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A DISCU3SION OF METHODS
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THOMAS G. BUTLER
BUTLER' ANALYSES

INTRODUCTION

I write not as a sage with answers but as a confessor with
questions. Exposure to this arena has left m2 with the impression that
much needs to be learned about using existing methods., and we need to
raly heavily on experience. Some techniques for comparing structural
vibration data, determined from test and analysis are discussed.
Orthogeonality is a general catesorvy of one group., correlatiocn is a
second., svnthesis is a third, and matrix improvement is a fourth.
Advantagas and short-comings of the methods are explored with
suggestions as to how they can complement one another.

CEJECTIVE

Tn2 gurpose for comparing wvibration data from test and analvsis
for a given structurs is to find out whether each is ragressenting ths
dvnamic crogerties of the structure in the same war. Specifically:
whether .

mode shares are alike:

the frequencies of the modes are alike:

modes apwear in the same frequency seguence:
and if they are not alike. how to judge which to believe.

PRCCEDURE

The first task is to find out which mcdes from test correspond
£o ones from analysis. This is no trivial task over a spectral rancs
for complex structures having hundreds or thousands of degrees of
freedom. It is tempting to fall into the trap of declaring that two
modes correspond when their frequencies are near to one another. It
is5 however., absolutely necessary to determine correspondence based
upon their mode shapes, first, and then see how close thev are in
fraquency. The mere fact that their frequencies ar2 not expectad to
be alike ftestifies to the notion that there must be variaticns between
two companicn mode shapes. The first problem then is learninag to
recognize likeness. Taking a simple open note of a violin string will
illustrate how two eigenvectors may lcok differsnt but recresent the
same mode.
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The amplitudes and the phase relaticnships at the instant of
measurement are different, but they do represent the same mode: they
will both have the same pitch (i.e. their frequencies are the same)

but the top vector will sound louder than the bottom one.
Extrapolating from this simple mcde it is evident how necessary it is
to agree on a set of rules as to how to compare mcdes.

This can be approached mathematically. The eigenvalue problem
has one2 more unknown than equations, so an additional equation has to
be supplied. A popular approach is to provide a scaling--that is
arbitrarily declaring the magnitude of one displacement in the vector
and then all other displacements in that vector will be scaled to this
arbitrary value. This happens also in test, because one is free to
select how much forcing to apply when exciting a mecde. The problem in
comparing results is to put the two sets of arbltrarv amplitudes on a
comparable footing. In analvsis one usually sets one part to unity
This is called normalizing. One approach is to canvas a vector ror
its largest value and find the ratio of its trial value to 1.0 then
scaling all other terms in the vector by the same ratio. Aanother
approach is to isolate a reference point then set the trial value or
its mcdal displacement there to unity followed by a like scaling of
the rest. One that dvnamicists often use is to scale a mcde’s
generalized mass to unity: i.e. if the matrix product for the ith mode

is T
CPp] M0 = &,

then scaling the ith vector by VK will give the value 1.0 to this
product. The net result is that every eldenvector has its individual

scaling factor regardless of the method of ncrmalizing. For comparing
tast with analwrsis pose the question, "Dces the mathod of
normalx-ac1on have to be the same for both?" It will Icr scme tyEes
of comgarisons and others will have a built-in arbitrator so it might
not.

Only rarelv in a complex structure will a test mode match an
analvtlcal mode in every detail. There is a need to arbitrate as to
when any two are comparable One way, certainly, is to look at their
plots and make a judgement as to whether they are similar encucgh.
This doesn’t quantify anvything. Other ways are to compute certain
properties and set ranges for such comouted values as to their
comparablllty The next section will be devoted to various
computations. The treatment will be organized according to first a
discussion of the methcds of making computations, then setting up a
tabulation of (a) the operations that are entailed. (b) the utility cf
the computation for helping the analyst to make a judgement, and (c)
the resources involved in the computation.

METHODS
Qrthogonality Test-

Mcdes from test are multiplied into mass from analysis in the
formula for generalized mass:

c# 17, Icgd = £S5,
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If the test vectors are normalized to the analytical mass then
acceptability can be readily determined by comparing CGJ with unity,
CIJ. It is usual that certain thresholds are assigned for acceptable
departures from unity. This technique has been implemented by the
author for NASTRAMN and is described in reference (1l). Raw test data
is read from magnetic tape into a processor program called TAP2DMI to
convert it into DMI bulk data format. The rest of the computation is
done internally in NASTRAN by means of a DMAP ALTER packet. It '
normalizes the test vector to the analytical mass. Two different
quantities are computed. The first is the matrix CG] shown above.
The other will be discussed in the succeeding paragraph. The ALTER
delivers [G] in standard MATPRN format. The diagonal of CGJ will be
unity because mass orthogonality forced it to be 30, therefore the
residue of off-diagonal terms constitutes the test. Ideally
non-diagonal terms would be null. When g7 (igi) are > a threshold,
the test mode is declared to be mis-matched with the analytical model.
It does not declare whether test or analysis is at fault, it just
declares a mis-match. The value of the threshold is arbitrarv.

When a threshold is exceeded one needs to consult other data such as
plots or correlation data to assess differences.

Cross-Orthogonality-

A product is formed from analvtical mass. the matrix cf mass
normalized test vectors and, the matrixz of mass normalized analvtical
modes.

T =
Qﬂ%] CMQJE¢%J = CH3.

This i5 implemented in NASTRAN in the same L[MAP ALTER packet of
r2rerence (l) that was mentioned abcve in the discussicn of the
orthogonality test. After the racovery of eigenvactors, EQLJ ., th
product of the first two matrices is multiplied into the analvtica
vectors to obtain [H1. Ideally CHJI would b= unity. Two criteria ars
used for acceptability:; (a) diagonal terms h,; should lie within a
band of unity, i.2. 1-v < hp, < 1+v, and (b) off-diagonal terms should
be less than a threshold c: I.e. hy; < c (i#j). Failing either of
these tests, classifies the test dacta as mis-matched with respect to
analysis data. Once again plots and correlation are helpful in
visualizing these differences.

2
1
b

Critique of Orthogonality and Cross-Orthogonality Tests-

Analysis can be condensed to test degrees of freedom in order to
produce a mass matrix for normalization that is commensurable with ths
test vectors. Condensation tc only instrumented roints could be
contrary to good dynamics practice, because points are chosen for
measurement in test primarily on the basis orf accessibilitvy or on the
expectation of being near antinodes. while the needs of analvsis are
Lo condense to signifigant mass locations to preserve kinetic eneragy.
In using NASTRAN without a DMAP ALTER there is no alternative but to
select the A-set based on instrumented locations onlvy. If., however,
a rational drnamic agproach is taken to condensation which includes
all instrumented points as a subset, then it would be possible to
obtain reliable eigenvectors ror the structure based on a generous
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number of degrees of freedom. I came upon this idea only while
writing this paper, so the idea is only sketched out and has not been
checked. The scheme is this. Subsequent to the eigenvalue analysis
the eigenvectors could be partitoned down from a reliably implemented
eigenvalue analysis to the instrumented set as opposed to a
condensation down to the instrumented set. In addition a second Guyan
reduction from A-size to I-size (instrumented set size) could be
performed using DMAP for partitioning the A-sized stiffness and mass
into e-set (for elimination) and i-set (for instrumented) then
calculating the [Kaeel decomposition in preparation for determining the
CGel matrix from CKeelCGel = -CKa/l. Then the second Guvan reduction
could be performed from the equation

CMy;1 = T + [Ge1 Mg 1 + TMg;T (Gl + [Cel [Mae1CGel.

The partitioned FHII would need renormalizing with the CM;;] matrix.
There is still some question as to how violent an erffect this second
Guvan reduction would have on the mass matrix: therefore it would be
prudent to do an additional orthogonality check on just the analvtical
I-sized set. If this is acceptable, the I[-sized mass matrix is ready
to be used to normalice the test vectors and proce=d with the
orthogonality test. If the I-sized analytical set dces not pass the
crthogonality check., the I-sized mass matrix condensation should be
modified until it does pass the analytical check before applving it to
the test vectors. If no satisfactory condensation is achieved. then
there should be a renegotiation of the test plan to include
instumentation at some necessary mass locations to achieve
compatibility between test and analysis.

Test data is not compromised (assuming modes are progerly
excited) by a relocation of instrumentation unless pick-ups are
located too close to node lines. If the test structure is well
instrumented and well excited and well mounted, the modal data
represents the true vibration properties of the test article.
(Aside--this does not imply that the test article necessarily
represents the structure as designed.) Normalization of test data
with a normalizing factor originating from analysis does nct in any
wav prejudice the test data because each factor is distinct and
arbitrarv, regardless of origin., so the modal properties are
preserved.

The two orthogonality tests diagncse all modes at once with a net
result regarding the modes as a whole without any details within the
mcdes. It provides no insight as to which source to suspect if there
is a mismatch.

Correlation-

Since in a correlation computation, mode shares are compared over
their entirs region with products., point by point - between the two
sources., then averaged: a detailed examination is obtained and
characterized by a single number. Correlation coefficients computing
to 1.0 are exact. Comparable modes can be identified by the high
value of their coefficients., and their frequencies can subsequently
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be compared. 0Only shape data are considered. so no mass or

stiffness data gat involved explicitly. Theory behind the computation
of correlation and the strategy for the algorithms was developed by
personnel at Goddard Space Flight Center and was published in
reference (2). The implementation of this technique was done at
Goddard. Documentation of its application to a structure is explained
in reference (3). The definition of the c¢orrelation coefficient copied
from reference (3) 1is ’

r b T me-——- where,

n —
Sap = (lln);(a‘o-a)(b‘-—b)
i=1
is the covariance between mode a and mode b having n degrees or
ftreedom to define the mode shapes. and sg or 54 are standard deviaticns

which can be obtained by taking the square rooct of the variance., where
the variance 1is

n -2 - n
sy, = (Lin) J_ (z; - 1) and x = (l/m))_ x;
} 4 - ¢ : {
i=1 i=1
1s the mean value of a mode.
Differences-
A5 an auxilliary to correlation to find out where and bv how much
wo sources differ, all points can be scouted in pairs bty two methods

as derfined cn pages 2-2 and 2-3 of reference (3) and repeated here.

ta) Relative Difference of the ith dof

= -2 - -2 . or
Sa Se

(b) Scaled Difference of the ith dof

Ez = \Cai -nbi)/s . where
i a; b
i=1 ¢ ¢
C = ==—————- . and
gy
a.
i=1 ¢
2 n 2 2 0 2
ST o= lini(_b; -C FZap
i=1 i=1
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Critigque of Correlation-

Correlation is done as a short-running post processor outside of
NASTRAN., but depends on a OMAF ALTER from NASTRAN before it can
execute. Full analvtical fidelity of modes is preserved by first
computing detailed modes before partitioning to instrumented points.
Manvy more analvtical modes than test modes may be involved if desired.
No scaling of modes is required ahead of computing correlation
because the formulas contain self-scaling by their own standard
deviations.

The correlation coefficient can give evidence as to which modes
are distinct and which have multiple similarities. Point by point
comparisons are made. Data is sorted by user prescribed thresholds so
the pertinent information is at hand without clutter. Localized
evidence of differences allows the analyst to examine a point with
respect to G-sized modes to see what structural factors could
contribute to local disgarities.

Correlation involves onlvy displacement information and does not
involve stiffness or mass, but since localized information is given
over many anlvtical modes. inferences can be drawn from such data as
to the tvepe of involvement.

The scaling coefficient C brings unscaled sources within the same
average amplitude. The standard error scaling results in
magnification of terms and allows separation of coefficients as thev
near unity.

Synthesis-

Since a large number of analvtical modes are usually available
and since they constitute an orthogonal set, they can logically be
used as a basis for synthesizing test data in analytical terms thus
avoiding the difficulties involved in scaling. This method was
published by a team from Rockwell Internatiocnal in reference (4).

K
Expand the observed displacement y, 1in mode k at instrumented
location i in n analytical modes {;, that have been determined from
large set of points, but have been partitioned dcwn to just the
instrumented points. Y;k is the apprcximated expansion.

W

427 bj where gj’s are unknown amplifiers.

n
Yl'k = Z
i=1

Sum the residuals over the m instrumented points i in the kth mode as

m k
= (y.k - Y. ).
i=1¢ (

1__{k

Rectifv the residuals to develcp an expression for the solution of ;U's.

m
RR = Z:(y,k - Y;k)a.
i=1 ¢ 178



Frovide for the use of a weighting function such as: Jjust the diagonals
of, the mass matriz, and substitute in the rectified residuals with the
l'k S expanded

k k bk 2
RR (M) ZM (v. =@y bg “Paby ceennnn. @50

k
Find the extremals of RR (M) with respect to one bj at a time.

k .
l oRR (M) m & y k 2 L
------- = Ms(-y. o+ L ,Db + .'GQ b teeeseo .t b
2 abj )i'—;l‘ Y‘ I_/ ng‘{ 1 Q/ 2 2 ¢‘J A
K
....... @ @nbn ) = 0,
which when taken for all n b’‘s compresses in matrix notation to
k T k

-
\ c@-jj cM‘-ch.J.Jch } o= c¢9‘7] CM;30y; 1.

Now £§J } can be solved for., because all else is known.

k

1. The b;" tell us how much of each of the n modes are going into
simulating the kth test mode. Substitue b’'s into the original
nxpan51on to obtain the intended approximation Y;'s for everv

Ztrumented point of the kth test mode. Then construct R nd
R™ M),

tJ
.

A simple mass weighted correlation coefficient differs from the
Goddard one.

Z:MJ ki éZ)(SZg - @;)

where thegﬁ”s can be either analytical or test modes.
3. Multiple correlation coefficient in the kth mcde of approximated

vector to test vector. This has no corrolary with the Goddard
approach
k

}___M - vk }___M - -_?k';z
1—1
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4. ©Compute the standard error S and use it to scale modal amplitudes
b .
k m 3 £ 2 1/2
S = Ez j\Y - gy ) 3
k k k
T=bJ/S.

5. Compute spread of amplitudes over sampling points for an
analytlcal mode W, and the similar spread for the test mode W,.

Determine their relative influence 4
b,y W,
(D) = -4--¢ .
W;

g

Orthogonality with svnthesized modes. First construct a matrix
of all k of the synthesized modes.

CI‘-A]=C? JEb ;
CG1 = Y,é] EM JE"éJ = Ebél Ew . ] EM ]E@J]E -A]

but since the analytlcal modes were normall-ed to mass this test
reduces to

- 7
€G3 = Cbj, 1'CIICby, 1.

This svnthesized CG] can be compared to CI] as to how well analyvsis
compares with test both in dlaconal and orf-diagonal terms.

Critigue of Synthesis-

This is bv far the most complete and most versatile of available
codes for maklnc comparisons. It would be worth the investment of
purcha51nd the DUMMOD from Cosmic and spending time to sysgen it into
one’'s NASTRAN executable. It operates entlrelv within a NASTRAN
execution. Two kinds of local behavior are reported -- how much an
analvtical mode is participating in a test mode, and how much an
'agprotlmatlon misses its test counterrcart. Local behavicr is further
focusad by the T value and the relative inrluence X(I). The simple
correlation is quite similar to the Goddard one except 1its scaling.
but it has the added advantage of diagnosing analysis alone. The
multiple correlation is unigue in that it gives well magnified
measures for one mode at a time. Its GEﬂGf&&l«Ed mass is more
versatile than the usual orthogonality or cross-orthogonality tests
and it is more efficient.

Matrix Improvement-

The ecremis2 in this technigue is that test data has been
certified, but analysis doesn 't match. Analytical stiffness and mass
matrices Kgomputed and Mcomputed are are assumed to be not too
divergent but do need improvement. A method of applying incremental
values to the analvtical matrices was developed at Kaman Aircrart
according to reference (5). 180



2
Given: gﬁ &.[27-from test data and K, & M, from analvsis,
R . ¢ > e
where ¢ > T dof’s.

Objective: Apply corrections to K, & Ms to arrive at synthesized
Ke & Mo,
S S

Develop mass corrections first under these constraints:
T 2
ch,3' tg3cds1 = c13 and K10 Pl = M ICP 103

Step 1. Expand q@ J to c-size by setting up the ezigenvalue equation
in c-size for just one frequency at a time and partition it
between test size and oversize = complement of ¢ with rescect
to t.

[_‘ft_t_-‘f:-e._] ) w:’-[-“.‘::-’.‘_tp_] L/ S
[4
Kot Koo M, M, g‘

Solve for the remnants of E@g} mode by mcde from

2 -/ T 2 T
(P} = -TKgy = My, 0 [Ky, - @M, 3@
Find correction to Mgl by minimizing differences of [M, - Mgl
while enforcing orthogonality. The resulting expresssion is
based on approzximating the correction for diagonal terms.
- L
£ - t

|1CM,3 7 Mg - M IEM, 35 ().

[47]
t
(4]
‘o
[}

Set up equations in La Grangian multipliers

r-¢ LTy lﬂ‘jc@srmsés- 13,

i=1 j=

Differentiate with resvect to elements of unknowns [M.]l and set
to zero then solve for values of }szhich minimize €. The
resulting equation is ]

-/ -1
Cigd = Tl + CMICdgItn T €I - mlim, T CHMoT .
T
where Cm,1 = CP¢1 LM ICH 1.

Step 3. Find correction to CK.1 by applving the constraint equations to
develop CK 3.

s
2
CKg 1P - i ICP IcL2,1 = 0
T 2
th 1 tx 1cdh1 - €21 = 0

- 27T
CKSJ - chs] = 0»
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The resulting quantity to be minimized is
[ {
- R °z
€ = |1 tIMgI* CKg - K ICMgD 2|

Set up three sets of La Grangian multipliers for each of the
thrae constraints. The result is

U =€+ ZZ-A-Klo”*sé Msésﬂ:_]g

i=17=1

+ZmZ_/Lo c@sn CKg Jté] 0 ]+ZZ_AS [Kg - K:]..

=1i=1 i=1i=1 ¢ (L
Differentiating and sgttinq the result to zero produces

.
[Kgl = [K 1 + CA + A 1 where

cAa = 1/2 Mg @SCS@:KC@S+ﬂzJ @?Ms - Kcé @TMSJ

The resulting synthesized CMg] and CKgl satisfr all constraint:s
and the increments in chanae can be tabulated element by
element with respect to the original computed CM.1 and Ehc].

Critique of Matrix Imprcvement-

If the only object were to provide a svstems analyst with a
matrix that could act for a given component structure for the dvnamic
Eehavior orf a tctal complex. this method wculd have gsod acoplications.
Manr times the need is rfor more than providing a surrogate, but to
grovide corrections to an existing model such that the resulting
improved mcdel will properlv predict stresses and internal load paths
and deformation behavior in the data recoverv process after the
rasults of the svstems response 1s obtained. The interprectation of
the incremental changes to the physical model is sometimes impossible
so that in spite of having an improvement it will not serve as a
physical guide to model correction. With my limited experience in
this ar=2a the one suggestion that I might make is to imgose a further
ccocnstraint cn the admissable terms for applying the corrections. Null
terms of CKpJl and CM¢e] should be forced to remain null. I found extensive
courling in the CKgl and Mgl terms that deried physical justification.

I also feel that this technique is workable during the verwy early staces
of comparative analysis. For instance. it might be applled to the mas
only and be tested for phyvysical meaning so that possibly by increments
it would act as a gquide.

~

The follcwing is a tabulation of the items descriled above Jiving a
precis of the operation involved, its utility and its demand for
resources.
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OFERATION

Orthogonality

Cross-0Orthogo-
nality

Cross-Cor-
relation

Differences

Synthesis. Modal

Amplifiers.

Svnthesis.
Residuals.

Synthesis. Rec-
tified Mass

weighted residual

Synthesis.Simple
Correlation.

Synthesis. Multi-
ple Correlation.

UTILITY

Gives net modal check on
test modes or analysis
mass by severity in a
single simple test.

Gives net modal checks
on both test & analysis
in a single simple test.

Gives quantitative measures
of net correspondence
between test & analvtical
medes.

Gives measures of isolated
differences between test
and analvsis modes.
Relates directly to actual
positions in a model.
Scaled differences give
greater spread of results
near. unity.

Gives measure of how much
an analyvtical mode can
behave like a test mode.

Can give indiwvidual also
cumulative differences in
shapes: test vs. analysis.

Gives magnified differences
Weighting can help dis-
tinguish importances.

Single number to measure
one mode with ancther.
Helps evaluate analysis vs
analysis: test vs analysis;
and tast vs test. Helps
check self consistency of
analvtical model.

Single number measure one

mode at a time. Gives
greater spread near 1.0.
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RESQURCES

Preprocess test vectors.
into DMI format, then
calculation is by LCMAP
ALTER. In public domain.

Continues with DMAP ALTER
for 2 more steps. In
public domain.

DMAP ALTER followed bv a
POST prccessor progran.
Short running. In public
domain.

An option of cross-corrzs-
lation prcgram. Short
running.

DUMMOD available from
Cosmic. High memory
requirements.

An option of synthesis.

An option of synthesis.
Part of another calcu-
lation sc is neglible
computer time.

Correlates without
averaging. DUMMOD must
be sysgened into NASTRA!
executable. The cocde

is Cosmic catalog number
(TU 1/89)

Relates to average test
value of mode. Distinct
differencing operations.



Synthesis. Gives greater focus of Scaling is fast after
T value. analvtical similarity to calculation of standard
test at individual points. error function.

Svnthesis. Rela- Refined localized variation It must canvas spreads

tive Difference overall instrumented
X(I) points and all modes.
Synthesis. Gives equivalent of ortho- Quite direct and efficient.

Generalized Mass gonality test and cross-
orthogonality test in a
single matrix.

Matrix Can be used for comparison Expensive Decomposition.
Improvement. with analvtical mode to Proprietarv. Available
Dilated Test check on assumption of onlv as service.

Vector. whether small changes can

correct computed matrices.

Matriz If Eans 5. 6 & 7 were con- Simple multipliction.
Improvement. strained to maintain null
Mass increments. values, the lesser coupling

might be easier to relate

to model. Could be used

in early liaison with test.

Matrix Would be useful if a way Simple multiplication.
Improvement. were found to process new

Stiffness incre- increments through data

ments. recovery modules so as to

give direct connection
to individual model elements.

APPLICATION

These are the tools. Plots, Orthogonality, Cross-Orthogonality,
Cross- Correlation, Differences, Relative Differences, Scaled
Differences, Synthesized Modal Amplifiers, Residuals. Rectified
Residuals, Simple Correlation, Multiple Correlation, T wvalue., Relative
Difference X(I), Generalized Mass, Improved Vector Dilation. Improved
Mass, Improved Stiffness. How and what should be applied when?

The situation is usually this. Analysis has gone on for guite a
while and a test plan has been drawn up during design development.
So, frequencies, shapes, and plots of analvtical eigenvectors ars at
hand. Test has be=n set up and liaison has established the set of
corresponding instrument locations. The situation with respect to
Orthogonality is this. Generally the analvtical model has been
condensed down to a logical A-set and not to the instrumenced set. As
soon as test liaison is established., the A-set should be modified to
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include the complete set of:instrumented freedoms as a sub-set. When
this is done DMAP ALTER's should be considered for applving a second
Guvan reduction for condensing the MAA matrix to MII size.

It makes good sense then to apply correlation as a first step
after test results start to come in. DMAP ALTER packet, as defined in
either TM 86081 or TM 86044, can conveniently be included in NASTRAN
runs to create a TESET vectar and to have modes partitioned to PHITE
freedoms. This permits the identification of which analvtical modes
correspond to which test modes. It is a shock when correlation
results are viewed for the first time. One has a sterectyped notion
that there will be a few values in the .90 to .98 range and a cluster
of wvalues in the 0.0 to .08 range. The predominance of values in the
.4 to .8 range takes one aback. The first impulse is to condemn
correlation as being useless. It takes a fair amount of study to
begin to realize the implications that are revealed bv this plethora
of data. Nothing is clear cut. Develop judgement as to relative
magnitudes and remedies needed to home in on the anomolous parts of
the model. If one analvtical mode correlation coefficient ¥=1.0 and
others are high, this can imply the one near unitv is a match and the
other modes with larse coefficients (say > 0.4) have defects and
should be flagged for location as to where mcdel should be investigated.
I have yet to talk to any structures man who considers himself to be
an expert in assessing correlation results. One needs to develop
experience by making interoretations; taking actions based on the
initial interpretations: then revise the original interpretation bv
reacting to results produced by actions. I have never used svnthesis,
but I would expect that multiple correlation will help to isolate some
effects. Test and analysis peogple should look over the correlation
results together to see what is revealed. For instance, look for
frequency disparities in the modes and check secondary correlation
results for finding anomolous local involvements that might be
corrected. Each discipline can then ask its own set of questions,
such as

Analysis Test

Are any moments of inertia wrong? Is the structure being excited in
Do any joints need to be remodeled? a poor place?

Is there a wrong exponent in a Are instruments reading in the
modulus of elasticity? right amplitude range?

Do any BAR elements have misplaced Is the structure being suprorted
offsets? improperly?

Are anv of the modes spurious due Do pick-ups need to be remounted?

to inadequate constraints? Are any modes not being excited?

After test and analysis have applied remedies based on the first
correlation results, another correlation check ought to be made based
on analytical and test reruns. When all the obvious adijustments have
been made after reruns, the orthogonality ALTER packet should be
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included in a succeeding run in conjuction with a correlation process.
If one uses orthogonality alone, information is too condensed to

home in on discrepencies. With correlation, specific locations can be
obtained for applving remedies. The two approaches can be included in
a single run to take advantage of simultaneous data. Note should be
made, immediately., as to whether a difference in correlation resulted
from condensing the analytical model to the instumented points. If
there is a great difference then no particular meaning can be gleaned
from the orthogonality results. If the shift in correlation is
acceptable, the orthogonality and cross-orthogonality results will
show which modes are within threshold specification, and how far other
modes are out of specification.

SUMMARY

Good tools for comparing vibration data from test and analysis
are available in the public domain. The Goddard package is easv to
get and quick to run. The Rockwell package is the best. It takes
planning to get it operational. The Kaman service can be used as a
guide or a position of last rescrt. 1In all cases, it takes much
practice to use these tools well.
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