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Summar7

Improvements that have been made to the COSMIC NASTRANelements CIHEX1 and
QDMEMIare described. These elements are isoparametric representations of
solid and membrane elastic behavior. Recent papers by the authors have
shown the official COSMICversions of these elements to be inferior to
those available in the MacNeal-Schwendler Corporation (MSC) version of
NASTRANin that they are overly stiff for some loadings. Hodifications
have been made to these elements which reduce the order of integration for
shear terms and, for the eight-mode solid element, add additional strain
functions. The resulting element formulations give behavior similar to
that of the MSC elements. The paper discusses the changes made in the
element formulations and compares results of test problems with results
from the official COSMIC elements and with the MSC elements.

Introduction

The isoparametric membrane quadrilateral element, QDMEMI, in COSr!IC NASTRAN
is a stand-alone element for use in modeling problems which exhibit plane
stress behavior. It is a stand-alone element because there is no general
plate element which currently uses the QDMEMIfor the membrane stiffness.
In contrast, the MSC uses the QDHEM1element for the membrane part of their
QUAD4 general plate element.

The results of a finite element idealization study using all of the
available membrane elements in NASTRANwas reported in _I]. Although Zhe
written version of the paper reported results only for elements available
in MSC NASTRANversion 38, the version presented orally at the NASTRArl
Colloquium showed results using both MSC-38 and COSMIC-15.5. As presented
at the colloquium, there was a marked difference in results for the QDHEHI
elements from these two versions of NASTRAN. At the time, it was surmised
that the discrepancy was due to a different manner in which the numerical
integration was carried out in the two versions. In particular, it was
shown that the COSMICelement exhibited overly stiff behavior for the
problems investigated and that the MSCelement was vastly superior.

A similar study was conducted by the authors fer solid elements and reported
in [2]. This study was aimed at finding the best of the available solid
elements to model thermal and gravity deformation effects on optical
mirrors. Of particular importance was investigation of problems that might
be encountered with elements that have aspect ratios in the range of 5 to
I0. Use of elements with this range of aspect ratio is necessary in
modeling mirrors to avoid the need of extremely large models which would be
required if element aspect ratios near unit were necessary. The results of
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this study again Clearly indicated the superiority of the MSC solid elements
for modeling relatively thick plates for bending, as would occur for
mirrors subjected to thermal gradients. For the eight-node solid isopara-
metric elements, it was again shown that there was a significant difference
between the MSC element (HEXA-8) and the COSMIC element (ClHEXI). In
addition, the COSMIC element showed extreme sensitivity to aspect ratio.
Elements that had a thickness (in the plate thickness direction) smaller
than its in-plane dimensions exhibited large errors. This was to be
expected based on the above discussion of the membrane element deficiencies
and the similarity of the formulation for the membrane and solid elements.

The purpose of the effort reported herein, then, was to investigate modi-
fications that could be made to the COSMICQDMEM!and CIHEXI elements which
would improve their accuracy for modeling bending type behavior.

The next section discusses the cause of the overly stiff behavior of these
elements. This has been investigated by others, [3] - [6], and is shown te
be due to a parasitic shear that is introduced when these lower order
isoparametric elements have bending modes of deformation.

The following section describes the modifications that are required for the
CIHEXI element in order for it to behave as the MSC HEXA-8 element. The
authors gratefully acknowledge the MSC for providing the mathematical
description [7] of their modifications to the eight-node solid element and
the QUAD4 general shell element.

Following this is a brief description of the changes that are required for
the QDMEMIelement, which consisted only of reducing the Gaussian integration
order for the shear strain terms.

Finally, the results of several problems are presented showing the improve-
ment of the modified COSMIC elements in comparison to the officially
installed element.

Parasitic Shear in Bending
in Lower Order Isoparametric Elements

The quadrilateral membrane element, QDMEMI, has four grid points with
stiffness for the 2 in-plane degrees of freedom at each grid point yielding
a total of 8 degrees of freedom for the element. As discussed in [3], the
8 degrees of freedom can be considered to be linear combinations of eight
nodes of deformation, consisting of the three rigid body modes (two transla-
tion and one rotation in its plane) plus the following deformation modes:
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x: location of Gauss Points for 2x2 integration
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Modes (a) m (c) are the three constant strain modes while (d) and (e) are
similar to bending modes. Generally, Gaussian quadriture is used to
evaluate the stiffness matrix for isoparametric elements in which case the
2x2 stiffness matrix for a pair of grid points is

The following section shows the details of this (for the 3-D element) with
explanations of the terms.

For now, it is sufficient to point out that the summation in the above
equation is over the Gauss points (four in this case) and thatC_ is .h_
matrix relating displacements at grid point i to strains at Gauss point _.
At these Gauss points, the terms in the C_; matrix relating to shear
strains are nonzero for the bending modes (d) and (e). Thus (d) and (e)
modes will contribute shear strain energy in a situation where the element
is used to model pure bending situations. In fact, as the element aspect
ratio (£/d) increases, this parasitic shear becomes a dominant part ef the
strain energy and the element becomes excessively stiff for modeling
bending. If, instead of evaluating the te_s in C_ which relate to shear
strain at the Gauss points, terms wereevaluated at the element center, it
would be found that no shear strain energy would result in modes (d) and
(e) since the shear strain is zero at the center. Then, since the shear is
zero for modes (d) and (e) under this evaluation, modes (d) and (e) would
indeed be pure bending; and the "effective" deformation in these modes
would be:

This is the motivation behind "reduced integration." One way to enforce
the shear terms in C_ to be evaluated at the center is to use a
Ixl Gaussian integration (_=I) in evaluating the above stiffness matrix
equation. However, another way (which preserves the element volume) is to
use the required Gaussian integration order needed to exactly evaluate the
volume integrals (2x2 in this case) and evaluate the appropriate _:_shear
terms at the element center instead of at the Gauss point. It is this
latter approach which is taken in modifying the COSMIC elements.

The solid isoparametric element CIHEXI has the same difficulty but in three
dimensions and is modified with a similar reduced order integration for
shear.

Modified CIHEX1 Element

For a 3-D solid isoparametric element, the displacements at any point in
the interior of the element are expressed as (see Figure 9)):
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_(_,_,_ - _ (2)

The summation on i is taken over all grid points of the element with &L
being the vector of grid point i displacements. The Nc are isoparame_ric
interpolating functions in terms of the_ ,_,_ coordinates which map the
general hexahedron, in x,y,z coordinates into a rectangular parallelepiped
in _ ,'a,_'coordinates. For an eight-node hex element:

' (l,, _._I(, _ _'Y;.) (3)

with _L'_IL'_Lthe coordinates of grid point i

The element strains are related to displacements by

where

T T

is a vector of the element strains evaluated at the Gauss points

and

I_.,i.,_c 0 o

a NL_y o
(5)

o o N_.,I"
C_:.:
_" g:-jy NL,x 0

Note: ,vun.der a quantity indicates it is a matrix.
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where the comma denotes partial differentiation with respect to x,y, or z
and the subscript g on the matrix indicates that the terms in the matrix
are to be evaluated for_ ,_,_ at a Gauss point. This is the form of the
strain-displacement relationship for the classical eight-node hex element
and is what is employed in the COSMIC ClHEXI element. Element stresses at
Gauss points are related to strains through

where _}is the 6x6 constitutive matrix of material constants at a Gauss
point.

The element stiffness matrix is obtained using Gaussian quadriture frem

(7)

where _Li is a 3x3 partition of the element stiffness matrix relating
forces at grid point i to displacements at grid point j. For exact inte-
gration of the eight-node hex element, a 2x2x2 (g:8) Gaussian _uadriture
must be employed. Wg and Jg are Gauss integration weights and Jacobian.

It has been observed that the stiffness matrix thus derived can exhibit
overly stiff behavior when modeling bending situations due to the presence
of parasitic shear in the element. One technique of overcoming this diffi-
culty is to employ a reduced integration (i.e., g less than 2x2x2).
However, a general reduction of the integration order is not needed and can
indeed lead to singular stiffness even when the element is restrained in a
rigid body fashion. Instead, selective reduced integration is employed
wherein only the terms in equation (7) which relate to shear strains have
their integration order reduced.

The HEXA eight-mode element in MSC NASTRANemploys reduced integration for

shear. As explained by R. Harder [7], the MSCelement uses for _zthe
modified form:

o lqZ,_ o

o o N;.,} (8)

H. o
j. jtll ;b,_
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The terms in the upper half of equation (8) are identical to the form used
in the classical isoparametric element. The terms in the lower portion of
C_ are different from their classical counterparts due to employing a
reduced integration scheme. Harder proposes to use a Gaussian weighted

average of the _Z,_ , etc., to obtain N_,_ , etc.

}} (9)

}

with a similar definition for NL,X and N_, The summations in equation• J} '

(9) are taken over some of the Gauss polnts. In particular, when evaluatipg
terms in the fourth row of equation (8), the group summation is over all
Gauss points in the plane in which_ is a constant. For terms in the fifth
row, the group is all points in a plane of constant _ and, for the sixth
row, a plane of constantS. Harder shows that this Gaussian weiQhted

averaging (thus reduced integration) scheme is necessary for the'element to
maintain its capability to pass a constant strain patch test.

In addition to employing this reduced integration for the shear terms, by
averaging the related _}; coefficients, Harder also employs additional
"strain functions" in the MSC element to allow higher order polynomial
variation of the direct strain terms. Strain functions are somewhat like
bubble modes (see, for example, [8]), which have been used in some elements
to also overcome their relatively stiff behavior in bending problems.
Conceptually, the additional strain terms are included by modifying the
basic strain-displacement relation of equation (4). Following the
development in [7]:

= 93°
C r

where ~%_ is the classical _IAmodified to represent the reduced orderintegration for shear.

_}°is a 6xn matrix of strain coefficients and_,a vector of the amplitudes
of the n strain functions added. Recognizing that the strain energy for a
linear material element is

and minimizing_lwith respect to the_oamplitudes (keeping mind that _ is a
function of _, through equations (6)_nd (I0), it is found that

Using (6) and (I0) in (Ii), the _o amplitudes are found as

(12)
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where

}

(I_)
~ }

Finally, in combining (10) and (12), it is found that the strain displacement
law in terms of only the physical degrees of freedom,_,, is

E}= 2 (15)
where

With equation (15), the element stiffness matrix for the MSC eight-node hex
element is generated as in equation (7) but with _,being used instead of

C_;. It remains to select the strain functions to be added--i.e., the
terms in the C:_ matrix. In general, the C}, terms are added to fill a
need in terms of improvement in element accuracy for some particular
application. Addition of these terms will almost certainly invalidate the
interelement displacement continuity that exists with the classical
element. However, this is not as significant as insuring that the modified
element will still be capable of passing a constant strain patch test (see
[9]) for a discussion of the patch test). Given the fact that the
classical element does pass the constant strain patch test, Harder shows
that the reduced integration technique will also pass the patch test and in
order for the completely modified element to pass the patch test, it i__
required that:

For a constant patch stress, and keeping in mind that _ = 1.0 for the
eight-node hex, equation (17) requires

T

in [7], this can be accomplished if the terms in C}o are ofAs pointed out

the form

I:I/T'} i %l/,l"1 , TI }/_r ' _lh}'/,T<;' ....
Thus, the MSC element uses for _I':

o _ o _h "T o

o o _" o hf _f (19)

C o-_
_'1 (/ 0 0 0 (:1 0

0 0 0 o 0 0

0 0 0 0 0 0 7-
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Only terms are included in the first three rows as only the direct stresses
are sought to be modified by the additional strain functions. It is not

clear exactly why the particular form for _o was chosen, aside from the
considerations in equation (18); however, it is the form identified by
Harder in [7].

Equation (16) is the form of the strain-displacement la_v that was used in
the modified CIHEXI element reported herein, with equation S (8), (13),

(14), and (19) defining the various terms in (16). This IC • matrix mustbe used in the development of the stiffness matrix as wel _ the thermal
load vector and in stress data recovery.

Modified QDMEM1Element

For the 2-D isoparametric element, the stiffness matrix has the same
general form as shown in the previous section:

However, for this element

_ (21)

o]Cl _ - o _,y (:z)

I_l;.: 4 ;(14-]_'h_.l (23)

Following the procedure of the previous section, reduced integration for
shear terms is employed by modifying (22) to

C}% : o _'v I (24)

As in the previous section, the N terms could be defined as Jacobian
weighted averages of the terms at the Gauss points. However, for this
element, it is found that the same result is obtained if the terms are
evaluated at the center of the element (_=_=a). Thus
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MSC also uses strain functions for this element. From [7], for the
membrane part of the QUAD4 general shell element

The complete formulation of C}_ then follows as in the previous section and
_1_w°uld then be used in equation (20) instead of CI_. For the modi-

fications made to the COSMIC QDMEMIelement, however, the additional strain

functions in ~_C_:were not implemented. C_nly the reduced integration, for
shear was implemented; and, therefore, ,I_ is used in equation (20) ;nstead
of

Code Changes to Implement Modified CIHEXI Element

The purpose of the authors' work was to prove the worth and feasibility of
the element formulations. Optimizing the implementation of the code
changes was not examined. Therefore, a complete discussion of the modi-
fications will not be provided; however, a mention of the extent of the
changes and the subroutines where they appear is appropriate.

The alterations to the QDMEMIwere accomplished with a simple modification
to the QDMMIDsubroutine. At the point where'partitions of the stiffness
are numerically integrated, terms which include the shear modulus were
separated. This allowed the order of Gaussian integration to be selected
separately for in-plane stress and shear stress terms. As discussed
earlier, the need was for a linear shear stress formulation. The current
implementation does not implement aniosotropic materials.

The XIHEX subroutine, which calculates the mass and stiffness matrices for
the ClHEXl, as well as the CIHEX2 and ClHEX3, received extensive modifica-
tions. Since the IHEX subroutine recalculates part of the element's
stiffness in order to form temperature loads, it required some similar
changes. The CIHEX2 and CIHEX3 formulations were not considered, and
alterations to the ClHEXI stress recovery subroutine have not been developed
at this time.

The initial formulation of the ClHEXI element matrices in COSMIC NASTRAII
was made in the basic coordinate system. Due to the manner in which the
reduced integration for shear was implemented in the modified element, it
was necessary to develop the CIHEX1 matrices in a local element coordinate
system nearly aligned with the _,_,_ axes and then transform the matrices
to the basic coordinate system. Additional subroutines needed to accomplish
these tasks were written by the authors. Several options for selection of
the "best" initial local system were looked at and are still being evalu-
ated. For rectangular parallelepiped elements, the choice of a local
system is trivial. For skewed elements, the{ ,_,_ directions do not form
an orthogonal set of vectors in x,y,z; so the choice of the initial local
coordinate system is not obvious.
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Test Problems

qDNEM1 Element

The test problems are the same as those utilized in the prior mesh study of
the membrane elements reported in [I] and involved a deep cantilevered beam
type structure with unit depth and beam aspect ratio (length/depth) of twe.
Figure I shows the geometry, coordinate system, boundary conditions, and
beam physical properties used in the study. Membrane elements formed the
beam model. The mesh subdivision technique as well as the method used to
indicate mesh size and element aspect ratio are demonstrated in
Figure 2.

The finite element model used work equivalent grid point forces for separate
end moment and end shear loadings. This simulated the applied loads as
well as the reactions at the cantilevered end (Figure 3). One should note,
from Figure I, that only kinematic constraints were imposed. Discussion of
the theoretical solutions to these loading conditions can be found in [!].

In order to assess the effect of the reduced integration modification to
the QDMEMIelement, the figures from [I] for the older membrane element
mesh study were utilized. These curves, figure 4 through figure 8 herein,
show the error in displacements and stresses at specific points on the beam
as a function of mesh refinement or aspect ratio. The MSC element referred
to in these figures is a CQUAD4with only membrane properties specified on
its PSHELL card; also, the 2,1 or 4,1 after COSMIC '84 refers to the number
of Gaussian integration points for in-plane stress and shear stress terms,
respectively. As indicated on the figures, the altered COStIIC element '84
w/4,1 reduced integration produces the same answers as the MSC element; and
these answers are an improvement over the old COSMIC element.

CIHEXI Element

The premise for selecting a test problem in [2] was the fact that solid
elements are used to model large optical mirrors of spaceborne telescopes,
and these mirrors often have thicknesses of as much as i0 percent of their
diameter. The test problem involved a cubic slab of equal dimension in the
x-y plane and whose thickness varies between one-twentieth and one half of
the x-y plane dimensions. Figure i0 shows the geometry, coordinate system,
boundary conditions, and basic material information used in the study. The
constraints are kinematic and the problem is symmetric about the x=O plane.
That is, the x displacement is zero along the x:O plane. Using this
constraint, only half the slab needed to be included in the finite element
model. The mesh subdivision technique and method used to indicate element
aspect ratio is shown in Figure II.

Originally, the test cases were chosen to measure the accuracy of various
solid elements under temperature gradient and gravity loadings. Their
value to this paper lies in that they provide separate bending and shear
load cases. The linear temperature gradient produced a symmetric bending
condition with a known theoretical answer. The gravity loading, however,
was found to be non-converging and was used in this study only to show the
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effect of the changes to ClHEX1 under a shear loading case. Further
discussion of these load cases is provided in [2].

In order to assess effects of the changes to CIHEXI, three graphs were
extracted from [2]. Data for the altered CIHEXI was added to these graphs,
which already included curves representing the original CIHEXI.
Figures 13 and 14 present error in displacement, at a particular point, as
a function of mesh size and aspect ratio, respectively. Actual displace-
ments versus mesh size are shown in Figure 15 for the (non-convergent)
gravity loading. Once again, the important factor to note in these graphs
is that for each case the "improved" CIHEXI provided the same answers as
the comparable eight-node MSC element. For an aspect ratio of I0, not at
all unreasonable when modeling large mirrors, the changes to the element
totally eliminated a 48 percent error (in the temperature gradient case)
when the old CIHEXI element was used.

Conclusions

Modifications to the isoparametric membrane and solid elements, QDMEHI and
ClHEXI, have been implemented in the COSMIC NASTRANcode.

The modified ClHEXI element performs identically to the MSC HEXA eight-mode
element. With the modifications, especially the reduced shear integration,
it is anticipated that the new element will perform better when modeling
thick plates when only few elements are used through the thickness. In
addition, for pure bending, the element gives exact answers when only one
element is used through the thickness.

The modified QDMEMIelement has been shown to be superior to the orioinal
element when modeling bending situations. Neither element exhibits aspect
ratio sensitivity in the modified form as it did in its original ferm.

38



References

I. Case, W. R., and Mason, J. B., NASTRANFinite Element Idealization
Study, Sixth NASTRANUsers ColloQuium, NASA Conference Publication
2108, 1977, pp. 383-404.

2. Case, W. R., and Vandegrift, R.E., Accuracy of Three Dimensional Solid
Finite Elements, Twelfth NASTRANUsers Colloquium, NASA Conference
Publication 2328, 1984, pp. 26-46.

3. Pawsy, S. F., and Clough, R. W., Improved Numerical !ntegration of
Thick Shell Finite Elements, International Journal for Numerical
Methods in Engineering, Vol. 3, pp. 575-586 (1971).

4. Zienkiewicz, O. C., et al, Reduced Inteqration TechniQue in General
Analysis of Plates and Shells, International Journal for Numerical
methods in Engineering, Vol. 3, pp. 275-290 (1971).

5. MacNeal, R. H., A Simple Quadrilateral Shell Element, Computers and
Structures, Vol. 8, pp. 175-183 (1978).

6. Irons, B. M. R., and Helen, R. K., On Reduced Integration in Solid
isoparametric Elements When Used in Shells with Membrane Modes,
International Journal for Numerical methods in Engineering (short
communication), Vol. 7, pp. 1179-1182 (1975).

7. MacNeal-Schwendler Corporation Internal Memo No. RLH-35, Modified
Iso'parametric Finite Elements and Patch Tests, September !6. 1982.

8. Gallagher, R. H., Finite Element Analysis Fundamentals, 1975, Prentice
Hall.

9. MacNeal-Schwendler Corporation, A Proposed Set of Prcblems to Test
Finite Element Accuracy, MSC/NASTRANApplication Manual, Application
Note, March 1984.

39



NOTATION

AR - PROBLEM ASPECT RATIO

ARe = ELEMENT ASPECT RATIO

ND - NUMBER OF ELEMENTS
THROUGH DEPTH

NL - NUMBER OF ELEMENTS
ALONG LENGTH
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FIG. 1

BEAM GEOMETRY AND PROPERTIES
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FIG. 2

FINITE ELEMENT MODEL MESH PATTERNS MEMBRANE ELEMENTS
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FIG. 3

BEAM LOADS
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FIG. 4
TIP DEFLECTION ERROR
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FIG. 5
TIP DEFLECTION ERROR
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FIG. 6
DIRECT STRESS ERROR
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FIG. 7
SHEAR STRESS ERROR
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FIG. 8
TIP DEFLECTION ERROR
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FIG.9

8 NODE HEX ELEMENT GEOMETRY
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FIG. 10 
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FIG. 11

ELEMENT TYPES
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FIG. 12

MESH GEOMETRY
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FIG. 13
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FIG. 14
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FIG. 15
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