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ABSTRACT

An abstract approximation framework is developed for the finite and
infinite time horizon discrete-time linear—-quadratic regulator problem for
systems whose state dynamics are described by a linear semigroup of operators
on an infinite dimensional Hilbert space. The schemes included in the
framework yield finite dimensional approximations to the linear state feedback
gains which determine the optimal control law. Convergence arguments are
given. Examples involving hereditary and parabolic systems and the vibration
of a flexible beam are considered. Spline-based finite element schemes for
these classes of problems, together with numerical results, are presented and
discussed.
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1. Introduction

Recent advances in micro-processor technology have led to increased
interest in digital or discrete-time control systems. In addition, because
many current application areas involve complex systems which are most
appropriately modelled using functional and/or partial differential equations,
it has become important to study digital control techniques in the context of
infinite dimensional or distributed systems.

A great deal of attention has been given to the continuous-time infinite-
dimensional linear—quadratic regulator problem. The general theory and
characterization of the linear state feedback form of the optimal control are
discussed in [51, [6], [8], [9], [21] and [22], while its application to
hereditary, parabolic and hyperbolic systems with emphasis on approximation is
treated in (2], [3], [7], [10], [11], [14] and [17] to mention just some of
the work that has been done.

On the other hand, relatively little can be found in the 1it¢rature
concérning the corresponding discrete-time problem. The major contributions
in this area can be found in the papers by Lee, Chow and Barr [20] and Zabezyk
[28]. 1In these studies the Riccati difference equations that characterize the
linear feedback form of the optimal control for the finite time problem are
given and limiting properties as the length of the time horizon tends to infinity
are discussed. However, the issue of approximation is not considered.

In the present paper, we develop numerical approximation schemes that
yield finite dimensional approximations to the feedback gain operators which
determine the discrete—time optimal control law. We consider control systéms
whose dynamics can be described in terms of a linear semigroup of operators on
an infinite dimensional Hilbert space. The basis of our approach is the

construction of a sequence of finite dimensional (presumably finite element



based) state approximations which in turn leads to a sequence of finite
dimensional discrete-time linear—quadratic regulator problems each of which
can be solved using standard techniques.

Under appropriate assumptions on the nature of the original problem and
the convergence of the state approximation, we are able to prove that the
approximating optimal controls and feedback gains converge to the true optimal
control sequences and feedback laws for the original infinite dimensional
system. Depending upon the convergence properties of the state approximation,
we are able to establish strong or uniform norm convergence of the
approximating gain operators and the corresponding weak or strong convergence
of the approximating feedback kernals which are used in the implementation of
the optimal control. We treat both the finite and infinite~time horizon
problems.

We have tested our schemes on a wide variety of examples. This paper
includes numerical results for problems with state dynamics given by
ﬁereditary and parabolic (heat/diffusion) differential equations and a hybrid
system of partial and ordinary differential equations for the vibration of an
Euler—-Bernoulli beam connected to a rigid body and a lumped mass. We
implemented and tested the methods on an IBM Personal Computer.

We give a brief outline of the remainder of the paper. 1In section 2 we
breifly outline previous results concerning the characterization of the
optimal control and feedback gains for both the finite and infinite time
horizon discrete-time regulator problem for distributed systems. The Riccati
difference and algebraic equations whose solutions determine the optimal
feedback control law are discussed. In section 3 we develop the abstract
approximation framework and convergence arguments. Section 4 contains a

discussion of particular schemes for the classes of problems mentioned above



together with the results of our numerical studies. Some concluding remarks
are given in Section 5.

We employ standard notation throughout. For an interval (a,b), we denote
by Hk(a,b) the usual Sobolev spaces of real-valued functions defined on (a,b)

th derivatives

whose (k-1)st derivatives are absolutely continuous and whose k
are L,. The standard Sobolev inner product on Hk(a,b) is denoted
by <°,°>k. For X and Y normed linear spaces we denote by L(X,Y) the space of

bounded linear operators from X into Y. When Y = X, we use the shorthand

notation L(X).

2. The Optimal Control Problem

2.1 Optimal Control on a Finite Interval

Let Z and U be Hilbert spaces with inner products <°,°>Z and <',°>U,

respectively, with U finite dimensional. For {H, <°,°>H} a Hilbert space, let

t

2

L (to,tf;H) denote the usual Hilbert space of sequences x = {x(t)}tf__t with
0

x(t) € H together with the inner product

e

(2.1) x,y> , = Y <x(t), y(£)>,.

L t—tO

The discrete-time linear quadratic regulator problem on the finite time

interval [tO,tf] is

2
(P1) Choose u € £ (to,tf;U) to minimize the quadratic performance index



J(G;to’tf)z(to),u) =

(2.2) tf—l

) [<Qz(t), 2(£)>, + <Ru(t),u(t)>;] + <Gz(r.),z(t.)>,

t:=t0

subject to the discrete-time control system

z(t+l) = Tz(t) + Bu(t), t > to
(2.3)

z(to) € Z,

where T and B are bounded linear operators from Z into Z and U into Z,
respectively, Q and G are bounded, nonnegative self-adjoint operators on Z,

and R is a positive definite self-adjoint operator on U.

Of primary concern to us will be applications where (2.3) is the sampled

form of the continuous-time control system
(2.4) z(s) =Az(s) + Bu(s)

where A is the infinitesimal generator of a Co-semigroup of bounded linear

operators T(s), s » 0, on Z, and B is a possibly unbounded linear operator

from U into Z. In this case we have
(2.5) T= T(x) and B =[; T(s)Bds,

where T 1is the sampling interval. If, as in our subsequent example
discussed in Section 4.1 where u is a boundary control in a heat equation, B
is unbounded (more precisely, B maps U not into Z but into some larger space),

then the integral in (2.5) is not interpreted literally.



The solution to Problem (Pl) has been given for infinite dimensional
control systems in [20],[28], and the equations representing the solution have
the same form as in the finite dimensional case. We will give now the version
of the solution that is most useful for our purposes.

For given z(to), J(Q;to,tf,z(to),u) is a bounded linear-—-quadratic
functional on 22(t0,tf;U) with coercive quadratic part. Therefore, for each
z(to), there exists a unique optimal control sequence in 22(t0,tf;U). Also,
the minimum value of the performance index is a quadratic functional of z(to),
so that there exists a unique nonnegative, self-adjoint H(to) e L(Z) such

that

(2.6) J, = min J(G;t

* 0,tf,z(to),u) = <H(t0)z(t0),z(to)>z.

Application of the principle of dynamic optimality establishes that the

optimal control has the feedback form

(2.7) uk(t) = -F(t)z,(t), t, <t < tf-l
where

A _1*
(2.8) F(t) = R(t) "B O(t+l1)T,

(2.9) R(t) = R + BT (t+1)B

and IT(t) satisfies the Riccati difference equation

(2.10) n(e) = T*[H(t+1) - H(t+l)B§(t)-lB*H(t+l)]T + Q, t < tf—l,



with the final condition

(2.11) H(tf) = G.

The optimal trajectory z, is given by

(2.12)  z, (t+1) = S(t)z,(t), t>t

where

(2.13) S(t) = T-BF(t).

2.2 Control on the Infinite Interval

Here, tf =2 and G = 0. To simplify notation, we will write

J(to,“,z(to),u) instead of J(0;t ,z(to),u).

0"

Definition 2.1. A control sequence u € 22(0,w;U) is an admissible control

for the initial condition z if J(0,®,z,u) < = .

The discrete-time linear-quadratic regulator problem on the infinite

interval is

(P2) Choose an admissible control uy to minimize J(0,*,z,u), if an

admissible control exists for the initial condition z.

That a unique optimal control uy exists whenever at least one admissible
control exists follows from the fact that the quadratic part of J(0,»,z,u) 1is

2 ,
coercive on a subspace of £ (0,»;U). See the discussion following Definition

4.1 of [9].



Definition 2.2. A bounded linear operator I on Z is a solution to the

Riccati algebraic equation if

* x -1 %
(2.14) I =T [OI-NB(R+B IIB) "B NJT + Q.
The following theorem summarizes results from Zabczyk [28].

Theorem 2.3. The following are equivalent:
(i) There exists an admissible control for each z € Z;

(ii) for each z € Z, sup <H(t)z,z>Z < =, where N(t) is the Riccati

t<tf

operator in (2.10) and H(tf) = 0 for fixed tg;
(iii) as t >+ ==, I(t) converges strongly to a nonnegative self-adjoint
solution to the Riccati algebraic equation;

(iv) there exists a nonnegative self-adjoint solution to the Riccati

algebraic equation.

For uniqueness of the solution to the Riccati algebraic equation and
characterization of the optimal control, Zabczyk treated two cases: when Q is
coercive, and when the spectral radius of T is less than 1 (i.e., the open-
loop system is uniformly exponentially stable). Since neither is the case in
the example we discuss in Section 4.2 and other applications in which we are

interested, we will need the following hypothesis and theorem.

Hypothesis 2.4. The operators T, B and Q are such that, if z(0) € Z and u is

an admissible control for z(0), then

(2.15) lm |z(t)], = 0.

troo



 Theorem 2.5. When Hypothesis 2.4 holds, there
self-adjoint solution to the Riccati algebraic
I exists, then there exists a unique solution

initial condition z(0) € Z, the minimum value

(2.16)  J, = u adgigsible

the optimal control has the feedback form

(2.17) u,(t) = -Fz (t), t >0,
where
~—] *
(2.18) F=R BIT,
~ *
(2.19) R=R+B I B

and the optimal trajectory z,(t) satisfies

(2.20) z, (t+l) = sz (t), t > 0,
with
(2.21) S = T-BF.

exists at most one nonnegative
equation. If such a solution
to problem (P2) for each

of the performance index is

J(0,2,2(0),u) = <Hz(0),z(0)>z,

Proof. Let I be such a solution and note that, for any finite te, T is a

constant solution to (2.10) and (2.11) with G

I, Then the corresponding



F(t) and E(t) defined by (2.8) and (2.9) are the constant operators in (2.18)

and (2.19). For z(0) € Z, define z(0) = z(0),

(2.22) z(t+l) = (T-BF)z(t), ¢t > O,
and
(2.23) u(t) = -Fz(t), t > O.

Now suppose that u is an admissible control for z(0) and that z(t) is the

corresponding solution to (2.3). For te > 0, the preceding results about the

solution to Problem (P1) with G =1 imply

J(n;o,tf,z(O),E) < J(050,t,,2(0),u) + <Uz(t.),z(t.)>,

(2.24)
< J(0;0,2,z(0),u) + <Hz(tf),z(tf)>z.
Also,
J(n;o,tf,z(O),ﬁ) = <1z(0),2(0)>,
(2.25)

= J(o;o,cf,z(O),E) + <nEktf),Ektf)>z.

Since z(tf) + 0 as te > % (2.24) shows that u is both admissible and
optimal for Problem (P2). Since ;ktf) + 0 as tf + o, (2.25) shows (2.16).
As we see now, (2.16) must hold for any nonnegative self-adjoint solution of

the Riccati algebraic equation; therefore, such a solution is unique.

Remark 2.6. When Hypothesis 2.4 does not hold, the Riccati algebraic equation

may have more than one nonnegative self-adjoint solution. 1In this case, the

minimal such solution —-- there will be one —- gives the solution to Problem
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(P2) as in Theorem 2.5. Throughout this paper, we assume that Hypothesis 2.4

holds.

Lemma 2.7. Suppose that Q > m for some positive constant m, and set
n

*
c = I (T )tQTt, for n = 1,2, ... . Then |an|z is bounded in n for each
t=0
z € Z if and only if C, converges in norm to the operator

8

(2.26) c= 1 (0%t
£=0
and
(2.27) IT%| < (Je|/mya - w/lchHE, ¢ = 1,2, ... .

Proof. Since C, is an increasing sequence of bounded self-adjoint linear

operators, C, converges strongly to some bounded self-adjoint C if and only if
<an,z>z is bounded in n for each z, if and only if lan|Z is bounded in n for
each z. This is a standard result. The proof of the Lemma is then a standard
exercise using the Lyapunov functional <Cz(t), z(t)>Z for the homogeneous part

of (2.3).

Corollary 2.8. If Q > m > 0 and the Riccati algebraic equation has a

nonnegative self-adjoint solution I, then the spectral radius of the operator

S in (2.21) is less than 1, and

(2.28) Is¥] < (n|/mya - ajut, €= 1,2, ... .

Proof. This follows from Lemma 2.7 and
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8

(s")%1Q + FrREISE.

(2.29) <Hz,z>z =
0

t

ol

For Q coercive, Zabczyk proved a stronger result than part (iii) of
Theorem 2.3: 1if a nonnegative self-adjoint solution to the Riccati algebraic
equation exists, then |I(t) = M| + 0 geometrically fast as t + = (Also, see
{13]). We will need such a result, along with an explicit convergence rate,
for the approximation theory in Section 3.2. Since Zabczyk's proof does not

yield an explicit convergence rate, we give the following.

Theorem 2.9. Suppose that there exists a nonnegative self-adjoint solution

I to (2.14) and that

(2.30) |s®] < M, v = 1,2, ...,

where M and r are positive constants with r < 1 and S is the optimal closed-

loop operator in Theorem 2.5. If II(*+) is the operator in (2.10) with te = 0

and

(2.31) n¢o) > m,

then

(2.32)  <Hz,z>, < <I(-t)z,2z>, < lz,z>, + (Mrt)ZIH(O)l, t = 1,2, eee o

Proof. For tp a negative integer, let ug be the optimal control sequence for

the finite-time Problem (P1l) on the interval [tO,O] with initial condition
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z(to) € Z, with zg the corresponding optimal trajectory. Also, let uy be the
optimal control sequence on the infinite interval for Problem (P2) with
initial condition z(to), with z, the corresponding optimal trajectory.

Since I is a constant solution to (2.10) for the final condition G =N, we

have
<T[z(t0),z(t0)>Z = J(H;to,O,z(tO),u*)

(2.33) < J(O;tO,O,z(tO),uo) + <Hzo(0),zo(0)>Z

< J(O;tO,O,z(tO),uO) + <H(0)zo(0),zo(0)>Z

= <H(t0)z(t0),z(t0)>z.

t
On the other hand (note that z*(to) =S z(to)),

<H(t0)z(t0),z(t0)>z
(2.34) < J(O;0,~t0,z(t0),u*) + <H(0)z*(—t0),z*(-t0)>z

< J(O;o,m,z(to),u*) + <H(0)z*(t0),z*(t0)>z

-t
< dz(t,),z(t)>, + [ (]s °]|z(t )] )2
0 07z 07'2
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3. Approximation Theory

3.1 The finite time interval problem

In this section we develop a general approximation framework for the
finite time interval problem (Pl) and describe associated convergence results.
For each N = 1,2, ... , let iy ¢ Z be a finite dimensional subspace of Z

and let PN: zZ > ZN denote the orthogonal projection of Z onto ZN with respect

to the <*,*> inner product. We require the following hypotheses.

YA

Hypothesis 3.1 There exist operators TN: ZN +> ZN’ BN: U~ ZN
QN: ZN > ZN and GN: ZN i ZN which satisfy

TNPN > T strongly,

T* P, > T* 1

N N strongly,

BN + B strongly,

QNPN + Q strongly,

GNPN +> G strongly,

as N > @ with TN and BN bounded and QN and GN bounded, self-adjoint and

nonnegative.

Hypothesis 3.2 The spaces Zy are approximating subspaces in the sense that

the projections Py satisfy PN + I strongly on Z as N » o,

We note that since U has been assumed to be finite dimensional,

* *
Hypothesis 3.1 above necessarily implies that BN + B and BNPN + B in the

uniform norm topology on L(U,Z) and L(Z,U) respectively.
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We define a sequence of approximating discrete~time linear quadratic

regulator problems on the finite time interval [to,tf] as follows:

(P1y)
N 2
Find u, € £ (to,tf-l;U) which minimizes
tf—l
G ICtgtea(t)w) = ] [z (), +
0

<Ru(t),u(t)>U] + <GNZN(tf)’ zN(tf)>z

subject to

(3.2) zN(t+1) = TNzN(t) + BNu(t), t>t
zN(tO) = PNz(tO).

The results stated in Section 2.1 concerning the existence and uniqueness of

solutions to Problem (Pl) apply to the Problems (PIN) as well. Indeed, there

exists a unique solution uE € 22(t0,tf-1;U) to Problem (PIN) which is given

in feedback form by

]

(3.3)  uy(e) = -Fo(£) Zh(e), £, < £ <t -l

0 f

where

-~ _1*
(3.4) FN(t) RN(t) BN IIN(t+1)TN
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with

*

(3.5) ﬁN(t) = R + B I (t+1)B

t
and the operators {HN(t)}tEt on Zy satisfying the Riccati difference
0

equation

* ~ -1 *
(3.6) HN(t) = TN[HN(t+1) - HN(t+l)BNRN(t) BNHN(t+1)]TN + QN
with terminal condition

(3.7) HN(tf) = GN.

The optimal trajectory ZE is given by

zy(t+1) = S (E)zy(E), > tg,
(3.8)

zy (t5) = Byz(ty)

where

(3.9) SN(t) = TN - BNFN(t), t > ta.

t

The operators {HN(t)}tit are bounded, self-adjoint and nonnegative. The
0
minimum value of the performance index (3.1) is given by

N N N N
(3.10) T, = I (Gstg,te,z(ty),uy) = <Me(ty)z,(ty), z,(tg)>, -

The fundamental convergence result is given in the following theorem.
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Theorem 3.3 Let uE and u, be the unique solutions to problems (PIN) and (P1),

respectively, with zE and z, the corresponding optimal trajectories

generated by (3.8) and (2.12). Let Jy» My and Fyy and J, T and F be given by

N
(3.1), (3.6) and (3.4) and (2.2), (2.10) and (2.8). Then, if Hypotheses 3.1

and 3.2 hold, we have

(i) lim lu* - u*l 5 = 0,
N> L :
N
(ii) lim |z, - z,| 9 =0,
N L
(111)  Um [BN -0, =0
* * ’
N+oo
(iv) 1lim IHN(t)PNz - H(t)zlz =0, z€e Z, tO < t < tf
N0
and
(v) lim |F ()P - F(t)| =0 t. < t<t, -1,
om NN %o £
Proof

We first note that HN(t) being nonnegative implies that IRN(t)I > |R|
and consequently that IRN(t)_ll < IRI_I. It follows therefore that for

ue U

R T |
(.11 [®(™ - R Dl

= IRy R - RyeNRE®) N
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<RI R - RCeNR®) a0

The above estimate together with (2.9), (2.11), (3.5), (3.7) and Hypothesis
3.1 imply that

~

-1 2 -1
(3.12) RN(tf 1) ~ ~» R(tf 1)
as N > © gtrongly on U, Since U is finite dimensional the convergence in

(3.13) is in fact uniform. It then follows immediately from (2.8), (3.4) and

Hypothesis 3.1 that
(3.13) FN(tf -1) Py F(tf -1),
uniformly as N + @, and from (2.10) and (3.6) that

(3.14) II - p, *» H(tf—l)

n(ts N

strongly on Z as N + «, A simple induction yields (iv) and (v) from which

(i), (ii) and (iii) then follow trivially.

Remark It will, on occassion, be the case that in constructing a particular

*

%
approximation scheme TNPN + T strongly but TNPN + T only weakly (see, for

example, [3]). However, by using the fact that

(3.15) (T;HN(t+1))* = I (e+1)T,
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implies that T;HN(t+1) +> T*H (t+l) weakly if HN(t+1) > I(t+l) weakly, we
conclude that Theorem 3.3 continues to hold under these somewhat weaker
hypotheses with the strong convergence in (iv) replaced by weak and the
uniform convergence in (v) replaced by strong.

Under certain additional hypotheses it can be shown that the operators
mt), t, < t < t. given by (2.10), (2.11) are trace class (see [15]) and that

0 f

(3.16) 1im IIIIN(t)PN - H(t)ﬂl =0, t, < t < tes
N+
where n-nl denotes the trace norm, the strongest of all common operator

norms. We require the following lemmas.

Lemma 3.4 If {ai}i=l is an absolutely summable sequence of real numbers then

o0 [+ oo
there exist sequences {bi}i=1 and {ci}i=1 such that ii: b, =0, {ci}i=1 is

absolutely summable and a; = bici'

Proof

Let
(3.17) a = 2 Ia

and for j = 0,1,2,... define nonnegative integers nj as follows. Let n, = 0

and let nj denote the first index for which

n,

J
(3.18) I
i=1 3

j = 1’2,... L] set
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1 . .
(3.19) bi =3’ Py ci = Jai, i=n +1,.-.,1’1j, J = 1,2,..0

j-1

Then b,c, = a
i71

i = ]. 2 see 1im b = 0 and
i, b et | b iw i
n
..} o« j ® 1
(3.20) ] eyl = 131 la| <at 1 <.
i=1 3=1 ken_;+1 3=l 3

Lemma 3.5 If L is a self-adjoint trace class operator on a separable Hilbert
space H, then L can be written as LlL2 where L1 is compact and L2 is trace

class.

Proof

Let {Ai}:=l denote the eigenvalues of L repeated according to

multiplicity and let {¢i}:=1 denote the corresponding eigenvectors. Then
{Ai}:=1 is a sequence of real numbers, each of finite multiplicity, and

o0

(3.21) ) Al =Ll <=
1

Applying the previous lemma there exist sequences {u }m and {vi}:=1 with

> i"i=1
lim u, = 0, ) Ivil < ® and Ai =u,v,. Defining 1! ana 1.2 by
{00 i=1

l o0
(3.22) L¢ = 12=1 Mi<bd Db, ¢ €H
and

2 o0
(3.23) L% = ] v, <4,6.>¢,, ¢eH

i=1
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respectively, the lemma immediately follows.

o
Lemma 3.6 Let {SN}N=1 be a sequence of bounded linear operators on a
seperable Hilbert space H which converges strongly to a bounded linear

operator S. Let {LN}N=l be a sequence of trace class operators on H which

converges in trace norm to an operator L. If L can be written as L = LlL2

oo
with L1 compact and L2 trace class then the sequence {SNLN}N=1 converges in

trace norm to SL.

Proof

The result follows immediately from

1.2
(3.24) IS L. - SLIIl < IISN(LN - L)H1 + H(SN - S)L' LI

N°N 1

1 2
< ISNIIILN LI, + |(sN - S)L|IL b
Theorem 3.7 If Q and G are trace class operators then the operators
t
{H(t)}tit given by (2.10) and (2.11) are trace class. Moreover, if
0
Hypotheses 3.1 and 3.2 hold and QNPN + Q and GNPN + G in trace norm as

N + ©® then we have

(3.25) lim 10 _(t)P,. -~ I(t)l, = 0O t. <t < t..
oo NN 1

Proof

0 £ t< tf are trace class is an immediate

consequence of the hypotheses of the theorem, (2.10), (2.11) and the fact that

That the operators NI(t), t
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the trace class operators form a two sided ideal of L(Z), the space of bounded
linear operators on Z (see [15]).
The trace norm convergence stated in (3.25) will follow once we have

shown that
(3.26) 1im ﬂHN(t+1)PN - H(t+1)l|1 =0

N+

implies

% *
(i) lim IITNIIN(tH)TNPN - T H(t+1)Tll1 =0

N+
and
' T W R (£) 1"
(ii) ;ig Ty N(t+1) BNRN(t) BNIIN(t+1)TNPN -
* TS Bt
T N(t+1)BR(t) "B H(t+1)TII1 = 0,

To argue (i) we first note that Hypothesis 3.1 and Lemmas 3.5 and 3.6

imply

0.

* *
(3.27) ;ig HTN HN(t+1)PN - T H(t+1)||1

Taking adjoints we obtain

(3.28) 1lim lIIIN(t+1)TNPN - H(t+1)Tll1 = 0.

N>

Another application of the previous two lemmas yields

* * *
(3.29)  lim Ty M (e+1)T Py = T H(L+1)TH, < Lim |TN|HHN(t+1)TNPN = M(e+1)TH

N N+
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* *
+ lim (TP = T) I'[l(t+1)|lll'[2(t+1)Tlll

N0

where N(t+l) = Hl(t+l)H2(t+l) is the factorization of N(t+l) described in

Lemma 3.6.

The verification of (ii) is analogous and the theorem is proven.

We note that if Hypotheses 3.1 and 3.2 hold and if the operators Q and G

are trace class with Qy and GN defined by

(3.30) QN = PNQ
and
(3.31) GN = PNG’

then Lemmas 3.5 and 3.6 imply that the trace norm convergence hypotheses in
Theorem 3.7 hold. The significance of this observation will become apparent
when examples are discussed in Section 4. Indeed, it is frequently the case
in practice that Q and C.have finite rank (and consequently are trace class)

and the operators Qq and Gy are defined as in (3.30), and (3.31).

3.2 Approximation on the Infinite Interval

Problem (PZN) is Problem (P2) for the control system in (3.2) and the

performance index

(3.32) Jy(0,°,2,(0),u) = t2=0[<QNzN(c),zN(t)>z + CRu(t),u(t)>;].
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Hypothesis 3.8. For each N, there exists exactly one nonnegative self-adjoint

solution to the Riccati algebraic equation

* * -1 *
(3.33) Ny =T [ - MB(R + BB BT + Q.
By Theorem 2.3, this implies that

(3.34)  lm [T, - HN(t)I =0

t+r —o

for each N, since dim(Zy) <<= .

As in Theorem 2.5, we write

~—] *
(3.35)  Fg =Ry By Ty,

e
]

(3.36) N R + B;HNBN,

and

From here on, I will be the nonnegative self-adjoint solution to the infinite
dimensional Riccati algebraic equation (2.14) —- when it exists —— F will be

the corresponding feedback operator in (2.18) and S will be the corresponding

closed-loop operator in (2.21).
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Theorem 3.9. 1If HNPN converges strongly to some bounded linear operator I,
then I is a nonnegative self-adjoint solution to (2.14), FyPy converges in

norm to F and SNPN converges strongly to S.

Proof. This follows from Hypotheses 3.1 and 3.2, (3.33) and (3.35) - (3.37),

and the fact that the control space U has fixed finite dimension.

Theorem 3.10. Suppose that there exist positive constants M and r,

independent of N, with r < 1, such that

(3.38) M <M, N=1,2, ..,

and
(3.39) |s§| <Mrt, ot =1,2, oo, N=1,2, ... .

Then a nonnegative self-adjoint solution I to (2.14) exists, and as

N+ =,

(3.40) HNPN + II strongly.

If there exists a positive m, independent of N, such that

(3.41)  Qy > m, N = 1,2, ...,

then (3.38) implies the existence of an r less that one and independent of N

for which (3.39) holds.
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Proof. For each N, let HN(') satisfy (3.6) with t¢ = 0 and HN(O) = MI, where

I denotes the identity operator on ZN. From (2.32),
(3.42) |mg - ]'[N(—t)l +0as t*
uniformly in N. Now, for z € Z, write

(3.43) <(HN - HN,)z,z>Z = <(IIN - IIN(-t))z,z>Z + <(HN(—t) - HN,(—t))z,z>Z

+ <(HN,(—t) - HN,)z,z>Z.

For € > 0 choose t > 0 such that I(HN - HN(—t))zlZ <€ and

|(H - HN,(—t))zl e, Then, for N and N' large enough,

N'
I(HN(—t) - IIN,(—t))zlZ < €. This shows that HNZ is a Cauchy sequence in Z

for each z. Therefore, I, converges strongly to a nonnegative self-adjoint

N
solution to (2.14).

An important application of this theorem is when the approximating open-
loop operators TN have an exponential decay rate independent of N, Q is
coercive and Qg = PNQ|ZN. In this case, the zero control gives an upper
bound, independent of N, on HN. Such is the case in the example discussed in
Section 4.1 and in applications to flexible structures with no rigid-body

modes and coercive structural damping.

Theorem 3.11l. Suppose that HNPN converges strongly to II, QNPN converges in
trace norm to Q (hence Q is trace class), and (3.39) holds for positive M and
r independent of N with r less than one. Then HNPN converges in trace norm

to Il.
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2
Proof. Since IS QS I, < ISNI TQyl,, the series in (2.26) converges in
trace norm, uniformly in N. The current result follows then from Lemmas 3.5

and 3.6.

Note that QNPN converges in trace norm to Q if Q is trace class and

= P QP |, .
Q= PyQ leN

Theorem 3.12 if IHN] is bounded in N, then a nonnegative self-adjoint
solution I to (2.14) exists, HNPN converges weakly to I, and F\Py and S\Px

converge strongly to F and S, respectively.
Proof. According to [l11 Theorem 6], HNPN converges weakly to some
nonnegative self-adjoint bounded . It follows from (3.33) and Hypotheses 3.1

and 3.2 that I satisfies (2.14) and that Fy and SN converge as indicated.

*
Note that Theorem 3.12 holds if SNPN converges strongly but SNPN

converges only weakly.

3.3 Implementation of the Approximation Schemes

In constructing the approximating operators TN, BN’QN and GN a standard
Galerkin approach is often taken; that is, Ty = PNT, BN = PNB,
Qy = PQ and GN = PyG. We note however that explicit representations for the
operators T and B are frequently not available. In particular, this can occur
when the discrete-time system (2.3) arises from the sampling of an infinite
dimensional continuous—time system of the form (2.4). 1In this case it is the

operators A and B which are approximated by a sequence of finite dimensional
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operators AN and BN on Zy, from which an approximation to the semigroup
{T(s) : s > 0} 1is obtained as TN(s) = exp CANS), s > 0. The operators Ty
and By are then Ty= TN (1) and BN = f; TN(s)BNdS, respectively. The strong
convergence TNPN + T and BN + B 1is then usually argued using an appropriate
formulation of the Trotter—Kato theorem, a well Enown semigroup approximation
result (see [15] [23]).

The expressions given by (3.3) - (3.7) are operator equations and
although they are finite dimensional, they are not appropriate for
computations. To make use of our approximation framework, we must first
determine equivalent matrix formulations. Toward this end we assume, without

loss of generality, that U = R™ with the standard basis and inner product and
K
N

1

let {og}im)

be a basis for ZN’ Define the KN x KN Gram matrix MN by

-l g
(3.44) [MN]ij = <¢N,¢N>Z.
For an operator A we denote its matrix representation with respect to the
bases defined above by [A]. Similarly, for an element z € Z or u € U, we let
its vector representation be given by [z] or [u] respectively. Standard

calculations yield

(3.45) [T;] ='M;Il (r) "y
and

x T
(3.46) (Bl = (81 M.

Defining



(3.47)

(3.48)

and

(3.49)

we obtain

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

Note that since Qy and GN are self-adjoint and nonnegative so too are Q
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M () = M [T ()],

Qy = Myloyl,
Gy = MylGy!
[y ()] = —[F(O)](z}(D)], ;< t< ¢, -1,

(Ry(0)1 7 (B 1T (1) T, ],

[FN(t)]

- -
[Ry(©)] = [R] + (B 1'H (e+1)[B],

N T A
HN(t) - [TN] (HN(t+l) -

A ~ _1 TA -~
IIN(t+1)[BN ][RN(t)] [BN] HN(:+1))[TN] + QN, tO <t < tf—l,

HN(tf) = GN.

A

N

and GN. Equations (3.50) - (3.54) are therefore in the form of the standard

ones obtained for the feedback law for a discrete-~time linear—quadratic

Ky

regulator problem in R ". Consequently they can be solved using conventional

techniques.

The minimum value of the performance index is given by
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(3.55) Iy = [z (e)1Mley) [z )]s

Analogously, for the infinite time horizon problem, (3.33), (3.35) and

(3.36) yield

(3.56)  [up()] = ~[Fllzy(0)], &3> g,

~ =1 T
(3.57)  [Fgl = [ 1™ (BgI M IT]

(3.58) [R.] = [R] + [BN]TﬁN[BN]

N

~

where HN is the solution to the matrix algebraic Riccati equation

~

e e T, "
(3.59) Mg = [T ) (g - TRe] T[BITTOITL] + Qp,

with QN given by (3.48). The minimum value of the performance index is given

by

(3.60) 3y = [2h(e) 1My lzy ()],
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4. Examples and Numerical Results

In this section we describe the application of the general approximation
framework developed above to a variety of examples. In addition to
theoretical considerations, in each of the examples below, we discuss some
numerical results for an infinite-time horizon problem of the form given in
Problem (P2). All numerical studies were performed on an IBM Personal
Computer. The machine we used was equipped with an Intel 8086 math co-
processor chip and 640K bytes of random access memory (of which less than 384K
was required).

Matrix exponentials were computed from eigenvalue~eigenvector
decompositions obtained using the QR algorithm. The matrix Riccati equations
(3.59) were solved using a Schur-vector decomposition of the Hamiltonian
matrix (see [18][24]). It should be noted that if the eigenvalue pairs of the
Hamiltonian matrix for a continuous—time linear=-quadratic regulator problem
are asymptotic to #Y(n) as n+ ®, then the eigenvalue pairs of the
Hamiltonian matrix for the corresponding discrete-time problem will be

T
asymptotic to efY(n) a

s n * ®, Consequently, for all but very small T,
conditioning problems arise more quickly than in the continuous—time case when

the approximating matrix algebraic Riccati equations are solved.

4.1. The Heat Equation with Boundary Input

In this example we consider the scalar parabolic system with boundary

control given by

(4.1) g;-w(s,x) ='§;-a(x) g;-w(s,x), s >0, xe (0,1)
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(4.2) w(s,0)

0, w(s,l) = v(s)

(4.3) w(0,x) = ¢(x)

with a € Hl(O,l), a(x) >0, xe [0,1], ¢ € HO(O,I) = L2(0,1) and v € L2(O,w).
To formulate the discrete-time state equation for this system we let T

denote the sampling interval and consider only pilecewise constant controls v

given by

(4.4) v(s) = u(t) s € [tT, (t+l)1),

t=20, 1,2,... « We choose as our state space Z the Sobolev space

HO(O,I) with the usual inner product

(4.5)  <4,¥>, = <b,9> = [ 20 (8)0(8) a0,

The state z(t) € Z is

(4.6) z(t) = lim _w(s,*), t = 1,2, ...
ST
(4.7) z(0) = ¢.

For te¢ {0,1,2...}, we define y(s) € Z by

(4.8) y(s) = w(s,*) - Yoult), s e (tr, (t+l)T)
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(4.9)  y(eT) = 2(r) - Yoult),

where wo € Z 1is given by wo(x) =x, x € [0,1]. A straight forward

calculation reveals that y(s) = y(s,*) satisfies
(4.10)  y(s) = DaDy(s) + a'u(t), se (tr, (t+1)1)
(4.11) y(s)lO =0, y(s)l1 =0, se (tr,(t+l)T)
(4.12)  y(tT) = z(t) - pyult),

where D denotes the differentiation operator on HI(O,I).

Let A: dom(A) € Z + Z be given by

Dom(A) = H2(0,1) N Hé(o,l) = {6 ¢ 1900,1): ¢ € u2(0,1),

$(0) =¢(1) = 0}

The operator A is densely defined and self-adjoint. It satisfies
(4.14) <Az,z>z < —m|z|§ , z € Dom(A)

for some w > 0 and has compact resolvent. Also, A is the infinitesimal

generator of an analytic semigroup of contractions {T(s) : s > 0} on Z which,

s

in light of (4.14), satisfies |T(s)| <e® , 8 > 0. It follows therefore,

that
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(4.15) ﬂs)=T(yfnyur)+fzrT@«ﬂaﬂmﬂtx s e [tT, (t+1)T).
The continuity of y, (4.6), (4.8) and (4.9) imply

(4.16) z(t) = y(tr) + lpou(t)

and

1

(4.17) z(t+l) = y((t+l)T) + ¢0u(t),

and hence that

(4.18)  z(t+l)

yf(t+1)r) + Pult)

= T - ygu) + [T T((er-0)atdoue) + v uco).
Defining the operators T € L(Z) and B € L(R',2) by
(4.19) Tz =T(1)z, z€ 2
and
(4.20) Bu = [(I - T, + IB T(o)a'dolu, wuce Rl,

we obtain

(4.21) z(t+l) = Tz(t) + Bu(t), t = 0,1,2,..
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(4.22) z(0) =¢ .

We take the performance index to be

t_~1

(4:2) 3(ggi0tet0) = T {aglz(e) | + ru(e)®} + gylz(e )|
t=

Hh

P o
with 4189 Oand r > 0

Applying the theory developed in Section 2.1, we have, for the finite
time interval problem, that the optimal control is given by

(4.24)  u, (t) = -F(t)z, (t), t =0, 1,2,00.,t_~1,

f
where for each t, F(t) is the continuous linear functional on Z given by (2.8)
- (2.11). It follows that F(t) has a representation f(t,*) € HO(O,l) and

that
(4.25) F(t) = féf(t,-)w(e)de >

v en,1), t = 0,1,2,.00,t -1,

For the infinite time interval problem (tf =®, gy = 0), it is
immediately clear that Hypothesis 2.4 is satisfied. 1t is also clear that
(4.14) imples that for each z(0) € H(0,1), u(t) =0, t = 0,1,2,... is an
admissible control, and hence that there exists a unique nonnegative self-
adjoint solution of the Riccati algebraic equation (2.14). From (2.17) -

(2.19) we obtain
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(4.26) u*(t) = _Fz*(t), t = 0,1,2,...
where F is a continuous linear functional on Z and
1 0
(4.27) FY = fof(e)w(e)de, Y € H (0,1),
0
with £ € H (0,1).

We define an approximation scheme using a standard Ritz-Galerkin
approach. We note that the operator — Ais coercive and that it can be written
* *
as —A= L'L where the operator L and its adjoint L~ are given by

6.28) w=a"?op, ve H(0,1),

and

4.29) 1% = 0%, e ulo,Dn),

respectively. We define the space V = Hé(O,l) together with the inner

product
(4.30) <¢,w>v = <L¢,Lw>z, $,9 € V.,

We note that V is the energy space associated with the operator -A,
vV = Dom((—.A)llz), and it is the closure of Dom(A) with respect to the energy

norm || which satisfies

V,
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(4.31) |¢|$ = <L,Lb>, = <—Ad,9>,, ¢ € Dom(A).

For each N = 2,3,... let AN denote the uniform partition of the interval

1 2 N-1

j, N-1
[0,1] given by {0, NOE R 1}. Let {et‘:‘]}j=1 denote the usual linear

B-splines on [0,1] corresponding to the partition AN and which satisfy

0, = 1,2,... N-1, The el are given by

) = )

N
nee - {sb, oe (L, 4
j - (+1) _ i il
(4.32) ey ) N( N 0) 8 ¢ [N » ]
0 elsewhere

j=1,2,...,N-1 and are depicted in the figure below.

0 £ ! 3 |
0 j-1 i i+l i
N N N

Figure 4.1

N

<7 >
Define PN'Z ZN

Let Z, = span{eJ}wzl . We note that ZyC V and dim Z, = N-1, N = 2,3,... .
N j=1 N N
to be the orthogonal projection of Z onto Zy with respect to

the < , >Z inner product and PN : V= 2Z to be the orthogonal projection of V

N
onto Zy with respect to the <, >V inner product.

We define the operator AN : ZN > ZN as the inverse of the operator given
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by

-1 _ -1
(4.33) AN =P A l,

The invertibility of A of course follows from the coercivity of - A (see

(4.14)). On the other hand, a straight forward calculation yields

(4.34) < AL

2
N 2N zN>V = |zN|Z , z. € Z

N N°

Consequently the operator A;l is invertible and the operator’AN is well

defined. It is also self-adjoint. Indeed

(4.35) <ANzN,yN>Z = =<z > € Z. ..

NNV 0 NNt 4N

From (4.35) it also follows that

2
(4.36)  <Aygzyozgdg < wlzgly o zy e 2

It can be concluded therefore, that AN is the infinitesimal generator of a
semigroup of bounded linear operators on ZN, { TN(s) : s » 0} with

T.(s) = exp(A s), s > 0 and satisfying
N N
(4.37)  |T(s)], < ™%, s> 0.

Elementary properties of spline functions (see [27]) imply PN + 1

as N > ©, strongly on V. Furthermore, A-l compact and
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1 -1

-1 - -1 -1
(4.38) IPN A Tz -A zlz < IPNA z - A ZIV = I(PN -I)A zlv
imply that PN A_1 > A-1 as N+ @ in the uniform operator topology on L(Z).

We have therefore, that

-1 -1
(4.39) Ag By —AT], > 0

as N + o,

From (4.37) and (4.39) we conclude (see [4], [15])

(4.40) TN(s)PNz + T(s)z
and
(4.41) T;(S)PNZ > T*(s)g

as N > @ for each z € Z, uniformly in s for s in compact subintervals.

With Tg = To(1), Qg = q4P

N N GN = gOPN and

T ]
(4.42) By = (I - TP + fo Ty(0)Pa'da,

(4.40), (4.41) and elementary approximation properties of spline functions
guarantee that Hypotheses 3.1 and 3.2 hold and hence that the convergence
results for the finite time interval problem given in Theorem 3.3 apply.
For the infinite time interval Problem, (4.37) implies that Hypothesis
3.8 is satisfied. Moreover, if q9 > 0 the conditions given in the statement
of Theorem 3.10 are satisfied (see the Remark following the proof of Theorem 3.10)

and consequently the convergence results for the infinite time horizon problem
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given in Theorem 3.9 hold.

Define the RN_1

vector valued function Ey on [0,1] by

(4.43) EN(G)T - <e;(e), eﬁ(e),..., eﬁ—l(e)),

8 € [0,1] and the (N - 1) x (N - 1) Gram matrix associated with the basis

j N-1
elements {eN}j=l
(4.44) M= <E_, E->
* N N* Nz °

A straight forward calulation yields

—_
2 1
3 3 0 0
' 2 1
(4.45) Me=xl © 3 6
, \
0
1 2 1
6 3 6
1 2
0 0 3 3
L —

Let the (N = 1) x (N - 1) matrix Hy be given by

T
Then
- i h|
Hglys = <ep Ayey >z
(4.47)
= - <e , ed>
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- i h|
<LeN, LeN>Z

- <aDe§,

3
DeN>Z .

In the case a(x) a, x € [0,1], a constant, we have

-
-2 1 0 0
1 =2 1
(4.48) HN =aN|] O ’
| |
-2 1
0 0 1 -2

(4.49) Al =M _H

while for the operators TN, QN and GN we have

(4.50) [Tyl = exp(A 10D,
(4.51) [QN] = 9,1y

and

(4.52) [6y] = g1y
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where Iy denotes the (N-1)x (N ~-1) identity matrix. If we define

¢0N, a& € RN_1 by

(4.53) Yoy = <EN,¢O>Z
and

(4.54) a& = <EN,a'>Z,

j = 1’2,oon,N_l we Obtain

(4.55) (Bl = (Iy = [TIMgNv o + [7 expCiagloy afdo

-1 -1 -1,
(1 - [T DMLy + AT (1] = IO af

When the finite dimensional approximating gain matrices [FN(t)], t =
0,1,2,...tf—1 for the finite time interval problem have been computed using
(3.51)-(3.54), an approximation fN(t,°) to the feedback kernal f(t,*) can be

obtained from

_ T -1 T
(4.56) £,(£,8) = Eg(8) ™My [FN(t)] s
t =0,1,2,..0te-1, 8 € [0,1]. We have

(4.57) fN(t,') + £(t,*)
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in #2(0,1) as N » » for each t = 0,1,2,...tc-1.
Similarly, for the infinite time interval problem, an approximation fy to

f is given by
T, -1 T

(4.58) £,(0) = E (8) M "[F .17,
6 € [0,1] where the matrix [Fy] is computed from (3.57) - (3.59). We have
(4.59) £+ F

0
in H'(0,1) as N » = ,

We demonstrate the feasibility of our schemes on an infinite time
interval problem of the form discussed above. Taking qq = 1.0, r = 1.0,

a(x) = a =10, xe [0,1] and T = .0l we obtained the approximating feedback

kernals given in Table 4.2 and shown in Figure 4.3 below.
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A‘O f3(6) f5(6) f9(6) fll(e) f13(6)
0.00 .0000 . 0000 .0000 .0000 .0000
0.05 .0250 .0228 .0224 .0222 .0221
0.10 .0500 . 0456 0449 . 0445 . 0443
0.15 .0750 .0684 .0673 .0668 .0664
0.20 . 1000 .0911 .0898 .0891 .0887
0.25 .1250 1147 1122 1115 .1109
0.30 . 1500 .1382 . 1346 .1338 .1331
0.35 1727 .1617 «1571 .1561 «1554
0.40 .1908 .1853 .1798 .1787 .1778
0.45 .2088 .2129 .2028 .2013 + 2005
0.50 .2269 « 2405 .2286 . 2261 <2245
0.55 . 2450 .2681 .2543 .2513 <2496
0.60 »2630 «2958 .2819 «2793 .2769
0.65 .2811 «2956 »3097 .3056 .3035
0.70 .2584 « 2954 <3246 «3275 «3275
0.75 .2153 .2953 .3331 »3352 .3385
0.80 1723 «2951 «3169 .3260 «3263
0.85 .1292 .2213 «2697 .2163 .2170
0.90 .0861 <1475 .2097 .2163 .2170
0.95 .0431 .0738 .1049 1125 <1175
1.00 .0000 »0000 . 0000 »0000 . 0000

Table 4.2




-
[

-

(2
it B
= ] e

o 'f’, 2 ) | t
.l:; ..A". Y, 1
f‘/ Y

E]
]
]

]
]
\

)

,.
o
.
=
fut
51
B
[xx]
o
(k4]
»
DX
£
X
N
=
ax]
i
L]
-
ol

Figure 4.3



-45-

4.2, Hereditary or Time Delay Systems

In this example we consider linear hereditary control systems of the form
(4.60)  x(s) = Lx_ + B,v(s) s> 0

where x(s) € R", x_ € L2((-r,0);Rn) for some r > 0, v € LZ((O,SI);Rm) for all

s
s <{*® and By € L(R™,R™). The function X, represents the history on the
interval [s-r,s]; that is xs(e) = x(st0), 6 ¢ [~-r,0]. The operator L is

assumed to be of the form

\%
(4.61) 16 = T AeCr) +[2 A@)0(e)d0
1=0

where A; € L(R™), 1 = 0,1,2,...,9, AC*) € Ly((-r,0); L(&Y)) and

0= r, < r,  oee ( r, = r. The initial data is given by

(4.62) X(O) =n, xo =¢)

where n € R" and ¢ € L2((—r,0); Rn).
Once again, we formulate the discrete—~time control problem by letting T
denote the sampling interval and considering piecewise constant control inputs

of the form
(4.63) v(s) = u(t) s € [tT, (t+l1)T),
t =0,1,2,..., where u(t) € R™ for each t. The state space is

(4.64) Z = R" x LZ((—r,O);Rn)
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with the inner product
(4.65)  <(n,0), (B, ¥>, = M,E> _+ <4,9> .
n L
R 2
The state of the discrete-time control system is

(4.66) z(t) = (x(tT3n,d,v), xtT(n,¢,V)), t =0,1,2,...,

where x(s;n,¢,v) denotes the solution at time s to the system (4.60) - (4.62)

and xs(n,¢,v) its history on [s-r,s]. Then
(4.67)  z(t+l) = T(1)z(t) + fg T(o) Bdou(t), t = 0,1,2,cs.,
(4.68) z(0) = (n,9)

where {T(s) : s » 0} is the C0 semigroup of bounded linear operators on Z

with infinitesimal generator A: Dom(A) € Z + Z given by
Dom (A) = {(€,¥) € Z : ¥ & H ((-r,0); R™), £ = ¥(0)}
(4.69) AW (0), ¥) = (Ly, DY),
and the operator B: R" + Z 1is defined by
(4.70) Bu = (Byu, 0), u € R™

Letting T = T(t) and B = IB T(c) Bdo, we obtain
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z(t+l) = Tz(t) + Bu(t), t =0,1,2,¢0.
(4.71)

z(0) = (n,¢).

Let Qps Gy € L(R™) be symmetric and nonnegative and let R € L(R™) be symmetric
and positive definite. We consider the discrete-time linear-quadratic

regulator problem with state given by (4.71) and performance index

tf-l

(4.72)  J(630,te,n,0,u) = ) {<Qz(t),z(£)> +
t=0

(Ru(t),u(t))Rm} + <Gz(tf),z(tf)>Z

where the operators Q : Z+ Z and G : Z + Z are given by

(4.73) QEP) = (QyE,0)
and
(4.74) G(E,¥) = (GeE,0)

respectively. For the infinite time problem we of course have

tf = © and G0 = 0,

For the finite time problem with the operators, T,B,Q and G as defined

above, we apply the theory developed in Section 2.1 and conclude that the

optimal control is given by

(4.75) u, (t) = -F(t)z,(t), t =0,1,2,000,t -1,

f
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where the operators F(t) € L(Z,Rn) are given by (2.8) - (2.11). The operator
F(t) can be represented by a matrix of operators, [Fo(t), Fl(t)] with
Fo(t) e L(R™,R™ and Fl(t) € L(Lz((—r,O); R™); R™). It follows from (4.70)

therefore that

(4:76)  u,(6) = ~£2(0)x, (er) = [ £1(E,0)(x,), (0340, & = 0,1,2,uu0 1,
where fo(t) is an m x n matrix and fl(t,') is a square integrable m X n
matrix valued function on (-r,0).

For the infinite time problem we assume that our original hereditary
system and Q0 are such that there exists an admissible control for each
z(0) = (n,¢) € Z and that Hypothesis 2.4 is satisfied. Then Theorems 2.3 and
2.5 imply that there exists a unique nonnegative self-adjoint solution I to

the Riccati algebraic equation (2.14) with the optimal control u, given by
(4.77) u,(t) = -Fz, (t), t =0,1,2,...,

where F € L(Z,R™) is given by (2.18) = (2.19). The feedback gain F can be
represented by a matrix of operators [FO,FI] with F0 e L (R™,R™) and

1

F' e L(Ly((-r,0);R"),R™). We have

(4.78)  uy(0) = 0%, (tr) = [ £ O)(x,) (00, £ =0,1,2,...,

where fO is an m x n matrix and f1 is a square integrable
m X n matrix valued function on (-r,0).
Numerical methods for the approximate solution of the continuous time

linear quadratic regulator problem for hereditary systems in closed-loop form
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have been studied extensively (see [7],[16],[19],[25],[26]). Most closely
related to the approximation framework which we have developed here for the
discrete-time problem are the treatments for the continuous—-time problem in
(2],[11],[14] and [17]. The first approximation scheme applied to the
continuous-time linear—-quadratic control problem for hereditary systems was
the AVE scheme used in [1],[11],[25] and [26] which approximates the history
by piecewise constant functions and derivatives with finite differences. 1In
[1], Banks and Burns cast AVE in its modern semigroup approximation form,
proved strong convergence of the approximating open-loop semigroups and used
the scheme to compute the open~loop optimal control. Gibson [11] used the
convergence results in [l1] to prove strong convergence of the solutions to the
approximating continuous—time Riccati equations and uniform norm convergence
of the approximating feedback control laws. However, the rate of convergence
as it was observed in numerical studies was relatively slow. Spline based
schemes for continuous—- time systems were developed for the finite time
interval problem in [17] and for the infinite time interval problem in [2].
With regard to the minimization of the performance index these schemes
represented an improvement over the AVE scheme. However, they appeared to
yield only weak convergence of the solutions to the approximating Riccati
equations and strong operator convergence of the approximating feedback gains.
Recently, a new spline-based state approximation for hereditary systems
has been proposed in [14]. When applied to the continuous time control
problem, this new method performs at the level of the earlier spline-based
schemes and yields strong convergence of the approximating feedback gains. We

have chosen this scheme to describe and implement here for the discrete-time

problem.
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To simplify the presentation, we consider systems of the form (4.60)
having only a single discrete delay (v = 1) and no distributed delay term
(A(8) = 0). A detailed description of the scheme in complete generality can
be found in [l4].

For each N = 1,2,... define

~0 ~ 3

(4.79) ey = (1,0) and ey = (O,ey ), § = 1,2,...N+1,

where In denotes the n X n identity matrix and the eé are the

n X n matrix valued piecewise linear elements on [-r,0) given by

N r -r
;-(6 + N)In 0 e [ N 0)
en (@) =
0 elsewhere
Te+35i 6e [-5r, -G-1) D
J ={ XN i_9y L -(3-1Y L  _(5-9y L
(4.80) eN(e)— 1_(9+(J 2) N)In 8 e [-(] I)N, (i Z)N)
0 elsewhere

j = 2’3943" N
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_.N Tr . ‘ r
;-(9 + (N-1) E)In 9 € [-r,-(n-1) ﬁ)

N+1
8) =
ey )
0 elsewhere .
Let
N+1 . n
(4.81) 2z ,={zezZ:z=) a,el ,a, eRr".
N . j N ]
j=0
= “j N+1
Note that dim ZN = n(N + 2). We shall refer to the collection {eN}j_0 as a
N+1 B
"basis" for ZN and a vector @ € x R" as being a "coordinate vector”™ for an
j=0

element in Zye Defining

T 0 “1 “N+1
R GNP

(4.82) ﬁ

we have

N N+1
{zez:z-= Ega, a e x R},
j=0

(4.83) Z

N+1

Let My denote the Gram matrix corresponding to the basis {e%}j=0 . A

straight forward computation yields
= I
(4.84) MN = diag (In, N TN 8>In)

where the (N+1) x (N+1) matrix my is given by
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[ —
1 1
3‘ 6 0 0
L 2 1
(4.85) mN = 6 3 6
0
0
1 2 1
0 5 3 %
1 1
0 0 3 3
b m———

and ® denotes the Kronecker product.
Let Py denote the orthogonal projection of Z on to Zy with respect to the

inner product (4.65). It follows that
(4.86) PN(E,W) = (E,PN¢)

where py is the orthogonal projection of L2((-r,0);Rn) on to span{e§}§:} with

respect to the usual L, inner product. We have

T
(4.87)  Py(E,9) = Eyay(E,¥)

N+1
where aN(i,w) e x R" 1is given by
j=0
(4.88)  ag(6,9) = Mi' col (€,0y, Viyersby )
with
j_ (0 _3
(4.89) vy = 2, eg(®v(e)ds.
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= M >
We shall set TN exp(;ANT) where AN ZN ZN is an appropriately
defined finite dimensional approximation to the operator A given by (4.69).
Noting that Zy ¢. Dom(A), we motivate the definition of AN by first formally

extending the operator A to an operator defined on ZN.

For zy = (EN,wN) € ZN define

N

(4.90) Az = (AEHA Y (-T), DY + 8(Ey - lim ¥ (8)))

6-+0

+
where 6§ is the Dirac delta impulse concentrated at zero and D Y denotes the

right hand derivative of Y. For each N = 1,2... let AN ¢ Z,* Z,. be given by

N N
(4.91)  Agzy = (AEHAW (1), p DY) + 8 (5 - Lin ¢, (0))
where
(4.92) 8 = vy
with
(4.93) vy =l col (0, Lim_ ep(®), -, Lim_ ey i(e)).
620 6+0

To compute [AN], the matrix representation for the operator AN’ we let

[zN] denote the coordinate vector representation for an element z, € Z

N N°*

Then from

(4.94)  [Ayzyg) = (Agllzg]
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and

-1 2 S Y
EpAz = My EgAgErs 2y

S _
(4.95)  [Agzy] = My ap(Az) = M ELAzD>, Z°°N

we obtain

I |
(4.96) [AN] = MN HN

where
_ ~ AT
(4.97) HN = <EN’ANEN>Z .

Using the definitions of AN and EN a straight forward calculation (see

[14]) yields

(4.98) H n

hy® I

where the (N+1) x (N+1) matrix hy is given by
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_1

o
1
Nlr—-
o

(4.99) hN =

o N N

The matrix representation for the operator TN =

computed from

(4.100) [TN] = exv([AN]T)-

m
. +>
We define the operators BN : R ZN’ QN

(4.101) By = PyB
(4.102) Qy = PyQ
and

(4.103) | : Gy = PG

from which we obtain

N =
o
1

N |-

exp (ANT) can then be

t 2. > Z and G 2 Z_ * 2 by

N N N N N
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(4.104) [Byl = col (By, 0,...,0) ¢ g (N+2)xm
Q 0 0
0 0
(4.105) [Q] = \\\\\\\‘\\‘\- e gR(N+2)xn(N+2)
0 0
and
G, 0
0 0
(4.106) Gyl = ‘\\\\‘\~\\\~ o n(N#2)xn(N+2)

Finally, defining

(4.107) By = fg exp (ANS) BNds
we have
(4.108) [Byl = [ exp (A )s) (B lds.

Once the matrix representations for the approximating feedback gains have
been computed, [Fy(t)], t = 0,1,2,... te-1 from (3.51) - (3.54) for the finite
time interval problem and [FN] from (3.57) - (3.59) (assuming, for the moment,

that solutions to (3.34) exist) for the infinite time interval problem,
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approximations for fo, fl(t,'), t = 01,2,...t_—-1 and fo,fl(‘) can be

f

computed from

(4.109) (g™, (p(e,oNT) = B R (T, £ = 0,1,2,0 0 -1,

f

and
0.T 0 T, _°T =1 T
(4.110)  ((£)7, (£g(+))7) = EM[F, ]

respectively.
For the approximation scheme defined above, it is shown in [14] that

PN + I strongly on Z. Using a Trotter-Kato like result it is also shown that

(4.111) exp (ANS)PN + T (s)
and

* *
(4.112) expCANs)PN + T (s)

strongly on Z and uniformly in s for s in compact intervals. Hypothesis 3.1
is a simple consequence of these results. The present scheme, therefore,
satisfies all of the hypotheses of Theorem 3.3 and we may conclude that the
convergence results for the finite time interval problem given in the

statement of the theorem hold. 1In particular, we have

(4.113) fg(c) » £9¢)
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in Rmxn and

(4.114) f;(t,°) +> fl(t,')

in Lz((—r,O);Rmxn) for each t = 0,1,2,...t."1.

With the operators Q and G given by (4.73) and (4.74) and the operators
Qy and Gy defined as in (4.102) and (4.103) it is clear that the hypotheses
given in the statement of Theorem 3.7 are satisfied. We have therefore that

t
for the present example the operators {H(t)}t£0 are trace class and

(4.115) lim "HN(t)PN - II(t:)II1 = 0, t =0,1,2,...,t

N>

fo

For the infinite time problem and the approximation scheme discussed
here, the situation with regard to convergence is much the same as it is for
the continuous time problem (see [14]). We are unable to demonstrate the
existence of an M and an r < 1 for which (3.38) and (3.39) hold. 1In fact, our
numerical studies point to the conclusion that condition (3.39) is violated by
the present scheme. We observe the existence of a sequence of closed-loop
eigenvalues of the approximating discrete-time control problems (PZN) which
tend toward the unit circle as N + «,

On the other hand, upon solving the approximating problems it is also
apparent that IHNI remains bounded in N. Consequently we may apply Theorem
3.12 to conclude that a solution I to (2.14) does in fact exist,

n.p.+ I weakly and FNP

NEN > F strongly as N » « , We have therefore that

N

(4.116) fg iy
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X
in Rm n and

(4.117) £ .+ f

weakly in Lz((—r,O);Rmxn) as N + =,

We applied the scheme to the infinite-~time problem with state
(4.118) y(s) + y(s-1) = v(s).

Transforming (4.118) to an equivalent first order system we obtain a system of

the form given in (4.60), (4.61) withn =2, r=1, m= 1,

” y(s)
A0 = [8 é], A1 = [_? 8} . B0 = [?], A =0 and x(s) = [. ] .
y(s)

Taking QO = [é ?] the performance index takes the form

(4.119)  3(030,2,5(0),5(0),50,55,w) = § y(t1)? + 5 (1) Ru(t)?
t=0

where T is the length of the sampling interval. The optimal feedback control

is given by

u(0) = —[£°] y(en) =[£°],5(en)
(4.120) 0. 1 L.
= [ LET®)] y(et+8) + [£7(8)],y(tT+0)}do

where [f0]i and [fl(e)]i, i =1,2 are the 1th components of the 1 x 2

0

matrices f~ and fl(e).
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Since by taking the initial conditions
(4.121) y(0) =0, y(0) =0, 1y, (8) =0, -1 <8<O

we have y(s) = 0, s > 0 regardless of how ;0(6), -1 < 6 <0 is chosen, it
follows that [fl(e)]2 =0, -1 €< 8 < 0., Indeed, the optimal control
corresponding to the initial conditions (4.121) with ;0 arbitrary is u(t) =
0, t =0,1,2,.s. . Furthermore, the nature of the approximation scheme is

1
such that we must have [fN(e)]2 =0, -1<6<0,N>1.

Setting T = .0l we obtained the results given in Tables 4.4 and 4.5 and
Figure 4.8 below when R = .05, With R = 1,0, the results given in Tables 4.6
and 4.7 and Figure 4.9 were obtained. As the cost of control increases the
effect that the optimal control for the infinite dimensional problem has on
higher modes decreases. Consequently, the finite dimensional approximations

are more effective and convergence is more rapid.
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N 2 4 10
€0l 4.5483 4.5452 4.5451 4.5451
[fS]2 5.2954 5.2948 5.2948 5.2948
Table 4.4
6 [£3(8)] (£, (8)] [£1(8)] (el (81
2 1 4 1 8 1 10 1

.00 1277 .0942 .0878 .0872
-.05 .0948 .0690 .0659 .0658
-.10 L0619 L0437 .0439 L0445
-.15 .0289 .0185 .0163 L0154
-.20 ~.0040 -.0068 -.0171 ~.0137
-.25 ~.0369 -.0321 -.0506 -.0556
-.30 -.0698 -. 1046 -.1054 ~.0976
-.35 -.1027 - 1772 -.1603 -.1650
~.40 -.1357 -. 2497 ~.2375 -~.2324
.45 -. 1686 -.3223 -.3371 ~.3361
-.50 -.2015 -.3949 - 4367 -.4399
-.55 -. 5891 -.6156 -. 6090 ~.6054
-.60 ~.9767 ~.8363 -.7813 ~.7709
~.65 -1.3643 -1.0570 ~1.0200 ~1.0283
-.70 ~1.7519 -1.2777 ~1.3251 -1.2858
-.75 ~2.1395 ~1.4984 ~1.6301 ~1.6899
-.80 -2.5271 ~2.1836 -2.1603 ~2.0941
~.85 ~2.9147 -2.8688 ~2.6905 ~2.7232
-.90 -3.3023 -3.5540 -3,4158 -3,3523
-.95 -3.6899 -4.2391 -4.3361 ~4.3269
~1.00 ~4,0775 ~4.9243 -5.2565 -5.3017

Table 4.5
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N 2 4 10
[fgll 1.4050 1.4054 1.4054 1.4054
[fg]2 1.9477 1.9479 1.9479 1.9479
Table 4.6
: [£1(5)] [£1(8)] [£L o)) (el (o)1
2 1 4 1 8 1 10 1

.00 -.2813 -.2831 -.2835 -.2835
-.05 -.3433 -.3402 -.3383 -.3379
-.10 -.4052 -.3972 -.3931 -.3923
-.15 -. 4052 -.4543 -.4522 -.4534
-.20 -.5292 -.5114 -.5156 -.5146
-.25 -.5911 -. 5684 -.5790 -.5798
-.30 -.6531 -.6439 -.6478 -.6450
-.35 -.7151 -.7195 -.7165 -.7179
-.40 -.7770 -.7950 -.7902 -.7907
-.45 -.8390 -.8705 -.8689 -.8685
-.50 -.9010 -. 9460 -.9476 -.9462
-.55 -1.0044 -1.0347 -1.0328 -1.0324
-.60 -1.1078 -1.1233 -1.1181 -1.1185
-.65 -1.2112 -1.2120 -1.2089 -1.2103
-.70 -1.3146 -1.3007 -1.3053 -1.3021
-.75 -1.4180 -1.3894 -1.4016 -1.4030
-.80 -1.5214 -1.5013 -1.5057 -1.5040
-.85 -1.6248 -1.6132 -1.6098 -1.6112
-.90 -1.7282 -1.7251 -1.7198 -1.7185
-.95 -1.8316 -1.8370 -1.8357 -1.8352
-1.00 -1.9350 -1.9489 -1.9516 -1.9519

Table 4.7
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4.3 Control of a Flexible Structure

We consider an Euler-Bernoulli beam cantilevered to a rigid hub which is
free to rotate about its fixed center, point O. Also, a point mass m is
attached to the other end of the beam. The control is a torque u applied to

the hub, and all motion is in the plane. See Figure 4.10 and Table 4.11.

Figure 4.10
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hub radius 10 in

a1
|

PSS
]

beam length 100 in

IO = hub moment of inertia about axis

perpendicular to page through O 100 slug in2
my, = beam mass per unit length .01 slug/in
m; = tip mass 1 slug
EI = product of elastic modulus and
second moment of cross section for beam 13,333 slg in3/sec2
fundamental frequency of undamped structure +9672 rad/sec

Table 4.11

The angle 8 represents the rotation of the hub (the rigid-body mode),
w(t,n) 1is the elastic deflection of the beam from the rigid-body position,
and wl(t) is the displacement of my from the rigid-body position. For
technical reasons, we do not yet impose the condition wl(t) = w(t,2).

The control problem is to stabilize rigid-body motions and linear (small)
transverse elastic vibrations about the state 8§ = 0 and w = 0 . Our linear
model assumes not only that the elastic deflection of the beam is linear but
also that the axial inertial force produced by the rigid-body angular velocity
has negligible effect on the bending stiffness of the beam. The rigid-body
angle need not be small. |

For this example, it is a straight forward exercise to derive the coupled
ordinary and partial differential equtions of motion in 6, w and wy. However,

rather than writing these equations explicitly, it is easier and more useful
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for our purposes to derive an abstract second order evolution equation for the

structure. To do this, we define the generalized displacement vector

(4.122) x = (8,w,w) € H=R" xL,(0,2) xR

The kinetic energy in the system is then
(4.123) Kinetic Energy = 1/2 Myx,%>y

where Mo is the unique bounded self-adjoint linear mass operator My on H such
that

69 + mb<w + woe,w + w06>L2 + ml(w1 + wo(l)e)(w1 + wo(z)e),

(4.124) M x,x> =1

0 0

where wo € L2(0,2) is given by wo(n) =r +n. It is easy to show that My is

also coercive. The elastic strain energy is

(4.125) Strain Energy = 1/2 a(x,x)

with

(4.126) a(x,x) = EI <D'w, D w>L .
2

We make a(*,*) into an inner product by setting

(4.127) <X, x0y = a(x,x) + 66
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and define the strain—energy space
(4.128) V= {x = (8,6,6(2)): ¢ € H(0,%), $(0) = D$(0) = O}.

The last term in (4.127) is necessary for the V-inner product because there is

no strain energy associated with the rotation of the hub.

We define the stiffness operator Ay by

(4.129) Dom(Ay) = {x = (8,6,6(1)) € V: ¢ & H'(0,2), D’6(2) = 0}

and

(4.130)

>

n
o
=
fur]
o
o
.

This operator is self-adjoint with compact resolvent and all positive
eigenvalues except the one zero eigenvalue corresponding to the rigid-body
mode. Note that V is the domain of the *square root of Ag.

With these mass and stiffness operators, we can write the equations of

motion as

(4.131) My¥(s) + cvok(s) + Ayx(s) = Byu(s), s > 0,

where c is a positive constant and the term ¢.A.x represents viscoelastic

00

damping in the beam. The input operator is
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(4.132) By = (1,0,0).
Letting Z = Vx H with inner product <(v,h),(v,h)>Z = <v,v>V + <M0h,h>H,
the first order form of this system is given by
(4.133) z(s) = Az(s) + Bu(s), s > 0,
where z = (x,i) € Z and A is the unique extension of the operator
fo) 0 I [¢]
(4.134) A = , Dom(A) = Dom(A;) x Dom(A),
-1 -1
My A Mo 4

that generates a Co-semigroup on the space Z. Of course, B is

(4.135) B = .

See [10] and (12]. The hub-beam-tip mass structure here is discussed in more

detail in [12], along with the continuous-time problem.

The discrete—time control system for sampling interval T is

(4.136) z(t+1) = Tz(t) + Bu(t), t =0,1,2,...,
where
(4.137) T =T (1), B = [ T(s)B ds

and {T(s): s > 0} is the semigroup generated by the A in (4.133).
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As in the previous examples, we will solve a discrete-time optimal
control problem on the infinite interval. In the performance index, we take
the state weighting operator Q to be the identity on Z. This means that
<Qz,z>Z is twice the total energy in the structure plus the square of the
rigid-body rotation. Since there is one input, the control weighting R is a

scalar. The optimal control has the feedback form
(4.138) u,(t) = - <f,x(t)>V - <Mog,x(t)>H

where x(t) has the form (4.122) and

(4.139) £=(e,62,6) e v

1 2 3
(4.140) g=(,8,8)cH.

Our approximation of the structure is based on a finite element

approximation of the beam which uses Hermite cubic splines as basis functions
L J
([27]). We define the sequence of spaces VN = gpan {eg}jzl with

(4.141) e; = (1,0,0),
I i 3 .
(4.142) ed = (0,63,03(00), 3 = 2,3,... 9,

where the ¢g's are the cubic splines. Each Vy is a subspace of V, and our
approximation scheme is a Ritz-Galerkin approximation obtained by projecting

(4.131) onto Vye See [12] for details. Writing
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JN
- j
(4.143) xy(s) = jél [xy(s)] segps
we have
(4.144) My [ry(s)] + coRy [k (s)] + K [x.(s)] = Bou(s)

to solve for the vector [xN(s)] of time-dependent coefficients [xN(s)]j. The

mass matrix My and the stiffness matrix KN are given by

_ .1 ]
[KN] = <{e >

i ]
> 1j N &NV

(4.145) [, ] N eNne

13 = <M0e

and the input matrix is

(4.146) N = [10O ... O]T.

By

N * VN’ (4.144) is the matrix representation of an

evolution equation
(4.147) zN(s) = ANzN(s) + BNu(s)

where AN and By approximate Aand B. It is shown in [12] that, as N
increases, the semigroup {TN(S): s » 0} generated by AN converges strongly to
the semigroup {T (s) : s > 0} and that the adjoint semigroup {T;(s): s » 0}
converges strongly as well. Since BN'iS the Z-projection of B onto VN X VN’

it converges strongly to B .

For the approximating discrete-time control systems, we replace z(t), T,
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B, T(*) and B in (4.136) and (4.137) with zy» Ty By TN(-) and By,
respectively. For each N, the solution to the infinite-time optimal control

problem is based on the Nth

Riccati operator equation (3.33). As in the
previous examples, we solve the Riccati matrix equation (3.59) for HN’ which
is related to [HN] (the matrix representation of the operator HN) as in

Section 3.3, except here we have

>

(4.148) HN = WN[HN]’
where

EN 0
(4.149) WN =

0 My

and EN is the stiffness matrix with 1 added to the first element. Since Q =
I in the infinite dimensional problem, Qy 1s the identity on VN X VN and it
follows from (3.48) that the matrix &N for (3.59) is Wye

The optimal feedback control for the nth problem 1s given by (3.56) with

the matrices in (3.57) and (3.58), and it has the equivalent representation

N .
(4.150) u,(t) = - <fN,xN(t)>V - <MOgN,xN(t:)>H
where
1 .2 .3
(4.151) £y = Epfpfy) e v,
1 2 3
(4.152) gy = (8ys8ys8y) € H
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as in (4.139) and (4.140). From (3.56), (4.143) and (4.150), it follows that

(4.153) = W o [F. 1,
where E; = (e;,eg,...,eNN).

For the sampling interval T = .0l, the damping coefficient cg = 001 and
the control weighting R = 1, Tables 4.12-4.15 give the values of the
corresponding scalar and functional gains, f;, g;, i=1,2,3 for various
values of N. The values of the functional gains sz§ and g§ along the length
of the beam also are plotted in Figures 4.16 and 4.17. We tabulated and
plotted szé because this is what appears in the V inner product in (4.150)

and also to show the Hz convergence. We note that the form of the V inner

product given by (4.127) is such that fg does not appear in the feedback law.
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4 5 7
f; .9991 .9992 .9990 .9992
g; .1030 .1040 .1043 . 1044

Table 4,12
N 3 4 5 7
fg .1750 .1769 1774 1777
gg ~18.1231 ~18.3385 -18.3902 -18.4158

Table 4.13
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n szg(n)xm5 DZfZ(n)XIO5 szg(n)xm5 szs(n)xlo5
0.0 6.0266 7.0718 7.6281 8.1441
5.0 4,8991 5.4251 5.6142 5.6817

10.0 3.7717 3.7784 3.6003 3.2193
15.0 2.6442 2.1317 1.5865 1.1727
20.0 1.5167 .4850 .2048 . 7757
25.0 .3893 .1353 . 4057 .3786
30.0 -.7382 .4896 .6066 . 4481
35.0 1.0908 .8438 . 8075 .8303
40,0 1.2767 1.1980 1.3790 1.2126
45,0 1.4626 1.5523 1.5713 1.6121
50.0 1.6484 2.0984 1.7636 1.8049
55.0 1.8343 1.9858 1.9559 1.9976
60.0 2.0202 1.8731 2,0543 1.9613
65.0 2.2061 1.7605 1.8179 1.8003
70.0 1.6333 1.6478 1.5815 1.6392
75.0 1.3545 1.3288 1.3450 1.3391
80.0 1.0757 1.0562 1.0303 1.0505
85.0 .7970 .7837 .7667 .7620
90.0 .5182 <5112 .5031 L4921
95.0 .2394 .2387 «2395 . 2400
100.0 -.0394 -.0339 -.0242 -.0122

Table 4.14
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n gg(n) gz(n) gg(n) g?(n)
0.0 . 0000 .0000 . 0000 .0000
5.0 -.2348 -.2576 -.2673 -.2745
10.0 -.8710 -.9445 -.9727 -.9903

15.0 -1.8063 -1.9320 -1.9715 -1.9854
20.0 -2.9383 -3.0915 -3.1190 -3.1171
25.0 -4,1649 -4,2941 -4.,2940 -4,3031
30.0 -5.3837 -5.4478 -5.4540 -5.4733
35.0 -6.4982 -6.5450 -6.5720 -6.5842
40.0 -7.5155 -7.5840 -7.6210 -7.6289
45,0 -8.4647 -8.5629 -8.5918 -8.6032
50.0 -9.3609 -9.4797 -9.5044 -9.5179
55.0 -10.2188 -10.3493 -10.3761 -10.3910
60.0 -11.0535 -11.1963 -11.2240 -11,2407
65.0 -11.8797 -12.0341 -12.0666 -12.0838
70.0 -12,7146 -12.8759 -12.9158 -12.9327
75.0 -13.5719 -13.7350 -13.7790 -13.7988
80.0 -14,4502 -14.6201 -14,6632 -14,6861
85.0 -15,3469 -15.5278 -15.5720 -15.5946
90.0 -16.2595 -16.4533 -16.5000 -16.5232
95.0 -17.1858 -17.3917 -17.4414 -17.4659
100.0 -18.1231 -18.3385 -18.3902 -18.4158

Table 4.15
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5. Concluding Remarks

We have presented an approximation theory for numerical solution of the
discrete—-time optimal linear regulator problem in Hilbert space, on both
finite and infinite time intervals. The motivation for this theory comes from
optimal control problems for systems involving diffusion equations, hereditary
differential equations and distributed models of flexible structures. We have
demonstrated the application of the theory to examples from all three areas

The solution to the infinite dimensional optimal control problem is based
on an infinite dimensional Riccati operator equation —- a difference equation
in the finite-time problem and an algebraic equation in the infinite~time
problems We have shown that the solution to the infinite dimensional problem
can be approximated by the solutions to a sequence of finite dimensional
problems each of which involves a finite dimensional Riccati matrix equation
to be solved numerically. The finite dimensional problems are just the
corresponding optimal control problems for finite element approximations to
the infinite dimensional control system. For the infinite-time problem, the
finite dimensional Riccati equations usually are solved via eigenspace
decomposition of the Hamiltonian matrix.

In both continuous and discrete-time optimal regulator problems for
distributed systems, the numerical solution often involves solution of large
Riccati matrix equations. As we observed at the beginning of Section 4, the
asymptotic relationship between the eigenvalues of a continuous-time
Hamiltonian system and the eigenvalues of the corresponding discrete-time
Hamiltonian system is exponential. This means that the approximating finite
dimensional discrete—time Riccati equations for a given distributed system
invariably are not as well conditioned as the corresponding continuous—time

Riccati equations. Nonetheless, as our examples should illustrate, the
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numerical solution of such problems is well within the reach of current
computing. To emphasize this, we obtained all of the numerical results in
this paper on an IBM Personal Computer (not an XT or AT) with 640K of random
access memory and an Intel 8087 math coprocessor chip. The largest Riccati
matrix equation that we solved here was a 30 x 30 steady state equation for
the hub-beam~tip mass example. This solution takes 15 to 20 minutes on the
PC. We have solved much larger Riccati equations easily on larger mainframe

computers.
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