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TWO TI ~'E SCALE OUTPUT FEEDBACK 
REGIILATION FOR ILL-CONDITIONED SYSTEMS 

ANTHONY J. CALISE* AND DANIEL D. MOERDER t 

DREXEL UNIVERSITY} PHILADELPHIA} PA 19104 

SUMMARY 

Issues pertaining to the we11-posedness of a two time scale approach 

:0 the output feedback regulator design problem are examined. An 

lpproximate quadratic performance index which reflects a two time scale 

decomposition of the system dynamics is developed. It is shown that, 

under mild assumptions, minimization of this cost leads to feedback gains 

providing a second-order approximation of optimal full system 

performance. A simplified approach to two time scale feedback design is 

also developed, in which gains are separately calculated to stabilize the 

slow and fast sybsystem models. By exploiting the notion of combined 

control and observation spillover suppression, conditions are derived 

assuring that these gains will stabilize the full-order system. 

A sequential numerical algorithm is described which obtains output 

feedback gains minimizing a broad class of performance indices, including 

the standard LQ case. It is shown that the algorithm converges to a 

local minimum under nonrestrictive assumptions. This procedure is 

adopted to and demonstrated for the two time scale design formulations. 

* Professor, Dept. of Mechanical Engineering and Mechanics 
t 
Graduate Research Assistant, now with Information and Control Systems, 

Incorporated. 

-vi-



SECTION 1 

INTRODUCTION 

This report examines the continuous time optimal output feedback 

regulator problem for linear, time-invariant, deterministic systems with 

ill-conditioned dynamics. In the sequel, an output feedback controller 

will be characterized as one in which the feedback law is based on a set 

of system outputs, rather than the full internal state. In the 

time-invariant regulator case, the simplest form of the controller is 

that of a matrix of constant gains. This is referred to as static gain 

output feedback. The extension of output feedback to the case of 

fixed-order dynamic compensation is also considered, where an arbitrary 

number of dynamic elements are included in the feedback structure. 

Output feedback control laws offer the important advantage of 

simplicity in implementation over controllers which are based on 

full-state feedback. Since the control designer only rarely has access 

to all of the system states, implementing a full-state feedback 

controller requires an observer or Kalman filter in order to reconstruct 

the states unavailable directly from the output. In contrast, the 

structure of an output feedback controller can be kept as simple as is 

consistent with the constraint of output feedback stabilizability, or 

that of meeting closed-loop design criteria. This has motivated the 

study of LQ optimal output feedback regulation problems [1-7].' In these 

problems, given the prespecified feedback structure, the controller gains 

are calculated to minimize an infinite-time integral quadratic perfor­

mance index on the state and control. This formulation is particularly 



advantageous in that it directly addresses the issue of RMS control 

activity, allowing the designer to make a well-defined compromise 

between a measure of the system performance and one of the control 

expenditure required to attain it. 

The necessary conditions for optimality [1] for the optimal output 

feedback problem take the form of coupled nonlinear matrix equations. 

For realistic problems, solutions are obtained numerically through the 

use of iterative procedures. This fact lies at the root of the two major 

difficulties which have impeded the application of optimal output 

feedback design techniques to practical design problems: 

i.) the lack of simple, computationally inexpensive, convergent 

numerical algorithms for solution of the necessary conditions, 

ii.) the fact that realistically detailed system models 

tend to be of large order, and often contain slow and fast 

modes. This leads to ill-conditioning in computations related 

to controller design. 

1.1 Numerical Procedures for Optimal Gain Calculation 

Many algorithms have been suggested for numerically solving the 

necessary conditions for optimality, falling into one of two broad 

categories. The first category comprises gradient [8-10] and nongradient 

based search procedures [11,12]. These algorithms will converge to a 

stationary point [8], but are computationally expensive. The second 

category of algorithms consist of those in which either the nonlinear 

necessary conditions [1] or a related system of linear equations [3,4,13] 

are solved sequentially. When they do converge to a solution, these 
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methods are recognized as being considerably faster than the search 

procedures [12]. Of this latter class of algorithms, only that of [13] 

for the discrete LQ stochastic output feedback regulator has been shown 

to converge. 

Section 2 of this report formulates the continuous time LQ output 

feedback regulator problem. A simple sequential algorithm is described 

which calculates optimal output feedback gains for a broad class of 

problems which includes the standard LQ case. Unrestrictive conditions 

are stated under which this algorithm provides a monotonically improving 

sequence of gains converging to a stationary point. 

1.2 Output Feedback Design for Systems with Ill-Conditioned Dynamics 

Even given the practical and reliable algorithm in Section 2, 

numerical calculation of optimal gains for system design models which 

include slow and fast modes can be difficult or impossible due to the 

numerical ill-conditioning of such models. In addition, the sensitivity 

of numerical procedures to ill-conditioning increases with the 

dimensionality of the system model. 

These considerations have motivated the use of singular perturbation 

theory (SPT) [14] for decomposing ill-conditioned linear systems into 

well-conditioned slow and fast subsystems. Loosely speaking, the 

singularly perturbed approximation of a system with asymptotically fast 

dynamics consists of approximating the fast modes as infinitely fast. 

Under this assumption, fast transients decay instantaneously, so that the 

fast states are replaced by an algebraic function of the slow states. 

Similarly, if one wishes a well-conditioned approximate model for the 
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fast dynamics, one approximates the slow states as being infinitely slow, 

compared with the fast. The slow states are then replaced by constant 

values at some boundary condition near which the fast behavior is of 

interest. We thus obtain two subsystems, each approximating a portion of 

the original model. This is also referred to as a "two time scale" 

approximation. It should be noted that this theory has been extended to 

systems where the fast dynamics are marginally stable [15]. For the 

problem considered here, however, interest centers on the case of 

closed-loop asymptotic stability. 

The singularly perturbed LQ full-state feedback regulator problem 

has attracted considerable attention [16-21]. Here, an SPT decomposition 

of the system dynamics leads to a complete separation of the regulator 

design into slow and fast subproblems. This very convenient feature does 

not exist in the case of singularly perturbed output feedback systems, 

occuring naturally only for a highly restrictive class of output 

structures [22,23]. In full-state feedback, each subsystem is stabilized 

through a dedicated gain matrix feeding back only the subsystem states. 

In output feedback, the slow and fast subsystems must both share a single 

gain matrix based on the system output. This requires that, in general, 

the dynamics of both subsystems must be accomodated simultaneously in the 

design. In fact, designing an output feedback controller based only on a 

low frequency "design model" may destabilize neglected fast states [24]. 

Section 3 provides a detailed development of the SPT decomposition 

of a closed-loop system with output feedback, and addresses various 

issues relating to the well-posedness of the design problem and of the 
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approximation. Section 4 describes the SPT approximation of the optimal 

output feedback problem and states a design procedure. Gains designed by 

this method provide a second order approximation to closed-loop integral 

quadratic performance. Unfortunately, the form of the necessary 

conditions for optimality dictate that systems of equations be solved for 

the dynamics of both subsystems simultaneously. 

The complication of simultaneously designing for the slow and fast 

subsystems can be circumvented when the input/output structures of the 

slow and fast subsystems exhibit rank deficiency. This situation is not 

as restrictive as it may sound. Subsystem I/O rank deficiency can occur 

even when none exists in the full-order system, since both lower order 

subsystems have the same number of inputs and outputs as the full system. 

In fact, the phenomenon is commonplace in models of systems which have 

many sensors and actuators. When this is the case, the use of combined 

control and observation spillover suppression can be employed in 

separating the subsystem control designs into separate tasks. This is 

examined in Section 5, and a two-step LQ design procedure is developed. 

The spillover suppression constraints are enforced through the use of 

penalty functions, so the theory can also be applied in situations where 

subsystem I/O matrices are only "nearly rank deficient." 

Section 6 briefly examines treatment of two time scale design of 

fixed-order dynamic compensators as an extension of the static gain case. 

A number of questions are raised which, hopefully, will help to motivate 

further work in this area. 

The work is summarized in Section 7. 
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SECTION 2 

OPTIMAL OUTPUT FEEDBACK DESIGN 

In this section, the optimal output feedback problem is formulated for 

a class of problems which includes the standard LQ case. A convergent 

sequential numerical algorithm for solving the necessary conditions for 

optimality is described. Because the algorithm provides a sequence of 

monotonically improving gains, the solution obtained at convergence is 

locally optimal. 

2.1 Problem Formulation and Necessary Conditions for Optimality 

We consider systems of the form 

x = Ax. + Bu x(O) = Xo 

where x E nand u E m, with output 

y=~ 

where YEP. The control has the form 

(2.1) 

(2.2) 

u = -Gy (2.3) 

The gain G is to be chosen to minimize 

J = f~xTQx + uTRu dt + y(G) (2.4) 

where Q = rTr such that the pair (r,A) is detectable, and R > O. In 

addition, it will be seen that, in order to avoid singularity in the 

necessary conditions for optimization problem, we must have 

p(C) = p (2.5) 

In (2.4), y(G) is any scalar function having a continuous gradient in G, 

and for which J is bounded below, for all G which render the closed loop 

dynamics (2.1-2.3) asymptotically stable. This class of performance 

index will find use in Section 5, when it is used to enforce conditions 
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leading to a two-stage two time scale output feedback design procedure. 

Also, in section 2.3 we illustrate how a performance index of the form 

(2.4) allows individual gain elements in an output feedback gain matrix 

to be zeroed. Many other applications doubtless exist. 

It is well known that the integral portion of J satisfies the 

relation 

f~xTQx + uTRu dt = tr{KxoxoT} 

where K ) 0 is the unique solution of 

S(G,K) = ATK + KA + Q + CTGTRGC = 0 
A 

A = A - BGC 

(2.6) 

(2.7) 

(2.8) 

and A is asymptotically stable. As suggested in [1], it is customary to 

relieve (2.6) of its dependence on Xo by assuming that it is uniformly 

distributed on the unit sphere; then the problem statement is modified 

slightly to that of minimizing E{J}. This amounts to replacing XoxoT in 

(2.6) by I. 

The minimization of (2.4) is now cast, as in [5], as a static 

optimization problem, in which the Lagrangian 

(G,K,L) = tr{K} + y(G) + tr{S(G,K)LT} (2.9) 

is minimized with respect to G, K and L, where L is a matrix of Lagrange 

multipliers. If the system (2.1-2.3) can be stabilized by output 

feedback, the first order necessary conditions for optimality are 

a~1 aG * = 0 aIR I aK * = 0 aIR I at * = 0 (2.10) 

where the *'s mean that the gradients are evaluated at the optimal values 

of G, K and L. In the sequel, the * notation is suppressed since the 

gradients are assumed evaluated at their optimal values unless specified 

otherwise. Defining the gradient of y(G) 
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ay(G) = YG(G) 
aG 

the expansion of (2.10) is 

RGCLCT - BTKLCT + ~G(G) = 0 

AL + tAT + I = 0 

S(G,K) = 0 

From (2.12), the optimal value of G will satisfy 

G* = R-l[BTKLCT - YG(G)](CLCT)-1 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where (CLCT)-1 exists because of (2.5) and the fact that L > 0 in (2.13). 

2.2 A Convergent Numerical Algorithm 

The following algorithm suggests itself for solving (2.12-2.14): 

o. Choose any G such that A is Hurwitz. Set i = O. 

1. Solve (2.13,2.14) for Ki and Li. 

2. On the basis of (2.15), evaluate 

~Gi ~ R-l[BTKiLiCT - ~G(Gi)](CLiCT)-1 - Gi 

3. Set 

Gi+l = Gi + ~Gi 

where a e: (0,1] is chosen to ensure that 

Ji+l < Ji = tr{Ki} + y(Gi) 

4. Se t i = i + 1 and go to 1. 

(2.16) 

(2.17) 

(2.18) 

This is a very simple procedure to implement, since it only involves the 

solution of two Lyapunov equations. The unfortunate necessity of 

supplying an initial stabilizing gain for step 0 is shared by other 

sequential algorithms currently available. In [25], a simple procedure 

for obtaining an initial stabilizing gain is given. 

In Appendix B, the following theorem is proven: 
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Theorem 2.1: For the optimal output feedback problem defined in 

(2.1-2.4), let the following conditions be satisfied: 

1) 1i = [G : A is Hurwi tZ] :f:. C/J 

11) p{C} = p 

iii) Q = rTr such that (r,A) is detectable; R > 0 

iv) y(G) is~l for all G e: 1i 

v) If y(G) + -co for all nG e: 1i n + co, then it does so in such a 

way that !r(G) l/tr{K} < 1 

If (i-v) are true, then the sequence [Gi :1i, i = 0,1, •.• ] of 

stabilizing gains defined by (17) exists for any Go e:1i, such that 

(2.18) is satisfied at each iteration. Moreover, the sequence 

converges to a stationary point in J. 

Note that (i-iii) are the standard conditions required for solving 

the LQ optimal'output feedback problem. Loosely speaking, (v) means 

that, in choosing y(G), one must be certain that it does not become 

negatively unbounded at a faster rate than tr{K} becomes positively 

unbounded for aGO + co. Recall that, because of (iv), y(G) cannot assume 

unbounded values for finite G. It should also be noted that, while the 

theorem does not rule out the theoretical possibility of convergence to a 

saddle point in J, encountering a saddle in practice would only slow the 

convergence to a local minimum of J, since the saddle point would be 

unstable in G. 

2.3 Numerical Example 

This example illustrates the breadth of the class of problems which 

can be solved using this algorithm. A legitimate criticism of modern 

control theory is that multivariable techniques stress feeding back all 

of the outputs to all of the inputs. Often, this is needless and costly 
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from an engineering standpoint. Recently, in the context of the eigen-

structure assignment problems [26-29], and in the context of constrained 

optimization theory [30], attention has been paid to zeroing selected 

elements of the multivariable gain matrix. This feature provides a 

considerable measure of real-world practicality, insofar as it permits 

the designer to balance the dynamic performance of the system against the 

structural complexity of the controller. 

In the context of our theory, the ijth element of of G is zeroed by 

defining 

\) 2 
y(G) = 2' gij (2.19) 

where \) > 0 is sufficiently large to result in suppression of the gain 

element. The gradient of (2.19) is 

YG(G) = {aqrgqr } 

aqr = OqiOrj 

(2.20) 

(2.21) 

This penalty function was applied to the problem of designing a 

constrained output feedback regulator for the lateral dynamics of an 

L-I0l1 aircraft at cruise flight condition, taken from [29]. The state 

vector is 

Or rudder deflection (rad) 

oa aileron deflection (rad) 

~ bank angle (rad) 

x = I r yaw rate (rad/sec) 

p roll rate (rad/sec) 

B sideslip angle (rad) 

~I washout filter state 

10 



The system matrices are: 
r 

-20 0 0 0 0 0 0 

0 -25 0 0 0 0 0 

0 0 0 0 1 0 0 

A = -0.744 -0.032 0 -0.154 -0.0042 1.54 0 

0.337 -1.12 0 0.249 -1.0 -5.2 0 

0.02 0 0.0386 -0.996 -0.000295 -0.117 0 

0 0 0 0.5 0 0 -0.5 

r: 0 0 0 0 0 :] BT = 
25 0 0 0 0 

... 
0 0 0 1 0 0 -1 

0 0 0 0 1 0 0 
C = J 

0 0 0 0 0 1 0 

0 0 1 0 0 0 0 
L 

The system inputs and outputs are: 

[::J rudder command (rad) 
u ::0 

aileron command (rad) 

-

:wol washed out yaw rate 

roll rate 
y = 

e sideslip angle 

~ J bank angle 
I.... 

The eigenvalues of the A matrix are: 

Al = -20.0 rudder mode 

A2 = -25.0 aileron mode 

A3,4 = -0.0884 ± jl.272 dutch ro11 mode 

A5 = -1.085 roll subsidence mode 

11 



A6 

A7 

= -0.00911 

= -0.5 

spiral mode 

washout filter mode 

For the penalty matrices, 

Q = diag[1 1 30 30 5 5 11 R = diag [1 11 

the optimal output feedback gain is 

[-2.60 -.396 2.72 -.053 J 
G* = 

-.998 -2.41 4.36 -3.74 

resulting in the closed-loop eigenvalues 

Al = -18.0 rudder mode 

A2 = -22.0 aileron mode 

A3,4 = -1.20 ± j1.42 du tch roll mode 

A5,6 = -1.81 ± j. 734 roll mode 

A7 = -.746 washout filter mode 

which closely approximate the values in [291. Now, optimality aside, due 

to the near-decoupling of yaw-related (or,r,e) and roll-related (oa,~,~) 

states, there is not much to be gained in performance by feeding rand 

8 to oac' or p and ~ to orc. The gain elements corresponding to these 

feedback loops - the (1,2), (1,4), (2,1) and (2,3) positions of G - were 

suppressed by employing (2.19). This structure corresponds to F(4) in 

[29]. In this case 

v 2 2 2 2 
y(G) = ~g12 + g14 + g21 + g23) 

[ 

0 g12 
YG(G) = v 

g21 0 g23 

o g:4 ] 

The variation of integral quadratic performance with v is shown in 

Figure 1. For v = 1000, the optimal suppressed gain matrix is: 

[

-2.78 

G: = -.0009 

-.001 3.26 -.004 ] 

-5.87 -4.70 .003 

12 
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INCREASING VALUES OF v. 
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resulting in the closed-loop eigenvalues: 

Al = -17.7 rudder mode 

A2 = -17.7 aileron mode 

A3,4 = -1.19 ± j1.38 du tch roll mode 

A5 = -1.37 roll mode 

A6 = -6.95 roll mode 

A7 = -.687 washout filter mode 

Note the actuator and the washout filter modes are close to their 

open-loop values. This illustrates one major advantage in output feed­

back, in that it does not speed up actuator modes, which is a problem 

commonly encountered in full state feedback. The dutch roll mode is 

relatively unaffected by gain suppression. The roll mode is overdamped 

by gain suppression; however, the roll response is dominated by A5, 

which results in approximately the same settling time as the complex 

modes A5,6 without gain suppression. Thus, the impulse responses of both 

closed-loop systems are essentially the same. The minor degradation in 

the integral quadratic cost (7%) indicates that this is accomplished with 

little increase in control effort. Simply zeroing (1,2), (1,4), (2,1) 

and (2,3) elements in G* has little effect on the closed-loop 

eigenvalues; however, the integral quadratic performance is 157, which 

corresponds to a 17.4% increase. 

From this example it can be seen that this approach to design 

permits total control over the feedback structure while optimizing the 

individual gains for an integral quadratic cost. Insofar as this proce­

dure is simple to implement, it represents a significant step forward in 

the flexibility and applicability of optimal output feedback design. 
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SECTION 3 

SPT IN OUTPUT FEEDBACK 

In this section SPT is employed to decompose an ill-conditioned 

closed-loop output feedback system into its slow and fast subsystems. 

In the process of doing so, we gain some insight into the well-posedness 

of the SPT-approximate design problem. 

3.1 Problem Formulation 

Consider the system 

xl = A11x1 + A12x2 + B1 u x1(0) = x10 xl e: Rn1 (3.1) 

e:x2 = A21x1 + A22x2 + B2u x2(0) = x20 x2 e: Rn2 (3.2) 

where 0 < e: « 1, with output 

y = C1x1 + C2x2 ye:RP (3.3) 

The feedback law is 

u = -Gy ue:Rm (3.4) 

If A22 is invertible, a reduced order approximation of (3.1-3.3) can be 

obtained by setting e: = 0 in (3.2): 

where 

~ = Ao + Bou 

Y = Co~ + Dou 

-1 Ao = All - A12A22A21 
-1 

Co = C1 - C2A22A21 

~e:Rnl 

-1 
Bo = B1 - A12A22B2 

-1 
Do = -C2A22B2 

(3.5) 

(3.6) 

(3.7) 

Substituting (3.4) in (3.1,3.2) and setting e: = 0, the reduced feedback 

control is expressed as 

u = -GoCo~ (3.8) 

GO = (I + GDo)-lG (3.9) 
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which necessitates the assumption 

p(I + GOo) = m 

The inverse of (9) is 

G = GO(I - OoGo)-l 

(3.10) 

(3.11) 

The following lemma states that satisfaction of the invertibility 

conditions for (3.9) and (3.11) is simultaneous, and that this guarantees 

local one-to-one correspondence between GO and G. The proof is given in 

Appendix C. 

Lemma 3.1: 

p(I - OoGO) = p iff p(I + GOo) = m; 

furthermore, these conditions are necessary and sufficient for GO 

and G to be locally one-to-one. 

The next lemma, also proven in Appendix C, assures that (3.10) will hold 

for any G not rendering the fast closed-loop subsystem singular. 

Lemma 3.2: Given that A22 is nonsingular, 

p(I + GOo) = miff p(A22 - B2GC2) = n2 

In summary, Lemmas 3.1 and 3.2 assure that the inverses in 

(3.9,3.11) exist for any realistic design problem. Indeed, if 

A22 - B2GC2 were singular, the fast subsystem dynamics would not be 

"fast". It should be noted that if (3.9) and (3.11) did not define a 

unique correspondence between GO and G, reduced order approximations 

would have very little utility in output feedback design. 

3.2 Asymptotic Properties 

The closed-loop system matrix for (3.1-3.4) takes the form 
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A = 
[

All - BIGCl 

(A21 - B2GCl) I e 

A12 - BIGC2 ] 

(A22 - B2GC2)h 
(3.12) 

Following [31], construct an invertible transformation which block 

diagonalizes A: 

[:] ~ T(d [::] (3.13.a) 

T( 0) _ [I-:HN -;a] r-l(e) = (3.13.b) 
[ 

I eH ] 

-N I-eNH 

In (3.13), ~ is exclusively the slowly varying portion of the closed loop 

state and n is the fast transient. After some algebra, it can be shown 

that 

-1 
N(e) = A22(A21 - B2GoCo) 

-1 -2 2 + e(I+A22B2GoC2)A22(A21-B2GoCo)(Ao-BoGOCo) + O(e ) 
-1 H(e) D (A12 - BoGoC2)A22 + O(e) 

(3.14) 

(3.15) 

These expressions can easily be verified from [31], if one recalls the 

-1 definitions in (3.7) and uses the fact that, if A22 exists, 

1 -1 -1 (A22 - B2GC2)- D (I + A22B2GoC2)A22 (3.16) 

Expression (3.16) is obtained by a straightforward application of (A.5). 

Using (3.13) in (3.12), the dynamics are decoupled: 

~ = [(Ao-BoGoCo)+O(e)]~ ~(O) = xlO 
• 

en = [(A22-B2GC2)+O(e)]n -1 
nCO) = x20-A22(A21-B2GoCo)xl0+O(e) 

(3.17) 

(3.18) 
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so that, for e sufficiently small, 

~(t) = exp[(Ao - BoGoCo)t]~(O) + O(e) 

net) = exp[(A22 - B2GC2)t/e]n(0) + O(e) 

Employing r-1(e) from (3.13) to transform back to xl, x2, we obtain 

x1(t) = ~(t) + O(e) 

-1 
x2(t) = -A22(A21 - B2GoCo)~(t) + net) + O(e) 

Similarly, r-1(e) transforms u as defined by (3.3,3.4): 

u(t) = -GoCo~(t) - GC2n(t) + O(e) 

This development is summarized in the following theorem: 

Theorem 3.1: If A22 - B2GC2 is Hurwitzian, then (3.21-3.23) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

describe the full order system and control trajectories for all 

finite t ) O. Additionally, if Ao - BoGoCo is Hurwitzian, then 

(3.21-3.23) are true for all t ) O. 

An immediate (and crucial) consequence of this theorem is that, for 

sufficiently small e, output feedback stabilizability of the full system 

(3.1-3.4) is equivalent to joint output feedback stabilizability of both 

subsystems. Note that the output feedback problem does not naturally 

decompose into separate slow and fast designs, as in [18]; instead, GO 

and G must stabilize the separate systems (3.17,3.18) while satisfying 

the hard constraint (3.9). 
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SECTION 4 

NEAR-OPTIMAL OUTPUT FEEDBACK REGULATION 

In this section, for the ill-conditioned system dynamics of Section 3, 

the block diagonalizing transformation T(e:) from (3.13) is applied to the 

quadratic performance criterion of Section 2. If the slow subsystem 

measurements are nonredundant, then minimizing the transformed criterion at e: 

= a results in a gain solution which yields a second order approximation to 

optimal full system performance, while eliminating the dimensionality and 

ill-conditioning difficulties of minimizing directly for the full system 

dynamics. 

4.1 Definition of the Approximate Problem 

The performance index for the full order system (3.1-3.4) is 

J = f~[XT xT] Q xl + uTRu dt 
a l' 2 x2 

(4.1) 

where R > a and Q = rTr such that (r,A) is detectable. Q is compatibly 

partitioned as 

Q = [Q2 Q~] 
Q2 Q3 

(4.2) 

Assuming that the closed-loop system matrix A in (3.12) is asymptotically 

stable, than (4.2) is equivalent to 

J = tr{KXox~} 

where x~ is [xIo,x~oJ, and K ~ a is the unique solution of 

ATK + KA + Q = a 

[ T] K1 e:K2 

K = oK2 oK3 

(4.3) 

(4.4) 

(4.5) 
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Q = 
T 

[ 

Q1 + C1GTRGC1 

Q2 + CIGTRGC1 

T T ] Q2 + C1GTRGC2 

T T T Q3 + C2G RGC2 
(4.6) 

The problem of minimizing (4.3) with respect to G can be decomposed by 

using r 1( e:) from (3.13) to transform the coordinates from x1,x2 to ~ and 

n. After transformation, (4.4) decouples into: 

-T- - - -Sl(Go,K1,e:) = AOK1 + K1Ao + Q1 = 0 

-T - - - -A22K2 + K2Ao + Q2 = 0 

-T - - -S3(G,K3,e:) = A22K3 + K3A22 + Q3 = 0 

Ao = Ao - BoGoCo + O(e:) 

A22 = A22 - B2GC2 + O(e:) 

_ T T T 
Q1 = Q1 - NTQ2 - Q2N + NTQ3N + CoGORGOCo + O(e:) 

Q2 = Q2 - Q3N + CIGTRGOCo + O(e:) 

Q3 = Q3 + CIGTRGC2 + O(e:) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

As suggested in [1], it is customary to remove the dependence of 

(4.3) on initial conditions by assuming that they are uniformly distribu-

ted on the unit sphere. The problem statement is then modified slightly 
T to that of minimizing E{J}, which amounts to replacing xoxo in (4.3) by 

the identity matrix. For the two time scale problem, we instead assume 

that [~T(O),nT(O)] is uniformly distributed on the unit sphere. This is 

because, under transformation by T(e:) at e: = 0, the former assumption 

leads to 

20 

E{ [~(O)J [~T(O)nT(O)l} = T(O)E{XoXo}TT(O) 
n(O) 

= [: 
NT ] 

I + NNT (4.15) 



which is inconveniently complicated. It should be noted from (4.3,4.5) 

and (3.13) that the difference between the costs resulting from either 

assumption is only 0(£); further, the results from this section can be 

extended to any assumption on the initial condition. 

The transformed cost for this problem is 

J = tr{Kl} + £tr{K3} (4.16) 

Now, note that the fast subsystem performance measure is, not unexpected­

ly, 0(£). At € = 0, where we would like to approximate the system dyna­

mics, there is no cost associated with fast dynamics. On the other hand, 

minimization of tr{Kl(£ = O)} with respect to GO must be done over the 

set of gains which would also stabilize A22, subject to (3.11). In order 

to do this in an orderly way, we instead minimize 

JO = tr{Kl(£ = O)} + £Otr{K3(£ = O)} (4.17) 

where £0 is fixed as the value of £ in (3.2). In fact, minimizing (4.17) 

allows simultaneous near-optimization of the slow and fast dynamics for 

essentially the same level of computational effort that would have been 

required to minimize tr{Kl(£ = O)} alone, subject to the asymptotic sta­

bility of the fast subsystem. This situation differs with 

that seen in the singularly perturbed state feedback optimization problem 

[18]. There, because of the complete decoup1ing"of the slow and fast 

subsystems, the control designer has the option of only calculating gains 

for the slow dynamics, if the fast dynamics are open-loop stable and if 

an 0(£) approximation to optimal system performance is satisfactory. 

ENen if the fast dynamics require stabilization, this is done as a task 

totally divorced from the slow subsystem design, and without using 
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information about E. Here, in the output feedback problem, the 

constraint (3.9) inseparably links the slow and fast subproblems. 

It is fairly obvious that a gain G minimizing JO, when applied to 

the full-order dynamics (3.1-3.4), will provide an O(E) approximation to 

actual optimal performance. In cases where p{Co} = p, however, it is 

possible to make a stronger statement about the near-optimality of the 

approximate gain: 

Theorem 4.1: Given that p{C} = p, assume that p{Co} = p. Let G* 

be such that J(G*) ( J(G) for J given by (4.16) and the dynamics 

-(3.1-3.4). Let G be such that JO(G) ( JO(G) for JO given by (4.17) 

and the dynamics (3.17,3.18) at E = 0. Then, 

J(G) = J(G*) + 0(E2) (4.18) 

Theorem 4.1 is proven in Appendix D. 

4.2 TWo Time Scale Necessary Conditions 

Following [5], minimization of JO is recast as minimization of the 

Lagrangian 

- T T T 5£= Jo + tr{SI(Go,Kl,O)LIl + tr{S3(G,K3,0)L3} + tr{SG(G,GO)LG} (4.19) 

with respect to G, GO, Kl, K3, Ll, L3 and LG at E = 0. In (4.19), Ll, L3 

and LG are matrices of Lagrange multipliers, and 

SG(G,GO) = GO - G + GDoGo = ° (4.20) 

from (3.9). Since the rest of the development takes place at E = 0, all 

notation relating to E will be suppressed for simplicity. The necessary 

conditions for optimality are determined by employing trace gradient 

identities found in [5]: 

a5£ -= 
aG 

22 
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RGC2L3C2 

T- T 1 
B2K3L3C2 - ZLG(I - DoGo)T = ° (4.21) 



as£ 
-= 
aG~ 

T T- TIT 
RoGoCoL1Co - [BoKl - ~]L1Co + ~I + GDo) LG = 0 

T T -1 -1 
Ro = R + B2A22 Q3A22B2 

(4.22.a) 

(4.22.b) 

T T -1 -1 
~ = B2A22 (Q2 - Q3A22A21) (4.22.c) 

as£ A AT -=- = AoL1 + L1 Ao + I = 0 (4.23) 
aKl 

as£ -=- = A22L3 + L3A22 + eO! = 0 (4.24) 
aK3 

as£ 
aLl = Sl(Go, K1, 0) = 0 (4.25) 

aIR ~ 
aL3 = S3(G, K3, 0) = 0 (4.26) 

aIR - = SG(G GO) = 0 
aLG ' 

(4.27) 

As was mentioned in Section 2, singularity in the necessary 

conditions is avoided if one makes the assumption 

p{C} = p (4.28) 

Although this by no means assures that Co and C2 individually have full 

rank, note that 

p{[Co IC21} = p{CT(O)}1 = p (4.29) 
GO = 0 

so that the full rank of the total system output is preserved under the 

block diagonalizing transformation of Section 3. This fact is exploited 

in the following subsection, which presents an adaptation of the numeri-

cal algorithm of Section 2.2 to the computation of near-optimal output 

feedback gains. 

4.3 Computational Algorithm 

The following algorithm can be used to calculate gains satisfying 
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the necessary conditions (4.21-4.27). This is a direct adaptation of the 

algorithm of Section 2.2 and shares its convergence properties. 

o. Choose any G such that A22 - B2GC2 is Hurwitzian and Ao - BoGoCo 

1. 

is Hurwitz subject to (3.9). Set i = O. 

i i -i -i Solve (4.23-4.26) for Ll, L3, Kl, K3 

2. If i is even, solve (4.22) and (4.21) for 

La = 2(1 + GiDo)-IT(B~Ki + ~ - Ro(GO)iCo]LtC~ 
i -I T-i i T 1 i i TiT + i ~G = R (B2K3L3C2 + l LG(I - Do(GO) ) ](C2L3C2) - G 

If i is odd, solve (4.21) and (4.22) for 

(4.30) 

(4.31) 

i T-i i i T i-IT LG = 2(B2K3 - RG C2]L3C2(I - Do(GO) ) (4.32) 

(~Go)i = ~1(B~Kf+~)Lic~ - ~(I+GiDo)TLa](CoLfc~)+ - (Go)i (4.33) 

3. If i is even, set 

Gi+l = Gi + ~Gi • (Go)i+l = (I + Gi+lDo]-IGi+l (4.34) 

or, if i is odd, set 

(Go)i+l = (Go)i + a(~Go)i , Gi+l = (Go)i+l(I-Do(Go)i+l]-1 (4.35) 

where a € (0,1] is chosen to ensure that 

° ° -i -i Ji+l < Jl = tr{Kl} + ~Otr{K3} (4.36) 

4. Set i = i + 1 and go to 1. 

The only functional difference between this algorithm and that in Section 

2.2 is that, because of the potential for subsystem rank deficiency, 

columns of the transposed gain matrix which fall into im{C2} are 



incrementally optimized on even iterations, and those which fall into 

im{Co} are incrementally optimized on odd iterations. Assuming that C 

has full rank, the optimization at convergence will extend ~er the 

entire p-dimensiona1 range of C. If Co has full rank, then the algorithm 

simplifies to using (4.23,4.33) and (4.35) at each iteration with 

(CoLtC~)+ replaced by (CoLtCo)-I. 

4.4 Numerical Example 

In [18], a system of the form (3.1-3.3) was examined, where 

.400 

[: A12 = All :::I 

o 

A21 :::I [: -.5:4] A22 = 

Cl :::I [: :] C2 = 

o : ] Bl = [: ] 
- [:] 

.345 

[

-.465 .262] B2 

o -1 

[: : ] 
For the output feedback control structure (3.4), optimal and near-optimal 

gains (minimizing (4.16) and (4.17), respectively) were calculated for 

Q = diag[O.5, 0, 0.5, 0] R = 0.5 

at several values of €. For J given by (4.16), the difference 

J(G*) - J(G) is displayed as a function of € in Figure 2. It can be seen 

that the error in performance optimality due to the approximate gain is, 

indeed, 0(€2), as stated in Theorem 4.1. 
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SECTION S 

GAIN SPILLOVER SUPPRESSION IN TWO TIME SCALE DESIGN 

Though the LQ design procedure described in the last Section 

provides a second-order approximation to optimal closed-loop performance, 

it does so at some expense in complexity. This is primarily a result of 

the necessity of solving systems of equations for both subsystems at 

once. In this Section the design problem is decomposed into two separate 

subproblems through exploiting rank deficiency in the slow and fast 

subsystem input and output matrices. This is done by enforcing the two­

way control and observation spillover suppression constraints. For 

brevity, this will be referred to as gain spillover suppression (GSS). 

The GSS constraints are enforced in an LQ-based design procedure by means 

of penalty functions adjoined to standard integral quadratic cost 

functions based on ~ and n. 

The primary emphasis in this Section is on procedural simplicity; 

therefore our attention is focussed on stabilization of the slow and fast 

subsystems rather than designing toward a performance measure based on 

the full-order system. In other words, we design to satisfy the 

following goals: 

(Ao - BoGOCo) is Hurwitz 

(A22 - B2GC2) is Hurwitz 

(S.l) 

(S.2) 

subject to (3.9). From Theorem 3.1, we are assured that a gain design 

satisfying (S.1,S.2) will stabilize the full-order system (3.1-3.4) for 

sufficiently small € and that, in fact, ~e closed-loop spectrum of the 

full-order system will be 

a = a[(Ao - BoGOCo) + o(€)]~a[(A22 - B2GC2) + O(€)]/€ (S.3) 
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5.1 Spillover Suppression Conditions 

Here, conditions are given for using GSS to separate the 

design of G into a two step process: One gain matrix, Gl, is designed 

so as to satisfy (5.1) without disturbing the eigenstructure in (5.2). 

The other, G2, is designed to satisfy (5.2) without affecting (5.1). The 

implemented gain takes the form 

G = Gl + G2 (5.4) 

It will be shown that this particular ordering of the design steps is 

necessary, and that it does not impose any additional restriction on the 

implemented gain. 

Suppose that A22 is "sufficiently" stable. In this case, let 

G2 = 0, so that G = Gl in (5.4). In order to avoid gain spillover into 

the fast dynamics, we require 

B2GIC2 = 0 (5.5) 

The following lemma provides an easily enforced constraint for satisfying 

(5.5). This lemma and Lemmas 5.2 and 5.3 are proven in the Appendix E. 

Lemma 5.1: Condition (5.5) holds iff 

o 
B2GIC2 = 0 

where 

Gy = (I + GIDo)-IGl 

(5.6) 

(5.7) 

Moreover, if (5.6) holds, then the inverse in (5.7) exists and is 

given by 

(I + GIDo)-1 = (I-GIDo) (5.8) 

The slow susbsystem design thus consists of satisfying (5.1) and (5.6), 
o 0 

where GO = Gl in (5.1). Once a satisfactory Gl is obtained, Gl is calcu-

lated using 
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o( 0 -1 o( 0) G1 = G1 I - DoG1) = G1 I + DoGl (5.9) 

The second equality of (5.9) can easily be verified from (5.6) and the 

form of Do in (3.7) Also, note from (5.8) and the form of Do that, if one 

only exploits rank deficiency in the fast subsystem input matrix; that 

is, if one insists that 

o 
B2G1 "" 0 (5.10) 

o then G1 = G1, so that G1 may be directly designed to stabilize Ao-BoG1Co 

subj ect to the control spillover constraint (5.10). 

Now, suppose that the fast dynamics require improvement. In this 

case, G2 is designed to stabilize the fast dynamics without spilling over 

into the slow dynamics. The design criteria are (5.2) and 

Bo[I+(G1+G2)Do]-1(G1+G2)Co = BoG~Co (5.11) 

where the spillover condition (5.11) is obtained from (3.9), (5.1) and 

(5.4). One immediately notes that, if Do = 0, (5.11) collapses to a form 

which mirrors the slow subsystem GSS condition: 

BoG2Co "" 0 (5.12) 

The following Lemma provides a necessary and sufficient condition on G2 

for satisfaction of (5.11) 

Lemma 5.2: Condition (5.11) holds iff 

Bo(I-G1Do)G2(I-DoG1)Co = 0 (5.13) 

Despite the fact that (5.13) is dependent on G1, the slow subsystem gain 

has no effect on the fast subsystem dynamics: 

Lemma 5.3: Given that G1 satisfies (5.5) and G2 satisfies (5.13), 

B
2
G

2
C

2 
is not a function of G1. 

Lemma 5.3 implies that no flexibility is lost by adopting a two-step 
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design procedure in which G1 is treated as a constant during the design 

of G2 satisfying (5.13). The set of admissible stabilizing G2 is limited 

only by ker{Bo} and ker{CoT}. On the basis of the preceding development, 

the following theorem is stated: 

Theorem 5.1: Let o G1 be an asymptotically stabilizing feedback gain 

for the reduced system {Ao,Bo,Co} which satisfies the GSS constraint 

(5.2). Let G2 be an asymptotically stabilizing feedback gain for 

the fast subsystem {A22,B2,C2} satisfying the GSS constraint 

(5.13). Then, 

o 
G = G1(I + DoG10 ) + G2 (5.14) 

stabilizes the full-order system (3.1-3.4) for sufficiently small E. 

Moreover, the closed-loop spectrum will be given by (5.3). 

An easily implemented approach to enforcing the GSS conditions (5.5) and 

(5.13) is developed in the next section. 

5.2 LQ Design Procedure 

In this section, LQ optimal control theory is applied to the problem 

of determining G that stabilizes the matrix 
A 

A = A - BGC (5.15) 

subject to the constraint 

MGP = 0 (5.16) 

which corresponds to the general form of the conditions stated in the 

theorem. Under the assumption that a solution exists, this is done by 

defining the performance index 

J o = E {!~xTQx + uTRu dt} + vnMGPn 2 
xo 

for the dynamics 

x = Ax + Bu x(O) = Xo 
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u = -GCx ( 5 • 19) 

In (5.17), Q = rTr such that {r,A} is detectable and R > O. The notation 

Exo{.} denotes expectation with respect to the random initial state Xc 
where, for simplicity, it is assumed that Xc is uniformly distributed on 

T the unit sphere, so that E{xoxo} = I. The notation 11.11 denotes the inner 

product matrix norm 

nwn 2 = tr{WTW} (5.20) 

and v ) 0 is chosen sufficiently large that nMGPn + O. Following [5], 

the Lagrangian is written: 

~(G,K,L) = tr{K} + tr{S(G,K)LT} + vnMGPn 2 

S(G,K) = ATK + KA + Q + CTGTRGC = 0 

The first-order necessary conditions for optimality are: 

~aGI* = 0 a21aKI* = 0 ~/.aLI* = 0 

(5.21) 

(5.22) 

(5.23) 

where the *IS indicate that the gradients are evaluated at the optimal 

values of G, K and L. The * notation is henceforth suppressed, since the 

gradients are assumed evaluated at their optimal values unless specified 

otherwise. Expanding the gradients in (5.23), we have: 

-BTKLCT + RGCLCT + vMTMGPpT = 0 

AL + tAT + I = 0 

S(G,K) = 0 

(5.24) 

(5.25) 

(5.26) 

These necessary conditions can be solved by using the algorithm described 

below. This algorithm satisfies the sufficient conditions for numerical 

convergence given in Section 2, is simple to implement, and has 

demonstrated a "fast" rate of convergence in practice. 
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Note: 

A 

O. Choose any G rendering A Hurwitzian. Set i = O. Set G = GCc+ 

1. Solve (5.25,5.26) for Li, Ki 

2. On the basis of (5.24), evaluate 

6Gi = R-l[BTKiLiCT-vMTMGippT] (CLiCT)+ -Gi (5.27) 

3. Set 

Gl i+l = Gi + MGi (5.28) 

where a € (0,11 is chosen to ensure that 

Ji+l < Ji = tr{Ki} + vnMGipn (5.29) 

In (5.27) and step 0, (.)+ denotes the pseudoinverse. In the 

case where p(C) = p, cc+ = I and (CLCT)+ = (CLCT)-I; however, 

this is not generally the case. Using the characteristics of 

the pseudo-inverse in Appendix A, it can be shown that the 

columns of the transposed incremental gain (6Gi)T will always 

lie wholly in im{CT}. Because of this fact, the algorithm 

satisfies the requirements in Theorem 2.1 for convergence. 

5.3 Numerical Example 

The design procedure of Section 5.2 is demonstrated on a model of a 

large flexible space structure. Data for this system came from [321. 

o 1 o o 
-(.42)2 0 o o 

All = Al2 = 0 
o o o 1 

o 0 -(.43)2 0 
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model Do = O. In the absence of control feedthrough the GSS constraint 

for the fast subsystem collapse to the form (5.12). 

were: 

The penalty weights employed in the slow and fast subsystem designs 

Qo = diag[O, 0.065, 0, 0.065] 

Q2 = diag[O, 1.3, 0., 1.0] 

Ro = I 

R2 = I 

Figure 3 shows the upper half plane closed-loop eigenvalues due to G 

formed from optimal subsystem designs without GSS (vo = v2 = 0). The 

Figure also displays the intended closed-loop eigenvalue locations for 

the slow and fast subsystems. Note that the gain spillover distorts the 

response of the full-order system, tending to destabilize two of the 

modes. Figures 4 and 5 show the variation of integral quadratic 

performance and spillover penalty for the slow and fast subsystems, 

respectively. Figure 6 shows the upper half-plane closed-loop 

eigenvalues for the gain reSUlting from choosing Vo = 10 and v2 = .0001 

for design values. The degradation in integral quadratic cost due to the 

constraint of GSS for the slow subsystem was less than 1.8%. The degra­

dation in the fast subsystem was negligible. 
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SECTION 6 

TWO TIME SCALE DYNAMIC COMPENSATION 

In this section, the static gain theory developed in Sections 3-5 is 

extended to the case of output feedback regulators which include dynamic 

elements in the feedback structure. The approach taken here is a 

straightforward adaptation of the standard approach used in dynamic 

compensation problems which employ state variable methods [6,7,33,34]: 

Slow and fast compensator states are adjoined to the slow and fast plant 

states so that, in essence, the compensator becomes a subsystem of the 

plant with full state output. The important feature here is that the 

compensator has the same two time scale character as the plant, and is 

decomposed into two subsystems with it. In [36] an analog of the two 

time scale fixed-order compensator is examined - the singularly perturbed 

Kalman filter. There, it was shown that, in addition to a complete 

separation of the slow and fast subsystem control designs, the filter 

dynamics also separate. This results in separate filters for each 

subsystem. It will now be seen that, for the fixed order case, "almost" 

separate compensators may be designed for each subsystem - separate in 

the sense that, although they both use the same static gain feedback 

matrix, they do not share any dynamic elements. 

The control law takes the form: 

Uc = -Gy - Hlzl - H2z2 (6.1) 

zl = -Pllzl - P12z2 - NlY zl € R nZl (6.2) 

€Z2 = -P21 z1 - P22z2 - N2Y z2 e: R nZl (6.3) 

where y is the system output defined in (3.3). In order to apply the 
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results of Section 3, the slow and fast plant and compensator dynamics 

are adjoined by defining 

T T T 
vI = [xl, zil 

T T T 
v2 = [x2, z2] 

which gives the following system structure: 

[~:] = [1111 
\0112 

with output 

where 

Yc = [Sl 

[Sl S2] = 

[::] . 

[

\0111 

\0112 

\01
121= 

\o122J 

1112 ] 

[::] [::] + 
\0122 

S2] 

[::] 

Cl 0 C2 

0 I 0 

0 0 0 

B1 0 0 

0 I 0 
---------
B2 0 0 

0 0 I 

All 0 A12 0 

0 0 0 0 
--------------------
A21 0 A22 0 

0 0 0 I 

(6.4) 

-
Uc (6.5) 

(6.6) 

0 

0 

I (6.7) 

(6.8) 

(6.9) 

The introduction of I in the definition of \0122 renders it invertible, for 

invertible A22. The feedback law now becomes 

U c = -Gc Yc (6.10) 
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Gc = 

G 

Nl 

HI 

P11 

H2 

P12 

N2 P21 P22 + I 

(6.11) 

Note that by expressing the compensator in this manner, one can directly 

apply the static gain theory of Sections 2-5. Decoupling the closed-

loop dynamics of (6.4-6.11) by a transformation analogous to (3.13) 

results in 

- -0-
~c = [(Wo-IToGcSo) + O(E)]~C 

Enc = [(W22-IT2GcS2) + O(E)]nc 

where 

Yo = [:0 :] ITo = 

and 

Go HI H~ 
-0 
Gc = Nl 

0 
Pu 

0 
P12 

N~ 0 
P21 

0 
P22 

The relation analogous to (3.9) is 

-0 - - -
Gc = (I + Gc~o)-IGc 

Do o o 

~o = o o o 

o o -I 

[

BO 0 0] 
o I 0 

Co 0 

(6.12) 

(6.13) 

So = I 0 I I (6.14) 

o 0 

(6.15) 

(6.16) 

(6.17) 
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At € = 0, the closed-loop matrices (6.12,6.13) are 

- -0-
Wo - IIoGcSo = 

[ Ao 
- BoGoCo 

o 
-NICo 

W22 _ IT2GcS2 = [A22 - B2
GC

2 
-N2C2 

-B:HI ] 
-PU 

-B2H2 ] 

I - P22 

(6.18) 

(6.19) 

Note that in (6.18) and (6.19), the closed-loop subsystem dynamics do not 

involve any of the cross-coupling terms between the slow and fast compen-

sator states. This system structure is displayed in Figure 8. An 

examination of this Figure suggests a simplified design problem: Given 

the input and output matrices 

IIo= [:0 :] [
Co 0] 

So = 
o I 

(6.21) 

II2 = [:2 :] [
C2 0] 

S2 = 
o I 

(6.22) 

design 

G~ = [GO 
NI 

HI] 
PI1 

(6.23) 

o to stabilize Wo - IIoGcSo , and design 

Gc = 
[

G H2 ] 

N2 P22 
(6.24) 

to stabilize W22 - II2GcS2, where G and GO are linked by a constraint. 

After the designs have been completed, reconstruct the implementation 

o compensator matrix Gc in some manner from the elements of Gc and Gc • 
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It turns out that if the rank conditions (3.10) and 

P{P22} = nZ2 (6.25) 

hold, then the design problem can be decomposed in this manner, without 

imposing any additional constraint on the final solution. From Lemma 

3.2, the inverse in (6.16) exists as long as the fast subsystem plant! 

compensator dynamics are stabilized. Expanding (6.16) as 

-0 - - -0 
Gc - Gc - Gc~oGc = 0 (6.26) 

and partitioning, using (6.11),(6.15) and (6.17) gives a system of nine 

matrix equations. Among these are the following six, which can be used 

to derive the remaining compensator blocks in (6.1-6.3): 

o GO - G + GDoGo - H2N2 = 0 

o 0 
N1 - N1 + N1DoGo - P12N2 = 0 

o -N2 + N2DoGo - P22N2 = 0 
o ·00 

HI - HI + GDoHl - H2P21 = 0 

000 
P11 - PI! + N1DoHl - P12P21 = 0 

o 0 
- P21 + N2DoHl - P22P21 = 0 

From (6.27) and (6.29), 

G = GO(I - DoGo)-l - H2P2~N2 

Combining (6.28) and (6.29) gives 

o 1-1 N1 = N1(I - DoGO)- - P12P22N2 

Expressions for HI, P11 and P21 follow directly from (6.30-6.32): 

o 0 
HI = (I + GDo)H1 - H2P21 

o 0 
P11 = P11 + N1 DoHl - P12P21 

o 0 
P21 = N2DoHl - P22P21 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

(6.37) 



This formulation raises the following questions: 

What is the significance of the off-diagonal compensator blocks 

o 0 {P12,P21} and {P12,P21}? It is evident from Figure 7 that these elements 

do not affect closed-loop stability, but what about shaping the system 

eigenvectors? The constraint (6.26) gives one the option of setting 

o 0 either P12 or P12 to zero and of setting either P21 or P21 to zero. 

Zeroing {P12,P21} seems a reasonable simplification of the compensator 

dynamics, if its slow and fast states are implemented by separate 

devices, but this hardly parallels the decomposition seen in the optimal 

stochastic regulator case [36]. Since they do represent extra degrees of 

freedom in the design without contributing to dimensionality, zeroing of 

these elements may be a waste of potential. 
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SECTION 7 

CONCLUSIONS 

This research effort has been directed toward easing the difficul­

ties encountered in the calculation of quadratic optimal output feedback 

gains for linear systems - in particular, linear systems with slow and 

fast modes. The results of this effort are summarized below. 

A fast, simple convergent sequential numerical algorithm has been 

developed for calculating optimal output feedback gains which minimize a 

class of performance indices which includes the standard LQ case. In 

order to demonstrate the theory, a performance index penalizing the mag­

nitude of individual gain elements in an output feedback gain matrix was 

proposed and demonstrated. Employment of this form of performance index 

in design allows severing of individual feedback loops by zeroing 

selected gain elements without sacrificing quadratic optimality in the 

remaining loops. This dramatically enhances the flexibility of optimal 

multivariable output feedback design. 

It has been shown that two time scale approximation in the output 

feedback design problem is always well-posed, as long as the fast dynam­

ics are asymptotically stable in the closed loop and as long as there is 

sufficient time scale separation between the slow and fast dynamics. 

A two time scale approximation to the LQ optimal output feedback 

problem has been derived. When implemented, this approximation provides 

at least a first-order approximation to optimal quadratic performance. 

In addition, if the measurement set for the slow subsystem is nonredun­

dant, the performance is a second-order approximation. A computational 

algorithm for calculating these approximate gains was described and 

demonstrated. The algorithm is related to and shares the convergence 
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properties of the general optimal output feedback algorithm previously 

mentioned. 

The two time scale approximation described in the previous paragraph 

leads to a one-step design procedure. The gain design must balance the 

performance of the slow and fast dynamics simultaneously. In order to 

obtain a simpler approach to design, necessary and sufficient conditions 

were derived for decoupling the slow and fast subsystem designs through 

mutual suppression of control and observation spillover. A simplified LQ 

design procedure was developed and demonstrated. 

Finally, extension of the two time scale static gain theory to the 

case of fixed order dynamic compensation was briefly examined. Several 

questions remain to be resolved, leading to the conclusion that a further 

investigation of this area should be highly rewarding. 
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APPENDIX A 

USEFUL MATRIX PROPERTIES 

From [37], the pseudo inverse of A is defined as X satisfying 

AXA = A 

XAX = X 

(AX)* = AX 

(XA)* ,,; XA 

(A.I) 

(A.2) 

(A.3) 

(A.4) 

where (.)* is the complex conjugate transpose of (.). Such an X always 

exists and is unique. If A E~mxn with m < nand p{A} = m then AX = Im. 

In this case the pseudo inverse X is a right inverse. 

A useful identity for matrix inverses can be found in [38]. If A, C 

and (A + BCD) are nonsingular 

(A + BCD)-1 = A-I - A-IB(C-1 + DA-IB)-IDA-l (A.5) 

An important eigenvalue property for Kronecker products is supplied 

supplied by [39]: 

48 

Lemma: Given N E~SXS with eigenvalues {Al, ••• ,As} and M E~txt 

with eigenvalues {lJl, ••• ,lJtl, then the eigenvalues of the 

Kronecker product N0M E~stxst are 

<1N0M = {AilJj : i=I, ••• ,s ; j=I, ••• ,t} (A.6) 



APPENDIX B 

PROOF OF THEOREM 2.1 

Before proving the theorem, several preliminary results are 

established. 

Lemma B.1: For L satisfying (13) where (i,ii) hold, there exists a 

~ such that 

(CLCT)-l = ~+T~+ 

~~+ = Ip 

(B. 1) 

(B.2) 

where ~+ is the right inverse of ~, and Ip is the p-dimensional 

identity matrix. 

Proof: 

Since L > 0 for G e: CIJ, it can be represented as 

L = L1/2L1/2 

where L1/2 > 0, so that 

~ = CL1/2 

has full rank p, and therefore,. there exists a right inverse of ~+. 

In order to prove (B. 1) , first note that 

CLCT = ~~T 

Premultiplying by ~+ gives 

~+CLCT = ~+ ~~ T 

Using property (A.1) for pseudoinverses, 

~T~+T~T = ~T 

and property (A.4) gives 

~+~~T = ~T 

Premultiplying (B.8) by ~+T and using (B.2) results in: 

~T~+CLCT = (~~+)T = Ip 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 
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which demonstrates that ~+T~+ is a left inverse of CLCT• Finally, (B.l) 

is true by the uniqueness of the inverse of a nonsingular matrix. 

Lemma B.2: Let PI ) P2 ) 0, W ) 0 be Hermitian matrices. Then 

tr{PlW} ) tr{P2W} ) 0 (B.lO) 

The proof is found in [13]. The next lemma establishes the exis­

tence of some bounded G* e: 'lJ which minimizes the performance index. 

Lemma B.3: Given the assumptions of the theorem, there exists a 

G* e: 'lJ such tha t 

J(G*) " J(G) for all G e:'lJ (B.ll) 

Proof: 

In the proof, lower case Roman numerals refer to the conditions of 

the theorem. 'lJ is an open region in ~xp since the characteristic poly-

nomial of A is a continuous function of G. Because J takes the form 

(2.4), it is easy to see that J is~l on'lJ, given (iv). Also J(G) has a 

greatest lower bound, say Th over i:IJ. This can be seen by noting that, 

because of continuity, finite values of G e: 'lJ give rise to finite values 

of J. If y(G) becomes negatively unbounded for unbounded G, expressing J 

as 

J ~ tr{K}(l + y(G)/tr{K}) (B.12) 

and applying (v), shows that J + += as UGO + = for all y(G) satisfying 

(iv, v) • Suppose we specify a Go e: 'lJ. By the con tinui ty of J( G), the 

subset of 'lJ defined by the inverse mapping of the closed interval bounded 

by nand J(Go) , 
N 

'lJ ~ {G:n " J(G) " J(Go)} (B.l3) 

is closed. 
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If G is also bounded, the solution G* € i is guaranteed to exist. 

-To prove the boundedness of '11, it is sufficient, from (v), to show that 

unbounded values of G give rise to infinite integral quadratic cost and, 

-hence, cannot belong to '11. Since K satisfies the Lyapunov equation 

(2.6), 

2nK(A-BGC)II = UQ+CTGTRGCII (B.14) 

Using the Cauchy-Schwartz inequality 

2nKD nA-BGCU :> nQ+cTGTRGCII :> nCTGTRGCn (B.1S) 

or 

nKn :> UCTGTRGCn/2nA-BGCn (B.16) 

We will now specialize our argument to the inner product matrix norm 

uro = (tr{rrT})1/2 (B.1]) 

. since it relates in a direct way to the integral quadratic cost: 

nKIl = (tr{K2})1/2 (B.18) 

It is well known that, for r > 0 and any x of compatible dimension, 

xTrx :> (xTx) Amin( r) (B.19) 

where Amin(r) is the smallest eigenvalue of r. Suppose that there is 

some sequence {Gi i > 0: Gi €~} such that some elements in the j th 

column of G become unbounded. By (B.17) and (B.19), 

nGTRG II 2: (gIgj) Amin(R) (B.20) 

which, since R > 0, implies that elements in a column of R1/2G become 

unbounded, where R1/2 > 0 is defined by 

R = R1/2R1/2 (B.21) 

Next, recall that p(C) = p implies 
,:1 

ceT > 0 (B.22) 
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Suppose now, that elements in the kth column of GTR1/2 become unbounded. 

By (B.17), (B.19) and (B.22) we find that 

IIR1/2GCII + co 

Since, with (B.17,B.18), (B.16) can be expressed 

R1/2GC 2 
(t (K2})1/2 ) n II 

r 2 nA-BGC II 

the integral quadratic cost becomes unbounded, in contradiction to 

(B.12), completing the proof. 

Proof of Theorem: 

(B.23) 

(B.24) 

From (2.12), the gradient of the Lagrangian with respect to G is 

given by 

~G = RGCLCT - BTKLCT + YG(G) (B.25) 

The inner product of the search direction (2.16) with the gradient (B.23) 

is 

a(G) = tr{!lhllGT} (B.26) 

If it can be shown tha t 

a(G) < 0 if G £W and ~G "* 0 (B.27) 

then the proof follows almost immediately. Assume that (B.27) is true. 

The continuity of the gradient implies that, for each iteration, there 

exists some a* sufficiently small that (2.18) is satisfied for 

o < a (a*. Under this circumstance, by the definition of G in (34), 

Gi £W implies that Gi+1 EW. Moreover, the sequence {J(Gi):i = O,1, ••• } 

with Gi defined by (2.17,2.18) is convergent, since it is monotonic and 

bounded. Recall from Lemma 3 that G is closed and bounded. This and 

the continuity of J imply that the sequence {Gi:i = O,!, ••• } is 

convergent. 
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Ve will now demonstrate (B.29). Expanded, (B.26) is expressed 

e(G) = tr{[RGCLCT-BTKLCT+YG(G)][{CLCT)-l{CLKB-y6{G»-GTR]R-l} (B.28) 

Substituting for CLCT and (CLCT)-l using Lemma B.l, 

e{G) = tr{[RG~~T_BTKLl/2~T+YG{G)][~+T~+~Ll/2KB-~+T~+y&{G)-GTR]R-l} (B.29) 

Expanding, and then factoring (B.28) results in 

e{G) = -tr{ppTR-l} 

p =BTKLl/2{~+~)T_RG~-YG{G)~+T 

(B.30) 

(B.3!) 

By Lemma B.2, R-l will not affect the sign of e{G), which implies that 

e < 0, except at a stationary point in J; thus the sequence must converge 

to a stationary point. 
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APPENDIX C 

PROOF OF LEMMAS IN SECTION 3 

C.l Proof of Lemma 3.1 

In the proof, matrix calculus operations and Kronecker algebraic 

identities are employed, for which [38] is an excellent reference. 

Define the function vec (.): Rmxp + Rmp by 

A.l 

vec(Arnxp) = 

A.p 

From (3.9), it follows that 

F(Gl,GO) = vec GO - vec G + vec (GDoGO) 

= vec GO - [(Ip-DoGO)T 1m] vec G = 0 

(C.l) 

(C.2) 

where Ik denotes the k-dimensional identity matrix. From (A.6), the 

Jacobian 

aF(GTGO) = - [Imp®«I-DoGo)T0Im)] 
avec G 

is nonsingular iff 

(C.3) 

p(I-DoGO) = p (C.4) 

Assume that this is the case. By the implicit function theorem, (C.4) 

implies that G is uniquely defined as a continuous function of GO in an 

open region around any fixed GO satisfying (C.4); that is, there exists a 

continuous function ~(GO) such that 

vec G = ~(GO) (C.s) 

near GO which, by uniqueness is (3.11) and 

det [a~(Go) 
avecTGo 

] "* 0 (C.6) 

GO = GO 
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This lets us rewrite (C.3), using the chain rule: 

aF(G,<:;O)] I 
( avecTG G = ~(GO) = aF(cp(GO) ,GO) 

T avec GO 
(acp(G;) ]-1 I 
avec GO 

Since the LHS of (C.7) has full rank, this implies that 

det 

where 

(aF(G,GO)] 
T avec G 

(aF(G,GO)] 
avecTG 

= 

G = 4>(<:;0) 
Go = GO 

* 0 

(Imp 0 I p 0 ( I +GDo) 

(C.7) 

GO = GO 

(C.8) 

(C.9) 

which implies that (3.10) holds if (C.4) does. The converse is proven by 

reversing the above arguments. 

C.2 Proof of Lemma 3.2 

Consider the matrix 

~ = I + GC2(A22 - B2GC2)-IB2 (C.I0) 

where the inverse exists by assumption. Suppose that p{B2l = r (m. It 

can be immediately seen from x satisfying 

(A - 1)1 - GC2(A22 - B2GC2)-IB2]X = 0 x * 0 (C.ll) 

that ~ has m-r unity eigenvalues, since dim ker{B2l = m-r. Now, from 

property (A.l) for pseudoinverses, 

B;B2(I+GC2(A22-B2GC2)-IB2]B;B2 = B;(I+B2GC2(A22-B2GC2)-I]B2 (C.12) 

= B;[A22(A22-B2GC2)-I]B2 (C.13) 

The remaining eigenvalues of ~ are obtained from 

B;[AI - A22(A22 - B2GC2)-I]B2X = 0 T 
x € im{B2l (C.14) 
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Because of the nonsingularity of A22(A22 - B2GC2)-1, W is nonsingular. 

Using the inverse identity (A.S) and recalling the form of Do from (3.7), 

one obtains 

1 -1 w- = I - GC2A22B2 = I + GDo (C.1S) 

The converse is proven by assuming that (I + GDo) is invertible, and 

reversing the logic. 
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APPENDIX 0 

PROOF OF THEOREM 4.1 

The proof of the theorem requires several preliminary results. 

Lemma 0.1: Given that G stabilizes the closed-loop system 

(3.1-3.4), then 

co 

eiK~i) 
co 

eiK~i) (0.1) K1 = L K3 = L 
i=O i=O 

proof: 

This result is well known. From (4.7) and (4.9) at. e = 0, K1 and K3 

satisfy 

F1(K1,e) = [(Ao-BoGOCo)T~In1+In1~(Ao-BoGOCo)T]vec K1+vec Q1 = 0 (0.2) 

F3(K3,e) = [(A22-B2GC2)T~In2+In2~(A22-B2GC2)T]vec K3+vec Q3 = 0 (0.3) 

where ~ denotes the Kronecker product and vec (.) is defined in Appendix 

C. Since Ao - BoGoCo and A22 - B2GC2 are both nonsingular, it is easy to 

verify that 

det[ aF1/avecT K1] "/: 0 det[ aF3/avecT K3] "/: 0 (0.4) 

and that these Jacobians are continuous in K1 and K3, respectively. By 

the implicit function theorem, this implies that K1 and K3 are analytic 

functions of e at e = 0 and, hence, representable by power series expan-

sions. 

Lemma D.2: If JO(G) ~ J(G) then 

3Jo/aGI - = 0 G = G 
(0.5) 

proof: 

It was shown in the proof of Lemma B.3 that, for p{C} = P and R > 0, 

the control cost in (4.1) for the full-order system becomes unbounded for 
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UGU • =. This implies that G is bounded. Further, since the characteristic 

polynomials of Ao - BoGoCo and A22 - B2GC2 are continuous functions of GO and 

G, the set of asymptotically stabilizing gains is open, implying that G is in 

its interior. This implies that JO(G) is a stationary point in G, so that 

(0.5) holds. 

Lemma 0.3: If ~G = O(E), 

GO(G + ~G) = GO(G) + O(E) 

where GO(G) is defined by (3.9). 

proof: 

(0.6) 

Since the set {G: p(I + GOo) = m} is open, there exists some E* such 

that p(I + GOo +E~GOO) = m for 0 < E < E* and finite ~G. From (3.9) and A.5, 

GO(G + E~G) = [(I + GOo) + E~G]-l(G +E~G) 

= (I + GOo)-l[I + O(E)] [(G + O(E)] 

= GO(G) + O(E) 

proof of Theorem: 

By Lemma 0.1, J can be expanded to first order about E = 0: 

J = tr{R(O)} + Etr{R(l)} + Etr{R(O)} + 0(E2) 
1 3 

= JO + Etr{Ri1)+ 0(E2)} 

Now, define 
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oJ = J(G*) = J(G) < 0 
oJo = JO(G*) - °J(G) > 0 

oK(l)= K(l) (G*) - K(l)(G) 
111 

(0.7) 

(0.8) 

(0.9) 

(0.10) 
(0.11) 

(0.12) 



Use (0.7 - 0.10) to form 

oJ = oJo + Etr{oKi1)} + a (E2) < a 

Since oJo > 0, it follows that 

oJo = O(E) 

In turn, since Co has full rank, (0.14) and Lemma 3.1 imply that 
IIG* - Gil = O(E) 

Which, with Lemma 0.2 implies that 

oJo = 0(E2) 

(0.13) 

(0.14) 

(0.15) 

(0.16) 

Lemma 3.1 and (0.15) also imply that Etr{oKi1)} is 0(E2); hence it follows 

from (0.9) that oJ is 0(E2). 
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APPENDIX E 

PROOFS OF LEMMAS IN SECTION 5 

Proof of Lemma 5.1: Given that 

B2G1C2 = 0 

and recalling that 

-1 
Do = -C2A22B2 

one easily verifies tha t 

(I + G1Do)-1 = (I - G1Do) 

Now, using (23), (E.3) and (E.1), 

o 
B2G1C2 = B2(I - G1Do)G1C2 = 0 

The co~erse is shown by using (5.9): 

o 0 
B2G1C2 = B2G1(I + DoG1)C2 

By (5.6), the RHS of (E.5) is zero, completing the proof. 

(E.1) 

(E.2) 

(E.3) 

(E.4) 

(E.5) 

Proof of Lemma 5.2: From Lemma 3.2, given that A22 is i~ertible, 

(I + G2Do) is invertible for all G2 stabilizing the fast dynamics. 

Employing (A.5), 

(I + DoG2)-1 = I - Do(1 + G2Do)-lG2 (E.6) 

so that (I + DoG2)-1 exists. Applying the same identity to the i~erse 

in the LHS of (5.11), along with (E.1-E.3), 

[1+(G1+G2)DO]-1=(I-G1Do) [1-G2(I+DoG2)-lDo] 

Thus, the LHS of (5.11) can be expressed 

(E.7) 

BO[I+(G1+G2)DO]-1(G1+G2)CO=BO(I-G1DO)[I-G2(I+DoG2)-lDo]( G1+G2)Co (E.8) 

so that (5.11) becomes 

Bo(1 - G1 Do)G2[I - (I + DoG2)-1 Do(Gl + G2)]Co = 0 (E.9) 

After some algebra, (E.9) yields 

Bo(I-G1Do)G2(I+DoG2)-1(I-DoG1)Co = 0 (E.10) 
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It is easy to verify that 

G2(I + DoG2)-1 = (I + G2Do)-lG2 (E.ll ) 

This implies that 

ker{G2(I + DoG2)-1} = ker{G2} (E.12) 

which implies that (E.10) holds iff (5.13) is true. 

Proof of Lemma 5.3: A matrix N satisfying 

MNP :::0 0 (E.13) 

can be wri tten 

N :::0 Nut + Np 

where 

MNm :::0 0 

In (5.13), 

so that 

M ::I-Bo(I - G1Do) 

P = (I - DoGl)Co 

NpP ::I 0 

(E.14) 

(E.15) 

(E.16) 

(E.I7) 

G2 - (I + GIDo)NB + NC (I + DoGI) (E.18) o 0 

where (I + DoGl) = (I - DoGI)-l. Because of (E.I,E.2), when G2 from 

(E.18) is substituted into B2G2C2, GI cancels so that 

B2G2C2 = B2(NB + NC )C2 o 0 
(E.19) 
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