```
(NASA-CR-176765) REVIEW AND EVALUHTMON OH
```



```
FLON DISTORTION PWEDTCTIOM ANL COMPEMEN
```



```
(kansas Univ. Center yor Bescacch. Inc.) G3/34 42988
```

REVIEH AND EVALOATION OF RECENT DEVELOPMENTS IN MELIC INLET DYNAMIC FLOW DISTORTION PREDICTION
and
COMPUTER PROGRAM DOCUNENTATION AND USER'S MANUAL

ESTIMATING MAXIMUM INSTANTANEOUS INLET FLOW DISTORTION FROM STEADY-STATE TOTAL PRESSURE MEASUREMENTS WITH FULL, LIMITED, OR NO DYNAMIC DATA

- MAY 986 REGEIVED - mass sm racums

Mress DPF

The University of Kansas Center for Research, Inc.

REVIEN AND EVALUATION OF RECENT DEVELOPMENTSIN MELIC INLET DYNAMIC FLOW DISTORTIONPREDICTION
and
COMPUTER PROGRAM DOCUMENTATION AND USER'S MANUALESTIMATING MAXIMUM INSTANTANEOUS INLET FLOWDISTORTION FROM STEADY-STATE TOTAL PRESSUREMEASUREMENTS WITH FULL, LIMITED, OR NO DYNAMICDATA
NASA Grant No. NAG 3-11
FINAL REPORT
Volume II
William G. Schweikhard Principal Investigator
and
Stephen R. Dennon
Graduate Research Assistant
April 1986

PART I

REVIEH AND EVALUATION OF RECENT DEVELOPMENTS IN MERLICK INLET DYNAMIC FLOW DISTORTION PREDICTION

A brief review of developments in the Melick method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melick approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modeling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are briefly evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets.

A nonlinear mean-line following vortex model is proposed and evaluated as a potential oriterion for improving the peak instantaneous distortion map generated from the conventional linear vortex of the Melick method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps.

Results of the developments and modifications discussed compare well with experimental measurements, both in the prediction of peak instantaneous distortion levels, and the peak instantaneous maps. Inlet data sets include subsonio, transonic, and supersonic inlets under various flight conditions. The methods discussed can be used in preliminary inlet design phases in the interest of reducing development costs.

TABLE OF CONTENTS

page
SUMMARY i
LIST OF SYMBOLS iin
INTROQUCTION 1

1. REVIEW OF BASIC CONCEPTS AND DEVELOPMENTS 4
A. The Melick Vortex Model 4
B. The Minimum Dynamic Measurement Approach E
C. The Turbulence Modelling Approach 7
2. A MODIFIED VORTEX MODEL 9
A. Introduction 9
B. Method of Approach 10
C. Mathematical Formulations 13
3. RESULTS AND DISCUSSIONS 19
A. Subsamic Inlet 19
日. Transonic Inlet 20
C. Supersonic Inlet 21
口. General Camments 2e
4. The Melick Approach 22
5. The Minimum Dynamic Measurement Approach 24
6. The Segmentes Vortex Approach 24
7. CONCLUSIONS 25
REFERENCES 27
TABLES AND FIGURES (begin) 28

LIST OF SYMBOLS

Symbols	Description
a	vortex core radius (fig. 5)
-	mean vortex core size
dP_{T}	total pressure fluctuation
${ }^{d P_{T}}$	root mean square total pressure fluctuation
e	exponential e^{x}
erf	error function erf (x)
F	root mean square data cutoff filter frequency
k	distortion factor
\bar{K}	mean instantaneous distortion factor
$k_{5 s}$	steady-state distortion factor
$k_{\text {max }}$	maximum instantaneaus distortion factor
P	pressure
P_{S}	static pressure
P_{T}	total pressure
$P_{T_{5 S}}$	steady-state total pressure
q	dymamic pressure, steady-state
r	radius from vortex centerline
rms	root mean square
r_{p}	radial location of probe
r_{v}	radial location of vortex core
\cup, U_{2}	steady-state inlet flow velocity

V	vortex induced velocity
V_{T}	tangential swirl velocity about vortex
$V_{T_{\text {max }}}$	vortex strength - maximum swirling velocity

Subseripts

f	filtered
inst	instantaneous
m	measured
max	maximum
min	minimum
P	predicted
rad	rootial mean square
rms	tangential
T	steady-state

Superscripts

- mean value \bar{x}

Greek Symbols

β, γ	vortex orientation angles
α, β	angle of attack, sideslip angle
$\boldsymbol{\rho}$	density
$\boldsymbol{\sigma}$	standard deviation

INTRODUCTION

Inlet turbulence and other flow nonumiformities have long been known to significantly affect the operational stability of gas turbine engines, especially in high performance military aircraft. This inlet flow distortion is traditionally measured at the compressor face of the engine with an array of total pressure probes mounted on rakes. The time-averaged steady-state pressures at each of the probe locations are processed and combined in such a way es to generate various steady-state distortion factors and an engine face pressure contour map (see Table 1 and Figure 1, respectively). These then correlate to engine surge margins.

The distortion problem is intensified by the time variant component of the total distortion level. Random fluotuations in the total pressure measurements can generate instantaneous distortion levels which can induce engine surges even when the steady-state component is well below compressor stall margins. It becomes important, therefores to be able to predict the most probable peak instantaneous (dynamic) distortion level early in the inlet design effort.

One method of determining the dynamic distortion level of an inlet is to use an array of high response total pressure probes, with an extensive inventory of support instrumentation and computational equipment to record time histories of the pressure fluctuations for each of the probes. These data are then screened, using the Dynamic Data Editing and Computing (DYNADEE) system, to determine an experimental peak distortion level using the same definitions as the steady-state case. This method is generally quite accurate, compared to statistical methods described later, but it is also extremely expensive in terms of instrumentation and
computational requirements. In order to reduce the cost of inlet distortion tests, several statistical methods have been developed to predict the dynamic distortion component, given the steady-state distortion and limited dynamic date (ref. 1, 2, 3).
of the many statistical methods of predicting dynamic distortion levels, the most efficient is Melick modelling approach. In the Melick method, it is postulated that the dynamic disturbances in the inlet flow can be modelled by the pressure disturbances resulting from a series of randomly distributed vortices convecting through the inlet duct. Filtered and unfiltered root mean square (rms) total pressure fluctuation levels are used to identify the main varjables in this vartex flow model (ref. 2, 3, 4).

The main advantages of the Melick method include low cost relative to other techniques, as well as the fact that it can be used online, while the test is in progress. It has been shown that further cost reduction can be atteined by reducing the quantity of dymamic data (ref. 2, 3). In fact, Chen (ref. 3) has derived and demonstrated a new technique for predicting the peak distortion levels with only the steady-state distortion data, that is, with no dymamic data.

One of the main disadvantages of the Melick modelling approach is it is not as accurate as some methods in the generation of the peak dynamic distortion patterns in the engine face contour map. This is due primarily to a limitation in the vortex flow model, namely, the use of a single Iinear vortex in the generation of the peak instantaneous pressure array. More specifically, the peak instantaneous pressure array is computed by placing a linear vortex along a portion of the mean pressure line in such a way to amplify the distortion pattern pressures (fig. 3). The size and strength of this vortex is determined as a function of the most probable peak instantaneous distortion level. It has
been suggested that a new concept in vortex modeliing cauld improve the accuracy of the predicted peak dynamic distortion pattern (ref. 2).

It is apparent that the mean pressure line in distortion patterns is not generally straight. In most cases, the mean line can be seen to arc across the engine face, frequently forming a distorted ring. One possible solution to the vortex modelling problem is to replace the single straight vortex oriented along a portion of the mean line with a curved mean-line-following vortex. This nomlinear vortex (or vortex ring, where applicable) could provide a more accurate amplification of the pressure levels in the vicinity of the vortex.

In the present work, the concept of replacing the linear vortex model of the traditional Melick model with a nonlinear mean-line-following vortex is proposed and evaluated. For the purposes of demonstrating the concept, this new model is simplified by breaking the vortex into a series of vortex segments, one segment for each of the probe rakes (fig. 4). The radius and strength of these vortex segments is retained from the original Melick dymamic data matching process.

The results of the present method are compared to the original single linear vortex model, as well as the DYNADEC results, for a variety of data sets. These data include example subsonic, transonic, and supersonic inlet configurations at various angles of attack and sideslip.

Major objectives of this study are: 1) to review some of the recent developments in dynamic distortion prediction with the Melick method as a foundation; 2) to demonstrate the utility of a new tool for improving the accuracy of peak instantaneous distortion contour maps; and 3) ta evaluate present and recent developments in Melick dynamic distortion analysis.

1. REVIEW OF BASIC CONCEPTS AND DEVELOPMENTS

A. The Melick Vortex Model

The Melick convecting vortex model is a tool used to statistically determine the most probable peak instantameous distortion level, given the steady-state distortion and the root mean square (rms) total pressure fluctuation level at the engine face. It is formulated around the observation that the total pressure fluctuations exhibit random charac. teristics, with a near-normal (Beta/Gaussian) distribution (fig. 2). From Bermoulli's flow relationships, it is easily seen that these total pressure fluctuations can be expressed in terms of perturbations in the steady-state flow velocity. These velocity perturbations can in turn be modelled by time-variant vorticity (fig. 5). Thus the Melick method envisions the total pressure fluctuations as being totally attributed to a series of random vortices (random in size, strength, location, and orientation) convecting through the inlet duct (ref. 2).

According to the Melick model, as a vortex passes through the inlet duct, it would create a fluctuation in the steady-state pressure level at all locations in the measurement plane, that is, the engine face. This pressure fluctuation would give rise to an instantaneous distortion level, computed from any of a variety of distortion factors (table 1). Given the properties of an arbitrary vortex, the resulting velocity perturbations can be determined from simple flow relationships (fig. 5). The pressure fluctuation can again be determined from the velocity perturbation. resulting in an instantaneous distortion level.

It is shown in reference 2 that the statistical properties of the convecting vortices of the Melick model are directly related to the statistical properties of the pressure fluctuations. Specifically, the mean vortex size can be determined from the root mean square total pressure fluctuation level. This is accomplished by computing the rms Fluctuation level resulting from an assumed vortex size and strength, and then comparing the measured rms level. The vortex size is then adjusted until the analytical and experimental rms levels metch.

Once evaluated, the mean vortex properties are then used to compute the mean instantaneous distortion level, which leads to the determination of the most probable maximum instantaneous distortion level. The mean instantaneous distortion is found analytically from the steady-state distortion level and the rms total pressure fluctuation level, along with the mean vortex size (ref. 2). The peak instantaneous value is then statistically extrapolated given the mean instantaneous value, the rms level, and certain statistical parameters (ref. 2). The maximum instantaneous distortion level can be computed for a variety of confidence levels, though the "most probable" (a 50% confidence level) is used in most analyses (fig. 6).

The newly computed maximum instantaneous distortion level is then used to produce the peak dynamic distortion contour map. First, the mean vortex is modified to accomodate the peak dynamic distortion level. This is done by increasing the strength of the vortex until it produces an rms fluctuation level, and consequently a distortion level, which matches the maximum instantaneous distortion level. When this new vortex strength has been established, the resulting pressure disturbances are computed for each of the probe locations, and added to the steady-state pressures. The maximum instantaneous pressure array is then used to generate the peak dynamic distortion map (ref. 2).

B. The Minimum Dynamic Measurement Approach

One of the benefits of the Melick approach to dynamic distortion prediction is it's low cost relative to other methods. Traditionally, the Melick method requires steadystate total pressure measurements, along with rms total pressure fluctuation measurements at forty probe locations across the engine face. In the derivation of the mean instantaneous distortion level, the mean value (face-average) rms level is used. The actual number of high-response dynamic probes is not important - just the mean rms value is of interest. In principle, therefore, the Melick method requires only one dynamic rms total pressure measurement: provided an average value is indicated. In the interest of further reducing instrumentation cost, and inlet blockage during a test run, it is desireable to minimise the number of dynamic probes used while retaining the accuracy of the results. Proper placement of a minimum number of dymamic probes is necessary in order to obtain an accurate representation of the average rms level, and the resulting peak dynamic distortion prediction.

Chen (ref. 2) provided a criterion for the selection of dynamic probe locations which yield reasonable accuracies in mean rms level determination. It was observed that there exists an inverse relationship between the rms total pressure fluctuation level and the magnitude of the total pres.. sure. In other words, high rms pressure fluctuations tend to occur in regions of low total pressure, while low rms levels occur in high pressure regions. Furthermore it was noted that average rms levels tend to occur near regions of average pressure. This implies that dynamic probes placed near the steady-state mean pressure line would give rms
total pressure fluctuation levels nearly equal to the faceaverage value.

Since it is preferred to remain on the conservative side in dynamic distortion prediction, that is it would be more desireable to overpredict rather than underpredict the true peak dynamic distortion in any simplifications, it is suggested that the preferred dynamic probe location should be at or outboard of the mean pressure line (ref. 2). This will allow in most cases an rms level slightly higher than the average value obtained in a 40-probe analysis. In any case, dynamic probe locations selected should avoid regions of very high and very low steady-state pressures.

The accuracy of this criterion is shown herein and in reference 2 . It was shown that using 2 probes selected according to the "conservative side" oriterion yielded distortion factor errors generally within 5% of the 40 -probe prediction. Naturally, if dynamic probes were selected such that the average rms value were exactly equal to the $40-$ probe average, there would be no error. Conversely, the selection of improper probes can lead to very large errors. Consequently, the careful selection of locations for the placement of dynamic probes is extremely important for the accuracy of the results.

C. The Turbulence Modelling Approach

Because of the sensitivity of the predicted peak distortion level to the indicated mean rms level, which in turn is sensitive to the location of the probes relative to the mean total pressure line, it is desireable to develop an approach which includes the benefits of both the full (40probel dynamic data method and the minimum dynamic data approach. In response to this need, Chen (ref. 3) developed a turbulence modelling approach which produces an accurate prediction of the peak instantaneous distortion with mo
requirement for dynamic rms total pressure fluctuation data. In this turbulence modelling approach, the rms total pressure fluctuation levels are simulated from information derived from the steady-state total pressure measurements. First, the axial velocity distribution (relative flow velocity at each steady-state probe location) is calculated from the steady-state measurements. A set of turbulence modeliing equations is then emplayed to compute the turbulent kinetic energy distribution, and the turbulent kinetic energy dissipation rate. These terms represent the turbulence levels required to generate the steady-state distortion. The rms total pressure fluctuation levels are then evaluated from the turbulent kimetic energy and the turbulent kinetic energy dissipation rate. These simulated rms levels are then used to compute the mean vortex properties, the mean instantaneous distortion level, and the peak dynamic distortion in the same manner as the original Melick model (ref. 3).

The advantages of the turbulence modelling approach are obvious. There is no need for rms total pressure fluctuation levels to be measured - hence no high-response dynamic probes are needed. Instrumentation costs are reduced considerably from the fully instrumented 40-probe case. In addition, there is no meed for concern over where to most effectively place a minimum number of dynamic probes. The turbulence modelling approach, when coupled with the Melick vortex model, is an efficient tool for determining the most probable peak instantaneous distortion level, given the steady-state measurements.

The accuracy of the turbulence model is demonstrated in reference 3. It is shown that this approach is at least as accurate as the fully instrumented case in comparison to the QYNADEC results for a variety of inlet configurations and operating conditions (ref. 3).

2. A MODIFIED VORTEX MODEL

A. Intraduction

Although the origimal Melick vortex modelling approach (including the modifications summarized in the previous section) is shown to be reasonably accurate in the prediction of peak instantaneous distortion levels, it is mot as accurate as some methods in the generation of peak imstantaneous distortion maps (ref. 2, 5). It is therefore desireable to develop some modification to the Melick vortex model which can improve the accuracy of the peak instanm taneous map.

It has been suggested (ref. 2) that the fault in the Melick peak instantaneous mapping method may lie in one of the vortex modelling assumptions. This modelling approech produces the peak instantaneous pressure distribution by superimposing a linear vortex along the mean shear line of the steady-state distortion pattern (fig. 3). The induced flow velocities produced by this vortex, whose properties are determined from the rms total pressure fluctuation levels, result in an amplification of the total pressure distribution. Both high and low pressure regions are enhanced by this vortex so that the distortion level is magniFied.

In reality, the mean shear line of most steady-state distortion patterns is not a straight line, but is instead curved. In fact, often the mean line forms a distorted ring. This suggests that the core of the peak instantaneous vartex should not be a straight line, but should follow the curves of the mean shear line. This will be the basis of the present study.

B. Method of Approach

In the present analysis, a new vortex modelling approach designed to improve the accuracy of Melick peak instantaneous distortion maps is developed. In this new approach, the linear vortex model of the original Melick method (fig. 3) is replaced by a vortex which can have a nonlinear core (fig. 4). This is a justified modification because the mean shear line (the borderline between relatively high and low pressure regions) is generally monlinear (fig. 4).

There are three general methods in modelling a vortex with a nonlinear core. The first and most complex method would be to formulate a mathematical expression for a curve which fits the desired shape of the vortex core - that is the mean shear line. This expression could be in terms of 2-dimensional cartesian or polar coordinates, derived from a least-squares (or other monlinear) analysis, or perhaps from an infinite series expansion. This method has the potential of being extremely accurate as far as modelling the vortex is concerned, but would not be very efficient in terms of the computational effort.

A second approach to modelling a nonlinear vortex core might be form a finite element model. The nonlinear vortex would be divided up into a series of linear vortex segments which would lie along the mean line. The number of segmente used would depend on amount of curvature in the mean shear line and the desired resalution. This method, depending on the number of divisions selected, could be as accurate as the least squares/infinite series method, with considerably better computational efficiency.

It is clear that these two methods have, the capability
of achieving very high resolution in the calculation of the vorticity effects, and in the generation of the peak instanm taneous distortion map. This high resolution capability is not necessarily useful, however. It should be kept in mind that the peak instantaneous map is generated by calculating the effect that the vortex has upon the total pressure readings obtained at the steady-state probe locations. Pressures at locations between probes are then interpolated from these new "readings". Consequently any vortex action which occurs between probe locations is ignored, prior to the interpolation process. This limitation in the useable resolution of the vortex model is the basis of the simplifications of the third modelling approach.

The third approach to modelling a nomlinear vortex core is similar to the finite element model, but includes some important simplifying assumptions. First, the vortex is divided up into eight segments, each associated with one of the probe rakes (Fig. 4). Each vortex segment is considered the dominant contributer to the pressure disturbances occurring on the rake associated with that vortex segment. It is assumed that each vortex segment affects the pressure only on the rake associated with it. The position of the vortex segment relative to it's associated rake is assumed to be at the probe nearest to the mean pressure line where it crosses the rake. The orientation of each vortex segment is assumed to be perpendicular to it's associated rake, and coplaner with the measurement plane. Each of these simpliFying assumptions are illustrated in figure 4 , and are discussed separately.

The first assumption involves the division of the monlinear vortex into eight linear sub-vortices, or vortex segments. Traditionally, there are eight rakes mounted at 45 degree intervals around the measurement plane (fig. 7). Since all probes on a rake are affected by the induced flow velocity caused by the local vorticity, it makes sense
to divide the probes into rake-groups, and to determine the dominant vortex activity associated with that group. ThereFore, in this study the nonlinear vortex system is divided into a set of linear vortex segments, with each segment acting as the dominant vortex activity for one of the rakes. Eight rakes each require one vortex segment, for a total of eight sub-vortices. Each vortex segment is considered by definition to affect only the probes on it's respective rake, and induced vortex activity on adjacent rakes is considered by definition negligible.

The next assumption involves the definition of the location of each of the vortex segments. It is assumed that the vortex segment is placed directly over the probe location mearest to the mean shear line as it crosses over or passes near to the rake. In addition, it is assumed that the vortex segment is oriented perpendicular to the rake. These two simplifying assumptions are illustrated in figure 3. It is suggested that these simplifications intraduce only small errors into the analysis, while they allow conm siderable improvement in computational efficiency. In any case, the error produced by these simplifications will always be less than the error produced in the original Melick single linear vortex model.

Finally, it is assumed that the vortex properties as derived in the Melick linear modelling approach are still valid in the segmented modelling approach. These properties include: 1) the mean vortex radius, and 2) the vortex strength. These terms were derived as a function of the rms total pressure fluctuatian level, and the most probable peak instantaneous distortion level.

Each of these assumptions and simplifications are made in the interest of providing a straightforward model and a simplified analysis. None of the assumptions are expected to introduce significant error into the analysis. The nature of the model and the analysis is intended to be preliminary,
in the interest of determining whether further research is warranted in this modelling approach.

In the following section, the development of the mathematical formulations is presented based on the simplifying assumptions.

C. Mathematical Formulations

In the Melick approach to peak instantaneous distortion prediction, there are two distict sections: 1) the development of the most probable peak instantaneous distortion level; and 2) the generation of the peak instantaneous map. Since the present analysis is concerned primarily with the latter of these two sections, the first section will be presented only in summary form. Details on the derivation of the peak instantaneous distortion level may be found in reference 2.

As described in section 1.A., the random total pressure Fluctuations measured at the compressor face are attributed to the convection of a series of random vortices through the measurement plane. The pressure fluctuations are to be expressed in terms of velocity perturbations introduced by these vortices. The velocity profile of a one-dimensional steady and incompressible vortex is given as (fig. 5):

$$
\begin{equation*}
\left.v_{T}=v_{T} \frac{r}{a} e^{-1 / 2\left[(r / a)^{2}\right.}-1\right] \tag{1}
\end{equation*}
$$

where: V_{T} is the tangential velocity at any radius r
$V_{T_{\text {max }}}$ is the maximum vortex swirling velocity at r=a; max a measure of vortex strength.
r is the independant variable: radius
a is the radius at the point of maximum swirling velocity - also called the vortex size
e is the exponential

The total pressure fluctuations produced by the vortex are superimposed anto the steady-state total pressure to form a time variant instantaneous pressure:

$$
\begin{equation*}
F_{T}=P_{T S S}+d P_{T} \tag{2}
\end{equation*}
$$

where: P_{T} is the instantaneous total pressure $P_{T_{s s}}$ is the steady-state total pressure ${ }^{d P} T_{T}$ is the pressure fluctuation produced by the

From the incompressible Bernoulli equation:

$$
\begin{align*}
& P_{T S S}=P_{S}+1 / 2 \rho U^{2} \tag{3a}\\
& P_{T}=P_{S}+1 / 2 \rho\left(U+v_{T}\right)^{2} \tag{3b}
\end{align*}
$$

where: P_{S} is the static pressure

$$
\rho \text { is the flow density }
$$

$$
U \text { is the steady-state flow velocity }
$$

$$
V_{T} \text { is the vortex-induced velocity }
$$

Let $q=1 / 2 \rho U^{2}$ be the steady-state dynamic pressure. Then substituting (3) into (2), we obtain:

$$
\begin{align*}
d P_{T} & =P_{T}-P_{T S S}=1 / 2 \rho\left(U+V_{T}\right)^{2}-1 / 2 \rho U^{2} \\
& =1 / 2 \rho\left(U^{2}+2 U V_{T}+V_{T}^{2}-U^{2}\right) \\
& =q\left[\left(\frac{2 V_{T}}{U}\right)+\left(\frac{V_{T}}{U}\right)^{2}\right] \doteq \frac{2 q V_{T}}{U} \tag{4}
\end{align*}
$$

Second order terms have been neglected for V_{T} much less than U.

Substituting (1) into (4), we obtain:

$$
\begin{equation*}
\left.d P_{T}=\frac{2 a}{U_{a}} V_{T} \max r e^{-1 / 2\left[(r / a)^{2}\right.}-1\right] \tag{5}
\end{equation*}
$$

Equation (5) represents the total pressure fluctuation level produced by the convection of an arbitrary vortex through the inlet duct in terms the relative size and strength of the vortex, and the position of the probe relative to the vortex.

In the Melick analysis, in order to determine the most probable peak instantaneous distortion level, the mean vortex size must be determined. This parameter is shown (Ref 2) to be a function of the rms total pressure fluctuations:

$$
\begin{equation*}
\left(\frac{d P_{T_{r m s}(f)}}{d P_{T_{r m s}}}\right)^{2}=\operatorname{erf}\left(7.98 \frac{f \bar{a}}{U}\right) \tag{E}
\end{equation*}
$$

The quantity on the left hand side of equation (E) is the square of the ratio of the root mean square total pressure fluctuation level filtered at cut-off frequency f, to the unfiltered rms level. These quantities may be measured, or simulated as developed in reference 3. Using equation (6), the mean vortex size, \bar{a}, can be solved for iteratively in terms of the filtered and unfiltered rms levels, the filter frequency, and the flow velocity, all of which are known quantities.

The mean vortex size is then used to generate the mean instantaneous distortion level, \bar{k} : (Reference 2)

$$
\begin{equation*}
\bar{k}=k_{s s}+F\left(\bar{a}, d P_{T}\right) \tag{7}
\end{equation*}
$$

$\begin{aligned} \text { where: } k_{s s}= & \text { the steady-state distortion level determined } \\ & \text { from the steady-state total pressure data and } \\ & \text { table } 1\end{aligned}$

Since $d P_{T}$ is a function of the vortex properties, \bar{k} can be be determined from them:

$$
\begin{equation*}
\bar{k}=F\left(P_{T_{s s}}, q, \cup, \bar{a}, v_{T_{\max }}\right) \tag{8}
\end{equation*}
$$

where: $P_{T s s}, q$, and U are measured quantities - is computed from equation (6)
$V_{T_{\text {max }}}$ is then determined, using equation (5):

$$
\begin{equation*}
v_{T_{\text {max }}}=\frac{U \bar{a} d P T}{2 a r} e^{1 / 2\left[(r / a)^{2}-1\right]} \tag{9}
\end{equation*}
$$

For $r=$ 白, equation (9) is simplified to:

$$
\begin{equation*}
v_{T_{\text {max }}}=1 / 2 \frac{U}{q} d P_{T_{\text {rms }}} \tag{10}
\end{equation*}
$$

Equation (8) then becomes:

$$
\begin{equation*}
\bar{k}=f\left(P_{T_{s s}}, q, \cup, \bar{a}, d P_{T_{r m s}}\right) \tag{11}
\end{equation*}
$$

Since q and U are constants, equations (7) and (11) are seen to be identical.

The most probable peak instantaneous distortion level
is then statistically extrapolated as a function of the mean instantaneous distortion level, the rms total pressure fluctuation level, and a set of statistical parameters (ref. 2):

$$
\begin{equation*}
k_{\max }=f\left(\bar{K}, d P_{T_{r m s}} \text {,statistical parameters }\right) \tag{12}
\end{equation*}
$$

The vortex strength is then adjusted to match the change from
the mean instantaneous distortion level to the maximum instantaneous distortion level:

$$
\begin{equation*}
V_{T_{\text {max } / p k}}=V_{T_{\text {max }}}+F\left(k_{\text {max }}-\bar{k}\right) \tag{13}
\end{equation*}
$$

Once the most probable peak instantaneaus distortion level and the value of VTmax has been determined, the value for the peak instantaneous total pressure can be determined:

$$
\begin{equation*}
P_{T_{p k}}=P_{T S S}+d P_{T} \tag{14}
\end{equation*}
$$

where $d P_{T_{p k}}$ is obtained from equations (5) and (13):

$$
\begin{equation*}
\left.d P_{T_{p k}}=\frac{2 q}{U \bar{a}} V_{T_{\text {max }} / p k} r e^{-1 / 2\left[(r / \bar{a})^{2}\right.}-1\right] \tag{15}
\end{equation*}
$$

The only variable in equation (15) above is the radius, \quad. Using the simplifications and assumptions given in section 2.B., the value of r can be determined on a rake-by-rake and probe-by-probe basis. Substituting (15) into (14) produces the following relationship (let $V=V_{T_{\text {max }} / \mathrm{pk}}$):

$$
\begin{equation*}
\left.P_{T}(k, p)=P_{T}(k, p)+\frac{2 q V}{U \bar{a}} r(k, p) e^{-1 / 2\left[(r(k, p) / \bar{a})^{2}\right.}-1\right] \tag{16}
\end{equation*}
$$

The subscripts k and p refer to the rake and probe number, respectively. The value of $r(k, p)$ is defined as the distance between the probe with coordinates (k, p) and the core of the vortex associated with rake k:

$$
\begin{equation*}
r(k, p)=r_{p}(k, p)-r_{v}(k) \tag{17}
\end{equation*}
$$

```
where: \(r_{p}(k, p)\) is the radial location of probe \((k, p)\)
\(r_{v}(k)\) is the radial location of the core of the
    vortex associated with rake (K)
```

 The final step in generating the peak instantaneous map
 is to interpolate values for $\mathrm{P}_{T_{\text {pk }}}$ at each of the discrete
points between the probes. This is done in the same manner
as with the steady-state map (ref. 6).

3. RESULTS AND DISCUSSIONS

Int the following sections, numerical and graphical predictions from the analytical methods described in the present work are provided with three inlet data sets. Data comparisons with the DYNADEC results are also provided with each of the inlet configurations. The three inlet data sets consist of provisional experimental results from subsonic, tramsonic, and supersonic inlet configurations under various Flight conditions. Inlet configurations and measured results of the data sets are provided in figures 8 through 10. Data comparisons of predicted and measured peak instantaneous distortion levels, and graphical comparisons of predicted and measured peak instantaneous distortion maps are also provided.
A. Subsonic Inlet

Configuration of a full-scale short S-shaped subsonic inlet duct is shown in figure 8 . The engine centerline is tilted approximately six degrees from the horizontal as shown in the figure. The freestream Mach number was given as subsonic. Six test cases were available for data comparisom. These data were provided by the Air Force (AFWAL), WrightPatterson AFB, Ohio.

Comparison of Melick predicted peak instantaneous distortion levels is given in Table 2 and Figures 11 and 12. Figure 13 shows mapping comparisons for the steady-state, DYNADEC measured peak, Melick predicted peak, and the ModiFied Vortex predicted peak instantaneous distortion patterns. As described in Reference 3, reasonably good accuracy of the distortion level prediction analyses is indicated. In certain
cases, the peak instantaneous distortion level is underpredicted by the Melick approach. This is attributed to the Fact that the Melick approach cannot accurately predict the peak distortion level for inlet flows with separated bounm dary layers. Unfortunately, the subsonic data set contains separated boundary layers at the engine face (ref. 3) Further study will be required to improve the Melick predictive accuracy in separated flow cases.

The Modified (segmented-nonlinear) Vortex technique compares favorably with the Melick modelling approach in the peak distortion map generation, in certain cases. In cases where the Melick linear vortex model produces an accurate prediction of the peak instantaneous map, the modified approach generally overpredicts the distortion pattern slightly. In cases where the Melick approach yields poor results in the peak distortion map, the modified approach tends to improve the map considerably (fig. 13).

B. Transonic Inlet

Configuration of a 15% subscale long S-shaped transonic inlet duct is shown in Figure 9. Six test cases with a transonic freestream Mach number were available for comparisom. These data were provided by the Air Force (AFWAL) WrightPatterson AFB, Ohio.

Comparisons of predicted and measured peak instantaneous distortion levels are given in Table 3 and Figures 14 and 15. Figure 16 shows mapping comparisons for steadystate, DYNADEC measured peak, Melick predicted peak, and the Modified Vortex predicted peak instantaneous distortion patterns. Good accuracy in predicting peak dynamic distortion levels is indicated for these test cases. The Melick method slightly overpredicts the peak distortion level, which is the desired affect.

The Modified Vortex approach again compares favorably with the Melick linear vortex approach. In examples where the original Melick approach yields poor predictions of the peak instantaneous distortion pattern, the modified approach produces superior results (fig. 16). In cases where the Melick approach produces good peak distortion maps, the modified approach produces comparable results.

A notable exception to this can be seen in the first case (case number 464.12). The steady-state map shows a symmetrical pattern, while the ロYNADEC predicted pattern is not symmetrical (fig. 16). The Melick approach produces a fairly symmetrical pattern as expected, while the modified approach produces a pattern almost identical to the steadystate pattern, except for enhanced pressure magnitudes, also as expected from the modelling criteria. This is due to the fact that this particular test case represents an extremely high angle of attack, where asymmetrical vortex shedding is evidently taking place. This inlet "pumping" has the effect of alternating high and low pressure levels on either side of the inlet duct instantaneously, while providing apparentily symmetrical patterns in the steady-state. Asymmetrical or alternating vortex shedding is the same phenomenon which is associated with wing "rocking" in highly swept delta wings at high angles of attack.
C. Supersanic Inlet

Configurations for four 25% scale supersonic inlet ducts are shown in Figure 10. These inlet models include data for a variety of supersonic freestream Mach numbers, and angles of atteck and yaw. There are thirteen test cases availabe for comparison. These data were also provided by the Air Force (AFWAL) Wright-Patterson AFB, Dhio. The four inlet configurations, test conditions, and some measured results are given in figure 10.

Comparison of predicted and measured peak instantaneous distortion levels is given in table 4 and figure 17. Figure 18 shows comparisons of steady-state, DYNADEC measured peak, Melick predicted peak, and modified Melick predicted peak instantaneous distortion contour maps. Many of the peak instantaneous distortion levels are underpredicted slightlys primarily because these cases show separated boundary leyers. It is recalled that the Melick approach tends to underpredict peak distortion levels when separated boundary layers occur in the inlet duct. It is noted that in many cases the maps generated by the Melick approach appear to have mo apparent pattern as far as relatively high and low pressure regions. The steady-state and peak instantaneous maps in these cases exhibit quasi-random characteristics, indicating severe turbulence levels and flow separation. The Melick prediction technique generally requires a reasonably well-defined mean shear line in order to effectively apply the vortex model. The predicted distortion levels and distortion maps are seen to be fair to good in these cases. In certain cases, when the linear Melick vortex model Fails to provide a good prediction of the peak distortion map and the measured peak map resembles the steady-state pattern, the segmented vortex model provides a map superior to the one generated by the linear vortex model (fig. 13).
D. Gemeral Results and Comments

1. The Melick Approach

The Melick approach to predicting the peak instantaneous distortion levels can be evaluated by examining Tables 2,3 and 4, comparing peak distortion values as measured from the DYNADEC system, and as predicted by the Melick approach. Figures 11,14 and 17 show these comparisons in graphical Form.

It is seen from Figure 11 that the subsonic peak distortion factors are underpredicted in four out of six ceses, and has a percent error of greater than plus or minus twenty percent in three out of six cases. At first glance this may be disturbing, but it is recalled that the subsonic inlet data set indicates a separated boundary layer, as described in Reference 3. Since the Melick approach assumes an attached boundary layer, the results are understandable. Nevertheless it can be said that the Melick approach provided a good ball-park figure in distortion level prediction.

Figure 17 shows peak distortion level predictions within 20 percent in 4 out of 6 cases, with an underprediction of the measured peak distortion in only one case. These results can be considered very good. Near-perfect predictions are seen in two cases, which is encouraging. These transonic inlet data sets show a mean percent error of approximately ten percent for all six test cases.

The supersonic test cases show peak distortion predic.tions within 20 percent in 11 out of 13 cases. However, it is also noted from Figure 17 that the peak distortion \hat{i} underpredicted in almost all cases. As seen from Figure 18, the supersonic inlet cases in many cases represent highly turbulent separated flow conditions, for which the Melick technique is known to tend to underprediot. The overall results for the supersonic test cases can be said to be fairly good, and very consistent.

The overall accuracy of the Melick approach can be judged with Figure 19. The overall percent error in the predicted peak instantaneous distortion level with monseparated flow shows a mean value of $+19.5 \%$, while the separated flow inlets show a mean percent error of $-3,3 \%$. These results are considered good for preliminary engineering purposes.
2. The Minimum Dynamic Measurement Approach

In addition to the results indicated in Reference z, which shows very good results in the minimum dynamic measurement approach with respect to the full (40-probe) approach, Tables 2 and 3 , and Figures 12 and 15 indicate excellent correlations between the two approaches. In addition, as indicated in Reference 3, the turbulence modelling approach shows excellent predictions of peak instantaneous distortion levels, with no dymamic measurements. Predictions well within 20 percent of the 40 -prabe predicted values are indiceted for most of the test cases. These results appear to validete these two low-cost approaches.

3. The Segmented Vortex Approach

The segmented vortex approach can be judged in terms of its performance with respect to theoretical expectations. The segmented vortex approach is, again, a simplified model of the nonlinear mean-line following approach. This model will always produce a predicted peak instantaneaus distortion pattern similar to the steady-state pattern, with the pressure levels amplified somewhat. This phemomenon can be easily seen in the distortion map comparisons (figs. 13, 16 and 18]. In cases where the peak instantaneous map is not similar to the steady-state map, this approach will produce a poor prediction, while cases where the steady-state and peak instantaneous maps have similar patterns as measured by $\square Y N A D E C$, the approach will produce a map generally superior to the linear Melick vortex approach. In some cases it is seen that the segmented vortex approach is far superior to the linear, while in most cases, the improvement is only marginal (fig. 13, 16, 18). It is possible that the accuracy of this approach can be improved by removing simplifications, though the overall pattern would not change significantly.

4. CONCLUSIONS

A simplified monlinear vortex model has been developed in order to improve the quality of predicted peak instantameous distortion maps. The nomlinear mean-line following vortex model is simplified by dividing the vortex into linear vortex segments, one for each rake of probes, omiented perpendicular to each probe, and each having the charecteristics of the mean vortex developed in the original Melick approach.

A review and evaluation of recent developments in the Melick peak instantaneous distortion level prediction technique has been included. A simplified description of the Melick method has also been provided, with references to more detailed reports. Predictions using limited, minimum and no dynamic data have been compared to _YNADEC measurements with favorable results for three inlet data sets. Minimum and no dynamic data approaches have also been compared to full (40-probe) predictions with excellent results.

The Melick approach, along with recent improvements, is shown to be an efficient and accurate design tool for predicting peak instantaneous disortion levels in preliminary analyses. It is noted, however, that the approach does not work well with highly turbulent separated flow inlet conditions, due to limitations in the modelling approach. Further research will be required to develop improvements in separated inlet flow predictions.

The segmented vortex approach is a useful method of improving peak instantaneous distortion maps, provided the Melick peak distortion level has been accurately predicted, and provided the actual peak distortion map does resemble the steady-state map pattern. Further improvements in this
modelling approach are possible by removing simplificationsand assumptions, as long as these two conditions are met.At this time there exists no modification to the Melickvortex model which can accurately predict the peak instan-taneaus distortion pattern when the measured peak patternis significantly different from the steady-state patterm.Further study will be required to understand and predictthis particular problem.

REFERENCES

1. Marous, J. J. and Sedloc, D., DYNAMIC DATA EDITING AND COMPUTING SYSTEM (DYNADEC), Proceedings of the Air force System Command Science and Engineering Symposium, AFSC-TR-003, vol. 1, October 1973.
2. Chen, Y. S., STATISTICAL PREDICTION OF ロYNAMIC DISTORTION OF INLET FLOW USING MINIMUM DYNAMIC MEASUREMENT -- AN APPLICATION TO THE MELICK METHOD, M. S. Thesis, University of Kansas, 1983.
3. Chen, Y. S., INLET FLOW DYNAMIC DISTORTION PREDICTION -WITHOUT RMS MEASUREMENTS, Phロ. Dissertation, University of Kansas, 1985.
4. Melick, H. C. and Ybarra, A. H., ESTIMATING MAXIMUM INSTANTANEOUS OISTORTION FROM INLET TOTAL PRESSURE RMS AND PSD MEASUREMENTS, Vought Systems Division of LTV Aerospace Corporation Technical Report No. 2-57110/ 5R-3209, 1975.
5. Sanders, M. E., AN EVALUATION OF STATISTICAL METHODS FOR THE PREDICTION OF MAXIMUM INSTANTANEOUS TIME-VARIANT INLET TOTAL PRESSURE DISTORTION, AIAA Paper 80-1110, July, 1980.
6. Dennon, Stephen R., COMPUTER PROGRAM DOCUMENTATION AND USER'S MANUAL - ESTIMATING MAXIMUM INSTANTANEOUS INLET FLOW DISTORTION FROM STEADY-STATE TOTAL PRESSURE MEASUREMENTS WITH FULL, LIMITED, OR NO DYNAMIC DATA, University of Kansas Center for Research, Inc., 1986.

$\begin{aligned} & -1 \\ & 0 \\ & \stackrel{O}{\sim} \\ & \sim \end{aligned}$	Factor	Equation	Supplemental equations	Definitions$\left(\bar{p}_{t}\right)_{j}=$ average total pressure for ring $j$$\left(p_{t, m i n}\right)_{j}=$ minimum total pressure reading$\bar{P}_{t}=$ average total pressure at engine face
	${ }^{\text {IDC }}$ max	$\begin{gathered} I D C_{\max }=\max \left(\frac{1}{2}\left(\mathrm{IDC}_{1}+\mathrm{IDC}_{2}\right),\right. \\ \left.\frac{1}{2}\left(\mathrm{IDC}_{4}+\mathrm{IDC}_{5}\right)\right) \end{gathered}$	$\operatorname{IDC}{ }_{j}=\frac{\left(\bar{p}_{t}\right)_{j}-\left(p_{t, \min }\right)_{j}}{\bar{p}_{t}}$	
	$\overline{I D R}_{\text {max }}$	$\mathrm{IDR}_{\text {max }}=\max \left(\mathrm{IDR}_{1}, \mathrm{IDR}_{5}\right)$	$\operatorname{IDR}_{j}=\frac{\bar{p}_{t}-\left(\bar{p}_{t}\right)_{j}}{\bar{p}_{t}}$	
	$\mathrm{K}_{\mathrm{D} 2}$	$K_{D 2}=\frac{\sum_{j=1}^{N R} \bar{\theta}_{j}\left(\Delta p_{t} / p_{t}\right)\left(O D / D_{j}\right)}{\sum_{j=1}^{N R}\left(O D / D_{j}\right)}$	$\frac{\Delta p_{t}}{p_{t}}=\frac{\left(\bar{p}_{t}\right)_{j}-\left(p_{t, m i n}\right)_{j}}{\left(\bar{p}_{t}\right)_{j}} * 100$	$\begin{aligned} & \left(\bar{p}_{t}\right)_{j},\left(p_{t, m i n}\right)_{j}=\text { see above } \\ & \bar{\theta}_{j}= \\ & \quad \text { circumferential extent of largest } \\ & \quad \\ & \quad \text { below }\left(\bar{p}_{t}\right)_{j}, \text { degrees } \\ & D_{j}= \\ & O \text { diameter of ring } j ; N R= \\ & O D=\text { number of of duct diameter } \quad \text { ring } \\ & \hline \end{aligned}$
0 01 0 + 0 0 \square 0	\bar{K}_{θ}	$K_{\theta}=\frac{\sum_{j=1}^{N R}\left(A_{1}\right)_{j}\left(1 / D_{j}\right)}{\left(\bar{q} / \bar{p}_{t}\right) \sum_{j=1}^{N R}\left(1 / D_{j}\right)}$	$\begin{aligned} & \left(A_{1}\right)_{j}=\left(\overline{a_{1}^{2}+b_{1}^{2}}\right)_{j} \\ & \left(a_{1}\right)_{j}=\frac{1}{M}\left[\sum_{i \bar{M} 1}^{M} \frac{P_{t_{1}}}{\overline{P_{t}}} \cos \left(\theta_{1}\right)\right]_{j} \end{aligned}$	$\bar{p}_{t},\left(\bar{p}_{t}\right)_{j}, D_{j}=$ see above $\bar{q}=$ average dynamic pressure at engine \quad face $M=$ number of rakes $\left(\bar{p}_{t_{1}}\right)_{j}=$ Individual total pressure; rake i
$\begin{aligned} & 10 \\ & H \\ & H \\ & j \\ & H \\ & H \\ & H \\ & H \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	${ }^{\mathrm{K}} \mathrm{RAD}$	$K_{R A D}=\sum_{j=1}^{N R}\left\|\frac{\Delta p_{t}}{\bar{p}_{t}}\right\| \frac{\bar{p}_{t}}{\bar{q}} \frac{1}{D_{i}}$ $K_{A 2}=K_{\theta}+\mathrm{bK}_{R A D}$	$\begin{aligned} & \left(b_{1}\right)_{j}=\frac{1}{M}\left[\sum_{i=1} \frac{P_{i}}{\overline{\bar{p}}_{t}} \sin \left(\theta_{i}\right)\right]_{j} \\ & \frac{\Delta p_{t j}}{\bar{p}_{t}}=\frac{\left(\bar{p}_{t}\right)_{i}}{\bar{p}_{t}}-\frac{\left(p_{t, b a s e}\right)_{i}}{\bar{p}_{t}} \end{aligned}$	
$\begin{aligned} & \text { O } \\ & \text { m } \\ & 0 \\ & 0 \end{aligned}$	$\frac{\overline{\triangle S P R}}{\overline{D I S t}}$	$\frac{\overline{\mathrm{SPR}}}{\overline{\mathrm{D} s \mathrm{t}}}=\frac{\Delta \mathrm{SPR}}{\left(\left(\overline{\mathrm{p}}_{\mathrm{t}}-\mathrm{p}_{\mathrm{t}, \mathrm{~min}}\right) / \overline{\mathrm{p}}_{\mathrm{t}}\right]}=\mathrm{f}(\mathrm{k})$		```\mp@subsup{\tilde{p}}{t}{}}=\mathrm{ see above P k = compressor reduced frequency```
U	ID	ID $=\mathrm{k}_{\mathrm{c}}(\mathrm{IDC}) \mathrm{b}+\mathrm{k}_{\mathrm{r}}(\mathrm{IDR})$		```k}= circumferential distortion sensitivity factor k}=\mathrm{ radial distortion sensitivity factor b}\mp@subsup{}{}{r}=\mathrm{ circumferential distortion weighting factor```

ORIGNAL PREE MS
 OF POOR QUALITY

Figure 1. Determination of Steady-State Distortion

ILLUSTRATION OF SOME FEATURES OF THE TIME VARIANT TOTAL

 PRESSURES AND DYNAMIC DISTORTION:Compressor Face
Instrumentation
- Steady-state
Probe
* Dynamic Probe

(a) Inlet Test Model:
(b) Total Pressure:

(c) Distortion Factor(resulting from a combination of all probes):

$\mathrm{K}_{\text {inst }}$: instantaneous peak distortion factor.

Nearly Nomal
Distribution

Figure 2. Illustration of a Typical Inlet Test Model and Peak Distortion Factor Measurement

$\begin{aligned} \text { GAMMA }= & \text { vortex orientation angle between } y \text { axis } \\ & \text { and the } x^{\prime}-y^{\prime} \text { plane }\end{aligned}$

$$
\begin{aligned}
\text { BETA }= & \text { vortex orientation angle between } x^{\prime} \text { and } x \\
& \text { axes, with the } x \text { axis in the } x^{\prime}-y^{\prime} \text { plane }
\end{aligned}
$$

b) Vortex Orientation

Figure 3. Medick Linear Vortex Model

Figure 4. Nonlinear/Segmented Vortex Models
(a)

(b)

Figure 5. Inlet vortex flow model and perturbation of velocity and static pressure and the time variant total pressure fluctuation caused by a single l-D vortex (Ref. 2)

Figure 6. Definition of Confidence Levels

Figure 7. Ring, Rake, and Probe Assignments for a typical instrument configuration
(a) Subsonic Full Scale Inlet Model:

(b) Test Conditions and Some Measured Results:

Data pt.	Mach No.	$P_{t 2}$	$\overline{\mathrm{~ms}}_{\mathrm{m}}$	IDC $_{\text {max, peak }}$
20.40	subsonic	.887	.0336	.225
54.30	subsonic	.853	.0478	.326
81.40	subsonic	.925	.0337	.127
111.30	subsonic	.868	.0537	.319
112.30	subsonic	.873	.0475	.329
137.50	subsonic	.926	.0360	.144

Figure 8. Illustration of a Subsonic Inlet Test Model and some Test Results (unpublished data from Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio) [Ref. 3]
(a) Transonic .15 scale Inlet Model:

(b) Test Conditions and Some Measured Results:

Data pt.	Mach No.	$P_{t 2}$	$\overline{\mathrm{~ms}}_{\mathrm{m}}$	$\mathrm{K}_{\mathrm{A} 2, \text { peak }}$
464.12	transonic	.860	.0422	.303
465.11	transonic	.912	.0281	.522
473.12	transonic	.928	.0217	. .565
485.10	transonic	.891	.0414	.819
487.80	transonic	.857	.0493	1.025
498.12	transonic	.913	.0299	.777

Figure 9. Illustration of a Transonic Inlet Test Model and some Test Results (unpublished data from Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio) [Ref. 3]
(a) Configurations of four . 25 scale Tailor-Mate Model:

(b) Test Conditions and Some Measured Results:

Inlet	Data pt.	Mach No.	α	β	$\mathrm{P}_{\mathrm{t} 2}$	$I_{\text {ID }}^{\text {max }}$	$\mathrm{K}_{\text {A2, peak }}$
A-1	$182 / 1$	2.2	5	4	. 833	. 150	1.384
	$189 / 3$	2.2	15	0	. 829	. 076	1.020
	216/3	1.6	10	4	. 894	. 086	. 900
A-2	243/3	2.2	5	4	. 168	. 078	1.123
	246/3	2.2	15	0	. 666	. 111	1.446
	$247 / 12$	2.2	15	4	. 579	. 163	1.572
B-4	433/3	2.2	0	0	. 814	. 090	1.254
	$43 / 73$	2.2	5	0	. 872	. 125	1.511
	1554/4	0.9	20	8	. 918	. 074	. 597
B-3	640/2	2.2	5	-4	. 945	. 092	. 887
	643/3	2.2	15	0	. 935	. 078	.738
	69571	1.65	0	-8	. 845	.136	1.271
	1334/2	0.9	25	4	. 933	. 121	. 649

Figure 10. Illustration of four Supersonic Inlet Test Model and some Test Results (ref. 3)

OISTORTION FACTOR	STEADYSTATE	DYNADEC PEAK	MELICK PREDICTED PEAK dynamic data input:		
CASE\#			FULL	MIN.	NONE
20.40					
$K=$ THETA	0.95777	1. 48828	1.8486	2.0279	1.9826
KU2	1801.4	3534.1	2712.0	2840%	295087
(IDC) = MAX	0.10759	0.22481	0.1728	0.1813	0.1893
(IDR) =MAX	0.06516	0.06645	0.0761	0.0773	0.0784
KRA	0.30434	0.30659	0.4362	0.4489	9.4689
KA2	1.18085	1.71301	2.0781	2.2580	2.283
DSPR	0.05760	9.09058	0.1114	0.1221	- 1.7002
10	1.20570	2.33132	1.6204	1.6600	1.7002
54.30					
K - THETA	1.19444	2.57046	2,2807	2.5317	2.0086
KD2	2740%	3937.6	4258.7	4398.5	4620.5
(IDC)-MAX	0.23592	0.32522	0.3381	0.3393	0.3618
(IDR) = MAX	0.09032	0.09262	$0 \cdot 1083$	0.1066	4, $\frac{1}{1} 7$?
KRA	0.35908	0.70330	0.5131	0.4885	4.5371
KA2	1.45809	3.085%	2.5518	2.8003	2.8848
DSPR	0.08654	3.318518	0 $3 \cdot 1644$	0.1820	1.1875 3.3007
10 81.40					
K-THETA	0.36337	0.72753	1.1293	1.3249	11.3610
$\mathrm{KD2}$	-19.7	1385.4	1864.3	2172.3	236500
(IDC) $-M A X$	0.09355	0.12868	0.1606	0.1787	0.1867
(IDR) -MAX	0.07916	0.08334	0.0901	0.0930	4.0942
KRG	0.40766	0.47655	0.5365	0.5692	$0.535 ?$
KA2	0.66219	1.07684	1.4626	1.6637	1.7047
NSPR	0.02406	0.04890	0.0703	0.0816	0.0835
ID	1.29662	1.55624	1.6183	1:7053	$1: 74 \leq 4$
111.30					
$K=T H E T A$	1.06535	1.46101	2.2481	29422	2.2327
	2401.7	5728 0 0 89	418496	386295	$4146 \cdot 2$
$(I D C)=M A X$	0.21749	0.31896	0.3373	0.3150	0.3345
	0.08970	C.08782	0.5505	$0 \cdot 5224$	0.5096
KRA	0. 374117	0.37444	2. 5291	2.3261	-.5.35
OSPR	0.07771	0.10564	0.162 A	0.1483	0.1618
10	2.30509	3.31415	3.0653	2.9376	3.0467
112.30					
K-THETA	0.98200	1.57512	2.0663	2.1201	2.2161
KDZ	2142.5	03925	3719.7	374989	4014.4
(IDC) = MAX	0.18026	0.32841	0.2876	0.2899	0.3090
(IDR)-MAX	0.10505	0.09182	0.12332	0.1235	8.1268
KRA	0.47993	0.41299	0.633 ?	0.6340	2. 5783
KA2	1.33379 0.07275	1.87784 0.11616	2.4178 0.1505	2.4742 0.1543	2. 2763
${ }_{\text {DSPR }}^{\text {ID }}$	2.08990	3.41034	2.6794	2.6894	$2 \cdot 7835$
137.50					
$K=T H E T A$	0.44035	0.72466	1.3124	1.5762	1.4732
KOZ	. 946.7	1999.1	2083,2	2388.4	2144.1
(IDC) -MAX	0.09824	0.14375	0.1725	0.1908	4.1927
(IUR)-MAX	0.08502	0.10058	0.0971	0.1002	0.1002
KRA	0.46385	0.55000	0.6040	0.6355	0.6412
KA2	0.78035	1.12781	1.6853	1.9575	1.8590
DSPR	0.03022	0.04565	0.0838	0.0996	9.0729
ID	1.37968	1.80079	1.7336	1.8219	1.8296

Table 2. Subsonic Inlet Distortion Factor Comparison

Figure 11. Comparisons of the Predicted and Measured ms Level and Peak Distortion Factor for the Subsonic Inlet Model shown in Figure 8. (unpublished data)

Figure 12. Comparisons of peak distortion factors predicted by the present analyses and the Melick method based on the total pressure ims measurements for the subsonic inlet data set (unpublished data)

(percent from average pressure)

(percent from average pressure)

Figure 13a. Subsonic Inlet Map Comparisons (20.40)
(percent from average pressure

(percent from average pressure)
270

K-IHETA	2.27609
KOZ	4933.2
(IJC)-AAX	0.34644
(IUR)-MAX	0.09090
KAZ	0.35968
$0 S P R$	2.5374
ID	3.16734
MEIICK mOdel peak	

Figure 13b. Subsonic Inlet Map Comparison (54.30)

Figure 13c. Subsonic Inlet Map Comparisons (81.40)
percent from average pressure

percent from average pressure

Figure 13d. Subsonic Inlet Map Comparisons (111.30)

ORIORAR Prea 18
 of poor quality

percent from average pressure

Figure 14. Comparisons of the Predicted and Measured ms Level and Peak Distortion Factor for the Transonic Inlet Model shown in Figure 9. (unpublished data)

Figure 15. Comparisons of peak distortion factors predicted by the present analysis and the Melick method based on the total pressure ms measurements for the transonic inlet data set (unpublished data)

Fig. 16a. Transonic Inlet Map Comparison (464.12)
percent from average pressure

k -theta	0.26072
(1DC)-max	0.087498
(iLer) Hax	0.04883
K42	0.38400
${ }_{10}{ }^{\text {Spr }}$	-0.02895
steady	ate

percent from average pressure

Figure 16b. Transonic Inlet Map Comparison (465.11)
percent from average pressure

OISTORTION factor	STEADYSTATE	DYNADEC PEAK	PREDICTED PEAK
CASE\#			
182/1			
K=THETA	1.19729	1.91726	1.5817
KD2	1446.6	208. 6	1856.5
$(I U C)=M A X$	0.08776	0.1040	0.1101
(ILR) -mAx	0.02568	0.00853	0.0355
KRA	0.20171	0.527	0.5381
KAZ	1.38912	$\therefore 0, \mathrm{BE} 2$	1.8998
USPR	0.05196	-0'25	0.0660
10	0.06158	0.160.	0.0767
189/3			
K-THETA	0.72977	0.00604	1.0647
	. 856.3	531.8	2191.6
$(I D C)=M A X$	0.04623	. 07698	0.0798
$(I U R)=M A X$	0.01200	-01652	0.0218
KRA	0.10781	$\because 17564$	$0: 3284$
$K A 2$	$\bigcirc .80800$	1-2473	1.1831
OSPR	0.03236	¢.04102	0.0448
ID	0.03198	$\because 02315$	0.0493
$216 / 3$			
k-THETA	0.42371	0.7757%	0.5765
KDZ	1004	$15=0.8$	1572.0
$(I D C)=M A X$	0.05599	0.05690	0.1017
$(I O R)=M A X$	0.02829	1.0.44	0.0416
KRA	0.10789	- 6070	0.2067
KAZ	0.50279	$\because 30817$	0.6708
OSPR	0.03187	$\because 0530$.	0.0435
ID	0.04657	0.0023^{2}	0.0667
243/3			
K-THETA	0.17562	$\therefore .29504$	
KD2	. 840.1	1303.5	2391.7
(IUC) I (IDAX	0.05782	0.07996	0.1054
$\left(\begin{array}{l}\text { (} \\ R \text { RA }\end{array}\right.$	0.02114	2.04603	0.0597
KRA K A?	0.04418	$0.075 \leq 9$	0.1126
KAZ	$\bigcirc 20800$		0.3211
${ }_{\text {D }}^{\text {D }}$ S	0.03047	3.05070	0.0461
10	0.04276	0.27010	0.1119
$246 / 3$			
$k=T H E T A$	0.35780	0.623 .45	0,5511
KD2	1089.1	1768.9	22512
$(I D C)=M A X$	0.08957	0.11079	0.1877
$(I D R)=M A X$	0.03598	\%02023	0.0682
KRA	0.14713	- 2032	0.2814
KA2	0.46505	$\because .71604$	0.6797
DSPR	0.04060	0.0055	0.0587
10	0.06795	0.09777	0.1150
$247 / 2$			
K-THETA	1.43627	1.45323	2.2078
KD2	1163.7	2054	1530.2
$(I \cup C)-M A x$	0.09133	-16Fi\%	0.1261
(IDR) -MAX	0.03498		0.0459
KRA	0.46954	1. 23440	1.0524
KA2	1.78044	2.10106	2.6853
OSPR	0.04587	$00^{6} 4$	0.0657
10	0.00836	0.11450	0.0853

Table 4. Supersonic Inlet Distortion Comparisom

QISTORTION FACTOR	STEADYSTATE	DYNADEC PEAK	PREDICTED PEAK
CASE\#			
$640 / 2$			
K-THETA	0.52730	0.9084.	0.7748
$k D 2$. 867.7	1059.8	11 oh.0
$(I Q C)-M A X$	0.08143	0.0515	0.1045
$(I U R)=M A X$	0.01611	D.02.90	0.0243
KRA	0.13391	0.1500	$0.3 \cap 90$
K ${ }^{\text {a }}$ 2	0.62555	1.03275	0.9061
LSHR	0.02388	0.03569	0.0342
IL	0.05671	0.9509	0.0709
$043 / 3$			
K-THETA	0.52601	0.87410	0.7126
KD2	0.745 .5	. 260.2	894.5
$(I D C)-M A x$	0.06654	9.07628	0.0780
$(I D R)=\max$. 0.01427	0.0301	0.0184
KRA	0.19070	0.326 .55	0.318%
KAZ	0.66580	1.11381	0.8743
DSPR	0.01783	0.03004	0.0242
$095 / 20.04631$			
K=THETA 0.43841 0.72044 0.6187			
K02	- 987.1	- 820.2	15214
$(I C C)=M A X$	0.10020	0.13615	0.1385
(IDR) $=$ MAX	-0.05052	0.06602	0.0631
KA2	0.22087	\%.20931	$0.330 ?$
OSPR	0.602875	$\bigcirc .91784$	0.8010
ID	0.03245 -0.0837	0.05711	0.0445
$1334 / 2$..11203 .d0.			
K-THETA 0.40639 0.52550 0.5013			
KD2 - MAX	12888	1415.1	1821.6
$(I D C)=M A X$	0.10599	0.12934	0.1457
(IDR) $=$ MAX	0.02163	0.02770	0.034
KRA	0.05386	3.07191	0.1934
KAZ	0.44587	0.59392	0.5493
DSPR	0.04740	C. 05.50	0.0570
ID	0.07595	6.08618	0.0091
$433 / 3$			
K-THETA KD2	0.80102	1.95271	$\{92175$
(IDC) - MAX	0.06253	0.6	${ }^{2} 200 \% 6$
(IDR)-MAX	0.02028	0.03254	0.0306
KRA	0.17272	0.41549	0.4572
KA2	0.92702	$2.117 ¢ 7$	1.3010
DSPR	0.03509	0.05042	0.0495
ID	0.04456	0.06565	0.0615
$437 / 3$			
K-THETA	1.20829	2.c351\%	15203
KD2	1379.8	2051.3	1658.9
(IDC) - MAX	0.08946	$0.1295 ?$	0.1121
(IDR)-MAX	0.02007	0.05100	0.0282
KRA	0.17141	- 15 ¢02	0.3996
KA2	1:33393	$\because 5451$	1.6840
DSPR	0.05169	0.6730	0.0638
10	0.06141	$\because 456$	0.0748

Table 4. Supersonic Inlet Distortion Comparison (cont'd)

DISTORTION FACTOR	STEADYSTATE	DYNADEC PEAK	PREDICTED PEAK
CASE\#			
1554/4			
K-IHETA	0.43845	0.50648	0.5288
$K \mathrm{~L}$	22788	+1365i6	10.1054
$(I D C)=M A X$	0.07057	0.07372	u U15a
$(I \cup R)=M A X$	0.00484	0. 03012	- 0apa
KRA	0.40170	-. 58006	0.5500
${ }^{K A Z}$	0.04103	$\bigcirc .04993$	0.0505
10	0.05647	0.05731	0.0830

[^0]

Note: The measured data was screened on $K_{A 2}$ for peak distortion

Figure 17. Comparisons of the Predicted and Measured Peak Distortion Factors for four Tailor-Mate Supersonic Inlet Models (ref. 3; see Figure 10)

percent from average pressure

Melick model peak

Figure 18a. Supersonic Inlet Map Comparison (182/1)

$$
\begin{aligned}
& \text { ORICHIAL PAGE IS } \\
& \text { OF POOR QUALTIT }
\end{aligned}
$$

percent from average pressure

annssaud abelone waly quarned

Figure 18e. Supersonic Inlet Map Comparison (246/3)

percent from average pressure

percent from average pressure

Figure 18i. Supersonic Inlet Map Comparisons (695/1)
percent from average pressure

percent from average pressure

Figure 18j. Supersonic Inlet Map Comparisons (1334/2)

Figure 18 k . Supersonic Inlet Map Comparison (433/3)

Figure 181. Supersonic Inlet Map Comparison (473/3)

Figure 18m. Supersonic Inlet Map Comparison (1554/4)

Figure 19. Accuracy of the Present Method in Predicting rms Levels and Dynamic Peak Distortion Factors

PART II

COMPUTER PROGRAM DOCUMENTATION AND USER'S MANUAL

ESTIMATING MAXIMUM INSTANTANEOUS INLET FLOH
DISTORTION FORM STEADY-STATE TOTAL PRESSURE
MEASUREMENTS WITH FULL, LIMITED, OR NO DYNAMIC DATA
A computer program for statistically predicting peak instantaneous dynamic distortion, given steady-state distortion data and dynamic root mean square pressure fluctuation levels in gas turbine inlets, is presented. The statisticel approach utilizes a physical flow model which characterizes inlet flow distortion as due to random vorticity convecting through the inlet duct. Characteristics of a mean vortex are statistically determined to match steady-state distortion data and contour map, as measured by steady-state total pressure probes. The mean vortex characteristics are then intensified according to the mean rms fluctuation level as measured by full or limited high response pressure transducer instrumentation, or as simulated by turbulence modelling, to produce the most probable peak instantaneous distortion level. The computer program utilizes this approach to solve for the dynamic distortion and print the results. including contour maps.

This Report is designed to be a User's Manual and Documentation Guide for the improved Melick (ref. 1-3) dynamic distortion computer program developed at the University of Kansas. This program characterizes the random vortices used to describe the unsteady, turbulent flow in jet engine inlets, and statistically calculates the most probable peak instantaneous (dynamic) distortion level for a particular inlet operating condition. Steady-state distortion levels are computed for eight common distortion factors given the timeaveraged steady-state probe pressure array, and the root mean square pressure fluctuation levels are used to project the maximum peak instantaneaus distortion for the given conditions.

Details of the derivation and development of the random vortex modelling approach are not included in this User's Guide as the Guide is orientated more towards application than theory. The References, however, provide exhaustive detailing of the general Melick approach, especially References 1 through 3. Reference 4 provides an extensive list of other sources which relate to distortian prediction. Finelly References 5,6 , and 8 show details of some specific developments in distortion research at the University of Kanses.

Major segments in this Guide include descriptions of the main program and subprograms as well as input and output data. Sample problems are included for illustration. A isting is provided in an appendix. The fully documented program requires memory capacity for 70,000 characters in 2300 lines. Hardware requirements include, in addition to the mainframe computer, an an-line printer for high speed output.

TABLE OF CONTENTS

Page
ABSTRACT ii
FOREWORD iii
NOMENCLATURE v
LIST OF FIGURES xiv
I. INTRODUCTION 1
II. PROGRAM DESCRIPTION 6
III. INPUT DATA DESCRIPTION 24
IV. QUTPUT DATA DESCRIPTION 36
V. SAMPLE PROBLEMS 52
APPENDIX A. FORTRAN SOURCE CODE LISTING 83
APPENDIX B. SEGMENTED VORTEX OPTIONAL ADDITION 149
APPENDIX C. USER QUICK REFERENCE GUIDE 151
VI. CONLLUSION 160
VII. REFERENCES 161

NOMENCLATURE

SYMBOL	OTHER NAMES	DESCRIPTION	PAGE
A		Vortex core radius at point of maximum angular velocity, inches	49
A		Tridiagonal matrix	142
$A B$	ABAR, 可	Mean vortex core radius, inches	43
ALPH	alpha	Aircraft/inlet angle of attack. in degrees	29
ANGLOC		Angular position of rakes, deg.	26
ART	$\begin{aligned} & A / R T, \quad A Y R T, \\ & A Y / R T \end{aligned}$	Nondimensionalized vortex core radius (divided by inlet radius)	49
AO		Vortex core size computed from power spectral density function	50
AD/RT		Nondimensionalized PSD vortex radius (divided by inlet radius)	50
A 1		Radius of steady-state vortex, inches	40
B	BETA	Vortex orientation angle, deg.	49
BF	B-Factor	Radial weighting factor for KA2	29
BRP		Base radial profile	29
BSF		Intermediate weighting factor for ID distortion solution	39
CKP	KC	Circumferential weighting factor for I dis distortion solution	29
CUBIC		Subroutine - executes cubic spline interpolations	8

SYMBOL	OTHER NAMES	DESCRIPTION	PAGE
QISPAR		Subroutine - computes primary distortion factors	B
QISTRT		Subroutine - computes simple distortion parameters	8
DK.	$K, K \square$	General distortion factor designator	26
DKBAR		Mean distortion level	46
DKMX	DKMAX	Most probable peak distortion level - 50% probable	46
DKSS		Steady-state distortion level	46
DK950		95\% probable distortion level estimated peak distortion	48
DK997		99.7\% probable peak distortion level	48
DRT		Nondimensionalized radial locations of rings	25
ESPR	\triangle SPA	Delta stall pressure ratio distortion factor	81
DTH	DTHETA	Angular difference between the pressure rakes with minimum and maximum average total pressure	40
E	TE	Turbulent kinetic energy dissipation rate in $\mathrm{ft}^{2} / \mathrm{sec}^{3}$	45
ERRE		Error in E in iteration, fte/sec ${ }^{3}$	344
ERFK		Error in K in iteration, $f t \geq / s e c z$	244
ERRT		Total error in E and K	44
ETA		Face average steady-state total pressure recovery	42
EXTRME		Subroutine - manages distortion factor extreme-value computation	9

SYMBOL	OTHER NAMES	DESCRIPTION	PAGE
FACE	FACP	Element used in discrete point analysis in face contour map	88
FCO	FC	Low-pass cut-off filter frequency in rms fluctuation data	27
FINITE		Subroutine - solves finite difference equations	9
FO	F	Engine rpm filter frequency in hertz	27
FRF		Subroutine - computes by iteration the mean vortex core size	9
G	GAMMA	Vortex orientation angle, deg.	40
GE		Turbulent kinetic energy dissipation rate at each finite element grid point, ft $2 / \mathrm{sec}^{3}$	4.4
GK		Turbulent kinetic energy at each grid point, ft2/sec2	44
G1		Steady-state GAMMA orientation angle of the vortex, degrees	40
ID		General Electric combined radial/circumferential distortion factor	39
IDC		GE circumferential distortion factor	38
IDC-MAX		Maximum GE circumferential distortion factor	30
IDR		GE radial distortion factor	30
IDR-MAX		Maximum GE radial distortion Factor	30
INITL		Subroutine - sets initial values for GE and GK (energies)	10
INIVEL		Subroutine - computes velocity gradiants in steady-state date	10

SYMBOL	OTHER NAMES	DESCRIPTION	PAGE
INTERP		Subroutine - interpolates pressure recoveries at discrete element points at engine face	10
K	KD, DK	General distortion factor	26
K	TK	Turbulent kinetic energy in $\mathrm{Ft} / \mathrm{sec}^{2}$	45
KA2		Pratt \& Whitney combined radial and circumferential distortion	39
Kロ2		$P \& W$ circumferential distortion factor	38
KRA		P \& W radial distortion factor	38
KTHETA	KTTA	P \& W circumferential distortion factor (alternate)	38
LAB	LABEL	Distortion factor name or label	111
LNPOUT		Subroutine - prints pressure distortion contour map and distortion factor tables	11
MAINLP		```Subroutine - controls computa- tion of discrete point pressure data for contour mapping```	11
MAXDP		Subroutine - calculates projected extreme values of distortion Factors	11
MAXIDYN		Main driver computer program	7
MFR		Inlet mass flow ratio - $\dot{m}_{2} / \dot{m}_{0}$	30
MO		Freestream Mach number	29
\dot{m}_{\square}		Mass flow rate infront of inlet	30
\dot{m}_{2}		Mass flow rate at compressor face measurement plane	30
NEWPSD		Sutroutine - inputs dynamic data and evaluates PSD functions	12

SYMBOL	OTHER NAMES	DESCRIPTION	PAGE
NP		Total number of radial rakes	25
NPR	NT, PROBE	Numerical designation of probe	31
NR		Total number of rings, including static pressure rings at hub and outer radius	25
NTUR		Control parameter for selection of dynamic data input or turbulence modelling subroutines	30
p	$P I$	Local instantaneous total pressure recovery	28
PAVG	PAVE	Average pressure recovery at compressor face measurement plane	37
PFIX		Subroutine - transforms input data into mapping parameters	13
PFX	PFXL	Subroutine - computes vortex flux rate	13
PRNT		Subroutine - prints pressure arrays and other output	13
PRobe	NPR, NT	Numerical designation of probe	31
PS		Local steady-state total pressure recovery	28
PSAVG	SMAVG	Average steady-state total pressure recovery at engine face	37
PSD		Power spectral density function	-
PSI		Aicraft/inlet yaw angle, degrees	29
PSPEC	K, KD, DK	General flow distortion factor designator	26
PT	PT2	Local total pressure recovery at compressor face	37
PTAVG	PTAV, TMAVG	Face average total pressure recovery	37

SYMBOL	OTHER NAMES	DESCRIPTION	PAGE
PTMAX	PTMX, TMMAX	Maximum indicated local total pressure recovery	37
PTMIN	PTMN, TMMIN	Minimum indicated local total pressure recovery	37
QAVG	QAV	Face average dynamic pressure	38
QPT2	Q/PT2	Ratio of dynamic-to-total pressure at engime face	42
RADLOC		Radial position of rings, deg.	25
RATK		Subroutine determines the effect of filter frequencies on distortion factor values	14
RI		Inlet centerbody hub radius in inches (typical umits)	41
RKMN		Average total pressure recovery along rake with minimum average pressure	39
RKMX		Average total pressure recovery along rake with maximum average pressure	40
RKP	KR	Radial weighting factor for solution of ID distortion	30
RMS		Root mean square	-
ROUT		Percent difference between the indicated local probe, rake, or ring pressure and the face average pressure	88
RRT	$R / R T$	Radial location of vortex core (nondimensional)	49
RS		Ratio of filtered-to-unfiltered rms total pressure fluctuations	32
RSIGMA		Subroutine - computes rms value of distortion factors	14

SYMBOL	OTHER NAMES	DESCRIPTION	PAGE
RT		Outer inlet radius (tip) at the compressor face, in	41
SEARCH		Subroutine - controls solution of peak distortion factors	14
SG	SIG	Unfiltered rms total pressure fluctuations	32
SGDK		Filtered rms distortion level	46
SGF		Unfiltered rms distortion level	46
SG/PT2		Ratio of unfiltered rms total pressure fluctuations to average total pressure recovery at engine face	45
SMAVG	PSAVG	Face average static pressure recovery	37
SPTRC		Total pressure recovery through supersonic inlet shock system	30
SUMMER		Subroutine - evaluates error function in vortex core size iterative computations	14
SYMBLE		Subrautine - supplies symbols For distortion contour map generation	15
T	TOP	Time-on-point or data point dwell time - duration of rms pressure fluctuation data measurement, seconds	27
TOP 1		Simple distortion parameter: (PTMAX-PTMIN)/PTMAX	95
TロP2		Simple distortion parameter: (PTMAX-PTMIN)/PTAVG	95
TDP3		Simple distortion parameter: (PTAVG-PTMIN)/PTAVG	95
TE	E	Turbulent kinetic energy dissipation rate - $F t^{2} / \sec ^{3}$	45

SYMBOL	OTHER NAMES	DESCRIPTION	PAGE
THE	THETA	Angular location of the center of the arc DTH, in degrees	40
THMN		Angular location of the rake with minimum rake-average total pressure recovery, degrees	39
THMX		Angular location of the rake with maximum rake-average total pressure recovery, degrees	39
TITLE 1		Identification block, also serves to execute end of file	28
TITLE2		Identification title block \#2	28
tmavg	PTAVG	Average total pressure recovery	37
TMMAX	PTMAX	Maximum local total pressure recovery	37
TMMIN	PTMIN	Minimum local total pressure recovery	37
TRIDIA		Subroutine - solves tridiagonal matrix equations	15
TUREUL		Subroutine - manages turbulence modelling predictions and other computations as a subdriver	16
TV	THETA	Angular location of vortex core in degrees	49
UNSTOY		Subroutine - manages dymamic data and peak distortion prediction as a subdriver	15
UU	TUU	Sum of squares of radial and circumferential velocity gradi ants	45
U		Dimensionless velocity at each probe location	76
リこ		Face average flow velocity, fps	29

SYMEOL QTHER NAMES DESCRIPTION PAGE
VBAR Average vortex strength, inc/sec 49
VBM VBMX Maximum vortex strength, in $/$ sec 50
VBO Approximated vortex strength 50
VL Vortex core length limit 49
(Nomenclature Addendum)
SYMBOL OTHER NAMES DESCRIPTION PAGE
ANRTU Function subprogram - computes 7 vortex flux rate
$K D$ Input variable - user selected 26primary distortion factor
NPGData run identification code, or31"part-point"
LIST OF FIGURES
Page
Figure 1. Program Block Diagram - Subprograms 17
Figure 2. Input Data Arrangement (Batch Input) 33
Figure 3. Input Data Arrangement (Data File) 34
Figure 4. Typical Instrumentation Arrangement 35
Figure 5. Estimation of SPTRC Parameter 47
Figure 6. Definition of "Confidence Levels" 47
Figure 7. Sample Problem Input 59
Figure 8. Sample Problem Output 58
Figure 9. Distortion Fector Deffinitions 81
Figure 10. Vortex Angle Definitions 82

I. INTRODUCTION

Turbulence and other flow nonuniformities in aircraft engine inlets have long been known to cause an unwanted flow distortion phenomena at the compressor face. These imperfections in the ideally smooth inlet airflow is frequently due to the turning and shaping of the flow as it passes through the inlet duct. Generally the magnitude of the distortion is a function of the angle of attack and sideslip (yaw angle) of the airoraft. The time averaged steady-state distortion level is relatively easy to determine experimentally by locating an array of total pressure probes ahead of the compressor face, and evaluating specific distortion parameters based on these steady-state measurements. Steady-state distortion can be of sufficient magnitude to disrupt the proper operation of the engine by stalling the compressor. Efforts to develope high performance engine and inlet configurations has been hampered because of the inherent sensitivity of highly loaded compressors to flow distortion.

It has also been found that random fluctuations in the distortion level, known as dynamic distortion, can have an even greater effect on engine stability as the steady-state distortion. It has been demonstrated that the dynamic distortion can cause the engine to surge even though the steady state distortion is well below the level at which the engine would be expected to stall. It becomes of particular importance to be able to predict the dymamic distortion levels which could occur at any instant in time.

One of the most common experimental methods of deter.mining the maximum instantaneous distortion is to use fast response (dynamic) probes to produce time histories of the total pressure fluctuations at the compressor face. These
instantaneaus pressures are then translated, as in the steady state case, into distortion parameters. These data are then screened by the Dymamic Data Editing and Computing System, DYNADEC, to determine the maximum instantaneous distortion during the test run. An estimation of the most probable peak distortion level is then available for the inlet designer.

The $\square Y N A D E C$ approach to dynamic distortion prediction is generally quite accurate, but is extremely expensive in terms of test instrumentation and computing time. For preliminary design purposes, it becomes difficult to justify the cost of a full ロYNADEC test run. It is for this reason that methods of statistically predicting peak distortion levels have been developed. Further information on the DYNADEC and various statistical prediction methods an be obtained with the aid of References 4 and 7 .

Of the many statistical approaches for predicting peak dynamic distortion, the Melick random vortex model (Ref. 1 3) is of particular interest because of it's high efficiency in terms of data requirements and numerical analyses. The basis of the Melick approach is formulated around the observation of the randommess of the total pressure fluctuations during a test run. It was hypothesized that the inlet flow could be modelled as having randamly distributed vortices of random strength, size, and orientation convecting with the steady-state flow, which itself is distorted by a large steady-state vortex. By applying fluid mechanics to comvecting vortices, a mathematical model of the inlet turbulence can be generated. The vortices are then translated into dynamic distortion parameters using a statistical criterion.

The distortion level, or the extent to which the flow is distorted, is generally defined in terms of distortion factors. These distortion factors are designed to indicate the distortion relative to some reference value, typically the level at which the engine could be expected to surge.

The maximum dynamic distortion prediction in the Meliok approach makes use of rms total pressure fluctuation levels to identify the main variables in the convecting vortex flow model (Ref. 5). Filtered and unfiltered rms levels are required so that any unwanted effects, such as engine speed, cam be removed. The rms levels are somewhat easier to process than the instantaneous distortion computations done by DYNADEC, but the instrumentation requirements are much the same. It is seen that instrumentation costs can be reduced by using fewer dynamic probes. The Melick method allows a reduction in probes since it actually uses the face-averaged fluctuation level in the analysis. In principle, the use of very few dynamic probes is feasible, as long as they produce the same face-average rms fluctuation level as the fully instrumented case.

There is some difficulty in choosing the locations for the placement of a limited number of dynamic probes, because it requires some knowledge of the solution before the test begins. Reference 5, however, provides a simplified scheme for locating as few as two dymamic probes at the engine face while retaining sufficient accuracy in the dynamic distortion prediction. It is apparent that even further cost reductions could be achieved if the requirement for dynamic probes and the associated instrumentation could be eliminated entirely. Until recently, however, no methods have been available for reasonably accurate peak dynamic distortion prediction without dymamic data.

Research at the University of Kansas has produced a new technique for estimating maximum instantaneaus distortion based only on the steady-state total pressure measurememts. Chen (Reference 6) has developed an approach to inlet turbulence modelling which analytically simulates the rms total pressure fluctuation levels using the predicted turbulent Kinetic energy distribution at the compressor face. These simulated rms levels replace the rms level data which had to

be measured previously. The simulated rms fluctuation levels are then used to compute the variables of the random vortex model, from which the peak dynamic distortion parameters are derived, just as if the rms levels had been input as data.

The purpose of this work is to present a computer program which statistically computes the most probable peak dynamic distortion level, based on the methods of Chen and Melick. The program is designed to be highly adaptable in that the user may decide on the extent of the dynamic date to be input. There are three main alternatives available to the user. First the user may select a full set of dynamic data, a partial set can be considered (to a minimum of two dynamic probes), or the user can opt to input no dynamic data. In the last case, the program automatically executes the computations related to the turbulence modelling and dymamic data simulation. This flexibility is designed to not only allow the user to select and control the quantity of dymamic data to be processed, but to also allow comparison of different dynamic probe configurations in a single data run.

In summary, the subject computer program solves for an estimation of the maximum instantaneous distortion, given the steady-state distortion data and rms total pressure fluctuation levels. The mathematical and theoretical derivations are well documented in the Melick references (Ref. 1-3) and the improvements by Chen are detailed in References 5 and E. Additional information on inlet flow distortion in general can be found with the aid of Reference 4.

This Users Manual is designed to assist the user toward an understanding of the operational capabilities of the program. The three major sections of the Manual include a breakdown of the program elements, an input and output data seotion, and a set of sample problems. A listing of the program is included at the end of the Manual. Suggestions for possible future studies in improving the program or the analytical techniques are also included.

COMPUTER PROGRAM DOCLMENTATION

AND USERS MANUAL

II. PROGRAM DESCRIPTION

The subject computer program, the MAXIDYN peak dynamic distortion estimator, is written in FORTRAN IV and can be run as is or with minor modification on most FORTRAN compilers. MAXIDYN requires memory capacity for about 70 , 000 words in 2300 program lines, including comments. Deletion of the comment lines would reduce the memory space needed to about 45,000 characters and 1600 lines. Appendix A of this work includes a listing of the program and subprograms.

This program is designed to be flexible in nature, and can be used to run with a variety of inlet pressure probe configurations. Individual test cases can be analyzed separately, or groups of data sets can be run in sequence. A set of typical distortion factors are included in the program: though these can be modified by the User. Figure 7 gives the definitions of the distortion factors used in this program.

The program may be used with or without dymamic rms total pressure fluctuation data, with a minimum of two probes in the case that dynamic data is included.

A block diagram of calling sequences of subprograms is given in figure 1. A description of each of the subprograms is given in this section. The subprogram descriptions are alphabetized, for convenience. An operational sequence of events is included to illustrate key events during a data run.

Peripheral requirements are limited to a line printer. The program is suitable for use online while data is being collected, provided format requirements (sect. III) are met.

II.A. SUBPROGRAM DESCRIPTION

1. MAXIロYN mein driver

The main driver of the MAXIDYN program controls some of the data input, including the inlet probe configuration, and the steady-state pressure array. In addition, the mein driver controls the subprograms which handle the remeining imput data, distortion computations, and the output. Specifically, the main driver controls directly the following:
a. Reading in of pressure probe ring and rake geometry.
b. Reading in of data titles and identifying comments after checking for an End Of File command which stops program execution.
c. Reading in of steady-state pressure data.
d. Controliing the subroutines which control other deta imput, check for errors, assign default values, and control distortion computations and output.

2. Function ARNTU

This function subprogram computes the vortex flux rate and it's effect on the root mean square distortion level. ARNTU is controlled by subroutine MAXDP.
3. Subroutine CUBIC

This subroutine controls the cubic spline interpolations for subroutines TURBUL and INIVEL. These slope-based cubic spline interpolations are used to compute velocity gradients and turbulent kinetic energies at the fine grid points during turbulence modelling computations.
4. Subroutine DISPAR

This subroutine is used to calculate the eight distortion factors used by the program. These distortion factors are defined in figure 7 and can be modified by the user. DISPAR is controlled by subroutine DISTRT, a subdriver which controls most of the distortion computations. The actual Formulas for the distortion factors are contained in DISPAR.

5. Subroutine DISTRT

Subroutine DISTRT is a subdriver which controls the computation of the distortion factors. Some of the duties of DISTRT includes the following:
a. Calculation of simple distortion parameters; for instance, the locations of the rake or ring with maximum and minimum average pressure.
b. Calculation of average static pressure at the engine face, and the average Mach number.
c. Contral subroutines INTERP and DISPAR which continue the distortion factor computations.
6. Subroutine EXTRME

This subroutine manages the computation of extreme values of the distortion factors. Called by subroutine MAXDP, EXTRME controls the salution of the most probable peak distortion level for each of the distortion factors. The peak distortion factor is caloulated by adding an incremental distortion level to the steady state distortion. The incremental distortion level is computed via the SEARCH subroutime. EXTRME returns the peak distortion level to MAXDP after summing the steady state and incremental distortion values.

7. Subroutine FINITE

FINITE is a subroutine which is used to solve the Finite difference equations for subroutine TURBUL. These equetions are the turbulence modelling set formed by an implicit tridiagonal matrix scheme. The elements of the tridiagonal matrix equations, which consist of the turbulent kinetic energies and the turbulent kinetic energy dissipation rates, are formed by FINITE and solved by subroutine TRIDIA. FINITE elso computes the relative errors in the turbulent kinetic energy and the tubulent kinetic energy dissipation rate for each of the fine grid points at the compressor face.
8. Subroutine FRF

This subroutine evaluates the mean vortex core size by an iterative inverse solution scheme. FRF evaluates the vortex core size as a function of the filtered-to-unfiltered root mean square total pressure fiuctuation level. Subroutine SUMMER evaluates the error function of the vortex core size, and the solution is iterated until the error is small.
9. Subroutime INITL

This subroutine solves for the initial values of the turbulent kinetic energy and the turbulent kimetic energy dissipation rate. These initial values are used as a starting point in the iteration of the solution of these parameters. INITL is comtrolled by the TURBUL subdriver, which uses the turbulent kinetic energies to solve for the turbulent model in the synthesis of the rms pressure fluctuation levels.
10. Subroutine INIVEL

This subroutine calculates the circumferential and radial velocity gradients at each of the grid points at the compressor face. INIVEL is called by TURBUL and uses subroutine CUBIC to carry out spline interpolations of the velocity gradients.
11. Subroutine INTERF

This is an interpolation subroutine which calculates the total pressure recovery at each of the discrete points in the measurement plane. These points are used to gemerate the pressure contour map. INTERP uses linear interpolation to find the pressure at points between the pressure probe locations. Two linear interpolations are carried out: a radial one and a circumferential one. The final value is taken to be the average of these interpolations. INTERP is called by both MAINLP and DISTRT; when called by MAINLP, the interpolated values are used to generate the contour map, while OISTRT uses the interpolations to compute the distortion factors. A call to subroutine PRNT has been nulled - it hed provided a message when interpolations could not be performed.
12. Subroutine LNPOUT

This subroutine controls some of the output from the program. When called by UNSTDY, LNPOUT prints two of the tables in the output: the Overall Flow Descriptors and the Flow Distortion Factors. The Overall Flow Descriptors table gives values for some of the simple distortion parameters, and the Flow Distortion Factors table gives values for the eight user-defined distortion factors. LNPOUT prints these tables For both the steady-state and peak instantaneous case. In addition, LNPOUT prints the distortion contour maps for the steady-state and peak instantaneous case. UNSTDY controls LNPOUT by passing a control parameter; LNPOUT then selects the output to be printed.
13. Subroutine MAINLP

Subroutine MAINLP controls the calculations involved in the development of the pressure distortion contour map. MAINLP calls on INTERP to calculate the pressure at any of the discrete points at the compressor face, given the pressure at the probe locations. Subroutine SYMBLE then assigns a symbol for each of the discrete points, based on the pressure found by INTERP. MAINLP then passes the pressure and symbol information to the main driver, and ultimately to LNPOUT for printing of the distortion map.
14. Subroutine MAXDP

This subroutine is a subdriver which controls the computation of the peak distortion levels for the eight distortion Factors. MAXDP computes the mean vortex size and the mean rms pressure fluctuation level, from which the peak
instantaneous distortion is derived. MAXDP also controls the calculations involved in producing the effects of other parameters on the peak distortion, like the vortex flux rate and and engine filters, via subroutine RATK. Subroutine RSIGMA is called to compute the filtered and unfiltered rms level of the distortion factors. Subroutine EXTRME then computes the peak instantaneous distortion statistically at 50%, 95%, and 99.7% confidence levels. MAXDP then prints the resultes in tables, namely the Distortion Factor Extreme Value table and others. The user-selected most probable peak instantaneous distortion factor is also printed. It is this distortion factor that the peak distortion map is based in the iterative matching process.
15. Subroutine NEWPSD

This subroutine is a major subdriver which contrals some of the input data and manages most of the computations involved in the prediction of the peak instantaneous distortion. NEWPSD controls the input of the dymamic data, including the filter frequencies, the datapoint dwell time (time on point), identification and program control parameters, and the rms pressure fluctuation data at each of the dymamic probe locations. NEWPSD also passes program execution to the turbulence modeliing subroutine, TURBUL, if the user has selected the option of not entering dynamic data. Once the dynamic data has been entered or synthesized, NEWPSD comtrols subroutines MAXDP and FRF which manage the computations in the peak instantameous distortion prediction. NEWPSD also prints the dynamic data and the identification and control parameters. NEWPSD is controlled by the main driver and subroutine UNSTロY
16. Subrautine PFIX

This subroutine has twa primary functions. The first part of the routine transforms the steady-state or dymamic distortion data from pressure recoveries to percent differences from the average values. These percents are then used by the mapping routines for the plotting of the pressure distortion contour maps. PFIX alsa calculates the dynamic pressure and Mach number at each of the pressure probe locetions as a secondary function. The face-average Mach number is also computed by PFIX. PFIX is called by the main driver in the steady-state case, and UNSTロY in the peak dynamic estimation case.
17. Subroutines PFX and PFXL

These twin subroutines are used in the computation of the eddy (vortex) flux rate as a function of the distortion level. The difference between the two subroutines is in the computation of the vortex flux rate which depends on the magnitude of the ratio of steady-state to root mean square distortion: when this ratio is greater than 2.0 , PFX is called, while PFXL is called when the ratio is less than 2 . The computational procedure for these two cases is somewhat different and an error would probably occur during computations which involve logerithms and exponentials if the cases were not separated.
18. Subroutine PRNT

This subroutine contrals the printing of steady-state and peak instantaneous pressure arrays, the printing of some of the titles and the listing of messeges in the output.
19. Subroutine RATK

RATK is a subroutine which evaluates the effect of the engine filter frequency, $F D$, on the root mean square distortion level. The variation of rms distortion with engime filter frequency is analytically determined.
20. Subroutine RSIGMA

This subroutine is called by MAXDP and computes the root mean square distortion level for the eight distortion factors. The routine is divided into separate groups for individual distortion factor evaluations.

21. Subroutine SEARCH

Subroutine SEARCH controls the computation of a peek distortion parameter which is used by EXTRME to form an estimation of the peak instantaneous distortian level. The ratio of the difference between the peak and steady-state to the rms distortion is solved for in an iterative search For the peak distortion level.
22. Subroutine SUMMER

This subroutine evaluates the error function in the iterative calculation of the mean vortex core size. SUMMER is called by FRF.

23. Subrautine SYMBLE

This subroutine supplies the mapping symbols for the generation of the compressor face pressure distortian contour map. Called by MAINLP, SYMBLE assigns a symbol for each discrete point at the engine face, depending on the pressure indicated at that point by the interpolation routine, INTEAP. The spelling of SYMBLE was selected to avoid possible conflicts with library functions in some compilers.
24. Subrautine TRIDIA

Subroutine TRIDIA solves the tridiagonal matrix equations in the turbulence modelling computations. TRIDIA is controlled by subroutine FINITE, which sets up the finite difference equations to be solved by TRIDIA.
25. Subroutine UNSTDY

This subrautine is the primary subdriver responsible For the predictive evaluation of the peak instantaneous distortion. Called by the main driver of MAXIOYN, UNSTDY controls the input and output of dynamic data, manages the computations leading to the peak distortion prediction, and contrals the output of results. Some of the more important activities and functions of UNSTDY are listed below:
a. Call NEWPSD to input identification and data control parameters for the test run.
b. Compute compressor Face averaged dynamic pressure and Mach number, inlet vortex properties, and other parameters leading to the peak distortion prediction.

c. Call subroutine LNPOUT to print some of the tables of distortion data, and the distortion contour map.

d. Call subdriver NEWPSD to read in and analyse the dydynamic data or select the turbulence modelling routines if there is no dynamic data in the input file.
e. Control the subroutines which iteratively evaluate the most probable peak distortion level and print the results.
26. Subroutine TURBUL

TURBUL is the subdriver responsible for the turbulence modelling prediction when there is no dynamic data in the input file. TURBUL controls subroutines CUBIC, INITL, INIVEL, FINITE, TRIOIA, and PRNT in the synthesis of simulated dynamic data for processing by the subdriver UNSTDY. TUREUL is called by subroutine NEWPSD when the user specifies the imo dynamic data" option in the input data file. TURBUL assigns a finite-element grid to.represent the discrete points on the compressor face for the finite difference analytical scheme. The boundary conditions for the turbulence model are estimated based on the total pressure measurements from the steady-state data, and the initial values of the turbulent kinetic energy and dissipation rate are found via INITL. The inlet face velocities are then found via INIVEL, and the turbulent equations are solved by FINITE. These result in estimates for the rms total pressure fluctuation levels, which are then fed back to NEWPSD for the computation of the most probable peak instantaneous distortion.

II.B. TYPICAL DATA RUN SEQUENCE DESCRIPTION

A typical data run of the MAXIDYN dynamic distortion prediction program can be traced as follows.

The main driver initiates the data input sequence with the reading of control parameters and the inlet pressure probe configuration. After the radial and angular locations of the probe rings and rakes are read in, subroutine NEWPSO is called to read in the engine filter frequency, the $\mathrm{rms} d y$ namic data cut-off frequency, the data-point dwell time, or the length of time in which the dynamic data is measured, and the specific distortion factor which the user selects as primary for the peak instantaneous distortion analysis.

The main driver then reads in any data identification titles which the user may elect to input. The resulting set of comments are printed at the top of each page of the output. If an "end of file" or "endjob" instruction is entered at this point, program execution is aborted. After the titles are read in, the main driver reads in the base radial profile and steady-state pressure array. The steady-state pressure recoveries are stored into the instantaneous array as a starting point for the peak instantaneous computations.

Subroutine PRNT is then called to print the table of steady-state pressures and the base radial profile. These items are included on the first page of the output. Subroutine PFIX is called next to compute the face-average Mach number. Subroutine ロISTRT is then called to control the computation of the steady-state distortion factors.

Subroutine DISTRT is a subdriver which manages distortion factor computations. DISTRT computes the simple distortion parameters before calling subroutines INTERP and DISPAR to calculate the eight primary distortion factors. Subroutime

PRNT is called if there are an insufficient number of probe rings to allow accurate radial interpolation for some distortion factors, in which case a message to that effect is printed in the output. Subroutine INTERP is called to carry out circumferential interpolations at discrete locations on each of the probe rings, in preparation for the computation of the distortion factors by DISPAR. This subroutine contains a set of sample distortion factor which can be modified by the user as desired. The results of these computations are eight primary steady-state distortion factors used to define the distortion level at the compressor face. After computation of the steady-state distortion level is completed, DISTAT returns control to the main driver.

The main driver then calls subroutine PFIX to set up certain parameters required to develop the distortion contour map for the steady-state case. A "dummy ring" of probes is set up to enable interpolations through the centerbody. PFIX then tranforms the input pressure measurements into parameters used by the map-generating subdriver routine MAINLF. MAINLP controls subroutines INTERP and SYMBLE which generate the symbals in the distortion map. INTERP interpalates the pressure at the discrete lacations on the engine face based on the steady-state input data, while SYMBLE assigns a character based on the interpolated value at each of the discrete points. After all interpolations and symbol assignments have been completed, MAINLP returns program control to the main driver. At this point the steady-state distortion has been completely defined and the dynamic distortion evaluations are commenced with the calling of the main subdriver, UNSTDY.

UNSTOY controls the subroutines and subdrivers which compute the total pressure fluctuation levels which translate into so-called "delta pressures". These are added to the steady-state pressures to produce the dynamic distortion level and the most likely peak dynamic distortion. After all of the dymamic calculations are completed, UNSTDY returns to
the main driver to start another data run. Before this takes place, however, the main subdriver, UNSTDY, manages all of the dynamic data input and calculations, or the dymamic data simulation if the user selects this option.

After setting initial values for some of the vortex properties, UNSTDY calls on NEWPSD to read in inlet operating parameters and some program control parameters. Most of the inlet parameters are non-functional, that is they are not involved in distortion computations, but rather are of interest for identification and comparison purposes. One control parameter, NTUR, allows the user to select the mo-dymamic-data option, or to input the required dymamic data conventionally. After checking the control parameters for errors, assigming default values if necessary, NEWPSD returns to UNSTDY, which evaluates the flow velocity and Mach number, and the vortex properties. LNPOUT is called to print the simple distortion parameters and flow descriptors, and the distortion factors for the steady-state case. After printing the steady-state vortex properties, UNSTDY again calls LNPOUT to print the steady-state distortion contour map. Subroutine NEWPSD is then called to begin the evaluation of the most probable peak instantaneous distortion.

After printing out the identification and control parameters, NEWPSD branches according to the dynamic data option selected by the user. If the no-dymamic-data option hes been selected, NEWPSD calls the tubulence modeliing subdriver, TURBUL, to compute the rms fluctuation levels which would otherwise be input as data. After setting up a fine grid at the compressor face for finite element modeliing of the flow distortion, TURBUL controls subroutines CUBIC, PRNT, INIVEL, FINITE and TRIDIA in the development and solution of the turbulence equations. Subroutine INITL sets initial values for the turbulent kinetic energy, INIVEL computes the velocity gradients, and subroutine FINITE uses finite difference formulations to solve the turbulence model. CUBIC perForms cubic spline interpolations and TRIDIA solves tridia-
gonal matrices generated by the finite difference equations. TURBUL then calculates the rms total pressure fluctuation levels at each of the probe locations, and the results are printed. Control is then returned to subdriver NEWPSD, and program execution contimues as if the dynamic data had been input, rather than computed.

If the user selects the option for the reading in of dynamic probe data, then these data are input at this poimt in program execution. In either case, NEWPSD then calls subroutine FRF to evaluate the vortex core size as a fumtion of the filtered-to-unfiltered rms pressure fluctuation level ratio using an iterative scheme. FRF calls subroutine SUMMER to evaluate the error function of the inverse solution. After the vortex core size is found, the results are printed by NEWPSD. When all of the dynamic probe data have been read in, subroutine MAXDP is called to compute the most probable maximum instantaneous distortion levels.

MAXDP is the subdriver which controls the computation of the most probable maximum peak in the distortion level. After determining the mean values for the vortex core size and filtered-to-unfiltered rms pressure fluctuation ratio, and the effects of engine filters and vortex flux rates via subroutines RSIGMA and RATK, the rms and mean instantaneous levels are computed by adding a "delta" distortion value to the steady-state value. Subroutine EXTRME is then called to evaluate the most probable (50% confidence level) extreme value of the peak instantaneous distortion. EXTRME utilizes subroutine SEARCH which controls the twin subroutines PFXL. and PFX in the determination of the "delta" distortion used to find the maximum instantaneous distortion. EXTRME is also used to determime the distortion factor extreme values for the 95% and 99.7% confidence levels, using the same plan as for the 50% confidence level. After printing the results of these computations, program contral is returned to NEWPSD, and then back to UNSTOY.

After re-evaluating the vortex properties for the maximum instantaneous case, UNSTOY finds the pressure recoveries at each of the probe locations based on the predicted maximum instantaneous distortion and the steady-state data. Subroutine PRNT is called to print some output, then PFIX is called to compute flow velocities and Mach number et each of the probe locations. The face-average Mach number for the peak instantaneous case is also determined by PFIX. In the same manner as with the steady-state case, subroutime ロISTRT manages the computation of the distortion factors given the total pressure recaveries found by UNSTQY for the maximum instantaneous distortion case. Subrautine MAINLP controls the printing of the pressure distortion contour map for the peak instantaneous case as for the steady-state case, and LNPOUT is again called to assist with the printing of output of the peak instantaneous data. After all the output for the test run has been printed, UNSTOY returns to the main driver. The main driver checks for additional sets of data or new test cases. If there data, then program execution begins with the reading in of data titles and the steady-state pressure data for the new case. If an END OF FILE or ENDJOB command is encountered, meaning there is not an additional test case.

In summary, the MAXIDYN dynamic distortion program computes the most probable maximum peak instantaneous distortion given the steady-state distortion data and limited dynamic data. After reading in the steady-state pressure recoveries and computing the steady-state distortion factors, the steady-state distortion contour map is printed along with the distortion data. The average rms pressure fluctuation level is then used to determine the most probeble peak instantaneous distortion. The rms fluctuation data may be read in, or simulated by the turbulence modeliing routines. After the prediction for the most probable peak distortion level has been made, a new distortion contour map
is generated to represent this case.
The results of the calculations in the MAXIDYN distortion program are printed on several pages of output. This material includes a listing of all input data, the steadystate distortion factors and parameters, the properties of the convecting vortex used to describe the flow in the inlet, the dynamic rms pressure fluctuation data and/or turbulence modelling data, and the pressure distortion contour maps for the steady-state and maximum instantaneous cases. Details on the input and output data are provided in their respective sections.
III. INPUT DATA DESCRIPTION

The input data are divided into three primary groups. The first group defines the inlet pressure probe arrangement at the measurement plane, and some data control parameters. The second group includes identification titles and the steady-state inlet distortion data. The last group is the "dynamic data" - the rms total pressure fluctuation levels - for each of the probe locations. These data may be limited to as few as two probes, or omitted entirely as am option to utilize the turbulence modelling dynamic data simulation capabilities of the program.

The general arrangement and formatting rules for the input data are given in Figures 2 and 3. Further illustration on the arrangement can be found in the sample problems in Section V. The following is a description of the input data items, presented in the order in which they are read by the software. Items marked with an asterisk (*) can be omitted from the input file without disrupting program execution. In this case default values are usually assigned, or simulated in the case of the dynamic data when turbulence modelling has been selected by the user

The first group of input data include specifications for the inlet probe comfiguration, data filter frequecies, data point dwell time, and a parameter with which the user may select the specific distortion factor used in the generation of the distortion contour maps. NR and NP are the total number of probe rings and rakes, respectively, and RADLOC and ANGLOC are the radial and angular locations of the probes. KD is the distortion factor key used to select one of the eight distortion factors available in the program.

The time on point, or data point dwell time, T, represents the duration of time in which the rms pressure fluctuations are measured and calculated. $F O$ and $F C O$ are the engine filter and rms dynamic data cutoff frequencies respectively. Further information can be found for each of these variables in the detailed descriptions below:

NR is an integer corresponding to the number of pressure probe rings used in the test run. NR should include static pressure rings located at the centerbody hub and at the outer radius, even if these are not included in the instrumentation, so that the distortion contour map resembles the engine face geametry. If, for example, there are five total pressure probes located along the inlet rakes, NR should be entered as seven to account for the static pressure probes.

NP is an integer corresponding to the number of pressure probe rakes used in the test run. These rakes are generally positioned between the hub and the inside surface of the macelle, and are evenly spaced along radii around the centerbody hub. NR represents the number of probes along the rakes.

RADLOC is a one-by-NR array of real numbers correspond-
ing to the radial locations of the pressure probes placed along the probe rakes. RADLOC includes the radial location of the centerbody hub, as well as the outer radius of the inlet at the nacelle inner surFace. RADLOC may be dimensional, or a dimensionless fraction of the outer inlet radius. Units may be arbitrary in the dimensional case. It is noted, however, that the vortex dimensions will be in terms of the dimensions of RADLOC. See figure 4.

ANGLOC is a one-by-NP array of real numbers which correm spond to the angular locations of the probe rakes. The units of ANGLOC are degrees, with the top rake being 'zero' and with the angle increasing clockwise, as viewed from the front. See Figure 4.

KD is an integer with which the user selects the distortion factor of primary interest in the test run. of eight available distortion factors included in the program, one is selected for use in generating the peak instantaneous distortion contour map which matches and represents the predicted peak distortion level. Definitions of the eight distortion factors provided in the program are given in Figure 9. Below is a key for use in selecting the desired distortion factor. Entering an integer (1 through 8) effects the selection of the distortion factor indicated below:

1: KTHETA (Pratt \& Whitney ciroumferential distortion \#1)
2: KD2 (Pratt \& Whitney circumferential distortion \#2)
3: IDC (General Electric circumferential distortion)
4: IDR (General Electric radial distortion factor)
5: KRA (Pratt \& Whitney radial distortion factor)
6: KAZ (Pratt \& Whitney combined distortion factor)
7: DSPR (Delta [loss im] stall pressure ratio)
8: ID (General Electric combined distortion factor)
It is noted that are two distinct pratt $\&$ Whitney circumferential distortion factors from two distinct definitions (see Figure 9). The combined distortion factors are found by combining the circumferential and radial distortion factors. In the case of $K A 2$, the circumferential distortion factor used in the combination is KTHETA. The distortion factors represented in this program are only examples - the user is free to redefine or modify them at will.

I * This is the dynamic data time on point or "dwell" time during which the total pressure fluctuation level is measured and the root mean square value is determined. The units are seconds, and a default value of one second is assigned if no value is input. T may be omitted if the no-dymamic-data option has been selected for all test cases.

FO * This is the engine filter frequency, in Hertz. F口 is used in the computation of the mean peak instanteneous distortion levels. The purpose of the filter is to remove the effect of engine speed on the measured pressure fluctuations. A default value of 500 Hz is assigned if no value is input.

FCO * This is the low pass cutaff filter frequency used when measuring the filtered rms total pressure Fluctuation levels. The ratio of filtered-to-unfiltered mean square pressure fluctuations are used to predict the most probable maximum instantaneous distortion. The units of $F C O$ are Hertz, with a default value of 1000 Hz , when no value is input directly.

The second part of the input data includes title blocks, the steady-state total pressure recovery array, and several inlet flow parameters. TITLE1 and TITLE2 provide space for 160 characters of identifying comments. PS is an NR by NP array of steady-state pressure recoveries. The bese radial profile BRP is the ratio of ring-average pressures to the face-average pressure. ALPHA and PSI are the angle of attack and sideslip angle respectively, and the freestream Mach number is given by Mo. The flow velocity at the engine Face is U2. BF, CKP, and RKP are weighting factors used in the computation of combined radial/circumferential distortion factors. The mass flow ratio, MFR, gives an indication of the
the mass flow rate before and after inlet duct bleed-off. NTUR is a control parameter which allows the user to select the option of inputting the dynamic data, or having these data simulated by the turbulence modelling scheme. Fimally: SPTRC is the total pressure recovery through the inlet shock system in a supersonic inlet.

More detailed descriptions of the data items in the second group are given below. Most of these data may be deleted from the input data deck, without causing any real difficulties. Many of these are simply included for identification purposes, while others are provided with default values to avoid data errors. Default values are included in the detailed descriptions below:

TITLE1 and TITLE2 are alphanumeric hollerith arreys used for test run identification. Two lines of up to eighty characters each are available for information such as engine/inlet type, Mach number, angle of attack, yaw angle, altitude, and so forth. TITLE1 and TITLE己 are printed at the top of each page of output for easy reference. TITLE1 also is used to check for an END OF FILE or ENDJOB command at the end of the data file, in which case program execution is stopped.

EFP is the compressor face base radial profile. This is defined as the ratio of the average pressure around a ring to the face-average pressure. BRf is a ane-by-NR array with a value at each of the radial locations gi-

Fs is an arrey of steady-state total pressure recoveries. The dimensions of the array are NA rows by NP columne. The rows of $P S$ are pressures at radial locations RAOLOC while the columns are at angular locations ANGLOC. The first and last rows of PS are static pressures associated with $=-\mathrm{E}$ static pressure rings lccated at the

```
centerbody hub and the sumface of the inlet at the
engine face. These static pressures can be measured or
computed values. The pressure array is eventually used
to generate the distortiom contour map, and also is mhe
besis for Finding the instemtaneous pressure errey: F.
```

ALPH is the aircraft/inlet angle of attack relative to the freestream, typically in degrees. ALPH is used for run identification, and does not enter into any computations.

PSI is the aircraft/inlet sideslip or yaw angle relative to the freestream, typically in degrees. Like ALPH, PSI is of interest for identification and analysis, and does not enter into the computations.

MO is the freestream Mach number. Of interest for identification of test runs, MO does mot enter into calculations.

U2 is the flow velocity in the inlet at the compressor face, in feet per second.

BF is the b-factor used as a weighting term for the computation of the combined radial and circumferential distortion factor KA己 (Pratt \& Whitney). BF is multiplied by the radial contribution, and the result added to the circumferential distortion to get the combined distortion factor. BF has a default value of 1.

CKP is the circumferential weighting factor used in the computation of ID, the General Electric combined radial/circumferential distortion factor. CKP is multiplied by the circumferential distortion, then added to the radial contribution. CKP default value is 16. 4 .

RKP is the radial weighting factor used in the computation of I口, the General Electric combined radial/circumferential distortion factor. RKP is multiplied by the radial distortion factor, and the result added to the circumferential comtribution. The default value for RKP has been set at 11.1 in the program.

MFR is the inlet mass flow reatio, defined in terms of the streamtube geometry. Specifically, MFR is the ratio of actual inlet mass flow rate, to the maximum inlet mass flow rate. The maximum inlet mass flow rate is defined as the product of the freestream velocity times the inlet hilite area. Low MFR implies a large amount of inlet spillage. MFR is generally a function of the engine thrust level and flight velocity.

NTUR is a control parameter which allows the user to select the turbulence modelling dynamic data simulation capabilities of the program as an alternative to using measured dynamic data. Inputting a value of 1.0 for NTUR causes the program to branch to the turbulence modelling routines within the program. A value of zero or defaulting the input of a value causes the program to branch to the routines requiring the input of dynamic data.

SPTRC is the total pressure recovery through the inlet shock system of a supersanic inlet duct. For subsomic and transonic imlets, SPTRC is equal to one. If SPTRC is unknown for an arbitrary supersonic inlet, it can be estimated by using Figure 5 , with a value of 0.90 being reasonable as a rough preliminary estimate for most inlet configurations. A default value of 1.0 has been set in the program. It is noted that SPTRC should always be less than or equal to one.

The third part of the imput data consists of the dynamic data. These data consist of rms total pressure fluctuation levels from fast-response total pressure probes. The number of dynamic probe data sets in each run is fully under control of the user - within certain limitations. In a mormal run, the number of dynamic probes is equal to the number of steady-state total pressure probes. In a reduced dynamic data run, the number of dynamic probes can be anywhere from two to as many as would be used in a normal run. Finelly, if the user selects the no dynamic data option by setting NTUR equal to 1.0 (see previous page), these dynamic data may be completely omitted from the input data.

There are four input variables in the dynamic data. NPG is a run identification code, NPR is the probe identification code, $R S$ is the filtered to unfiltered ratio of mean square pressure fluctuation levels, and SIG is the root mean square level of total pressure fluctuations. Further details on these data can be found below.

NPG is a code number for identifying data runs. This user definable integer can be completely arbitrary, thouch entering a value of zero, or defaulting the input signals the end of the dynamic data set. Therefore NPG can be any integer greater than one. When all of the dynamic data has been input, entering a value of zero for NPG (or leaving it blank) will signal the program to move on the the next phase of computations.

NPR is the numeral designation for the location of the dynamic probe. This identification code can be found with the aid of Figure 4 , which is given as an example for the convenience of the user. Dther inlet probe and instrumentation configurations may result in a different numeration scheme, so Figure 4 should be used as a guideline.

RS is the ratio of filtered to unfiltered mean square pressure fluctuations. RS is found by squaring the ratio of the rms pressure fluctuation level filtered at the cut-off filter frequency $F C D$, to the unfiltered level. This ratio is used in the prediction of the maximum instantaneous distortion level, and a default value of 0.50 has been included in the program. In addition, a maximum value of 0.70 has been set to avoid errors in certain computations. These values are easily modified, if necessary, by the user.

SIG is the unfiltered root mean square value of the total pressure fluctuations measured by the dynamic (fast response) total pressure probes. Generally, the units of SIG are identical to those of the PS array, which are mondimensional total pressure recoveries (local total pressure divided by the freestream or inlet lip total pressure).

Sample problems have been included in this manual to illustrate the arrangement of the input data, and to further clarify the utility of the various capabilities of the program. Figures 2 and 3 show formatting rules and the general arrangement scheme of the input data.

Figure 2. Batch Input Data Deck Formatting Arrangement

Figure 4. Ring, Rake, and Probe Assignments for a typical instrument configuration

The printed output of the MAXIDYN dynamic distortion program consists of from five to seven pages of data (sixty lines on each page) depending on the options selected by the user. The first two pages pertain to the steady-state distortion characteristics, with the steady-state pressure array, vortex properties, distortion factors, and related parameters, along with the steady-state distortion contour map. The next page or two involves the dynamic data, with rms pressure fluctuations levels, turbulence data, and some additional flow parameters. The following page is a listing of a summary of distortion factor extreme values as predicted in the Melick prediction technique. The final two pages are similar to the first two, but pertain to the peak instantaneous distortion level.

The following is a page-by-page description of the output. Since the content of the output depends on the $d y$ namic data input option chosen by the user, some variables described may not apply to a specific case. Data affected by the dymamic data options are so indicated, and all of the affected data are found in the middle pages with the dynamic data groups. Some data are provided with default values as described in the input section, and the default values are repeated here for convenience.

Page 1

The first page of output consists of five tables of steady-state distortion data. Immediately below the title block provided by TITLE1 and TITLE , the steady-state total pressure recovery array is printed. The rows in this matrix
are identified with the RADLOC radial probe locations, and the columns with the ANGLOC angular rake locations. The static pressure rings associated with the innermost and outermost RADLOCs are not included in the pressure array. The numbers of the pressure array P are otherwise identical to the input array PS.

Beneath the pressure array is a table of base radial profiles. These are defined as the ratio of probe ring average pressures to the average pressure over the entire engine Face. For each radial location RADLOC (including static rings) a value of PTR/PTA is given. This BRP array is identical to the input array BRF. A default value of 1.0 is assigned for each term in BRP when no value is input.

The next table is a listing of the overall flow descriptors. These simple distortion parameters are used to evaluate the distortion factors and vortex properties. The terms appearing in this table are defined below:

PTMIN [also PTMN and TMMIN] This is the minimum total pressure recovery value from the pressure array, F, exclusive of the static pressure data.

PTMAX (also PTMX and TMMAX) This is the maximum total pressure recovery value from the pressure array, F, exclusive of the static pressure data.

PTAVG (also PTAV and TMAVG) This is the face-average total pressure recovery from the pressure array, P, exclusive of the static pressure deta.

PSAVG (also SMAVG) This is the average value of static pressure from the static pressure data in the pressure array, PS. The two static pressure rings at the centerbody hub and outer radius of the inlet supply these data.

QAVG (also QAV) This is the face-average dynamic pressure recovery, computed as the difference between the average total pressure recovery and the static pressure. Mathematically stated, QAVG = PTAVG - PSAVG.

The three remaining terms in the flow descriptors teble are algebraic manipulations of PTMAX, PTMIN, and PTAVG. These terms are self explanatory - for example, (PTMX-PTMN)/PTAV is interpreted as the difference between the maximum and minimum total pressure recoveries, divided by the average value.

Following the overall flow descriptors table is a table of flow distortion factors. The eight distortion factors listed in this table are representative of a variety availeble to the industry, and are intented as examples. The user is free to redefine the distortion factors within the program. Next to the distortion factors in the table are some weighting factors used in calculating combined distortion factors. The eight distortion factors and their weighting factors are described below:

K-THETA (alsa KTHETA, K日, and KTTA) Pratt \& Whitmey circumferential distortion factor [\#1] - see Figure 9.

Kロ2 Pratt \& Whitney circumferential distortion factor [\#ट] - see Figure 9.
(IDC)-MAX General Electric maximum circumferential distortion factor - see Figure 9.
(IDR)-MAX General Electric maximum radial distortion factor - see Figure 9.

KRA Pratt \& Whitney radial distortion factor - see Figure 9.

KA己 Pratt \& Whitney combined radial/circumferential distortion factor - see Figure 9.

DSPR Delta (loss in) stall pressure ratio - see Figure 9.

ID General Electric combined radial/circumferential distortion factor - see Figure 9.

B-FACTOR (also BF) Radial weighting factor used in computing KAZ - see Figure 9.

BSF Intermediate weighting factor used in computing ID see Figure 9 .

KC (also CKP) Circumferential weighting factor used in computing ID - see Figure 9.

KR (also RKP) Radial weighting factor used in computing ID - see Figure 9.

Beneath the flow distortion factors table is a list of vortex properties. These properties are described below:

THMN (Theta Min) Angular location of the probe rake with the minimum average total pressure recovery, in degrees. The 'zero' rake is the upper vertical rake. THMN is one of the ANGLOC angular lacations, and depends on the steady-state pressure array.

RKMN The average pressure recovery along the rake designated by THMN.

THMX (Theta Max) Angular location of the probe rake with the maximum average total pressure recovery, im degrees. See THMN, above.

RKMX The average total pressure recovery along the rake designated by THMX.

DTH (Delta Theta) The angular difference between THMX and THMN. $\square T H=T H M X-T H M N$.

THETA (also THE) The angular location of the rake midway between the rakes designated by THMX and THMN. THETA $=1 / 2($ THMX + THMN $)$.

> A1 (also ART, etc.) The vortex core size which fits within the boundaries of the rakes designated by THMN and THMX. A1 represents the size of the steady-stete vortex.

G1 (also GAMMA) The orientation angle of the steady-state vortex. This is used to satisfy the amplification of the steady-state distortion level by the vortex field. in determining the peak distortion level.

Page 2

The second page of the printed output is the pressure distortion contour map for the steady-state case. A representation of the high and low pressure regions at the com pressor face of the enging, this map is useful in identifying and visualizing the nature of the distortion of the flow through the inlet. Symbols are used for identifying the pressure at any point in the measurement plane, and a key to the mapping symbols is provided. The numbers provided in the Key are interpreted to mean the percent difference between the local pressure and the face-average pressure - For example, an indication of -3.0 is interpreted as three percent below the average pressure over the engine face.

Page 3

The third page of output is related to the dynamic data, which may be included in the input file, or simuleted by the turbulence modelling scheme. The content of this page (and sometimes the next page) depends on whether the dymamic data is imput or simulated, as described in the cases below:

Case 1: Dymamic Data is Input

Immediately following the title block is a listing of several inlet parameters, along with some parameters used with the dynamic data. These parameters are described below:

I The dynamic data time-on-point, or dwell time during which the dynamic data are measured for each of the dynamic probes. The units are seconds.

FO The engine filter frequency, in Hertz. Fo is often associated with the engine rpm speed.

RT The outer radius of the inlet at the compressor face, or the location of the outermost static pressure probes - the maximum value of the RADLOC array.

RI The inner radius of the compressor face, the radius
of the centerbody hub, or the minimum value of the
RADLOC array.
ALPH (also ALPHA) The inlet angle of attack, relative to
the freestream, in degrees.

PSI The sideslip or yaw angle of the inlet in degrees.

SPTRC The total pressure recovery through the inlet shock

SPTRC (cont'd) system in a supersonic inlet configuration. For supersonic inlets SPTRC is less than 1.0, while subsonic and transonic inlets will have SPTRC equal to 1.0 .

MO The Freestream Mach number.

ETA The face-average total pressure recovery from the steady-state pressure array, PS.

MFR The mass flow ratio of the inlet system. This gives an indication of how much of the inlet air remains after bleed-air has been removed.

U2 The inlet flow velocity at the engine face in feet per second.

QPT2 The dynamic pressure divided by the total pressure. QPTZ $=$ QAVG/PTAVG, where QAVG is the face-average dynamic pressure and PTAVG is the face-average total pressure. (see "overall flow descriptors" table desoription in Page 1 descriptions.)

RS AT FC = The cutoff frequency of the rms dymamio data. (see FCO in input data descriptions)

The next table of data includes the dynamic data as imput by the user. For each dynamic probe location selected, values for the rms pressure fluctuations and the resulting vortex core size are given. The specific terms in this teble are described below:

PROBE The numerical designation for the location of a
dynamic probe. See Figure 4

RS The ratio of the filtered to unfiltered mean square total pressure fluctuation level.

SG/PTZ (also SIG) The unfiltered rms total pressure fluctuation level.

A/RT (also ART) The mean vortex core size, based on the magnitude of SIG. The vortex core size is mondimensiomalized to the inlet radius, RT.

Immediately below the dynamic data table, the average value for the rms unfiltered total pressure fluctuation level, SIG, is printed along with the average vortex size. These terms are actually used in the Melick peak distortion prediction technique (Reference 5).

In some cases, specifically when the number of dymamic probes in the dynamic data is relatively few, the distortion Factor extreme value table is printed on page three immediately below the dymamic distortion table. The reader should refer to Page 4 output descriptions for identification of the terms in this table.

The following is a description of the terms on page 3 of the output when the no dynamic data option is selected in the input file, that is, when the dynamic data is simuleted by the turbulence modelling techniques:

Case 2: Dymamic Data is Simulated

The data appearing on the third page of output includes all of the data appearing in Case 1, excluding the dymamic data listing. The reader should refer to the descriptions in Cese 1, except for the dynamic data - PROBE, RS, SIG, and ART. These terms are replaced by three tables of turbulence calculations, and the simulated values of SIG for each of the available dynamic probe locations.

The following is a descriptive listing of the data on the third page of output when the dynamic data are simum lated by the turbulence modelling technique. The parameters listed in Case 1 are included in these data, and the reader should refer to the description listing there for details.

The first table following the inlet and contral parameter listing gives dimensionless velocities of the flow at the compressor face for each of the pressure probe locations. These velocities are calculated based on the steady-state pressure data from the imput file. The rows of the velocity array are associated with the ANGLOC angular locations of the rakes, while the columns are associated with the RADLOC radial probe locations along the rakes. The first and last columns reflect the static pressure probes located at the centerbody hub and outer inlet radius.

Following the table of dimensionless velocities for each of the probe locations is alisting showing the iteration of the turbulent kinetic energy, and the kinetic energy dissipation rate. The relative error in these terms is minimised during the iterations. The first column shows the error in the turbulent kinetic energy; the second, the error in the turbulent kinetic energy dissipation rate, and the third gives the sum of these two. These errors should decrease rapidly within the thirty iterations allowed. Once the errors have been minimized, the turbulent kinetic energy and dissipation rates are used to generate the synthisized dynamic data.

The next table is a listing of the results of the turbulence calculations, including the synthesized dynamic data and the turbulence modelling parameters. This table is similar to the dynamic data table in the Case 1 descriptions, but includes some additional terms. This table is large, and may actually be slipped to the fourth page. The terms appearing in this table are defined on the following page.

PROBE The numerical designation of a dynamic probe, used to define the location of the probe. See Figure 4.

UU The sum of the squares of the radial and circumferential velocity gradiants in (ft/sec) ${ }^{2}$.

E The turbulent kinetic energy dissipation rate in units of $f t^{2} / \mathrm{sec}^{3}$.

K The turbulent kinetic energy in $[F t / s e c\}^{2}$.

SG/PTZ (or SIG) The synthesized unfiltered rms pressure fluctuation level.

Printed belaw the synthesized dynamic data table are values for the face-average SIG, and the mean vortex size, ART. These values are used to predict the most probable peak instantaneous dynamic distortion level.

Page 4

The fourth page of output is a table of distortion factors and parameters leading to the most probable peak instantaneous distortion for each of the eight sample distortion factors. The terms and distortion factors appearing in this table are described below:

KTTA (or KTHETA) The Pratt \& Whitney circumferential distortion factor, definition \#1 (see Fig. 9).

KD2 The Pratt \& Whitney circumferential distortion Factor, definition \#2 (see Fig. 9).

IDC The General Electric circumferential distortion fac-
tor（see Fig．9）．

IDR The Gemeral Electric radial distortion factor（see

KRA The Pratt \＆Whitney radial distortion factor（see Fig．9）．

KA己 The Pratt \＆Whitney combined radial／circumferential distortion Factor（see Fig．9）．

ロSPR The loss in stall pressure ratio（see Fig． 9 ）．

I口 The General Electric combined radial／circumferentiel distortion factor（see Fig．9）

STEADY STATE This column indicates the steady－state values for the distortion factors，as computed from the imput distortion data．

MEAN VALUE The mean instantaneous distortion level，com－ puted by adding the mean instantaneous rms fluctuation level to the steady－state distortion．

SIGMA INF The unfiltered rms distortion fluctuation le－ vel．

SIGMA FO The rms distortion fluctuation level，filtered at the engine filter frequency，$F O$ ．

MOST PROB The most probable peak instantaneous distor－ tion level at a 50% confidence level．Statistically， this is the most likely value for the peak distortion level in the statistical prediction analysis．Moving away from this value decreases the probability．
${ }^{\cdot}{ }^{P_{t 1}}$

1.0	Figure 5. Estimation of SPTAC
1	

confidence level - percent of area under curve to left
confidence level - percent of area under curve to left
95% PROB The peak instantaneous distortion level at a 95% confidence level. This is interpreted as meaning there is a 95% chance the actual peak instantaneous distortion level will be less than the indicated level. The likelyhood that the actual peak will reach this level is small.
99.7% PROB The peak instantaneous distortion level at a 99.7% confidence level - there is a 99.7% chance that the actual peak will be less than this level. It is very unlikely that the actual peak distortion level will ever be this high.

The most probable peak instantaneous distortion level For the distortion factor selected by the user is printed immediately below the distortion factor extreme value table. This distortion factor is used to develop the peak instantaneous pressure array and contour map.

Page 5

The fifth page of output is much the same as the first page, except the data applies to the peak instantaneous distortion rather than the steady-state. The terms in the tables are defined in the descriptions of Page 1, though any references to the steady-state case are understood to be replaeed by the peak instantaneous case.

A mejor difference between the fifth page and the first page is that the vortex properties table has been replaced by a vortex location table, with some new terms. These are defined on the following page. Many of the terms are similar to some of the steady-state vortex properties, though they apply to the peak instantaneous vortex.

VBAR The average vortex strength in terms of the vortex tangential velocity vector nondimensionalized by dividing by the flow velocity at the engine face. This property is used to define the source of the pressure fluctuations.

A/RT (also ART) The vortex core size in terms of the vortex radius divided by the inlet radius. See AY/RT.

GAMMA A vortex orientation angle in degrees, due to the rotation of the vortex core about the x axis. See Figure 10.

BETA A vortex orientation angle in degrees, due to the rotation of the vortex core about the z axis. See Figure 10.

AY/RT (also AYRT) The vortex core size in terms of the vortex radius (the radius at the maximum tangential velocity of the vortex system] divided by the inlet radius. AY/RT is also the same as $A / R T$.

VL The mondimensional vortex length limit. VL has been set at 999.999 (infinity for all intents and purposes) in the current program, though this is easily altered. VL should represent the true vortex length limit divided by the inlet radius.

R/RT (also RRT) The radial location of the vortex central core. R/RT is a dimensionless value with a maximum value of unity.

THETA The angular location of the vortex center in degrees. Zero degrees is the top vertical position, with positive THETA being clockwise about the engine face.

VBMAX The maximum vortex strength in terms of the tangential velocity of the vortex divided by the flow velocity at the engine face. VBMAX also appears as VBM in the FORTRAN coding.
 VBD The vortex strength as approximated from the total pressure rms fluctuation dynamic data
 $A O / R T$ The vortex core size computed from the average of the dynamic data power spectral density (PSD) funct-tions.

Page 6

The sixth and last page of the printed output consists of the pressure distortion contour map for the peak instantaneous case. The terms and parameters appearing with this map are identical to those in the steady-state map. These parameters are described in the Page 2 description in this section.

SUMMARY OF DEFAULT VALUES

The following is a summary list of default values for the input/autput variables which have such values:

$\mathrm{T}=1.000$	$\mathrm{BRP}=1.000$
$\mathrm{FO}=500 \mathrm{~Hz}$	MFR $=1.000$
$\mathrm{FCO}=1000 \mathrm{~Hz}$	SPTRC $=1.000$
$\mathrm{BF}=1.000$	$\mathrm{VL}=999.999$
$\mathrm{RS}=0.500$	max RS $=0.700$
$\mathrm{CKP}($ OF KC) = 16.4	RKP (or KR) $=11.1$

V. SAMPLE PROELEM

V. SAMPLE PROBLEM

A. Introduction

Four sample data sets are provided to illustrate the input/output capabilities of the MAXIDYN distortion program. These problems are taken from provisional data, and represent a variety of inlet operating conditions. The first and second cases are supersonic inlets with a full set of 40 dynamic probes, and a partial set of 14 , respectively. The third cese is a subsanic inlet with the minimum number of high-response dynamic probes - 2. The final case is a transonic inlet with no dynamic data input. This case makes use of the turbulence modelling capabilities of the program, which simulates the dynamic data.

Some of the primary data parameters are shown in the table of part B, below. Figure 7 gives a complete listing of the input data files for the sample problems. Figure 8 in part C shows the output from the four sample problems. Definitions of each of the terms in the input and output listings may be found in the input and output data descriptions of section II, parts B and C, respectively.
B. Sample Problem Input

The four test cases provided here have similar probe ring/rake configurations. Figure 4 illustrates the arrangement of the pressure probes at the engine face. Some of the main parameters in the input data are tabulated on the fol. lowing page, with a complete input data listing in Fig. 7.

PARAMETER	CASE 1	CASE 2	CASE 3	CASE 4
NR	7	7	7	7
NP	8	8	8	8
RI	1.000	1.430	0.283	1.645
RT	5.169	4.346	1.000	5.000
K口	3 (IDC)	3 (IDC)	3 (IDC)	6 (KAC)
T (sec)	30.0	2.0	2.0	2.0
FO (Hz)	500.0	500.0	1000.0	1000.0
FCO (Hz)	1000.0	400.0	500.0	500.0
ALPH (deg)	4.0	5.0	-	-
PSI (deg)	0.0	0.0	-	-
MO	1.36	2.5	-	-
U2 (fps)	514.3	278.5	432.4	575.8
BF	0.733	0.733	0.733	0.784
CKP/KC	1.0	1.0	-	-
RKP/KA	1.0	1.0	-	-
MFR	-	1.0	-	-
NTUR	-	0	-	1
SPTRC	-	1.0	-	-
probes	40	14	2	0

[A dash "-" indicates a defaulted entry, or zero. The program assigns default values in these cases.]
C. Sample Problem Output

The line-printer generated output for the four test cases is presented in Figure 8 . The number of pages of output varies with the dynamic data content, but never exceeds seven pages, unless there are run-time errors (exponential overFlows, negative square root radicals, etc.) or compile-time errors. Run-time errors can occur with bad data. The terms given in the output are defined in Section II, part C.

ORIGTNAL PAGE IS

 OF POOR QUARITY

Figure 7. Sample Problem Input Data

Figure $7 .($ cont'd)

Figure 7. (cont'd)

Figure 7. (cont'd)

Figure B. (cont'd)
小cuxa－cax कr oraropinininco －r－－－me すのa0movorco 4c．．．．．．．．．． ${ }^{1}{ }^{\circ} 0.0000^{\circ \circ}$ rexpn00000010
 ぶロベーデMOの zuccicccoco －ccccec三
－raromonirng xのOn mogMmina くCanur－arco इva0n000700
 $0.1000^{\circ 00}$ふucro00000c ccccecτ

[^1]$\stackrel{O}{\circ}$
Figure B. (cont'd)
Fucad

4.346
1.0000

[^2]

Figure B. (cont'd)

Figure B. (cont'd)

$$
\begin{array}{r}
4.151 \\
1.0000
\end{array}
$$

$$
\begin{array}{r}
4.346 \\
1.0000
\end{array}
$$

Figure B. (cont'd)

ORIGINAL PAGE IS OF POOR QUALITY

Figure 8. (cont'd)

ก. R87

AVEDAFE PRESSIIRFE

DISTOKTION FACTUR FXTHFMF VAIUF

Figure 6. (cont'd)

$$
\begin{aligned}
& c \not a \alpha 0-c \\
& \dot{v} \sim \alpha \alpha \alpha \\
& \vec{r} c c c c c
\end{aligned}
$$

Figure 6. (cont'd)
$-7{ }^{7} \cdot \frac{A}{5}$

Figure 6. (cont'd)

Figure 6. (cont'd)

乡cccccccccccc

-axncosis

 N

 물

Figure 6. (cont'd)

$$
\begin{gathered}
\text { MAXIMUM INSTANTANFUUS DTSTURTTUN FACTIR } \\
\text { KAZ }=0.3682
\end{gathered}
$$

DISTORTION FACTIR FXTRFMF VAI UF

FACTOK

a inginmonno EGM untra－c n cuccece c ceccec

 －occece

$$
\stackrel{\rightharpoonup}{c}
$$

Figure E．（cont＇d）

Figure 6. (cont'd)

Pactor	Equation	Supplemental equations	Definltions
${ }_{\text {IDC }}^{\text {max }}$	$\begin{aligned} I D C_{\max }= & \max ^{\left(\frac{1}{2}\left(\mathrm{IDC}_{1}+I D C_{2}\right)\right.}, \\ & \left.\frac{1}{2}\left(\mathrm{IDC}_{4}+\mathrm{IDC}_{5}\right)\right) \end{aligned}$	$\operatorname{IDC}=\frac{\left(\bar{p}_{t}\right)_{j} j^{-\left(p_{t, m I n}\right)}}{\bar{p}_{t}}$	$\begin{aligned} & \left(\vec{p}_{t}\right)_{j}=\text { average cotal pressure for ring } j \\ & \left(p_{t, m i n}\right)_{j}=\text { minimum total pressure reading } \end{aligned}$
$\mathrm{IDR}_{\text {max }}$	$\mathrm{IDR}_{\text {max }}=\max \left(\mathrm{IDR}_{1}, \mathrm{IDR}_{5}\right)$	$I D R_{j}=\frac{\bar{p}_{t}-\left(\bar{p}_{t}\right)_{j}}{\bar{p}_{t}}$	$\Gamma_{t}=\text { average total pressure at engine face }$
${ }^{\mathrm{K}}{ }^{2}$	$K_{D 2}=\frac{\sum_{j=1}^{N R} \bar{\theta}_{j}\left(\Delta p_{t} / p_{t}\right)\left(O D / D_{j}\right)}{\sum_{j=1}^{N R}\left(O D / D_{j}\right)}$	$\frac{\Delta p_{t}}{p_{t}}=\frac{\left(\bar{p}_{t}\right)_{j}-\left(p_{t, m i n}\right)}{\left(\bar{p}_{t}\right)_{j}} * 100$	```\(\left(\overline{\mathrm{P}}_{\mathrm{t}}\right)_{j},\left(\mathrm{P}_{\mathrm{t}, \mathrm{min}}\right)_{j}=\) see above \(\theta_{j}=\) circumferential extent of largest continuous total pressure depression below (\(\overline{\mathrm{P}}_{t}\)) \({ }_{j}\), degrees \(D_{j}=\) diameter of ring \(f ; N R=\underset{\text { ring }}{\text { number of }}\) \(O D=\) outer duct diameter```
K_{0}	$K_{\theta}=\frac{\sum_{j=1}^{N R}\left(A_{1}\right)_{j}\left(1 / D_{j}\right)}{\left(\bar{q} / \bar{p}_{t}\right) \sum_{j=1}^{N R}\left(1 / D_{j}\right)}$	$\begin{aligned} & \left(A_{1}\right)_{j}=\left(\bar{a}_{1}^{2}+b_{1}^{2}\right)_{j} \\ & \left(a_{1}\right)_{j}=\frac{1}{M}\left[\sum_{1 \bar{M}^{\prime}}^{M} \frac{p_{t_{1}}}{\bar{p}_{t}} \cos \left(\theta_{1}\right)\right]_{j} \end{aligned}$	$\begin{aligned} & \bar{P}_{t},\left(\bar{P}_{t}\right)_{j}, D_{j}=\text { see above } \\ & \bar{q}=\text { average dynamic pressure at eng ine } \\ & \quad \text { face } \\ & M=\text { number of rakes } \\ & \left(\bar{P}_{t_{1}}\right)_{f}=\text { individual total pressure; rake } i \end{aligned}$
	$\begin{aligned} & K_{R A D}=\sum_{j=1}^{N R}\left\|\frac{\overline{\mathrm{P}}_{t}}{\overline{\mathrm{p}}_{t}}\right\| \frac{\overline{\mathrm{p}}_{t}}{\overline{\bar{q}}} \frac{1}{\mathrm{D}_{j}} \\ & \mathrm{~K}_{\mathrm{A} 2}=\mathrm{K}_{0}+\mathrm{bK} \mathrm{KAD} \end{aligned}$	$\begin{aligned} & \left(b_{1}\right)_{j}=\frac{1}{M}\left[\sum_{L=1} \frac{\bar{p}_{t}}{L_{t}} \sin \left(\theta_{1}\right)\right]_{j} \\ & \frac{\Delta p_{t}}{\bar{p}_{t}}=\frac{\left(\bar{p}_{t}\right)_{1}}{\bar{p}_{t}}-\frac{\left(p_{t}, \text { base }\right)_{1}}{\bar{p}_{t}} \end{aligned}$	
$\frac{\overline{\mathrm{SPR}}}{\mathrm{DTSt}}$	$\frac{\triangle S P R}{D I S T}=\frac{\triangle S P R}{\left[\left(\bar{P}_{L}-r_{L}, m / n\right) / \bar{r}_{L}\right]}=f(k)$		$\overline{\bar{p}}_{t}=$ see above $\mathrm{p}_{\mathrm{t}, \mathrm{min}}=$ minimum rotal pressure at engine $\mathrm{f}=$ face $k=$ compressor reduced frequency
IV	$\frac{\text { FID }=k_{c}(\text { IDC }) b+k_{T}(I D R)}{\text { Figure 9. Distortion }}$	ctor Definitians	```k}=\mathrm{ circumferential distortion sensitivits factor k = radial distorcion sensitivity factor b}=\mathrm{ circumferential distorcion welghting factor```

$\begin{aligned} \text { GAMMA }= & \text { vortex orientation angle between } y \text { axis } \\ & \text { and the } x^{\prime}-y^{\prime} \text { plane } \\ \text { BETA }= & \text { vortex orientation angle between } x^{\prime} \text { and } x \\ & a x e s, \text { with the } x \text { axis in the } x^{\prime}-y^{\prime} \text { plane }\end{aligned}$

Figure 10. Definition of Vortex Angles

APPENDIX A

PROGRAM SOURCE CODE LISTING (FORTRAN)

FEA[IS 124, EHI=9\%9 TITLEI
FEHII (S. 1E4) T]TLEE
IWFIT FFAEE RAIIAL FRGFILE 3
111
4
-11 -
11141
01042
61148
01144
01145
61148
11147
11148
11148 (1051E
F

$=$

FEDIIT\&IO, $I=1,10$)

FOLIT 1 Y, I $=11,19$
 hIFITE ES, 10\% lIFEITE 《E,40\% IFITE G: 111 , WFITE $G, 120$
[in $10 \quad I=1,39$
[1[$1011=1,51$
 L
$=$
$=$

リ11 ! !

$\begin{aligned} & x T K=10.10+E \\ & l=E \end{aligned}$	
CHEEE=0. 00001	
SHV=0.0	
ED TD 70	
$\mathrm{I}=1 . \mathrm{ll}$	
CHI= $1 . \mathrm{I}$	
In 5011.30	
IF ESGT. XTCIY BT TQ En	
$1 \mathrm{H}=\mathrm{I}-1$	
$\mathrm{HH}=\mathrm{E}$. H ¢ Frt	
IF H.E日. 0	$\mathrm{HH}=1 . \mathrm{II}$
$1+\mathrm{D}=\mathrm{E}-1+1$	
$\left[1=\left[1+1 \Gamma_{1}\right.\right.$	

[^3] 20

R-THETA SHETEM UEET WH THE MHTEFQLATTCH FRDEESE.

 FT, GIE \& 10 , GF C1

$$
\text { INTH FLAHY\& } 1 \mathrm{H} \text {, FLISS } 1 \mathrm{H}+
$$

> MF, RFDLDE, FHELDE, FUII F HEUE THE FIRET FRPAY IIMEHEIDH EQUIGL TO 11. TEM DF THE11 FG三ITIGHE FRE FU'ILGELE FQP UEE. THE

IH THE IHFITT HEAEUPENENT FLAHE. | 6 |
| :---: |
| 6 |
| $=$ | 1120.

[^4]```
 1315
 101%
 @318
 1318%
 1310
 1)%品
 ज゙こ16
 がこに
 1050
 ジ4
1Bこと
 1O%
 15%?
 1%2%
 0%%
 1330
 MES
 1%%
 133%
 01346
 11%5
 1036
 03%
 1050
 13%%
 134%
 1541
 1342
 1043
1044
 1345
 1%4E }
 0347E
```



```
134%
155,1}
の51に
0%に=
115%
1!554
```



```
EUEPGUTIMF WHIEH GFLEOLFTEE EIMFLE IIETGRTIGH FFRPFMETEAE.
HF, RAILDE, FHGLDO, FHIN F HFU'VE THE FIRET
FPRFOY DJWEHEIGH EPUFL TG 11. TEM IF THE
11 FOEITIGNE FPE FUGILAELE FOR UEE. THE
REHFIHTHG FOEITIDH IS WEEMEH FGP IHTERMAL FROGESEIHS.
-
```




```
 * 11, IE,KEY,KT, LEHTFL,HH,HF,|P,P(11,ED),FE(10),PS《11,ED, EKF,
```






```
 LDGIEHL STHTI,STATD, LEHTFL, LHIID
 EFLEMLATIOH DF EIMFLE EIPIUMFEREMTIFAL DIETGRTIDH FARAMETERE.
 In 1% I=.11, 1%
```



```
 EMASCIO=0,0
 ENAIH(I)=5,00100,0
 EMAWE(I)=010, I
 [目 11 . I= 1, 1/P
```




```
 SMFF[IUTIME:IIETFT
 *
```




```
134BG FFLEMLFTIOM OF GNFOF'E FOR EFILH RIWG.
```


ORIGINAL PAGE IS
OF. POOR QUALITY
THIN $14=5 \pi n 00.0$
$\ln 7 \mathrm{I}=11$, E

Gflallation af thate

EFLIMLATIDH AF TIF' $\equiv$

EEFTIGH TO EFLEULATE THTMIN FGR EFIGH RINE.



8



IT T.







##  <br> 

 $I C \quad I=1, H F$
$S H T M=S T H T S M+F$ (HF,I) II $\%$ II I +FLDHT AF
IF $\because H D T . ~ S T H T D ~ B D ~ T D ~$
IH
IF G.HIT. STHTI ED TD EG


EFLGULFTIDH DF FUERFGE ETATIG FRESEURE.
II $4=11.11$




```
047e=
147%
H4TS 4| FHTIF &ITHT.IFO =FVHLLIE
 I.HLL IHTEFP
1147%-
```



```
114:31:
14QE
14850
1444
04:35 EHII
 FE TIUFH
04EE=
14%7E
```





$$
c-3
$$

THE RIMIS
苩
FWI FIUD FMEPFGE FPESEURE
IHAER RITHES
$\therefore$ HATMI LHICDA-S
IIF
EET

ORIGMAL PRGE IT OF POOR QUALTM
0593130 EOHTJUE

手 白

SUFFDUTIHE STMELE





FEHI (S, 70 B ALFH,FSI, HD, UE, EF, CKF, RKF, MFP, HTUF, SPTFE



16.4
$1 \cdot 11=$
FEE C $=E S F E K F$ FSFEC 0 +FKF FSFEC (4)
F EFF.EQ. 0. 1 O $\mathrm{EF}=1.0$
$E T A=T M A V$
QFTE=EAW TMAVG
FSECGS = PSFEC (1) + EF FFFEC 5
河


空

 HN I = GUHTER FGP HHPEER GF IHHAHIC FRESEUPE FRDEES.

## 301 EHLL FFF FFSFHLIF

EGHFUTE MAXIHMM TIETGRTION VFLUEE.
EFLL MFKIF
Ha $2 \mathrm{ZE} \mathrm{I}=1$, HH
HWSIZ (1) HWSIZQI © HE



 AE=1E. O*FUOQUERT $\mathrm{H} \cdot \mathrm{H}=1$

HサSIZCHM=HE
TMFFD(TAT) = 1
SGP $\because=\mathrm{HE}$ © AE
GFIL HEYTE MFUTE MAXIMIM DIETORTIGH VALUES. Gall MEsid




WFITE ?
FETIUN







$$
\begin{aligned}
& \text { 受 }
\end{aligned}
$$

SIGF=SGFRFK



い TIE
FORHILLAE FGA HAE FHIN ID EIGHAE





GD TD 45!



8
2
$=$
$=$
$=$

11：

$\because E=0=0=0=0=0=0$
0449
09511
ت
聂
0
0
0
易
 \％Ik950，1k99？
500 EDHT IHLIE

FDFMAT＜ $3 \%$＂FAIE－AVEFAGE RHS SG／FTE＝＂，FE，S






动
$\Xi$


IAGOFEET?
IS
FVEL

ORIGNAL PREA H
OF POOR QUALTY





E
$\stackrel{1}{8}$
$=$
$=$
41
$=$
8


$F K=F K F 1$
$F 1=F 1-0 F T$ ( $0.1 \Xi F P$ SF)
$G \square$ TO 90

THI $=$ EPFHIGH GFFLIEE TO HRA



$F \cdot 1=F \cdot 1 S F$
$G D T D G 0$

$=\vec{r} \quad$ is
$\because \quad \begin{array}{lll}\pi-5 & \quad \pi & 10\end{array}$











EFL.EMLFTIGH OF IT
$F I I=F I I M H O F S F E F+F I I F M \% F A F$

FIPET FIMI THE FUEPAGE RAIIFL FPEEEURE FMA MIMIMIH FRESEURE





-     -         -             -                 - 吅

 FETUFH
EHII



| 134709 | FDFMHT | （1H） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1348110 | FOFMHT |  |  | $\because$ |  |
| 1349113 | FDEMHT | \％30\％， $14 H F F E S$ UFE HFRH\％ |  |  |  |
| 1501 121 | FUFMHT | $1 \% 4 \%$ GHFALIIS， $15 \%$ ， 3 HATHSILAFE | FOSITIUH［F | INFUT | MEHSLFEMEM |
| 1351 | 8TS IEE |  |  |  |  |
|  | FGEMAT | （15\％，10FS． 1 ） |  |  |  |
| 135125 | FIFMAT | （1H1，E\％，EDA EX，EDH4） | － |  |  |
| 13546 |  |  |  |  |  |
| 1355 10010 | FETUFIH |  |  |  |  |
| 135゙5 | EHII |  |  |  |  |
| ¢ッロ |  |  | － | － |  |

## QHFDUT INE IHTEFF

| TEPFILFTIDIU EIfPRDUTIPE |
| :---: |






TETEPHIHE THE EGPPEET THD RIMGE TD HEE IH THE IMTERFGLATIGN FRDEESE.



$\Rightarrow \quad \stackrel{\square}{\square}$










0
0
5091
6091
92091
1091
01091
-641
-661
2061
1606
1606
$=$
DID $\mathrm{I}=1.10$


IF FHI. БT.1E0. O) $\mathrm{FHI}=\mathrm{FHI}-\mathrm{GE} 0.0$
$\because \bar{H}=\square \dot{F} H I A^{\prime}$

 IIFT $1=0.11$





EDHTIHIE
Gロ TD GO
REEET ETATIE
$E H S E=\because H-I H B-2 H-C D E \subset C D E$



IISTET

| EHLL FFFT © |  |  |
| :---: | :---: | :---: |
| EHLL FFIX © TF |  |  |
| EHLL DISTET |  |  |
| EALL FFIXG.F |  |  |
| CFLL MAIHAF |  |  |
| EHLL LHFDIT © 13 |  |  |
| WFITE EE, 19\%5 |  |  |
| LIFITE GEgEDOD |  |  |
| WFITE E. 19\%\% |  |  |
|  |  |  |
| WFITE GE, B ES |  |  |
| EOHT I | IHIE |  |




## UEM, UFOOFO








白
$\because 14$




## ORIGINAL PAEE IS <br> OF. POOR QUALITY







## 






[u




## ORTGRAR PNOE IG

 OF POOR QUALTYY
$\therefore 14=1011 F E i=1 \%$
$\cdot H=G I H$
Tロ
CHT IAHIE


HFGi ，

Cort Inlue
50 TO 11
10 $2=10150$

$16=1-n E+1$
FI＝－ドー

$\therefore$
0
a
$\because \quad 0$



 E (I

 in $5 \mathrm{I}=1, \mathrm{H}-1$




 $\frac{3}{2}$
$\frac{3}{2}$
$\frac{\pi}{2}$


1
$\begin{array}{rl}-2 \\ 1 & 2 \\ 11\end{array}$

—号号岂
$=$


U = - =

足 $5=5$

ORIGNAR prege 18 OF POOR QUALITY





$A O=F E O Z$

 FCI =HFッSEK

$\mathrm{CI}=\mathrm{HO} \mathrm{CI} \mathrm{E}$ 民
FGIOGKCIER
U
CW
$\stackrel{7}{7}$




## APPENDIX B.

## OPTIONAL "SEGMENTED VORTEX" ADDITION

An addition to the source code given in Appendix $B$ includes the Segmented Vortex approach described in Fef. 8. In this approach, the vortex model derived in the standard Melick approach is divided into eight segments. This process allows for simulation of a monlinear vortex, or a vortex ring. Theoretically, this should allow for more accurate modelling of the inlet flow distortion, for better results. The segmented vortex approach showed some improvement of the predicted peak instantaneous distortion contour map in certain cases (Reference 8). The User is free to experiment with this addition to the source code. The following page lists the addition, showing where it is to be inserted in the original code.


## APPENDIX C.

## QUICK REFERENCE GUIDE

## 1. MAXIDYN Program Description <br> 2. Input Data Description <br> 3. Dutput Data Description

## 1. MAXIDYN Program Description

The MAXIDYN dynamic distortion program computes the most probable peak instantaneous distortion level given the steady-state distortion conditions, and generates a peak distortion map based on the predictions. The Melick canvecting vortex model and statistical approach is used in this predictive analysis, with some modifications and improvements to enhance program flexibility. The complete FORTRAN program requires sufficient computer memory capacity for approximately 100,000 words, plus typically 5000 words per data set. Run time varies from system, but is generally limited only by the online printer output capacity on most mainframe systems.

Input data requirements include the rake and probe configuration used in the test, the steady-state static and total (stagnation) pressure measurements in the rake plane, some basic inlet flow parameters, and optionally the root mean square pressure fluctuation level measurements. The input data are described briefly in the next section, and formatting requirements are shown in the figure. Some of the input data are optional, that is they may be deleted from the input file. The program automatically assigns prem defined default values, or as in the case of the rms levels, the data are computed based on other input data.

The printed output of the MAXIDYN program includes several pages of steady-state and dynamic distortion data. The input data are organized in groups printed in the first few pages, along with steady-state distortion computations, Melick vortex model parameters, and the steady-state map. The rms fluctuation levels and/or turbulence modelling date are printed in the next few pages, along with the statisticel
predictions of the most probable peak instantaneous distortion levels. Finally, a dynamic distortion map is generated based on the peak instantaneaus prediction. A brief description of the output data is given in the third part of this Appendix.

## 2. Input Data Description

The table below briefly defines the variables in the input data. Certain data may be deleted from the input file because they are considered optional and generally are not part of the computational procedure. Some of these data are assigned default values as meeded within the program. All optional data are indicated with a "*" in the second column of the table below. In the Format column, "F" indicates a real number, "I" indicates an integer, and "A" indicates an alphanumeric array, according to standard FORTRAN rules. The arrangement of the input data is illustrated in figure A1.

Data * Format Definition

| NF | 15 | Number of pressure tap radial locations |
| :---: | :---: | :---: |
| NP | I5 | Number of rakes |
| RADLOC | F10.5 | Radial location of pressure taps |
| ANGLOC | F10.5 | Angular location of rakes in degrees |
| KD | I5 | Distortion factor selection index |
|  |  | $K D=1: ~ K T H E T A ~$ |
|  |  | 2: KD2 |
|  |  | 3: IDC |
|  |  | 4: IDR |
|  |  | 5: KRA |
|  |  | 6: KA己 |
|  |  | 7: ロSPR |
|  |  | 8: ID |


| Data | * | Format | Definition |
| :---: | :---: | :---: | :---: |
| T | * | F 10.5 | RMS fluctuation measurement time-an-point default $=1$ sec. |
| FO | * | F10.5 | Engine filter frequency, default $=500 \mathrm{~Hz}$ |
| FCO | * | F10.5 | RMS cut-off filter frequency, 1000 Hz def. |
| TITLE | * | A80 | Title block |
| BRP | * | F10.5 | Base radial profile array, default $=1.0$ |
| PS |  | F10.5 | Steady-state pressure array |
| ALPH | * | F5. 3 | Inlet angle of attack in degrees |
| PSI | * | F5. 3 | Inlet yaw angle (crosswind) in degrees |
| MO | * | F5. 3 | Freestream Mach number |
| บ2 |  | F5. 3 | Inlet flow velocity in fps |
| BF | * | F5. 3 | B-factor for weighting in KA2 computation default $=1.0$ |
| CKP | * | F5. 3 | Circumferential ID weighting factor, default $=16.4$ |
| RKP | * | F5. 3 | Radial I口 weighting factor, default $=11.1$ |
| MFR | * | F5. 3 | Inlet mass flow ratio, default $=1.0$ |
| NTUR | * | I5 | Dynamic data selection index <br> NTUR $=0:$ Dynamic data (rms levels) imput <br> 1: Dynamic data synthesized |
| SPTRC | * | F5. 3 | Supersonic inlet pressure recovery, default $=1.0$ |
| The $f$ | ow | ing data | is required if NTUR $=0$ : |
| NPG |  | I5 | Data run number |
| NPR |  | I5 | Dynamic probe location number |
| RS | * | F5. 3 | Filtered rms level $\div$ unfiltered rms level default $=0.5$ |
| SIG |  | F6. 4 | Unfiltered rms fluctuation level |



Figure A1. Input Data File Formatting Arrangement
3. Dutput Data Description

The printed output of the MAXIDYN program consists of several pages of data and computations. The first two pages are related to the steady-state distortion and some Melick vortex model parameters, the middle page or pages are related to the dynamic data and the statistical determination of the most probable peak instantaneous distortion, and the last two pages are related to the generation of the peak instantaneous distortion map. The contents of each of the pages of output are briefly defined below.

## Page 1

At the top of the first page, immediately below the title blocks supplied by the user, is the steady-state PRESSURE ARRAY. This array is identical to the pressure array of the imput data, except the static pressures have been deleted. Each column of the array represents a rake, while the rows represent probe locations of probes along the rake. Immediately below the pressure array is the BASE RADIAL PROFILE, also from the input file. The next table, the OVERALL FLOW DESCRIPTORS, provides some simple distortion parameters:

PTMIN is the minimum measured local pressure from the steady-state PRESSURE ARRAY.

PTMAX is the maximum pressure from the PRESSURE ARAAY.
PTAVG is the average pressure from the PRESSURE ARRAY.
PSAVG is the average static pressure.
QAVG is the average dynamic pressure.
The next table is a listing of the eight FLOW DISTORTION FACTORS and their values, along with weighting factors.

At the bottom of the first page, some of the Melick VORTEX PROPERTIES are given. These properties are:

THMN - The rake showing minimum average pressure
RKMN - The average pressure along rake THMN
THMX - The rake with maximum average pressure
RKMX - The average pressure along rake THMX
DTH - The angular difference between THMX and THMN
THETA - The angular lacation of the center of are DTH
A1 - The radius of the steady-state Melick vortex
G1 - The orientation angle of the steady-state vortex

Page 2

The next page of printed output is a distortion contour map for the steady-state case. Relatively high and low pressure regions are indicated by symbols, which represent the percent difference from the average pressure, as indiceted by the KEY TO MAPPING SYMBOLS immediately above the map.
The average pressure is printed to the right of the map.

## Page 3

Page three of the output includes a listing of some of the input data, including flow parameters, and the dynamic data, assuming dynamic data was included in the imput file. If dynamic data was not included in the imput file, the third page would include some data from internal turbulence calculations. The data on this page includes:

T - The dynamic data time-on-point, in seconds
FO - The engine filter frequency, in Hz .
RT - The outer rake diameter at the static tap
RI - The centerbody hub radius
SPTRC - The supersonic inlet shock pressure recovery
ALPH - The inlet angle of attack
PSI - The inlet yaw/crosswind angle

MO - The Freestream Mach number
ETA - The average pressure at the measurement plane
MFR - The inlet mass flow ratio
U2 - The inlet flow velocity at the measurement plane QPTZ - The ratio of the dynamic to total pressure
FC - The rms filter cutoff frequency

If dynamic data is included in the imput data file, these data are printed in a table. The terms in this table are: PROBE - The dynamic probe location index

RS - The ratio of filtered-to-unfiltered rms level
SG/PTZ - The unfiltered rms fluctuation level
A/RT - The vortex radius resulting from the rms level

The rms fluctuation level and vortex size are given below the dymamic data table.

If dynamic data are excluded from the input file, these data must be synthesized by the turbulence modelling scheme. In this case, the dynamic data table is replaced by a table of DIMENSIONLESS VELOCITIES occurring at each of the probe locations, and a table of iterations of turbulent kinetic energies. These are provided for the convenience of the user and are not directly involved in the distortion analysis.

## Page 4

The fourth page of output includes a listing of the IISTORTION FACTOR EXTREME VALUE computations. For each of the eight distortion factors, values of the most probable peak instantaneous distortion are presented. This table includes the STEADY STATE, MEAN INSTANTANEOUS, and peak instantaneous distortion at various statistical confidence levels. In addition, the filtered and unfiltered rms distortion levels are indicated; INF referring to the unfiltered case and $F O$ representing the filtered case.

In the case where the turbulence modelling scheme is used to generate the dynamic data, the fourth page includes further results of the TURBULENCE CALCULATIONS. This table is similar to the dynamic data table as described in the third page of output, with the exception that the term RS is deleted, and velocity gradiants (UU) and turbulent kinetic energy terms ( $K$ and $E$ ) are added. The unfiltered rms levels are presented in the last column. The DISTOATION FACTOR EXTREME VALUE table is moved to the fifth page in this case.

## Page 5

The fifth page is arranged exactly like the first page, but with notable differences. All of the terms in the PRESSURE ARRAY, OVERALL FLOW DESCRIPTORS, and FLOW DISTORTION FACTORS tables refer to the peak instantanequs case rather than the steady-state case. In addition, the VORTEX properties table contains additional terms:

VBAR - The vortex "strength", or maximum swirling velocity

A/RT - The radius of the Melick vortex
GAMMA - One of the vortex orientation angles
BETA - The second vortex orientation angle
AY/RT - (The same as A/RT)
VL - The vortex length limit (generally "infinity")
R/RT - The radial location of the vortex core
VBMX - The maximum instantaneous vortex "strength"
VBD - The approximated mean vortex strength found in an iteration of strengths and distortion factors.

AO/RT - The vortex size indicated from the rms data.

Page 6

The sixth page is similar to the second page except the distortion map is for the peak instantaneous case.

## VI. CONCLUSIONS \& RECOMMENDATIONS


#### Abstract

The subject computer program can be used to aid the prediction of maximum instantaneous distortion levels, and the peak instantaneous contour map, given the steady-state distortion data and, optionally, the dynamic rms pressure fluctuation data. There are some improvements which can be added to the program, at User's discretion.

One improvement currently being researched at the University of Kansas is the replacement of the single steady-state vortex model with a series of vortices whose axes lie approximately along the "mean line" of pressure recoveries at the compressor face. This effort is intended to improve the predicted peak distortion contour map to more closely resemble the experimental map produced by DYNADEC. Other methods of improving the accuracy of both the peak distortion level, and the corresponding contour map, with respect to experimental results, would be highly desireable.

The accuracy of the present analysis is discussed in References 5 and 6 , along with the basic derivations in the theoretical analysis. In general, the Melick technique is reasonably accurate for preliminary design and analysis. The major benefit of the Melick method is it's efficiency, and the general tendency to over-estimate the experimental or true peak distortion level, rather than under-estimate it. One of the primary difficulties with the Melick analysis is in predicting the distortion levels for inlets with sepereted flows. It would be desireable to try to improve the accuracy of the peak prediction for this extreme case, which can occur especially often in highly maneuverable aircraft, which operate at high angles of attack and yaw angles, and also tend to have complicated inlet duct shapes.


## VII. REFERENCES

1. Ybarra, A. H., and Melick, H. C., "Computer Program Documentation, Estimating Maximum Instantaneous Distortion From Inlet Total Pressure RMS and PSD Measurements, Volume I. Definition of the Mean Size and Strength of the Vortices Creating Inlet Turbulent Flow" (Preliminary), Vought Systems Division of LTV Aerospace Corporation Technical Report No. 2-57110/ 5R-3210, 31 March 1975.
2. Ybarra, A. H. and Melick, H. C., "Computer Program Documentation, Estimating Maximum Instantaneous Distortion From Inlet Total Pressure RMS and PSD Measurements, Volume II. Estimating the Meximum Instantaneous Distortion" (Preliminary), VSD Technical Report No. 2-57110/5R-3210, 31 March 1975.
3. Melick, H. C., and Ybarra, A. H., "Estimating Maximum Instantaneous Distortion From Inlet Total Pressure RMS and PSD Measurements", VSD Technical Report No. 2-57110/5R-3209, 31 March 1975.
4. Schweikhard, W. G. and Chen, Yer-Sen, "Literature Search of Publications Concerning the Prediction of Dynamic Inlet Flow Distortion and Related Topics, NASA Contractor Report No. 3673, 1983.
5. Chen, Yen-Sen, "Statistical Prediction of Dynamic Distortion of Inlet Flow Using Minimum Dynamic Measurement - An Application to the Melick Method", Masters Thesis Diss., U. of Kansas, 1983.
6. Chen, Yes-Sen, "Inlet Flow Distortion Prediction -Without RMS Measurements", PhD Thesis Dissertation, University of Kansas, 1984.
7. Marous, J.J., E Sedlock, D., "Dynamic Data Editing and Computing System (DYNADEC)", Proceedings of Air Force System Command Science and Engineering Symposium, AFSC-TR-003, Vol. 1, Det. 1973.
8. Dennon, Stephen R., "Review and Evaluation of Recent Developments in Melick Inlet Dynamic Flow Distortion Prediction", Masters Thesis Dissertation, University of Kansas, 1986.

[^0]:    Table 4. Supersonic Inlet Distortion Comparison (cont'd)

[^1]:    $\sum_{0}^{0}$

    $$
    \begin{aligned}
    & \text { BURDFK } \\
    & (\text { PT-PAVG)/PAVG } \\
    & \text { IN HERCENT }
    \end{aligned}
    $$

[^2]:    

    Figure B. (cont'd)

[^3]:    $=5==$
    $\square 4$
    $\qquad$

[^4]:    曰
    
    

