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ABSTRACT

The use of the Weibull failure distribution model has
proven valuable in reliability analysis within the
aeronautics industry. The Weibull analysis of samples with
a high percentage of non-failures, or censored
observations, must be undertaken using one of several
large-sample approximations to the distributions of
parameter estimators, since exact methods for such
distributions are mathematically intractable. It is
unknown whether these approximations will produce
satisfactory results when used with samples, typical of the
space shuttle main engine data, which contain small (fewer
than 15) numbers of failures. An objective of this study
was to design and implement a Monte Carlo computer
simulation to assess the usefulness of the Weibull methods
for such small-failure samples. In particular, under
varying assumptions concerning failure distribution
parameters and number of failures in the sample being
analyzed, approximate 90% confidence intervals for
predicted times to failure for different percentages of
components are calculated by numerical methods. The
confidence coefficient for these intervals is then tested
by determining what percentages of intervals trap the true
values of the parameters being estimated. Also,
modifications to a Weibull analysis computer program
incorporating methods for calculating approximate
confidence intervals and including a number of options for
analyzing interval data (as opposed to point data) are
described.



INTRODUCTION

The Weibull probability distribution has become a widely
used lifetime distribution model since its introduction in
1951 (3). It has been found to be especially important in
reliability analysis of manufactured items. Although there is
a large body of literature on the distribution and its
statistical properties, the distributions of many of the usual
parameter estimators seem to be mathematically intractable.
The mathematical difficulties encountered in analyzing these
estimators are compounded when estimating with samples that
include data which has been censored in nontrivial ways. The
usual methods employed in this situation involve the use of
some statistics whose asymptotic behaviors are understood, but
whose applicability for small samples is unknown or unsure.

More particularly, Weibull analysis has proven to be
quite valuable in reliability studies for aircraft engine
components (1). This success has encouraged the exploration
at Marshall Space Flight Center of the applicability of
We1bull techniques in reliability analysis for components of
the space shuttle main engine (SSME). A primary restriction
for the SSME environment is a severe limitation on the test
sample size. Test and flight results are collected from fewer
than 30 engines. For major SSME components, data samples may
contain fewer than 5 failures.

This report documents the incorporation of a number of
additional capabilities into an existing Weibull analysis
computer program and the results of a Monte Carlo computer
simulation study to evaluate the usefulness of the Weibull
methods using samples with a very small number of failures and
extensive censoring. Since the censoring mechanism inherent
in the SSME data 1is hard to anajyze, it was decided to use a
random censoring model, generating censoring times from a
uniform probability distribution.

Section 1 of the report describes some of the statistical
techniques and computer programs that are used in the SSME
Weibull analysis. The methods documented in (1) were
supplemented by adding computer calculations of approximate
(using iterative methods) confidence intervals for several
parameters of interest. These calculations are based on a
likelihood ratio statistic which is asymptotically a chi-
squared statistic with one degree of freedom, the basic method
being taken from (2).

The assumptions built into the computer simulations are
described in section 2. The simulation program and the
techniques used in it are described there also. Simulation
results are tabulated for various combinations of Weibull
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shape parameters and the numbers of failures in the samples,
in the chart of section 3. Conclusions concerning the
validity of the chosen Weibull model and estimators, for the
small samples characteristic of the SSME reliability analysis,
are drawn from the simulation results.

In section 4, some implications of working with interval
data, as opposed to point data, are explored. Modifications
to the Weibull analysis computer program, with several options
for handling interval data are described briefly. Finally, in
the final section, some conclusions c¢oncerning the
applicability of the Weibull methods to the current SSME
hardware analysis are reviewed and summarized.

1. DESCRIPTION OF STATISTICAL MODEL.

A brief description of the statistical model and methods
used in the SSME reliability analysis is given in this
section. For a more complete discussion of these methods and
tools the reader should consult references (1) and (2). The
Weibull distribution used is the two parameter Weibull whose
probability density function is:

-
f(t) = hp(nt exp(-(r\,t)a ) t>0 .

The parameter P 1is called the shape parameter of the
distribution. For many applications ®B-values in the range .5
to 3.5 are reasonable., When® =1, the Weibull reduces to the
standard negative exponential distribution. The parameter i
is called the scale parameter of the distribution and changes
in . simply change the horizontal scale and do not alter the
basic shape of f(t). It is easily shown that for any Weibull
distribution, no matter what the value of p, Pr(t < m ) is
equal to 1- e™! (approximately .632). For this reason p is
sometimes called the characteristic life of the corresponding
family of Weibull distributions. Some typical Weibull
probability density functions are illustrated in figure 1.1.
For convenience, n 1is taken to be 1 for each curve in that
figure.
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FIGURE 1.1

The basic technique in the SSME use of.the Weibull

distribution is to estimate the parameters £ and nh , and
then calculate survival times for various percentages of
components. For example, t, (zestimated time for 10%

failures) would be calculated by solving F(t)=.1, where F(t)
is the cumulative distribution function approximated by using
the estimates calculated for P and p . In particular, F(t)
is given by:

F(t) = 1 - exp(-(l\,t)p ) t>0.

Two techniques are used to estimate @ and N . A
ranked regression model produces estimates for g and w and
provides for a simple graphical evaluation of whether the data
seems to fit the Weibull model. Graphical estimation of the
t values can then be made. A second technique 1is to
calculate maximum likelihood estimates,say ﬁ and . , for g
and and then estimate the tp using F(t) as indicated
above. Both of these techniques are included in a computer
program given in (1).

It was deemed desirable to modify the above referenced
program so that confidence intervals for the maximum
likelihood estimators could be calculated. The type of
censoring present in the data makes the calculation of exact
confidence intervals impossible. Censored (or suspended)
times can be observed for any values of t, and the censoring
pattern is difficult to predict. The primary reason for this
unpredictibility is that times may be censored for a large
variety of reasons, 1including failures of other engine
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components which would terminate a test. Additionally, there
is considerable modularity built into the SSME and as a
consequence, times at risk.for a given type of component are
likely to be very variable from particular component to
component. In the statistical analysis and simulation
studies, type I (see (2) for a discussion of various types of
censoring) censoring was assumed. Basically this assumption
independently assigns to each component both a failure and a
censoring time. The time observed is then the smaller of the
two times.

There are two standard methods which can be used to
calculate approximate confidence intervals for the Weibull
paramters mentioned above. For large samples (30 or more
failures), ( % ,\ ) has an approximate bivariate normal
distribution whose covariance matrix can be estimated in a
straightforward manner,. The approximations involved in this
method are not generally adequate for samples with fewer than
30 failures (see (2)), and thus the method is not appropriate
for the SSME analysis.

A second method which seems to be a better choice for
moderately sized samples (around 20 failures) uses a
likelihood ratio statistic. This method has been incorporated
into the computer program being used at MSFC. Suppose the
sample consists of observations x,,x,,X;, ... ,Xx, , F= set of
indices j, for which xj is a fallure (as opposed to a
censored time) and r= number of failures in the sample. The
method for calculating confidence intervals for tp is based
on the fact that under the assumption that t, = t* , the
statistic 5, (t*) has approximately a chi-squared distribution
with one degree of freedom. S (t") is given by:

5,(t¥) = -2 1og L(F, W) +21log LLP,R ).

Here 1log L 1is the log 1likelihood function given by:

log L{p,n) = rlogf -rplogn + (?-1).§Flog x:)—_?,'(xi/h)p
4 ]

Also ? and M are the maximum likelihood estimators
calculated from the given sample, and $ 1is calculated
(approximated) by solving the following equation iteratively:

r/g ~-rlog t + 3 log xj +log(1-p) {_(x /¥ ) log(x,/t )=0.
4€¢F i

After ?’ is found then W /( log(1-p))/g

In the computer program, ® is calculated using a hybrid
secant/false-position method. Al'confldence interval for tp
is found by finding the set of values t* for which S <‘x.y,
This is accomplished in the computer program by startlng wlth
the point estimate for tp (based on the estimates ﬁ and R ),

and testing values for t™ diverging from te in both
directions until values are found on either side of t(; for
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which S, exceeds the appropriate critical value.

In a similar manner, 4« ‘-confldence interval for P can
be calculated by finding all values $ for which S 67 . Here

S,(F) = -2 log L(BY, nF) + 2108 L(B ,R)

where log L, 5 and ﬁl are as before and

woogt o Ye*
o= (2 <l
L=

Representative output from the computer program is given in
figure 1.2.

THE FOLLOWING ESTIMATES ARE RANKED REGRESSIONESTIMATES

BETAR- 1.139? ETA- 4
Re 8.96478Rss2- B.93865 18.33

00 YOU WISH TO DO MAXIMUM L IKEL IHOOD
: R Y on ESTIMATION?

DO YOU UISH 88% DR 98X CONF IDENCE INTERURLS?
TYPE IN 88 OR 98.

99
MAXIMUM LIKELIHOOD ESTIMATES FOR THIS CASE FOLLOW
BETR= 1.3264 ETA- 440.80
98x BETAR CONF IDENCE LIMITS 8.83 ... 1.93
PERCENTRGE OF FAILURES ESTIMRTED TIME 90x CONF. INTERUAL
8.1 2. 8. --- 12.
1.8 ' 14. a. --- 41.
10.9 81. 32. === 154,
20.0 142. 7. -=- 249.
50.0 334. ao1. --- 6062.
63.2 ETA 441. 286. --- 859.
90.09 827. 496. --- 2eas.
FIGURE 1.2

A primary problem with the above analysis in the SSME
case is that the methods for calculating the approximate
confidence intervals are based on asymptotic distribution
approximations, whose validities are in question for such
small samples. The problem is a serious one since the small
size of the samples make us intuitively skeptical of the point
estimates calculated from them and hence anxious to have some
reasonably accurate confidence measure for those estimates.
In order to address this problem, Monte Carlo experiments were
designed and conducted to assess the accuracy, and hence
usefulness, of the confidence intervals being calculated.
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2. SIMULATION SAMPLE GENERATION.

Failure times were calculated by generating a random
number r from the uniform distribution on [0,1) (this was done
using RAN, the built in random number function in the VAX
FORTRAN), and then computing Fr), where F(t) is the Weibull
cumulative distribution function for a given choice of
parameters and . In fact, nn was always taken to be 100
and P was varied. Sample failure times thus generated were
tested, using the standard chi-squared goodness-of-fit test,
against the given Weibull distribution and found to be
representative of that distribution., Censoring times were
generated to follow a uniform distribution.

To generate a sample of times, the number of failure
times to be present in the sample was fixed. Failure times
and censoring times were generated in pairs and the
corresponding observed time was taken to be the minimum of the
pair. Since the number of failures was predetermined for a
given simulation run, the overall sample sizes varied. The
censoring distribution range was varied (ranges to be used
were determined by simulation) so as to achieve
(approximately) the desired average sample size. An average
sample size of 50 was chosen to be representative of a number
of projected SSME sample sizes. Additional Monte Carlo
studies, in which both sample sizes and censoring
distributions will be varied, are planned.

For an occasional sample one or more of the iterative
numerical methods employed in the confidence interval
calculations failed to converge properly. Such samples were
omitted in the subsequent Monte Carlo analysis. The number of
samples for which this occured was small (on the order of 1%),
and so it is clear that ignoring them could not unduly bias
the simulation results. At any rate, when such samples occur
in practice, they would not be evaluated using the confidence
interval calculations.

3. SIMULATION RESULTS.

Most of the Monte Carlo simulations that have been run
are summarized in Table 3.1. Some additional isolated runs
with varying sample sizes and censoring distributions have
been made, but these were not systematic enough to include
here. It might be noted, however, that these runs showed
results consistent with the results reported here. A more
thorough collection of simulation results will be reported on
later.
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For each of the 12 simulation runs (each column
represents a run) summarized in Table 3.1, 100 samples of
approximate size 50 each were used. Each run of 100 simulated
samples took approximately an hour of computing time on a VAX
11/780, which explains why more extensive runs were not made.

The upper part of Table 3.1 contains the number (out of
100) of calculated approximate 90% confidence intervals which
actually trapped the true parameter values being estimated.
Lawless (2) has predicted that these confidence intervals
would tend to be too large (and hence trap true values more
than 90% of the time) for samples with small numbers of
failures. Our results seem to support that prediction when
the number of failures is 10 or 20, but such an effect is not
obvious in the 3 or § failure cases. More extensive
simulations will be needed to gain insight into this matter.

Eta = 100
Beta=1.5 | Beta=2.0 “ Beta=3.0
Failures=| 3 5 10 20 3 5 10 2 §3 s 10 2

P |ss |91 |90 {99 [l8s {92 |93 [89 [l 95 [87 |90 |84
tor {93 (89 [93 |99 |88 |90 [93 (88 [l88 |90 |91 |92 Number of
t.o |93 |89 |93 |98 [ 87 |92 [90 [89 for |90 |91 |90 Confidence
——1 Intervals
t. (87 91 Jor [96 Jl92 {92 o4 ol [ro1 195 190 [92 | rrapping
t., |86 [91 [88 [95 [f91 [91 [95 [89 [ 90 [96 [96 |95 Actual Values

4,5 (84 |91 |84 [95 |l'sg [86 |93 |95 |[90 l92 |97 |97
R= 4,585 [90 |85 |96 [[88 {86 |95 |94 [[90 |91 (96 |96

t.q 90 (94 91 {91 |94

Average ﬁ

? too large

o~
Average N

A too large

Each column based on 100 samples of (approximate) size 50.

TABLE 3.1
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In the bottom part of Table 3.1, the bias in the
estimators 4 and R is examined, and we see that for smaller
samples the bias in each estimator grows larger. Both‘ﬁ andR
are biased high (in average), but in the case of R , median
values are below the actual parameter values. The possibility
of constructing (by simulation) a table of bias-correcting
multipliers as functions of sample size, 3‘,'R , and the
number of failures may be worth considering.

Although these simulation results are not extensive
enough to provide a definitive conclusion, the tentative
conclusion 1is that the approximate confidence intervals
calculated using the likelihood ratio statistic are reasonably
accurate even for samples with very few failures. Thus, the
calculation of these intervals would seem to be a useful
addition to the SSME Weibull analysis methodology.

We should note here that the calculations of the maximum
likelihood estimators and the associated approximate
confidence intervals are based on the assumption that our
failure times are true point data, i.e. that we know the
failure times exactly. Whenever failure times are known only
to the extent of falling in some time interval (interval
data), the above calculations do not apply. To use the above
methods with interval data, we must make some assumption about
the placement of failure times within failure intervals.
Since much of the SSME failure data is interval data, we will
pursue this issue in the next section.

4, INTERVAL DATA CONSIDERATIONS.

The most conservative approach in working with interval
data is to make no additional assumptions about the true
failure times and use only the failure intervals in any
statistical analysis. It is not difficult to modify the
likelihood function to accomodate interval data, and calculate
the maximum likelihood estimates for p and nn based on this
function. The numerical procedures are a bit more complicated
and sensitive than in the point data case; hence reasonably
good beginning guesses for pand n are required in order for
the iterative methods to converge properly. The capability to
calculate interval data maximum likelihood estimates for p and
N has been added to the Weibull analysis computer program
being used at MSFC.

One approach which has been used in analyzing SSME
interval data is to make the optimistic assumption that all
failures in a failure interval occur at the right hand
boundary of the interval. As might be expected, the estimates
for p and A that are calculated using the interval data
method and the point data method (with the above assumption)
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are quite different for most sets of data. Of course the
differences in these estimates will decrease as the intervals
involved get smaller, but for the interval sizes typical of
current SSME data, these differences can be expected to be
significant.

Chart 4.1 illustrates a range of possible assumptions
about failure time placement for interval data. All of these
choices have been included as options in the Weibull analysis
computer program. This capability allows an exploration of
the implications arising from various assumptions about the
unknown failure times. In the computer calculation for choice
A (interval data method), the initial "guesses" for P and
n are gotten by calculating estimates using choice D.

+
Choice A f‘ r f? No assumptions.
LA L}
%) T
4 failures 3 failures
Choice B N ;e 3 Optimistic
) g assumption.
,/”;a -
4 failures 3 failures
at +, at 44
Choice ¢ - 2 . t3 "Neutral®
iy v ’ assumption #1
A /!
4 failures 3 failures
at midpt. at midpt.
* te €3 "Neutral"

Choice D o —-0—0—8
assumption #2

failures equally spaced
-none at interval endpoints.

+
Choice E & "' f’ Pessimistic
b assumption.
2 1
4 failures 3 failures
at-e‘ at +L
CHART 4.1
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CONCLUSIONS

The primary conclusion of this study is that Weibull
methods can be of positive value in SSME hardware reliability
analysis. However, caution should be exercised in the use of
these methods with small-failure samples and interval data.

When using point data, it is important to consider
confidence intervals because point estimates can be quite
erroneous and misleading, especially when samples contain very
small numbers of failures. One of the primary results of this
study was to implement computer methods for calculating
approximate confidence intervals from such samples and to
verify that these approximate confidence intervals are
reasonably accurate.

The use of the Weibayes analysis method discussed in (1)
is especially risky for current SSME use because of the lack
of a significantly large SSME failure data base. In fact,
making a priori estimates of betas from the existing SSME
failure data base is not much better than simple guessing.

When analyzing interval data, it is important to realize
that any assumptions made about the placement of the failure
times within failure intervals is likely to have more impact
upon the statistical predictions made from that data, than the
choice of a particular statistical method, or even model, is
likely to have. This is not to suggest that such assumptions
should never be made, but rather to point out that when they
are made, careful consideration and study should be given the
choice of an assumption. Additions to the Weibull analysis
computer program allow explorations of the implications of
various of these assumptions.

Finally, no matter what assumptions are chosen, it is
imperative to remember that the predictive power of any model
is limited by the integrity and informational content of the
data used as input to that model. The SSME data is typically
interval data with a small number of failures, and no
statistical model or method will be capable of extracting
extremely dependable and accurate predictions from it.

In summary, the modified Weibull analysis computer
program now provides a range of capabilities and options for
treating estimating methods and data assumptions. These
capabilities enhance the chances that the Weibull model can be
used to advantage in SSME hardware reliability analysis. When
applied and interpreted with the caution dictated by the
considerations outlined here, the model should provide an
important additional tool for SSME data analysis.

N
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Note: Computer program listings (both Weibull analysis

and simulation programs) are available from author.
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