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(_ Aj '3 -^ In a dual reflector antenna, the spillover from the subreflector is

Important in determining the accuracy of near-field measurements. This

is especially so when some of the feed elements are placed far away from

the focus. In this papert we prcocntfa high-frequency GTD analysis of the
*• i •> hÂ pzo-̂ TcV̂

spillover field over a plane just behind the subreflector-^ Special atten-

tion is given to the field near the incident shadow boundary and the role

played by the slope diffraction term. -Owe 'computations are in excellent

agreement with experimental results.
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I. INTRODUCTION

Some dual-reflector antennas for space or radar applications have very

large diameters in terms of wavelength (100 A. or more). They are usually

tested in a near-field range. The far-field radiation patterns are

extracted mathematically from the near-field measurement data. A typical

near-field setup is sketched in Figure 1. The total field at a typical

point C at the near-field recording plane consists of two contributions:

the direct field from the main reflector (such as the field on ray ADEC),

and the spillover from the subreflector. At high frequencies, the latter

can be further decomposed into two components: the direct field from the

feed on ray AC, and the edge diffracted from the rim of the subreflector on

ray ABC. In many cases, the spillover is small, and, therefore, is tradi-

tionally neglected in near-field studies. However, there is an ever-

increasing number of situations where the spillover must be taken into

consideration. Two examples are:

(1) For an ultra-low sidelobe antenna, the wide-angle sidelobes are

actually determined by the small spillover.

(2) To achieve a wide angle scan, many feed elements are placed away

from the focus, and, consequently, the spillover is no longer

small.

It is the purpose of this paper to study this spillover both theoreti-

cally and experimentally.

Referring to Figure 2, we shall derive a complete GTD analysis for the

total diffracted field at a point C on the near-field recording plane. The

feed location A is arbitrary and the subreflector surface is also arbitrary.



This analysis is very similar to one described in reference [1]. The dif-

ference is that, in the present analysis, the observation point C may fall

on the incident shadow boundary (in contrast to the reflected shadow boun-

dary in the analysis of [1]); therefore, uniform theories [2] - [4] must be

used there.

In Sections II and III, an analysis is given for a simple configuration

(hyperbolic reflector with a point feed at a focus). Nominal results pre-

sented in Section IV, however, include more general configurations.

II. SPECIAL CASE: HYPERBOLIC SUBREFLECTOR

The near-field calculation from a subreflector by GTD is very lengthy

and tedious, because of the 3-D configuration and the arbitrariness in the

feed and observation locations. We have developed a computer code for doing

such a calculation. In the present section, let us concentrate on a special

configuration, whose solution is simple enough to bring out the physical

significance of various parameters.

The configuration is shown in Figure 3. A symmetrical hyperbolic

subreflector is described by

/

? 9x + v 7 9 ?
+ ̂ J f- , for x + y <. a (2.1)
f - b

Here 2f is the distance between foci, 2b is that between vertices, and a is

the radius of the circular aperature. The eccentricity of the hyperboloid

is defined by f/b. The exterior wedge angle of the reflector is mTr. For

the special case in which m = 2, the wedge becomes a thin edge. The point

feed is at a focus A. The incident field from it at an observation point (r,

8, $ = 0) is given by (for expjut time convention)



*i e~jkr
E1 (r, 9, 4 = 0)'- Jj [OPe(8) + $ P̂ (9)] (2.2)

Here Pg(9) is the E-plane pattern and P. is the H-plane pattern of the feed.

The problem at hand is to calculate the total field E at a near-field point

C, whose conditions are (x = x, y = 0, z = c).

The parameters a, b, c, f, x, and m describe the geometry completely.

For them, the following secondary geometrical parameters can be deduced

(Figures 3 and 4):

Distances: J^ = [a2 + (*4 + 2f)2]1/2 (2.3)

£2 = [(x - a)2 + (c - *4)
2]1/2

A = [x2 + (c + 2f)2]V 2

/ 2
t. = -f + b /I + -£-

a(2f + c)/(2f

Xx(c - £4)/(2f

Diffraction angles:

a(x - a) + (sf + £4)(c - £4)
f1 = [sgn (A - x)] cos M : r-r ] (2.4)

iyr = 7T - 29, + f
4

9 = cos

2f + J4 - ag-

ab

/(f2 - b 2 ) ( f 2 - b2
 + a2)



Note that ¥ , defined in (2.4), obeys the following sign convention: ¥ is

positive if observation point C is in the shadow region of E , and is nega-

tive if C is in the lit region. For the present application, C is always in

the shadow region of the reflected field £r and, hence, Y1 defined in (2.4)

is positive.

Let us now calculate the Keller's edge diffracted field $T at C. There

are two diffraction points: B and a corresponding point at the lower edge.

In the present application, the lower edge is very weakly illuminated, and

its contribution is therefore ignored. For the diffracted pencil emanated

from b, the interfocal distance R calculated from Eq. (4.7) of [3] is

, [(ag' - 2f - *&)/A,] + l c - S L , + g'a - g'x)/*-]
I.I + 2 \ (2.5)

1 / . 12a /I + g

The diffraction coefficients as calculated from Eq. (4.10) of [3] are

m m
X 1 > r= - r- (2.6)

'
cos— — cosm m

The diffracted field at C is calculated from Eq. (4.8) of [3]. The final

result is

-j(k£3+ir/4)

- (£2/R)



where

_VB)_

According to UAT [3], the total field £* at C is the sum of the Keller's

diffracted field E in (2.7) and a modified geometrical optics field

Ê * such that

UAT:

+G
Here E is given by

- F(O1

The detour parameter is defined by

- x)

The Fresnel function is defined by

F(x)

(2.8)

(2.9)

(2.10)

(2.11)

Its leading asymptotic expansion for x •>• <» is

^

F(x) = JL_ exp[-j(x2 + ) (2.12)



A polynominal approximation of F(x) is, for x > 0,

F(-x) = 1 - F(x) (2.13a)

1 • 2
F(x) "e~3K I(f + f) - j(f - f)] (2.13b)

where

fx(x) - (1 + 0.739x)/(2 + 1.430x + 1.976x
2)

f2(x) = l/(2 + 3.305x + 2.223x
2 + 3.388x3)

In summary, for the diffraction problem in Figure 3, the total field at C is

given by (2.8). This solution is derived based on UAT, and is valid for

observation points on line CD, including the transition region around the

incident boundary D.

III. FIELD ON INCIDENT SHADOW BOUNDARY

For the hyperbolic reflector in Figure 3, let us calculate the total

field at D, the point exactly on the incident shadow boundary. In the

absence of the reflector, the incident field from the source at point A is

given by (Figure 5)

E (D) = OT-H — I8Pe<

When the reflector is present, the total field E (D) can be calculated from

+C1 >H
(2.8). Both E and E become singular at D, but their singularities cancel

each other. The total field is finite and continuous there. Omitting the
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derivations, we give the final results below. For the 8-component

(component perpendicular to the edge), the normalized total field at D is

Eg(D) -J7T/4

VAT: — — - AQ + — - [Aj + A2 + A3] (3.2)
E8(D)

where

A0 = 2

Aj = 2(£6/*j) PQ(91)/P0(61)

A2 = (£6/tl) cot61 - [1 + (t6/tl)] £ cot 1

Pg(8) = d Pe(6)/d9

The diffraction coefficient x ^s defined in (2.6) and diffraction angle

fr in (2.4). For the ^component (component parallel to the edge), the same

expression (3.2) holds except for the following replacements:

(3.3)

Several remarks about the solution in (3.2) are in order.

(i) Solution (3.2) is a high-frequency asymptotic solution, accurate

-1/2
only to the order of k .



(ii) The solution is not valid if observation point D approaches edge

point B. It does not satisfy the proper edge condition at B.

(iii) The dominant term AQ in (3.2) gives one half of the incident

-1/2
field, a well-known fact. The remaining terms are of order k • Their

contribution decreases as the source point A moves away from the edge

(iv) The term A, is proportional to the angular slope of the pattern

function PQ(6) of the incident field. It is sometimes known as the slope

diffraction contribution.

(v) If UTD [4] is applied to the problem in Figure 4, the corre-

sponding solution again has the form of (3.2) except that terms Aj and

*.
A2 are absent

Let us present some numerical results calculated from (3.2). The

subref lector parameters are (Figure 3)

a = 12A, b = 5X, f = 12X

Some deduced parameters are (Figure 4 is to scale)

A1 = 22. 8X , mir = 360° - 18.7° = 1.8961 TT (3.4)

8 = 31.7° , fr = 79.14°

The slope diffraction coefficient ds (or dn) in Eq. (7) of [5] cannot be
used to calculate the field on the incident shadow boundary, because ds is
undefined there. This is due to the fact that Ds of UTD has a step discon-
tinuous across the incident shadow boundary in order to cancel the step
discontinuity of the geometrical optics field. The angular derivative of Ds
does not exist there.



The pattern of the incident field is assumed to be

?n
Pe(6) or P^S) = [cos(6 - 90>r

U (3.5)

where 6 = 9- is the main beam direction. The 3 dB beamwidth of the incident'

beam is 21.3°. Thus, instead of a local plane wave, the magnitude of the

incident field has a rapid angular variation.

Figure 6 shows the importance of the slope diffraction term A.^ in (3.2).

For the present case, Ai reads

AJ = ZUg/ij) (20) tan(90 - 9^ (3.6)

When 80 = 9. = 31.7°, term A, is zero and we find

E0(D) _i6 qo— 0.573e j6'9 (3.7a)
Ej(D)

E6(D) .
-2 = 0.458e j:>*b (3.7b)
E*

<P

Had the slope diffraction been ignored, the total field would have been

given by (3.7) for all values of beam direction 90. Figure 6 shows that the

normalized field increases indefinitely as the beam sweeps from the shadow

side to the lit side. When 8Q = 90° + 9^ the incident field Eg(D) or E*(D)

is zero in accordance with (3.5), but the total field at D is not zero.

Hence, the normalized field is infinite.

In Figure 7, the incident beam is displaced by one beamwidth (21.3°) on

either side of the shadow boundary. Note that the field is stronger when
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the beam is displaced to the lit side. When the observation point D moves

far away from the edge, solution (3.2) approaches its far-field value,

namely,

-Jir/4

Ej(D)
cote, —

1 m (3'8)

2/2iTkZ1

This asymptotic behavior can be seen from Figure 7.

IV. NUMERICAL RESULTS AND EXPERIMENTS

Parameters of the experimental hyperbolic reflector are (Figure 8)

a - 50.54" , b = 23.39" , f = 24.32"

Eccentricity = f/b = 1.04

(4.1)

There are two feeds: one for 20 GHz (X = 0.59") and the other for 30 GHz

(X = 0,39"). Their E-plane patterns Pe(6) and the H-plane patterns Pj,(9) are

described by

[cos(e - e0)]
(

(4.2)

where QQ = 43.5°. Thus, the beam is 8° displaced from the incident shadow

boundary. The values of q and beamwidths are

\
20 GHz

30 GHz

q

E-plane

125

136

H-plane

69

125

3 dB beamwidth

E-plane

8.5°

8.2°

H-plane

11.5°

8.5°

(4.3)
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The fields behind the subreflector over a planar surface were measured at

the NASA-Lewis near-field facility. Corresponding theoretical values are

calculated from (2.8), (2.9), and (2.7). Results are presented in Figures 9

to 11. The agreement between theory and experiment is excellent.

The computer program used to calculate the theoretical values is quite

general. As an example consider the modified subreflector-feed geometry

shown in Figure 12. Here the feed has been moved up 12 inches in the y-

direction and repointed along the incident shadow boundary. The feed pattern

half-power beam width has also been increased to 42.2°. Figure 13 depicts

the amplitude of E for this set of conditions at 30 GHz.

V. CONCLUSION

(1) Based on UAT, we have developed a near-field spillover analysis

for an arbitrarily shaped subreflector with a feed at an arbitrary location

(Figure 2). A typical result is shown in Figure 12.

(2) For the special case in which the subreflector is hyperbolic and

the feed is on focus, explicit solutions are given in Sections II and III.

The total field at the observation point C in Figure 3 is given in (2.8),

(2.9), and (2.7).

(3) Special attention is given to the field at point D (Figure 5) on

the incident shadow boundary. As described in (3.2), the slope diffraction

term A, plays an important role when the incident beam has a rapidly varying

pattern.

(4) An excellent agreement is obtained between the theoretical and the

measured results (Figures 9 to 11) for fields just behind a large hyperbolic

subreflector, which is illuminated by a field with a. rapid angular variation.
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Subreflector

/r\

Near-field
Recording Plane

••z

Figure 2. Near-field diffraction by an arbitrary subreflector.
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X

Exterior Wedge
Angle rmr

Figure 3. A hyperbolic subreflector with rotating symmetry
about z-axis. The radius of the circular aperture
is a.
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Normal of
Reflection

Tangent Plane
/of Reflector

Figure 4. Diffraction angles ty and fy . Dark half of arrow

k1 (or k ) indicates shadow side of E1 (or Er).
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Figure 6'. Total field at point D on the incident shadow boundary,
normalized with respect to the incident field at D for
the configuration in Figure 5.
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Figure 7. Total field at point D on the incident shadow boundary,
normalized with respect to the incident field at D for
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Beamwidth = 8.2
20 and 30 GHz

Interval of E-Field
Amplitude Calculation

A =1.0 ft.
B = 2.6ft .
C =1.0 ft.

Figure 8. Hyperbolic subreflector used in a NASA-Lewis experiment.
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Plane of Calculation
and Measurement

Measured

Theory

Figure 11. Near-field diffraction pattern of the subreflector in
Figure 8 when it is illuminated by a feed polarized in
the y-direction at 30 GHz.
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4 Y

Beamwidth = 42,2°
30 GHz

= l.0ft.

8=2.6 f t .

C --1.75ft.

D= I .Oft .

Interval of E- Field
Amplitude Calculation

Figure 12. Modified hyperbolic subreflector geometry.
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Plans of Calculation

Figure 13. Calculated near-field diffraction pattern of the
• subreflector in Figure 12 when it is illuminated by a

feed polarized in the x-direction.




