AR 86-2

$$
-8872 \quad 108 \mathrm{~K}
$$

THEORETICAL ANALYSIS OF THE ELECTRICAL ASPECTS OF THE BASIC ELECTRO-IMPULSE PROBLEM IN AIRCRAFT DE-ICING APPLICATIONS

BY

Robert A. Henderson
and
Robert L. Schrag

Aeronautical Engineering Department
Wichita State University Wichita, Kansas 67208

Technical Report

for
NASA Lewis Research Center (NAG-3-284)
NASA Technical Mon ito: J. J. Reimann
June 1986

```
(NASA-CR-176808) THECRETICAL ANALYSIS OF N86-26330
THE ELECTRICAL ASPECTS OF THE EASIC
ELECTRO-IMPULSE PFCBLEM IN AIRCRAFT DE-ICING
APPLICATIONS (Wichita State Uriv.):108 p Unclas
HC AO6/MF AO1
CSCL 01C G3/05
43454 8872
```


Preface

This report is a part of the research and development project on aircraft de-icing by the electromagnetic impulse method. This project has been sponsored by the Lewis Research Center of the National Aeronautics and Space Administration under grant number NAG-3-284. The grant administrator was Mr. John J. Reinmann. For the previous four years, many tests had been run in the NASA Icing Research Tunnel and three sets of flight tests were performed. These, plus various laboratory tests, have resulted in a semi-empirical technology for designing an electro-impulse de-icing (EIDI) system.

However, the empirical method is inadequate when a very different geometry, material or size is encountered. A computative solution is needed which permits prediction of the de-icing effect for a given configuration and electrical circuitry. This report, which is principally the Ph.D. dissertation of Robert A. Henderson under the direction of Prof. Robert L. Schrag, attempts to do the first part of a full computer simulation of EIDI. The pressure/time produced by the method in this report would be necessary input for a computer code giving the structural dynamic response of a given configuration. The configurations in mind are leading edge portions of aircraft wings, engine nacelle inlets and rotor blades. Applications, however, are not limited to these applications.

The author acknowledges the assistance of NASA-Lewis Research Center, both for the support of the whole EIDI project at Wichita State University and for the opportunity to work at NASA-Lewis during the summer of 1985. The assistance of Drs. R. Joseph Shaw, Bill Ford and Avram Sidi during that time is gratefully expressed.

TABLE OF CONTENTS

PAGE

1. INTRODUCTION 1
1.1 Electro-Impulse Phenomenon and De-Icing 1
1.2 Scope of Dissertation 3
1.3 Organization of Dissertation 3
2. THE ELECTRIC CIRCUIT MODEL 8
3. TRANSMISSION LINE MODEL OF THE FIELD PROBLEM 12
3.1 Introduction 12
3.2 Geometry of a Prototype EIDI System 12
3.3 The Field Equations 14
3.4 Development of the Transmission Line Model 16
4. ANALYSIS STRUCTURE 22
4.1 Introduction 22
5. 2 Method of Calculating Coil Impedance 22
6. 3 Radial Magnetic Induction and Azimuthal Electric Intensity 25
4.3.1 Target Surface Facing Coil 25
4.3.2 Target Surface Opposite Coil 30
4.4 Calculation of the Axial Magnetic Field Using the Transmisaion Line Model 31
4.5 Force Betveen Target and Coil 32
4.6 Impulse Delivered to Target 33
7. A SPECIFIC SYSTEM EXAMPLE, INCLUDING EXPERIMENTAL RESULTS 34
5.1 Definition of the System 34
5.2 Coil Impedance Measurements 36
5.3 Current Waveform 36
5.4 Magnetic Field Measurements 37
5.5 Measurement of Impulse to Target 41
8. COMPUTER ANALYSIS ON THE SYSTEM EXAMPLE 42
9. 1 Introduction 42
10. 2 Coil Impedance 42
11. 3 Current Waveform 45
6.3.1 Introduction 45
6.3.2 Current Before Clamp Diode Conduction 47
6.3.3 Current After Clamp Diode Conduction 50
6.3.4 Combining Pre- and Post Clamp Diode Conduction Current 52
6.4 Magnetic Induction 53
6.4.1 Introduction 53
6.4.2 Radial Magnetic Induction on the Coil Side Face of the Target 54
6.4.3 Axial Magnetic Induction on the Coil Side Face of the Target 58
6.4.4 Magnetic Induction on the Opposite Face of the Target 60
6.5 Force Versus Time 62
6.6 Impulse 65
12. CONCLUSION AND RECOMMENDATIONS FOR FURTHER WORK 67
13. 1 Conclusion 67
7.1.1 Summary 67
7.1.2 Contributions by the Author 68
14. 2 Recommendations for Future Work 69
APPENDIX A: FORTRAN SOURCE CODE FOR CALCULATING COIL RESISTANCE INCREASE DUE TO TARGET 72
APPENDIX B: FORTRAN SOURCE CODE FOR CALCULATING COIL CURRENT BEFORE CLAMP DIODE CONDUCTION 76
APPENDIX C: CALCULATION OF $K^{\prime}(\lambda)$ 79
APPENDIX D: FORTRAN SOURCE CODE FOR CALCULATING RADIAL TIME DOMAIN MAGNETIC INDUCTION ON THE COIL SIDE SURFACE OF THE TARGET 83
APPENDIX E: FORTRAN SOURCE CODE FOR FORCE CALCULATION AT TIME T=50 MICROSECONDS 95
APPENDIX F: NOTATION AND LIST OF SYMBOLS 97
REFERENCES 102
YITA 105

INTRODUCTION

1.1 ELECTRO-IMPULSE PHENOMENON AND DE-ICING

In a paper presented January 8, 1986, at the $24 t h$ AIAA Aerospace Sciences Meeting in Reno, Nevada, [1] author R. D. Rudich cited aircraft icing as the direct cause of four of the thirty two veather related fatal accidents reported in the paper. While this may not seem like a significant number, the loss of human lives in these four accidents could have been prevented if the aircraft involved had been able to cope successfully vith the icing conditions they encountered.

The purpose of this dissertation is to present methods of analyzing the electromagnetic aspects of a nev method of de-icing both private and commercial aircraft. This new de-icing method, referred to as Electro Impulse De-Icing (abbreviated EIDI), holds the promise of being superior to the present aircraft de-icing methods in terms of the energy expended in removing accreted ice [42].

The EIDI concept is not nev. In May 1939, Great Britain issued a patent to Mr. Rudolf Goldschmidt covering the basic EIDI mechanism [2]. Hovever, no commercial development of an EIDI system in the free vorld proceeded from this patent. It has only been vithin the last 5 years that the unavailability of bleed air from the new high bypass ratio engines used on the next generation commercial aircraft has caused attention to again be directed to the commercial use of an EIDI
system for removing ice from aircraft.
The simplest practical EIDI system consists of a spirally wound coil of rectangular cross section conductor mounted vith its axis of symmetry perpendicular to the metal surface to be de-iced. An initially charged capacitor is discharged through this coil, and the resulting magnetic field from the coil's current causes eddy currents in the metal. The force exerted on these eddy currents by the coil's magnetic field is initially in such a direction as to cause the coil and the metal surface to separate. It is this force that causes ice on the metal surface to crack, and subsequently to be removed from the surface.

A considerable body of literature concerned vith the electromagnetic aspects of a coil placed next to a conducting surface has accumulated. Levy [8] and Grover [9] present methods of calculating terminal impedances. Dodd and Deeds [10] discuss both impedance calculations and eddy current distributions. Onoe [11] is apparently the first researcher to apply a Hankel transformation in the calculation of impedances. Onoe's method is further developed and extended by El-Markabi and Freeman [4] to include calculation of the force between the coil and conductor vhen the coil current is a sinusoid. Bowley et. al. [43] discuss the use of the magnetic vector potential in calculating the impulse delivered to the conductor by a transient current in the coil. Levis [44] summarizes the use of the Bowley et. al. method for designing a coil to deliver a specific impulse in an electro-impulse de-icing installation.

1.2 SCOPE OF DISSERTATION

An experimental set-up of a prototype EIDI system was assembled at The Wichita State University by Dr. Robert Schrag. An experimental study of the electro-impulse phenomenon in this system vas made by Dr . Schrag utilizing field diagnostics methods [3]. Axial and radial components of the magnetic field vere measured on both sides of the rigidly held aluminum "target" plate. The data vere then used to deduce the total mechanical force versus time, and the mechanical impulse strength. Impulse strength vas also measured directly vith a ballistic pendulum. This experimental study provided results which Will be used to verify theoretical predictions from the mathematical model used in this dissertation.

In this dissertation, the physical phenomena involved in the prototype EIDI system of Dr. Schrag's experiment will be investigated analytically and numerically. Specifically, the following tasks will be undertaken.

1. A mathematical model for the total electrical problem vill be devised. It will employ a transmission line analogy to handle the electromagnetic field portion of the system, and a frequency domain model for the circuit portion.
2. The math model will be solved by computer for the specific set of conditions that existed in Dr. Schrag's diagnostics experiment, and the calculated and experimental results vill be compared.

1.3 ORGANIZATION OF DISSERTATION

Figure 1 summarizes the analysis structure developed in this dissertation to predict the behavior of the prototype EIDI syatem briefly described in Section 1.1. Each of the blocks in this figure
7. True Field Values Hankel Space, Frequency Domain
8. Real Space Solutions

$$
\begin{aligned}
& E_{\phi}(z, r, t) \\
& H_{r}(z, r, t) \\
& H_{z}(z, r, t)
\end{aligned}
$$

9. Total Force, Impulse $f(t), \Gamma$

FIGURE 1
Analysis Flow Diagram
represents a stage in the procedure for determining the force-time profile on a rigid coil placed next to a fixed conducting plane when a capacitor is discharged through the coil.

In Block 1 of Figure 1 , Maxvell's equations are written for the coil and metal target of the physical system. A simple model of the coil is proposed that stresses the geometrical symmetry of the system, eliminating several terms from the Maxvell equations. Chapter 3 discusses this modeling of the coil and metal target, and shows that application of a Hankel transform to the model equations results in a conceptual replacement of the field problem with an infinite set of transmission line problems (Block 2).

In Block 3 of Figure 1 , the analysis of the transmission line model is performed. The methods of this analysis, for steady state sinusoidal conditions, may be found in Chapter 4. Chapters 3 and 4 provide the basic theoretical developments, vith the results of the analyses in Chapter 4 applied in Chapter 6 to Dr. Schrag's prototype experimental EIDI system, described in Chapter S. Modeling of the circuit used to provide energy to the coil is discussed in Chapter 2 for the specific experimental system of Chapter 5.

Once the transmission line model of the coil and target has been established in Block 3, Figure 1 shows tvo possible next steps in the analysis. One of these next steps, calculation of the true field values (Block 7), requires a knovledge of the coil current. Accordingly, one proceeds from the transmission line analysis in Block 3 to the Block 4 calculation of the coil impedance, required for calculating the coil current. Use of the transmission line model for calculating the part of the impedance of the coil that is due to the
interaction betveen the coil and target is developed theoretically in Section 4.2 of Chapter 4, and applied to the impedance calculation of the coil in the prototype EIDI system in Section 6.2 of Chapter 6.

Coil impedance obtained in Block 4 is added to the calculated skin effect loss resistance in the coil, and with this total coil impedance the problem of calculating coil current, using the circuit models presented in Chapter 2, is addressed. This is Block 5, discussed in Section 6.3 of Chapter 6 for the prototype EIDI system described in Chapter 5.

Knovledge of the frequency spectrum of the coil current allove the calculation of the true field values in Hankel-Fourier space, shown in Block 7 and developed theoretically in Section 4.3 of Chapter 4. Performing an inverse Hankel transformation on these fields results in Fourier space (frequency domain) fields. An inverse discrete Fourier transform applied to the Fourier space fields provides the time domain behavior of the electric and magnetic fields, shoun in Block 8. This procedure is discussed in Section 6.4 of Chapter 6 for the prototype EIDI system.

Finally, the real space axial and radial magnetic induction fields on the coil side face of the metal plate provide the necessary information for calculating the total force on the target as a function of time, as shown in Block 9. Theoretical development of the force equation is in Section 4.5 of Chapter 4, with Section 6.5 of Chapter 6 describing the numerical implementation of this force calculation for the prototype EIDI system. Calculation of the impulse delivered to the target is discussed theoretically in Section 4.6 of Chapter 4, and its application to the prototype EIDI system is de-
scribed in Section 6.6 of Chapter 6.
Chapter 7 contains a summary of the results obtained, a description of the original contributions made by the author, and some suggestions for improving the procedures described in this dissertation for modeling the electrical aspects of an EIDI system.

THE ELECTRIC CIRCUIT MODEL

Abstract

Modeling of the electronics providing power to the de-icing coil in an EIDI system is performed with the desired output from the model in mind. Since it is the coil current in conjunction with the physical configuration of the coil and wing skin that determines the magnetic fields responsible for the forces on the skin, the current in the circuit was chosen as the primary variable.

Testing of a prototype EIDI system began at The Wichita State University in 1982. The part of this system that provides power to the coil is shovn in Figure 5A (page 35). This system vas chosen as the basic physical configuration for which a circuit model vould be derived. This circuit model is then analyzed to determine the shape of the coil current. A simple circuit model that is suggested by the physical system in Figure 5A is shown in Figure 6E (page 47). This is the basic circuit model, valid vhen the clamp diode across the capacitor is not conducting.

Justification for modeling the EIDI system as a lumped parameter circuit vas provided by the experimental verification of the absence in the signals present of any significant frequency components having vavelengths comparable to the physical dimensions of the system. Because of the complex electromagnetic interaction betveen the coil and the skin next to it, it vas felt that time domain modeling of the

coil's terminal v-i characteristics vould be too complex to be of much use. Consequently, a frequency domain approach vas chosen for analyzing the circuit, making the model of the coil a linear frequency dependent impedance.

The presence of the SCR and the clamp diode across the capacitor makes the circuit model nonlinear, so that straightforward Fourier (frequency domain) techniques are not applicable. This difficulty is circumvented by performing a piecevise linear analysis of the circuit. In this analysis, the physical circuit is modeled by one of two possible circuits, depending on the state of the clamp diode. Initially, when the SCR has just been triggered, the diode is assumed off (an open circuit) and the model of Figure 6E (page 47) is used for analysis. In addition to calculating the current in this circuit, the capacitor voltage is also calculated. When this voltage first becomes negative, the clamp diode is modeled as coming into immediate forward conduction: This diode then acts as a short circuit, resulting in the circuit model shown in Figure 6F (page 51). All subsequent (in time) circuit calculations are then performed with this model.

Theoretical juatification for modeling both the SCR and the clamp diode as simple on-off switches is now provided. Hovever, the ultimate justification for such an outright dismisaal of the effects of both the SCR and the clamp diode in determining the current vaveform comes from observing how closely the predicted current vaveform (using the models that ignore the non-ideal nature of the SCR and diode) agrees with the measured vaveform. This vill be shovn in Chapter 6.

In a practical EIDI system, the voltage on the energy storage
capacitor prior to its discharge is 1000 to 1500 volts. When the SCR is triggered into conduction, its voltage drop is on the order of 1 volt, which is small compared to the capacitor voltage, and so may be ignored in determining the circuit current. In addition to ignoring the voltage drop across the SCR, the dynamics of the SCR are also not modeled. Such dynamics are, in the EIDI circuit, primarily manifested in the failure of the SCR to trigger into instantaneous full forward conduction upon initiation of a forvard gate current. Hovever, modern SCR design techniques [5], [6], [7] have resulted in turn-on times that are short compared to the time required for a significant change in the coil current in the experimental EIDI prototype system. The SCR used in the prototype syatem had a di/dt rating of 800 amps/ microsecond, vhile the maximum observed rate of change in the circuit vas 15 amps/microsecond.

A similar consideration of the voltage levels in the circuit results in the conclusion that the approximately 1 volt forvard drop across the clamp diode is not a primary factor in determining circuit current. When the diode is off, its transition capacitance is insignificant compared to the capacitance of the energy storage capacitor. Reverse leakage current in the diode is ignored due to the large energy storage capacitor in parallel vith the diode and the relatively small time in which the electrical events of interest take place in the circuit. With the diode in forward conduction, the sum of its transition and diffusion capacitances are small enough that, to a first approximation, they may be ignored in the circuit model.

In constructing the EIDI prototype experimental configuration, care was exercised to minimize parasitics in the circuit. Special lov

Abstract

inductance and resistance cable was used to connect the energy storage capacitor to the coil. However, both of these cable parameters vere measured in the prototype system and are taken into account in the circuit model. The energy storage capacitor, which was physically several units in parallel, used copper strap for viring connections to minimize inductance and resistance parasitics. The ESR (equivalent series resistance) and ESL (equivalent series inductance) of the capacitors vere felt to be small, and are not modeled. If, in a particular EIDI installation, these parasitics are not small, they can be taken into account by adding lumped elements in series with the energy storage capacitor in the circuit model.

Accurate frequency domain modeling of the coil is the most difficult feat in constructing the circuit model, and is discussed in Chapter 4.

TRANSMISSION LINE MODEL OF THE FIELD PROBLEM

3.1 INTRODUCTION

The transmission line model of the coil and metal plate is the heart of the prototype EIDI system model. It is this model that is expected to account for the complex electromagnetic interactions between the coil and plate. These interactions help establish the impedance presented at the coil terminals, and so are a factor in determining the coil current. This current is important in determining the force on the plate.

3.2 GEOMETRY OF A PROTOTYPE EIDI SYSTEM

Figure 3A shovs the profile of the physical coil-metal plate con-

figuration ve have chosen to model. The coil has the shape of a short (h<< R_{g}) thick valled ($R_{1} \ll R_{g}$) hollow cylinder with an inside
radius R_{1} and an outside radius R_{R}, whose axis is perpendicular to a flat metal plate (henceforth called the "target") of thickness o extending to infinity in all radial directions. An air gap exists betveen the coil and target, both of viich are assumed rigid and stationary in space.

Most of the coils used in EIDI applications have been round, at least prior to a possible bending of the coil to conform to the curved leading edge of a ving. The flat geometry of Figure 3 A is a reasonable model of such a coll, provided that the radius of curvature of the coil, after being shaped to conform to the ving, is much greater than the coil outer radius R_{2}.

The assumption that the coil and target remain separated by a fixed distance vould be reasonable if the initial separation distance vas much larger than the maximum change in separation distance obtained vhen the capacitor is discharged through the coil. Such an inequality in separation distances may not hold in a practical EIDI installation. Alternatively, the fixed separation distance assumption vould be justified if the force "impulse" delivered to the plate by the coil vas so short that the plate acquired only a small velocity, vith negligible displacement, for the duration of the "impulse". This does not generally happen in a practical EIDI system. In fact, a vell designed installation has the target move from zero to maximum displacement vithin the duration of the "impulse". With ice loading present, hovever, the displacement may be small compared to the initial separation distance.

3.3 THE FIELD EQUATIONS

The approach that appears to be the most fruitful for modeling the coil and target in our prototype EIDI system is presented in a paper by El-Markabi and Freeman [4]. We now describe their approach, emphasizing those aspects of the theory that are most appropriate to the analysis of the model of the prototype system of Figure 3 A . The reader is referred to El-Markabi and Freeman [4] for the more general theory.

Current in the coil of Figure 3 A is assumed to be entirely phi directed. A slight modeling error is introduced by this assumption, since a radial component of current actually exists in a practical coil due to the spiral vinding of the coil. By neglecting this small radial current, a model having azimuthal symmetry is obtained. Consequently, the model shows no phi dependence in any of its field quantities, the electric field contains only a phi component, and the magnetic field contains only axial and radial components.

Because most of the spectral energy of the current in a practical EIDI coil is confined to relatively lov frequencies, a quasi-static situation is assumed. The displacement current term in Ampere's Lav is ignored.

With these assumptions, Maxvell's equations vritten for Figure 3A become

$$
\begin{aligned}
& \frac{\partial E_{\phi}(z, r, t)}{\partial z}=\mu \frac{\partial H_{r}(z, r, t)}{\partial t} \\
& \frac{1}{r} \frac{\partial}{\partial r}\left[r E_{\phi}(z, r, t)\right]=-\mu \frac{\partial H_{z}(z, r, t)}{\partial t} \\
& \frac{\partial H_{r}(z, r, t)}{\partial z}-\frac{\partial H_{z}(z, r, t)}{\partial r}=\sigma E_{\phi}(z, r, t)
\end{aligned}
$$

Partial differentiation with respect to time can be eliminated from these equations by taking the Fourier transform. Differentiation with respect to time is then replaced with multiplication by the $j \omega$ operator. Performing this transformation, we obtain the following equalions (note that we have not introduced nev symbols for the transformed field quantities, but have instead simply replaced their time variable argument t with the Fourier transform variable omega)

$$
\begin{align*}
& \frac{\partial E_{\phi}(z, r, \omega)}{\partial z}=j \omega \mu H_{r}(z, r, \omega) \tag{1}\\
& \frac{1}{r} \frac{\partial}{\partial r}\left[r E_{\phi}(z, r, \omega)\right]=-j \omega \mu H_{z}(z, r, \omega) \tag{2}\\
& \frac{\partial H_{r}(z, r, \omega)}{\partial z}-\frac{\partial H_{z}(z, r, \omega)}{\partial r}=\sigma E_{\phi}(z, r ; \omega) \tag{3}
\end{align*}
$$

Equation (1) contains only the phi component of E and the radial component of H . By combining equations (2) and (3) in such a fashion as to eliminate the axial component of H, we would have another equaltion containing only the phi component of E and the radial component of H. This elimination yields

$$
\begin{align*}
& \frac{\partial H_{r}}{\partial z}=\sigma E_{\phi}+\frac{\partial H_{z}}{\partial r}=\sigma E_{\phi}+\frac{\partial}{\partial r}\left[\frac{-1}{j \omega \mu} \frac{1}{r} \frac{\partial}{\partial r}\left(r E_{\phi}\right)\right] \\
& \frac{\partial H_{r}}{\partial z}=\sigma E_{\phi}-\frac{1}{j \omega \mu} \frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r E_{\phi}\right)\right] \tag{4}
\end{align*}
$$

At this point, we introduce a mathematical tool that is of considerable use here. This tool is the Hankel transform of order n, defined by [12]

$$
\not H\{f(r)\} \triangleq \int_{0}^{\infty} f(r) r J_{n}(\lambda r) d r=F(\lambda)
$$

with the inverse transform

$$
\frac{q t^{-1}\{F(\lambda)\}=\int_{0}^{\infty} F(\lambda) \lambda J_{n}(\lambda r) d \lambda=f(r), ~(\lambda)=f}{}
$$

Although the introduction of an additional transform introduces difficulties of its ovn, it provides an even greater amount of simplification, and makes possible the transmission line model of the coiltarget electromagnetic field problem.

If a Hankel transform of order 1 is applied with respect to the variable r in equation (4), the following result is obtained [11], [12] (note that ve have again not introduced new symbols for the transformed quantities, simply replacing their spatial variable argument r with the Hankel transform variable lambda)

$$
\begin{equation*}
\frac{\partial H_{r}(z, \lambda, \omega)}{\partial z}=\left(\sigma+\frac{\lambda^{2}}{j \omega \mu}\right) E_{\phi}(z, \lambda, \omega) \tag{5}
\end{equation*}
$$

The advantage of equation (5) over equation (4) is that equation (5) contains partial derivatives with respect to only the z coordinate, in effect becoming an ordinary differential equation (if one allows "constants of integration" for such an equation to be arbitrary functions of all variables except z). If the same Hankel transform is applied to equation (1), we obtain

$$
\begin{equation*}
\frac{\partial E_{\phi}(z, \lambda, \omega)}{\partial z}=j \omega \mu H_{r}(z, \lambda, \omega) \tag{6}
\end{equation*}
$$

Equations (5) and (6) are two coupled ordinary differential equations that are recognizable as the canonical transmission line equations. The solutions of these equations are vell known [13], [14], [15].

3. 4 DEVELOPMENT OF THE TRANSMISSION LINE MODEL

Because equations (5) and (6) are identical in form to the equations describing voltage and current on an ordinary transmission line, we now introduce the symbols \hat{V} and \hat{I} (each of which is a function of
position z along the coil axis, the Fourier variable omega, and the Hankel variable lambda) to represent the phi component of E and the radial component of H respectively. Then equations (5) and (6) become

$$
\begin{align*}
& \frac{\partial \hat{I}}{\partial z}=\left(\sigma+\frac{\lambda^{2}}{j \omega \mu}\right) \hat{V} \tag{7}\\
& \frac{\partial \hat{V}}{\partial z}=j \omega \mu \hat{I} \tag{8}
\end{align*}
$$

Differentiating equation (7) with respect to z, we have

$$
\frac{\partial^{2} \hat{I}}{\partial z^{2}}=\left(\sigma+\frac{\lambda^{2}}{j \omega \mu}\right) \frac{\partial \widehat{V}}{\partial z}
$$

Substitution of equation (8) into this last equation yields

$$
\begin{align*}
& \frac{\partial^{2} \hat{I}}{\partial z^{2}}=j \omega \mu\left(\sigma+\frac{\lambda^{2}}{j \omega \mu}\right) \hat{I} \\
& \frac{\partial^{2} \hat{I}}{\partial z^{2}}=\left(\lambda^{2}+j \omega \mu \sigma\right) \hat{I} \tag{9}
\end{align*}
$$

Similarly, we differentiate equation (8) to obtain

$$
\frac{\partial^{2} \hat{V}}{\partial z^{2}}=j \omega \mu \frac{\partial \hat{I}}{\partial z}
$$

Substitution of equation (7) into this equation yields

$$
\begin{align*}
& \frac{\partial^{2} \hat{V}}{\partial z^{2}}=j \omega \mu\left(\sigma+\frac{\lambda^{2}}{j \omega \mu}\right) \hat{V} \\
& \frac{\partial^{2} \widehat{V}}{\partial z^{2}}=\left(\lambda^{2}+j \omega \mu \sigma\right) \widehat{V} \tag{10}
\end{align*}
$$

Nor define the complex propagation constant gamma in Fourier-Hankel space as

$$
\gamma=\sqrt{\lambda^{2}+j \omega \mu \sigma}
$$

so that the general solutions to equations (9) and (10), assuming comflex sinusoidal time variation of \hat{V} and \hat{I}, may be written as

$$
\begin{equation*}
\hat{I}=\hat{I}_{0+} e^{-x z}+\hat{I}_{0-} e^{\gamma z} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\hat{v}=\widehat{v}_{0+} e^{-\gamma z}+\hat{v}_{0-} e^{\gamma z} \tag{12}
\end{equation*}
$$

where $\widehat{I}_{0} ., \widehat{I}_{0}$ - and $\hat{V}_{0} . . \widehat{V}_{0}$ - are complex phasor functions of the Hankel variable lambda (we have suppressed the complex sinusoidal time variation $e^{j \omega t}$ in these solutions).

Note that we are conceptually dealing with an uncountably infinite set of transmission lines. Each transmission line is associated vith a different value of lambda, where lambda is non-negative. The physical origin of this infinite number of transmission lines lies in our "compressing" the infinite radial variation in the real space field quantities H_{r} and E_{ϕ} at a given axial coordinate z into variables V and I localized to a single "point". (the corresponding z coordinate) on a Hankel space transmission line. It then takes an infinite number of transmission lines to account for the infinite number of possible values of the radius in the real space problem.

To derive an expression for the characteristic impedance of one of these Hankel space transmission lines, consider the case of a line having only a single frequency complex sinusoid traveling in the direction of increasing z. In agreement with ordinary transmission line theory, the negative sign in the exponents in equations (11) and (12) denotes propagation in the direction of increasing z. Then equations (11) and (12) become

$$
\begin{align*}
& \widehat{I}=\widehat{I}_{o+} e^{-\gamma z} \tag{13}\\
& \widehat{V}=\widehat{V}_{o+} e^{-\gamma z} \tag{14}
\end{align*}
$$

Substitute the expressions for the current and voltage from equations (13) and (14) into equation (7)

$$
-I_{0+} \gamma e^{-\gamma z}=\left(\sigma+\frac{\lambda^{2}}{j \omega \mu}\right) V_{o+} e^{-\gamma z}
$$

From this equation, ve obtain the defining expression for the characteristic impedance of a Hankel space transmission line as

$$
\begin{aligned}
& z_{0} \triangleq \frac{V_{0+}}{I_{0+}}=-\gamma /\left(\sigma+\frac{\lambda^{2}}{j \omega \mu}\right) \\
& z_{0}=\frac{-j \omega \mu}{\sqrt{\lambda^{2}+j \omega \mu \sigma}}
\end{aligned}
$$

This result differs by a negative sign from the expression given in E1-Markabi and Freeman [4] for the line's characteristic impedance. One could argue that the negative branch of the square root function in the expression for the propagation coefficient gamma should be chosen, vhich vould eliminate the negative sign in the characteristic impedance. Hovever, calculations performed with a negative characteristic impedance results in predictions that are essentially in agreement vith experimental measurements, whereas the use of a positive characteristic impedance predicts results that are not in agreement vith experiment. Alternatively, one could propose that it is the positive sign that must be chosen for the exponents in equations (11) and (12) to correspond to propagation in the direction of increasing z. Such an assumption also results in predictions that are not in agreement with experiment.

Transformation of real space current sources into Hankel space is discussed in El-Markabi and Freeman [4). They shov that a disc of azimuthally directed uniform surface current of phasor value \tilde{I}, with an inner radius R_{1} and an outer radius R_{2}, located on the z-axis, becomes a sinusoidal current source vith phasor value

$$
\frac{\tilde{I}}{R_{2}-R_{1}} \int_{R_{1}}^{R_{2}} r J_{1}(\lambda r) d r
$$

connected in parallel with the Hankel space transmission line. The z coordinate of this current source is the same as the z coordinate of the real space surface current from which it arose.

We have chosen three of these ideal azimuthally directed discs of uniform surface current to model the current distribution in the coil. The inner (outer) radius of the disc is equal to the inner (outer) radius of the coil. The middle disc is located at the axial center of the coil, while the two outer discs are each spaced out a distance of one-third of the coil's width from the center of the coil. See Figure 38. Clearly, some error occurs here due to the localization of the model's current to these discs.

Figure 3C shovs the Hankel space transmission line configuration corresponding to the three current sheet model of the coil next to the
target. All of our Hankel space calculations are based upon this model.

FIGURE 3C
HANKEL SPACE TRANSMISSION LINE MODEL OF COIL AND TARGET

ANALYSIS STRUCTURE

4.1 INTRODUCTION

In this chapter, the transmission line model of the coil and target developed in Chapter 3 and shown in Figure 3C is examined mathematically using conventional transmission line theory to predict the Fourier-Hankel space behavior of the model when it is in the sinusoidal steady state condition. The analyses performed in this chapter will assume each of the three current sources in Figure $3 C$ has unit phasor value. In view of the analogy developed in Chapter 3, we will freely use the terms current and voltage in connection with the transmission line model to stand for the Fourier-Hankel tranaforms of the radial magnetic induction $B_{r}(z, r, t)$ and the azimuthal electric intensity $E_{\phi}(z, r, t)$ respectively. Throughout this chapter, reference should be made to Figure 3 C for insight into the equations written and for identification of the variables used.

4.2 METHOD OF CALCULATING COIL IMPEDANCE

Although the part of the coil impedance that is independent of the properties of the ribbon conductor used to wind the coil is calculated in Hankel space, as shown in this section, one must begin the derivation of the expresion for the impedance in Fourier space. Only in the frequency domain does the concept of impedance make sense. We vill calculate the coil impedance at a frequency omega by exciting the
coil with a current source of phasor value 1 , and finding the phasor voltage response at the coil terminals. The coil impedance is then numerically equal to this voltage response.

Our real (Fourier) space model of the coil is three ideal discs of azimuthally directed uniform surface current. We need to relate the electric fields induced in the different parts of this model to the single voltage that exists between the coil terminals. We approximate the voltage appearing at the coil terminals by the average of the voltages induced at the locations of the three discs of the model. Symbolically, we have

$$
z=\frac{\tilde{V}}{\widetilde{I}}=\frac{\tilde{V}}{1}=\tilde{V}=\frac{1}{3}\left(\tilde{V}_{0}+\tilde{V}_{1}+\tilde{V}_{2}\right)
$$

where $\widetilde{\mathrm{V}}_{\mathrm{k}}$ represents the voltage induced at the location of the disc with axial coordinate z_{k}.

Because of the symmetry of our model, the voltage induced on a circular path (centered on the z axis) of radius r and axial coordinate z_{k} will be given by

$$
2 \pi r E_{\phi}\left(z_{k}, r, w\right)
$$

The average voltage induced on the infinite number of circular paths between $r=R_{1}$ and $r=R_{2}$ is

$$
\frac{1}{R_{2}-R_{1}} \int_{R_{1}}^{R_{2}} 2 \pi r E_{\phi}\left(z_{k}, r, \omega\right) d r
$$

Multiplication of this expression by N, the number of turns in the actual coil, yields

$$
\tilde{V}_{k}=\frac{2 \pi N}{R_{2}-R_{1}} \int_{R_{1}}^{R_{2}} r E_{\phi}\left(z_{k}, r, w\right) d r
$$

which is the model-predicted voltage induced on an infinitesimally thin N turn coil having an inner radius R_{1} and an outer radius R_{2} located at z_{k}. Averaging these induced voltages over the three discs results in the phasor coil voltage

$$
\begin{aligned}
& \widetilde{V}=\frac{1}{3}\left\{\frac{2 \pi N}{R_{2}-R_{1}} \int_{R_{1}}^{R_{2}} r \sum_{i=0}^{2} E_{\phi}\left(z_{i}, r, w\right) d r\right\} \\
& \tilde{V}=z
\end{aligned}
$$

Because this expression is numerically equal to the coil impedance, ve will replace the symbol \tilde{v} by Z in further appearances of this expression.

The E fields that appear in (1) are frequency domain (Fourier space) E fields. In terms of the Fourier-Hankel space E fields, ve can write these Fourier space E fields as

$$
\begin{equation*}
E_{\phi}\left(z_{k}, r, \omega\right)=\int_{0}^{\infty} E_{\phi}\left(z_{k}, \lambda, \omega\right) \lambda J_{1}(\lambda r) d \lambda \tag{2}
\end{equation*}
$$

where we have again used the list of arguments to distinguish between different functions. Specifically, $E_{\phi}\left(z_{k}, r, \omega\right)$ is the Fourier transform of the real space azimuthal electric intensity $E_{\phi}\left(z_{k}, r, t\right)$, and $E_{\phi}\left(z_{k}, \lambda, \omega\right)$ is the Fourier-Hankel transform of the real space azimuthal electric intensity $E_{\phi}\left(z_{k}, r, t\right)$. Substituting (2) into (1) yields

$$
Z=\frac{1}{3} \frac{2 \pi N}{R_{2}-R_{1}} \int_{R_{1}}^{R_{2}}\left[\sum_{i=0}^{2} \int_{0}^{\infty} E_{\phi}\left(z_{i}, \lambda, \omega\right) \lambda J_{1}(\lambda r) d \lambda\right] r d r
$$

Interchanging the order of integration,

$$
\begin{align*}
& Z=2 \pi \int_{0}^{\infty}\left[\frac{N}{3\left(R_{2}-R_{1}\right)} \int_{R_{1}}^{R_{2}} J_{1}(\lambda r) r d r\right] \sum_{i=0}^{2} E_{\phi}\left(z_{i}, \lambda, \omega\right) \lambda d \lambda \\
& Z=2 \pi \int_{0}^{\infty} K^{\prime}(\lambda) \sum_{i=0}^{2} E_{\phi}\left(z_{i}, \lambda, \omega\right) \lambda d \lambda \tag{3}
\end{align*}
$$

where

$$
K^{\prime}(\lambda)=\frac{N}{3\left(R_{2}-R_{1}\right)} \int_{R_{1}}^{R_{2}} J_{1}(\lambda r) r d r
$$

is the Hankel transformed current corresponding to an infinitesimally thin N turn coil of inner radius R_{1} and outer radius R_{2}, carrying a phasor current of strength 1/3.

Expression (3) contains three Fourier-Hankel space electric fields (transmission line voltages) that conceptually arose from Fourier space phasor currents of value $1 / 3$ on each of the three discs in Figure 3B. The "scaling factor" that relates Fourier-Hankel space fields due to unity Fourier space phasor coil current to FourierHankel space voltages and currents due to unity phasor current in each of the three current sources in Figure $3 C$ is $K^{\prime}(\lambda)$. Then in terms of the Fourier-Hankel space voltage $E_{\phi}^{\prime}\left(z_{k}, \lambda, \omega\right)$ due to unity phasor current in each of the Figure 3C current sources, (3) becomes

$$
\begin{equation*}
Z=2 \pi \int_{0}^{\infty}\left[K^{\prime}(\lambda)\right]^{2} \sum_{i=0}^{2} E_{\phi}^{\prime}\left(z_{i}, \lambda, \omega\right) \lambda d \lambda \tag{4}
\end{equation*}
$$

Expression (4) is the result that ve use to calculate the terminal impedance of the coil.

4.3 RADIAL MAGNETIC INDUCTION AND AZIMUTHAL ELECTRIC INTENSITY

4.3.1 Target Surface Facing Coil

We begin by calculating the characteristic impedance and the complex propagation constant of the air transmission line and the metal transmission line, referred to hereafter as the air line and the metal line respectively, using the results derived in Chapter 3. For the
air line, the conductivity σ is equal to zero, and so

$$
\begin{aligned}
& z_{a}=-j \omega \mu / \sqrt{\lambda^{2}+j \omega \mu \sigma}=-j \omega \mu / \lambda \\
& \gamma_{a}=\sqrt{\lambda^{2}+j \omega \mu \sigma}=\lambda
\end{aligned}
$$

For the metal line, no simplification is possible and we have

$$
\begin{aligned}
& z_{m}=\frac{-j \omega \mu}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \\
& \gamma_{m}=\sqrt{\lambda^{2}+j \omega \mu \sigma}
\end{aligned}
$$

According to the analogy developed in Chapter 3, calculation of the total current and voltage at $z=0$ in Figure $3 C$ is equivalent to calculation of the radial magnetic induction B_{r} and the azimuthal electric intensity E_{ϕ} on the coil side face of the target. We perform this current and voltage calculation by replacing the transmission line configuration for all $z>0$ with its equivalent impedance. Note that both sides of the metal line are connected to infinite lengths of air transmission line with characteristic impedance $Z_{\text {. . }}$. The equivalent impedance looking to the right at $z=0$ in Figure $3 C$ is

$$
\begin{equation*}
z(0)=z_{m} \frac{z_{a}+z_{m} \tanh \left(\gamma_{m} d\right)}{z_{m}+z_{a} \tanh \left(\gamma_{m} d\right)} \tag{5}
\end{equation*}
$$

Using this equivalent impedance, the current reflection coef-
ficient at $z=0$ as seen from the air line is

$$
p_{H}=\frac{z_{a}-z(0)}{z_{a}+z(0)}
$$

and the total current at $z=0$ is then

$$
\begin{equation*}
\hat{I}_{10: 1}=\hat{I}_{1 n c}+\hat{I}_{n+1 \ldots c \infty}=\left(1+\rho_{H}\right) \hat{I}_{1 n 0} \tag{6}
\end{equation*}
$$

in terms of the incident current $\hat{I}_{1,0}$, which must be due solely to the three current sources. Expression (6) may be simplified as fallows.

$$
\begin{equation*}
\hat{I}_{\text {total }}=\left(1+\frac{z_{a}-z(0)}{z_{a}+z(0)}\right) \hat{I}_{\text {inc }}=\frac{2 z_{a}}{z_{a}+z(0)} \hat{I}_{\text {inc }} \tag{7}
\end{equation*}
$$

Substituting (5) into (7) yields

$$
\hat{I}_{\text {total }}=2 \hat{I}_{\text {inc }} \frac{Z_{a}}{Z_{a}+Z_{m} \frac{Z_{a}+Z_{m} \tanh \left(\gamma_{m} d\right)}{Z_{m}+Z_{a} \tanh \left(\gamma_{m} d\right)}}
$$

which, upon replacing Z a and Z, by their defining expressions gives

$$
\begin{equation*}
\hat{I}_{10 t i}=2 \hat{I}_{1 n 0} \frac{1}{1+\frac{1}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \frac{1+\frac{\lambda^{2}}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \tanh \left(\gamma_{m} d\right)}{\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}}+\tanh \left(\gamma_{m} d\right)}} \tag{8}
\end{equation*}
$$

Now consider the current source in Figure $3 C$ closest to the target. This source produces an incident current on the metal line at $z=0$ given by

$$
\hat{I}_{\text {inc }}=\frac{1}{2} e^{-\gamma_{a} g}=\frac{e^{-\lambda g}}{2}
$$

where the factor $1 / 2$ comes from the equal division of the unity phasor amplitude current to both sides of the air line containing the current source. Total current incident at $z=0$ is by superposition given by

$$
\begin{align*}
& \hat{I}_{\text {inc }}=\frac{1}{2} e^{-\lambda g}+\frac{1}{2} e^{-\lambda(g+h / 3)}+\frac{1}{2} e^{-\lambda(g+2 h / 3)} \\
& \hat{I}_{\text {inc }}=\frac{1}{2} e^{-\lambda g}\left(1+e^{-\lambda h / 3}+e^{-2 \lambda h / 3}\right) \tag{9}
\end{align*}
$$

Substituting (9) into (8) yields

$$
\begin{equation*}
\hat{I}_{: \ldots \ldots}=\frac{e^{-\lambda g}\left(1+e^{-\lambda h / 3}+e^{-2 \lambda h / 3}\right)}{1+\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \frac{1+\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \tanh \left(\gamma_{m} d\right)}{\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}}+\tanh \left(\gamma_{m} d\right)}} \tag{10}
\end{equation*}
$$

for the total steady state current $\widehat{I}_{1 .} . .$. at $z=0$ due to unit strength complex sinusoidal excitation in each of the three current sources. Multiplying (10) by $K^{\prime}(\lambda) I(\omega)$, where $I(\omega)$ is the Fourier transform of the current in the coil (and multiplication by $K^{\prime}(\lambda)$ transforms a unity Fourier space current into the corresponding Fourier-Hankel

$$
\begin{align*}
& \text { space current), yields the desired result } \\
& \qquad \hat{I}(z=0)=\frac{I(\omega) K^{\prime}(\lambda) e^{-\lambda g}\left(1+e^{-\lambda h / 3}+e^{-2 \lambda h / 3}\right)}{1+\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}}} \frac{1+\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \tanh \left(\gamma_{m} d\right)}{\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}}+\tanh \left(\gamma_{m} d\right)} \tag{11}
\end{align*}
$$

for the Fourier-Hankel transform of the radial magnetic induction B. on the coil side face of the metal target when the coil current spectrum is $I(\omega)$.

Calculation of the voltage is almost identical to the calculation of the current performed above. The voltage reflection coefficient is the negative of the current reflection coefficient,

$$
\rho_{E}=\frac{z(0)-z_{a}}{z(0)+z_{a}}
$$

Total voltage at $z=0$ is
in terms of the incident voltage $\widehat{V}_{1} \ldots$. Expression (12) may be simplitied as

$$
\begin{equation*}
\hat{v}_{\text {total }}=\left(1+\frac{z(0)-z_{a}}{z(0)+z_{a}}\right) \hat{v}_{\text {inc }}=\frac{2 z(0)}{z_{a}+z(0)} \hat{V}_{\text {inc }} \tag{12}
\end{equation*}
$$

Substituting (5) into (13),

$$
\hat{v}_{\text {total }}=2 \hat{v}_{\text {inc }} \frac{z_{m} \frac{z_{a}+z_{m} \tanh \left(\gamma_{m} d\right)}{z_{m}+z_{a} \tanh \left(\gamma_{m} d\right)}}{z_{a}+z_{m} \frac{z_{a}+z_{m} \tanh \left(\gamma_{m} d\right)}{Z_{m}+z_{a} \tanh \left(\gamma_{m} d\right)}}
$$

which, upon replacing $Z_{\text {a }}$ and 2 . by their defining expressions, gives

$$
\begin{equation*}
\left.\hat{V}_{\text {total }}=\frac{2 \widehat{V}_{\text {inc }}}{1+\frac{\sqrt{\lambda^{2}+j \omega \mu \sigma}}{\lambda} \frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}}+\tanh \left(\gamma_{m} d\right)} \sqrt\left[{1+\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \tanh \left(\gamma_{m} d\right.}\right)\right]{ } \tag{14}
\end{equation*}
$$

Total incident voltage $V_{1 n c}$ at $z=0$ is given by

$$
\hat{v}_{1 n c}=z_{\mathrm{A}} \hat{I}_{\mathrm{Ine}}=\frac{j \omega \mu}{\partial} \frac{1}{2} e^{-\lambda g}\left(1+e^{-\lambda h / 3}+e^{-2 \lambda h / 3}\right)
$$

using (9) for \hat{I}_{1}. . Substituting this expression for $\hat{V}_{1 n}$ into (14) yields

$$
\begin{equation*}
\hat{V}_{\text {total }}=\frac{\frac{j \omega \mu}{\lambda} e^{-\lambda g}\left(1+e^{-\lambda h / 3}+e^{-2 \lambda h / 3}\right)}{1+\frac{\sqrt{\lambda^{2}+j \omega \mu \sigma}}{\lambda} \frac{\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}}+\tanh \left(\gamma_{m} d\right)}{1+\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \tanh \left(\gamma_{m} d\right)}} \tag{15}
\end{equation*}
$$

for the total voltage at $z=0$ due to unit strength complex sinusoidal excitation in each of the three current sources. Multiplying (15) by $K^{\prime}(\lambda) I(\omega)$ yields the desired result

$$
\begin{equation*}
\widehat{V}(z=0)=\frac{I(\omega) K^{\prime}(\lambda) \frac{j \omega \mu}{\lambda} e^{-\lambda g}\left(1+e^{-\lambda h / 3}+e^{-2 \lambda h / 3}\right)}{1+\frac{\sqrt{\lambda^{2}+j \omega \mu \sigma}}{\lambda} \frac{\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}}+\tanh \left(\gamma_{m} d\right)}{1+\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \tanh \left(\gamma_{m} d\right)}} \tag{16}
\end{equation*}
$$

for the Fourier-Hankel transform of the azimuthal electric intensity E_{ϕ} on the coil side face of the target when the coil current spectrum is $I(\omega)$.

4.3.2 Target Surface Opposite Coil

Knowing the total voltage and current at $z=0$ (derived in Section 4.3.1 and given by (16) and (11) respectively) allows a simple transmission line inverse chain matrix calculation of the total voltage and current at $z=d$, which are the Fourier-Hankel transforms of the azimuthat electric intensity E_{ϕ} and the radial magnetic induction B_{r} on the surface of the metal target opposite the coil. Denoting these transforms of the fields on the coil side face of the target by \hat{V}_{n} (given by (16) above) and $\hat{\mathrm{I}}_{\mathrm{n}}$ (given by (11) above), we have

$$
\begin{align*}
& \hat{V}_{f}=\hat{V}_{n} \cosh \left(\gamma_{m} d\right)-z_{m} \hat{I}_{n} \sinh \left(\gamma_{m} d\right) \tag{17}\\
& \hat{I}_{f}=-\hat{V}_{n} \frac{\sinh \left(\gamma_{m} d\right)}{z_{m}}+\widehat{I}_{n} \cosh \left(\gamma_{m} d\right) \tag{18}
\end{align*}
$$

where \widehat{V}_{p} and \widehat{I}_{p} denote total voltage (electric intensity) and current (magnetic induction) on the surface of the target opposite the coil.

4.4 CALCULATION OF THE AXIAL MAGNETIC FIELD USING THE TRANSMISSION LINE MODEL

The procedure that we use for calculating the force on the target is described in the next section, and requires both the radial and the axial components of the magnetic induction on the target surface next to the coil. The radial component of the magnetic intensity is available from the transmission line model by performing inverse Hankel and Fourier transformations on the calculated transmission line current at $z=0$, as discussed in Section 4.3.1. By using equation (2) in Chapter 3, it is also possible to calculate the axial component of the magnetic intensity (which does not have a transmission line analog) from the transmission line voltage, as shown below.

The azimuthal electric field is given in Fourier space by

$$
\begin{equation*}
\left.E_{\phi}(z, r, \omega)=\frac{f^{-1}}{-1} V(z, \lambda, \omega)\right\}=\int_{0}^{\infty} V(z, \lambda, \omega) \lambda J_{1}(\lambda r) d \lambda \tag{19}
\end{equation*}
$$

Substituting (19) into equation (2) from Chapter 3, we have

$$
\begin{align*}
& H_{z}(z, r, \omega)=\frac{-1}{j \omega \mu} \frac{1}{r} \frac{\partial}{\partial r}\left\{r E_{\phi}(z, r, \omega)\right\} \\
& H_{z}(z, r, \omega)=\frac{-1}{j \omega \mu r} \frac{\partial}{\partial r}\left\{r \int_{0}^{\infty} V(z, \lambda, \omega) \lambda J_{1}(\lambda r) d \lambda\right\} \tag{20}
\end{align*}
$$

Interchanging the order of partial differentiation and integration in (20),

$$
\begin{equation*}
H_{z}(z, r, \omega)=\frac{-1}{j \omega \mu r} \int_{0}^{\infty} \frac{\partial}{\partial r}\left\{\lambda r J_{1}(\lambda r)\right\} V(z, \lambda, \omega) d \lambda \tag{21}
\end{equation*}
$$

Using the identity

$$
\frac{d}{d x}\left\{x J_{1}(x)\right\}=x J_{0}(x)
$$

(21) becomes

$$
\begin{equation*}
H_{z}(z, r, \omega)=\frac{-1}{j \omega \mu} \int_{0}^{\infty} V(z, \lambda, \omega) \lambda^{2} J_{0}(\lambda r) d \lambda \tag{22}
\end{equation*}
$$

Equation (22) states that the axial component of the magnetic intensity H_{2} in Fourier space is given by the zero order inverse Hankel transform of the transmission line voltage at the corresponding z coordinate multiplied by lambda, with the result divided by j山 μ. Inverse Fourier transformation of the right hand side of (22) yields the desired time domain axial magnetic intensity.

4.5 FORCE BETWEEN TARGET AND COIL

Our procedure for calculating the total force between the target and the coil utilizes the Maxwell stress tensor, and is performed in real space (using the time domain fields). Stratton [41] shows that the total force F transmitted by a time varying electromagnetic field across a closed surface S is given by

$$
\bar{F}=\oint_{S}\left[\varepsilon(\bar{E} \cdot \hat{n}) \bar{E}+\frac{1}{\mu}(\bar{B} \cdot \hat{n}) \bar{B}-\frac{1}{2}\left(\varepsilon E^{2}+\frac{B^{2}}{\mu}\right) \hat{n}\right] d a
$$

vhere \hat{n} is a unit vector normal to the surface. We take as our closed surface the plane $z=0$ (the coil side face of the target, "closed" at infinity). Since $\hat{n}=\hat{z}$, this integral reduces to

$$
\bar{F}=\int_{r=0}^{\infty} \int_{\phi=0}^{2 \pi}\left[\frac{B_{z}}{\mu}\left(B_{z} \hat{z}+B_{r} \hat{r}\right)-\frac{1}{2}\left(\varepsilon E_{\phi}^{2}+\frac{B_{z}^{2}+B_{r}^{2}}{\mu}\right) \hat{z}\right] r d \phi d r
$$

The total force tending to separate coil and target is just the z component of this force,

$$
F_{z}=2 \pi \int_{r=0}^{\infty}\left(\frac{B_{z}^{2}}{2 \mu}-\frac{E E_{\phi}^{2}}{2}-\frac{B_{r}^{2}}{2 \mu}\right) r d r
$$

$$
\begin{equation*}
F_{z}=\frac{\pi}{\mu} \int_{0}^{\infty}\left(B_{z}^{2}-B_{r}^{2}\right) r d r-\pi \varepsilon \int_{0}^{\infty} E_{\psi}^{2} r d r \tag{23}
\end{equation*}
$$

Our calculations of the fields E_{ϕ}, B_{r}, and B_{2} in the prototype experimental EIDI configuration described in Chapter 5 shoved that the second integral in (23) is totally insignificant compared to the first integral. Some feeling for why this is true can be obtained by comparing the constants that multiply each of the integrals in (23).

$$
\begin{aligned}
& \frac{\pi}{\mu}=\frac{\pi}{4 \pi \times 10^{-7}}=2.5 \times 10^{6} \\
& \pi \varepsilon \doteq \frac{\pi 10^{-9}}{36 \pi} \doteq 2.8 \times 10^{-11}
\end{aligned}
$$

Accordingly, we approximate (23) by

$$
\begin{equation*}
F_{z}(t)=\frac{\pi}{\mu} \int_{0}^{\infty}\left[B_{z}^{2}(t)-B_{r}^{2}(t)\right] d r \tag{24}
\end{equation*}
$$

Equation (24) is the result that we use to calculate force versus time.

4.6 IMPULSE DELIVERED TO TARGET

The impulse delivered to the stationary target is by definition given by the integral

$$
\begin{equation*}
\Gamma=\int_{0}^{\infty} F_{z}(t) d t \tag{25}
\end{equation*}
$$

where $F_{z}(t)$ is calculated using (24).

A SPECIFIC SYSTEM EXAMPLE, INCLUDING EXPERIMENTAL RESULTS

S. 1 DEFINITION OF THE SYSTEM

The prototype EIDI system constructed at The Wichita State University, and the results of the tests made on that system, have been described in detail by Dr. Robert Schrag [3]. Most of the material in this Chapter has been excerpted from Dr. Schrag's paper.

Figure 5A shovs the prototype EIDI energy discharge system, omitting the capacitor charging circuit and the thyristor firing circuit. Two identical pulsing coils vere operated in series, because that was the arrangement used in most of the de-icing tests. However, only one of the two coils was utilized in the coil-target assembly, which is detailed in Figure 5B.

The effective gap between the coil (copper) surface and the near surface of the target vas . 078 inch. A. 032" thick 2024 T3 Aluminum disc was used as the target. Diameter of this disc was 5 inches. Tvo . O5" thick phenolic spacer plates vere used, one to maintain a fixed distance betveen the coil and the target, and the other to maintain the distance between the target and the rigid wooden support that prevented motion of the target. These plates could be removed, and a special magnetic field measuring plate (described in Section 5.4) inserted in their place in order to make measurements of the magnetic induction close to the surface of the target. Each coil consisted of

FIGURE $5 A$
ENERGY DISCHARGE
CIRCUIT
FIGURE 5B
COIL DATA: $\quad 024^{\circ} \times 185^{\circ}$
30 TURNS OF $.024^{*} \times .188^{\circ}$
RECTANGULAR COPPER

30 turns of $.024^{\prime \prime} \mathrm{X} .188^{\prime \prime}$ rectangular copper vire spirally vound in a single layer from an inner radius of $.125^{\prime \prime}$ to an outer radius of $1^{\prime \prime}$. The initial capacitor voltage utilized for the experimental study was 400 volts.

5. 2 COIL IMPEDANCE MEASUREMENTS

Impedance measurements on the coil next to the target were made using an impedance bridge. The inductance determined by these measurements, for several frequencies, appears in the table below. Impedance measurements vere also made on the coil when the metal target was removed. The real part of the impedance measured on the coil without the target in place vas subtracted from the real part of the impedance measured on the coil with the target in place. This increase in resistance due to the target is given in the table belov.

RESISTANCE INCREASE AND INDUCTANCE	- COIL AND METAL TARGET	
Frequency (Hertz)	Inductance (Microhenries)	Resistance Increase (Milliohms)
500	18.6	8.2
1000	17.0	23.0
2000	14.6	48.0
4000	12.6	77.0

5. 3 CURRENT WAVEFORM

Initially, current in the coil was measured indirectly by measuring the voltage across the .001 ohm non-inductive resistor in Figure 5A. Difficulties with this approach prompted the purchase of a current transformer from Pearson Electronics, Inc. Using this transformer and a storage oscilloscope, ve observed the current shown in

Figure 5C.

FIGURE SC
COIL CURRENT

5. 4 MAGNETIC FIELD MEASUREMENTS

A magnetic field measuring plate vas constructed in the manner illustrated in Figure 5D. Shallow concentric grooves vere cut into both sides of a .05 inch phenolic disc, vith radius increments of $.2^{\prime \prime}$,

FIGURE SD
PARTIAL ILLUSTRATION
FIELD MEASURING PLATE
starting at $r=.2^{\prime \prime}$ and ending at $r=2.0^{\prime \prime}$. Single turn loops of . 006" diameter wire were then cemented into these grooves, and their twisted leads brought out to solder tabs through radial chaninels.

For measuring the fields on either side of the target, the measuring plate simply substituted for the corresponding phenolic spacer plate in Figure SB. A measurement of the axial flux density was derived from the induced voltage in any two neighboring loops connected in series opposition. For the two loops illustrated in Figure SD, for example,

$$
B_{z}(t)=1550 \frac{\int_{0}^{t} v(\tau) d \tau}{\pi\left(r_{2}^{2}-r_{1}^{2}\right)}
$$

where B_{z} is in teslas, r is in inches, and V is in volts. This value is the average axial flux density over the area between the two induction loops. In the further use of this result, ve will assume the . flux density to apply at a radius midway betveen the two loops.

To measure the radial component of flux density at any radius, the front and back loops at that radius are connected in series opposition, and calculations are made from

$$
B_{r}(t)=1550 \frac{\int_{0}^{t} v(\tau) d \tau}{2 \pi r h}
$$

where r is the radius of the tvo induction loops and h is their separation, both in inches.

Plots of the magnetic induction fields obtained from these testa with the target in place are shovn at selected radii in Figures 5 E, 5F, 5G, and 5H. All Be data shoved an anomolous behavior (irregularities) at $r=.4^{n}$ relative to $r=.6^{n}$. A separate check vas made, in

B_{r} vs. TIME, NEAR SIDE

which the plate was reversed (interchanging the two sides). This produced a reversal of the irregularities, so the effect was probably due to an inaccuracy in the construction of the plate.

5.5 MEASUREMENT OF IMPULSE TO TARGET

The final step in the experiment vas the measurement of the impulse delivered to the target when the capacitor vas discharged through the coil. This vas done indirectly, using a ballistic pendulum. The impulse so measured was approximately. 012 lb -sec.

CHAPTER SIX

COMPUTER ANALYSIS ON THE SYSTEM EXAMPLE

6.1 INTRODUCTION

Theoretical background for the numerical computations described in this chapter vere developed in Chapters 3 and 4. This chapter will concentrate on a description of the numerical methods used to implement the theoretical development contained in these earlier chapters to predict the performance of the prototype EIDI system described in Chapter 5. The sections that follow are arranged in the order of the Figure 1 Analysis Flow Diagram, beginning with Block 4 of that diagram. This is the order in vhich the computations were actually accomplished.

All computations vere performed in FORTRAN IV on an IBM 370. Source code vas compiled with the IBM furnished G level compiler.

6.2 COIL IMPEDANCE

Equation (4) of Chapter 4, repeated as equation (1) belov, is the coil impedance predicted by the transmission line model. Numerical evaluation of the integral in (1) is discussed in this section.

$$
\begin{equation*}
Z(\omega)=2 \pi \int_{0}^{\infty}\left[K^{\prime}(\lambda)\right]^{2} \sum_{i=0}^{2}\left[{ }_{\phi}^{\prime}\left(z_{i}, \lambda, \omega\right) d \lambda\right. \tag{1}
\end{equation*}
$$

Tvo common methods are in use to allov quadrature of an improper integral such as the integral above [21]. In the first method, a transformation of variables is performed prior to construction of an
algorithm for estimating the value of the integral. This transformation is chosen in such a manner that the new integral has finite limits. The second method simply replaces the infinite upper limit with a finite upper limit, selected such that the part of the integral thus ignored contributes little to the true value of the integral. Such a method can be employed only if the integrand decays sufficiently rapidly as the variable of integration increases. Since the controlling factor in the leading behavior of the asymptotic expansion, as lambda tends to infinity, of the integrand in (1) is $e^{-\lambda g}$, with g a constant, the second method was chosen for use in the numerical evaluation of (1).

A large amount of high quality mathematical software is available today [22], [23]. Because of the complexity and cost of vriting quality mathematical algorithms, most numerical analysts suggest that complex scientific calculations be performed using algorithms written by experts [24], [25]. An 8 panel adaptive Nevton-Cotes algori.thm entitled QUANCB, described in [25], was chosen to perform the quadrature in (1). A user of QUANCB may select the relative and absolute error performances desired, and the program then attempts to estimate the value of the integral within the selected error criteria. One of the parameters in the subroutine QUANC8 is an output variable that contains an estimated error bound on the returned value.

Direct computer evaluation of (1) consumes a large amount of CPU time, and is consequently expensive. This is due mostly to the appearance of the factor $\left\{K^{\prime}(\lambda)\right\}^{2}$ in the integrand. (Note that $K^{\prime}(\lambda)$ is defined by an integral containing a Bessel function. This makes K^{\prime} oscillatory, shown in Figure 6A.) It vas possible to decrease this
cost considerably by calculating $K^{\prime}(\lambda)$ using QUANCB and fitting a cubic spline function to the calculated $K^{\prime}(\lambda)$ for use in evaluating (1). The algorithms used for generating the spline function coeffic-

FIGURE 6A OSCILLATORY NATURE OF K' λ)
ients and for evaluating the spline function at a given argument are entitled SPLINE and SEVAL, respectively, and are described in [25].

Once a spline function approximation for $K^{\prime}(\lambda)$ vas available, QUANCB vas used to individually estimate the real part (the coil resistance increase due to the metal target) and the imaginary part (the coil reactance) of (1) at selected frequencies. Appendix A contains a listing of the complete program, vith the subroutines referred to, for evaluating the real part of (1). A aimple modification of this program allows the imaginary part of the impedance to be evaluated.

Initial estimates of the real and imaginary parts of the integral in (1) vere obtained using an upper limit of 680. Folloving this, the programs vere run again vith an upper limit of 240 . Little difference vas seen in the results of the tro calculations, leading to the conclusion that the coil resistance and inductance estimates vere good.

Figure 68 shows the effects of the upper limit of integration in evaluating the imaginary part of the integral in (1) for three different frequencies.

FIGURE 6B
Calculated inductance VS. UPPER INTEGRATION LIMIT

Figures 6C and 6D on the following page shov the resistance increase and inductance calculated as described above. Measured values of these parameters are also shown for comparison.

6.3 CURRENT WAVEFORM

6.3.1 Introduction

As discussed in Chapter 2, three factors preclude a simple calculation of the coil current in the EIDI prototype system. These three factors are the nonlinear diode and SCR, and the presence of the metal target next to the coil.

The effects of the target on the coil vere taken into account by calculating the coil resistance increase and inductance at several frequencies, as described in the previous section. These two frequency dependent parameters vere then approximated vith cubic spline functions, again using the subroutine SPLINE. This provided the

ability to calculate computationally inexpensive yet sufficiently accurate coil impedances for use in frequency domain circuit calculations.

6.3.2 Current Before Clamp Diode Conduction

Although the circuit is nonlinear due to the diode and SCR, it is amenable to treatment in a piecevise linear fashion. The frequency domain model of the circuit, valid between the time the SCR is initially triggered and the time the capacitor voltage becomes zero, is shown in Figure 6E. In this Figure, the EIDI system capacitor is modeled as an ideal discharged capacitor in series vith a voltage

$$
V_{0}\left[\pi \delta(\omega)+\frac{1}{j \omega}\right]+\sum_{j \omega C}
$$

FIGURE 6E
FREQUENCY DOMAIN CIRCUIT MODEL CLAMP DIODE OFF
source. This voltage source has a value of zero volts for all time prior to $t=0$. At $t=0$, it instantly rises to the amplitude and polarity V_{0} of the initial voltage on the actual capacitor, modeling the triggering of the SCR into instantaneous full forvard conduction. Voltages and currents calculated from this model are good approximations to their corresponding quantities in the physical EIDI prototype circuit as long as the diode in parallel vith the capacitor is not conducting.

The frequency dependent resistor appearing in Figure 6 E is a composite lumped model of several loss mechanisms in the physical circuit. It includes the loss in the coil due to the presence of the metal target next to the coil (calculated as described in the previous section), resistance of the ribbon conductor used to wind the coil (corrected for skin effect), and the resistance of the cable used to connect the coil and capacitor. Resistance in the cable vas modeled as frequency independent, with a measured D.C. value of .054 ohms. Coil vinding resistance vas calculated from

$$
R_{A C}=R_{D C} R_{\text {eal }}\left\{\frac{h}{2} \frac{1+j}{\delta} \operatorname{coth}\left(\frac{h}{2} \frac{1+j}{\delta}\right)\right\}
$$

vhere

$R_{0 c}=$ D.C. coil resistance $=.0235$ ohms
$h=$ coil thickness $=.00477$ meters
$\delta=$ copper skin depth $=1 / \sqrt{\pi f \mu \sigma}$
$f=$ frequency in Hertz
$\varepsilon=$ copper permeability $=4 \pi \times 10^{-7}$ henries/meter
$\sigma=$ copper conductivity $=3.48 \times 10^{7}$ mhos/meter
Resistance $R_{A C}$ applies to both the coil next to the target and the idler coil (see Figure 5A).

Similarly, the frequency dependent inductance L in Figure $6 E$ arises from more than one source. First, there is the inductance of the coil next to the target (calculated in the section above). Second, the idler coil and cable connecting the capacitor to the coil had a combined measured inductance of 23 microhenries, which vas assumed to be independent of frequency. As these two inductances are in series in the circuit, they are added together to obtain a value for L.

The leakage reactance and measuring circuit impedance reflected
into the actual circuit by the current transformer used to measure the current vere felt to be too small to be significant, and vere not included in the Figure 6 E model.

By inspection, the Fourier transform of the current in Figure $6 E$ is given by

$$
\begin{align*}
I(\omega) & =\frac{V_{0}\left[\pi \delta(\omega)+\frac{1}{j \omega}\right]}{\frac{1}{j \omega C}+R(\omega)+j \omega L(\omega)} \\
& =\frac{C V_{0}[\pi j \omega \delta(\omega)+1]}{1+j \omega \subset R(\omega)-\omega^{2} C L(\omega)} \\
I(\omega) & =\frac{C V_{0}}{1-\omega^{2} C L(\omega)+j \omega C R(\omega)} \tag{2}
\end{align*}
$$

Note that the delta distribution multiplies its ovn argument, and consequently contributes nothing to the time domain current $i(t)$. Equation (2) is the basis for the current calculation, valid until the capacitor voltage becomes zero and the clamp diode in parallel vith the capacitor begins conducting. For simplicity and cost considerations, an inverse discrete Fourier transform (IDFT) [36] was chosen to approximately invert $I(\omega)$. To sufficiently minimize the effects of the IDFT approximation to the continuous inverse Fourier transform, a 1024 point transform with a sample time of 5 microseconds vas chosen. This makes the folding frequency 100 kHz , vich is considerably above any significant frequencies measured in the spectrum of the current in the prototype EIDI system. The 200 kHz frequency vindov of the IDFT is sufficiently large that "windoving" effect errors in the time domain response are not too great. (These errors are primarily manifested as Gibbs' ripples on the intitial current calculated in Section 6.3.3, described in Section 6.3.4 and shovn in Figure 6G.)

Appendix B contains a listing of the program used to calculate the coil current in the manner described above.

In order to determine hov long a time this calculated current approximates the actual circuit current, a second calculation was performed using the circuit model in Figure 6E. The model predicts a frequency domain voltage corresponding to the physical EIDI capacitor voltage of

$$
\begin{align*}
& V_{c}(\omega)=V_{0}\left[\pi \delta(\omega)+\frac{1}{j \omega}\right]-\frac{V_{0}\left[\pi \delta(\omega)+\frac{1}{j \omega}\right] \frac{1}{j \omega C}}{\frac{1}{j \omega C}+R(\omega)+j \omega L(\omega)} \\
& V_{c}(\omega)=C V_{0} \frac{j \omega L(\omega)+R(\omega)}{(j \omega)^{2} C L(\omega)+j \omega C R(\omega)+1} \tag{3}
\end{align*}
$$

The term involving the delta distribution again contributes nothing to the inverse Fourier integral yielding the time domain voltage, and is dropped from consideration to yield (3). A 1024 point 5 microsecond sample time IDFT vas used to approximately calculate the inverse Fourier transform of (3). Output from this program shoved that the capacitor voltage vould slew negatively through zero volts at $t=279$ microseconds. This is the time at which the diode across the capacitor is modeled as coming into conduction and acting as a short circuit. Beyond this time the model of Figure 6 E is no longer valid, and consequently the current predicted by the model is no longer correct.

6.3.3 Current After Clamp Diode Conduction

Once the diode comes into conduction, the model of the EIDI circuit for all future time is as shovn in Figure 6F. The inductance

FIGURE 6F FREQUENCY DOMAIN CIRCUIT MODEL CLAMP DIODE ON
and resistance in this circuit have the same physical significance that they had in Figure 6E, and their values are calculated for any desired frequency using the same algorithms. For computational convenience, time is "reset" to zero in this circuit, even though the circuit does not come into existance until $t=279$ microseconds in the Figure 6E circuit. Since the current in the coil is not initially zero, the circuit's magnetic energy storage is modeled by including a DC current source in parallel vith a frequency dependent inductance. This current source is zero for all time prior to $t=0$, and for all future time has a D.C. value I_{0} equal to the value of the current in the Figure 6E circuit at the time the capacitor voltage became zero. Current in the Figure $6 F$ circuit is given in the frequency domain by

$$
\begin{align*}
& I(\omega)=I_{0}\left[\pi \delta(\omega)+\frac{1}{j \omega}\right] \frac{j \omega L(\omega)}{j \omega L(\omega)+R(\omega)} \\
& I(\omega)=I_{0} \frac{L(\omega)}{j \omega L(\omega)+R(\omega)} \tag{4}
\end{align*}
$$

Note that the term containing the delta distribution once again contributes nothing to the inverse Fourier transform of $I(\omega)$, and $i s$ dropped in (4). An IDFT was used to calculate the approximate inverse

Fourier transform of $I(\omega)$ given in (4), in exactly the same manner that the expression for $I(\omega)$ in (3) was inverted. The program is very similar to the one used in the Section 6.3.2 current calculation, contained in Appendix B.

6.3.4 Combining Pre- and Post Clamp Diode Conduction Current

 Because of the presence of the current source in parallel with the inductor in Figure 6F, the current in this circuit model is discontinuous at $t=0$. Consequently, the current cannot be bandimited. An inherent assumption in the use of the IDFT to approximately calculate a continuous inverse Fourier transform is that the signal is bandlimited. The time domain current calculated by the IDFT showed a small amount of ripple during the first 100 microseconds due to the current spectrum not being bandlimited. Prior to "joining" in time the current predicted by the Figure 6 E model with the current predicted by the Figure 6 F model, this ripple vas eliminated by graphically choosing current values lying close to the IDFT predicted values that joined smoothly with the current from the Figure 6 E model. Figure 6 G illustrates this procedure. Current ripple amplitude was 54 amps peak to peak at $t=10$ microseconds, decaying to 1 amp peak to peak at $t=75$ microseconds, with time measured in the Figure 6 F model. Figure 6 H shows hov good the agreement is between this piecevise linear model predicted current and the current measured in the prototype EIDI circuit.With the model predicted current nov available at 5 microsecond intervals from $t=0$ to $t=5.12$ milliseconds, a 1024 point 5 microsecond sample time DFT was performed on the current samples to estimate the

Fourier transform $I(\omega)$ of the model current. This transform is needed for use in calculating the magnetic induction fields from the Hankel space transmission line coil-target model, as discussed in the next section.

FIGURE 6G
PRE- AND POST- CLAMP DIODE CONDUCTION CURRENT

6. 4 MAGNETIC INDUCTION

6.4.1 Introduction

Knovledge of the radial and axial magnetic induction on the coil side face of the target is required for calculation of the total force
on the target. Although conceptually simple, the numerical calculadion of these two fields presented more computational difficulties than were encountered in the combined total of all other calculations performed. Initial attempts at calculating the magnetic induction, performed using single precision arithmetic and using professionally written quadrature routines, produced results that were incorrect by orders of magnitude.

6.4.2 Radial Magnetic Induction on the Coil Side Face of the Target

Expression (5) shows the iterated improper integral that is to be evaluated numerically to calculate the time domain radial magnetic induction $\mathrm{B}_{\mathrm{r}}(0, r, t)$. This integral is the inverse Fourier-Hankel transform of the total current at $z=0$ given by (11) of Chapter 4.

$$
\begin{align*}
& B_{r}(0, r, t)=\mu \int_{\omega=-\infty}^{\infty} e^{j \omega t} I(\omega) \tag{5}\\
& \quad \int_{\lambda=0}^{\infty} \frac{k^{\prime}(\lambda) e^{-\lambda g}\left[1+e^{-\lambda h / 3}+e^{-2 \lambda h / 3}\right] J_{1}(\lambda r) \lambda d \lambda}{1+\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \frac{1+\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \tanh \left(\gamma_{m} d\right)}{\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}}+\tanh \left(\gamma_{m} d\right)}} d
\end{align*}
$$

Quadrature of iterated integrals is almost always difficult [21]. One of the most common methods of evaluating such integrals, the Monte Carlo method, could not even be considered for use in (5) due to the enormity of the very expensive and random complex function evaluations required by such an approach. Furthermore, the integrand in (5) is
extremely oscillatory, having both positive and negative complex values, due to the Bessel function in the inverse Hankel transform, the function $K^{\prime}(\lambda)$, and the complex exponential in the inverse Fourier transform. Quadrature of such integrands is all but impossible using Monte Carlo methods due to extreme smearing [25], [26]. It is the oscillatory nature of the integrand in (5) that makes its evaluation difficult.

After much trial and error, a vorkable approach to quadrature of the integral in (1) vas obtained, and is described in this section. No claim is made for optimality or near optimality in this approach. After many computations of the magnetic induction had been performed using this procedure, it became apparent that simplifications could be made, vhile still obtaining sufficient accuracy. However, these simplifications have not been tested, and the original approach to quadrature of the integral in (5) will be described.

Measurements of the radial magnetic induction near the coil side face of the target in the EIDI prototype system provide some insight into a suitable numerical procedure for evaluating the integral in (1). The Fourier transforms of these observed fields are smooth (higher order derivatives with respect to frequency are small) vith most of the energy confined to relatively lov frequencies. This suggested the use of an IDFT to numerically perform the inverse Fourier transformation in (1). Further impetus for use of the IDFT is given by noting that the DFT procedure for calculating the fourier transform $I(\omega)$ of the current, described in the preceding section, yielded transform values at equally spaced frequencies. These are the appropriate frequencies for calculating a 1024 point IDFT, with a 5
microsecond sample time, of the Fourier space radial magnetic induction. Hovever, numerical evaluation of the inverse Hankel transform in (5) at the 513 frequencies needed for calculating a 1024 point IDFT yielding a real sequence is prohibitively expensive. This expense was avoided by using the previously noted fact that the expected fourier transform of the magnetic induction is smooth, vith most of the energy confined to lov frequencies. Accordingly, the inverse Hankel transform in (5) vas evaluated at only 77 frequencies, chosen to provide a reasonable representation of the behavior of the Fourier transform of the knovn radial magnetic induction. Spline function approximations vere then fitted to the real and imaginary parts of the calculated inverse Hankel transforms. The IDFT routine to calculate the desired time domain magnetic induction uses these spline functions to form $B_{r}(0, r, \omega)$ at the 1024 frequencies needed.

With a procedure for evaluating the inverse Fourier integral in (1) available, a search for a suitable method for quadrature of the inverse Hankel integral vas initiated. The infinite upper limit of this integral vas simply replaced vith a suitably large finite upper limit, due to the controlling factor in the leading behavior of the asymptotic expansion of the integrand being $e^{-\lambda g}$. With the problem of the infinite upper limit gone, the remaining difficulties may be divided into two somewhat overlapping classes.

Selection of a suitable algorithm for performing the quadrature is essential if accurate results are to be obtained. Most of the common quadrature algorithms are incapable of dealing with oscillatory integrals vithout some help. Even vith the best of help, examples of problems vhere these algorithms completely fail abound. This has
given rise to highly specialized techniques for quadrature involving oscillatory integrands [27], [28], [29], [30]. The use of one of these specialized algorithms vas avoided by writing a double precision Gaussian quadrature routine [21], [31]. This routine vas then used to perform the inverse Hankel integration in (5) over the range $0<\lambda<10$, then over the range $10<\lambda<20$, etc., stopping when the desired upper limit of integration had been reached. The results of these integrations, which can be interpreted as terms in a sequence that are to be summed, vere then added together first using straightforvard addition, and then using the Euler series summation convergence acceleration algorithm DTEUL from the NASA Levis Research Analysis Center Software Library [34]. For each radius at which the radial magnetic induction vas evaluated, and for each of the 77 Fourier frequencies, good agreement was achieved between the results of these two summation methods.

Several different finite upper limits vere used to take the place of the infinite upper limit in the inverse Hankel quadrature. It vas experimentally determined that upper limits greater than 1000 resulted in very little change in the calculated induction fields.

The second problem area concerned the precision of the FORTRAN implemented on the 370. Single precision floating point vord length on the IBM 370 is approximately 7 decimal digits (24 bit mantissa) [25). This is insufficient for nearly all complex scientific calculations [32], [33]. Double precision floating point vord length on the 370 is approximately 15 decimal digits (56 bit mantissa) [25], and vas used for all computations involving the inverse Hankel integral. Without the use of double precision arithmetic, inverse Hankel quadra-
tore was impossible due to smearing.
Although the use of double precision greatly reduced the effects of smearing, it created problems of its own. A double precision Bessel function, and a double precision algorithm for $K^{\prime}(\lambda)$ become necessary to evaluate (5). Simply converting a single precision algorithm for $K^{\prime}(\lambda)$ to double precision does not yield sufficient accuracy to obtain good results. Double precision Bessel function algorithms were unavailable at The Wichita State University. Double precision algorithms were written for $J_{0}(x)$ and $J_{1}(x)$. The double precision algorithm that was written for $K^{\prime}(\lambda)$ is described in Appendix C. Finally, the complete program for calculating the time domain radial magnetic induction, given by (5), may be found in Appendix D. Figure $6 I$ provides a comparison between the measured radial magnetic induction close to the coil side face of the target, and the predicted radial magnetic induction on the coil side face of the target output from the program in Appendix DI.
6.4.3 Axial Magnetic Induction on the Coil Side Face of the Target

The magnetic induction B_{z} on the target next to the coil is calculated by performing an inverse Fourier transform on (22) in Section 4.4 of Chapter 4. Then

$$
\begin{aligned}
B_{z}(0, r, t) & =\mu f^{-1}\left\{H_{z}(0, r, t)\right\} \\
& =\mu f^{-1}\left\{\frac{-1}{j \omega} \int_{0}^{\infty} V(0, \lambda, \omega) \lambda^{2} J_{0}(\lambda r) d \lambda\right\}
\end{aligned}
$$

where $V(0, \lambda, \omega)$ is given by (16) in Section 4.3.1 of Chapter 4. Substituting (16) from Chapter 4 into the above,

EICRPE SI
Br VS. TIVIE, TEAR SIDE

$$
\begin{aligned}
& B_{z}(0, r, t)=-\mu \int_{\omega=-\infty}^{\infty} e^{j \omega t} I(\omega) \\
& \int_{\lambda=0}^{\infty} \frac{k^{\prime}(\lambda) \mu \lambda e^{-\lambda g}\left(1+e^{-\lambda h / 3}+e^{-2 \lambda h / 3}\right) J_{0}(\lambda r) d \lambda}{1+\frac{\sqrt{\lambda^{2}+j \omega \mu \sigma}}{\lambda}} \frac{\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}}+\tanh \left(\gamma_{m} d\right)}{1+\frac{\lambda}{\sqrt{\lambda^{2}+j \omega \mu \sigma}} \tanh \left(\gamma_{m} d\right)}
\end{aligned}
$$

The similarity between (5) and (6) is evident, even though the order of the inverse Hankel transforms is different. Because of this similarity, the algorithms developed to perform the quadrature in (5) vere used, with only evident minor changes necessary, to perform the quadrature in (6). A comparison at several different radil between the measured axial magnetic induction close to the coil side face of the target and the calculated axial magnetic induction on the surface of the target closest to the coil is shown in Figure 6J.

6.4.4 Magnetic Induction on the Opposite Face of the Target

Although it was not needed in the calculation of the force betveen the coil and target, the magnetic induction on the side of the target avay from the coil vas calculated for comparison with the measured induction close to the same target surface. Section 4.3 in Chapter 4 derived expressions for the total voltage V, and total current $I_{\text {f }}$ at the junction between the metal line and air line opposite the current sources. These quantities correspond respectively to the azimuthal electric intensity and the radial magnetic induction on the surface of the target opposite the coil.

EICURE GJ
E_{z} VS. TIME, NEAR SIDE

Inverse Fourier-Hankel transformation similar to that in (5), but with the integrand corresponding to the current I, given in Section 4.3, yields the radial magnetic induction. Only minor changes are necessary in the program whose listing appears in Appendix D to calculate the induction. Figure 6 K provides a comparison betveen the measured and calculated radial magnetic induction close to and on the target surface avay from the coil.

Inverse Fourier-Hankel transformation similar to that in (6), but vith the integrand corresponding to the voltage V, given in Section 4.3, yields the axial magnetic induction. Figure 6L shows the comparison betveen the measured and calculated axial induction close to and on the target surface away from the coil.

6. 5 FORCE VERSUS TIME

It vas shown in Section 4.5 of Chapter 4 that the total force between the coil and target is given approximately by

$$
\begin{equation*}
F_{z}(t) \equiv \frac{\pi}{\mu} \int_{0}^{\infty}\left[B_{z}^{2}(0, r, t)-B_{r}^{2}(0, r, t)\right] r d r \tag{7}
\end{equation*}
$$

For use in this integral, radial magnetic induction vas calculated at 5 microsecond intervals at radii . 01 inch, . 2 inch, and in .2 inch increments up to a maximum of 2.0 inch, on the surface of the target closest to the coil using the algorithms described in Section 6.4.2. Axial magnetic induction was also calculated at 5 microsecond intervals at radii . 01 inch, . 1 inch, and in . 2 inch increments up to 1.9 inch, on the same target surface using the algorithms described in

Section 6.4.3. Cubic spline functions vere then fitted to the squares of the radial variation of these tro magnetic fields at times 0,50 ,

EIGURE GK
Br VS. TII: F, FAR SIDE

ORIGMAR PACE RS of POOR QuALITV

100, 150, ..., 900, and 1125, 1400, and 2000 microseconds for use in performing the quadrature indicated in (7), using an upper limit of 1. 9 inches. The quadrature was done exactly (to the limit of the machine arithmetic) on the spline function approximations to the squared fields by integrating the cubic polynomial form of the spline function between knots, and using the spline function coefficients in the result. Appendix E contains a listing of the FORTRAN program for performing this force calculation at $t=50$ microseconds.

Figure 6M shovs the force versus time calculated using this procedure.

6. 6 IMPULSE

Equation (25) in Chapter 4, repeated belov, vas used to calculate

$$
\Gamma=\int_{0}^{\infty} F_{z}(t) d t
$$

the impulse delivered to the target by the coil. A spline function vas fitted, with time as the variable, to the force calculated in Section 6.5 above. An exact integration vas performed on the cubic polynomials of the spline function between knots, vith the result that the impulse calculated vas. 008 lb-sec. This is lover than the .012 lb-sec impulse measured using a ballistic pendulum. It should be noted that the quadrature of the force integral in (7) above used an upper limit of $r=1.9$ inches instead of infinity. Although the induction decays as the radius tends to infinity, an unknovn part of the force has been ignored by not taking the induction fields at radii greater than 1.9 inches into account.

FICURE 6i:
FGRCE EET:EEA CCIL AD TARECT

CHAPTER SEVEN

CONCLUSION AND RECOMMENDATIONS FOR FURTHER WORK

7.1 CONCLUSION

7.1.1 Summary

A method of modeling the electrical system aspects of a coil and metal target configuration resembling a practical Electro-Impulse DeIcing installation, and a simple circuit for providing energy to the coil, vas presented. The model vas developed in sufficient theoretical detail to allow the generation of computer algorithms for the current in the coil, the magnetic induction on both surfaces of the target, the force betveen the coil and target, and the impulse delivered to the target. These algorithms vere applied to a specific prototype EIDI test system for vhich the current, magnetic fields near the target surfaces, and impulse had previously been measured.

Coil impedance vas the first quantity calculated using the algorithms. Agreement betveen the impedance calculated and the impedance measured vas seen to be very good for the resistive part, and reasonable for the reactive part. Despite the aimple model used for the circuit providing energy to the coil, excellent agreement vas obtained betveen the predicted and measured coil current.

Measured and predicted magnetic induction fields vere not directly compared, due to the fields having been measured close to, but not on, the target surfaces using spatial averaging methods. The only
fields calculated vere on the target surfaces, for use in calculation of the force between the coil and target. Nevertheless, there was seen to be very reasonable agreement betveen measured and calculated magnetic fields. The character of the time variation of these fields changed considerably with radial distance from the axis, and the algorithms correctly predicted these changes.

Calculation of the impulse easily provided the greatest disagreement betveen a predicted and measured quantity, vith a -33% error in the calculated impulse. Impulse was measured using a ballistic pendulum containing the metal target, so, for this measurement, the metal target was no longer held rigid when the capacitor was discharged through the coil. This does not satisfy the model assumption of a stationary system. Hovever, the period of the pendulum vas sufficiently long that, during the time interval vhen most of the force vas developed on the target, negligible motion of the pendulum should theoretically have occured. Motion of the target during the measurement of the impulse is not felt to be a satisfactory explanation for the discrepancy between the measured and calculated impulse. It vas mentioned in Section 6.6, where the calculation of the impulse vas described, that the infinite upper limit in the integral yielding the theoretical impulse had been replaced vith a finite upper limit for the purpose of quadrature, thus incurring an unknown error. Our procedure for quadrature of the impulse integral is felt to be the most likely source of error in the calculated impulse.

7.1.2 Contributions by the Author

Reference [4] provided most of the basic methods used in this dissertation in modeling the interaction betveen the coil and target.

It was shown that an error had occured in the definition given in [4] of the characteristic impedance of a Hankel space transmission line, and the corrected definition vas used in the theoretical development of the model. For many transmission line calculations, this error does not become evident because impedances occur in ratios (e.g., the voltage and current reflection coefficient calculations in Section 4.3.1).

Reference [4] provided no method of calculating the axial magnetic induction $B_{z}(z, r, t)$ from the transmission line model. An integral solution for this field, in terms of the transmission line voltage, vas derived in Section 4. 4. This solution alloved the use of nearly all of the algorithma developed for the calculation of the radial magnetic induction $B_{r}(z, r, t)$ in calculating the axial magnetic induction $B_{z}(z, r, t)$.

The most significant contribution of this vork was the development of FORTRAN algorithms for performing the inverse Fourier-Hankel transformations yielding the induction fields, described in Section 6.4. While the author made no theoretical contributions in developing these algorithms, several diverse results from the fields of numerical analysis and approximation theory had to be applied in concert to create a vorking algorithm. During this development, an algorithm for the generation of Struve functions of the first and second orders vas developed that, according to a computer search of the literature, is the most accurate reported.

7.2 RECOMMENDATIONS FOR FUTURE WORK

If the methods developed in this dissertation are to be applic-
able as design tools for EIDI systems, the algorithms for the calculation of the magnetic induction fields should be made more efficient. These algorithms, listed in Appendix D, take nearly half an hour of CPU time on the IBM 370 to calculate either the axial or the radial magnetic induction versus time at one specific radius. Both the radial and axial components are required, each at eleven different radii, for the force calculation described in Section 6.5. A minimum of eleven hours of CPU time is too great for the evaluation of the force-time profile of a proposed EIDI configuration. The least desirable feature of the methods presented in this dissertation is the inordinate CPU time requised for the calculation of the induction fields. A sophisticated convergence acceleration routine could perhaps be devised specifically for more economic calculation of the induction fields.

Human intervention is required to proceed along the Analysis Flov Diagram of Figure 1 (page 4) in evaluating a specific EIDI system. This is because the outputs from the various programs, represented by such Figure 1 quantities as the coil impedance $Z(\omega)$, the current $i(t)$ and $I(\omega)$, are not in the form required as the inputs for the program at the next block in Figure 1. A significant amount of design automation could be accomplished by vriting one long program, using as a skeleton the programs developed for this dissertation, that vill take as input the geometry of the coil-target configuration and the circuit used to provide energy to the coil, and provide as output a force-time profile and the total impulse delivered to the target.

Not all possibilities have been exhausted in the search for an analytical (or semianalytical) solution to the EIDI design problem.

Perturbation techniques have been suggested as a possible method for analytical Hankel inversion in the calculation of the magnetic induction, and should be investigated, as this is the area suffering the greatest computational expense. Furthermore, analytical solutions (if sufficiently simple) are often capable of providing insight into a problem not provided by numerical solutions.

FORTRM SCUFEE COE FCR CALCllatide coil resistabe licrease dee to target

```
FILE: FFB21R FORTRAN
C PROGPAM TO ESTIMATE RCOIL, USING VALUES OF LAMBOA FRCM O TO 68O.
C VALUFS OF THE E-FIELD ARE GENERATED DIRECTLY USING THE CODE
C FROM THE FILE FEBZ FORTRAN. VALUES OF KPRIME ARE OBTAINED FROM A
SPLINE FUNCTION APPPOXIMATION. VALUES OF RCOIL CALCULATED WILL BE
USED IN A NUMERICAL INVERSE FOURIER TRANSFORM TO CALCULATE CIRCUIT
QUANTITIES.
INITIALIZE
        CCNMCN W
        OATA PI/3.14159265/
        TWCPI=2.##PI
    MAIN PRCGRAM USING QUANC }
        A=0.01
        U=680.
    PRINT QUTPUT HEADINGS
        WRITE{6,501 A.U
    50 FORMAT(' RESULTS OF NUMERICAL INTEGRATION FROM LAMBDA = ',F4.I.' TO
        1:,F6.1/1
C GENERATE FREQUENCIES IN HERT 2
        DC 10 I=1,4
        OC 10 J=1,4
C GENERATE FREQUENCIES IN A 1-2-4-7 SEQUENCE
        F=10.**I
        IF(J.EQ.2) F=2.*F
        IF(J.EG.3) F=4.*F
        IF(J.EQ.4) F=7.*F
        W=TNCFI*F
        FELERR=1.E-8
        AESEPR=0.
        CALL CUANCR(A,U,ABSERR,RELERR,RESULT,ERREST,NOFUN,FLAG)
C INTEGRATION DONE - OUTPUT COIL RESISTANCE CALCULATEO
            RCOIL =TWOPI*RESULT*1000.
    10 WPITE(6,1010) F,RCOIL,ERREST
    1010 FDRMATI' FREQUENCY= .F6.0.5X,'RCOIL= ',F7.3,' MILLIOHMS',5X.
        I'EPPEST= 1,E12.51
        STCP
        ENO
C
COPIED SLBREUTINE QULNCB FOLLOWS
    SISBRCLTINE QUANCS(A,B,ABSERR,RELERR,RESULT,ERREST,NOFUN,FLAG)
    REAL FUN, A, B, ABSERR, RELERR, RESULT, ERREST, FLAG
    INTEGEF NOFUN
    REGL WO,N1,W2,W3,H4, APFA,XO,FO,STONE,STEP,CORIL,TEMP
    REAL GPREV,ONOH,ODIFF,QLEFT,ESTERR,IULERR
    PEAL GRIGHT(31),F(16),X(16),FSAVE(8,30), XSAVE(8,30)
    INTEGER LEVMIT,I EVMAX,LEVOUT, NCMAX,NUFIN,LEV,NIM,I,J
    LEVNIA = 1
    LEVMAX = 30
    LEVEUT = 6
    NCNAX=5000
```

```
    NOFIN = NCMAX - 8*(LEVMAX-LEVOUT + 2**(LEVOUT+1))
    wO = 3954.0/14175.0
    wl = 23552.0/14175.0
    m2 = -3712.0/14175.0
    W2 = 41984.0/14175.0
    w4 = -18160.0/14175.0
    FLAG = 0.0
    OESULT = 0.0
    cral1 = 0.0
    ERPEST = 0.0
    APFA = 0.0
    NCFUN = 0
    If(A.fg.B) RETURN
    LFV = 0
    NM=1
    xO = A
    x(16) = 8
    OPREV = 0.0
    FO = FUN(XO)
    STONE = (B-A)/16.0
    x(8)}=(x0+x(16)|/2.
    x(4) = (x0 + x(8))/2.0
    x(12) = (x(8) + x(16))/2.0
    x(2)=(x0 +x(4) )/2.0
    x(t) = (x(4) + x(8))/2.0
    x(10) = (x(8) + x(12) 1/2.0
    x(14) = (x(12) + x(1t))/2.0
    DC 25 J = 2.16,2
        E(J) = FUN(X(J))
CENTINUE
    NOFUN=9
30 x(1) = 1x0 + x(2)1/2.0
    F(1) = FUN(X(1))
    Co 35J = 3,15,2
        x(j) = (x(J-1) + x(j+1))/2.0
        F(J)= FUN(X(J))
35 CTNTINUE
    NOFUN = NOFUN + 8
    STEP = (x(16) - x0)/16.0
    OLEFT = (HO*PO + F(8)| + WI*(F(I) +F(7)) + W2*(F(2) +F(6))
    1+W3*(F(3)+F(5)) + W4*F(4))*STEP
    OR[GHT(LEV (1)=(HO*(F(8)+F(16))+W1*(F(9)+F(15))+W2*(F(10)+F(14))
    1 +W3*(F(11)+F(13))+W4*F(12))*STEP
    ONSH = GLEFT + OHIGHT(LEVYII
    COIFF = QHOM - QPREV
    AR=A = AKEA + COIFF
    ESTERR = AES(OCIFF)/1023.0
    TCLERP = LMAXI(ASSFRR,RELERR*ABS(AREA))*(STFP/STONF)
    If(LEv.lT.LEVMIN) GO 10 50
    IF(LEV.GE.LEVMIAXI GO TO 62
    IF(NOFUN.GT.NDFIN) SE TC 60
    IFITSTERK.LF.TOLERRI CO TD 70
50 NIN = 2#NIN
    LFV = LEV +l
    7丁 52 : = 1, &
        FSAVE(I,LEV)=F(1+8)
        XSAVE(I,LEV) = X(I+B)
52 cont inve
    QPREV = OLEFT
    00 55 I = 1, 8
        J=-1
        F(2*J+18)=F{J+9)
        x(2*J+18)=x(J+9)
55 continue
    GO TO 30
6O NOFIN = 2*NOFIN
    LEVMAX=LEVOUT
    FLAG=FLAG*(B-XO)/(B-A)
    GO TC 70
```

```
                                    ORIGINAL PAGE IS
    62 FLAG=FLAÔ+1.0
    70 RESULT=RESULT+QNOW
        ERREST=EKREST+ESTERF
        COR1I=COR11+0OIFF/1023.0
    72 IFININ.EQ.2*(NIM/2)) GO TO 75
    NIM= NIM/2
    LEV = LEV-L
    GO TC 72
    75 NIM=AIM+1
    IFILEV.LE.OI CO TO 90
    GPREV = OR!GHT (LEV)
    XO}=X(1\epsilon
    FO = F(16)
    0078 1 = 1,9
        F(7*I) = FSAVE(I,LEV)
        X(2*I) = XSAVE(I,LEV)
    78 CENTINUE
    GO TC 30
    RO RESULT = RESULT + CORII
    IFIERREST.EQ.O.OJ KETURN
    82 TEMP = ABSIRESULT) * ERREST
    IF(TEMP.NE.ABSIFESULTI) RETURN
    ERREST = 2.O*EPREST
    GC TC 82
    ENO
C
C COPIFD SLEPROGRAM SEVAL FOLLDWS
    REAL FUNCTION SFVALIN,U,X,Y,B,C,D)
    REAL L,X(N),Y(N),B(N),C(N),O(N)
    DATA l/L/
    IF(I.EE.N) I=1
    IFIU.LT.X(I)| GOTG 10
    IF(U.LE.X(I+I)) GOTC 30
    10 I=1
    J=N+1
    20 K=(I+J)/2
        IF(U.LT.X(K)) J=K
        IF(U.CE.X(K)) I=K
        1F(J.CT.I+1) GCTO 20
    30 \X=\-X(I)
        SEVAL=Y(I)+DX*(B(I)+DX*(C(I)+חX*O(1)))
        RETURN
        ENO
C
    SUBPROGRAM FUN(LAMB) TC EVALUATE THE INTEGRAND FOR QUANCB
    FUNCTION FUN(LAMB)
        REAL LAMB,KPRI,MUC/L2.56637E-7/,L AMBDA(48),KPRIME(48),B(49),C(48).
        10(48)
            COMMCN W
            COMPLEX CMPLX,CSORT, CEXP,ZPDZA,IN, IXDLA,RHOT,H,E,TL,HRZ,HRO,CC,CG,
            IBC,BG,AC,AG,ZA,ZASO,E2,E1,E3,H3,EPO,HRL
            DATA SIGMA/1.74E7/,HD3/.00159/.G/.00278/,00/.0008128/, IFLAG/1/'
C REAC IN SPLINE INTERPOLATION DATA FROM FILE KPSPL COEFF
C FIRST CHECK TO SEE IF COEFFICIENTS ALREADY READ
            IF(IFLAG.NE.I) GOTO 10
            DO 1 I=1.48
        1 RFAD(2,1OCO) LAMBDA(I),KPRIME(I),B(I),C(I),D(I)
    1000 FORMAT(FG.1.4(1X,E15.6))
C FIPST, EVALUATE THE PEAL AND IMAGINARY PARTS OF THE E-FIELDS REOUIRFO
    FOR THE INTEGRATICN - USES CODE FROM FILE FEBZ FORTRAN
    FOLLOW STEPS QUTLINED IN "METHOO"
    IF(LANB.EQ.O.) LAMB=L.E-20
    10 2PDZA=(1.,O.)/CSORT(CMPLX(1.,W*MUO*SIGMA/(LAMB*LAMB))I
            T=EXP(-LAMB*HD3)
            IN=CMPLX({T*T+T+1)*EXP(-LAMB*G),0.)
            RHOT=((1..0.1-2PDZA)/((1.,0.) +2POZA)
            T1=RHCT*(EXPICMPLX(-2.*LAMB*DD,O.)/ZPDZA)
            ZXCZA=((1..0.)+T1)*ZPDZA/((1..0.)-T1)
            H3={N/((1..00.)+2XUZA)
            ZA=CMOLX(O..W*MUO/LAMB)
            E 3=H3*2XDZA*ZA
```

```
C CALCULATE EP2
    T=FXP(LAMB*G)
    AG=CMPLX((T+1./T)/2.,0.)
    GG=CMPLX((T-1./T)/?.,0.)*2A
    ZASO= ZA*ZA
    CG=8G/2ASC
    E2=AG*E 3 + BG*H3
    HR2=CG*E3*AG*H3
    EP2R=REAL(E2)
    EP2I=AIMAG(E<2)
C CALCULATE EPL
    T=EXP(LAMB*HD3)
    AC=CNDLX((T+1./T)/2.,0.)
    BC=CMPLX((T-1./T)/2.,0.)*2A
    CC= BC/ZASC
    E1=AC#E2+BC=(HR2-(1.,0.1)
    HKl=CC*E2+AC*(HR2-(1..0.1)
    EPID=REAL\EI)
    EPII=A!MAG(EI)
C CALCULATE EPO
    EPO=AC*EI+BC*(HP1-(1.,O.))
    EPSR=FEAL (FPO)
    FPOI=AIMAG(EPO)
C EVALLATE KPRI USING THE SOLINE INTERPOLATION
    KPRI=SEVAL (48,LAME,LAMBOA,KPRIME,B,C,D)
C NOW EVALUATE THE INTEGRANO ANO PETURN
    FUN=LAMO# # PPRI*KPRI*{EP2R + EPIR +EPOR{
    IPLAG=2
    FETURA
    END
```

QESULTS OF NUMERICAL INTEGRATION FROM LAMBOA $=0.0$ TO 680.0

FREQUENCY =	10.	RCOIL $=$	0.004	MILLIOHMS	ERREST $=$	$0.96085 F-13$
FREQUENCY $=$	20.	RCOIL $=$	0.017	MILLIOHMS	ERREST $=$	0.11895E-11
FREQUENCY =	40.	RCOIL $=$	0.068	MILLIOMMS	ERREST =	0.14812F-11
FREQUENCY =	70.	RCOIL $=$	0.207	MILLIOHMS	ERREST =	0.16755E-10
FREQUENCY $=$	100.	RCOIL =	0.418	MILLIOHMS	ERREST=	0.23993E-10
FREQIJENCY=	200.	RCOIL $=$	1.589	MILLIOHMS	ERREST $=$	0.30565E-09
FREQUENCY =	400.	RCOIL $=$	5.592	MILLIOHYS	ERREST $=$	$0.38682 \mathrm{~F}-09$
FREDUENCY =	700.	RCOIL $=$	13.841	MILLIOHMS	ERREST =	$0.34003 \mathrm{E}-09$
FRECUENCY=	1000.	RCOIL $=$	22.783	MILLIOHMS	ERREST=	0.33792E-09
FPEQUENCY =	2000.	RCOIL $=$	47.373	MILLIOHMS	ERREST =	0.52783F-08
FREQUENCY =	4000.	RCOIL=	70.588	MILLIOHMS	ERREST =	$0.41543 \mathrm{E}-\mathrm{Cg}$
FREQUENCY $=$	7000.	RCOIL =	81.442	MILLIOHMS	ERREST $*$	0.58640E-08
FREQUENCY =	10000	RCOIL $=$	85.525	MILLIOHMS	ERREST $=$	$0.64146 \mathrm{E}-08$
FREQUENCY =	20000.	RCOIL $=$	92.622	MILLIOHMS	ERPEST $=$	$0.39609 \mathrm{E}-08$
FRECUENCY =	40000.	RCOIL $=$	109.270	MILLIDHMS	ERREST =	0.49584E-CA
FPEQUENCY=	70000.	RCOIL $=$	142.962	Millil $h M S$	EPAEST =	0.64945E-08

FORTRA: SCUREE CGUE FOR CALCULATIRG OOGL CURREiTT EEFGRE CL/AP bicRE CORDLCTIOA

```
    PRCGRAM TO PERFORM NUMERICAL FOURIER INTESRAL IVVERSION TC CALCULATF
    THE CURRENT IN THE CUIL IN THE WING CIRCJIT IBEFORE THE
    DITDE CLAMP CUTS INI. THIS PROGRAM INELJOES THE FREQUENCY
    OEFENOENCE OF THE COIL RESISTANCE AND INDUCTANCE. TOUTPUTFROM THIS
    PROGRAM WILL BF USED TO CALCULATE THE SPECTRUM OF THE CURRENT.
    THIS PROGRAM IS ADAPTED FROM SERCJR FDRTRAY.
        COMPLEX F1(2048), CMPLX,CONJS
        REAL L, LSIMIN
```



```
        TTOT=FLOAT(N) \(=T\)
        DELTAF=1.1TTOT
        OELTAW=2:*PI \(\ddagger \mathrm{DELTAF}\)
KON
K
C
\(C\)
\(C\)
    FORY COMDLEX SPECTFUY IATRIX
```



```
CHECKFERT FREQUENCY WAN
```



```
    \(R=Q C A R L E+R D C+.0 \cap 4 E-3\)
    \(L=L S I M I N+17.8 E S E-6\)
        NETO - CALCULATE RESISTANCER AS THE SUM OF 3 TERMS: A CONSTAN
```



```
    3 R=PCABLE+RAC \((W)+C J I L R(W)\)
CALCULATY INOUCTANCE AS THE SUM OF 2 TERMS: A CCNSTANT TERM DUE TO
    THE SIMMGNOS AHD IDLEF. (LSIMIDI: AVD A TEKM DUE TO THE COIL IN THF
    WING (CEILL)
        \(L=L S I M I J+C C I L L(w)\)
    NCW FREM THE CONSTANTS USED IN EVALUATION OF THE FOURIFR TRANSFORM
        CF THE TIME VARYING PART OF THE CIRCUIT EURRENT
        \(4 \begin{aligned} & p 1=l \neq C \\ & p 2=R \# C\end{aligned}\)
    NCH FIGAM THE MATRIY VALUES
```



```
        ISTART=1.12+2
```



```
c
    CALL FFT(KUDE, \(N\), DELTAF,fl,I?)
    EXPOFSS TTCT IN MILLISFE, T IN MICROSEC
            TTOTP=TTGT*ICOO.
        ERTP=T\#1.EO
    WRITFIE, 2OIF N, TTOTS, TP
```



```
    2AM MAYZ2A FORTPAN- //1)
        WRITE ( 6,100 )
```



```
            1 IME MSEC):,5X,' TOTAL CURRENT RESPOVSEIY,T23, 'REAL', I5X', 'IMAG'/)
                \(\mathrm{FSC}=400 .=\mathrm{C}\)
            ก० \(20 \quad 1=1,100\)
```



```
            FI (I)=CMPLX(FSC,O.IFF1(1)
            20 WRITE 6,200 ) DTiFill)
200 FORMAT(IX,F12.3.1X,2(F15.5.5X))
    10 STMO
```

FUNCTION RAC(W)

CALCULATION OF $K^{\prime}(\lambda)$

The function we have called $K^{\prime}(\lambda)$ arises from the transformation of real space current discs into Hankel space. By definition,

$$
\begin{equation*}
K^{\prime}(\lambda)=\frac{30}{3\left(R_{2}-R_{1}\right)} \int_{R_{1}}^{R_{2}} x J_{1}(\lambda x) d x \tag{1}
\end{equation*}
$$

Straightforward quadrature of (1) using the Nevton-Cotes algorithm QUANC8 was initially performed for generating values of $K^{\prime}(\lambda)$ for use in approximating $K^{\prime}(\lambda)$ with a cubic spline function. This provided sufficient accuracy for use in numerical calculation of coil imperance, as described in Section 6.2. Attempts at calculating the radial magnetic induction using this spline function approximation for $K^{\prime}(\lambda)$ vere a total failure. This appendix describes a procedure for calcubating the function $K^{\prime}(\lambda)$ that $i s$ accurate to 14 digits ven implemented in double precision FORTRAN on an IBM 370.

The integral in (1) can be evaluated in closed form in terms of named special functions. Change variables,

$$
\begin{aligned}
& \lambda x=y \quad \Rightarrow \quad d x=d y / \lambda \\
& x=R_{1} \quad \Rightarrow \quad y=\lambda R_{1} \\
& x=R_{2} \quad \Rightarrow \quad y=\lambda R_{2}
\end{aligned}
$$

so that (1) becomes

$$
K^{\prime}(\lambda)=\frac{10}{R_{2}-R_{1}} \int_{\lambda R_{1}}^{\lambda R_{2}} \frac{y}{\lambda} J_{1}(y) \frac{d y}{\lambda}
$$

$$
\begin{equation*}
K^{\prime}(\lambda)=\frac{10}{R_{2}-R_{1}} \frac{1}{\lambda^{2}} \int_{\lambda R_{1}}^{\lambda R_{2}} y J_{1}(y) d y \tag{2}
\end{equation*}
$$

From reference \{18],

$$
\int J_{1}(y) y d y=\frac{\pi y}{2}\left[J_{1}(y) H_{0}(y)-H_{1}(y) J_{0}(y)\right]
$$

where $H_{0}(x)$ and $H_{1}(x)$ are Strive functions of orders 0 and 1 respecLively [18], [19], and $J_{0}(x)$ and $J_{1}(x)$ are Bessel functions of the first kind of orders 0 and 1 respectively. Using this result in (2) yields

$$
\begin{equation*}
K^{\prime}(\lambda)=\left.\frac{5 \pi y}{\lambda^{2}\left(R_{2}-R_{1}\right)}\left[J_{1}(y) H_{0}(y)-H_{1}(y) J_{0}(y)\right]\right|_{y=\lambda R_{1}} ^{\lambda R_{2}} \tag{3}
\end{equation*}
$$

In order to use this result, double precision algorithms for generating the Bessel and Strive functions must be available. Double precision Bessel functions are readily available, but Strove functions are not. A computer search of the literature resulted in a reference to a

Naval Research Laboratory report that contained FORTRAN source code for generating integer order Strive functions with positive arguments [36]. We verse unable to make use of this code because it used subroutines to which we did not have access.

For several years, mathematicians have been aware of the desirability of using truncated Jacobi series of Chebyshev polynomials for numerical approximation of various special functions [37], [38]. Luke
\{37] provides coefficients b_{n} and c_{n} for Chebyshev series expansions

$$
\begin{array}{ll}
H_{0}(x)=\frac{x}{8} \sum_{n=0}^{\infty} b_{n} T_{2 n}\left(\frac{x}{8}\right), \quad|x| \leq 8 \\
H_{1}(x)=\sum_{n=0}^{\infty} c_{n} T_{2 n}\left(\frac{x}{8}\right), \quad|x| \leq 8
\end{array}
$$

where $T_{2 n}(x)$ is a Chebyshev polynomial of the first kind of order $2 n$. All coefficients having magnitudes greater than 10^{-80} are given, allowing generation of $H_{0}(x)$ and $H_{1}(x)$ with 20 decimal digit accuracy for arguments whose magnitude is less than 8 [39]. Using the identity

$$
T_{e n}(x)=T_{n}\left(2 x^{2}-1\right)
$$

and retaining sufficient terms for 15 digit accuracy, these series expansions become

$$
\begin{array}{ll}
H_{0}(x)=\frac{x}{8} \sum_{n=0}^{14} b_{n} T_{n}\left[2\left(\frac{x}{8}\right)^{2}-1\right], & |x| \leq 8 \\
H_{1}(x) \doteq \sum_{n=0}^{14} \epsilon_{n} T_{n}\left[2\left(\frac{x}{8}\right)^{2}-1\right], & |x| \leq 8 \tag{5}
\end{array}
$$

Then for arguments λ such that $\lambda R_{1}<8$, the expression on the right hand side of (3) is evaluated using (4) and (5). Chebyshev polynomials are evaluated in double precision arithmetic using the subroutine DCNPS from the NASA Levis Research Analysis Center Software Library [40].

Luke also lists coefficients d_{n} and $e_{\text {. for }}$ f he series

$$
\begin{array}{ll}
H_{0}(x)-Y_{0}(x) \equiv \frac{2}{\pi x} \sum_{n=0}^{19} d_{n} T_{2 n}\left(\frac{8}{x}\right), & x \geq 8 \\
H_{1}(x)-Y_{1}(x) \equiv \frac{2}{\pi} \sum_{n=0}^{10} e_{n} T_{2 n}\left(\frac{8}{x}\right), & x \geq 8
\end{array}
$$

for 15 digit accuracy. The functions $Y_{0}(x)$ and $Y_{1}(x)$ are Bessel fundLions of the second kind of orders 0 and 1 respectively. Rather than use these series directly to evaluate $H_{0}(x)$ and $H_{1}(x)$ for arguments greater than 8 , some simplification is possible. Writing

$$
H_{0}(x) \doteq \frac{2}{\pi x} \sum_{n=0}^{19} d_{n} T_{2 n}\left(\frac{8}{x}\right)+Y_{0}(x) \triangleq A_{0}(x)+Y_{0}(x)
$$

$$
H_{1}(x) \doteq \frac{2}{\pi} \sum_{n=0}^{16} e_{n} T_{2 n}\left(\frac{8}{x}\right)+Y_{1}(x) \triangleq A_{1}(x)+Y_{1}(x)
$$

and substituting these expressions for $H_{0}(x)$ and $H_{3}(x)$ into the expression $J_{1}(x) H_{0}(x)-H_{1}(x) J_{0}(x)$ appearing in (3), and suppressing the argument x, ve have

$$
J_{1} H_{0}-H_{1} J_{0}=J_{1}\left[A_{0}+Y_{0}\right]-\left[A_{1}+Y_{1}\right] J_{0}
$$

$$
\begin{aligned}
& =J_{1} A_{0}-A_{1} J_{0}+J_{1} Y_{0}-Y_{1} J_{0} \\
& =J_{1} A_{0}-A_{1} J_{0}+\frac{2}{\pi x}
\end{aligned}
$$

using a vell known property of the Wronskian of Bessel functions of the first and second kinds [18]. Thus, the expression on the right hand side of (3) can be vritten as

$$
\frac{5 \pi y}{\lambda^{2}\left(R_{2}-R_{1}\right)}\left[J_{1}(y) A_{0}(y)-A_{1}(y) J_{0}(y)+\frac{2}{\pi y}\right]
$$

vhen it is to be evaluated at an argument $y=\lambda R_{a}>8$.
Using these results, $K^{\prime}(\lambda)$ can be evaluated from (3) for nonnegative values of the argument to at least 14 digit accuracy.

FORTARA SOUFOE CODE FOR CALCULATEMG RADAL TILE DCHAL：FAGMETIC MEDUCTIOH oi：the coil side surfice of the tanget

```
FILE: WMHT.2 FORTHAN VI.3
P习ITRAM TU CALCULATF THE دAOIAL COMPINENT OF FHE MATNFTIC [NOUCTION
    AT IHE COIL SIDE FACE IF THF SKIN, AY A PADIGL DISTANCE RIVCH
    FYOM THF CUIL AXIS. ADAPTED FHOM SIUNCE.AUSZ VIOD BROUGHT TU WSU
    FHOM NASA LEWIS AUGUST AS.
            *:%%%%%%%%%%%%
    |AMRAY SHOUL: HAVE CIMENSION NARPAY, AND DHINTL SHOULD HAVE
    OIMENSION NINTL. IN THE FUNCIIONS UFCT(II AND DFUN(DX), DARRAY
    SHUULD HAVE JIMINSIUN NARRAY. NARRAY+I=NINTL
    IV ADUITION, THE ARRAY IEKFLT, SHOULD SE OIMENSIONED AS
        IERFL`(2,7T,NARHAY).
```



```
VI.1 - ADDEJ THE ASILITY TO STORE AND PRINT THE FLAGS ASSOCIATED
            - MODESGHE ASILITY TO STORE AND PRINT THE
V1.2 - CHANGED ABSULUTE AND RELATIVE ERROR PEQUESTS TO 1-D-IZ IN
                IPVE SSE HANKEL TRANSFORM OUADRATURE.
CHANGEO PRINT FORMATS TO ALLOW SPOQLING OUTPUT TO MY READER.
VI.S - ADOEO DUTER LIGPING AgILITY TO CALCULATE MAGNETIC INTENSITY
                AT SEVERAL RADII.
        IOLICIT सEALF今8 <O)
        COMPLEX CUFF(7T),CUZNT,CFHR(1024),CMUO/(12.56637E-7,0.)/
        NEAL:3 NARRAY(1OO), DHINTL(LOL), DHRDO(T7I, DHIRO(T7)
        REALOY IBELTA
        QEAL YIINTH/PJAN "/.JAY/: 14 */,VERS/OVI.30/
        2EAL OMEGA(77),HRQO(77),HIRO(7T),HRSB(77),HRSC(77),
        HASD(7T):HISG(77)&HISC(7T),HISN(77),RINCH/.OII
        INTEG;FHIFRFLG(2,iT,LOOS
        Dara vaiaav/100/.NINTL/101/
        EXTEMNAL BFUN,DFCT
        CO世MITS \IARAAY,CUPNT,IFUN,A,TWOPIF
ILTCK 1 - READ CUIL CURRSNT SPECTRUM (STEPPT) (POSITIVE FREQUENCIES
        ONLY) FROM FILE CURHSPEC DATA (LOTICAL DEVICE S).
        FAEQUENCIES ARE STOAEDIN OMEGA(II WITH THE CORRESPONDING
        CUAPENT SOECTJAL VALUE IN CURR(I).
TEAD CUSHEAT SPECTRUM (HEADINTSS HAVE BEEN REMOVED FROM THE FILE
    CURRSP!:C OATA!
    0j !% t= 1,77
10 HEAD (5,IDOO) OMEGA(I),CURR(I)
```



```
OUTER LIOP TO CONTROL RADEUS AT WHTCH MAGNETIC INDUCTION IS
    CALCULA!!!
        DU ご淮切5=15.20.2
        T[NCH=FLOar(INAQUS)/1:.
ExPaESS R IN METENS
    =2INC:ब:- 2254
GLICK 2 - COLCULATF IJVEPSE HA:JKEL THANSFOTY OF THE MAGNETIC
    INTENSITYO THISGIS JONE AT EAGMOF THF DIFFERENTG
                                    ETEJUENCIES DYEGA(I)!I=1,2.O.T7. THE FREQUENCY
                                IMEGA IS OASSED TII THF SUHPAOGQAM FUN THRU THE CGMMON
                                VASIARLE TWOPIF. THE COMPLEX VALUE DF THE CURRENT
                                SO-CTRUM AT THIS FPFOJIENCY IS PASSED TI FUN THRU THE
                CIMMON VAZ:AGLE CUPNT.
CALCULATF THF YEALFR APRAY BF UPPFA ANO LOWFR INTESAATION LIMITS
    USED IN FIJRMING THE SEJUENCE OF MATNFTIC INTENSITIES.
        OSTEP=10.30
        0D 1 I=1,NINTL
    I OHINTL(I)= OFLOAY(I-I)*OSTCO
```

```
C DRINT midNING:
```



```
        WRITi(1,:TOJI) DINCH, IIVCH
    90:)1 FIJMAT(' FPEOUENCY ;又EAL MA,P OF MAGNETIC INTEVSITY•,TST, 'IMAR PA
```



```
C HE'INNING OF MAIN LOGP IN CALCULATE INVERSE HANKEL TRANSFORM AT TT
        OIFFERENT FREQUENCIES
            OJ 900 IMAIN=1,77
        THOPIF=OMECA(IMAIN)
        CURNT=CURN(IMAIN)
        CALCULATF NFAL PART OF HR(N,TNOPIF)
        [ FUN=1
    FOXM THE SFQUENCE UF PARTIAL INVERSE HANKEL TRANSFORMS BY INTEGRATING
        HETWEC'S LQMAEA SUB(I) ANS LAMADA SUB(I +I), FOR I=L TO NARRAY (THESE
        LIMITS A, (IN THE QHRAY DHINTLS.
    SET JP AISILLUTE AND HELATIVE JUATNATUPE FRROR DEJUESTS
        OARSEA=1-n-12
        n+ER=1:\-1?
    INITIGLIFE TH: VAOIAHLE USED TO ACCUMULATE THE RESULTS OF THE
    NUMESICAL INTEGHATIUN OVER EACH LAMBDA SUB-RANGE.
        DINT?=0.DO
        DO 2 I=I,NAQRAY
    FOJM THE L'JWEP AND UPPER INTEISNATION LIMITS
        OA=DHINTL(I)
        DB=DHINTL(I*1)
    INTEGRATE {TWESE VALUES AOE PASSED TO THE FUNCTION DFCT THRU (OMMON).
        2ESULT GF THE INTEGMATION IS STOZED IN DARQAY(I) FOR FUTURE USE IN
        THF EULES CONUERGENCE ACCELFRATION ALGORITHM DTEUL.
            CALL JGAUSS(DA,DH,DEUN, DRER,DAASER,DARRAV(I),DERR,IER)
    STORE EZQOO FLAG
        IERFLT,(L,IMAIN,I)=IFR
    NOW SUM THO INTEGAGLSIEOR COMOARISION WITH THE ACCELERATEO SUM TO
        gE CALCIILATEJ [N SUBROUTINE DTEUL.
```



```
    MilN USE TIF= &ULER CONVFAGFNCE ACCELERATION ROUTINE TO BEST ESTIMATE
        PHF JEAL PAZT OF TIGE TOTAL IVV??GC MANKEL TQANSFOPM AT THE
        *EJUENCY THTPIF.
        CALL OTEUL(DFCT,DSUYR,VAR?AV,L.E-14,IER?,Ne)
        0HZRO(IMAIV)=0SUMR
        H&Z0([4AIN)=SNGL(JZ(|ms)
```



```
        IFUN=2
    E|{M THE SEJUENCF OF PA&TIAL INVEASE HANKEL TRANSFIRMS BY INTEGRATING
        AETWEEN LAMHIG SUG(I) ANS LAMBDA SUR(ITI). FOP I=I TO NARRAY (THESE
    LIMITS QDE INJTHE ARZAV JHINJTL).
```



```
    NUMERICAL INTEGZATIGN UVFDEACH LAMBTA SUB-RANGEP
        !!!!T!=!. an
        ju 3 t= 1,NaP2ar
    FUPM THF LIWE? AND UPPER INTEFPATION LIMITS
            DA=DHINTL(I)
            DB=DHINTL(I+1)
        IMTEGRATE (THESE VALUES A&E DASSED TO THE FUNCTION DFCT THRU COMMTN).
        ZFSULT SF THE INTEGRATION IS STOIED IN DARRAY(II FOR FUTURE USE IN
        THE EULEJ CONVENGENCE ACCELE,A ATION ALGORITHM DTEUL.
            CALL,JGAUSS(OA,OG, IGUN,DREP.OAGSSZ, DARNAY(I),DERQ,IER)
        STJ,AE EMROI FLAG
            IEPFLi;(2,IMAIN,I)=ICR
        NOW SUM THE INTEGRALS EOR COMOARISION WITH THE ACCELERATED SUM TO
        pE calculated in sugFOUTINE OrEul.
        3 NINTI=DINTI+DARRAY(I)
    NOX USE THE FULFR CONVERGENCF ACCELERATION ROUTINE TO BEST ESTIMATE
        THE AEAL DAQTGOF THE TOTAL INVEDSE HANKEL TRANSFORM ATT THE
        FTEDUENCY TWUPIF.
            CALL OTEUL(GFCV,CSUUI,NAP3AY,I.E-I4,IERI,NI)
            DHIFC(I 4ATV)= OSUMI
            HIHII(I:HAIN)=SNGL(ESUMI)
```



```
        ODINTI
```



```
        : T53., j11m=1,023.16.1%
    ENO OF HFVELTOMFNT STAGE CUDE
    ILISK 3 - FORM HR{R,N*DELTAW) NEFQED FON IDFT. USE SPLINE FUNCTION
                        INTEPPILATION ON THE AESULTS DF BLDCK Z.
        NSPL=T9
    FGTM SPLINE C:JFFFICIENTS FOR TME HEAL PQHT AF HR(A,O)
        CALL SPLIN'(NSPL, N4EO,A,HRRO.HFSB,HNSC,HRSD)
```



```
        TSAM品=゙ッ%-n
        NDFT=1'?.4
        TA|P1=%.%3.1415%3
        W)= 「由OPT/(rsampovNDFT)
    C!J,MTH: SOFCY+UM OF THE EIAST (N/2+1) FREQUENCIES
        DC &: I= L.ISTiJP
        2A0C:N.J=WO&FLOAT(1-1)
```



```
C VOM FOZM THE CONJUSAT:PATF iJE THF SPFCTAUM
        ISTART= ISTJP*I
        DO SO I=ISTART,NOFT
    i.) CFHR(I)=CNNJG(CFH:R(NOST +2-1))
C
        LOCK & - CALCULATE PHE INVFASE FOUPIER TRANSFORM OF THE MAKNETIC
                INTENSITY. USSS AN IDFT TO SIMPLIFY THE NUMERICAL
                    pnocemuag.
        nELTA=1./(TSAMP:FLDAT(NOFT))
        KOUE=-1
        CALL FFT(KIIDE,NDFT,IFLTA,CFHN,&SO)
    :NAINTLESULIS - TIME MIMMAIN MAGNETIC INTENSITY
    WYITE(5.&O!)O)
    20'00 FIRMAT(f/' TIME(MILLISEC) INDUCTION (TESLA)*)
        DO 7` I=1,2Cl
        TIME=.00G;FCOAT(I-1)
        CFHF(I)=CFHAR(I)=CMUS
        TO WHITr.(n,己OlD) TIME,CFH](I)
    2010 FOAMAT(4X,FBO3,T 2L,FB-S,T41,E1L.4)
        00 5% 1=22n,1001,5
        T:ME= COS:FFLOAT(I-1)
        CFHZ(I)=CFHR(I):CMUN
        4O WNITE(1,O2010) TIME,CFHR(I)
        OPINT EPRO:A FLAGS
            WPITE(5,4505)
        45, FO2MAT(; IHRROR FLAGS FROY REAL INTEGRATION:'/)
        NO 2LG I=1,NAPRAY
```



```
    4T01 F0习4ar(?又,77(II))
    450 WRITK(n:450)
    45ว2 FQYMAI(: IEPROR FLAIOS FROM IMAG INTEGRATION: */)
    DO 217 I= I,NARRAY
c <17 W*IT,(5,4501) (IERFLG(2,[I,I),II=1,77)
    7 CTNTINIS.
    #STSTP
    HEAL FIJICTIUN SEVALA(N,U,X,Y,R,C,D)
C COPIED SUMPRDITRAM SEVAL FOLLDWS
    AEAL U,X(N),Y(N),H(N),C(N),O(N)
    IF(I-CiE:N) I=1
```



```
    10 I
        I=N+1
    <0 k=(I+J)/2
        IF(U.LI\bulletX(K)),J=K
        IF(U.GE:X(K)) I=k
```



```
    10 DX=U-X(I)
        SEVAL,R=Y(I)+DX=(B(I)+DX:(C(I)+DX=D(I)))
        2EIUN:N
        2EAL FINCTION SFVALI(N,U,X,Y,?,F,O)
C LuP!ED SUHORGijAMM SEval FiJLiNiNS
    AFAL
        0ATA I/&L/
        {F(I\bulletFE,N) I=1
        IF(U.LT*x(T)),GOrJ 10
        IF(U.LE.X(I+1)) GOT% 3:)
    10
        I=N
    \O K=(I+J)/2
        IF(U.LT:X(K)) J=K
        IF(U-I;F\bulletx(̌)) I=K
        IF(J.厅T:I*1) GUTO 2.
    30 0x=U-x(I)
        SEVALI=Y(I)*DX=(B(I)*DX\approx{C(I)*Dx*D(I)))
        SEVALI
        END
```

SUANかUTINE $S P L I N E(N, X, Y$, R，$C, D)$
C CUOIED SUM，MUTINE SPLINE FOLLDW：
［NfE：＝1 N
HCAL X（N），Y（N）：H（N），C（N），O（id）
［NTE：TF NMI．IG，I
SEAL T
NM1＝N－1
IF（N．LT．2）？CTUAN
IF（N．LT．3）； 50 TO 50
$0(1)=x(2)-x(1)$
$C(2)=(r(2)-r(1)) / D(1)$
กी $10!=2, N M 1$
$u(I)=x(I+1)-x(I)$
$\mathrm{D}(\mathrm{I})=2 .:(\mathrm{D}(\mathrm{I}-1)+\mathrm{D}(\mathrm{I}))$
$C(i+1)=$
$C(i)$
$C(Y+i)-C(I)$
lo CONTINJE
$R(1)=-n(1)$
$H(N)=-i(N-1)$
$C(1)=0$.
$C(N)=?$

$C(1)=C(3) /(x(4)-x(2)) \rightarrow C(2) /(x(3)-x(1))$
$C(N)=C(N-1) /(X(N)-x(N-2))-C(N-2) /(X(N-1)-X(N-3))$
$C(1)=C(1) \div 1)(1) \neq 2 /(x(4)-x(1))$
$C(N)=-C(N): U(N-1) \div: 2 /(X(N)-X(N-3))$

$R(!)=B(I)-T=0(\{-1)$
$C(I)=C(I)-T=C(I-1)$
20 contidut
$C(N)=C(N) / B(N)$
$\mathrm{DO} 30: 8=1$ ：NMI
$I=v-I n$
$C(I)=8$
39 CONTITJJ
$B(N)=(Y(N)-Y(N M 1) / / D(N M L)+\cap(N M 1) \div(C(N M 1)+2 O C(N))$
$00401=1$ NMI

cINTIMUE
$C(N)=30=C(N)$
$D(N)=0(N-1)$
RETUミN
$\rightarrow 0 \quad \mathrm{~B}(\mathrm{I})=(\mathrm{Y}(2)-\mathrm{Y}(1)) /(\mathrm{X}(2)-\mathrm{X}(1))$
$C(1)=0$.
$D(1)=0$.

$c(2)=0$ ．
aETURN
END
SUBROUTINF FFT（KODE，N，DELTA，X，\because ）
FILE：FFT FORTAAN
FRITTAAM TH IMPLEMENT THE FAST FOURIER TRANSFOJM WMFN THE NUMRER OF

ÖF UMETIITOS IJF OISCAETE SIITNAL AND SYSTEM ANALYSISN，OY JONTO．
COMPLEX X（N），W，XI，CYPLX
I $\lambda=C$
$11_{1}=\mathrm{N}$
5 NZ＝N1／？
［F（NOZ．NF．NI）ronTn 10，
$1 a=1+1$
N1二N？
IF（vi．rir．1）Garos
DN＝6．$\because 43197 / \mathrm{N}$
$L=N / ?$
1 $21=12-1$
$k 1=0$
$133020 \quad i=1, i$
$K=K I+1$
$K P L=v+L$
$A M=K B I T \overrightarrow{(K 1 / 2 ~ ん I R 1,1 P)}$
IF（AY－NE．O．）GOTO I
$X 1=X(K P L)$
\＆ $\begin{aligned} & \text { GOTO } 1.9 \\ & A R G=A M ミ P N\end{aligned}$
$\mathrm{C}=\mathrm{COS}(\mathrm{APT})$

$\omega=C M O L X(C, S)$


```
    1; x(&.PL)=x(x)-x1
        x(x)=x(x)+x1
    \thereforeCl=K1+!
```



```
        k1=0
        TM1=101-1
    in L=L/人
    7:1 4- k=1,v
    *1=к`!T\(x-1,iz)+1
    IF(Kl.LF.K);;OT!\ 4?
    x1=x(k)
        x(k)=x(x1)
        x(ki)=xl
        4.) CONTIHUS
            IF(D=LTÃ.E\.1.) RETURN
            OO 50 k=1.N
    in x(x)=0EGTA: x(x)
    OETUN:%
    100 WNITG(b,101)N
```



```
    1:)
        END
        FUNCTION KBITR(K.IM)
        KBIYハ=0
        <1=k
        D!1 1 {=1,14
        K2=k1/2
        KBITH=2*K5\Tत+KI-2*K2
    1 K1=k2
        RETURAS
        FND
        DOUBLE PRECISION FUNCTION JFUN(DX)
C SUADOUTTNE TG FGRM THE INTEGRAHD IN GAUSSQ. SINCE GAUSSO IS USED FOR
    NUMEAICAL QUQGRATUNE WITM TWO DIFFERENT INTEGRANDS, WHICH INTEGRAND
    is evaluated ar fun is oetepmined ar the flag ifun, pasSED tg fuN
    ar THE MAIN PROGRAM THRU COMMON STORE.
            IMPLICIT COMPLEX&16 (C), REAL*B (D)
            COMPLEX:16 CD/(.B1D-3.0.DOO)/.CONE/(1.DO.0.DO)/,CTHO/(2.DO.0.00)/.
        \becauseDCMFLX
            COMPL =X CUPNT
            REALLG OMIJSIG/21.3654800/.0HD3/1.59D-3/.0G/2.780-3/.OCOMP(2).
        #nizaar(10%)
            FOUIVALFPNE: (CHR,OCJMP(1))
            CONMIR UADNAY,CURNT,IFUN,R. TWOPIF
C FORM COMPLEX:IG VEASION OF THE COMPLEXOB CURRENT PASSED TO IFUN THRU
    GOM COHPLEX:AGYEXSIONAFF
            CUZNT!)=UCMPLX(DSLE(REAL(CURNT)), DBLE(AIMAG(CUANT)))
            IF(DX.VE. O.DO) GOTO IO
        LAMADA=J: INTETRAND=0
            DFUN=?.DD
            PETUAN
evaluate the numerator (without The kerNel)
    IO DTL=SEXP(-DXADHD3)
        OT2=((OT1+1.DO)=DT1+1.00):= EXP(-DXFOG) = OKPRLK(DX)
    If FREMUENCY=1, ALMOST DONE
    c FR= IF(TWUPIF PNENOY O.) GOTO 20
        CHA=OCYPLX(OT2/2.ON.0.DO)=CUANTD
            GOTO }1
C MEITHER LAMBDA NOR FREJUFNCY IS ZFRO
```



```
    CT=CUEXD(CDFCSO)
    CTI=CON5/CT
    CCOSN=(CT+CrI)/cTm?
    CSINH=CCOSH-CTI
    CRATIU=OCmpLx(OX,0.DO)/CSJ
    CDENOM= CON=+(CCOSH+CZATIO#CSINH)/(CSINH/CRATIO+CCOSH)
    CHR=DCMPLX(LT2,O.OO):OCUNHTO/CDENOM
C Nuw calcularF iNTFGRANJ
    30 nRTL=nX:ODBL E(P)
    0Jl=うJ!LK(חWTL)
    IF(IFUN DO.I) DFUN=DCOM口(1):0JI=DX
```



```
    A5%1uFV
    FNO
```

```
噱
```



```
    DIAEFTLY. FOR CLMINAKRX GT: Q, SOMF SIMPLIFICATION IS
    U!ILI: 2 (TFE THE PaHEz idTE: JULY 23 i.
            "HICHEA TAANSCEADEVTAL FUNCTIONS", VOL. 2. P. 37,
            fiJuTIIN (s) wirh vu=1
```



```
    חAISM(EK), AND THE HEAL: Y IMSL SUBKOUTINE MMASJN.
```



```
    DJOLK ÄJC DJILK.
            IMPLICIT RFAL*R (D)
```



```
    \(\because \because J l(2)\)
    nata tflaro/-1/
C CHCCK T:I Tif If BIIUTIIE HAS ZEFN CNLLFD REFDRE
```



```
    \#U RAFVIUG CALL - PGOFUAM INITIALIZATION
```



```
    IFLAG: - 1
    CALCULATE XPYIME(LAMAOA)
```



```
    DU= DA \(2 \therefore\) ULM:IDA
    \(D L=D O L=J L M\) Ina
C FOAHBESSFL FUNCTIINS TF THE FIHST KIND AT THE UPPER AND LOWER
    INTEGRATION LIMITS
        UJU(I) = OJOLK(DU)
```



```
        !JL \((1)=: J J L K(D L)\)
\(D J L(?)=\{J I L K(D L)\)
C FIOM DIFFEREACE AT THE UPPET INTF!PATION LIMIT
```



```
        :OTIJ 30
```



```
C FOAM DTEFEDENCE AT THF LONEA IATEC, \(A\) ATIUNLIMIT
    IVEIDE WHICH TECHNIJUE TV USE TO EVALUATE JI(DL):HO(DL)-HI(DL):J)(DL)
        10 If ( \(D L\) GT; B DO) T, DTO 40
```



```
            GOTO 0
```



```
C EVALUATE KPJIME
```



```
        RETURV
        ENO
        FUNCTITH OHOLK (DX)
C NOJQLE PRECISIIN SURPAOGRAM TI EVALUATE THE STPUVE FUNCTION DF
    OACER TCRO FIZ DOURLE PRECISION ARGUMENTS DX -LE B USING A
    SJMMATIIJN OF WEIGHTED CHEBYSHEV POLYNOMIALS.
    REOUIRF:S THE SUGROUTINE DCNPS (NASA LEWIS CDMPUTER LIRRARY) TO
    FIQM AND SUM THEPOLYNDMIALS.
    PEF: "THE SOCCIAL FUNCTIONS AMS THEIK APPROXIMATIONS".
                    VIJL. 2 . P! 370 . BY YUSFLL LUKE.
            IMPLICIT RFALFB (D)
```



```
    \(\approx-.724451151021218, .189533273710931,-.03057052022989\),
```



```
        - \(2573370370-10,-539.5374411515,11.583320-15 /\)
C EHFCK FUR ARGUYENT DUT OF RANTE
    (F (DARS(DX) GT. B.DO) AETUNN
C FUXY THE ATGUMENF FOR THE CHEAYSHEV POLYNOMIALS
            \(D \times D B=7 \times / S \cdot 00\)
```



```
\(C\) SUM THE POLYNIJIIALS
- CALL ICVOS(UHONLK, DAQC, \(8,17.79)\)
C CTMPLETG THE SVALUATION AVO R E TUPN
        DHOLX = UADLK:DXDA
        习习 सETURन
            ENO
```

- $\operatorname{Ang}=x+x$
$\mathrm{Hl}=\mathrm{y}$. on
14.$)=0.00$

$12=$
12

$=H 0=A R G O H 1-H 2+C(k+1)$
$Y=0.300:(C(1)-H 2+H O)$
aETURV
END
FUNCTION UHILK (DX)
C TOUBLE PSECISION SURP, AGRAM TJ EVALUATE THE STRUVE FUNCTIDN DF CNDEA DIF FON DOUSLE PAECISIDN ADGUMENTS DX -LE. B USING A SUYMATION OF WELGHTED CHEAYSHEV FOLYNOMIALS. OEJUIDFS THE SURROUTINE DCNPS (NASA LEWIS COMPUTER LIBRARY) TO Fiam and sum the pillvomials.
a:F: "THE SPEGIAL FUNCTIONS AND THEIR APPROXIMATIONS",
VIL. 2. P: 370. ar YUDELL LUKE.
TMPLICIT $\overrightarrow{E E A L}$ © B (D)

\therefore - 322 万n $3220724059 .-145826323672442.3292 .6773993740-5$,

- 171 ? $371493500350-5,-741.69870052040-10,26.18376707050-10$,
$=-75 ; 53393450-10.1906 .704150-15 .-40.522910-151$
C CHECK FOR AEGUMENT OUT OF RANSE
(ff(OATS(OX) -GT. 8. DO) RETUAN
C FGAM THE ARGUMENT FOR THE CHEBYSHEV PDLYNOMIALS $0 \times 03=i \times 14 \cdot 00$
DARG=.DO $\because D \times D B=D \times D R-1 . D O$
C SUMTHE OTLYNDMIALS
CALL OCNFS(OHILK, DARF, C, 15,99)
$\rightarrow 7$ Reruan
END
FUNCTITM DaOSm(OX)
C UOUHLE PQFCISION SUAPROGRAM TO EVALUATE THE SUMMATION ASSOCIATED
 FORM ANO SIJM THF POLYNOMIALS.
QIEF: "THF SPECIAL FIJNCTIDNS AND THEIR APPROXIMATIONS*, VOL. 2, P. 3TI. AY YUDELL LUKE.
TMPLIC:T REAL AA (D)
REALSGD(20)/.972937275754239.-696.8912311386250-5, -
© $13.20710379703710-5,-1.0532582528441600599319 .92942865250-10$.

=7.11191617110-10,-1.62A97441370-10,.40656807280-10,
=-.1才915047460-10.3120.052430-15.-942.02070-15.298.479470-15.

C CH:CK FOR DRGUMENT OUT OF DA:NF

C SUM THE POLYNOMIALS
C COMPLETr THE =VALUATINMANO POTURA
ПAOSM=DAOSM/(DOID2:Ox)
TY RETUNN
END


```
    Mrafrg*LX - r,F. S USINF, S SJMMATIIJN UF WEIGHTED CHEBYSHEV POLYNOMIALS.
    HEOUIPES THE SUAROUTINE DCNOE (NASA LEWIS COYPUTER LIGRARY) TO
    FDRM AND SUM THE POLYNOMEALS
    AEF: WTHE SPECIAL FUNCTITNS AQD THEIR APPROXIMATIONS*.
            VOL. 2, P. STIF RY YUDELL LUKE.
            IMPL{CTT QE&L*R (O)
            REAL%& F(17)/1.007T,76472934&5,750.3160512492570-5. -
        ب-7.94373325451905!-5.0.2662'193933822660-5,-1834.11577534050-100,
        :174.90147543940-10,-25.12619899050-10.4.0362690104D-10.0
```



```
        \approx-266.357740-15.76.45035n-1%,-23.129610-15,7.332120-15,
        *-2-423345-15/
            MEAL:% DP102/1.5707763267949/
CHFCK FTP AFGUMFAT OUT OF PANIDE
    IF(UABS(DX) -LT. S.DO) RFTURN
FTYM THE AGGUMENT FOR THE CHEBYSHEV POLYNOMIALS
    D30X=3.0!/0x
    O\triangleRG=2.UO=\ADX=0BDX-1.DO
SUM THE POLYNOMIALS
    CALL ICNPS(DALSM,DARG,E,17,99)
C\capMPLETE THE &VALUATIIIN AND RFTURN
    nAITM=:\AISM/OPID2
M Peru,?V
    FND
    BNUSLF POECISION FUNCYION OJILK(DX)
DIJURLE TRECISION SUSFODGNAM TO GVALUATE THE BFSSEL FUNCTION OF THE
    FIZST KINO OF OHDEF I AT TME DNUHLE PRECISIUN ARGUMENT DX. FOR
    ANGUMENTS DARS(DX) LLE. & A TRUNCATED JACOAI SERIES OF CHEAYSHEV
    PIJLYNOMIALS IS USED (SEE THE FIRST REFERENCE RELOWI. FOR ARGUMENTS
    DAGS(DX) AGT. A A TRUNCATEO ASYMPTOTIC SERIES IS USED (SEE SECOND
    DEFEPENCT MFLOW).
HEOUIPES THE SURPOUTIAE DCNPS (NASA LEWIS COYPUTER LIGRARYY TO FORM
    AVD SUM THE CHEBYSHEV POLYNOMIALS.
ZFF: "THF SPECIAL FUNCTIONS AND THEIR APPROXIMATIONSO.
            VOL. 2,P. 332. BY YUDELL LUKE.
TEE: "CHERYSHEV SERIFS FOR MATHEMATICAL FUNCTIGNSNE NAT. PMYS.
            LAT. MATH. TARLES, VOL V. P. 33. BY COW. CLENSHAM.
            IMPLICIT RCALE3 (n)
            FEAL:# 20(15)/.54935877060526400.-1.19180116054122000
```



```
    \therefore1. ミ8.3701423943218-=.07n17. ,97&゙540230-10.274.77070072780-10.
```



```
    =11.3n4750-14%
```



```
    #-59.0-20/
    دEAL=g 701(1'j)/7355.557413707070-5,-9.627723547157080-5.
    =9138.31525745550-10, -209.577813840.00-10.3.22919332770-10,
    *-45363.530490-1', 3615.218730-15,-326.431570-15,35.757770-15,
```



```
    =55.D-20/
            0ATA DPI/3.14157265358379/OIFLJG/-1/
CHFCK T:]SEE IF ROUTINE HAS BEGN CALLEO REFONE
    IF(IFLAO, NE. -1) GOTHS
PERFOAM INITIALIZAIION ANO RESET FLAG
    OCONST=OSOAT(2.OS/OPI)
    O3PIU4=3.DOたDP{/4.0O
    0P1(1)=!P1(1)/2.D!
    021(1)=0)1(1)/2.00
    FLG!:=1
    ` 0J1LK=i).DO
CHECK FH? AAGUMENT EHUAL TO ZERO
    IF(DX -FO. D.DO) EFFTURN
OECIOE IF JACIMI OF ASYMPTITIC SERIES WILL RE USED
    IF(OATS(DX) ©GT. S.DO) GOTN 1%
USE JACOMI SEOIFS
FONM THE GAGUMENT FQR THE CHETYSHEV POLYNOMIALS
    0\timesC8=DX/8.50
    OARG=?.DO= O\timesO8= O<0.4-1.00
SUY THE POLYNOMIALS
    CALL DCVPS(DJILK,DAPG,OB,15)
FINTSH THE CaLCULATION aNO aETIJRN
    OJILK=OKDG=DJILK
OT OETURN
C
USE GODIFIED ASYMPTOTIC SERIES
10 DS0X=3.DO/!X
    9A,GG=2: OU=01SDx=0.30x-1.J0
```


RETUMN
FND
OOURL F FRECISION FUNCT:ON OJOLK (DX)
आGUMLE FIFCISIIN SURPAUCRAM TU EVALUATE THE BESSEL FUNCVITON OF THF

ATCUMEHTS DAHS(UX) LT. R A TRUNCATEO JACOHI SEAIES OF CHERYSHEV
FILYNOUIGLS IS USFD (SEE THE FIPST REFERENCE BELOA) O FOR ARINAENG
AND PHIPD मFFERENCF TFLCNI:

Lail. MATH. TARLÉS, VOL V. P. 32, BY C•W. CLENSHAW.
IMPLICIT REAL*B (D)
AEAL
$\because 26517961320333500 .-370094303472649000.15906710233209700$,

$\Rightarrow-20.7253530560-10,72496.97314 \mathrm{D}-15,-1943.334690-15$.

$=30751.84787514470-10,-517.05945376060-10016.30645463520-10$.
$=-78640.313770-15,5168.262370-15,-430.457890-15,43.255960-15$.

DATA TPI/3.141542ら5358779/, IFLAG/-1/
CHECK III SEF IF ROUTINE HAS REEN CALLED BEFORE
IF(IFLAB - NE - - G) Gita 5
PEHFORM INITIALIZATIUN ANO RESET FLAG
DCONST=0SQRT(2.00/OMI)
DPIDG=0PI 74 - DO
OPC(1)=0PO(1)/2.00
DQO(1)=000(1)/2.00
Iflái=1
5 ロJOLK=1.00
CHECK FOH ARGUMENT EJUAL TO zCアO
(F(DX FJ. O.DO) DETURN
こFCIOE IF JACOPI QQ ASYMPTUTIC SERIES WILL BE USED

USE JACUTI SFPIES
FOIM THE ARTIUMENT FOR THE CHEVYSHFV POLYNOMIALS
$0 \times 08=n \times / B \cdot 00$
กAPG=? DijヶnXOBFOXDA-1-00
SU4 THE PILYNIMIALS
CALL DCNOS(DJOLK, DAR (,, DR, 1R)
47 AETUON
USE MODIFIFJ ASVMPTOTIC SEAIFS
10 D3CX=3.30/0x
DAP $C_{0}=2000 \div 080 X=08 D X-1-00$
SUY THF POLYNIMIALS FOR Pi)(X)
CALL OCNPS(DP,DADGODPO, 14)
sUM THE POLYNIMIALS FOR OO(X)
CALL NCNPS(DO, DAFG,DつO.14)

C NOA FURM aSYMPTOTIC AOOPOXIYATIUN TO JO (X)

AETU:N
FND

FIELC INTSASITIES (EITH:Z A: IL IF IYAGINARY) ARISING GROM IHF

COMMINN OARDAY
OFCT=?ココアロY(I)
QETUTiv
FND

DOUBLE, ;RECISIUN FCT, SUM,Y, $A M N, A M P$
If(max)b,1,
$11!2=-1$
C inItialitie euler tiansfunmation
2 - ह ス =
$I=1$
$M=1$
$M=1$
$M=1$
$r(i)=F C T(N)$

C irtitruct: LOJP
$3 \mathrm{~J}=0$
$4 \quad I=1+1$
If(I-4ax)ラ,ร,12
- $\mathrm{N}=\mathrm{I}$
$A N N=F C T(I)$
$U O H$
$M=1, M$
$A M A^{\circ}=(A M N+Y(K)) \neq$-SDO
$Y(K)=A \mathrm{MN}$
$5 \quad A M N=n 4 P$
C chr:
IF(OABS(AMV)-UABS(Y(M))) 7,7,4
1 IF (M-1才) A, Э. 7
$9 M=M+1$
$Y(M)=A M^{*}$
$A M N=.5 D O \approx A M N$
C UPJATE SUM
') $S U M=S U M+9 m A$
(F (AMS(SNGL(AMN))-EPSこABS(SNGL(SUM)))10.10.3
C rEST ENO BF PZOCEDURE
$10 \mathrm{~J}=\mathrm{J}+1$
IF(Jーラ) 4,11 .11
$11[5 R=0$
12 TETUPN
=NU
SUGRIUTINE UGAUSSCDLOWER, OUPPEA, OFUN, DFELEA, DABSER, DINT, DERR,
\div
(4)

LIMITS DLiJ氏电 aido DHPPER.
PARAMETEXS DRELFA ANE DABSEP AJE PHE USER RFJUESTED RELATIVE AND
GBSOLUTE ERARRS IN FHE ESTIMATE N VALUE OF THE INTFGRAL DINTE IF

STGPS WHEN EITHER THE ASSOLJTE EPRUR CRITERIDN DA THE RELATIVE
EPROA CRITEPIDN. HAS AEEN ESTIMATED TO BE ACHIEVED.
PARAMETER UERR IS THE RETIRNEO ESTIMATE OF THE ABSOLUTE ERROR IN
DINT P PARAMETER IFLAG IS SET TG ZERO IF NOGCONVERGENCE IS OATAINED:
OTHERWISE, IFLAG INDICATES THE NUMBER OF INTEGRAL ESTIMATES
CALCULATED MINUS 1.
SUYPROGZAMS AFQUT2ED - DFUN, DTJJUAD,CONVT
HEF: WGUSSIAN JUADGATURE EUOMULASḦ BY STRTUD AND SECREST

this AnOk.)
IMPLICIT REAL*5 (D)

$\Rightarrow D F x 32(15)$, JW $32(1,2)$ DGx40(20) DGw $20(20)$

\Rightarrow - $537317754296517,03 n 7331474993130$. 1252334095114597
DATA Dr'山12/.4717437538651190-1.0106939325975314,
= 150079328543345 , 203157425723064 . 2233492536533355 。
$\therefore 249147045813403 \%$
OAFA DGX16/.989400934991550, . 744575023073233,0865631202387332 ,
F. 755404409355003 , 517876244402644,458016777657227 .

nムTA クGW15/. $2715245441175410-1.06225352393964790-1$.
*-9515151163247230-1.01246249112555340.1495953A89165TT.

jara $0 \mathbf{0} \times 24 / .975197219797021,9974728559713.99$.
$\because .938274752902733 .0836415527804401$. 8.820001995973903.
$=.740154191578574, .648073651936976$. . 545421471388840 .

-64075872月52605mD-17
Data गGW24/-123412297997.3720-1, .2853138A62993370-1,

$\because-8517914173195310-107761965210411390-1 ; 177444270115966$,

- 1277301953467521
DATA DGX32/.977263951849432..785611511545258.
$\therefore .964752755737504 .0934906075937740$. 8.896321155765052 。

$\circ 663044266730217 . .587715757240762$.
$\therefore .421371276130035 . .312368602282128$.

 exieninal dFun
Calculate the il point and 15 point integral estimates OINTI? DGGUAD (DL DWEA. DYPPFE, DFUN,6.OGX12, OFWI2)
C AETEAMINE WHETHEQ CONVERGENCE WAS OBTAINED
CALL CONVT(DINTA?,DINTIG, DPELER, DABSEH, DERQ, ICONV)
if(icnnv - nt. 1$)$ finto 10
convergrincs - set up values. and return
IFL $A_{1} ;=1$
DINT=OINTIS
QETUZ

C DETFRMINE WHETHEJ C NNVERGENCE WAS OBTAINED
CALL CONVT(DINTIG,DINTZ4, DRELER, DAASER,DERP, ICTNNV)
IF (ICINV -VE 1) T, TTO ZO
C CuNvEargive - SET UO values. and aetuan
Iflais =2
DIvi=nintz4
peruaid
C N CONVFGENCE - CALCULATE THE 32 poINT INTEGRAL ESTIMATE

DETEAMINE WHETHEA CDNV FAGENCE WAS OHTAINED
CALL CONVT(DINT?4, DINTBZ,SZFLEZ, DARSER,DERA,ICONV)
IF(ICITIV •NE. 1) ritita 30
C Cinvehrionce - jet up values, and peturn
IFLAC=3
DINTEBINT32
RETUP!
C vo conveargnce - calcillate the 40 ooint integaal estimate
B OINT

CALC CINVT (OINTBZOINT4O.)OELEマ, DABSER,DERR, ICONV)
IF ICONV •怆
C CONVERGFICF - SET Jo VALUES. AND AETURN
ELEAB4
DINT=:IUT40
HETURN
id CONVEAFENCE
TINT=OINT40
a = rosald
END

C SUMROUTINF TO TEST GUNVEMiENC: FiN THE SUPROUTINE JSAUSS. DDLD AND

MPLICIT 2EAL*S (п)
$1 \operatorname{conv}=1$
DERR=DATS (INEW-i)OLC)
If ThE plaffint integial estimate is egual to ieron proceed to the ABSOLUTE ERZH TEST (AFTER AAXIMG SUTE THAT DARSEZ ONE: O).

CONVER!itice.

CHECK THF A ASOLUTE ERROR CRITERION.
IF(DENz -LEDDSSER) RETU?V

C wil covverisinc:
\therefore IC:TV
EETU:S:1 END
DOURLE PRECISION FUNC TITN DGUUAD(JLOWER, DUPPER, DFUN, NPTOZ,DGX, * (OCH)

FUNC IIIN SUBPRURTRAM TI ESTIMATE THE INTEGRAL EROM DLOWER TO DUPPEA IFF THE FUNCTION DFUN USE:UF, GAUSSIAN OUADAATURE WITH ZNNPTDZ POINTSO AJRAYS Jrix aND Dr, W CTNTAIN THE NORGALIZED ARTUMENTS ON THE INTERVAL

dEF: NJMEIICAL METHIJDS, AY HITRHECK, SECTION B.GP. 154.
MY PAPER DATED AVG2?
IMPLICIT REALOB (D)
ПEAL*A UGX(NPTD2), DTW(NPTD?)
C CALCULATE IHF CONSTANTS USED IN FGRMING THE ARGUMENTS OF DFUN.

C : Ind PERFUC
ADA PERFIRM THF INTFGOATION
DGQUay=0. DO
$0010 \mathrm{I}=1$, NDTD2

RETUMN
FND

ORIGINAL PAGE IS OF POOR QUALITY

ARPEDOE

FOREE AT TI：E T＝50 liCROSECOHS


```
            *ci=2ns(il)
```



```
            DATA CONST/2.5E6/,TOMTRS/.0254/,TOLBS/.2248/
            \(N=11\)
C SJUATE THE CALCULATED E FIELES
                DO \(10 \quad \mathrm{I}=1,11\)
            B250N(I)=EA50N(I)*9P50N(I)
    :C RZSON(I)=BZ5ON(I)OBZSON(I)
C CHANGETHERADII AT WHICH THE B FIELDS WE AE CALCULATED FROM TVCHES
        In METERS
```



```
        15 RZ(I) = RZ (I) OTOMTRS
```



```
\({ }_{C}^{C}\) PEPFOPM THE INTEGRATIONS
            RINT \(50=0\).
2 IVTS \(0=0\).
C LCOP TO ACD THE CONTRIEUTIONS TO THE INTEGRAL BETMEEN KNOTS
            \(0020 \quad 1=1,10\)
            \(T P_{1}=T+1\)
            PINTSO=RINTSCHSPLINT(I,RP(IPI), PR(T), PI JON(I), BRSONS(I),CRSONS(I).
        - 3RCONS(I)
```



```
C DONE FXCEPT FOR MULTIPLICATION BY CONSTAYT
            FIOMET=CONSTO(RINTSO-2INTSO)
            FころLAS=FSCMET=TOLSS
```



```
            STOP
            FUNCTION SOLINT(I,PUP,RIO,F,R,C,D)
```



```
            I = SPLINE FUNCTION INDEX CCPPESPONDING, TO THIS INTERVAL
            PUP = UPPER INTEGQATION LIMIT (A KNST)
            RLO = LOWER INTESRATITN LIMIT (A KNOT)
            \(F=F(2 L 0)\)
```



```
            \(\left.\left.\begin{array}{c}C \\ C\end{array}\right\} I\right\}\) IN THE SPLINE ...
            AS刑保:
```



```
            AEF: uY PAPER DATET JAN 14 8G.
```

```
    3L!:=2LO*nLD
    QLni=2LC={2LO
    OLCi=fLCj*=L!
    pL\ddot{%}=2LO4%%LO
    DUP?=RUPNE,JF
        PUP3=RUP\rQUP
        PUPG=QUPSTPUPP
        RUPC=RUP&*)U&
r. TALEULATE FIPST TERH
OLINT三(((ONPLO-C)ORLS+B)wRLO-F)*(PLO:-?UPI)/2*
C acR SECONIE TEPM
GNOSLINT=SPLINT+((3.*DNRLO-2.*C)*PLO+R):(PUPI-RLO3)/3.
SPLINT=SPLINT-(I.tDFRLO-C)*(RUPG-RLO4)/4.
C TCDSOUZTHTERM: DGNE
    SPLINT = SPLINT+D*(\alphaUP5-RLDE)/j.
    RET:JaN
    FNO
C COOSUPP OUTINF SPLTNE(N,K,Y,B,C,O)
    IEO SUEHOUTINE SPLINE FOLLOWS
    INTEGER N
    QEAL X(N),Y(N), R(N),C(N),C(N)
    INTEGEN NHI, IB,I
    OCALT
    NM1=N-1
    IF(N.LT. 2)RETUPN
    IF(N.LT.3)GO TO 50
    D}(1)=x(2)-x(1
    C(2)=(Y(2)-Y(1)
        ?(I)=
        A(I) = 2. +(D(I-1)+D(I))
        C(It+1) = E(Y(I)+1)-Y(I))/D(I)
    CONTINUE
    8(1)=-0(1)
    g(N)=-r(N-1)
    C(1)=0.
    C(N)=0. 3) GOTC 15
    C(1)=C(3.)/(x(4)-x(2))-c(2)/(x(3)-x(1))
    C(N)=C(N-1)/(X(N)-X(N-2)) - C(N-2)/(X(N-1)-X(N-3))
```



```
    C(N)=-C(N)
    1% DO 20 L = 2,N
        T=0(I-1)
        C
    #? CTNTINUF
    C(N)=C(N)/B(N)
    M! < IE=1, :NML
    I=N-IM
:c Coic(IT)=(C(I)-C(I)r:(I+1))/E(I)
```



```
    jO 4O% = NM, NM
```



```
4r. CMivT:NUE
    O}{N={N=OCC(N
    RETUAN
TO R(I)=(Y(2)-Y(1))/(X(2)-x(1))
    C{
    B(玄)=8(1)
    o(\frac{c}{c}==0.
    RETURN
    CNO
```


APPENDIX F

NOTATION AND LIST OF SYMBOLS

Unless stated othervise, the rationalized MKS syatem is used in all equations and calculations. Equations are numbered consecutively, beginning vith (1) in each chapter. Only those equations that are referenced in the text are numbered. Figures are identified by two alphanumeric characters. The first character is a number, indicating the number of the chapter in vhich the figure appears. The second character is a letter, alphabetically identifying the order in which the figures appear.

A chapter by chapter summary of the symbols used in this dissertation, listed in the order of their appearance, follows.

Chapter One

Z(w) Terminal coil impedance (page 7)
$\omega \quad$ Radian frequency (Fourier transform) variable (page 7)
i(t) Time domain coil current (page 7)
$I(\omega)$ Fourier transform of $i(t)$ (page 7)
$E_{\phi}(z, r, t)$ Azimuthal real space component of the electric intensity (page 7)
$z \quad$ Axial coordinate in cylindrical coordinate system (page 7)
r Radial coordinate in cylindrical coordinate ayatem (page 7)

$H_{r}(z, r, t)$	Radial real space component of the magnetic intensity (page 7)
$H_{z}(z, r, t)$	Axial real space component of the magnetic intensity (page 7)
$f(t)$	Separation force magnitude betveen the coil and metal target (page 7)
Γ	Impulse delivered to metal target by the coil (page 7)

Chapter Three

R_{1}	Inner coil radius (page 12)
R_{z}	Outer coil radius (page 12)
h	Coil axial width (page 12)
d	Metal target thickness (page 12)
ϕ	Azimuthal coordinate in cylindrical coordinate system (page 12).
μ	Permeability of free space (all materials considered in this dissertation are non-magnetic) (page 14)
σ	Conductivity of metal target (page 14)
j	Principal square root of -1 (page 15)
$J_{n}(x)$	Bessel function of the first kind of order n (page 15)
λ	Hankel transform variable (page 15)
\widehat{v}	Total Fourier-Hankel space transmission line voltage (page 16)
$\widehat{\mathbf{I}}$	Total Fourier-Hankel space transmission line current (page 16)
γ	Fourier-Hankel space transmission line complex propagagation coefficient (page 17)
$\widehat{I}_{\text {o }}$ 。	Fourier-Hankel space transmission line phasor current corresponding to propagation in the direction of increasing z (page 17)
(${ }_{0}$	Fourier-Hankel space transmission line phasor current corresponding to propagation in the direction of decreasing z (page 17)

$\widehat{\mathrm{V}}_{0}$.	Fourier-Hankel space transmission line phasor voltage corresponding to propagation in the direction of increasing z (page 18)
\widehat{V}_{0} -	Fourier-Hankel space transmission line phasor voltage corresponding to propagation in the direction of decreasing z (page 18)
2 。	Fourier-Hankel space transmission line characteristic impedance (page 19)
$\widetilde{\mathrm{I}}$	Fourier space phasor current (page 19)
g	Distance between metal target and the current sheet closest to target (page 20)
2.	Axial coordinate of current sheet closest to target (page 20)
z_{1}	Axial coordinate of center current sheet (page 20)
z_{2}	Axial coordinate of current sheet furthest from target (page 20)

Chapter Four

$\widetilde{\mathrm{v}}$	Fourier space phasor voltage (page 23)
z.	```Fourier-Hankel space air transmission line characteris- tic impedance (page 26)```
γ_{a}	Fourier-Hankel space air transmission line complex propagation coefficient (page 26)
z.	```Fourier-Hankel space metal transmission line character- istic impedance (page 26)```
γ_{m}	Fourier-Hankel space metal transmission line complex propagation coefficient (page 26)
2(0)	Fourier-Hankel space impedance seen looking into metal transmission line at $z=0$ in Figure 3C (page 26)
ρ_{H}	Fourier-Hankel space current reflection coefficient (page 26)
P_{E}	Fourier-Hankel space voltage reflection coefficient (page 28)
\hat{v}_{0}	Fourier-Hankel space total voltage at coil side face of metal target (page 30)

解,	Fourier-Hankel space total voltage on face of target opposite coil (page 30)
\widehat{I}	Fourier-Hankel space total current at coil side face of metal target (page 30)
$\widehat{\underline{I}}$	Fourier-Hankel space total current on face of target opposite coil (page 30)
$\overline{\boldsymbol{F}}$	Vector force on metal target (page 32)
ε	Permittivity of free space (all materials considered in this dissertation have a relative permittivity of 1) (page 32)

Chapter Five

r. | Radius of inner loop of wire in field measuring plate |
| :--- |
| (page 38) |

re \quad| Radius of outer loop of wire in field measuring plate |
| :--- |
| (page 38) |

$h \quad$| Distance betveen two loops of vire of the same radius on |
| :--- |
| |
| front and back sides of field measuring plate (page 38) |

Chapter Six

$R(\omega) \quad$ Real part of the total coil impedance (page 47)
L(w) Inductance of coil (page 47)
V. Initial voltage on energy atorage capacitor prior to discharge (page 47)
$\delta(\omega)$ Dirac delta distribution (page 47)
$V_{0}(\omega)$ Fourier transform of energy storage capacitor voltage (page 47)

C Capacitance of energy storage capacitor (page 48)
Rac AC vinding resistance of the coil (page 48)
Real $\}$ Symbal denoting "real part of $\}$ " (page 48)
I. Instantaneous current in coil when clamp diode across energy storage capacitor begins conducting (page 51)

Appendix C
 $H_{n}(x) \quad$ Struve function of order n (page 80)
 $T_{n}(x) \quad C h e b y s h e v$ polynomial of the first kind of order n (page 80)
 $Y_{n}(x)$ Bessel function of the second kind of order n (page 81)
 $A_{n}(x)$ Partial sum associated with the Jacobi series expansion of $H_{n}(x)-Y_{n}(x)$ (page 81)

[1] R. D. Rudich, "Weather-Invalved U.S. Air Carrier Accidents 1962 - 1984 A Compendium and Brief Summary", American Institute of Aeronautics and Astronautics paper number AIAA-86-0327, January, 1986.
[2] British Patent Specification No. 505, 433 issued to Rudolf Goldschmidt; May 5, 1939.
[3] Dr. Robert Schrag, unpublished paper, "Experimental Study of the "Electro-Impulse Process by Magnetic Field Diagnostics", summarized in NASA CR 174919, May, 1985.
[4] M. H.S. El-Markabi and E.M. Freeman, "Electromagnetic Properties of a Circular Cylindrical Coil in a Set of Planar Ferromagnetic Regions", IEE Proc. Vol. 129, Pt. A, No. 8, Nov. , 1982.
[5] General Electric Co., SCR Manual - Fifth Edition, Syracuse Park, N. Y. , 1972.
[6] Richard G. Hoft, ed. SCR Applications Handbook, International Rectifier Corp., El Segundo, Ca., 1977.
[7] RCA Solid State Division, Solid State Devices Manual, Somerville, N.J., 1975.
[8] Samuel Levy, Electromagnetic Shielding Effect of an Infinite Plane Conducting Sheet Placed Betveen Circular Coaxial Coils", Proceedings of the Institute of Radio Engineers, Vol. 24, No. 6, June, 1936.
[9] F.W. Grover, Inductance Calculations - Working Formulae and Tables, Dover, 1962.
[10] C.V. Dodd and W.E. Deeds, Analytical Solutions to Eddy-Current Probe-Coil Problems", Journal of Applied Physics, Vol. 39, No. 6. Kay, 1968.
[11\} M. Onoe, "Analygis of Finite Solenoid Coil Near a Conductor", Electr. Eng. Jpn., 89, 1968.
[12] Ian K. Sneddon, The Use of Integral Transforms, McGrav Hill Book Co., 1972.
[13] Robert A. Chipman, Transmission Lines, McGrav Hill Book Co.. 1968.
[14] Robert Grover Brovn, Robert A. Sharpe, William Levis Hughes, and Robert E. Post, Lines, Waves, and Antennas: The Transmission of Electric Energy, 2nd. ed., Ronald Press, 1973.
[15] Richard E. Matick, Transmission Lines for Digital and Communication Netvorks, McGrav Hill Book Co., 1969.
[16] F.B. Hildebrand, Advanced Calculus for Applications, 2nd. edn., Prenticé Hall, 1976.
[17] Murray R. Spiegel, Mathematical Handbook of Formulas and Tables, McGrav Hill Book Co., 1968.
[18] Arthur Erdelyi, ed. Higher Transcendental Functions, Vol. II, Bateman Manuscript Project, McGrav Hill Book Co., 1953.
[19] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd. edn. . Cambridge University Press, 1980.
[20] Milton Abramovitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., 1965.
[21] Robert W. Hornbeck, Numerical Methoda, Prentice Hall, 1975.
[22] ACM Algorithms Distribution Service, IMSL Inc., Sixth Floor, NBC Building, 7500 Bellaire Boulevard, Houston, Texas, 77036.
[23] International Mathematical and Statistical Library (IMSL) Inc., Sixth Floor, NBC Building, 7500 Bellaire Boulevard, Houston, Texas, 77036.
[24] John R. Rice, Kumerical Methods, Softrare, and Analysis, McGray Hill Book Co., 1983.

〔25] George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler, Computer Methods for Mathematical Computations, Prentice Hall, 1977.
[26] Peter Henrici, Essentials of Numerical Analysis, John Wiley and Sons, 1982.
[27] Avram Sidi, Extrapolation Methods for Oscillatory Infinite Integrals", Journal of the Institute of Mathematics and its Applications, vol. 26, 1980.
[28] David Levin and Avram Sidi, "Tvo Nev Classes of Nonlinear Transformations for Accelerating the Convergence of Infinite Integrals and Series", Applied Mathematics and Computation, vol. 9. 1981.
[29] Avram Sidi, The Numerical Evaluation of Very Oscillatory Infinite Integrals by Extrapolation", Mathematics of Computation, Vol. 38, No. 158, April 1982.
[30] William F. Ford and Avram Sidi, An Algorithm for a Generalization of the Richardson Extrapolation Process" (to be published).
[31] A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice Hall, 1966.
[32] Personal conversation vith Dr. Avram Sidi, The Technion, Israel Institute of Technology, Haifa, Israel.

〔33] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice Hall, 1963.
[34] Frances B. Hildebrand, Introduction to Numerical Analysis, 2nd. edn., McGrav-Hill Book Co., 1974.
[35] Mark Jong, Methods of Discrete Signal and System Analysis, Mc-Grav-Hill Book Co. . 1982.
[36] Janet P. Mason, A Fortran Subroutine to Evaluate Struve Functions for Integer Orders and Positive Real Arguments, NRL Memorandum Report 3181, Research Computation Center, Naval Research Laboratory, Washington, D.C., December 1975.
[37] Yudell Luke, The Special Functions and their Approximations, Vol. II, Mathematics in Science and Engineering, Vol. 53-II, Academic Press, 1969.
[38] Cornelius Lanczos, Applied Analysis, Prentice Hall, 1956.
[39] C.W. Clenshav, Mathematical Tables, Vol. 5, Chebyshev Series for Mathematical Functions, Her Majesty's Stationery Office, London, 1962.
[40] John F. Hart et. al., Computer Approximations, John Wiley and Sons, 1968.
[41] J.A. Stratton, Electromagnetic Theory, McGrav-Hill Book Co., 1941.
[42] R.L. Schrag and G.W. Zumwalt, "Electro-Impulse Deicing: Concept and Electrodynamic Studies", American Institute of Aeronautics and Astronautics paper number 84-0021, January, 1984.
[43] R. M. Bovley, P.J. King, G.J. Levis, and I.J. Shellard, Production of Short Mechanical Impulses by Means of Eddy Currents". Proc. IEe, Vol. 130, Pt. B, No. 6, Nov. 1983.
[44] G.J. Levis, The Electrodynamic Operation of Electro-Impulse DeIcing Systems", American Institute of Aeronautics and Astronautics paper AIAA-86-0547, January, 1986.

