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Introduction

Objectives

As aircraft technology advances in complexity, piloting an aircraft is
becoming more difficult and\:subject to error. This difficulty can be critical
during an in-ﬁight_ malfunction, risking the loss of both the pilot and aircraft.
In these situations, it is ifnportant to devise automated assistance for the pi-
lot. With this goal in mind, UCLA and the NASA Dryden Flight Research
Facility are developing expert systems for potential onboard use in future air-'
craft. The research presented in this thesis, while a long way from satisfying
the goal, represents an initial step towards its achievement. |

The immediate objective of this study is to develop a controller that
learns an aircraft task and recovers when the aircraft malfunctions. A com-
puter program is used to simulate both the controller and the aircraft. Given
limited a priors information and a trial-and-error learning strategy, the con-
troller learns to navigate a two-dimensional aircraft through a pre-established
mission. The controller uses performance feedback that is taken during and
- after each aircraft flight. Because its learning strategy is independent of
flight dynamics, the model can be applied to both normal and abnormal flight
situz;tions.

In essence, the controller decomposes the problem into mutually isolated

subproblems chrespondirig to different regions of the aircraft’s allowable state



space. For each subproblem, the controller implements the same problem-
solving algorithm. The resulting solutions to each subproblem contribute to
the accomplishment of the overall flight task. In this manner, the controller
produces useful results for a problem involving a relatively large search space.
Additionally, the decomposition technique lends itself to faster computation

possibilities related to parallel processing implementations.

Previous Work

The research leading to the present work centers on controllers designed

for the cart-pole system shown in Figure 1.

Figure 1. Cart-Pole System

The system consists of a rigid pole mounted to the top of a motorized cart.
The cart moves in two directions, left and right, along a straight track of
fixed length. The pole is hinged to the cart so that it rotates only in the vert-

ical plane bounding the cart’s motion. The controller moves the cart by ap-



plying a constant-force motor either to the left or to the right. The cart-pole
system is inherently unstable. Thefefore, the controller's task is to keep the
pole from falling by continually moving the cart left and right as appropriate.

The cart-pole system was initially devised by Donaldson [4] in 1960. In
his work, Donaldson designs .an automaton that learns the cart-pole balancing
task by cbmparing its control movements to those of a human. This learning
strategy, using the terminology of Carbdnell, et. al. [3]is called "learning by
example.” The human assumes the role of a teacher who provides examples
for the automaton to imitate.

In 1964, Widrow and Smith [13] designed a controller that could be
trained to effectively balance the pole. It consists of an encoder and an adap-
tive linear element, or Adaline. The encoder generates patterns based on the

values of four variables that describe the cart-pole system state:

x : the position of the cart on the track,

S~}

: the angle of the pole with the vertical,

x : the velocity of the cart, and

Ly~

: the angular velocity of the pole.

The encoding scheme partitions each variable into discrete intervals. Coﬁse-
quently, each pattern represents a different combination of intervals occupied
by the state values.

The Adaline produces a weighted sum from the encoded patterns. If the
sum is greater than or_equal. to a certain threshold value, the coritrc’)ﬂe;.lap-
plies the cart’s motor to the right; otherwise, it applies the motor to the left.

The controller learns to balance the pole by adjusting the Adaline’s

weights according to an observer’s periodic assessment of the controller’s per-



formance. When performance improves, it changes the weights to reinforce
the Adaline’s decision logic. Conv-ersely, when per'formancg degrades, i‘t ad-
justs tﬁe weights so that the decision logic is re\';ersed. When the observer
cannot distinguish a éhange in performance, the weights are left unchanged.
Widrow and Smith refer to this learning technique as "selective bootstrap-
ping.” Though it does not learn by examples, it still requires a human ob-
server to assess its performance.

In 1968, Michie and Chambers [6], [7] presented an autonomous controller
fof the cart-pole problem. Its learning §trategy, using Carbonell, et. al. [3]
terminology again, is one of "learning from oBservation and discovery.” Both
the controller and the cart-pole system are simulated by a computer program
called Boxes. The name derives from the method used to partition the cart-
pole state space. In Michie and Chambers’ representation, the state variables
are plotted along four mutually orthogonal axes. Consequently, each system
state corresponds to a unique point in the 4-dimensional state space. By us-
ing Widrow and Smith’s scheme of partitioning the state variables into inter-
vals, the state space divides into discrete regions, or boxes.

A "demon"” resides in each box. Each demon decides the controller’s out-
put when the cart-pole state enters its box. By tabulating the consequences
of their decisions, the demons learn the best controller output for each cart-
. pole state. Hence, the controller automatically assesses its performance and
adjusts its decisioﬁs so that it eventually learns its task. |

In 1982, Barto, Sutton, and Anderson [2] presented a similar program for
the cart-pole problem. Their aim was to show how the cart-pol'e‘ co!1troller
could be built with neuron-like adaptive elements that they had developed.

The controller consists of a single Associative Search Element (ASE) and a



single Adaptive Critic Element (ACE). Both elements rely on the state space
representation used by Michie and Chambers. The ASE utilizes adaptive
threshold logic to control the cart’s movement. Its thresholds are modified
according to reinforcement feedback provided by the ACE. The ACE pro-
duces the feedback by applying threshold logic to the consequences of each
controller output. Barto, et. al. showed thét. their controller performs
significantly better than the one designed by Michie and Chambers. |

In 1966, Schaefer and Cannon [10] showed that the cart-pole problem gen-
eralizes to an infinite sequence of problems of increasing diﬁiculty, with 1, 2,
3, etc., poles balanced each on fop of the other. The controller to be
described represents a different generalization of the problem. Whereas mo-
tion in the cart-pole system is one—dimensiénal, it provides control for a two-
dimensional system. Consequently, this research lays the groundwork for fu-

ture work on automatic control in two- and three-dimensional systems.

Outline of the Paper |

The organization of this paper has been divided into three major sections.
In the first, the Boxes method is built into a controller for a two-dimensional
aircraft model. The controller is exercised in three simulation expérirnents.
In the first experiment, the controller is designed with a learning strategy
similar to Michie and Chambers’. Afterward, the controlle'r is enhanced with
adaptive elements performing functions similar to the ASE and ACE designed
by Barto, et. al. In the second section, two more experiments are conducted.
Their purpose is to study the controller’s ability to pilot the aircraft after the

aircraft malfunctions. The last section is devoted to ‘a discussion of the



controller’s properties, as well as its performance limitations.

Experiments in Adaptive Control

In the following experiments, a controller is developed ior a simplified
two-dimensional aircraft model. The aircraft’s environment consists of pre-
established boundaries on its flight position and velocity with respect to a

two-dimensional Cartesian coordinate system (Figure 2).

Y Y
flight position flight velocity

Figure 2. 2-Dimensional Aircraft in a Position-Velocity World

The aircraft is équipped with force actuators that provide constant .ac-
“celeration in :eight directions with respect to the center of its vertical plane of
motion: up, down, left, right, up-left, up-right, down-left, and down-right.
These éctuators correspbnd to the bi-directional motor used in the cart-pole .
prdblém. Therefore, the controller has been designed to activate only one ac-
tuator at a time. The aircraft enters a failure state when it flies outside of its

position boundaries or exceeds maximum speed limits. These restrictions



correspond to the cart running off an end of its track or the pole falling. A
flight succeeds when the controller maintains flight within position and veloci-
ty limits for a predetermined amount of time. |

The controller’s design has been adapted fran the Boxes system developed
by Michie and Chambers [6], [7]. The exact details will be described in the

following sections.

Discretization of Aircraft States

At any point in time, the current aircraft state is defined by four vari-

ables:

x : the aircraft’s position on the X axis,
y : the aircraft’s position on the Y axis,
x : the aircraft’s velocity along the X axis, and

y : the aircraft’s velocity along the Y axis.

These variables correspond to the variables x, 6, x, and § which defined the
cart-pole system state. The variables are plotted along four mutually orthog-
onal axes. This oriéntation defines a four-dimensional state space. Each air-
craft state is represented by a point in this space. To differentiate between
aircraft states, the four state variables are divided into value ranges cieating
discrete thresholds for tbhe state values. (Figure 3).

The proper threshold values are dependent on performance characteristics
of the model aircraft and its mission. For the next three exﬁeriments, the

thresholds shown in Figure 3 have been selected. The variables x and y are

partitioned into five allowable ranges by thresholds at 10, 30, and 50 meters
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Figure 3. Range-Coded Aircraft State Variables

in both the plus and minus directions with respect to the coordinate origin.
Values for x or y of magnitude greater than 50 meters signal an aircraft
failure. Similarly, the flight velocity variables x and.y are divided into three
distinct ranges by symmetric thresholds at 2 and.lo meters per second.
Again, values for x and y of magnitude greater than 10 m/s constitute an air-
craft failure. Threshold"ing the state variables thus "lumps together” closely-
related aircraft states such that the four-dimensional state space within which
the aircraft operates becomes subdivided into 5X5X3X3=225 distinct re-
gions, or "boxes.” Using the Boxes framework, the controller’s task may be re-
garded as maintaining the four state variables within their limits so that the

current aircraft state falls within one of the 225 boxes at all times.

Force Actuator Activ“a.tion

For simulation purposes, the aircraft's flight has been time-sliced into 1-
second intervals. During each interval, the controller activates a force actua-

tor. For the experiments that follow, each actuator has been "designed” to
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provide 1.5 newtons of constant thrust in one of the eight directions.
Depending on the direction in which it is applied, the activation of an actua-
tor changes the aircraft’s current position and velocity and, thﬁs determines a
new aircraft state. In this fashion, each actuator activation serves as a transi-
tional operator that moves the aircraft from one box to another within its al-

lowable state space.

Problem Decomposition Using Demons

To solve its problem, the controller must learn to avoid (sequencés of) ac-
tions that lead to an aircraft failure. Obviously, certain actions are appropri-
ate in some instances and inappropriate in others. Because the controller
does not have a built-in model of its environment, it must learn by trial and
error the proper actuator(s) to activate in a given situation.

Recall that partitioning the state variables has created a four-dimensional

state space with 225 regions, or boxes. For illustrative purposes, imagine that

these boxes are inhabited by "local demons --oite per box--ali of which are
under the supervision of a "global demon” (Figure 4). The global demon is in
charge of. the overall flight task. The local demons concern themselves only
with aircraft flight when the .aircraft state enters their box. Upon entryinto
a box, the local demon must decide which of the aircraft’s eight actuators to
ac‘tivate next. After making its decision, the local demon informs the global
demon who, in turn, activates the apprpriate actuator. After th_e actuator
has been activated for a unit time-step, the global demon determines the new

box within which the aircraft state now resides, and asks the corresponding -

local demon which force to activate next. This sequence continues until the
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Figure 4. Network of Demons for the Aircraft State Space

aircraft enters a failure state, thus ending the trial run.

The use ot" global and local demons exemplifies the problem-solving tech-
nique of problem dercompositi.on into subproblems. In order to solve the
overall problem, the global demon divides it equally into 225 smaller ones and
delegates their solutions to the local demons. Because each demon oversees a
separate region of the aircraft state space, its job is to determine which force
setting best avoids aircraft failure whén the curfent state falls within its as-
signed region.

In order to carry out its task, each local demon records its previous ex-

pefien_ce of the aircraft’s flight by tabulating the following data:

10



Force Lifetimes: The total lifetime of decisions to activate a
force actuator in a given direction. A force lifetime is the
difference between the time of aircraft failure and the time when
the aircraft state enters a box and the local demon decides to
apply the force. A force’s total Lifetime is a welghted sum of all
of its "individual” lives during previous runs. 7

Force Usages: Weighted sums, for each force direction, of the
total number of times the local demon decided to activate a
force during previous runs.

Entry Times: The times during which the aircraft state en-
tered the demon’s box during the current run. Time is initial-

ized to 1 at the beginning of a run, and continues in 1-second
increments until aircraft failure.

Experimental Procedures and Results

Three experiments of 1000 simulated flights are}bconducted. Before the
first run of each experiment, local force Lifetimes and.:Usages are initialized to
zero. Additionally, control decisions for the local demons are détermined at
- random. Each run be_g’ins at a randomly-generated initial point within the
aircraft's allowable state space. The run terminates when the aircraft enters
a failure state or avoids failure for 1200 time-steps. Thns, 1200 seconds, or 20
simulated minutes, is established as the duration of a successful flight.

The objective of the first experiment is to demonstrate that Michie and
Chambers’ Boxes method can be effectively utilized by a controller for a sim-
" ple aircraft. This objective assumes a close correspongance between the cart-
pole ‘prob]em and the current aircraft task. Hence,‘:the procedures used in

Experiment 1 are similar to those outlined by Michie and Chambers [6).

11



Experiment 1 Procedures

In this experiment, local demons are allowed to decide on only one force
actuator to activate per run. Therefore, regardless of how many times the
aircraft state enters a demon’s box during a run, the demon’s control decision

remains the same. Initial states for each run consist of randomly-generated

values for x and y between +30m and values for x and y between +2m/s.
This initialization procedure restricts the initial aircraft state to nine local
demon boxes located in the center portion of the aircraft state space.

When the aircraft state enters a demon box during the first run, the fol-

lowing actions occur:

1. The'local demon records the time of entry.

2. The local demon signals the global demon to activate a force actuator.
The local demon’s decision depends on tabulated experience of the conse-
quences of its previous decisions. However, during the first run, this decision
is generated at random.

As these actions continue, the aircraft state transitions from one demon box
to another untii it finally reaches a faiiure state. This event terminates a trial
run and triggers the following actions:

1. The global demon informs the local demons that an aircraft failure has
occurred.

2. Each local demon updates its eight pairs of force Lifetime and Usage
totals. Based on these new totals, it determines which force actuator to ac-
tivate (via the global demon) for the duration of the next trial run.

If a force actuator was active before the aircraft failed, its Lifetime and U‘swage

.values are calculated as follows:

N
Lifetime = Lifetime’ X DK + ¥ ti-t;

i=1

12



where N = the number of times that the alrcraft state entered the demon
box during the run that just failed, and

'y

t; and t; correspond, respectively, to the time of aircraft faih’nre,- and the indi-
vidual times of entry into the demon box.

usage = Usage’ XDK + N
where DK = 0.99 is 2 constant multiplier less than unity that weights recent
experience relative to earlier experience.
If a force actuator was inactive before the aircraft failure, its Lifetime and

Usage values are reduced, respectively, according to the following equations:

Lifetime = Lifetime’' X DK, and
Usage == Usage’ X DK

In order to determine which actuator to activate next, the local demons
refer to a "target” value supplied by the global demon. This value represents
the mean lifetime of the aircraft .for all previous runs. It is calculated from
the global demon’s Lifetixﬁe (GL) and Usage (GU) values in the following

manner:

 GL = GL'XDK+t;
GU = GU' xDK+1

GL
t — m——
arget = 5y

Using the global target value, the local demons assess the relative

effectiveness, RE, of each of their eight force actuators. RE is calculated as

follows:

Lifetime+K X target

RE = Usage+K

13



where K = 20 is a multiplier weighting global relative to local experience.

Incorporating K and the target into the asseésment of a local force actuator
serves to base the actuator’s value on two levels of experience: global experi-
ence from the aircraft’s mean lifetime over K runs; and local experience from
the actuator’s Lifetime and Usage totals.

Once the demon has calculated the relative value of each of its force ac-
tuators, it chooses the actuator with the highest value as the one to activate

during the next trial run (see footnote).

Experiment 1 Results

Because a pseudo-random number generator was used to generate initial
aircraft states and decide the local demons’ initial control decisions, Experi-
_ vment 1 was conducted ten times, each time with a different initial seed \;alue.
The average results for the ten tests are plottéd in Figure 5. The plot shows
the average target value versus simulation run number m(_aasured after every
‘50 runs. Notice the direct relationship between the controller’s flight experi-
ence and the aircraft’s mean lifetime. An important statistic not portrayed is
the number of successful flights per experiment. On the average, 41 flights
out of a thousand were successful.

The results of Experiment 1 demonstrate that the Boxes method may be
-used for the control of a simplified model aircraft. However, as evidenced by

its low success rate, thé controller’s effectiveness is limited. Because local de-

Because of the way the experiment is initialized, strict .adherence to this
decision rule results in the local demon choosing its initial force actuator time
after time. Therefore, the rule is followed only after a warm-up period during
which each force actuator is randomly selected, or sampled, at least once.

14
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Figure 5. Simulation Results for Experiment 1

-cis-i_on rules are updated only after each aircraft failure, the demons do not re-
ceive feedback as to the immediate consequences of their decisions. Further-
more, restricting the local demons to one force actuator activation pér run
reduces the controller’s flexibility.

The controller’s performance can improve by removing these restrictions.
The approach taken here will be described in the Experiment 2. It entails -
making design modifications to the present aircraft controller. The

modifications involve the addition of two adaptive threshold-logic elements

15



similar in function to those proposed by Barto et. al. [2]. Consequently, the
objective of the next experiment is to improve the controller’s flight perfor-

mance.

Experiment 2 Procedures
This experiment differs from the first one in three respects:
1. An Adaptive Critic Element, or ACE, is incorporated into the controll-

er.

2. An Associative Search Element, or ASE, is incorporated into the con-
troller. '

3. Local demons may activate more than one force actuator per run.

Otherwise, the initialization procedures, discretization of aircraft states, and
local control rules remain the same as those in Experiment 1.

The purpose of the ACE and ASE is to facilitate local learning by con-
stant reinforcement feedback. Recall that, in Experiment 1, local demons had
to wait for s failure signal and target value from the global‘demon before they
could update their force actuator values and make a new control decision.
With the modified controller, the ASE updates force actuator values every
time the aircraft state changes.

"Essentially, the function of the ACE is to compare the demon box occu-
pied by the current aircraft state with the box occupied by the previous one,
and report its findings to the ASE after each unit time-step. Demon-box

comparisons are based on the Lifetime totals for the force actuators activated

by the "current” local demon and the "previous” one. The findings, f, assume

the values of either plus or minus one. If the currently activated actuator has

16



a Lifetime as good as, or greater, than that of the previous one, T is positive;
if not, T is negative. |

The function of the ASE is to modify local demon force Li_fetirnes in light
of the findings supplied by the ACE. Modification ér a demon Lifetime as-
sumes two forms: reinforcement and penalization. Reinforcement occurs
when f is positive, while penalization cdrresponds to T being negative. Be-
cause of the manner in which the ACE calculates T, good local demon deci-
sions will be reinforced, while poor decisions will be penalized. .Note that only
demons whose boxes have been entered during the current run become
modified; furthermore, modification only applies to the Lifetime for the
demon’s curreatly activated actuator. |

After each unit time-step, a local force Lifetime is modified according to

the following equation:

Lifetime = Lifetime’+#X a X e X Lifetime’

where a = 0.05 = the minimum percentage of a local Lifetime that may be
reinforced/penalized, and

The eligibility trace measures the influence of a local demon’s actions on
reaching the current aircraft state. Obviously, the actions of recently-entered
‘"demons have more of an influence than those of distantly-entered ones.
Thus, the former demons will have a higher eligibility trace than the latter
ones. Eligibility begins at 100% when a demon box is first entered, and de

creases exponentially in the following manner:

e=-¢'Xf

where f = 0.85 = the percentage of a demon’s influence which remains after

17



each simulation time-step.

Experiment 2 Results

As with the first exﬁeriment, Experiment 2 was conducted ten times, each
time with a different initial seed value. As depicted in Figure 6, the aircraft’s
mean lifetime was greatly improved by the addition of the ACE and ASE to
the controller. In fact, succes;ful flights occurred 537 times out of 1000, or
for.453.7% of the trials. In several of the individual simulations, the mean sys-
tem lifetime approached the upper time limit of 1200 unit time-steps.

Because the controller’s task remained the same from Experiment 1 to Ex-
periment 2, the results of the latter experiment may be attributed to the
modifications made to the controller. The controller can now make a different
decision each time the aircraft state enters a local demon box during the same
run. This capability enables the controller to recover more quickly from poor |
decisions. Additionally, the controller can receive immediate feedback con-
cerning the consequences of local demon decisions. This feedback helps the
controller to correlate aircraft performance to local demons’ actions.

The results of Experiment 2 show that the modified controller works well
at the task to which it was originally assigned. What happens, though, when
the controller is assigned a more difficult task? In the next experiment, the
controller’s task is made more difficult. The ensuing results should provide an

idea of the relative tolerance of the controller to changes in task difficulty.

18
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Figure 6. Simulation Results for Experiment 2

Experiment 3 Procedures

This experiment studies the effect on aircraft performance of starting each

run from anywhere in the aircraft state space. Therefore, x and y values are

randomly selected between +50m, while the x and y values are se]ected from
the £10m/s range. In experiments 1 and 2, initial states fell within only nine -
possible demon boxes corresponding to the central portion of the state space.

In this experiment, all 225 boxes become ehgxble starting points for a trial

19



run. The change in initialization procedures increases problem difficulty by -
forcing the controller to map control actions to the entire aircraft state space.
Other than this difference, all operating procedures are the same as those

used in Experiment 2.

Experiment 3 Results

Experiment 3 was conducted with the same initial seed values used in Ex-
periments 1 and 2. The average results are shown in Figure 7. Notice that
aircraft performance is reduced by the addition of 216 more initial states.
Also, the average success rate fell to 11.7%. These results show that the con-
troller learns quicker when its starting conditions are more consistent. Other-
wise, to attain the same performance reached in Experiment 2, a longer learn-

ing period, i.e. more trial runs, are required. This conjecture was not tested.

Comparison of Experimental Results

For comparison purposes, the average results of all three experiments have
been superimposed onto the same graph in Figure 8. With respect to the
learning curve for Experiment 1, aircraft performance levels out after the first
500 runs. Consequently, the experience gained from the last 500 runs is not
utilized. The primary reason for this inefficiency concerns the (long) time in-
tervals between modiﬁc—ations to local demon decision rules. In Experime;.{i 2,
local control rules are modified after every unit time-step. ‘The effects on air-
craft performance are evident upon inspection of the experimentai results.

However, in Experiment 3, aircraft performance degrades. This result is a na-

20
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Figure 7. Simulation Results for Experiment 3

tural consequence of the addition of 216 more starting states.

Summary

-

A controller has been developed for the adaptive control of -a simplified

model aircraft. [ts components include:

1. A global demon that monitors the aircraft state, issues approprxate
messages, and activates the aircraft force actuators.

21
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Figure 8. Simulation Results for Experiments 1-3

0. A petwork of local demons corresponding to different regions of the
aircraft state space that advise the global demon of the appropriate actuator
to activate when the aircraft state enters a given box. The local demons ta-
bulate data relating to the consequences of their previous control decisions.
This data is used to make future control decisions that are implemented by
the global demon. :

3. Two adaptive threshold-logic elements, the ACE and ASE, that modify
local demon control rules in light of immediate aircraft feedback. -- ’

Because the controller learns its task from trial-and-error experience,

changes in the structure of its components can be made to provide for the
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control of a more specialized flight task. Such an undertaking is described in

the sequel.

Experiments in Malfunction Recovery

The purpose of the preceding experiments was to ladapt the Boxes system
to a simple flight controller. In achieving this purpose, the experiments pro-
vide background for the experiments that follow. Their purpose is to apply
the controller to a specific navigational problem, and study its performance
under a simulated aircraft malfunction. In the cﬁrrent context, a malfunction
exists when the aircraft loses opérational control of one or more of its eight
force actuators. An impdrtant assumption is that, despite the malfunction,
the aircraft maintains sufficient directional control to accomplish its pfe-

defined mission.

Experiment 4 Problem Description

This experiment proceeds in two phases. In Phase One, the controlier
learns to pilot the aircraft from one demon box to another. When it achieves
proficiency at this task, Phase One ends and Phase Two begins. At this
point, an aircraff malfunction is simulated by removing two of the air‘craft’s
eight force actuators. During the second phase, the controller learns to ac-

complish its original task despite the loss of the actuators.
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At the beginning of each run, the aircraft’s position and velocity vectors

are initialized as follows:

X :-25m
y: 25m
x: Om/s
y: Om/s

Using the above values for the aircraft state variables, the aircraft’s initial

configuration is represented in Figure 9.

| 4

1 Y
flight position flight velocity

Figure 9. Initial Aircraft State for Experiment 4

From this initial state, the controller must learn to pilot the aircraft to
Jthe center box of the disretized state space. Tlns box corresponds tc; x and y
falling within the 0 =10m range, and X and ¥ havmé values between 0 +2m/s.
With respect to the léft_half of Figure 9, the aircré.ft must‘ fly from an initial
position in the lower-left region of its "airspace” to the center region.- As in
the preceeding experiments, an aircraft failure occurs when the aircraft .
exceeds its position and velocity boundaries. Thus, a trial run ends when the

aircraft reaches either the goal state or a failure state. Trials continue until
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the aircraft reaches the goal state 90% of the time. At this point, the aircraft
loses operational of two of its eight force actuators. The controller must then
recover from this malfunction by learning to complete the aircraft’s mission

using only six actuators.

Experiment 4 Procedures

Recall that in the preceeding experiments, the aircraft’s mission was to
_prolong flight. Now, its mission is to fly from one demon box to another. Be-
cause the mission has changed, the local demons’ mutual goal of maximizing
their expected lifetimes no longer appli%. Instead, the local demons must
minimize the aircraft’s expected "distance” to the goal. To fulfill this task, lo-
cal demons tabulate the following data:

Force Distances: Relative approximations, for each force actuator, of the
aircraft’s distance to the coordinate origin.

Force Usages: Sums, for each force actuator, of the number of times that
the local demon decided to activate each actuator during previous trial runs.

To increase the granularity ?f the state space, thresholds have been added
at +£6m/s for the aircraft state gvariables x and y. The resultant value ranges
for the discretized aircraft staté space are shown in Figure 10. Consequently,
the aircraft state space divides into 5X5X5X5=625 demon boxes instead of
the previous 225.

The preceeding discussion outlined two necessary design modifications to
the controller. First, the information processed by the local demons has
changed. Second, the number of local demons has increa;sed. Now, the se-

quence of events occurring in a trial run will be explained.
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Figure 10. Range-Coded State Variables for Experiments 4 and 5

During each unit time-step, the following actions occur:

1. The global demon signals the local demon whose box has just been en-
tered by the current aircraft state.

2. If the box has never been entered during a trial run, the demon’s eight
force Distances are initialized with the Pythagorean distance between the
current aireraft position and the coordinate origin. d

3. The local demon decides on a force actuator for the global demon to
activate. The demon makes this decision at random until each of the force
‘actuators has been sampled at least once. Afterward, the demon decides on
the force actuator with the lowest Distance:Usage ratio. When the demon has
made its decision, it increments its appropriate Force Usage entry by one, and
informs the global demon of its decision.

4. The global demon activates the appropriate actuator, which causes the
aircraft state variables to change. _

5. The ACE compares the current aircraft state with the previous one
and reports its findings, f, to the ASE. To make the comparison, the ACE
calculates the Pythagorean distance between the current aircraft position to
the coordinate origin. If the current distance is less than the previous one, it

sets T to 1; otherwise, it sets T to -1.

- —

6. The ASE modifies the appropriate force Distance value for each local -
demon whose box has been entered during the current run. It modifies Dis-
tance values as follows: ’

Distance = Distance’+a XfXeXDistance’

where o = 0.1 and
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e=-¢e'Xf

where § = 0.8 (see footnote).

After the ASE modifies the local force Distance entries, the simulated time
is incremented a unit step, and steps 1-6 are repeated. This cycle continues

until the aircraft reaches either a success or a failure state. Upon success, the

ACE issues an f value of 1. With f, the ASE modifies eligible force Distance

values as in step 6 above, except that it uses 0.5 as its value for alpha. Upon

failure, T = 1, and the ASE modifies local force Distances using an a value of
3. Consequently, local control decisions are either significantly reinforced (de-
creased) or penalized (increased) to reflect the end result of the trial run.
Afterward, the controller re-initializes the aircraft state variables, and a new
trial run begins. The experiment proceeds in 50-run increments. When at
least 45 out of 50 flights are successful, Phase One ends.

Phase Two begins "wit.h the aircraft losing control of its up-right and
down-left force actuators. Despite this malfunction, the controller must re-
gain its 90% proficiency rate for the original aircraft mission. Its control deci-
sions for the six remaining actuators are influenced by the local force Distance
and Usage totals gained from Phase One.

Because of the selection of initial and goal aircraft states, the malfunction
prevents the aircraft from flying directly toward its positional goal. Instead,
it must cqmbine its up and right actuators to compensate for the loss.of' the
up-right one. Similarly, it must combine the down and left actuators to com-

pensate for the loss of the down-left one. When the aircraft again flies suc-

For a further explanation on the meaning of a, f, and e, refer to the
preceding subsection entitled "Experiment 2 Procedures.”

27



cessful missions 45 times out of 50, Phase Two and the experiment end.

Experiment 4 Results

Experiment 4 was conducted ten times, each time with a different initial
seed value. The final results are listed in Figure 11. Notice first that, regard-
less of the initial seed value, each test achieves the 90% task proficiency rate
in both phases of the experiment. This result demonstrates the controller’s
capability to learn a navigational task under both normal and malfunction
conditions. However, the required learning time for each phase does not vary.

This result was not expected.

Total trials necessary
Initial to rgach S6Z proficiency
st single navigational
Seed task.
Value Phase Phase
One Two
8 168 188
1 168 188
2 188 188
3. 188 188
4 186 168
5 pY: 1 108
] 168 168
7 188 108
] 158 ieg
9 - 188 168

Figure 11. Simulation Results for Experiment 4

Initially, Phase One was expected to take longer to complete than Phase *
Two. Whereas the controller begins Phase One with no experience of the
consequences of its decisions, it begins Phase Two with the Distance and

Usage totals gained from the previous phase. Therefore, its initial decisions in
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Phase Two should be more accurate than the random decisions made at the
beginning of Phase One. This initial accuracy was expected to reduce the re-
quired learning time in Phase Two.

Two factors contributed to the experimental results. First, the experi-
ment wés divided into 50-run increments. At the end of each increment, the
number of successful missions was evaluated. If there were at least 45, the
appropriate phase would terminate. In these terms, the average time required
to complete each phase was two. Perhaps, given a more difficult task (i.e. one
that takes longer to complete), the flight experience gained in Phase One
would have been reflected in a shorter learning time for Phase Two.

The second factor concerns the particular actuators that malfunctioned.
During Phase One, the controller learned that the up-right actuator moved
the aircraft closest to the goal from its initial position. However, this actua-
tor was inoperational during Phase Two. Consequently, the controller’s "best
choice” in the first phase was no longer an élternative in the second. This
condition prevented tl_1e controller from effectively utilizing its experience
gained in Phase One.

To test the validity of these ideas, Experiment 5 was devised. Its aim is
to sfudy the effects of task difficulty and actuator malfunction on required
learning time. Thus, the final results should show more clearly the temporal

relationship between Phases One and Two.

Experiment 5 Procedures

In this experiment, the controller again learns to pilot ‘the aircraft to the

center box of the state space. However, its initial position and velocity no
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longer remain constant. At the beginning of each trial run, values for the
state variables x and y are randomly generated in the [-30,-10] and [10,30]
ranges while x and y values are generated in the [-2,2] range. 'Consequently,
the initial aircraft state falls within one of four local demon boxes surround-
ing the central region of the aircraft state space.

The random initialization procedures are designed for two purposes: (1) to
increase the difficulty of the controller’s task, and; {2) to increase the accura-
cy of the controller’s initial Phase Two decisions. To éiarify this last point,
realize that only the up-right and down-left actuators malfunction. Thus, in
Phase Two, whenever the aircraft begins in the upper-left and lower-right re-
gions of its airspace, its best decision alternatives--down-right and up-left,
respectively--still remain. Thus, half of the controller’'s Phase Two decisions
maximize Phase One experience.

Other than the addition of random initial states, the experimental pro-

cedures remain the same as those employed in Experiment 4.

Experiment 5 Results

As usﬁal, Experiment 5 was conducted ten times. The results are shown
in Figure 12. |

Due to the random initialization procedures, these results vary more than
those of Experiment 4. In Phase One, the number of runs required for com-
pletion ranges from 250 to 750. In Phase T'wo, only 150 to 350 runs are need-
ed. These results show that the controller requires more trials to complete
Phase One than to complete Phase Two. Thus, for the task under study, the -

controller’s required learning time depends on its prior task experience.’
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Total trials necessary
Initial to reach S6% proficiency
st randoa navigational
Seed task.
Value Phase Phase
One Two
e 258 158
b 488 159
2 658 208
3 758 208
4 488 : 158
5 258 350
6 358 380
7 358 258
8 388 388
9 258 358

Figure 12. Simulation Results for Experiment 5

Summary

To accommodate the aircraft’s navigational mission, slight modifications
were made in the controller’s 6riginal design. The number of local demons
was increased from 225 to 625. In addition, the demons’ goal of maximizing
ged to minimizing force distances. Finally, a special-
ized reinforcement strategy was added to conclude each trial run. Despite
these changes, the current controller still possesses the basic components that
comprised the original design. Thus, the controller design offers flexibility in
its application to simple aircraft tasks.

More important, the results of the two experiments demonstrate the
controller’s malfunction- recovery capabilities. Although only one pa;ticular
malfunction was studied, the controller’s usefulness extends to others. Furth-
ermore, the aircraft malfunction may occur at any instan.t instead of "wait-

ing" for the controller to achieve task proficiency. This property stems from
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the fact that the malfunction conditions are transparent to the controller. It

is important because real-life malfunctions occur unexpectedly.

The Controller in Perspective

The preceeding experiments describe the development of a controller to
pilot a two-dimensional model] aircraft. Now let us reflect on what the exer-
cise has accomplished. Most significantly, it has provided a general frame-
work for adaptive control that addresses the‘issuev of malfunction recovery..
Additionally,v it demonstrates the controller’s ﬂexibi]jty by applying it to two -
aircraft tasks. Finally, it provid'es an idea of the controller’s tolerance to
different initial conditions.

Though its effectiveness has only been studied with respect to a simplified
aircraft model, this fact is of secondary importance (see footnote). Instead,
the controller’s l;rimary importance derives from its capability to recover from

malfunctions.

With these ideas in mind, let us examine the controller from a general per-

spective.

With the appropriate flight dynamics equations, and control actions
corresponding to the actual deflections of an aircraft’s control surfaces, the
controller can be modified to pilot more advanced aircraft systems. The
modification would entail changes in the problem space definition and local
decision rules. However, the model’s basic components and problem-solving
strategy would remain unchanged.
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Classical Control Systems

Although it features certain properties characteristic of a:classical con-
troller, the prdposed controller is fundamentally different from a classical one.
As with a classical controller, the proposed controller periodically outputs an
actuating signal to the plant, or process, that it controls. However, in a clas-
sical controller, the actuating signals are pre-designed to correspond to
different input states. In this sense, the classical controller "knows” @ priori,
the operating dynamics of the controlled process. In the proposed controller,
the operating dynamics of the aircraft and its mission are not knbwn before-
hand. Instead, the controller must learn, by trial and error after the process
begins, the correct actuating signals to issue for each aircraft state.

Another major difference involves the implementation of process feedback.
In classical control systems, feedback takes on the form of an “error
difference” between the plant’s desired and actual performance. The controll-
er uses this difference to adjust its output so that the error is reduced in sub-
sequent plant execution. In the proposed control system, feedback has two
forms, both of which differ from conventional methods. In the first form,
feedback occurs only when the aircraft enters a success or failﬁre state. This
feedback signals the end of a trial run. Depending on the event (success or
failure) that terminates the run, the controller adjusts its local decision rules.
In the second form, feedback from the ACE "predicts” the aircraft’s future
performance based on a comparison betweeﬁ the current and previous aircraft
states. The ASE uses this prediction to adjust the controller’s logic for deci-
sions leading to the current aircraft state. Consequently, this feedback
influences the process only when a previous input pattern repeats itself.

Thus, in one instance, feedback occurs infrequently and, in the other, its
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consequences do not occur immediately.

The primary reason for the controller’'s deviation from classical control
theory arises from the objectives for its ultimate use. When initially
configured, the controller can theoretically be provided with the exact operat-
ing dynamics of its plant. However, upon the occurrence of a plant malfunc-
tion, the plant’s operating dynamics will change. Consequently, the
controller's decision logic will no longer remain accurate. As such, the con-
trolled process will fail unless the controller is designed to anticipate the par-
ticular malfunction conditions. Unfortunately, because of the unpredictable
nature of most malfunctions, this capability is neither feasible nor practical.
In this respect, a controller designed in the classical manner will not suffice.
Instead, it is more desirable to design a controller capable of adapting to the

conditions prevalent for its current plant configuration.

Adaptive Control

Depending on its context in this paper, the term "adaptive control” can
take on two potentially confusing meanings. First, it can describe the process
by which the controller learns to pilot the aircraft through its mission. Alter-
natively, it can describe the way the controller recovers the aircraft from a
malfunction so that the aircraft can continue its mission. Both processes are
related in the sense that the same control task must be accomplished though
the plant configuration. may vary. For this reason, subsequent references to
adaptive control will convey its former, more common, meaning. As a final
note, realize that the controller’s malfunction recovery .capa.bilitt_zs derive

directly from the adaptive control method that it employs.
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In general, as Truxal [11] explains,

the primary interest in adaptive control lies in the possibilities
of an automatic measurement of process dynamics and of an au-
tomatic and frequent redesign of controller characteristics.

These activities are present in the proposed controller. Until pre-established
termination conditions ére met, the controller continually measures the
aircraft’s position and velocity vectors. It uses these measurements to pro-
gressively modify its local decision rules with respect to an overall perfor-
mance criterion. As a result, the controller is able to adapt to the aircraft’s
operating conditions in a manner that enables the aircraft’s performance to

improve.

Learning Systems

Because of its adaptive nature, the controller's task is not merely one of
control itself; it is one of learning to control. Thus, to completely analyze
the controller, one must consider its capacity for learning. Lear.ning occurs by
continually observing and tabulating the aircraft’s performance. From these
specific observations, the controller induces general conclusions as to the
proper responses for diﬂerenﬁ classes of input states. The learning process is
then reflected in the manner in which the aircraft’s measured performance
improves with time.

As a machine learning paradigm, the controller exemplifies what Carbonell
et. al. (3] céll "learning from observation and discovery.” However, a more

precise classification comes from noting the functions of the ACE and ASE.

35



These adaptive logic elements in tandem provide what Widrow et. al. [12]
call "learning with a critic.” In this process, the controller learns its task via
qualitative comparisons resulting from the application of an overall perfor-

mance criterion to the outcome of its decisions.

Self-Organization

Implicitly related to the controller’s adaptive control and learning capabil-
ities 1s a desirable property known as "self-organization.” Because the
controller’s design assumes no ¢ priors knowledge of the aircraft’s flight
dynamics, the controller must learn its input-output decision logic from trial-
and-error experience. As it accumulates flight dynamics information, the con-
troller associates correct responses for each input state such that a map is
created for the previously unknown problem space. Because the mép is creat-
ed a posteh’or:’, the process of learning to pilot the aircraft is said to self-

organize. For clarification purposes, Saridis [8] offers two definitions:

Self-Organizsing Control Process: A control process is called
"self-organizing” if reduction of the a priori uncertainties per-
taining to the effective control of the process is accomplished
through information accrued from subsequent observations of
the accessible inputs and outputs as the control process evolves.

Self-Organizing Controller: A controller designed for a self--
organizing control process will be called "self-organizing” if it ac-
complishes on-line reduction of the a priors uncertainties per-
taining to the effective control of the process as it evolves.

A self-organizing controller is necessary as long as the actions governing

the effective control of the given process are not provided from the outset. In
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the present context, this restriction arises because of the controller’s intended
use for aircraft malfunction recovery. Because of the unpredictable nature of
malfunction situations, the particular conditions prevalent in .a malfunction
are difficult to anticipate. Tlierefore, it is desirable that the controller learn
the particular conditions that apply to a given situation. As an added
benefit, the controller can use experience gained in previous situations to ac-
celerate its recovery time. In essence, self-organization renders the plant’s

operating conditions transparent to the controller.

Malfunction Recovery

The main result of this research has been the development of a controller
that can recover in the event of a plant malfunction. This capability was
demonstrated by the controller’s performance in Experiments 4 and 5. As
mentioned earlier, the controller’s effectiveness generalizes to other malfunc-
tions providing that the aircraft maintains enough directional contrbl to fly
its mission. For these reasons, the controller may be classified as a malfunec-
tion recovery system.

This classification does not give the controller any properties that have
not/alre‘ady been discussed. Instead, it uniquely differentiates this controller
from all others previously presented in the literature. Whereas other controll-
ers have been designed with adaptive, learning, and self-;)rganizing cépabili-
ties, their application has heretofore been limited to processes running under
normal operating conditions. The present controller removes this rest"riction
by operating effectively even after a plant malfunction. Because controlled

processes are rarely immune to failure, controllers can only benefit from the
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incorporation of this capability.

Limitations of the Proposed Cont:oller

A characteristic feature of self-organization involves the controller learn-
iné its task as the controlled process evolves. Because of this requirement, the
controller’s performance is highly dependent on the specificity of its feedback
and the heuristics used to induce its control rules. Similarly, performance will
vary depending on the selection of an appropriate state space. In light of
these observations, the results reported here have not been optimal. Instead,
they show that the controller can yield useful performance when applied to a
non-trivial task.

As a malfunction recovery system, the controller requires that a solution
exists for each malfunction situation. In this regard, its use is limited to con-
trolled processes that exhibit "redundancy of control.” When a unit fails, the
controller withstands the failure by effecting compensating control actiogs
from units still remaining operational. However, because of the redundancy
of control requirement; more than one solution may exist for a given control
- task. Consequently, the controller ma.); not always discover the "best” solu-

tion.
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Conclusion

The research pfesented in this thesis shows how adaptive logic can be
used to control a continuous process. In addition, it shows how a self-
organizing controller can learn its task on-line. Self-organized learning is use-
ful when only limited information is available a priori, as iﬁ the case of pro-
cess malfunctions. | |

In conclusion, this thesis proposes a controller with two significant capa-
bilities: (1) it can learn its task on-line; and (2) it can recover control even
after a process malfunction. The first capability is not new; it can be found
in controllers developed elsewhere in the literature. However, nowhere in the
literature has a self-organizing controller been developed that addresses the

issue of malfunction recovery. Herein lies the contribution of this work.
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