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Preface

This report is a part of the research and development project on

aircraft de-icing by the electromagnetic impulse method. This project

has been sponsored by the Lewis Research Center of the National Aero-

nautics and Space Administration under grant number NAG-3-284. The

grant administrator was Mr. John J. Reinmann. For the previous four

years, many tests had been run in the NASA Icing Research Tunnel and

three sets of flight tests were performed. These, plus various lab-

oratory tests, have resulted in a semi-empirical technology for

designing an electro-impulse de-icing (EIDI) system.

However, the empirical method is inadequate when a very different

geometry, material or size is encountered. A computative solution is

needed which permits prediction of the de-icing effect for a given

configuration and electrical circuitry. This report, which is princi-

pally the Ph.D. dissertation of Robert A. Henderson under the direction

of Prof. Robert L. Schrag, attempts to do the first part of a full

computer simulation of EIDI. The pressure/time produced by the method

in this report would be necessary input for a computer code giving

the structural dynamic response of a given configuration. The con-

figurations in mind are leading edge portions of aircraft wings, engine

nacelle inlets and rotor blades. Applications, however, are not

limited to these applications.

The author acknowledges the assistance of NASA-Lewis Research

Center, both for the support of the whole EIDI project at Wichita State

University and for the opportunity to work at NASA-Lewis during the

summer of 1985. The assistance of Drs. R. Joseph Shaw, Bill Ford and

Avram Sidi during that time is gratefully expressed.
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CHAPTER ONE

INTRODUCTION

1.1 ELECTRO-IMPULSE PHENOMENON AND DE-ICING

In a paper presented January 8, 1986, at the 24th AIAA Aerospace

Sciences Meeting in Reno, Nevada, C1J author R. D. Rudich cited air-

craft icing as the direct cause of four of the thirty two weather

related fatal accidents reported in the paper. While this may not

seem like a significant number, the loss of human lives in these four

accidents could have been prevented if the aircraft involved had been

able to cope successfully with the icing conditions they encountered.

The purpose of this dissertation is to present methods of analy-

zing the electromagnetic aspects of a new method of de-icing both

private and commercial aircraft. This new de-icing method, referred

to as Electro Impulse De-icing (abbreviated EIDI), holds the promise

of being superior to the present aircraft de-icing methods in terms of

the energy expended in removing accreted ice [42].

The EIDI concept is not new. In May 1939, Great Britain issued a

patent to Mr. Rudolf Goldschmidt covering the basic EIDI mechanism

[23. However, no commercial development of an EIDI system in the free

world proceeded from this patent. It has only been within the last 5

years that the unavailability of bleed air from the new high bypass

ratio engines used on the next generation commercial aircraft has

caused attention to again be directed to the commercial use of an EIDI



system for removing ice from aircraft.

The simplest practical EIDI system consists of a spirally wound

coil of rectangular cross section conductor mounted with its axis of

symmetry perpendicular to the metal surface to be de-iced. An ini-

tially charged capacitor is discharged through this coil, and the

resulting magnetic field from the coil's current causes eddy currents

in the metal. The force exerted on these eddy currents by the coil's

magnetic field is initially in such a direction as to cause the coil

and the metal surface to separate. It is this force that causes ice

on the metal surface to crack, and subsequently to be removed from the

surface.

A considerable body of literature concerned with the electromag-

netic aspects of a coil placed next to a conducting surface has accu-

mulated. Levy 18] and Grover 193 present methods of calculating

terminal impedances. Dodd and Deeds CIO] discuss both impedance

calculations and eddy current distributions. Onoe [111 is apparently

the first researcher to apply a Hankel transformation in the calcula-

tion of impedances. Onoe's method is further developed and extended

by El-Markabi and Freeman C41 to include calculation of the force

between the coil and conductor when the coil current is a sinusoid.

Bowley et. al. [43] discuss the use of the magnetic vector potential

in calculating the impulse delivered to the conductor by a transient

current in the coil. Lewis C44J summarizes the use of the Bowley et.

al. method for designing a coil to deliver a specific impulse in an

electro-impulse de-icing installation.



1.2 SCOPE OF DISSERTATION

An experimental set-up of a prototype EIDI system was assembled

at The Wichita State University by Dr. Robert Schrag. An experimental

study of the electro-impulse phenomenon in this system vas made by Dr.

Schrag utilizing field diagnostics methods C3]. Axial and radial

components of the magnetic field vere measured on both sides of the

rigidly held aluminum "target* plate. The data vere then used to

deduce the total mechanical force versus time, and the mechanical

impulse strength. Impulse strength vas also measured directly with a

ballistic pendulum. This experimental study provided results which

vill be used to verify theoretical predictions from the mathematical

model used in this dissertation.

In this dissertation, the physical phenomena involved in the

prototype EIDI system of Dr. Schrag's experiment vill be investigated

analytically and numerically. Specifically, the following tasks vill

be undertaken.

1. A mathematical model for the total electrical problem vill be

devised. It vill employ a transmission line analogy to handle the

electromagnetic field portion of the system, and a frequency domain

model for the circuit portion.

2. The math model vill be solved by computer for the specific

set of conditions that existed in Dr. Schrag's diagnostics experiment,

and the calculated and experimental results vill be compared.

1.3 ORGANIZATION OF DISSERTATION

Figure 1 summarizes the analysis structure developed in this

dissertation to predict the behavior of the prototype EIDI system

briefly described in Section 1. 1. Each of the blocks in this figure



1. Field Problem
Real Space, Frequency Domain

2. Transmission Line
Hankel Space, Frequency Domain

3. Transmission Line Analysis

4. Coil Impedance

5. Circuit Problem
Frequency Domain

6. Current

7. True Field Values
Hankel Space, Frequency Domain

8. Real Space Solutions

9. Total Force, Impulse

FIGURE 1
Analysis Flow Diagram



represents a stage in the procedure for determining the force-time

profile on a rigid coil placed next to a fixed conducting plane when a

capacitor is discharged through the coil.

In Block 1 of Figure 1, Maxwell's equations are written for the

coil and metal target of the physical system. A simple model of the

coil is proposed that stresses the geometrical symmetry of the system,

eliminating several terms from the Maxwell equations. Chapter 3 dis-

cusses this modeling of the coil and metal target, and shows that

application of a Hankel transform to the model equations results in a

conceptual replacement of the field problem with an infinite set of

transmission line problems (Block 2).

In Block 3 of Figure 1, the analysis of the transmission line

model is performed. The methods of this analysis, for steady state

sinusoidal conditions, may be found in Chapter 4. Chapters 3 and 4

provide the basic theoretical developments, with the results of the

analyses in Chapter 4 applied in Chapter 6 to Dr. Schrag's prototype

experimental EIDI system, described in Chapter S. Modeling of the

circuit used to provide energy to the coil is discussed in Chapter 2

for the specific experimental system of Chapter 5.

Once the transmission line model of the coil and target has been

established in Block 3, Figure 1 shows two possible next steps in the

analysis. One of these next steps, calculation of the true field

values (Block 7), requires a knowledge of the coil current. Accord-

ingly, one proceeds from the transmission line analysis in Block 3 to

the Block 4 calculation of the coil impedance, required for calcula-

ting the coil current. Use of the transmission line model for calcu-

lating the part of the impedance of the coil that is due to the



interaction between the coil and target is developed theoretically in

Section 4.2 of Chapter 4, and applied to the impedance calculation of

the coil in the prototype EIDI system in Section 6.2 of Chapter 6.

Coil impedance obtained in Block 4 is added to the calculated

skin effect loss resistance in the coil, and with this total coil

impedance the problem of calculating coil current, using the circuit

models presented in Chapter 2, is addressed. This is Block 5, discus-

sed in Section 6.3 of Chapter 6 for the prototype EIDI system de-

scribed in Chapter 5.

Knowledge of the frequency spectrum of the coil current allows

the calculation of the true field values in Hankel-Fourier space,

shown in Block 7 and developed theoretically in Section 4.3 of Chapter

4. Performing an inverse Hankel transformation on these fields

results in Fourier space (frequency domain) fields. An inverse dis-

crete Fourier transform applied to the Fourier space fields provides

the time domain behavior of the electric and magnetic fields, shown in

Block 8. This procedure is discussed in Section 6.4 of Chapter 6 for

the prototype EIDI system.

Finally, the real space axial and radial magnetic induction

fields on the coil side face of the metal plate provide the necessary

information for calculating the total force on the target as a func-

tion of time, as shown in Block 9. Theoretical development of the

force equation is in Section 4.5 of Chapter 4, with Section 6.5 of

Chapter 6 describing the numerical implementation of this force calcu-

lation for the prototype EIDI system. Calculation of the impulse

delivered to the target is discussed theoretically in Section 4.6 of

Chapter 4, and its application to the prototype EIDI system is de-



scribed in Section 6.6 of Chapter 6.

Chapter 7 contains a summary of the results obtained, a descrip-

tion of the original contributions made by the author, and some sug-

gestions for improving the procedures described in this dissertation

for modeling the electrical aspects of an EIDI system.



CHAPTER TWO

THE ELECTRIC CIRCUIT MODEL

Modeling of the electronics providing power to the de-icing coil

in an EIDI system is performed with the desired output from the model

in mind. Since it is the coil current in conjunction with the

physical configuration of the coil and wing skin that determines the

magnetic fields responsible for the forces on the skin, the current in

the circuit vas chosen as the primary variable.

Testing of a prototype EIDI system began at The Wichita State

University in 1982. The part of this system that provides power to

the coil is shown in Figure 5A (page 35). This system was chosen as

the basic physical configuration for which a circuit model would be

derived. This circuit model is then analyzed to determine the shape

of the coil current. A simple circuit model that is suggested by the

physical system in Figure 5A is shown in Figure 6E (page 47). This is

the basic circuit model, valid when the clamp diode across the capaci-

tor is not conducting.

Justification for modeling the EIDI system as a lumped parameter

circuit was provided by the experimental verification of the absence

in the signals present of any significant frequency components having

wavelengths comparable to the physical dimensions of the system. Be-

cause of the complex electromagnetic interaction between the coil and

the skin next to it, it was felt that time domain modeling of the

8



coil's terminal v-i characteristics would be too complex to be of much

use. Consequently, a frequency domain approach was chosen for

analyzing the circuit, making the model of the coil a linear frequency

dependent impedance.

The presence of the SCR and the clamp diode across the capacitor

makes the circuit model nonlinear, so that straightforward Fourier

(frequency domain) techniques are not applicable. This difficulty is

circumvented by performing a piecewise linear analysis of the circuit.

In this analysis, the physical circuit is modeled by one of two

possible circuits, depending on the state of the clamp diode.

Initially, when the SCR has just been triggered, the diode is assumed

off (an open circuit) and the model of Figure BE (page 47) is used for

analysis. In addition to calculating the current in this circuit, the

capacitor voltage is also calculated. When this voltage first becomes

negative, the clamp diode is modeled as coming into immediate forward

conduction: This diode then acts as a short circuit, resulting in the

circuit model shown in Figure 6F (page 51). All subsequent (in time)

circuit calculations are then performed with this model.

Theoretical justification for modeling both the SCR and the clamp

diode as simple on-off switches is now provided. However, the

ultimate justification for such an outright dismissal of the effects

of both the SCR and the clamp diode in determining the current wave-

form comes from observing how closely the predicted current waveform

(using the models that ignore the non-ideal nature of the SCR and

diode) agrees with the measured waveform. This will be shown in

Chapter 6.

In a practical EIDI system, the voltage on the energy storage
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capacitor prior to its discharge is 1000 to 1500 volts. When the SCR

is triggered into conduction, its voltage drop is on the order of 1

volt, which is small compared to the capacitor voltage, and so may be

ignored in determining the circuit current. In addition to ignoring

the voltage drop across the SCR, the dynamics of the SCR are also not

modeled. Such dynamics are, in the EIDI circuit, primarily manifested

in the failure of the SCR to trigger into instantaneous full forward

conduction upon initiation of a forward gate current. However, modern

SCR design techniques [5], C61, 17] have resulted in turn-on times

that are short compared to the time required for a significant change

in the coil current in the experimental EIDI prototype system. The

SCR used in the prototype system had a di/dt rating of 800 amps/

microsecond, while the maximum observed rate of change in the circuit

was 15 amps/microsecond.

A similar consideration of the voltage levels in the circuit re-

sults in the conclusion that the approximately 1 volt forward drop

across the clamp diode is not a primary factor in determining circuit

current. When the diode is off, its transition capacitance is insig-

nificant compared to the capacitance of the energy storage capacitor.

Reverse leakage current in the diode is ignored due to the large

energy storage capacitor in parallel with the diode and the relatively

small time in which the electrical events of interest take place in

the circuit. With the diode in forward conduction, the sum of its

transition and diffusion capacitances are small enough that, to a

first approximation, they may be ignored in the circuit model.

In constructing the EIDI prototype experimental configuration,

care was exercised to minimize parasitics in the circuit. Special low
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inductance and resistance cable was used to connect the energy storage

capacitor to the coil. However, both of these cable parameters were

measured in the prototype system and are taken into account in the

circuit model. The energy storage capacitor, which was physically

several units in parallel, used copper strap for wiring connections to

minimize inductance and resistance parasitics. The ESR (equivalent

series resistance) and ESL (equivalent series inductance) of the

capacitors vere felt to be small, and are not modeled. If, in a

particular EIDI installation, these parasitics are not small, they can

be taken into account by adding lumped elements in series with the

energy storage capacitor in the circuit model.

Accurate frequency domain modeling of the coil is the most diffi-

cult feat in constructing the circuit model, and is discussed in

Chapter 4.



CHAPTER THREE

TRANSMISSION LINE MODEL OF THE FIELD PROBLEM

3.1 INTRODUCTION

The transmission line model of the coil and metal plate is the

heart of the prototype EIDI system model. It is this model that is

expected to account for the complex electromagnetic interactions be-

tween the coil and plate. These interactions help establish the

impedance presented at the coil terminals, and so are a factor in

determining the coil current. This current is important in determin-

ing the force on the plate.

3.2 GEOMETRY OF A PROTOTYPE EIDI SYSTEM

Figure 3A shows the profile of the physical coil-metal plate con-
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figuration we have chosen to model. The coil has the shape of a

short (h«R, ) thick walled (R, «R, ) hollow cylinder with an inside

12
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radius RI and an outside radius R», whose axis is perpendicular to a

flat metal plate (henceforth called the "target*) of thickness d

extending to infinity in all radial directions. An air gap exists

betveen the coil and target, both of which are assumed rigid and

stationary in space.

Host of the coils used in EIDI applications have been round, at

least prior to a possible bending of the coil to conform to the curved

leading edge of a wing. The flat geometry of Figure 3A is a reason-

able model of such a coil, provided that the radius of curvature of

the coil, after being shaped to conform to the wj.ng, is much greater

than the coil outer radius R».

The assumption that the coil and target remain separated by a

fixed distance would be reasonable if the initial separation distance

vas much larger than the maximum change in separation distance ob-

tained when the capacitor is discharged through the coil. Such an

inequality in separation distances may not hold in a practical EIDI

installation. Alternatively, the fixed separation distance assumption

would be justified if the force "impulse" delivered to the plate by

the coil was so short that the plate acquired only a small velocity,

with negligible displacement, for the duration of the "impulse*. This

does not generally happen in a practical EIDI system. In fact, a well

designed installation has the target move from zero to maximum dis-

placement within the duration of the "impulse". With ice loading

present, however, the displacement may be small compared to the ini-

tial separation distance.



3.3 THE FIELD EQUATIONS

The approach that appears to be the most fruitful for modeling

the coil and target in our prototype EIDI system is presented in a

paper by El-Markabi and Freeman I4J. We now describe their approach,

emphasizing those aspects of the theory that are most appropriate to

the analysis of the model of the prototype system of Figure 3A. The

reader is referred to El-Markabi and Freeman (43 for the more general

theory.

Current in the coil of Figure 3A is assumed to be entirely phi
J

directed. A slight modeling error is introduced by this assumption,

since a radial component of current actually exists in a practical

coil due to the spiral winding of the coil. By neglecting this small

radial current, a model having azimuthal symmetry is obtained. Conse-

quently, the model shows no phi dependence in any of its field quanti-

ties, the electric field contains only a phi component, and the mag-

netic field contains only axial and radial components.

Because most of the spectral energy of the current in a practical

EIDI coil is confined to relatively low frequencies, a quasi-static

situation is assumed. The displacement current term in Ampere's Law

is ignored.

With these assumptions, Maxwell's equations written for Figure 3A

become

a £. (*«-!)
ant
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Partial differentiation with respect to time can be eliminated from

these equations by taking the Fourier transform. Differentiation with

respect to time is then replaced with multiplication by the \<^ opera-

tor. Performing this transformation, ve obtain the following equa-

tions (note that we have not introduced new symbols for the trans-

formed field quantities, but have instead simply replaced their time

variable argument t with the Fourier transform variable omega)

r (0

Equation (1) contains only the phi component of E and the radial

component of H. By combining equations 12) and (3) in such a fashion

as to eliminate the axial component of H, we would have another equa-

tion containing only the phi component of E and the radial component

of H. This elimination yields

At this point, we introduce a mathematical tool that is of con

siderable use here. This tool is the Hankel transform of order n,

defined by C121 .

o

with the inverse transform

- *<r)
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Although the introduction of an additional transform introduces

difficulties of its own, it provides an even greater amount of simpli

fication, and makes possible the transmission line model of the coil-

target electromagnetic field problem.

If a Hankel transform of order 1 is applied with respect to the

variable r in equation (4), the following result is obtained [ID,

C121 (note that ve have again not introduced new symbols for the

transformed quantities, simply replacing their spatial variable argu-

ment r with the Hankel transform variable lambda)

The advantage of equation (5) over equation (4) is that equation (5)

contains partial derivatives with respect to only the z coordinate, in

effect becoming an ordinary differential equation (if one allows "con-

stants of integration* for such an equation to be arbitrary functions
*

of all variables except z). If the same Hankel transform is applied

to equation (1), ve obtain

(fe)

Equations (5) and (6) are two coupled ordinary differential equations

that are recognizable as the canonical transmission line equations.

The solutions of these equations are well known [13], [14], [15J.

3.4 DEVELOPMENT OF THE TRANSMISSION LINE MODEL

Because equations (5) and (6) are identical in form to the equa-

tions describing voltage and current on an ordinary transmission line,

•*. >s.
we now introduce the symbols V and I (each of which is a function of
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position z along the coil axis, the Fourier variable omega, and the

Hankel variable lambda) to represent the phi component of E and the

radial component of H respectively. Then equations (5) and (6) become

Differentiating equation (7) with respect to z, we have

-*£: a _t"?

i
Substitution of equation (8) into this last equation yields

Similarly, we differentiate equation (8) to obtain

Substitution of equation (7) into this equation yields

*•*• -»a

Now define the complex propagation constant gamma in Fourier-Hankel

space as

X ~ "V X^ 4- xiOu n~
0 '

so that the general solutions to equations (9) and (10), assuming com-

•̂  -̂
plex sinusoidal time variation of V and I, may be written as
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Ŝ. -»- >•>. v-v.

where !<>., Io- and V« . , V0 - are complex phasor functions of the Hankel

variable lambda (we have suppressed the complex sinusoidal time varia-

:̂ Ht
tion e.Q in these solutions).

Note that we are conceptually dealing with an uncountably infi-

nite set of transmission lines. Each transmission line is associated

with a different value of lambda, where lambda is non-negative. The

physical origin of this infinite number of transmission lines lies in

our "compressing" the infinite radial variation in the real space

field quantities H, and E^ at a given axial coordinate z into vari-

ables V and I localized to a single "point" (the corresponding z

coordinate) on a Hankel space transmission line. It then takes an

infinite number of transmission lines to account for the infinite

number of possible values of the radius in the real space problem.

To derive an expression for the characteristic impedance of one

of these Hankel space transmission lines, consider the case of a line

having only a single frequency complex sinusoid traveling in the

direction of increasing z. In agreement with ordinary transmission

line theory, the negative sign in the exponents in equations (11) and

(12) denotes propagation in the direction of increasing z. Then

equations (11) and (12) become

.̂
X '

Substitute the expressions for the current and voltage from equations

(13) and (14) into equation (7)
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From this equation, we obtain the defining expression for the charac-

teristic impedance of a Hankel space transmission line as

a. jco

0 /

This result differs by a negative sign from the expression given

in El-Markabi and Freeman C4] for the line's characteristic impedance.

One could argue that the negative branch of the square root function

in the expression for the propagation coefficient gamma should be

chosen, which would eliminate the negative sign in the characteristic

impedance. However, calculations performed with a negative character-

istic impedance results in predictions that are essentially in agree-

ment with experimental measurements, whereas the use of a positive

characteristic impedance predicts results that are not in agreement

with experiment. Alternatively, one could propose that it is the

positive sign that must be chosen for the exponents in equations (11)

and (12) to correspond to propagation in the direction of increasing

z. Such an assumption also results in predictions that are not in

agreement with experiment.

Transformation of real space current sources into Hankel space is

discussed in El-Markabi and Freeman [41. They show that a disc of

a2imuthally directed uniform surface current of phasor value I, with

an inner radius R$ and an outer radius R», located on the z-axis,

becomes a sinusoidal current source with phasor value
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connected in parallel with the Hankel space transmission line. The z

coordinate of this current source is the same as the z coordinate of

the real space surface current from which it arose.

We have chosen three of these ideal azimuthally directed discs of

uniform surface current to model the current distribution in the coil.

The inner (outer) radius of the disc is equal to the inner (outer)

radius of the coil. The middle disc is located at the axial center of

the coil, while the two outer discs are each spaced out a distance of

one-third of the coil's vidth from the center of the coil. See Figure

38. Clearly, some error occurs here due to the localization of the

model's current to these discs.
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îf

h
3

— »
"1

X

^ ,̂
X

^

X

x
X

X

X

^

^*x

«— d
^̂ ..̂

•~^&- A z^-

0 -
l;

x- METAL
TARGET

FIGURE 3B
CURRENT DISC MODEL

OF COIL

Figure 3C shows the Hankel space transmission line configuration

corresponding to the three current sheet model of the coil next to the
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target,

model.

All of our Hankel space calculations are based upon this
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CHAPTER FOUR

ANALYSIS STRUCTURE

4.1 INTRODUCTION

In this chapter, the transmission line model of the coil and

target developed in Chapter 3 and shown in Figure 3C is examined

mathematically using conventional transmission line theory to predict

the Fourier-Hankel space behavior of the model when it is in the

sinusoidal steady state condition. The analyses performed in this

chapter will assume each of the three current sources in Figure 3C has

unit phasor value. In view of the analogy developed in Chapter 3, we

will freely use the terms current and voltage in connection with the

transmission line model to stand for the Fourier-Hankel transforms of

the radial magnetic induction B,(z,r, t) and the azimuthal electric

intensity E^Cz,r,t> respectively. Throughout this chapter, reference

should be made to Figure 3C for insight into the equations written and

for identification of the variables used.

4.2 METHOD OF CALCULATING COIL IMPEDANCE

Although the part of the coil impedance that is independent of

.the properties of the ribbon conductor used to wind the coil is calcu-

lated in Hankel space, as shown in this section, one must begin the

derivation of the expresion for the impedance in Fourier space. Only

in the frequency domain does the concept of impedance make sense. We

will calculate the coil impedance at a frequency omega by exciting the

22
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coil with a current source of phasor value 1, and finding the phasor

voltage response at the coil terminals. The coil impedance is then

numerically equal to this voltage response.

Our real (Fourier) space model of the coil is three ideal discs

of azimuthally directed uniform surface current. We need to relate

the electric fields induced in the different parts of this model to

the single voltage that exists between the coil terminals. We approx-

imate the voltage appearing at the coil terminals by the average of

the voltages induced at the locations of the three discs of the model.

Symbolically, we have

z.. | - r. ' * ' *O *.**!>

where Vk represents the voltage induced at the location of the disc

with axial coordinate zk.

Because of the symmetry of our model, the voltage induced on a

circular path (centered on the z axis) of radius r and axial coordi-

nate z» will be given by

The average voltage induced on the infinite number of circular paths

between r=Ri and r=R» is

r^*
—}—
*" » JR,

Multiplication of this expression by N, the number of turns in the

actual coil, yields

v!k ~i ~ *i J0
 C> ;



which is the model-predicted voltage induced on an infinitesimally

thin N turn coil having an inner radius RI and an outer radius R^

located at z*. Averaging these induced voltages over the three discs

results in the phasor coil voltage

V" - T $ J***! \ * r 2L &,(*- , r
, c 4-rrsJ r *.i *
z I T J r S >

ŝ s

V -

Because this expression is numerically equal to the coil impedance, ve

f̂ f
will replace the symbol V by Z in further appearances of this expres-

sion.

The E fields that appear in (1) are frequency domain (Fourier

space) E fields. In terms of the Fourier-Hankel space E fields, we

can write these Fourier space E fields as

fr)
o

vhere we have again used the list of arguments to distinguish between

different functions. Specifically, EL(ZI, , r, ̂-» is the Fourier trans-

form of the real space azimuthal electric intensity EA,(zk,r, t), and

E^ZK, X , o» is the Fourier-Hankel transform of the real space azimu-

thal electric intensity Ez^ , r, t). Substituting (2) into (1) yields

'
2 ' i ̂T $''[

I K.

Interchanging the order of integration,
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.here
l -?

T) I T>

is the Hankel transformed current corresponding to an inf initesimally

thin N turn coil of inner radius Rt and outer radius R» , carrying a

phasor current of strength 1/3.

Expression (3) contains three Fourier-Hankel space electric

fields (transmission line voltages) that conceptually arose from Four-

ier space phasor currents of value 1/3 on each of the three discs in

Figure 38. The "scaling factor" that relates Fourier-Hankel space

fields due to unity Fourier space phasor coil current to Fourier-

Hankel space voltages and currents due to unity phasor current in each

of the three current sources in Figure 3C is K ( X). Then in terms of

the Fourier-Hankel space voltage £>.,( z» , X , «*i ) due to unity phasor

current in each of the Figure 3C current sources, (3) becomes

2. -- ^*" 4x
o

Expression (4) is the result that we use to calculate the terminal

impedance of the coil.

4.3 RADIAL MAGNETIC INDUCTION AND AZIHUTHAL ELECTRIC INTENSITY

4. 3. 1 Target Surface Facing Coil

We begin by calculating the characteristic impedance and the com-

plex propagation constant of the air transmission line and the metal

transmission line, referred to hereafter as the air line and the metal

line respectively, using the results derived in Chapter 3. For the
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air line, the conductivity o~ is equal to zero, and so

^a ~ "V A3"-*- -i*y T- - X

For the metal line, no simplification is possible and we have

+<r/

According to the analogy developed in Chapter 3, calculation of

the total current and voltage at z=0 in Figure 3C is equivalent to

calculation of the radial magnetic induction BP and the azimuthal

electric intensity E^ on the coil side face of the target. We perform

this current and voltage calculation by replacing the transmission

line configuration for all z>0 with its equivalent impedance. Mote

that both sides of the metal line are connected to infinite lengths of

air transmission line with characteristic impedance Z.. The equiva-

lent impedance looking to the right at z=0 in Figure 3C is

2, •«- 2,

' M

Using this equivalent impedance, the current reflection coef-

ficient at z=0 as seen from the air line is

and the total current at z=0 is then

£o..i = "line * £.fi....d = d*pM)It.« (<*)

in terms of the incident current Ii,0, which must be due solely to the

three current sources. Expression <6> may be simplified as follows.
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Substituting (5) into (7) yields

-

which, upon replacing Z. and Z. by their defining expressions gives

I> o t

I + ^—£—
A ' i 4-

Now consider the current source in Figure 3C closest to the tar-

gej:. This source produces an incident current on the metal line at

z=0 given by
_X<flL

_
3.

where the factor 1/2 comes from the equal division of the unity phasor

amplitude current to both sides of the air line containing the current

source. Total current incident at z=0 is by superposition given by

Substituting (9) into (8) yields
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i 4 £.

\
4-

.

for the total steady state current I« 0«.i at z=0 due to unit strength

complex sinusoidal excitation in each of the three current sources.

Multiplying (10) by K'<X )!(«•», where I(̂ o) is the Fourier transform

of the current in the coil (and multiplication by K ( X ) transforms a

unity Fourier space current into the corresponding Fourier-Hankel

space current), yields the desired result

v

0

for the Fourier-Hankel transform of the radial magnetic induction B,

on the coil side face of the metal target when the coil current

spectrum is I(<jO).

Calculation of the voltage is almost identical to the calculation

of the current performed above. The voltage reflection coefficient

is the negative of the current reflection coefficient,

*(° ' 2

Total voltage at z=0 is

"V,..ai = V",.. * W.,, = (l*fB)V,..

-Â
in terms of the incident voltage Vi» c. Expression (12) may be simpli-

fied as
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Substituting (5) into (13),

**4 *,

which, upon replacing Z« and Z. by their defining expressions, gives

Total incident voltage V i B C at z=0 is given by

>s. >̂  P̂ \ ~"̂  / -X*i/2
V — "7 T — • A. x *""" £> O I | «4* ̂  I <g>
l i > c - ^ » i l i . c - U \ A I 1 * — -»-«--

A. • A.

using (9) for Ij»c. Substituting this expression for Vt.c into (14)

yields

' + • £ . . -1- e. .

for the total voltage at z=0 due to unit strength complex sinusoidal

excitation in each of the three current sources. Multiplying (15) by

K'(X)Hoi) yields the desired result
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, v*q̂  ^*
\ -V tM-— &

• 4- -i «oua
O /

for the Fourier-Hankel transform of the azimuths! electric intensity E

on the coil side face of the target when the coil current spectrum is

I (60).

4.3.2 Target Surface Opposite Coil

Knowing the total voltage and current at z=0 (derived in Section

4.3.1 and given by (16) and (11) respectively) allows a simple trans-

mission line inverse chain matrix calculation of the total voltage and

current at z=d, which are the Fourier-Hankel transforms of the azimu-

thal electric intensity E^ and the radial magnetic induction B, on

the surface of the metal target opposite the coil. Denoting these

•̂.
transforms of the fields on the coil side face of the target by V.

s*.
(given by (16) above) and I. (given by (11) above), we have

'£

where Vf and I, denote total voltage (electric intensity) and current

(magnetic induction) on the surface of the target opposite the coil.
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4.4 CALCULATION OF THE AXIAL MAGNETIC FIELD USIKG THE
TRANSMISSION LINE MODEL

The procedure that we use for calculating the force on the target

is described in the next section, and requires both the radial and the

axial components of the magnetic induction on the target surface next

to the coil. The radial component of the magnetic intensity is avail-

able from the transmission line model by performing inverse Hankel and

Fourier transformations on the calculated transmission line current at

z=0, as discussed in Section 4.3.1. By using equation (2) in Chapter

3, it is also possible to calculate the axial component of the magnet-

ic intensity (which does not have a transmission line analog) from the

transmission line voltage, as shown below.

The azimuthal electric field is given in Fourier space by

^ i - i r .1 r°°
•+ . - -o

Substituting (19) into equation (2) from Chapter 3, we have

Interchanging the order of partial differentiation and integration in

(20),
~ Xr

,-,«) = ̂  ] £ {'0

Using the identity

(21) becomes
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Jx
0

Equation (22) states that the axial component of the magnetic intensi-

ty H, in Fourier space is given by the zero order inverse Hankel

transform of the transmission line voltage at the corresponding z

coordinate multiplied by lambda, with the result divided by \^ u .
0 '

Inverse Fourier transformation of the right hand side of (22) yields

the desired time domain axial magnetic intensity.

4.5 FORCE BETWEEN TARGET AND COIL

Our procedure for calculating the total force between the target

and the coil utilizes the Maxwell stress tensor, and is performed in

real space (using the time domain fields). Stratton C41J shows that

the total force F transmitted fay a time varying electromagnetic field

across a closed surface S is given by

F -
s .

where n* is a unit vector normal to the surface. We take as our closed

surface the plane z=0 (the coil side face of the target, "closed" at

infinity). Since 'n=z', this integral reduces to

r=o

The total force tending to separate coil and target is just the z

component of this force,
_ A A

^ r- Ar

1*11^9 .LUA WCry

^«« r, * ^A O-^ v
\ ( Jb- _ l̂ i. _ ®r- \

r-o
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F = * - * r r - &r Jr
' °o o

Our calculations of the fields EJ,, Br, and B, in the prototype

experimental EIDI configuration described in Chapter 5 shoved that the

second integral in (23) is totally insignificant compared to the first

integral. Some feeling for why this is true can be obtained by com-

paring the constants that multiply each of the integrals in (23).

\o

Accordingly, we approximate (23) by

tr

" O

Equation (24) is the result that we use to calculate force versus

time.

4.6 IMPULSE DELIVERED TO TARGET

The impulse delivered to the stationary target is by definition

given by the integral

o

where F, (t) is calculated using (24).



CHAPTER FIVE

A SPECIFIC SYSTEM EXAMPLE, INCLUDING EXPERIMENTAL RESULTS

5.1 DEFINITION OF THE SYSTEM

The prototype EIDI system constructed at The Wichita State Uni-

versity, and the results of the tests made on that system, have been

described in detail by Dr. Robert Schrag C3]. Most of the material in

this Chapter has been excerpted from Dr. Schrag's paper.

Figure 5A shows the prototype EIDI energy discharge system, omit-

ting the capacitor charging circuit and the thyristor firing circuit.

Tvo identical pulsing coils vere operated in series, because that vas

the arrangement used in most of the de-icing tests. However, only one

of the two coils was utilized in the coil-target assembly, which is

detailed in Figure SB.

The effective gap between the coil (copper) surface and the near

surface of the target was .078 inch. A .032" thick 2024 T3 Aluminum

disc was used as the target. Diameter of this disc vas 5 inches. Two

.05" thick phenolic spacer plates were used, one to maintain a fixed

distance between the coil and the target, and the other to maintain

the distance between the target and the rigid wooden support that

prevented motion of the target. These plates could be removed, and a

special magnetic field measuring plate (described in Section 5.4)

inserted in their place in order to make measurements of the magnetic

induction close to the surface of the target. Each coil consisted of
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30 turns of .024" X .188" rectangular copper wire spirally wound in a

single layer from an inner radius of .125" to an outer radius of 1".

The initial capacitor voltage utilized for the experimental study was

400 volts.

5.2 COIL IMPEDANCE MEASUREMENTS

Impedance measurements on the coil next to the target were made

using an impedance bridge. The inductance determined by these mea-

surements, for several frequencies, appears in the table below. Impe-

dance measurements were also made on the coil when the metal target

was removed. The real part of the impedance measured on the coil

without the target in place was subtracted from the real part of the

impedance measured on the coil with the target in place. This in-

crease in resistance due to the target is given in the table below.

RESISTANCE INCREASE AND INDUCTANCE - COIL AND METAL TARGET

Frequency
(Hertz)

500

1000

2000

4000

Inductance
(Microhenries)

18.6

17.0

14.6

12.6

Resistance
Increase (Milliohms)

8.2

23.0

48.0

77.0

CURRENT WAVEFORM

Initially, current in the coil was measured indirectly by measur-

ing the voltage across the .001 ohm non-inductive resistor in Figure

5A. Difficulties with this approach prompted the purchase of a cur-

rent transformer from Pearson Electronics, Inc. Using this transfor-

mer and a storage oscilloscope, we observed the current shown in



Figure 5C.

3?

200 MOO 600 800

FIGURE 5C
COIL CURRENT

5.4 MAGNETIC FIELD MEASUREMENTS

A magnetic field measuring plate was constructed in the manner

illustrated in Figure 5D. Shallow concentric grooves were cut into

both sides of a .05 inch phenolic disc, with radius increments of .2",

TYPICAL GROOVES
WITH SIWGLE.
TURKJ WIRE
LOOPS

WITH
TWISTED LEADS

7" DIAMETER
PHENOLIC DISC,
.05

SOLDER

FIGURE 5D
PARTIAL ILLUSTRATION
FIELD MEASURING PLATE
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starting at r=.2" and ending at r = 2.0". Single turn loops of .006"

diameter wire were then cemented into these grooves, and their twisted

leads brought out to solder tabs through radial channels.

For measuring the fields on either side of the target, the mea-

suring plate simply substituted for the corresponding phenolic spacer

plate in Figure 5B. A measurement of the axial flux density was

derived from the induced voltage in any two neighboring loops connec-

ted in series opposition. For the two loops illustrated in Figure 5D,

for example,
r +

^

where B, is in teslas, r is in inches, and V is in volts. This value

is the average axial flux density over the area between the two induc-

tion loops. In the further use of this result, we will assume the

flux density to apply at a radius midway between the two loops.

To measure the radial component of flux density at any radius,

the front and back loops at that radius are connected in series oppo-

sition, and calculations are made from

3irr K

where r is the radius of the two induction loops and h is their

separation, both in inches.

Plots of the magnetic induction fields obtained from these tests

with the target in place are shown at selected radii in Figures 5E,

5F, 5G, and 5H. All B, data showed an anomolous behavior (irregu-

larities) at r=.4" relative to r=.6". A separate check was made, in
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which the plate was reversed (interchanging the two sides). This

produced a reversal of the irregularities, so the effect was probably

due to an inaccuracy in the construction of the plate.

5.5 MEASUREMENT OF IMPULSE TO TARGET

The final step in the experiment was the measurement of the

impulse delivered to the target when the capacitor was discharged

through the coil. This vas done indirectly, using a ballistic pendu-

lum. The impulse so measured was approximately .012 Ib-sec.



CHAPTER SIX

COMPUTER ANALYSIS ON THE SYSTEM EXAMPLE

6.1 INTRODUCTION

Theoretical background for the numerical computations described

in this chapter were developed in Chapters 3 and 4. This chapter will
i

concentrate on a description of the numerical methods used to imple-

ment the theoretical development contained in these earlier chapters

to predict the performance of the prototype EIDI system described in

Chapter 5. The sections that follow are arranged in the order of the

Figure 1 Analysis Flow Diagram, beginning with Block 4 of that dia-

gram. This is the order in which the computations were actually

accomplished.

All computations were performed in FORTRAN IV on an IBM 370.

Source code was compiled with the IBM furnished G level compiler.

6.2 COIL IMPEDANCE

Equation (4) of Chapter 4, repeated as equation (1) below, is the

coil impedance predicted by the transmission line model. Numerical

evaluation of the integral in (1) is discussed in this section.

o

Two common methods are in use to allow quadrature of an improper

integral such as the integral above [211. In the first method, a

transformation of variables is performed prior to construction of an



algorithm for estimating the value of the integral. This transforma-

tion is chosen in such a manner that the new integral has finite

limits. The second method simply replaces the infinite upper limit

vith a finite upper limit, selected such that the part of the integral

thus ignored contributes little to the true value of the integral.

Such a method can be employed only if the integrand decays sufficient-

ly rapidly as the variable of integration increases. Since the con-

trolling factor in the leading behavior of the asymptotic expansion,

as lambda tends to infinity, of the integrand in (1) is e a , with g

a constant, the second method was chosen for use in the numerical

evaluation of (1).

A large amount of high quality mathematical software is available

today C22], [23]. Because of the complexity and cost of writing

quality mathematical algorithms, most numerical analysts suggest that

complex scientific .calculations be performed using algorithms written

by experts [241, [25]. An 8 panel adaptive Newton-Cotes algorithm

entitled QUANC8, described in [25], was chosen to perform the quadra-

ture in (1). A user of QUANC8 may select the relative and absolute

error performances desired, and the program then attempts to estimate

the value of the integral within the selected error criteria. One of

the parameters in the subroutine QUANC8 is an output variable that

contains an estimated error bound on the returned value.

Direct computer evaluation of (1) consumes a large amount of CPU

time, and is consequently expensive. This is due mostly to the ap-

pearance of the factor [K'( X)]« in the integrand. (Note that K'(X)

is defined by an integral containing a Bessel function. This makes K'

oscillatory, shown in Figure 6A. > It was possible to decrease this



cost considerably by calculating K'(X) using QUAMC8 and fitting a

cubic spline function to the calculated K'< X) for use in evaluating

(1). The algorithms used for generating the spline function coeffic-

FIGURE SA
OSCILLATORY

NATURE OF K '< X >

ients and for evaluating the spline function at a given argument are

entitled SPLINE and SEVAL, respectively, and are described in [25].

Once a spline function approximation for K'(X) was available,

QUANC8 was used to individually estimate the real part (the coil

resistance increase due to the metal target) and the imaginary part

(the coil reactance) of (1) at selected frequencies. Appendix A

contains a listing of the complete program, vith the subroutines

referred to, for evaluating the real part of (1). A simple modifica-

tion of this program allows the imaginary part of the impedance to be

evaluated.

Initial estimates of the real and imaginary parts of the integral

in (1) vere obtained using an upper limit of 680. Following this, the

programs were run again with an upper limit of 240. Little difference

was seen in the results of the two calculations, leading to the con-

clusion that the coil resistance and inductance estimates were good.



Figure 68 shows the effects of the upper limit of integration in

evaluating the imaginary part of the integral in (1) for three differ-

ent frequencies.

FIGURE 6B
CALCULATED INDUCTANCE

VS.
UPPER INTEGRATION LIMIT

Figures 6C and 6D on the following page show the resistance in-

crease and inductance calculated as described above. Measured values

of these parameters are also shown for comparison.

6.3 CURRENT WAVEFORM

6.3.1 Introduction

As discussed in Chapter 2, three factors preclude a simple calcu-

lation of the coil current in the EIDI prototype system. These three

factors are the nonlinear diode and SCR, and the presence of the metal

target next to the coil.

The effects of the target on the coil were taken into account by

calculating the coil resistance increase and inductance at several

frequencies, as described in the previous section. These two frequen-

cy dependent parameters were then approximated with cubic spline

functions, again using the subroutine SPLINE. This provided the
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ability to calculate computationally inexpensive yet sufficiently

accurate coil impedances for use in frequency domain circuit calcula-

tions.

6.3.2 Current Before Clamp Diode Conduction

Although the circuit is nonlinear due to the diode and SCR, it is

amenable to treatment in a piecewise linear fashion. The frequency

domain model of the circuit, valid between the time the SCR is init-

ially triggered and the time the capacitor voltage becomes zero, is

shown in Figure 6E. In this Figure, the EIDI system capacitor is

modeled as an ideal discharged capacitor in series with a voltage

FIGURE 6E
FREQUENCY DOMAIN
CIRCUIT MODEL
CLAMP DIODE OFF

source. This voltage source has a value of zero volts for all time

prior to t=0. At t=0, it instantly rises to the amplitude and polar-

ity V0 of the initial voltage on the actual capacitor, modeling the

triggering of the SCR into instantaneous full forward conduction.

Voltages and currents calculated from this model are good approxima-

tions to their corresponding quantities in the physical EIDI prototype

circuit as long as the diode in parallel with the capacitor is not

conducting.



The frequency dependent resistor appearing in Figure 6E is a com-

posite lumped model of several loss mechanisms in the physical cir-

cuit. It includes the loss in the coil due to the presence of the

metal target next to the coil (calculated as described in the previous

section), resistance of the ribbon conductor used to wind the coil

(corrected for skin effect), and the resistance of the cable used to

connect the coil and capacitor. Resistance in the cable was modeled

as frequency independent, with a measured D. C. value of .054 ohms.

Coil winding resistance was calculated from

where

Roc = D. C. coil resistance = .0235 ohms
h = coil thickness = .00477 meters
£ = copper skin depth = I /-Vit-P/Aq-
f = frequency in Hertz
E. - copper permeability = 4Tf X 10* 7 henries/meter
v - copper conductivity = 3. 48 X 107 mhos/meter

Resistance R«c applies to both the coil next to the target and the

idler coil (see Figure 5A).

Similarly, the frequency dependent inductance L in Figure 6E

arises from more than one source. First, there is the inductance of

the coil next to the target (calculated in the section above). Sec-

ond, the idler coil and cable connecting the capacitor to the coil had

a combined measured inductance of 23 microhenries, which was assumed

to be independent of frequency. As these two inductances are in

series in the circuit, they are added together to obtain a value for

L.

The leakage reactance and measuring circuit impedance reflected



into the actual circuit by the current transformer used to measure the

current were felt to be too small to be significant, and were not

included in the Figure 6E model.

By inspection, the Fourier transform of the current in Figure 6E

is given by

a
Note that the delta distribution multiplies its own argument, and

consequently contributes nothing to the time domain current i(t).

Equation (2) is the basis for the current calculation, valid until the

capacitor voltage becomes zero and the clamp diode in parallel with

the capacitor begins conducting. For simplicity and cost considera-

tions, an inverse discrete Fourier transform (IDFT) (361 was chosen

to approximately invert I(co). To sufficiently minimize the effects

of the IDFT approximation to the continuous inverse Fourier transform,

a 1024 point transform with a sample time of 5 microseconds was cho-

sen. This makes the folding frequency 100kHz, which is considerably

above any significant frequencies measured in the spectrum of the

current in the prototype EIDI system. The 200kHz frequency window of

the IDFT is sufficiently large that "windowing* effect errors in the

time domain response are not too great. (These errors are primarily

manifested as Gibbs' ripples on the intitial current calculated in

Section 6.3.3, described in Section 6.3.4 and shown in Figure 6G.)
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Appendix B contains a listing of the program used to calculate

the coil current in the manner described above.

In order to determine how long a time this calculated current

approximates the actual circuit current, a second calculation was per

formed using the circuit model in Figure 6E. The model predicts a

frequency domain voltage corresponding to the physical EIDI capacitor

voltage of

+.

lo

The term involving the delta distribution again contributes nothing to

the inverse Fourier integral yielding the time domain voltage, and is

dropped from consideration to yield (3). A 1024 point 5 microsecond

sample time IDFT was used to approximately calculate the inverse

Fourier transform of (3). Output from this program shoved that the

capacitor voltage would slew negatively through zero volts at t=279

microseconds. This is the tine at which the diode across the capaci-

tor is modeled as coming into conduction and acting as a short cir-

cuit. Beyond this time the model of Figure 6E is no longer valid, and

consequently the current predicted by the model is no longer correct.

6. 3. 3 Current After Clamp Diode Conduction

Once the diode comes into conduction, the model of the EIDI

circuit for all future time is as shown in Figure 6F. The inductance



FIGURE 6F
FREQUENCY DOMAIN
CIRCUIT MODEL
CLAMP DIODE ON

and resistance in this circuit have the same physical significance

that they had in Figure 6E, and their values are calculated for any

desired frequency using the same algorithms. For computational con-

venience, time is "reset* to zero in this circuit, even though the

circuit does not come into existence until t=279 microseconds in the

Figure 6E circuit. Since the current in the coil is not initially

zero, the circuit's magnetic energy storage is modeled by including a

DC current source in parallel vith a frequency dependent inductance.

This current source is zero for all time prior to t=0, and for all

future time has a D.C. value I0 equal to the value of the current in

the Figure 6E circuit at the time the capacitor voltage became zero.

Current in the Figure 6F circuit is given in the frequency domain

by

;
o

Note that the term containing the delta distribution once again con-

tributes nothing to the inverse Fourier transform of I (to), and is

dropped in (4). An IDFT was used to calculate the approximate inverse
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Fourier transform of H^O) given in (4), in exactly the same manner

that the expression for I(<^o) in <3) was inverted. The program is

very similar to the one used in the Section 6.3.2 current calculation,

contained in Appendix B.

6.3.4 Combining Pre- and Post Clamp Diode Conduction Current

Because of the presence of the current source in parallel with

the inductor in Figure 6F, the current in this circuit model is dis-

continuous at t=0. Consequently, the current cannot be bandlimited.

An inherent assumption in the use of the IDFT to approximately calcu-

late a continuous inverse Fourier transform is that the signal is

bandlimited. The time domain current calculated by the IDFT showed a

small amount of ripple during the first 100 microseconds due to the

current spectrum not being bandlimited. Prior to "joining" in time

the current predicted by the Figure 6E model with the current predict-

ed by the Figure 6F model, this ripple was eliminated by graphically

choosing current values lying close to the IDFT predicted values that

joined smoothly with the current from the Figure 6E model. Figure 6G

illustrates this procedure. Current ripple amplitude was 54 amps peak

to peak at t=10 microseconds, decaying to 1 amp peak to peak at t=7S

microseconds, with time measured in the Figure 6F model. Figure 6H

shows how good the agreement is between this piecewise linear model

predicted current and the current measured in the prototype EIDI

circuit.

With the model predicted current now available at 5 microsecond

intervals from t=0 to t=5.12 milliseconds, a 1024 point 5 microsecond

sample time DFT was performed on the current samples to estimate the
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Fourier transform I (oo) of the model current. This transform is

needed for use in calculating the magnetic induction fields from the

Hankel space transmission line coil-target model, as discussed in the

next section.
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6.4 MAGNETIC INDUCTION

6. 4.1 Introduction

Knowledge of the radial and axial magnetic induction on the coil

side face of the target is required for calculation of the total force



on the target. Although conceptually simple, the numerical calcula-

tion of these two fields presented more computational difficulties

than were encountered in the combined total of all other calculations

performed. Initial attempts at calculating the magnetic induction,

performed using single precision arithmetic and using professionally

written quadrature routines, produced results that were incorrect by

orders of magnitude.

6.4.2 Radial Magnetic Induction on the Coil Side Face of the Target

Expression (5) shows the iterated improper integral that is to be

evaluated numerically to calculate the time domain radial magnetic

induction B,(0,r,t). This integral is the inverse Fourier-Hankel

transform of the total current at z=0 given by (11) of Chapter 4.

~ \Cl p — i

'(\] e 9 \_\ +• e.
jo)

-J^U

Quadrature of iterated integrals is almost always difficult C21].

One of the most common methods of evaluating such integrals, the Monte

Carlo method, could not even be considered for use in (5) due to the

enormity of the very expensive and random complex function evaluations

required by such an approach. Furthermore, the integrand in <5) is
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extremely oscillatory, having both positive and negative complex val-

ues, due to the Beseel function in the inverse Hankel transform, the

function K'( X), and the complex exponential in the inverse Fourier

transform. Quadrature of such integrands is all but impossible using

Monte Carlo methods due to extreme smearing C25], [26]. It is the

oscillatory nature of the integrand in (5) that makes its evaluation

difficult.

After much trial and error, a workable approach to quadrature of

the integral in (1) vas obtained, and is described in this section.

No claim is made for optimality or near optimality in this approach.

After many computations of the magnetic induction had been performed

using this procedure, it became apparent that simplifications could be

made, while still obtaining sufficient accuracy. However, these simp-

lifications have not been tested, and the original approach to quadra-

ture of the integral in <5) will be described.

Measurements of the radial magnetic induction near the coil side

face of the target in the EIDI prototype system provide some insight

into a suitable numerical procedure for evaluating the integral in

(1). The Fourier transforms of these observed fields are smooth

(higher order derivatives with respect to frequency are small) with

most of the energy confined to relatively low frequencies. This

suggested the use of an IDFT to numerically perform the inverse Four-

ier transformation in (1). Further impetus for use of the IDFT is

given by noting that the DFT procedure for calculating the Fourier

transform I(<x>) of the current, described in the preceding section,

yielded transform values at equally spaced frequencies. These are the

appropriate frequencies for calculating a 1024 point IDFT, with a 5
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microsecond sample time, of the Fourier space radial magnetic induc-

tion. However, numerical evaluation of the inverse Hankel transform

in (5) at the 513 frequencies needed for calculating a 1024 point IDFT

yielding a real sequence is prohibitively expensive. This expense was

avoided by using the previously noted fact that the expected Fourier

transform of the magnetic induction is smooth, with most of the energy

confined to lov frequencies. Accordingly, the inverse Hankel trans-

form in (5) vas evaluated at only 77 frequencies, chosen to provide a

reasonable representation of the behavior of the Fourier transform of

the known radial magnetic induction. Spline function approximations

vere then fitted to the real and imaginary parts of the calculated

inverse Hankel transforms. The IDFT routine to calculate the desired

time domain magnetic induction uses these spline functions to form

Br(0, r, co) at the 1024 frequencies needed.

With a procedure for evaluating the inverse Fourier integral in

(1) available, a search for a suitable method for quadrature of the

inverse Hankel integral vas initiated. The infinite upper limit of

this integral vas simply replaced with a suitably large finite upper

limit, due to the controlling factor in the leading behavior of the

asymptotic expansion of the integrand being e. 3 . With the problem

of the infinite upper limit gone, the remaining difficulties may be

divided into two somewhat overlapping classes.

Selection of a suitable algorithm for performing the quadrature

is essential if accurate results are to be obtained. Most of the

common quadrature algorithms are incapable of dealing with oscillatory

integrals without some help. Even with the best of help, examples of

problems where these algorithms completely fail abound. This has
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given rise to highly specialized techniques for quadrature involving

oscillatory integrands C27], [28], [29], [30]. The use of one of

these specialized algorithms was avoided by writing a double precis-

ion Gaussian quadrature routine [21], [31]. This routine was then

used to perform the inverse Hankel integration in (5) over the range

0 < X < 10, then over the range 10 < X < 20, etc., stopping when the

desired upper limit of integration had been reached. The results of

these integrations, which can be interpreted as terms in a sequence

that are to be summed, were then added together first using straight-

forward addition, and then using the Euler series summation converg-

ence acceleration algorithm DTEUL from the NASA Lewis Research Analy-

sis Center Software Library [34]. For each radius at which the radial

magnetic induction was evaluated, and for each of the 77 Fourier

frequencies, good agreement was achieved between the results of these

two summation methods.

Several different finite upper limits were used to take the place

of the infinite upper limit in the inverse Hankel quadrature. It was

experimentally determined that upper limits greater than 1000 resulted

in very little change in the calculated induction fields.

The second problem area concerned the precision of the FORTRAN

implemented on the 370. Single precision floating point word length

on the IBM 370 is approximately 7 decimal digits (24 bit mantissa)

[25]. This is insufficient for nearly all complex scientific calcula-

tions (32], [33]. Double precision floating point word length on the

370 is approximately IS decimal digits (56 bit mantissa) [25], and was

used for all computations involving the inverse Hankel integral.

Without the use of double precision arithmetic, inverse Hankel quadra-
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ture was impossible due to smearing.

Although the use of double precision greatly reduced the effects

of smearing, it created problems of its own. A double precision

Bessel function, and a double precision algorithm for K '( \ ) become

necessary to evaluate (5). Simply converting a single precision

algorithm for K'( X ) to double precision does not yield sufficient

accuracy to obtain good results. Double precision Bessel function

algorithms were unavailable at The Wichita State University. Double

precision algorithms were written for J0(x) and J|(x). The double

precision algorithm that was written for K'<X) is described in Appen-

dix C. Finally, the complete program for calculating the time domain

radial magnetic induction, given by (5), may be found in Appendix D.

Figure 61 provides a comparison between the measured radial magnetic

induction close to the coil side face of the target, and the predicted

radial magnetic induction on the coil side face of the target (output

from the program in Appendix D).

6. 4. 3 Axial Magnetic Induction on the Coil Side Face of the Target

The magnetic induction B, on the target next to the coil is

calculated by performing an inverse Fourier transform on (22) in

Section 4. 4 of Chapter 4. Then

" o

where V(o, X , a) ) is given by (16) in Section 4.3.1 of Chapter 4. Sub

stituting (16) from Chapter 4 into the above,
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The similarity between (5) and (6) is evident, even though the order

of the inverse Hankel transforms is different. Because of this simi-

larity, the algorithms developed to perform the quadrature in (5) were

used, with only evident minor changes necessary, to perform the quad-

rature in (6). A comparison at several different radii between the

measured axial magnetic induction close to the coil side face of the

target and the calculated axial magnetic induction on the surface of

the target closest to the coil is shown in Figure 6J.

6.4.4 Magnetic Induction on the Opposite Face of the Target

Although it was not needed in the calculation of the force be-

tween the coil and target, the magnetic induction on the side of the

target away from the coil was calculated for comparison with the

measured induction close to the same target surface. Section 4.3 in

Chapter 4 derived expressions for the total voltage Vf and total

current If at the junction between the metal line and air line oppo-

site the current sources. These quantities correspond respectively to

the azimuthal electric intensity and the radial magnetic induction on

the surface of the target opposite the coil.
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Inverse Fourier-Hankel transformation similar to that in <5>, but

with the integrand corresponding to the current If given in Section

4. 3, yields the radial magnetic induction. Only minor changes are

necessary in the program whose listing appears in Appendix D to calcu-

late the induction. Figure 6K provides a comparison between the

measured and calculated radial magnetic induction close to and on the

target surface away from the coil.

Inverse Fourier-Hankel transformation similar to that in (6), but

with the integrand corresponding to the voltage Vf given in Section

4.3, yields the axial magnetic induction. Figure 6L shows the compar-

ison between the measured and calculated axial induction close to and

on the target surface away from the coil.

6.5 FORCE VERSUS TIME

It was shown in Section 4.5 of Chapter 4 that the total force

between the coil and target is given approximately by •

For use in this integral, radial magnetic induction was calculated at

5 microsecond intervals at radii .01 inch, .2 inch, and in .2 inch

increments up to a maximum of 2. 0 inch, on the surface of the target

closest to the coil using the algorithms described in Section 6.4.2.

Axial magnetic induction was also calculated at 5 microsecond inter-

vals at radii .01 inch, .1 inch, and in .2 inch increments up to 1.9

inch, on the same target surface using the algorithms described in

Section 6. 4. 3. Cubic spline functions were then fitted to the squares

of the radial variation of these two magnetic fields at times 0, 50,
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100, 150, . . . , 900, and 1125, 1400, and 2000 microseconds for use in

performing the quadrature indicated in (7), using an upper limit of

1.9 inches. The quadrature was done exactly (to the limit of the

machine arithmetic) on the spline function approximations to the

squared fields by integrating the cubic polynomial form of the spline

function between knots, and using the spline function coefficients in

the result. Appendix E contains a listing of the FORTRAN program for

performing this force calculation at t=50 microseconds.

Figure 6M shows the force versus time calculated using this

procedure.

6.6 IMPULSE

Equation (25) in Chapter 4, repeated below, was used to calculate

r --
o

the impulse delivered to the target by the coil. A spline function

was fitted, with time as the variable, to the force calculated in

Section 6. 5 above. An exact integration was performed on the cubic

polynomials of the spline function between knots, with the result that

the impulse calculated was .008 Ib-sec. This is lower than the .012

Ib-sec impulse measured using a ballistic pendulum. It should be

noted that the quadrature of the force integral in (7) above used an

upper limit of r=1.9 inches instead of infinity. Although the induc-

tion decays as the radius tends to infinity, an unknown part of the

force has been ignored by not taking the induction fields at radii

greater than 1.9 inches into account.
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CHAPTER SEVEN

CONCLUSION AND RECOMMENDATIONS FOR FURTHER WORK

7.1 CONCLUSION

7.1.1 Summary

A method of modeling the electrical system aspects of a coil and
i

metal target configuration resembling a practical Electro-Impulse De-

icing installation, and a simple circuit for providing energy to the

coil, was presented. The model was developed in sufficient theoreti-

cal detail to allow the generation of computer algorithms for the

current in the coil, the magnetic induction on both surfaces of the

target, the force between the coil and target, and the impulse deliv-

ered to the target. These algorithms were applied to a specific

prototype EIDI test system for which the current, magnetic fields near

the target surfaces, and impulse had previously been measured.

Coil impedance was the first quantity calculated using the algo-

rithms. Agreement between the impedance calculated and the impedance

measured was seen to be very good for the resistive part, and reason-

able for the reactive part. Despite the simple model used for the

circuit providing energy to the coil, excellent agreement was obtained

between the predicted and measured coil current.

Measured and predicted magnetic induction fields were not di-

rectly compared, due to the fields having been measured close to, but

not on, the target surfaces using spatial averaging methods. The only

67
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fields calculated were on the target surfaces, for use in calculation

of the force between the coil ancf target. Nevertheless, there was

seen to be very reasonable agreement between measured and calculated

magnetic fields. The character of the time variation of these fields

changed considerably with radial distance from the axis, and the

algorithms correctly predicted these changes.

Calculation of the impulse easily provided the greatest disagree-

ment between a predicted and measured quantity, with a -33X error in

the calculated impulse. Impulse was measured using a ballistic pendu-

lum containing the metal target, so, for this measurement, the metal

target was no longer held rigid when the capacitor was discharged

through the coil. This does not satisfy the model assumption of a

stationary system. However, the period of the pendulum was suffic-

iently long that, during the time interval when most of the force was

developed on the target, negligible motion of the pendulum should

theoretically have occured. Motion of the target during the measure-

ment of the impulse is not felt to be a satisfactory explanation for

the discrepancy between the measured and calculated impulse. It was

mentioned in Section 6.6, where the calculation of the impulse was

described, that the infinite upper limit in the integral yielding the

theoretical impulse had been replaced with a finite upper limit for

the purpose of quadrature, thus incurring an unknown error. Our

procedure for quadrature of the impulse integral is felt to be the

most likely source of error in the calculated impulse.

7.1.2 Contributions by the Author

Reference C41 provided most of the basic methods used in this

dissertation in modeling the interaction between the coil and target.
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It was shown that an error had occured in the definition given in C4]

of the characteristic impedance of a Hankel space transmission line,

and the corrected definition was used in the theoretical development

of the model. For many transmission line calculations, this error

does not become evident because impedances occur in ratios (e.g., the

voltage and current reflection coefficient calculations in Section

4.3.1).

Reference C4] provided no method of calculating the axial magnet-

ic induction B,<z,r,t) from the transmission line model. An integral

solution for this field, in terms of the transmission line voltage,

was derived in Section 4.4. This solution allowed the use of nearly

all of the algorithms developed for the calculation of the radial

magnetic induction B, (z, r, t) in calculating the axial magnetic induc-

tion B, (z,r,t).

The most significant contribution of this work was the develop-

ment of FORTRAN algorithms for performing the inverse Fourier-Hankel

transformations yielding the induction fields, described in Section

6.4. While the author made no theoretical contributions in developing

these algorithms, several diverse results from the fields of numerical

analysis and approximation theory had to be applied in concert to

create a working algorithm. During this development, an algorithm for

the generation of Struve functions of the first and second orders was

developed that, according to a computer search of the literature, is

the most accurate reported.

7.2 RECOMMENDATIONS FOR FUTURE WORK

If the methods developed in this dissertation are to be applic-
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able as design tools for EIDI systems, the algorithms for the calcula-

tion of the magnetic induction fields should be made more efficient.

These algorithms, listed in Appendix D, take nearly half an hour of

CPU time on the IBM 370 to calculate either the axial or the radial

magnetic induction versus time at one specific radius. Both the

radial and axial components are required, each at eleven different

radii, for the force calculation described in Section 6.5. A minimum

of eleven hours of CPU time is too great for the evaluation of the

force-time profile of a proposed EIDI configuration. The least desir-

able feature of the methods presented in this dissertation is the

inordinate CPU time required for the calculation of the induction

fields. A sophisticated convergence acceleration routine could per-

haps be devised specifically for more economic calculation of the

induction fields.

Human intervention is required to proceed along the Analysis Flow

Diagram of Figure 1 (page 4) in evaluating a specific EIDI system.

This is because the outputs from the various programs, represented by

such Figure 1 quantities as the coil impedance Z(cu ), the current i(t>

and !(£*», are not in the form required as the inputs for the program

at the next block in Figure 1. A significant amount of design automa-

tion could be accomplished by writing one long program, using as a

skeleton the programs developed for this dissertation, that will take

as input the geometry of the coil-target configuration and the circuit

used to provide energy to the coil, and provide as output a force-time

profile and the total impulse delivered to the target.

Not all possibilities have been exhausted in the search for an

analytical (or semianalytical) solution to the EIDI design problem.
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Perturbation techniques have been suggested as a possible method for

analytical Hankel inversion in the calculation of the magnetic induc-

tion, and should be investigated, as this is the area suffering the

greatest computational expense. Furthermore, analytical solutions (if

sufficiently simple) are often capable of providing insight into a

problem not provided by numerical solutions.
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APPLiiDIX /. * "** OUAllTY

FORTRAN SOURCE CODE FCfi CALCULATING

CC1L RESISTANCE INCREASE DUE TO TARGET

C FILE: FFB21R FORTRAN
C PPOGPAM TO E S T I M A T E RCOIL, USING VALUES OF LAMBDA FRCM 0 TO 630.
C
C VALUES OF THE E-FIELD ARE GENERATED OUECTLY USING THE CODE
C FROM THE FILE FEB2 FORTRAN. VALUES OF KPRIME ARE OBTAINED FROM A
C SPLINE FUNCTION APPROXIMATION. VALUES OF RCOIL CALCULATED HILL BE
C USFO IN A NUMERICAL INVERSE FOURIER TRANSFORM TO CALCULATE CIRCUIT
C QUANTITIES.
C
C INITIALIZE
C

D A T A PI/3.14159265/
TWCPI=2.*PI

C
C MAIN PROGRAM USING QUANC8
C

A=0.01
U=6BO.

C PRINT OUTPUT HEADINGS
WRITE(6,50) A,U

50 FORMAT! • RESULTS OF NUMERICAL INTEGRATION FROM LAMBDA =«,F4.1,' TO
!• .F6.1/J

C GENERATE FREQUENCIES IN HERTZ
00 10 1=1,4
OC 10 J=l ,4

C GFNEP!\TE FREOUENCIES I N A l - 2 - 4 - 7 SEQUENCE
F=10.**I
IFIJ.E0.2I F=2.*F
IFU.EC.3) F = 4.*F
TF tJ .EQ.4 ) F=7.«F

«BSERR=0.
CALL CUANCSl A .U tABSERR, RELERR .RESULT , ERREST , NOFUN .FLAG )

C INTEGRATION DONE - OUTPUT COIL RESISTANCE CALCULATED
RCOIL=THOPI*RESULT*1000.

10 W R I T E «6, 1010) F . R C O I L . E R R E S T
101C F O R M A T ! ' FREQUENCY= • , F6.0 , 5X , • RCOIL= •,F1.3, t M ILL IOHMS • , 5X,

l 'EPPEST= '.E12.5)
STCP
END

C
C COPIED SL3ROUTINE QUANC8 FOLLOWS

S'JB«CL'TINE O U A N C 9 I A , B , ABSERR , REL ERR .RESULT , ER R E S T ,NOFUN,FLAG)
R E A L FUN, A, B, A B S E R R , RELERR, RESULT, ERREST , FLAG
INTFGEP NOFUN
RE'.L V,0, i i l ,H2,W3 ,K4, A P F A , X O , F O , S T O N C , S r E P , C O R l l , T E M P
R F A L C P f e v , O N O W , O O I F F , Q L E F T , E S T E R R , 7 0 L E R R
P E A L CRIGHTOI ) , F ( i 6 ) , x ( i 6 ) , F S A V E ( 8 , 3 0 ) , x s A V E ( 8 , 3 C )
I N T E G C R L tVMIh , lEVMAX,LEVOUT,NCMAX,NUFIN ,LEV,N IM, I , J
LEVIN = 1
L E V M A X = 30
L E V C U T = 6
NC"AX = f-000
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OF POOR QUALITY

NO* IN = NCMAX - 8 * ( L E V M A X - L E V O U T + 2 * * ( L E V O U T » 1 ) )
WO = 3956.0/IM75.0
Hi = 23552. 0/U175.0
W2 = -3712.0/1M75.0
W3 = 41984. 0/141 75.0
W4 = -18160.0/14175.0
FLAG = 0.0
P.FSULT = 0.0
C T P l l = 0.0
E R R F S T = 0.0
A P E A = 0.0
NCFUN = 0
I F I A . F C . B ) RETURN
LFV = 0
M" = I
XO = A
X ( 1 6 ) = 8
O P R E V = 0.0
fO = FUN(XO)
STONE = (B-A)/16.0
X ( P ) = (XO + XI 16) 1/2.0
X ( 4 ) = (XO + X ( 8 ) 1/2.0
X( 12) = ( X ( 8 ) + X( 16) J /2.0
X ( 2 ) * ( X O » X K ) ) /2 .0
X ( 6 ) ' = IXC.) » X(8 D/2.0
X ( 1 0 ) = ( X ( P ) * X I 1 2 ) 1/2.0
X I 1 O = ( X I 1 2 ) » X ( 1 6 ) ) / 2 . 0
OC 25 J = 2,16,2c( j> = FUMXI j) i

25 CCKTINUE
NOF'JN = 9

30 XII ) = (XO » X ( 2 ) J /2 .0
F( I ) = F U N ( X ( 1 ) I
CO 35 J = 3,15,2

X ( J ) = (X(J-l) + X (J *1 ) ) / 2 .0
F( J) = F U N ( X ( J ) )

35 CTNTIMJE
NOFUN = NOFUN + 8
STFP = (X116) - X01/16.0

= (WO«(FO * =(8)1 + H1*(F(U *F(7I) + W2*(F(?)
(F13) + F(5)) + H<r*F«,) )*iTEP

1 +W3» (F( U )+F (13 ) )*W,*F( 12) ) » S T E P
ON^W = CLEFT » OH IGHTILEV*!)
CD IFF =• Qf.'OVi - QPREV
A P = A = A R E A » CDIFF
E S T E ^ P = A B S t Q C I F f J /1023.0
T C L E P - P = AHAXK A 3 S F P R , ( < E L E R P . * A B S ( A R E A ) )*( S T F P / S T O N F )
I F I L E V . L T .LEVMIN) GO TO 50
I F C L T V . O E . L C V M A X I GO To 62
IFINOFUN.GT .NOF IN) OC TC 60
I F t F S I E R K . U F . T O L E R R ) GO TO TO

50 NI« = 2»M^
LFV = LFV +1
TO ">2 I = I, ft

F S A V E t I, LEV) = F( 1+8)
X S 4 V E 1 I, LEV) = X( 1+8)

52 CGNT INOE
OPREV = OLEFT
00 55 I = 1, 8

J = -I
F12*J+18) = F f J + 9 )
X ( 2 « J + 1 8 ) = X t J + 9 )

55 CONTINUE
GG TO 30

60 NOF IN = 2»NOFIN

F L A G = F L A G + I B - X O ) / ( 8 - A )
GO TC 70
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62 FLAG=FLAG»1.0
70 RESuiT=PESuLT+ONow

E R R R S T = E K R t S T » E S T t R R
CCRl l=CORH+QniFF/1023.0

72 IFINIP.EQ.2MNIM/2) I GO TP 75
NIM= MM/2
LFV = LEV-1
GO TC 72

75 MM = MM + I
IMLEV.LE.O) GO TO 10
CPR6V = Q R I G H T I L E V )
X O = X I I t )
FO = F C 1 6 )
DO 78 I = It •»

F(?* I ) = F S A V E I I , L E V )
X t ? « I ) = X S A V E I I t L E V )

78 CONTINUE
GO TC 30

flO RESULT = RESULT «• CQR11
JFIERREST.EQ.0.0) KETURN

82 TEMP = A B S I P E S U L T ) » E P R E S T
I F I T E M P . N E . A B S I F E S U L T ) ) RETURN
E P P F S T = 2 . 0 * E P P E S T
GC TC «2
END

C
C COPIFD SUBPROGRAM S E V A L FOLLOWS

R E A L FUNCTION S F V A L l N , U . X , Y i B f C , D )
R E A L L t X I N ) iY«M ,B(N) t C C N J . n t . N l
D A T A t/ l /
IFM.GE.N) 1=1
I F t U . l T . X U ) ) GOTO 10
I F I U . L E . X I I + 1 ) ) GDTt 3 0

10 1 = 1

2 0 K = ( I + J ) / 2
I F ( U . L T . X ( K ) I J=K
I P I U . C E . X ( K ) ) I=K
IFU.GT.l+l) GCTO 2C1

30 O X = U - X ( I I
S F V 6 L = Y ( I ) + D X » ( B ( I ) + O X » ( C ( I ) + O X * U 1 I)) I

RETURN
END

C
C SUBPROGRAM FUN(LAMB) TG EVALUATE THE INTEGRAND FOR QUANC8

FUNCTION FUNILAM8)
REAL LAMBt KPRI , MUO/ 12 .56637E-7/ , L AMBDAI 48 ) t K P R I M E I 4 8 ) t B ( 4 » ) ( C U e i ,

1DI48)

COMPLEX C M P L X . C S O P T , C F X P , Z P D Z A , IN ,ZXDZA,RHOT,H ,E tT l ,HP21HPO.CCtCGt
I B C . B G t A C . A G , Z A , Z A S Q , E 2 , E l t E 3 t H 3 , E P O , H R 1

DATA SIGHA/1.7«E7/,HD3>.00159/,G/.00278/,DD/.0008128/tIFLAG/I/
C READ IN SPLINE INTERPOLATION DATA FROM FILE _KPSPL CQf.FF
C FIRST CHECK TO SEE IF COEFFICIENTS ALREADY READ

IF!IFLAG.NE.l) GOTO 10
DO 1 1=1t*8

1 R F A D ( 2 t l O C O ) LAMBDA! I l .KPRIMEII) , B ( I ) t C I I ) , D ( I)
1000 FORMAT(F6 .1 ,4 (1X ,E15 .6» )

C F IPST, EVALUATE THE PEAL AND IMAGINARY PARTS OF THE E-FIELDS REOUIRFO
C FOR THE INTEGRATION - USES CODE FROM FILE FEB2 FORTRAN
C FOLLOW STEPS OUTLINED IN "METHOD"

IF(LA«B.E0.0.1 LAMB=l.E-20
10 Z P D Z A = l l . t O . I / C S O P T I C M P L X I l . , W * M U O * S I G M A / ( L A M B » L A M B ) ) )

T=EXP«-LAMB*HD31
I N = C M P L X ( C T * T * T + 1 ) * E X P ( - L A M 8 * G ) , 0 . )
R H O T = ( ( 1 . , 0 . ) - Z P D Z A ) / I ( 1 . , 0 . ) * Z P O Z A )
T l=RHCT* l .EXP lCMPLX( -2 .»LAMB*DD,0 . ) /ZPDZA)
Z X C Z A = H 1 . , 0 . ) + T 1 ) * Z P D Z A / ( ( 1 . , 0 . ) - T I )
H3 = IN/II 1 . . 0 . ) * Z X O Z A »
ZA=CM<>LX(0 . ,W*MUO/ l .AMB»
E 3 = H 3 * Z X O Z A * Z A
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CALCULATE EP2
T=FXP(LAMB»G)
AG=CMPLX( (T+l./T)/2. ,0. I
3G=CfPLXI (T-1./T)/?.,0.)

CG=BG/ZASC
E2=AG*E3*BG*h3
HR2=CG*E3+AG*H3
EP?R=REAL<E2>
EP2I=AI«ACtE2>

CALCULATE EP1
.T=EXP(LAMB»HD3)
AC=CPPLX((T+l./T)/2.fO.)
BC=C*PLX( (T-1./T)/2..0.)*ZA

El=AC»E2+BC*(HP2- ( 1. ,0. J)
Hf t l *CC*E2+AC* (HP/2- (I . iO.I )
EP l»=PEALtE l )
EPl I = A I P A G ( E 1 I

CALCULATE EPO
EPO=AC»E1 »BC*(HP l-( I . tO. ) )
EPCf i=FEAL (F.PO)
FPOI = MMAG(EPO)

EVALUATE KPRI USI*G THF SPLINE INTERPOLATION

NOW E V A L U A T E THE INTEGRAND AND PFTURN
= LA.1B»KPR1*KPR1*( EP2R*EP1P»EPOR)

ENO

"ESULTS OF NUMERICAL INTEGRATION FROM LAMBDA = 0.0 TO 680.0

FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*
FREQUENCY*

10.
20.
40.
70.

100.
200.

400.
700.

1000.
2000.
4000.
7000.

10000.
20000.
40000.
70000.

RCOIL*
PCOIL=
RCOIL*
RCOIL=
RCOIL*
RCOIL*
RCOIL*
PCOIL*
RCOIL*
RCOIL*
RCOIL*
PCOIL*
RCOU =
PCOIL*
RCOIL=
PCOIL*

0
0
0
0
0
1
5

13
22
47
70
81
85
92

109
142

.004

.017

.068

.207

.418

.589

.592

.341

.783

.373

.588

.442

.525

.622

.270

.962

MILLIOHMS
MILLIOHMS
MI LLIOHMS
MILLIOHMS
MILLIOHMS
MILLIOHMS
MILLIONS
MILLIOHMS
MILLIOHMS
MI LLIOHMS
MILLIOHMS
MILLIOHMS
MILLIOHMS
MILLIOHMS
MILLIOHMS
MILLIOHMS

ERPEST*
ERREST*
EPPEST*
ERREST*
ERREST*
ERREST*
ERREST*
ERREST*
ERREST=
EftREST=
ERREST=
ERREST»
ERREST=
EPPEST=
ERREST*
EPPEST=

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.960R5F-13

.118956-11

.14812F- 11

.16755E-10

.23993E-10

.30565E-09

.3*682F-09

.34003E-09

.33792E-09

.52783F-08

.41543E-C8

.58640E-08
.64146E-OR
.39609E-08
.49S84E-0*
.64945E-08
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FORTRAN SOURCE CCDE FOR CALCULATING
COIL CURRENT EEFCRE CLAMP D1CCE COi-iDUCTIOH

. TO P E R F O R M NUMERICAL FOURIER I N T E G R A L INVERSION TC C A L C U L A T E
C THE CURRENT IN THE COIL IN THE WING C1RCJIT (BEFORE THE
C DIODE CLAMP CUTS IN). THIS PROGRAM INILJDES THE FREQUENCY
C OEPFNTENCE OF THE COIL RESISTANCE AND INDUCTANCE. OUTPUT FROM THIS
C P R O G R A M W I L L BF USED TO CALCULATE THE SPECTRUM OF THE CURRENT.
C THIS PROGRAM IS ADAPTED FROM SERCJR FORTRAN.
C

F1(20^8) ,CMPLX,CONJ3.
R C AL L f L S i M i n r ,
D A T A N/23 48/, T/5. E-6 /, C/600.E-6/ ,RCA3LE/ .05W,RDC/. 047 /, LSI MID/23.
E-6/,PI/3.1M593/
T T O T = F L O A T < N ) * T
D E L T A F = 1 . / T T O T
DELTAW=2. *P I *DELTAF

C FORM COMPLEX SPFCTFUV M A T R I X
C

Tn 5 I=1,IEND
Vi=FLOAT( I - 1 ) *DELTAW

CHECK FOR FREQUENCY w=D
IFCw.NE.O. ) GOTC ?

L = LSIMID-H7.8fc5E-6
G O T O ^ .

C W .NF. 0 - C A L C U L A T E R E S I S T A N C E R AS THE SUM OF 3 TERMS: A CONSTANT
C D.C. TERM ( R C A B L E ) ; SK.IN EFFECT I <4 COIL < * A C ) ; AND LOSS IN SKIN OF
C. hING ( C O R P )

3 R = P C A B L F + R A C ( H J + C 3 I L P ( W )
C C A l C U L A T f INDUCTANCE AS THE SUM OF 2 T E R M 5 : A CONSTANT TERM DUE TO
c THF s i*vc>4DS AND IDLEP. usiMin); AND A T E ^ M DUE TO THE COIL IN THF
C W I N G ( C T I L l »

Jf'W FORM THE CONSTANTS USED IN EVALUAT ION OF THE F-OUPIFP TRANSFORM
OF TH-: TIMh VARYING PART OF THE CIRCUIT CURRENT

T NOW FHPM THE M A T R I X VALUES
5 F 1( 1 ) = ( 1. ,0. ) / C M P L X ( l . -W*W*Pl ,w«=P2)

I S T A R T = r , / 2 + 2
UO 7 I = I 3 T A r T , N

7 FKI )=CUNJG(FKN- t -?- ' ) )
C

CALL F F T ( K O O E , \ , D E L T A F , F I , 1 . T )

C EXPPFS5 TTCT IN MRLISF:, T IN MICROSEC

.
BFGIN OUTPUT TF RESULTS

W » I T F ( t , 2 0 1 ) N ,TTGTP,TP
?01 F i ' R V A T ( • 1NU"BEP OF P3 INTS = ' ,U/« T O T A L T I M F I N T E R V A L = « ,F7 .? ,

1 L I S C C 1 , / ' S A M P L I N G P E R I O D = ' ,F7 .3 , ' II 1ROSEC ' // • OUTPUT FROM

2AM "^Y22A FORTPAM 7 / / ) " ^ "

10^ FORMAT {« CIRCUIT CURRENT - F»EQJENCY DEPENDENT Lt P.1//1 T
IIMF(MSLC) S5X,' TOTAL CURRENT RE SPONSE' / ,T23 , ' R E AL» , 15X , ' IMAG' / )
FSC=400.*C
on 20 1=1 ,100
DT=FLGAT< I- I ) *T*1000 .
Fid )=CMPLX(FSC,0.)*F1( I)

20 WRITE(6,200) DT.FKI }
200 FCRMAT(IX,FL2.3,1X,2<F15.5,5X))
10 STCD

END
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FUNCTION R A C ( K )
Cc SUBPROGRAM TO EVALUATE SKIN EFFECT RESISTANCE RAC OF COIL AS A
c FUNCTION OF THE RADIAN FREQUENCY A
c

COKDLEX C M P L X , C E X P , T A U , T A U H D 2 ,T1,T1«
P.r«L HU/1.256637F-6/
D A T A H/ .00477/ ,S IGM4/3 .48E7/ ,RDC/ .0<»7/
O E L T A = S Q R T ( 2 . / ( W * M U * S I G M A J )
T A J = t 1., l . ) / C M P L X ( D E L TA,0.)
T A U H D 2 = T A U * C * P L X ( H / ? . , 0 . )
T 1 = C E X P ( T A U H D 2 )

R A C - R r > L * P E A L (TAUHD2M T 1 * T 1 P ) / ( T 1 - T 1 P > )

CM-
FUNCTION C O I L R ( W )

C SUBPROGRAM TO E V A L U A T E COIL RESISTANCE IOILR (DJE TO PROXIMITY OF
C W I N G S K I N ) AS A FUNCTION OF THE RADIAN FREQUENCY W

PEAL F R E Q C 2 4 ) , Rf.O IL < 24 > » BR (24 ) , CR ( 24) , DR( 24)
D A T A P1/3.1415C3/, IFIAG/1/
IF ( IFL4G.NF..1 ) GGT3 5

C P.FAD IN COEFF IC IEN 'TS FR3M FILE P CO I L COEFF FOP S P L I N E FUNCTION
C I N T E R P O L A T I O N

PC 1 1=1,24
1 R E A D ( 2 , 1 0 0 ) F R E C t I ) f RC01LU) , B R ( I ) , C U I )

100 F C K ^ A T ( F 8 . 0 i 4 J l X , E 1 5 . 6 ) )

IFLAG=-1
r = w / T w o ? i
IF (F.GT.10.) GOTO 1C
CClLR=.004E-3

= S E V A L ( 2 4 , F , F P r O , P C O I L , B R , : R , D R ) * l . E - 3
3 P TURN1

ENP
PEAL FUNCTION SEVAH N ,U , X, Y, B ,C, 0 >

r C O P I E D SUSPROGPAM SEVAL FOLLOWS - E V A L U A T E S SPLINE
r

P^iL U , X ( N ) , Y ( N ) ,B(N) ,C (N ) ,D( N)
DATA I/I/
IFM.GE.NI 1 = 1
IF (U .LT .X( I) ) GOTO 10
IFIU.LE.XU + 1)) GOTO 30

10 1=1

20 K=(I+J)/2
IF(U.LT.X(K) ) J=K
IFIU.GE.X(K) ) 1=K
IFU.GT.I+l) GCTO 20?o ox=u-xm
SEVAL=Y(I ) + OX*(B( IJ*DX*(C ( I J *DX*D ( I ) ) )
RETURN
END
FUNCTION COILL(W)

C SUBPROGRAM TO EVALUATE COIL INDUCTANCE ;OILL AS A FUNCTION OF THE
C RADIAN FREQUENCY W
C

P E A L FREQ116) , LCOIL ( 1 6 ) t BL ( 16 1 , CL ( 16 ) ,DL( 16)
O A T A PI/3.141593/, IFLAG/1/
IF ( IFLAG.NE. l ) GOTO 5c PEAD IN COEFFICIENTS FROM FILE LCOIL COEFF FOR SPLINE FUNCTION

r INTERPOLATION -
no i 1 = 1, 16

I REAO(3t100) FREQd ) , L COI L II) , BL ( 1) ,CL< I ),DL(I )
lOCi FORvAT(r6.0,-t<lX,E15.6))

TwnPI=2."PI
IFLAG=-1

5 F=W/TWOP!
IF (F.3T. 10. > GnTQ 10
COILL = 17.865F.-6
RETURN

10 irtF.GF-.70.E3) GOTO 20
CQILL=SEVAL(16,F, FREQ ,LCOIL , BL, CL , DL ) *1 . E -6
RETURN

20 COlLL = <3.263E-6
RFT'JRN
EN;-;
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SUf.PCLTir . 'E F F T t K O O E , N , D E L T A , X , * )

r PRT'OPAV TO IMPLEMFM THE F A S T F O U R I E R nANSFURM WHEN THF NU^RFR
C [ J f l T A POINTS IS AN' 1NTEGFR POWER 01- T W O . T A K . E N FP01 PAGES 26A-
C -JF "MfTHOOS CF D I S C R E T E S I G N A L ANJ S Y S T E - 1 A N A L f S IS" f BY JONG.
C

C O M P L E X X (N) , U , X 1 , C M P L X
I P = 0 •
N1 = N

5 N 2 = M / 2
• IF(N?*2.NE.M) GCTP 100
It- = !« + '.
M=N2
I KM .GT.DGCTn 5
PN=t .283185/N

Kl = 0
DO 30 1S=1,IR

15 DO 20 1=1, L

KPL=K*L
A M = K B I T R ( K l / 2 * * I R l t I R )
IFtAM.NE.O.) GOTO 18
X 1 = X ( K P L )
GOTO 19

13 ARG=AM*PN
C = C O S t A P & )
S=-KODE*SIN(ARG)
W = C M P L X ( C , S )
X 1 = W * X ( K P L )

19 X ( K ? L ) = X ( K > - X 1
X ( K ) = X ( K ) > X 1

20 K1=K1+1
Kl=Kl+L
IF(Kl .LT.N) GOTO 15
Kl = 0
IR1=IR1-1

30 L=L/2
DO 40 K=1,N
K 1 = K 3 I T R ( K - 1 , I
IF(Kl .LE.K) GOTO
X 1 = X ( K )
X ( K ) = X ( K 1 )
X ( K 1 ) = X 1

40 CONTINUE
I F J O E L T A . E Q . l . ) RETURN
DO 50 K=1,N

50 X ( K ) = D E L T A * X « K )
PFTURN

101 F O R M A T t / / , ' *** N= ',16,' IS NOT A P 3 W E R 3F 2, FFT PUN A B O R T E D ***
1 ' )

RFTURN
END
FUNCTION K B I T P ( K , I R )
K9ITR=0
Kl=K
DO 1 1=1, IP
K2=Kl/2
KBITR=2*KBITR*K l -2*<2

1 K1=K2
. R E T U R N



APPENDIX C

CALCULATION OF K'< X)

The function we have called K7(X) arises from the transformation

of real space current discs into Hankel space. By definition,

Straightforward quadrature of (1) using the Nevton-Cotes algorithm

QUANCS was initially performed for generating values of K'( X) for use

in approximating K'( X) with a cubic spline function. This provided

sufficient accuracy for use in numerical calculation of coil imped-

ance, as described in Section 6. 2. Attempts at calculating the radial

magnetic induction using this spline function approximation for K'(X)

were a total failure. This appendix describes a procedure for calcu-

lating the function K'(X) that is accurate to 14 digits when imple-

mented in double precision FORTRAN on an IBM 370.

The integral in (1) can be evaluated in closed form in terms of

named special functions. Change variables,

Ax - *j %, dx = ^ A

x * *, ^ a • x*i
X «• £4 ^ a *• \&2

so that (1) becomes

Xfc,
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X*,

From reference CIS],

[
where H0(x) and HI(x) are Struve functions of orders 0 and 1 respec-

tively CIS], C19J, and J0(x> and J,(x) are Bessel functions of the

first kind of orders 0 and 1 respectively. Using this result in (2)

yields

In order to use this result, double precision algorithms for generat-

ing the Bessel and Struve functions must be available. Double preci-

sion Bessel functions are readily available, but Struve functions are

not. A computer search of the literature resulted in a reference to a

Naval Research Laboratory report that contained FORTRAN source code

for generating integer order Struve functions with positive arguments

[36]. We vere unable to make use of this code because it used subrou-

tines to which we did not have access.

For several years, mathematicians have been aware of the desira-

bility of using truncated Jacobi series of Chebyshev polynomials for

numerical approximation of various special functions [371, [38]. Luke

[37] provides coefficients b* and c, for Chebyshev series expansions

^ * T T Ixl* «
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where T».(x) is a Chebyshev polynomial of the first kind of order 2n.

All coefficients having magnitudes greater than 10" *° are given,

allowing generation of H 0<x) and Ht (x) with 20 decimal digit accuracy

for arguments whose magnitude is less than 8 C391. Using the identity

T4. (x) = T. (2x«-l>

and retaining sufficient terms for 15 digit accuracy, these series

expansions become

Then for arguments X such that XR, < 8, the expression on the right

hand side of (3) is evaluated using (4) and (5). Chebyshev polyno-

mials are evaluated in double precision arithmetic using the subrou-

tine DCNPS from the NASA Lewis Research Analysis Center Software

Library [403.

Luke also lists coefficients d. and e. for the series

-
-I

for 15 digit accuracy. The functions Y»(x) and Y, (x) are Bessel func

tions of the second kind of orders 0 and 1 respectively. Rather than

use these series directly to evaluate H0 (x) and Ht (x) for arguments

greater than 8, some simplification is possible. Writing
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( .

and substituting these expressions for H0(x) and Hi (x) into the ex-

pression J, (x)H0 (x)-H, (x) J0 (x) appearing in (3), and suppressing the

argument x, we have

J, Ho - H.Jo = J, CAo+Y. ] - tA, +Y,]J9

= J, A« - A, Jo * J, Yo - Y, Jo

= Ji Ao - AI J0 * — — -n ^^

using a veil known property of the Wronskian of Bessel functions of

the first and second kinds CIS]. Thus, the expression on the right

hand side of (3) can be written as

when it is to be evaluated at an argument y = \R. > S.

Using these results, K < X) can be evaluated from (3) for non-

negative values of the argument to at least 14 digit accuracy.
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FORTRAN SOURCE CODE FOR CALCULATIKG
RADIAL T1J-;E DOMAKJ JiAGHETJC USXTION
O.'i THE COIL SIDE SURFACE Of THE TARGET

C PILE: WAIK.2 ' F O R T R A N V l . }
c
C r>si|r,:»AM TO C A L C U L A T F TUT -»aOIAL CO**p[7NENr OF THE MAGNETIC INDUCTION
c at rng COIL SIOF pact OF THK SKIN, ar a R A D I A L DISTANCE RINCH
c F-IOM THh CUIL axis. anaPTED F^OM SOURCE. auG2 wi.o BROUGHT ru wisu
c F«OM NASA LEWIS AUGUST <jr>.
c
c ***** CAUTION *****
c
c 04'MAv SHOULH HAVF CI-ENSIGN NARP.AY, AND OHINTL SHQULO HAVE
C DIMENSION MI-gTL. IN THf FUNCTIONS UFCT(I) AND DFUN(DX)t OARRAY
C SHOULD nave 3iH,-NSiUN N A ^ < A Y . M A R 3 A Y » i = N i N T L
C [\ f lOOITCONi, TH6 A ^ » « Y ICKFLG SHOULD B£ OIMCMSraN6D AS
C I=3FL'.( 3 » 7 7 , N A H H A Y ) .
C

C ***** C A U T I O M *****
C
C tfl.l - ADDfcO THE ABILITY TO STORE AND PRINT THE FLAGS ASSOCIATED
C WITH EACH IMDIVIOUAL GAUSSIAN 3UADaATU3£«
c vu 2 - CHAN.-.FD ADSOLUTE AND RELATIVE ER»O« BEQUESTS TO 1.0-12 IN
C IT4VE-<SE HANKEL TRANSFORM guADRATURE.
C CHANGED PSINT FORMATS TO ALLOW SPOOLING OUTPUT TO HV READER.
C Vt.l - AODfO OUTER LOOPING A9ILTTY TO CALCULATE MAGNETIC INTENSITY
C AT SEVERAL RADII.
C

ILLICIT *8AL*a (0)
C O M P L E X C U - l - U T T j . C U ' N T . C F H R C 10^^ ) , CMUO/( 1 2. 566 3TE-T.O. ) /
^E AL* S S A R - < A Y ( l O O ) , D H I N T L ( l O l ) t O H R R Q ( 7 7 ) ,DHIRO(77)
SEAL*!, D E L T A
•»£aL - lONTH/' jaN « / t O a Y / » 1<» • /, V E R S / « VI. 3«/• » L - l H j a t Y < » , .
= EAL O M { - G A ( 7 7 ) f H R R O ( 7 7 ) t HI *0( 77 ) , HR S B( 77 ) ,HR SC ( 77 ) ,

• 5 H ^ S D ( 7 T ) f M l S P ( 7 7 ) f H l S C ( 7 7 ) , H I S n ( 7 7 ) t RINCH/.01/
INTE''.f"-* IPaFLG( 2» 77, 100)
D A T A Mf l i>saY/100/ ,NINTL/101/

CT^iKJ ,'IAJ!-' AY, CUfNT , IFUNf 3 » T W O P I F

C HLTC< 1 - a f A D COIL C U R R E N T S P E C T R U M ( S T £ P 7) (POSIT IVE FREQUENCIES
C ONLY) F»01 FILE C U R W S P E C D A T A (LOGICAL DEVICE 5).
C F ^ - O U E N C I E S ARE S T O R E D IN ONEGA( I ) WITH THE CORRESPONDING
C C U R R E N T S P E C T R A L VALUE IN CURR( I ) .
C
C 3FAD CU:'.Je'JT SPECTRUM (HEADINGS HAVE BEEN REMOVED FROM THE FILE
c cumsf>!:c DA T A )

no I') t = l,77
10 H f A O (S,1000) OMFGA( I ) ,CURR( I )

1000 F O ^ M I T C T 19 ,E12 .5 ,T3S,E U.5,T51 tE 13.5)

c riurfM LOOP ro CONTROL RADIUS AT WHICH MAGNETIC INDUCTION is
C C A L C U L l T f ? ' )
C
C 00 ?•« J

C a INCH = F L O A T (
C C X r ' - ? 4 < i S R IN DE

C
C "L 1C< 2 -
C
C

CflLCULATF tNV?*.S£ HANKtL THANSFP71 QF THE MAGNETIC
INTENSITY. THIS IS DPNt AT EACH OF THF DIFFERENT
FrfGOUENC !?'> OMEGA(I) t I = 1 , 2 , . . . , 7 7 . THE FREQUENCY

C MMCf-.a is P»SSf.O TD THF SUBPROGRAM FUN THRU THE COMMON
C VAMARLL TJOPIF. THE COMPLEX VALUE OF THE CURRENT
C S?rCTRUM AT THIS F ? E ;J1I6NC Y IS PASSED TO FUN THRU THE
C COMMON V A R I A B L E CtlRNT.
C
C
c

C A L C U L A T F THF -IEAL** A ^ R A Y OF UPPF-« AND LOWF* I N T E G R A T I O N LIMITS
USED IN FORMING THE SCQU^NCH OF MAGNETIC iNTrN.siTt ES.

DO 1 I=1,NINTL
D H t N T L ( I ) = 0 C L O A T ( I - l ) * O S T F »
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vN 1 fr (" .
e i j R . M A T ( « I.IUTPUT F^O« waur..' F O R T R A N « , AU t iox f a<* f a<« f / ,« UPPER INVE

* J S ? HAN* EL tRANSFO3 .^ I N T E G R A T I O N LIMIT = ' tO l? .? ' / / )
UR I T u C ' j , 10J1 ) > > I N C H t 3 INCH

9001 f l l ' M f t T t ' F R F O U t N C Y ' tF.AL fA> ' T Of-' M A G N E T I C I M TC NS I TY • , T 5 T . • I.I AI~, PA
*RT DF M A G N E T I C INT^NS I TY« ,/, • ( M F R T ; ) • t T < > 0 » «M( R = « , FJ. I, • , F) • ,T 3fl
* , « ! £ « N« tTs J, » H ( H = « , F J.lt • .F) • t T31 , « I F R N«)

c BEGINNING nf ^AIN LOOP TO CALCULATE INVERSE HANKEL TRANSFORM AT 77
C D I F F t a E N T F3EQUENCIES

DO ''OO IMAIN=1,77

CURNT=CU-»r<( IHA IN)
C C A L C U L f l T F M R A L P A * T Qf HR ( r» , T'JOP I F )

C FO'<H THE S C Q U P M C E OF P A R T I f t L INVc^S t HANKEL r ^ANSFO«H$ BY I N T E G R A T I N G
C H' :ruec'j L f t M B D a SU3( I ) AND L A ^ B D O SU3( I» l ) t FOR 1 = 1 TO N A * R » Y (THESE
C U l M I T S 4^i. IN THE Ai».BAV QHINTL).
C S6T UP 4'ri.'ILUT? ANO r t E L O T r V E 'JUftnHATU'.e E R R O R "E3UESTS

-
i. n - i ?

C INITICLl. ' f TH- V f t W I f l S l L ^ USED TO A C C U M U L A T E THE RESULTS OF THE
C NtJI-E'. ICAL I N T E G K A T I U N O V E H E A C H L A M T O A SUB-RANGE.

DO 1 I = l , N a « R A Y
c F O ^ M THF L ' iw c ^ aun UPPCR INTFI ;RATION LIMITS

Da=DHINTL( I )
DB=DHINTL( !•! )

C INTEGRATE (Tt4TSE VALUES A^ E PASSED TO THE FUNCTION DFCT THRU COMMON).
C J tSULT t!F TH= INTEGRATION Is STQ3ED IN DARRAY(I) FOR FUTURE USE IN
C THE fcULVJ CONVERGENCE ACCELERATION ALGORITHM DTgUL.

CALL J'jAUS'>(DA,OHf 0«=UNi HR£ R t D ArtS E« » D ARR A Y( I) tOERRtIE«)
C STORE E^RO^ FLAG

C NOW SUM TH- ' INTEGR3LS <=OR CQM«»ARISION WITH THE ACCELERAT60 SUM TO
c as C A L C H L S T E T IN SU^OUTINE DTEUL.

2 D l N T ^ = n t N T R * o a « R f t Y { I )
C rulvj USE T > « ? CJLJ.^ C O N V E R G E N C E A C C E L E R A T I O N ROUTINE TO BEST E S T I M A T E

C fHF J E A L Pi^r f lP TMf T Q T 1 L I ^ V r - » S F HflNKfL r ^ A N S F O - » M AT THE
C f ' t J U C i N C V T U T P I P .

C A L L ori;uL( O F C T , nsu^-? ,•****. AV, i.e-i'-.,

3 » U « 3 )
o i V > T OF H.* ( W , T-<jri!> I F >

C r O * * THE SiJU^NCF OF P 4 - I T I A L INV ' -^SE HANKEL T R A N S F O R M S BY INTEGRATING
C flfTweeAj L f lMB^a SU1(I) AND L A M 3 D 4 SUf l ( I * l )» FO^ 1 = 1 TO N A R R A Y (THESE
C U I M I T S AP5 I 'J THE A R J ^ Y OHI fJTL) .
C IN' rT IAL I .Tc TH.i V A R I f l H L H U'jF.O TO A C C U M U L A T E T*E R E S U L T S OF THE
C N U M E R I C A L I N T E G R A T I O N O V ^ » E A C H L A 1 3 D A S U B - R A N G E *

/'I'.'T r -.'). m

?i)-l1 THF Lf)U6-< ANO UPP'rH INT5.S.? A r ION L IMITS
D a = D n r N T L ( I )

C t ^ T E G R A f F (THSSE VALUES A-( E PASSED TO THE FUNCTION DFCT THRU COMMON)
c arsuLT OF TH; INTEGRATION is STORED IN DARCAYII) FOR FUTURE USE IN
C T«6 EUL=3 C O N V E R G E N C E A C C E L E R A T I O N ALGORITHM DTEUL.

C A L L . J G a ' J S 5 ( D A , O B , r c U . N t D R E ' 3 f D A P . S t ' , O A R H a v ( I ) , D 6 R R t I E R )
c STO. 'E e R ^ o ^ F L A G

C NOW SU.M THE INTEGRALS =OR C0.1PAR I SION WITH THf ACCELERATED SUM TO
c n? CALCULATED IN SUSROUTINE OTTUL.

3 niNT I= D I N r i » D A R R A V ( I )
C «JdW USE THE puLER CONVERGENCE ACCELERATION ROUTINE TO BEST ESTIMATE
C THE REAL P A O T OF THE TOTAL INVERSE HANKEL TRANSFORM AT THE
C FREQUENC

CALL O

HlHfl( I.MAI M)=SNGL( CS'JMt)
F = r)ML-r,A( IM4fN) /S. .? f l Jlfl1;

900 WR IT H ( < > t "»010) F, DH9'-»0( I M A P J ) f I f : R » t N P ? D H I ( » i l ( I M A l N ) t I F . R I f N I , O I N T R t

1010
J, «5i ;««=i

C rN3 OF ur :vtL ' ]PMENT STAr .E CODE

C ilLUCK i - F O R M H R ( R r N « D E L T A U ) N T - R U E D FOH IDFT. USE SPLINE FUNCTION
C I N T E R P O L A T I O N ON THE R E S U L T S OF BLOCK 2.

N S P L - T 7
c FU'<M SPLINE CUP.FF ic tents FOR THF «e»L f»a«t af

C A L L 'if»L I N ^ C N S P L tOMcr,A,HRRn,H« SB ,HR SC »HR SO)
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r i t J M S P L ! N ' f . : t<- f f 1C I f - N T S FO^ TMK I M A G I N A R Y P A ^ T OF
C A L L ".°L INt (NSPL f -llf G A , M I r f i ) , H [ S n , H r S C f H l S O )

",'r IJP iv. •*.«?: T f c P S F(M use IN i r > F T C A L C U L A T I O N S
r s a M f -"-.(:- s
N o »-• r - 1 "i .' ;»
TWO PI =.?.* 3. I «. IS') 3

I S T n « ' = N [ ) F
M THI S P - C T - t U H OF TM?
DO <••: t =

l-l )
VaL ; ' {N'.PL, ' oriF30,0. '»Pf;A.

. .HP'f) ,H[ S l l tMl SC .H ISD)
C NOW F O ^ H TMF- CUNJUiiAf P f t - IT f ]P TMF

I S T A » T = I S r j P » l
DO "50 t = I S T A P T ,NDFT

=.0
C
C 1LMCK <. - C A L C U L A T r THr INVMSE FQU?IE3 T H A N 5 F O < ^ OF THE HAf.NETIC
C INTEMStTY . IJ"i = S IN I OF T TO SIVPLIF* TH? NUMERICAL
c
C

CALL
;'f»INT P::SULTS - TI1F |)!)MAtN HAf.NtriC

w^ i TE (s, t!o:)0)
20-10 F i J R M A T { / / » T r M E ( M I L L I S E C ) T N O U C T I O N ( T E S L A ) ' )

DO 70 I= l t^Cl
I-l )

r ) *CM
2010

DO SO I=

FLAGS
.500)
ih«co» FLAGS FSOI SEAL INTEGRATION: •/)

HO
Tr:(».., VJOl) ( IF«FLG( I , I I ,1 ) f II = lt77)

W-J I T ' - (
•4^02 F Q ^ M A T C * l = RRf)R FLAf.S FROM IHAG INTEGRATION: ' / )

00 217 t = l tNA 1»Rft i r
2 1 7 u a i T U S t ^ ' J O l ) < I E * F | _ G ( 2 , I I , I > t l l = l f 7 7 )

C " t l C O N T I M U f -
..0 5 T 3 P

E N D
I<EAL FUNCTION SEvnLR(N»u rx f v, B,C t o)c COPIED suu'»«a;;PAM SEVAL FOLLOWS
4EAL Ut X(M) ,Y(N) , B(N) , C(N) t
D A T A I/I/
IF(I.f,E.M) 1 = 1
IFCU.LT. x( r ) ) GOTO 10
IF<U.L-:.X( 1*1) ) GOTO 30

10 1 = 1

2 0 K = ( I » J ) / 2
I F ( U . L T . X t K ) ) J=K

IF( J.GT. 1*1) G O T O 20
10 D X = U - X ( I )

.
C CD* I 'd *>U!lPrlOoJ AM S E V O L

S t f A L U i X ( N ) , V ( N ) , H ( N )
D A T A l/l/
I F ( I . G f . N ) 1=1
IMU.LT.Xdl) G O T O 10
IF (U .LE .X ( 1*1) ) r,QT1 5:)

10 1 = 1

50

I F (U .LT .X (K» J = K
IF(U.!-,F.X«) ) I = K
IF( J .GT. !*•! ) G O T O 21

R E T U R N
END
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S U B R O U T I N E SPLINE ( I M , K , V , H t C t D )
C CU 'McD «>U'»'M)UriNt SPLIN= F O L L O W S

t «j r r .'. ' j N
- t ?SL X ( N » , Y ( N ) , h C N ) i C C N » t O ( M )
[Nte. ' - , f ? NMl, IB, I
? - ? a i _ r
N«l=N-l
IF f N.Lf. 2 ) = > E T U « N
IP ( N.LT. 3) ' iO TO "50
0( I ) = X(^ ) -X ( 1 )

no 101 = a, N»U
u ( t ) = xc i + n-xc r )
l)( I) = 2 . « = ( DC I -1 )*D( I ) )
c( :»i ) = ( Y c r » i ) - v ( t
C( [) = C(

10 CaNTINUt
BC u=-n( i)
MN) =-n( N-I )
c( i)=o.
I F C N . F O . 3) GO TO
C ( l ) = C C ) ) / - C ( 2 ) / C X ( 3 ) - X ( D )

^)) - C C N - 2 ) / ( X C N - l ) - X C N - 3 ) )
» ) - X C 1 ) )

C ( N ) = - C < N ) * [) < N - 1 ) 3 s 2 / C K ( N ) - X ( N - J ) )
15 00 ^0 I = -2f IM

r r i f r - i ) / n c i - t >
R( I ) = 3( I ) -T*D( I-U
C ( I ) - C ( D - T S C C 1-1)

C C N ) = C C N ) / B ( N )
DO 30 I ! l = I,

r = ^ - r 3
C C l ) = ( C C l ) - D ( t ) » C C l » l ) ) / n ( l )

BO = ( v c i * i ) - v ( i ) ) / D ( t ) - D ( i ) « c c c i * i ) * 2 . * : c r ) )
od) = (cc 1*1 > -c ( i ) ) / n ( t )
C ( I ) = 3 . * C C I >

C C N ) = 3 . - C C N )
D(N)=D(N-1 )
R E T U R N
BCI ) = C r C 2 ) r V C l ) ) / C X ( 2 ) - X C l »
C ( l ) = 0 .
0 ( 1 ) = 0 .
B ( 2 ) = n c i )

END
SURSQUTINF P F T C K O O P t N t DELT4,Xf*)

C FILt: FPT FO-'rSAN
c PHi ir tpa** TO IMPLEMENT TH? F B S T Fou».ie« T R A N S F O R M UHFN THE
C TiaTf l » O T N T S - I 'i AN INT-r,s,i prjuF3. OF T'«IQ. T 'OK?N FS'1«» P A G E S 2*»'«-2<iS i

c OF ""!FT!ir:r>s TJF o i s c ^ e t e SIGNAL AND S Y S T E M A N A L Y S I S " , <w JONG.
c

X X (N ) ,U ,

IF(N?s?.NF.Nl) GOTO 100
I a = t •>. » 1
N 1 = N .'
I F ( N l . r . T . D G O T O 5
"N = S. .: vu^VN
L = N / ,?
131=1^-1
K 1 - 0
00 30 IS = l , I i »
30 20 [= l t L
K=Kl* l
KPL=K*L
A M = K P t T 3 ( K l / 2 * * I R l f I? )
IF {AH.Nr .O . ) G O T O M
X.1 = X C K P L )
G O T O I.''
A3G=A1«PN
f = C 0 5 ( AP; i )
S = -<OOr ' : r>IN( A R G )
W = C M P L X ( C t S)
X 1 -WSXCO'L )
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c
C
c
C

K 1 - K 1 » L
I F ( K l . l T .
K 1 * n
T «i = i •' i - 1

15

>• •> L-L/,:
1:1 <*•: K = I ,N
K: i c K : "i I T -J f * - 1 , r 3 ) » i
I F (K I .Li" -X ) G O T O 1,0
XI =X (K )
X(K ) - X ( K 1 )
X ( * l ) = X 1

"•0 C O N T I N U E
IF(
no "o

50 X(K ) =

N=
100 WR I T! (> , , 101 ) N
101

1 ••»
NOT A POUIEP OF 2, FFT «UN fl30»TEO

F.fJD
FUMCTI: IN
K B I T - ' - O
K I =K
0(1 1 [-1

R E T U R N
FMD
DOUBLE: P R E C I S I O N FUNCTIOM 3 F U N ( D X )

unsauTfNF TO FORM rue INTEGRAND IN r;ausso. SINCE Gausso is USED FO«
N D « £ 3 I C A L O U a O R A T U S E W I T H TWO D IFFERENT I N T E G S A N D S f WHICH INTEGRAND
rs e v a c u a T E D s\r FUN is DFTE^MINEO BY THE FLAG IFUN, P A S S E D TO FUN
^Y TH C W A I N PROGRAM THRU COMMON S T O R E .

IMPL IC IT COMPLEXS16 ( C ) t ReAL«a ( 0 )
& C D / < . f l l D - 3 f O . D O ) / f C Q N E / ( l . D O t O . O O ) / , C T W O / C 2 . D O » O . D O ) / t

CU^NT

n A ̂  •» a v ( i o o )
*- jut V A L ^ N C ^ (CHR i nca««p( i) )
C O ^ M f l N U A ^ - ' a V . C U R N T , IFUN»3, T W O P I F

C O M f L f - X * ! & V E R S I O N OF THE CO«PL£X«8 C U R R E N T P A S S E D TO IFUN THRU
THE C011DM V S ^ I A B L E C U R N T

C U R N T ! ) = [ ) C « P L X ( D 3 U E ( R E A L ( C U « N T ) ) , D 3 L E ( A I M A G ( C U R N T ) ) )
I F ( O X .NE. 0.00) GOTO 10

O; INT^r,«ttND=0

RETURN
C Tug NUMERATOR (WITHOUT THE KERNEL)

10 DTl=nPXP(-OX«OH03)

IF F R £ g u C N C V = 0 » A L M O S T DONE
IF(TW'T> IF .rg£. 0.) GOTO 20

F»t3UF.NCY IS Z f R O

GHTfJ
N E l T H f c R

10
NOR F R E Q U E N C Y IS Z F H O

C T = C O E X P ( C O * C S O )
C T I = C O M E / C T
C C O S M = ( C T * C T I ) / C T w n

I O = 5 C S I N H ) / ( C S I N H / C R A T I Q » C C O S H )
U T 2 f 3.30) SCUR NT a / C D FN0.1

NUW C A L C U L A T F I N T F G S A M D
30

2)
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nouPL : '••< FT. IM ON F U N C T I O N DKP^LK (
c SUH.P •*')<•, . » A - T'i ? v A L U f l T < - TH? F U N C T I O N < PR i M fc ( L AM a oa ) . THC
C Pl_MfU>A -1U'.T Mt- ? F U L - "• . !J S 6 f> THf ^ f - S U L T T H A T THE JNT f Hf.P I V A T I VF.
c n^ j i ( x ) o x is E JUAL TM
C P t O X O < Jl« ) s H0( X ) - Ml( X ) * J T ( X ) ) / 2
C Ffn flr».,uMtNTS [IL.M!tr)4*-<X .LE. *, THi 0 I FF (• S f NC (~- IS E V A L U A T E D
c fH^Ecrtv. FO? CLM 'i ni •-.•:;? < .or. s, sawF siMPLfF rear ION is
C U T I L I ' 1 ^ ( S F ? THP P S M t J i iarP') JULY 2 3 ) .
C * :.P: "KI{JHE'< TJ A . N S C r N O E N T A L FUNC T I ONS" t V O L . 2t P. S^t
c t j ua r iQN (5) w r r n NU=I
c apgu i ^ f s F U N C T I O N sur .paaGdHMS n H O L < ( o x ) t OHILK (ox ) » O A O S M C O K ) ,
c n a i S M ( n x ) , AMD TH? rfcaL*'* list SUBROUTINE MMHSJN.
c " ' loiFira S F P T r i <»s at usu TO R E P L A C E MMBSJM W I T H HY e.p. FUNCTIONS
c OJOLK A' jn DJILK.
c

I ^ P L I C T T af-ai.*'* (D )
«-1 IH'I/ .<• l«»l3'»?«iT> J'i.S-lTT/ , DR1/.00 J175DO/ t D«2/ . 025I.OO/ , OJU( 2 ) F

J)
H A T A IFLAT./-!/

C C H ^ - C K TH ',' H I*- i'UUTINf HAS liF.N Cf tULFD
IF ( in.ac; . NF . _D .-.urn 10

c 'M P ^ F V M U S C A U L - P^^FUK^ IMIT I A L I J A T ION
-

c -USFT FLAT, in INI riALiiflrnN W O N ' T HE P E R F O R M E D AI;AIN

C
C
C

10
C C H f C * Til r,t ' if A - f G U M ^ M T - 0

IF( [l|_ '••a:1* .FQ. 0.30) SifU^'M
c '»t-,''.ir4 nv FO^MINC, UP"?" AND tf iwF« i r j Tg r ,aAT ioN

c FO^M »F.SSFL FUMCTIHNS OF THE FIWST KIND AT THE UPPER AND LOWER
C I N T E G R A T I O N L I M I T S

I)JU( I ) = ! )JOLK(DU)

!>JL( 1 ) =
t)JL(y ) = ::JILK( OL)

C FT. M D I C F E H t f j c f AT THE UPf-'fJ I N T F C . a f t T I O N Lfir
C i)''CIO: WHICH TECHNIQUE TO US? TO F . W A L U A T t J I ( DU )*HO( DU )-Hl ( OU )« J0( i»U)

IF (DU .GT. rt.D'J) r.nT.'J ?0

•JO T() JG
.70 DIFFU = DJU( ^)~nA,1SM(nu)-nA!SM( nU)*DJD{ 1) » 2.DO/( DPI*OU)

C F 0 J M D t F F = 3^fn(;r at THF: LQyca I N T c Ci u. A T J U N LIMIT
c nrciDE WHICH TccHNiouf rn USE TO EVALUATE ji( DL )*Ĥ ( DL)-HI( DL)*JO( OL)

JO IF { DL .GT. 8. 00) 10 TO "»0
niFCL = O J L ( ^ ) * O H O L K ( r)L)-OH!LK( OL )«=.DJL( 1)
G O T O ->0

HL ) - O A l S M ( nL)*DJL( 1) * 2 .DO/(

F.NO
FUNCTION O H O L K ( D X )

c noj^LF PRECISION suBpaoGaa^ TO EVALUATE THE STRUVS FUNCTION OF
C CMPIE^ '^''O Fl]^ DOU?LF P R E C I S I O N A R G U M E N T S DX .L£. 8 USING A
C SU^MaTI ' IN OF W F I C . H T E D C H ' a r S H E V P O L Y N O M I A L S .
C S ^ O U I ^ f i S TH* SUBROUTr -gE r)CNPS ( N A S A LEWIS C O M P U T E D L I B R A R Y ) TO
C FO-<M AMD SU1 THE P O L Y N O M I A L S .
c * > - F : "Tnf S O C C I A L FUNCTIONS A T J D THEIH A P P R O X
C VOL. 2t P« J70f 3V YUOFLL LUKE.
c

IMPLICIT a F at* ft (0)

Tl 15 1021 21 a,. I f t l 53 527 3T109 31 1-« 030^7052022 9fl <»
337. •i 'Jl ' .<»7 3751 9t»D -S, -26. 9 s 5 0 l < » 112*020- 5,1. 637 i,(i

*. 2S 7 'i I 370 3 ̂ n - l O f - V l 9. S 3 = ) < « '»!)-!!>» 11. 5^332 D-15/
C C M P C K Fii;t A R G U M E N T OUT OF saNr.e

I F ( r ) A H S ( D X ) .GT. 8 . DO) R E T U R N
c FU*M TH= ARGUMENT FOR THE CHESYSH^V POLYNOMIALS

SUM THE POLYNOMIALS
CALL D C N P S ( UHOLk,na»r, ,g f i

CT*PLET(;- Tnf- ' " V A L U A T I O N AND

END
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SUI'- 'DUT I Mf-; (1CNPS( Y , X , C , N , « )
c

1)1 " r.-l-i f ?'J C ( N )
nou^L" "-'.KG t SIO'J C t Y, X ,HO,HI , H.1,

C
c T; ">T or D IMENSION

IF(3AilS(K) .r,T
f F ( N ) I , t . *

I ^

.> IF (M- < ? ) ? , < , , < •
3 Y = C ( l >

3 E- T U "' N
C
c t \IT ML iz AT ui

HI =0. DD
HO =0.00

DO "3 I =

H1=MO
HO = ARG : 'Hl
Y = O . S D O * ( C ( 1 ) -

EMD
FUNCTION _ _ _ . . .

C "lOUBLf. PRECISION SUpP'Tir.H AM TJ EVALUATE THE STRUtfc FUNCTION OF
C 0»ObR Q.'JF. F0» DOUBLE PRECISION ARGUMENTS OX .LE. ft USING A
C SUMMATION OF WEI'JHTtO CHEBYSHEV POLYNOMIALS.
C R E Q U I R E S THF SUBROUTINE DCNPS (NASA LEWIS COMPUTER LIBRARY) TO
C FORM AND SUM THE POLYNOMIALS.
C R-;F: "THF SPtciaL FUNCTIONS AND THEIR APPROXIMATIONS",
C V'JL. 2, P. »70r 3Y YUiK-LL LUKE.
C

IMPLICIT R f A L « 3 (D)
.*ft C( l b ) / . 557Af t91 i*< ,b« . f t l f> , - . l l l f t f t 3257265693 , - . 163379581252009 , -

- - -- .677399374*0-5,
3-5,-3. l l »20995293<» l l7D-5 ,

26.13376707050-10,
1 I5D-10, 1906.70i»lf.D-15,-«*0.5229lO-15/

C H E C K FUR AHf .U^EfJT OUT OF RANf.E
.GT. 9.00) R E T U R N

THE A R G U M E N T FOR THE C H E S Y S H E V POLYNOMIALS

-i. oo
SU« THF P f l L Y N O M I A L S

CALL O C N P S ( OHlL<»Oa^r , ,C. 15|9<»)

f:ND
FUNCTION

C UflUHLE P R E C I S I O N SUHPRtir.RAM TO E V A L U A T E THE SUMMATION A S S O C I A T E D
C W I T H THE ST3IJVE FUNCTION OF JIROER Z E H Q FOR DOUBLE PRECISION APGU-
C "-ENTS DX .06. ft USING « S U M M A T I O N OF UEIGHTEO CHEBYSH6V POLYNOMIALS.
C Rf :QUI»r .S TH? SUBROUTINE DCNPS ( N A S A LEWIS COMPUTER L I B R A R Y ) TO
c FORM AND SI;M THF POLYNOMIALS.
C P'-F: "THF SPECIAL FUNCTIONS AND THFIR APPROXIMATIONS".
C V'JL. 2t P. !71, BY YUO&LL LUKE.
C

IMPLICIT R E A L * « (o )
R E A L M S D ( ? 0 ) / . 992 9 3 7 2 7 5 7 i t » 3 3 9 , - & 9 f e . 8912911 3f l&250-5.

* 13. 2T510 37 3 70371 0-5, -1. Ob J 2 5 f l 2 ' : > 2 a < » « » l f e O - 5 . 93 19. 329<»2 965250-10,
* - 1 2 2 " ) . O b < « 5 < » < « < , ' : > 7 7 n - 1 0 , l S 9 . < . O f t 3 3 1 I f lD- 10,- 3<» . i» 35322560<»D-10 ,
* 7. 1 11 -MO I7l 10-10,- 1.623*7 <«<«1 370-10, .".0 65680 7 280- 10,
*-. 1 }'• I SO <.7^*>D-10,31.>0.0<52<« 10-15,- 9i«2.0207 0-15, 29ft. <«79<»7 0-15,
=5-9.1. ?.•• 1.1 t^J-1 5, 3 J.I 371,? 0-1S,-12.079<»0-15,<». 1*33210-15, -1.67 ftS 90-15/
B E «L* S !)P I !)•?/! .S7079h J,?<>7-><«9/

C C M ; C K FO.< A,<r,uMENT our OF J A N S F
I F ( D A a S ( O X ) .LT. * .3C) J!cri)i>r!

C crjj«i THf ARGUMENT FOX THE C M r ^ Y S > « ? V

THt P O L Y N O M I A L S
CALL nciMPS( P A O S M

C.T^PLETr. THE rVALUATflN ANO
nAOSMr,OAQSM/(

99 R E TU->N
END
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FUNCTION n
c ::<HJ<VLE P^SCIMON sua«»«nr,^aM TT K V A L U A T E THE S H M M A T I < J N A S S O C I A T E D
c W I T H TMi ' .TJUVE FUNCTION OF o « » D f p ONE FOP DO'j^ue P R E C I S I O N AHGU-
c »ir:NTr,'i:x .r,F. ft uMrir. A i in»ATi r j f j UF W E I G H T E D C H F B Y S H E V P O L Y N O M I A L S .
C HS :UUIP.F.S T H C SUBROUTINE DCNP r > ( N A S A L E W I S C O M P U T E R L I B R A R Y ) T O
C F O R M AND SUM THE POLYNOII AL<>.
c R<;F: -rng SPECIAL FUNCTIONS AND THEIR APPROX IMATIONS",
C VOL. 2, P. 371, BY YUD^LL LUXE.

IMPLICIT »e:aL*'» (ai
EC l7)/l.OQTr-,Tbi.729^rtf,^,750. 3 Ib05 ia<« 1257 0- 5 »

- 10 f

. 1^7q-»7JOObD-10,-3S07. 11^ ̂ 1 0- 15 r 985.<» 309 0- 15 t

C CHFCK FTP aar.uiFNT OUT OF
IF(DAnS(DH) .LT. A. DO)

C FrjJH THE ARGUMENT FQ* THE CHEBVSHEV POLYNOMIALS

SU1 THE POLYNOMIALS
CALL !)CNPS( DAISM,DA«G,E,17,99)

CniPLcTC TMA '-'VALUATiriN AND
DA i',M=:)Ai

T M D
nOU r«LF P H t C I S I O N FUNCTION D J I L K ( D X )

C DOUBLE f U C C I S I O N SUSP*1 DC,-* AM TO E V A L U A T E THE BFSSEL FUNCTION OF THE
C FUSf KlNt) OF O ^ O F S i AT THE DOUHLt PRECIS ION ARGU16NT DX. FOR
C A R G U M E N T S P A P S ( D X ) .LE. 8 A T 3 U N C A T E D JACOHI SERIES OF CHEBVSHEV
c POLYNOMIALS is USED (SEE THF. FIRST REFERENCE BELOU). FOR ARGUMENTS
C DASS(DX) .C.T. rt 4 T3UNCATEO ASYMPTOTIC SERIES IS USED (SEE SECOND
c ".eF63F.Ncr WFLOW).
C HFOUI365 THE SURSOUTINt DCNPS (NASA t6UIS COMPUTER LIBRARY) TO FORM
C AND SUM THE CHEBYSHEV POLYNOMIALS.
c PFF: MTHF SPFCIAL FUNCTIONS AND THEIR APPROXIMATIONS^
C VOL. 2 f P. 332, BY YUDF.LL LUKE.
C - > F P : " C M F R Y S H E V SFRIFS FCJR M A T H E « a r i C A L FUNCTIONS*. NAT. PMYS.
C LAH. M A T H . T A B L E S , VOL V, ? • 33, BY C.U. CLENSHAU.
C

IMPLICIT Rf-i»L*4 (n)
_

J^i. Jbo,~.~l

. t

0-lO,-l 1. 7 l3907f»9l lD- lO,
»- ' iT .1<«.1« ,3S<«n- i r i , i .S9 .9195 '?Q-l5 , - i .6 .3<«22<»0-I : 5,
,? l i .0-20 t l O ( > b f l . n - 2 0 , - 1 7 3 l . D - 2 0 , 30 5. n- 20,

*-SS.i)-20/
. J10707D-S,-9.b2772

-l 32^9.0-20, 1768. O- 20 f- 3 2fl.D-20,
*<,5.D-20/

D A T A L1i»I/ 1. l '» l5T2653<5f l979/ , IFLAG/-1/c CHFC< TO see IF ROUTINE HAS sitnn CALLED BEFO*?
I F f l ^ L A G .Me. -1) f.flTfl 5

C PERFORM INITIALIZATION AND RESET FLAG
OCONST=nSQ-<T(2.00/DPI )
33PIU<«=.1.DO*DP I/i».nO
OPU i) = riPi( i )/2.oo
031 ( l)=OOL<l>/2.00
IFLAf, = l

i OJILK=O.DO
C CHtC< Fl].'. AHGU1ENT tQUAL TO ZE»0

IF(DX .r;g. O.DO) 3 F TURN
C n^CIOS IF JACO'U 0^ ASYMPTOTIC SERIES WILL R<= USED

!F(nAiS(ox) .GT. H.no) GOTO n
C USe JACOIU iE^ IFS
C F Q ^ M THIi A R G U M E N T F Q,l THF. C H E T Y S H E V POLYNOMIALS

nxca=Dx/a.oo

C SU^ THE P O L Y N O M I A L S
CALL nCNPS(DJ lL< ,DA?.G,0 ! l , IT

C FINISH THE C A L C U L A T I O N ONI)

'»1 R E T U R N
U S f " O D I F i e n A S Y M P T O T I C
10 D 3 0 X = 3 . D Q / n X
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C '>W THK P O L Y N O M I A L S F03 P l ( X )
C 8LL 1>C' - |PS( DP, naaij, QPl , IS)

C MJ* THh f>OL Y N O M [ OLS FO^ O l ( X )
C A L L " C ' J P S ( 0-3, Ufl3.it i>01 t 15)

* 0 ' M T H > A S Y ^ t ' T O T [ C
D J l L K - ( n C O N S T C = ( Q P - ' S P C O S C D X - 0 3 P I O < » ) - O g * D S I N ( D X - 0 3 P I D < » ) ) ) /DSQ* T ( OX

•
FND
DOUBLE PRECISION FUNCTION njOLK(nx) \

C nouuLF P-TCISION su"»p:>'.}r,>*AM TU ttfaLuare THE BESSEL FUNCTION OF THE
C F j a S T K!N^ OF 0 3 D S * •"! AT THE COIJ^LS P R E C I S I O N A R G U M E N T DX. F OS
c a^ f .uMfMrs n « H < ; { D x ) .LT. « A T P U N C A T E D jacom s e r i f s OF C H E B V S H E V
c p'!L*NO".r ILS ts U S ^ D ( s e e rue F IP .ST « E F £ 3 E N C E BELOU). FOR
C f ) a n ^ ( D x ) .f,F. 3 4 T J i J N ' C A T E T J S Y«o TO T I C S E ^ I ^ S IS USF.D ( S E E SECOND
C f lNO TMI10 r ^ F F f B P N C F 1F.LOM).
c -^ i - ' j ' j r r tcs THE suK^ouT t f i c DCNPS Cjasa LFUIS C O M B U T E ^ . na^ f tPY) ro F O » M
C fl'ID SUM THE C M F I t V S H F V POLY N'1M I AL S.
c i"-F: "T1^ S P r ' c t f t L F U N C T I O N S arui T H t r - i f lpp«oxiMaT inNS"t
C VHL. 2t P. i S l t HY ri)D = LL LUKF:.
c "?F: "CMF3YSMEV stPi^'S FT< MnrHPMdTicaL fUNCTrows", NUT. PWYS.
c L«ii. MfltM. ranucS, \/OL vt P. J2» BY c.w.
c

IMPLICIT

.MOO Sin- '_;,-l7f>l<*.i»K nn 7762150- 10, 7S0

- 17 . D-20/ t
t-5 3.b5220<»faaU21 2D-5 f

-10 t

!<•)/-. Ml 1. 17012 tOb7 (»OD-^ tS .8 385 199<»2b 1 1650-5 t

- J20fa.7(,7«.2D-ir.,300.61<«5lO-l '5t-33. 3 & 3 2
-1669.0-20, 311.D-20/
l/

C C M ? C K Ti l Siif IF ROUTINF HAS «SEEN C A L L E D BEFORE
I F ( I F L a G .Nt. -1) G O T O b

C P E K F Q H M I N I T I A L I Z a T I O N AND » E S F T FL8G

DPC( 1 >
n o o ( i ) = D O O ( i ) / 2 . n o

C C H F C K FOrf AKGUMENT EQU«L TO Z ^ P O
IF {0< .F'V. O . D O ) P.rrURfV

C D E C I D E IP J A C T P I 0« A S Y M P T O T I C S ? « I f c S WILL BE USED
I F ( D < V M S ( O X ) ,&T. 3. HO) GOTH 10

c use jacmi S F ^ I F S
C FO-IM THt aPlMJ^^'NT FOB THF CHE 'JYSHfV POLYNOMIALS

SUM THE P O L Y N O M I A L S
COLL (KNPSC DJOL< t Daaf , ,DBt 1

49 fl £ T U ^7 rj
U S C K O D I F I F - ) 4 S Y . - P T O T I C
10

C SU1 THE POLYNOMIALS F03 PO(X)
CALL DCNPS( QP. DAPGt DPOt 1"»)

C SU" THf POLYNOMIALS FOB 00<X)
CALL ncNPS( oOtoaaG.noo , i<»)
OO=D j*o.». nx

FOP" A S Y M P T O T I C ap "? .ox iMaT iUN T o J O ( K )
DJCLK = ( ncr iNSTs ( D P » O C O S ( OX-DP: D<»)-OO«OSIN( O X - D P I D < » ) ) ) / O S Q « T < ox )

F.ND
HOUBLr .

C FU'JCriUN TO E V J L U a T F THf- IMQIVI . ' IUAL T f J f S IM THE Sp.HIF.S OF
C F IFLD INT'J.NSI T I'- S (£I r '(.--( .•'."•iL iK l ^ A G I M A P Y ) a^ISINf i F3QM THE
C I N V f c ' 3 S E HaNKHL I N T = f ; . - > H T IJM \\ f- T u t- f- n THfc L IM ITS OF U A M P O A SUB( I )
c "i\iD LA^nna s u a ( r » i ) . sr - THT- P A P R ^ ^ A T E O JULY 2s.
c

.i (n)
no)

" E T U •> N
F.MO
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ur t N = r-n:uL(
C.'|p[cO rl)L: :« C'JNVr-ir.LNCt-" aC C r.L c '•> A T I ON SUBROUTINE

D I "ENS I 'IN Y(l<>)
DOUBLS P R E C I S I O N FC r , SUM t Y t A*N ,AMP
I F ( w a x ) i t i t «

l I h ^ - i
^JUTfl l?

I N I T I A L I S E EULcr* T
^

Y ( l ) = F C T (
sa«« = v( i )s

S T A R T ruL = ;< LOOP
.! J=0

<« 1 = 1*1

S 0'«N
C*i ' :C< EULF-'-

( J P U 4 T E SUM

. ) -F.PS* A B S ( SNRL(SUM) ) )10 t 10f 3
T ^ S T E N D f i e P - < O C E D U 3 E
10 J=J*l

IF (J-3)«. t 11,11
11 I E » = 0

r H 1)
SUB'T iKJT r NF.

S I F L A 0 )
C ".irMOUT ir jc TO f S T I ^ A T F . TH" IN ^ r ',.••». flL OF THE FUNCTIHN OFUN B E T W F . F.N THE
C L l l t T S OLOUI=-t 0,'JD OUPCE* .
C P 4 - J A M F T K - » S O i^ELF^ AMP D A n S E " "> 3 = T"5 USF» *F OUE S T= 0 R E L A T I V E AND
C &3SOLurn tf»an«s IN THF =sTiMAT«;n VALUE OF TH? INTEGRAL DINT. IF
C QAbSERsfJt UNUY THf ".F.LATIV5: T.?.*'-)* C^ITESION IS USED. COWPUTATIO.M
C STOPS WHEN EITHER THE A3SOUJTr t?RO^ CRITgaiQN D» THE RELATIVE
C E?.*OH CRITERION HAS ^EEN ESTIMATED TO BE ACHIEVED.
C P A R A M E T E R UE-^ IS THC RETURNED ESTIMATE OF THE ABSOLUTE ERROR IN
C DINT. P A R A M e r E * IFL«G IS St T TO ZERO IF NO CONVERGENCE IS OBTAINED:
C OTHERWISE, IFLOG IN3ICAT = S Tuc :,luMBcR OF INTEGRAL ESTIMATES
C CflLCULATED MINUS 1.
C r.U!IPi»OG-<AMS RFgutSfO - DFUNf OG'JUAOfCrjNVT
C HE*: "GAUSSIAN gUADRATuRE FUCHULAS", BY STROUD AND SECREST
c ( r^p FUNCTION AJGUI.CNTS AND THEIR WEIGHTS WE-<E TAKEN FROM
c THIS noo<. >
c

IMPLICIT RE AL*? ( n>
, Oi'.X 1 (,( ft ) , O G W 1 6 ( « ) , DG< 2<«( 1 2 )

DGX 3< ; ( lS ) ,DGU32( l ' » ) fDr .X i .OC20) .DGW<»0{ 20)
PAT A Ur ,X l? / .9S15bO<>]<»Z<tbr i ' ? , .90<»l i725b3TO<.7S,.Tf,9902b7i»l9(,?OS,
.5373l7TS '»<?f l6 i i ,17 , . i t 1 7331l»9^ c ' '> ' i l3
D A T A nGW12/. '»717'inS3rt65ll '5D-lf .

233<«92'53(i534355f

D A T A OG XI &/ .939(«00 < »5i«991<iSO, . l i«<»57 < ; 02307323 3 , .3*5631202337*32,
. 7'55<»0«»<«0'5 35500 3 , .S17/ i7b2<« '« i .02b ' .<»f .<»5aOlb777b5 7227 f
.231-50 3550779251, .'''50125 09 5 3 7 b 3 7 « » D - I/
D A T A 1Gwl« , / . 27 l^2«»59 t , l i 75 '» lO- l f . *,225 352 J9 J*6<»7<»0- 1 f
. 9-5 l :>•»'. U* i?2<»T2-30- l f . l 2 ' »b2^97 l25553<»f . l<»95959f t f t 1 MbS77 ,
. 1 6 9 l n < i i S 1 9 } 9 5 0 0 l f . l ' 1 2 f e 0 3 < « l ->0<«<.92'», • I89««50b I 0<»5506ft /
D A T A i ) G X 2 < » / . 99511721999 70-J1 , . 97<»72f tS5597 l 30 9,

= . 9 3 r t ^ 7 < » 7 5 2 0 0 : 7 3 J f .8.1b<.1552700i»<.01,.82000l91597390 J t
. 7 < » 0 1 ? < » 1 9 1 5 7 f l 5 5 t , , . < , < , 9 0 9 3 b ' i l 9 3 b 9 7 b , . 5 < « 5 < . 2 l < « 7 l 3 8 f t 8 < » 0 f

D A T A 3GW2<. / . 12 5<» 12297999 3 7 2 C - l f . 2 f t 5 3 l 3 A « b 2 ' » 9 3 3 7 D - l
7<.349
01^n
1 r i '» t>f l
36195

D A T A

137 J2-3 70

50b 31
37

. 93 i*90 f .0759377 i»Of .«9 fa321 l5576S052f

.791, (,837959*, 79 ( ,2 f .732182U87<»0290f

.5*77157572<.07b2t .50b899908932229,

I l < . < 4 < » 7 l 9 a l 5 3 2 7 9 b l . < » 3 3 0 7 6 b 5 6 8 7 7 3 a 3 0 - l /
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n a i a rv
= . jovi-u
* . 7 ^ 3 U ' . -

r»a T A •

: . 1 0 2 0 •

5*2222 277636180-1

37 7 < » ,
0 h 1 s « rt 7 u ,

- . 1 9 2 1 1 7 ""- rt 0 7 0 1 J 7 I
. <*•:..? L

3 »<

'•. 7
. 99072*.233699<»17,

3792, .932312S09275677,

•5 •« '» «. • , 7 1 ? ' \ IT. .; l > ̂ , . i, .<» 3 n 7 ? 9 .7 1 (, 3 b I 7 9 ,.
V » I ' » ' > < » O r " v ; 7 5 * i » . 2 < » A l ' ; 2 M ' 5 0 0 7 2 5 < » t
1 l » > O M « « O T - j ! > 7 7 i 2 ' i t j ,. 3ft 7 7 2«. I 7 'iOSOS Dfl D- I/

' '

3S

-I

c C f l L C U L A T < ; THE 12 P O I N T AND ie. POINT

C

c

1^700-1 . 2 7 9 3 7 CO6910023<»0-l
, (. 387090311567330-1
,57(,397s9099391iiD-l
. ^791^0 '«5f l^523390- l

77505 9C, 7 97 5<»2i««D-

OGX

E U H F T H E K C Q N V t H G C - N C t was O B T A I N E D
C A L L C n N v r t D D y T l ^ . O I N T l f t f O ^ f L E C
I P ( [ C O N V .Nt. 1) f.OTO 10

Cf)Nve«f; r 'Jcc - ser UP voLUts, AMP S

tM CUNVf-^li^NCg - CALCULATE TH e 2<» POINT INTEGRAL ESTIMATE
to DlNT2'*=or,ouao( OLOWP^ ,DUPPFH, DFUN,i2,DGX2'»,DGU2'«)
t lFTFRMINi j W H e T M E ^ C n N V F R G 6 N C 6 U A S O B T A I N E D

C A L L C O N V T { D I N T l S , D I N T 2 ' « , 0 « E L t ' » D A n S E f t , O e R ? . , I C n , M V )
IFUCQNV .NE. 1) r.nTQ 20

CfJMVEi»OtMCF - SfT l/° V^LUFS, AND 3F. TlHN
'

BETU-T4

MH coNv^^GENce - CALCULATE THF. 32 POINT INTEGRAL ESTIMATE
-?0 DINT J^ = nC,Q'JAO( O L O W F ^ , nUPPES, HFUN, l < i , D G X 3 2 , O G M 3 2 )

E^MIN^ yHETMCS CONVi r ^GFNC F WAS O B T A I N E D
C A L L C ~ O N V T ( O r N T > < « , 0 [ N T 3 2 , ! } - « r L e : ' » O A R S E R , D e * * , I C O N V )
IF( IC.1NV .NF . 1) ''.flTO 30

' Nee - SET UP VALUES, ANO

NO C O N V f sr.i- NCF - C A L C U L A T E T*? i»0 POINT INTEGRAL E S T I M A T 6
1C OINT(«-)r i<, ' . JUAQ( DLOUfS , DUPPf H, DFUN , 20 , OGX<»0 , OGU<»0)
i jF r f f j ^ i r g r W H C T M F ; ? coNvtf ' . jFNCF WAI O B T A I N E D

CALL C : i N V T ( D I N T 3 2 , n i N T ' « 0 , 0 3 F L F 3 , n A B S E « , D F ^ S , I C O N V )
I F ( I C U N V . N E . l ) r.nro ;»o

.'jcr- - scr ' jp V A L U E S , AND R E T U R N
-«»

O I N T = r i I f J T « . 0 I.

<• 0 I F (. A .'; = 0
n i N T = D I , M T < « 0

C O M V T ( n . .
S U M R O U T INF. TO T F-. S T C J fJVf t<r,c NC h F .•)* THt SUP ROUT INE 3GAUSS.

HNEW a».r TMF p;jFvrnii r, SNO P - * ' S ? N T F S T I M A T E S OF
''-r: MY papF* naTEn aur, i!2.

OOLI1 4N3

IF THF P ! » F 5 r - M T INTtGi ' .AL E S T I M A T E IS fcr jUAL TO Z6«0 , P R O C E E D TO THE

IMPLICIT
I C O N V = 1

e n )

A B S O L U T E f caa r r * T f c S T ( a F T t » MaKiNCi Su*6 THBT O A R s e ^ .NE. 0 )
lF(Vflc:U . F-1}. O.!)0) r.OTn 10

fSTIMATf NUT CJUAL TU 'EHD - CHfCK THE RELATIVE f.R^OR CRITERION
DNF.U) .LF

C O N V F H G 6 N C P . -
IF ( Qtfi

NQ R E L A T I V
CONVER-'.eNCE .
10 IF(DrtaSFP .EO. 0.00) GOTO 2
CHFCK THF. ABSOLUTE E»»l)R C R I T =

I F C n f . r f * . L r

'ETURN
IF OABSER = THEN THERE IS NO



Ml CONVr - ' - ' . r NCC

,:•-> ic!.r-iv = "i
•<£ TIR'I
F.ND
DOURLY P>«":CISION F U N C T I O N OGgUA D( DLOWfc » t OUP P£« t f)FUN t NPTD2 t OGX ,

c F u N c r r o N suap^ur.iJfl* T-I e s r i s a r E rne iNTgcaaL F » O M OLOWER TO OUPPE-«
c OF THE FUNCTION DFUN JSINT, C IUSSIOM ouaor»aTu^E W I T H 2«NPf02 POINTS
c fl jaars r)rix ONO OGU C T N T A I N THE NO«IALIZED a^GuiEMTS ON THE
C (0,1) (UtTH rjGX(l) TH? POINT CLOSEST TO 1) a"JO THE RESPECTIVE
c yrir.MT'i .
c .I?F: NIJIE^ICAL HETHOOS, RV MIIRNBEC<» S E C T I O N
C Mr P S P E ^ D f t T c D f tU&2.a.
c

IMPLICIT -<EaL*8 (D)

C f l L C U L d T F TMr C O N S T B N T S US?0 IN FORMING THE A R G U M E N T S

C NO'J P F P P l l ^ M THEDG9uua=o.no
00 10 I-

10
RE
FND
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APPEiiDIX E

FORTRAii SOURCE CODE FOR CALCULATING
FORCE AT TIME T=50 riCROSECONDS

C *TL5: FORWU FCKTPAN VI. 1
i PP.OGDA^ TC I -STIMA.TF THF T O T A L FO = C" • • • E T W - N THF COIL AND
C f-Y C A L C U L A T I N G (10**f) /<» Mf'ES THF ? S T I » » A T £ OF TH6
C nawRRrtR _ pzc-azs*
C BETWrlN P=.G1 AND R = l.l INCHF.S.
C » f P : MY P A P F R D A T E S JAN 11 M6«
C

Rr AL BP50NC ID/. 01701'*.. T? &<•<» S , . V5:)ti T>2 , .50*33* ,
"

Pf "L 'IB^ONSdl ) f ca?ONS( l l ) f T S ^ O N S t 11 )» 3Z50NS(
" 11)

P£flL RZ(ll)/.OJ..lf.3..?,.7,.c,l.l,l.',l.S,1
B ^ A L MONTH/* J A N « / f C A T E / « 17 «/
DOT A CCNST/2 .5E6 / ? TOMT»S/ .025«« / f TOL9 S/ . 2 2<«8/

THE COLCULAT<rD n FIELPS
DO 1C 1=1,11

1C BZ5CN( t)=BZ50N( T)*BZ50N( I)
CHANf.E THE RADII AT WHICH THC B FIELDS 'J=J.F CALCULATED F^Q" T
TO 1FTERS

DO 15 1=1,11

1 •> R Z ( I ) = PZ( I )«TOMTR5
C FIT 5»LINE FUNCTIONS TO BR*B« AND

CALL SPLINE(N,BR,BP50N,PR50NS f Ca5CNS f 0^50NS)
CALL SPLINE(N,RZ,RZ?ON,RZ!;CNS,CZ50NS ta7' ;ONS)

C P C P P Q R ^ THE INTEGRATIONS
C

RINT50=0.

C LCOp T0 ACD THE CONTRIBUTIONS TO THE INTEGRAL B E T W E E N KNOTS
DO ?0 I=l»10
TP1=I*1
PINT-jOsRINTSC^SPLINTdfRP.dPD.P.Rd) » 1 ••>. oON( I ) , BR50NS ( I

r t D » C O N S ( I ) )
>C Z I ' JT«0=ZINT?0- t -SPLINT( I f az( IP l ) f RZ( t ) f :» Z50NC I ) , BZ50NS( I ) , C T

" D Z 5 0 N S ( I ) )
C
C DONE E X C E P T FOR MULTIPLICATION BY C O N S T A N T
C

F 5 0 M E T = C O N S T * ( R INT50-Z INT^O >
.

W=»ITe(6.1000) MONTH, DA TE t F50ME T, F«50L BS
l'"?0 FOCIf lT ('10UTPUT FROM FO«HU FORTRAN V 1. 1 ' , 10X , A^, A«i.//' TOTAL

* AT 50USEC IS »,F9.(» f« NEWTON 5» »/ 1 T25, «= «,F9.i«(« POUNDS«f / / )
STOP
s\n
FUNCTION SPLINT (i , PUP, R u O t F t P t C t O )

C F O R T f f l N SUSP^QGRA" TO E V A L U A T E THF INTEGRAL OF F ( R ) o R
C nvc? THE I N T E R V A L RLO »LE. P .LE. RUP WITH
C I = SPLINE FUNCTION INDEX COP PESCONDI^f, TO THIS INTERVAL
C PUP = UPP^R INTEGOOTION LIMIT (A KNOT)
c RLO = L O w e a INTEGRATIDN LI^IT (A KNOT) _ __
C F = F ( °Ln )
C P = ?.( ! ) IN THF s 3L!M" IMTESPCLaT IMr , ""UYN01I4L OF F("O
r C = C( I) IN THE SPLIM= . ..
c r = r( i) IN TH= S P L I N E . ..
C d S > U ' ' " S A CUBIC SPLIN^ INT THPOL A T ING P O L V N O * T A L AS Dr. TC^ I Bf) TN
C " C O M P U T E R M E T H O D S ^OP MA TH F" A T I C PL C O M P U T A T I O N S " , BY F Q ^ S Y T H F =
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APPENDIX F

NOTATION AND LIST OF SYMBOLS

Unless stated otherwise, the rationalized HKS system is used in

all equations and calculations. Equations are numbered consecutively,

beginning with (1) in each chapter. Only those equations that are

referenced in the text are numbered. Figures are identified by two

alphanumeric characters. The first character is a number, indicating

the number of the chapter in vhich the figure appears. The second

character is a letter, alphabetically identifying the order in vhich

the figures appear.

A chapter by chapter summary of the symbols used in this disser-

tation, listed in the order of their appearance, follows.

Chapter One

Z(to ) Terminal coil impedance (page 7)

a) Radian frequency (Fourier transform) variable (page 7)

i(t) Time domain coil current (page 7)

I(to) Fourier transform of i(t) (page 7)

E-^z,r,t) Azimuthal real space component of the electric in-
tensity (page 7)

z Axial coordinate in cylindrical coordinate system
(page 7)

r Radial coordinate in cylindrical coordinate system
(page 7)
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Hr(z, r, t) Radial real space component of the magnetic intensity
(page 7)

H«(z,r,t) Axial real space component of the magnetic intensity
(page 7)

f(t) Separation force magnitude between the coil and metal
target (page 7)

' Impulse delivered to metal target by the coil (page 7)

Chapter Three

RI Inner coil radius (page 12)

Rt Outer coil radius (page 12)

h Coil axial width (page 12)

d Metal target thickness (page 12)

$ Azimuthal coordinate in cylindrical coordinate system
(page 12)

}*• Permeability of free space (all materials considered in
this dissertation are non-magnetic) (page 14)

T Conductivity of metal target (page 14)

j Principal square root of -1 (page 15)

J»(x) Bessel function of the first kind of order n (page 15)

X Hankel transform variable (page 15)

V Total Fourier-Hankel space transmission line voltage
(page 16) .

T Total Fourier-Hankel space transmission line current
(page 16)

^ Fourier-Hankel space transmission line complex propaga-
gation coefficient (page 17)

f"», Fourier-Hankel space transmission line phasor current
corresponding to propagation in the direction of in-
creasing z (page 17)

I»- Fourier-Hankel space transmission line phasor current
corresponding to propagation in the direction of de-
creasing z (page 17)
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.*

Ve. Fourier-Hankel space transmission line phasor voltage
corresponding to propagation in the direction of in-
creasing z (page 18)

•̂
V8- Fourier-Hankel space transmission line phasor voltage

corresponding to propagation in the direction of de-
creasing z (page 18)

Z0 Fourier-Hankel space transmission line characteristic
impedance (page 19)

I Fourier space phasor current (page 19)

g Distance between metal target and the current sheet
closest to target (page 20)

Axial coordinate of current sheet closest to target
(page 20)

Axial coordinate of center current sheet (page 20)

Axial coordinate of current sheet furthest from
target (page 20)

Chapter Four

V Fourier space phasor voltage (page 23)

Z. Fourier-Hankel space air transmission line characteris-
tic impedance (page 26)

% Fourier-Hankel space air transmission line complex propa-
gation coefficient (page 26)

Z. Fourier-Hankel space metal transmission line character-
istic impedance (page 26)

ĵfl Fourier-Hankel space metal transmission line complex
. propagation coefficient (page 26)

Z(0) Fourier-Hankel space impedance seen looking into metal
transmission line at z=0 in Figure 3C (page 26)

/Oj Fourier-Hankel space current reflection coefficient
(page 26)

P6 Fourier-Hankel space voltage reflection coefficient
(page 28)

**.
V. Fourier-Hankel space total voltage at coil side face of

metal target (page 30)
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Vf Fourier-Hankel space total voltage on face of target
opposite coil (page 30)

<*.
I. Fourier-Hankel space total current at coil side face of

metal target (page 30)

If Fourier-Hankel space total current on face of target
opposite coil (page 30)

F Vector force on metal target (page 32)

£ Permittivity of free space (all materials considered in
this dissertation have a relative permittivity of 1)
(page 32)

Chapter Five

TI Radius of inner loop of wire in field measuring plate
(page 38)

r« Radius of outer loop of wire in field measuring plate
(page 38)

h Distance between two loops of wire of the same radius on
front and back sides of field measuring plate (page 38)

Chapter Six

R(oo) Real part of the total coil impedance (page 47)

L(co) Inductance of coil (page 47)

Ve Initial voltage on energy storage capacitor prior to
discharge (page 47)

S(^ Dirac delta distribution (page 47)

V0(o>) Fourier transform of energy storage capacitor voltage
(page 47)

C Capacitance of energy storage capacitor (page 48)

Roc AC winding resistance of the coil (page 48)

S&afi^} Symbol denoting "real part °f •£"}•" (page 48)

Ia Instantaneous current in coil when clamp diode across
energy storage capacitor begins conducting (page 51)
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Appendix C

H,(x) Struve function of order n (page 80)

T»(x) Chebyshev polynomial of the first kind of order n
(page SO)

Y» (x) Bessel function of the second kind of order n (page 81)

An(x) Partial Bum associated with the Jacobi eeries expansion
of HB(x)-Y.(x) (page 81)
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