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@ /QBS In a dual reflector antenna, the spillover from the subreflector is
important in detetmining the accuracy of near-field measurements. This

is especially so when some of the feed elements are placed far away from

the focus. I—n—eh—i-s—papet—,——we—pseseﬂcA high—-frequency GTD analysis of ;lae
< ts /.(J/)\’(‘
spillover field over a plane just behind the subreflector? Special atten-
tion is given to the field near the incident shadow boundary and the role
played by the slope diffraction term. -Our Gomputations are in excellent

agreement with experimental results.

PRECEDING PAGE BLANX NGT FILMSED




II.

III.

Iv.

INTRODUCTION

SPECIAL CASE:

FIELD ON INCIDENT SHADOW BOUNDARY

NUMERICAL RESULTS AND EXPERIMENTS

HYPERBOLIC REFLECTOR

CONCLUSION « + « &

REFERENCES .

L 13

TABLE OF CONTENTS

.

iv

Page

10
11

12



8.

9a.

9b.

10a.

10b.

11.

12.

13.

LIST OF FIGURES

Near-field measurement of radiation from a dual-reflector

ant enna . . L] L] L] L4 L3 L] L] L] L] L] . L] L] - L] * L L L] . L] L] L] ‘o . L] L]
Near-field diffraction by an arbitrary subreflector. . « « « « &

A hyperbolic subreflector with rotating symmetry about z-axis.
The radius of the circular aperture 18 @c ¢ ¢ o o ¢ ¢ o ¢ ¢ o &

Diffraction angles ¢1 and Yf. Dark half of arrow ﬁi (or kF)
indicates shadow side of o (or Er). e o o e o o s o o o o o o &

Field at D on the incident shadow boundary for a hyperbolic
subreflector illuminated by a source at focus Ae o ¢ ¢ « ¢ ¢ o «

Total field at point D on the incident shadow boundary,
normalized with respect to the incident field at D for the
configuration in Figure 5' L] L] . . L] L] L] L] L] L] . L] L] L] L] . L] . L]

Total field at point D on the incident shadow boundary, normal-
ized with respect to the incident field at D for configuration
in Figure 5. Incident beam direction is displaced by one
beamwidth (21.3°) on either side of the shadow boundary. . . . .

Hyperbolic subreflector used in a NASA-Lewils experiment. . « +

Near-field E-plane diffraction pattern (Ex component) at 20 GHz
for the configuration in Figure 8. ¢« ¢ o« ¢ ¢ ¢ o ¢ ¢ ¢ o o o o

Same as Figure 9a except for H-plane diffraction pattern
(Ey cOmponent ) L] . L[] L] * L] . . L] . . L] . L) L] . L] L L) L L[] L] L] L] L]

Near-field E-plane diffraction pattern (Eyx component) at 30 GHz
for the configuration in Figure 8. « o« ¢ o o ¢ o ¢« ¢ « o o o o «

Same as Figure 10a except for H-plane diffraction pattern
(Ey component ) - e & 6 e o & s o o 6 & & & @ ¢ 6 & s e e 8 s e

Near-field diffraction pattern of the subreflector in Figure 8
when it is i1lluminated by a feed polarized in the y-direction at

30 GHZ . e @& @ ® & o e e e ¢ + 5 ° & & 6 0 ° 0 e & * o o s o =

Modified hyperbolic subreflector geometry. « « o o« o o o o ¢ o o

Calculated near-field diffraction pattern of the subreflector
in Figure 12 when it is .illuminated by a feed polarized in the
x-direction. L] . . L] L L L] L] . L] L) L] L] L] . L . . L) * L] L] * . L] .

Page

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27



I. INTRODUCTION

Some dual-reflector antennas for space or radar applications have very
large diameters in terms of wavelength (100 X or more). They are usually
tested in a near-field range. The far-field radiation patterns are
extracted mathematically from the near-field measurement data. A typical
near-field setup is sketched in Figure 1. The total field at a typical
point C at the near-field recording plane consists of two contributions:
the direct field from the main reflector (such as the field on ray ADEC),
and the spillover from the subreflector. At high frequencies, the latter
can be further decomposed into two components: the direct field from the
feed on ray AC, and the edge diffracted from the rim of the subreflector on
ray ABC. In many cases, the spillover is small, and, therefore, is tradi-
tionally neglected in near-field studies. However, there is an ever-
increasing number of situations where the spillover must be taken into
consideration. Two examples are:

(1) For an ultra-low sidelobe antenna, the wide-angle sidelobes are
actually determined by the small spillover.

(2) To achieve a wide angle scan, many feed elements are placed away
from the focus, and, consequently, the spillover is no longer
small.

It is the purpose of this paper to study this spillover both theoreti-

cally and experimentally..

Referring to Figure 2, we shall derive a complete GTD analysis for the

total diffracted field at a point C on the near-field recording plane. The

feed location A is arbitrary and the subreflector surface is also arbitrary.



This analysis 1is very similar to one described in reference [l]. The dif-
ference is that, in the present analysis, the observation point C may fall
on the incident shadow boundary (in contrast to the reflected shadow boun-
dary in the analysis of [1]); therefore, uniform theories (2] - [4] must be
used there.

In Sections II and III, an analysis 1is given for a simple configuration
(hyperbolic reflector with a point feed at a focus). Nominal results pre-

sented in Section IV, however, include more general configurations.

II. SPECIAL CASE: HYPERBOLIC SUBREFLECTOR

The near-field calculation from a subreflector by GID is very lengthy
and tedious, because of the 3-D configuration and the arbitrariness in the
feed and observation locations. We have developed a computer code for doing
such a calculation. 1In the present section, let us concentrate on a special
configuration, whose solution is simple enough to bring out the physical
significance of various parameters.

The configuration is shown in Figure 3. A symmetrical hyperbolic

subreflector is described by
2 2
z=f+b /1 + X5 for x% + y2 < a® (2.1)
- £2 - b2 -

Here 2f is the distance between foci, 2b is that between vertices, and a is
the radius of the circular aperature. The eccentricity of the hyperboloid

is defined by f/b. The exterior wedge angle of the reflector is mmw. For
the special case in which m = 2, the wedge becomes a thin edge. The point
feed is at a focus A. The incident field from it at an observation point (r,

8, ¢ = 0) is given by (for expjwt time convention)



e-jkr

Ei (r, 8, $=0) = v {ePe(e) + 3 p¢(e)] (2.2)

Here Pe(e) is the E-plane pattern and P¢ is the H-plane pattern of the feed.

The problem at hand 1s to calculate the total field gt at a near-field point

C, whose conditions are (x = x, y =0, z = ¢).

The parameters a, b, ¢, f, x, and m describe the geometry completely.

For them, the following secondary geometrical parameters can be deduced

(Figures 3 and 4):

Distances:

Diffraction

g, ={ad + (2, + 26212 | (2.3)
2, = [(x - a)2 + (c - ’14)2]1/2
23 = [x2 + (¢ + 2f)2]1/2

2
L =-f+b/+—a——
4 2 _ 2
25 = a(2f + ¢)/(2f + &)

L, = 21(c - 24)/(2f + 14)

angles:

a(x.- a) + (sf + 24)(c - 24)

= - - .4
[sgn (25 x)] cos 1 ] (2.4)
172
i
=7 - 26
b 2 4 + v
2f + 24 - ag'
-1
= cos
12
21 l1+g¢g
ab

/sz _ bZ)(fZ NN a2)



Note that ?i, defined in (2.4), obeys the following sign convention: Wi is
positive 1f observation point C is in the shadow region of ﬁi, and is nega-
tive 1f C is in the 1lit region. ‘For the present application, C is always in
the shadow region of the reflected field gr and, hence, ¥ defined in (2.4)
is positive. .

Let us now calculate the Keller's edge diffracted field ﬁd at C. There
are two diffraction points: B and a corresponding point at the lower edge.
In the present application, the lowef edge is very weakly illuminated, and
its contribution is therefore ignored. For the diffracted pencil emanated

from b, the interfocal distance R calculated from Eq. (4.7) of {[3] is

L1 [t =26 - g)/ay) + e - g, + g'a - g'0)/2y)
R4 12
avl + g
The diffraction coefficients as calculated from Eq. (4.10) of [3] are
Z5int
m  m
y T = - (2.6)
™+ P o T

The diffracted field at C is calculated from Eq. (4.8) of [3]. The final

result is

sy - (—3(k2y+n/8) !
2V2ﬂk22 /1l + (£2/R)
c -2 _
G - 220N O o)
2

A i i
+y (x - Xr) E¢(B)] (2.7)



where

i
Ee(B) " Pg(6;)
e d !
kll
E¢(B) P¢( 91)

~1
8, = sin (3/21)

According to UAT (3], the total field EY at C is the sum of the Keller's

=d

diffracted field E- in (2.7) and a modified geometrical optics field

#6 such that

vaT: £f(c) = #%c) + ¢ (2.8)
Here EC is given by

E°(c) = [F(2) - F(2)] EX(C) | S (2.9)

The detour parameter is defined by

g = sgn(z5 - X) I{k(ll + 2, - 257, (2.10)
The Fresnel function is defined by

in/h 2
F(x) = S— [~ e It 4 (2.11)
Ve

Its leading asymptotic expansion for x + = ig .

F(vx) = eXp{-~j(x2 + 7’:—)] (2.12)

2x/w



A polynominal approximation of F(x) is, for x > 0,

F(-x) = 1 - F(x) (2.13a)
N
F(x) = e 0% [(£] + £,) = §(£] - £,)] (2.13b)
where
£(x) = (1 + 0.739%)/(2 + 1.430x + 1.976x")
£,(x) = 1/(2 + 3.305x + 2.223x" + 3.388x")

In summary, for the diffraction problem in Figure 3, the total field at C is
given by (2.8). This solution is derived based on UAT, and is valid for
observation points on line CD, including the transition region around the

incident boundary D.

III. FIELD ON INCIDENT SHADOW BOUNDARY
For the hyperbolic reflector in Figure 3, let us calculate the total
field at D, the point exactly on the incident shadow boundary. In the
absence of the reflector, the incident field from the source.at point A is
given by (Figure 5)

»4 o-Jk(2,+2¢) ~
ET(D) = K(E+7,) [6Po(6,) + 3P4(86)] (3.1)

~i i
BE(D) + 3E(D)

When the reflector is present, the total field Et(D) can be calculated from
>G +d
(2.8). Both E* and E become singular at D, but their singularities cancel

each other. The total field is finite and continuous there. Omitting the



derivations, we give the final results below. For the &-component

(component perpendicular to the edge), the normalized total field at D is

E5(D) RELL
VAT; —— = AO + [A1 + Ay + Aq] (3.2)
Ei(D) /: 1+2_/
8 2 21rk£6( 16 zl)
where
1
4 =2

>
|

2 = (2/2)) cotd - [1+ (2,/2))] = cot =

A

]

r
t
Po(8) = d Po(8)/do
The diffraction coefficient xr is defined in (2.6) and diffraction angle

yT in (2.4). For the ¢~component (component parallel to the edge), the same

expression (3.2) holds except for the following replacements:

’ Pe > Pe, )(r + ("l)xr (3.3)

Several remarks about the solution in (3.2) are in order.

(1) Solution (3.2) is a high-frequency asymptotic solution, accurate

only to the order of k_l/z.



(11) The solution is not valid if observation point D approaches edge
point B. It does not satisfy the proper edge condition at B.

(1ii) The dominant term A0 in (3.2) gives one half of the incident
field, a well-known fact. The remaining terms are of order k_1/2- Their

contribution decreases as the source point A moves away from the edge

(21 + »),

(iv) The term A1 is proportional to the angular slope of the pattern
function Pe(e) of the incident field. It is sometimes known as the slope
diffraction contribution.

(v) 1If UTD [4] is applied to the problem in Figu?e 4, the corre-
sponding solution.again has the form of (3.2) except that terms A1 and

*O
A2 are absent

Let us present some numerical results calculated from (3.2). The

subreflector parameters are (Figure 3)
a = 12A, b = 5, £ = 12A

Some deduced parameters are (Figure 4 is to scale)

]

%, = 22.8% , mm = 360° - 18.7° = 1.8961 (3.4)

31.7° , ¥F = 79.14°

*The slope diffraction coefficient dg (or dy) in Eq. (7) of [5] cannot be
used to calculate the field on the incident shadow boundary, because dg is
undefined there. This is due to the fact that Dg of UTD has a step discon-
tinuous across the incident shadow boundary in order to cancel the step
discontinuity of the geometrical optics field. The angular derivative of Dg

does not exist there.



The pattern of the incident field is assumed to be
20
P4(8) or P¢(6) = [cos(8 - 8j)] (3.5)

where 6 = 60 is the main beam direction. The 3 dB beamwidth of the incident’
beam is 21.3°. Thus, instead of a local plane wave, the magnitude of the
incident field has a rapid angular variation.

Figure 6 shows the importance of the slope diffraction term A in (3.2).

For the present case, Ay reads
A1 = 2(26/21) (20) tan(eo - 61) (3.6)

When 60 =6, = 31.7°, term A, is zero and we find

t
E (D) . °

8~ 0.573¢736+9 (3.7a)
Eg(D)

E (D) ' . o

f = 0.458¢733:6 (3.7b)
E¢(D)

Had the slope diffraction been ignored, the total field would have been
given by (3.7) for.all values of beam direction 60.' Figure 6 shows that the
normalized field increases indefinitely as the beam sweeps from the shadow
side to the lit side. When 8y = 90° + 0), the incident field Eg(D) or Ey(D)
is zero in accordance with (3.5), but the total field at D is not zero.
Hence, the normalized field is infinite.

In Figure 7, the incident beam is displaced by one beamwidth (21.3°) om

either side of the shadow boundary. Note that the field is stronger when
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the beam is displaced to the 1lit side. When the observation point D moves

far away from the edge, solution (3.2) approaches its far-field value,

namely,
EE(D) 1 e-jn/4 Pl 1 m r
= o= 4 ————— (2=— + cotB, - =cot—+ ¥x ) , (2./2,) + = (3.8)
Ei(D) 2 Pe 1 m m 6" "1
o

2¢2nk21

This asymptotic behavior can be seen from Figure 7.

IV. NUMERICAL RESULTS AND EXPERIMENTS

Parameters of the experimental hyperbolic reflector are (Figure.8)

a =50.54" , b =23.39" , f = 24,32" (4.1)

Eccentricity = £/b = 1.04

There are two feeds: one for 20 GHz (A = 0.59") and the other for 30 GHz
(A = 0.39"). Their E~plane patterns Pe(e) and the H-plane patterns P¢(6) are

described by

[cos(8 - 817

where 60 = 43.5°.

(4.2)

Thus, the beam is 8° displaced from the incident shadow

boundary. The values of q and beamwidths are

3 dB beamwidth

E-plane H-plane E-plane H-plane
20 GHz 125 69 8.5° 11.5°
30 GHz 136 125 8.2° 8.5°

(4.3)
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The fields behind the subreflector over a planar surface were measured at
the NASA—Lewis near-field facility. Corresponding theoretical values are
calculated from (2.8), (2.9), and (2.7). Results are presented in Figures 9
to ll. The agreement between theory and experiment is excellent,

The computer program used to calculate the theoretical values is quite
general. As an example consider the modified subreflector-feed geometry
shown in Figure 12. Here the feed has been moved up 12 inches in the y-
direction and repointed along the incident shadow boundary. The feed pattern
half- power beam width has also been increésed to 42.,2°, Figure 13 depicts

the amplitude of E for this set of conditions at 30 GHz.

V. CONCLUSION

(1) Based on UAT, we have developed a near-field spillover analysis
for an arbitrarily shaped subreflector with a feed at an arbitrary location
(Figure 2). A typical result is shown in Figure 12.

(2) For the special case in which the subreflector is hyperbolic and
the feed is on focus, explicit solutions are given in Sections II and III.
The total field at the observation point C in Figure 3 is given in (2.8),
(2.9), and (2.7).

(3) Special attention is given to the field at ﬁoint D (Figure 5) on
the incident shadow boundary. As described in (3.2), the slope diffraction
term Al plays an important role when the incident beam has a rapidly varying
pattern.

(4) An excellent agreement is obtained between the theoretical and the
measured results (Figures 9 to 11) for fields just behind a large hyperbolic

subreflector, which is illuminated by a field with a rapid angular variation.
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normalized with respect to the incident field at D for
the configuration in Figure 5.
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Figure 6. Total field at point D on the incident shadow boundary,
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Figure 7. Total field at point D on the incident shadow boundary,

normalized with respect to the incident field at D for
configuration in Figure 5. Incident beam direction is
displaced by one beamwidth (21.3°) on either side of
the shadow boundary.
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Figure 8. Hyperbolic subreflector used in a NASA-Lewis experiment.
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Plane of Calculation

Subreflector and Measurement

|
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Figure 11. Near-field diffraction pattern of the subreflector in
Figure 8 when it is illuminated by a feed polarized in
the y-direction at 30 GHz.
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Figure 12. Modified hyperbolic subreflector geometry.
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Plane of Calculation
Subreflector

Figure 13. Calculated near-field diffraction pattern of the

subreflector in Figure 12 when it is illuminated by a
feed polarized in the x~direction.





