t e g r a l  and added t o  t h e  exponent be fo re  t h e  

exponents are evaluated.  

Many of t h e  i n t e g r a l s  could no t  be solved exac t ly  because they 

conta in  t h e  concent ra t ion  o r  temperature func t ions  whose va lues  are 

known only a t  c e r t a i n  po in t s .  They were t h e r e f o r e  solved us ing  a 15 
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point Gauss-Legendre quadrature, with maximum interval size of 0.1, 

and a cubic spline interpolation [ 4 ]  between the known points. 

b 15 ri(b - a) + b + a 
I F(x)dx = (b - a) C wiF ( 
a i= 1 

) 2 

The roots and weights (r.,w ) were obtained from Table 2 . 2  in ref 1 i  

[ 5 1  

This method gave good results down to a Lewis number, Ps, of 

order Below this value, problems occur due to the accuracy of 

the integrator, when applied to equation (59). The error occurs when 

is evaluated. To demonstrate this, using the funct-ms 

6z tanh( -) 6 = -  N 
K 

S S 

and 

6z tanh(-) 

34 



we evaluate equation (60 )  in closed form. Note that these equations 

are the same as (54) and (55), except for the missing concentration 

term in (55). The exact solution of (60) then is 

6 sech(-) - 1 
JI;- 

S 

when evaluated from zero to one. 

tion approaches the value of -1.0. Evaluating equation (60) numer- 

ically, using a 15 point Gauss-Legendre quadrature with 10 intervals, 

and the following parameters 

For large values of 6/< the solu- 

K = 2.7 

pS = 

AT = 1 

z = o  i 

z = l  

we get the value of -1.36, which is a difference of .36 from the true 

value. Table 1 lists the results of different interval sizing at 

different values of P . 
S 
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Table 1 

The Effects of Different Interval Sizing on the Accuracy 
of a Gauss-Legendre Quadrature Technique 

Value 
of P, 

Number of 
Intervals in 
Quadrature 

Difference 
from 

Actual Value 
- 

10 

10 

100 

250 

100 

250 

500 

2.33 x 

3.62 x 10-1 

1.22 

1.30 

5.24 

3.15 x lo-’ 

4.60 x 

Reasonable accuracy is obtained for Ps of order using 250 

intervals. 

this means 3750 function evaluations (actually, equation (55) has an 

additional integration, requiring 56,250 evaluations), which means a 

high probability of round-off error occurring during the computations. 

However, combined with a 15 point quadrature formula, 



Computation Results 

As previously discussed, the numerical technique gave good 

results down to a Lewis number, Ps, of 10 -4 . Alloys having this high 

rate of diffusion in its solid phase are rare. For more common 

alloys, such as lead-tin (Pb-Sn), the Lewis number is of order 10 -10 

[7]. 

derived. 

a Lewis number, Ps, of order 10 

on the temperature differences 

Because of this restriction the analytical technique was 

With this technique, we were able to get results down to 

-6 . The following parameters, based 

To - T = 5' m 

Tm - T1 = 2' 

T2 - T = 4' m 

were used in the calculations. 

K = 2.326 

M = -  0.22 

L e - 27.7 

-2 PR = 10 

B1 = 1.00 

B2 = 0.01 

R = 1.00 or 1.06 

6 

k = 0.580 y = -  0.14286 

A = 2.703 AT = 1 
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-4 A more real is t ic  l i q u i d  L e w i s  number, Pk ,  is  of order  10 [8 ] .  Compu- 

of i n  order  t o  keep t a t i o n s  w e r e  performed a t  a L e w i s  number, 

a t  least t h e  r a t i o  of l i q u i d  t o  s o l i d  d i f f u s i o n  rates realist ic.  Com- 

par i son  of t h e  two techniques a t  P = i s  shown i n  F igures  3, 4 

and 5. The i n t e r f a c e  p o s i t i o n  and t h e  temperature and concent ra t ion  

a t  t h e  i n t e r f a c e  as a func t ion  of t i m e  are shown t o  match e x c e l l e n t l y .  

The s o l i d  l i n e s  r ep resen t  t he  a n a l y t i c a l  s o l u t i o n  while  t h e  c i rc les  

r ep resen t  t h e  numerical  so lu t ion .  

pk  , 

S 

The next  series of p l o t s ,  Figures  6 ,  7 and 8,  show concentra- 

t i o n  d i s t r i b u t i o n s  a t  d i f f e r e n t  L e w i s  numbers a t  t i m e  s t e p  i n t e r v a l s  

of 25, wi th  t h e  f i r s t  t i m e  s t e p  a t  25  and t h e  las t  a t  200. The i n t e r -  

f a c e  p o s i t i o n  i s  seen as t h e  v e r t i c a l  l i n e s  with t h e  s o l i d  phase t o  

t h e  l e f t  and t h e  l i q u i d  phase t o  the  r i g h t .  

L e w i s  numbers are  very  apparent .  I n  Figure 6 ,  a t  L e w i s  number 10 , 

t h e r e  i s  s i g n i f i c a n t  d i f f u s i o n  i n  t h e  s o l i d ,  whi le  i n  F igure  8,  a t  

L e w i s  number 10 , almost no d i f f u s i o n  i s  no t i ceab le .  The only 

movement i s  a t  t h e  lower su r face ,  which h a s  had more t i m e  f o r  d i f f u -  

s i o n  t o  occur.  

The e f f e c t s  of lower 

-4 

-6 

Figures  9-20 show how t h e  i n t e r f a c e ,  concent ra t ion  and t e m -  

p e r a t u r e  vary wi th  t i m e  and t h e  temperature wi th  i n t e r f a c e  p o s i t i o n  

a t  t h e  t h r e e  L e w i s  numbers, and We can see i n  

F igures  9,  13 and 17, t h a t  t h e  v e l o c i t y  of t h e  i n t e r f a c e  is  decreas- 

ing  as t h e  a l l o y  s o l i d i f i e s .  The upward motion of t h e  i n t e r f a c e  has  

a l l  b u t  stopped. This  is  due t o  equat ion (7), which determines t h e  

melt ing temperature of t h e  a l l o y .  A s  seen i n  the  phase diagram, the  

melt ing temperature decreases ,  as concent ra t ion  inc reases ,  t o  a 
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c e r t a i n  va lue  and then begins  t o  increase .  Allowances f o r  t h i s  have 

not  been made and s i n c e  t h e  concent ra t ion  of t h e  l i q u i d  w i l l  be ever 

increas ing ,  t h e  melt ing temperature w i l l  con t inua l ly  decrease ,  which 

can be seen i n  F igures  10, 12, 14 ,  16, 18 and 20. It i s  a l s o  

i n t e r e s t i n g  t o  no te  t h a t  t h e  v e l o c i t y  of t h e  i n t e r f a c e  i s  p ropor t iona l  

t o  t h e  L e w i s  number. The lower L e w i s  numbers cause slower s o l i d i f i c a -  

t i on .  Due t o  t h e  slower d i f f u s i o n  ra tes ,  t h e  i n t e r f a c e  concent ra t ion  

is  h igher  and t h e r e f o r e  t h e  melt ing temperature i s  lower,  r equ i r ing  

more t i m e  f o r  t h e  a l l o y  t o  reach t h e  melt ing temperature s i n c e  t h e  

hea t  rates remain t h e  same. 

F igures  21-23 i l l u s t r a t e  t h e  e f f e c t s  of d i f f e r e n t  d e n s i t i e s  

i n  t h e  s o l i d  and l i q u i d  phases.  

when t h e  dens i ty  of t h e  s o l i d  i s  g r e a t e r  than t h a t  of t h e  l i q u i d .  

The temperature and concent ra t ion  wi th  r e spec t  t o  t i m e  does not  change 

s i g n i f i c a n t l y .  

The i n t e r f a c e  moves a t  a slower rate 

Figures  24-29 show the  o v e r a l l  temperature and concent ra t ion  

distributions f o r  t he  d i f f e r e n t  L e w i s  numbers. The concent ra t ion  

d i s t r i b u t i o n s  are represented  by t h e  s o l i d  l i n e s  and t h e  temperature 

d i s t r i b u t i o n s  by t h e  dashed l i n e s .  

I n  Figure 30 we  see t h e  comparison of r e s u l t s  obtained from 

-6 t he  a n a l y t i c a l  method a t  Ps = 10 

r e s u l t s  [13] deduced from t h e  phase diagram t o  t h e  l i m i t  of zero 

d i f f u s i v i t y  i n  t h e  s o l i d  (Figure 30-B). 

(Figure 30-A) wi th  i n t u i t i v e  
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