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CHAPTER I

INTRODUCTION

In this study, an analysis of electromagnetic backscattering from

an open ended inlet cavity is performed, and the calculations based on

this analysis are compared with experimental measurements.

The wave scattered by the inlet cavity when it is illuminated by an

external source is composed mainly of two effects. The first is due to

the diffraction from the rim at the open-end of the inlet and the second

is due to the coupling of the incident electromagnetic energy into

cavity modes which bounce around inside the cavity before radiating from

the open end. The inlet cavity considered here is assumed to have

perfectly conducting walls.

The analysis is done on an inlet model with overall dimensions of

several wavelengths; therefore, there are quite a few propagating modes

inside the cavity. The modal analysis is complemented with the high

frequency techniques such as the Geometrical Theory of Diffraction

(GTD), the Equivalent Current Method (ECM), the Aperture Integration

(AI) and a modification of the Physical Theory of Diffraction (PTD).

The edge diffraction, due to the rim of the open-end, is calculated via

the ECM in which the equivalent currents are found from GTD. The AI

together with a modified PTD approach is applied to get the modal



coupling into the interior and its subsequent radiation back into the

exterior region. Since there are many propagating modes inside the

cavity, it is expected that only a few modes which are closely phase

matched to the direction of the incident wave are strongly excited.

This claim is tested and comparisons with measurements are also shown.

The experimental measurements are performed on a model at the

compact range facility of the ElectroScience Laboratory of the Ohio

State University.



CHAPTER II

ANALYSIS OF ELECTROMAGNETIC BACKSCATTERIN6
FROM AN INLET STRUCTURE

SECTION I

OPEN END

Figure 1. The geometry of the inlet model.

SECTION H

The inlet model of interest in this work is shown in Figure 1. It

is basically an open-ended cavity composed of two waveguide sections.

The first section is part of a linearly tapered waveguide with one end

open; the other end of this section is connected to the second section

which is a uniform waveguide with a planar termination inside. The

exterior of the second section is curved at the back end to minimize the

scattering coming from the exterior features of the structure. The axis

of the inlet coincides with the z-axis of the coordinate system, and the



y-axis is in the vertical direction. The model is made of wood and then

made conductive using a conductive paint. The dimensions of of the

inlet are shown in Figure 2.

The side walls in each of the waveguide sections are parallel to

the y-z plane; therefore, there is no tapering effect to be included for

those walls. The first step in the analysis is finding the modal field

expressions in rectangular and linearly tapered waveguide sections.

This is done in Appendices I and II where the expressions are given, and

the relationship between the mode sets of linearly tapered and

rectangular waveguides is shown. Therefore, the effect of tapering

(a) SIDE VIEW

(b) TOP VIEW

Figure 2. Side and top view of the inlet model



can be included by modifying the propagation constant in the rectangular

waveguide mode expressions which are transverse to the x-direction. So,

the analysis is first done on a rectangular cavity as shown in Figure 3,

and the solution is modified subsequently to include the effect of

tapering.

The geometry of the waveguide structure is shown in Figure 3. The

cross-sectional dimensions of the waveguide are "a" and "b" in the x and

y-coordinate directions respectively. The length of the waveguide from

the open end to the back wall is given by the dimension L. All of the

walls of the cavity are assumed to be perfectly conducting. The

structure is illuminated by an incident plane wave (eJwt time convention

is assumed and suppressed) which is given by

E1 = (E1^ + E1*) eJMxsine^os*1 + ysine^os^.1 + zcose1) .^

where 0 < 8^ < ir/2, 0 < <)>i < 2ir are the elevation and aspect angles of

the incident field direction, respectively, and k is the free space

wavenumber.

INCIDENT
PLANE
WAVE

OPEN END

SHORT
CIRCUIT

PERFECTLY
CONDUCTING

WALLS

Figure 3. Geometry of an open-ended rectangular waveguide cavity.



The scattered field is composed of two main contributions; one of

these is due to the field scattered from the open end by itself, and the

other is due to the field which is radiated from the open end. The

latter undergoes multiple reflections between the open end and the

termination at the back wall after it is initially coupled into the

waveguide from the incident field. The fields resulting from these

multiple interactions may be expressed as a convergent Neumann series as

done by Pace and Mittra [1]. The same result is directly obtained by an

alternative procedure based on a self-consistent method [2], However,

from experimental measurements, these multiple interactions are

determined to be negligibly small for the inlet model being considered

here; therefore, their effect is ignored in this study. Only the first

order interaction is discussed which contains the coupling of the

incident energy into the interior waveguide modes through the open end,

and subsequent reflection of these modes from the back wall and finally,

the radiation of these reflected modes from the open end. In Appendix

III, it is shown that the mechanisms of coupling into and radiation from

the open-end are equivalent via the reciprocity principle.

For a finite cross-section, the field incident at the open end
A

excites a finite number of modes which propagate in the -z direction

without attenuation, as well as an infinite number of evanescent modes
A

which attenuate exponentially away from the open end in the -z

direction. In this study, it will be assumed that the dimensions "a"

and "b" are large enough to excite at least a few propagating modes and



the length "L" is long enough for the effects of the evanescent modes to

be negligible.

In the third chapter of this report the analysis of direct edge

diffraction from the rim of the open end is discussed; whereas, the

discussion of the wave interaction between the open end and back wall

is given in Chapter IV.



CHAPTER III

DIRECT SCATTERING FROM THE RIM AT THE OPEN END

In this section, the direct scattering from the rim (edge) at the

open end is calculated using techniques based on Geometrical Theory of

Diffraction (GTD). According to the GTD, the scattered field is

initiated from some distinct points (diffraction points) on the rim edge

as well as from the corners of the rim, respectively as a result of

Keller's generalization of the Fermat's principle [3]. In addition to

the singly edge and corner diffracted fields, there are multiply

diffracted fields which are produced by rays that undergo multiple

diffractions across the aperture. These multiple interactions may

become important if the aperture dimensions are not sufficiently large

in terms of the wavelength.

The diffraction points migrate around the rim edge as the

observation point changes position. In some cases, there may be a

continuum of diffraction points contributing to the scattered field

which produces a cuastic of the diffracted rays. In the case of

backscattering when the incident field direction is parallel to x-z (or

y-z) plane, every point contributes to edge diffraction. In order to

8



get a bounded result, one can use the so-called Equivalent Current

Method (ECM) [4] based on the GTD. Away from the caustic regions where

GTD is valid, the ECM generally blends into the GTD solution provided

the inlet opening is sufficiently large in terms of the wavelength. The

use of ECM also automatically, albeit approximately takes into account

the presence of the corners at the waveguide opening.

In the ECM, the equivalent currents Ieg and Meg of the electric and

magnetic type, respectively, are located at the rim, and they radiate in

free space to give the diffracted field. The strengths of the

equivalent currents are calculated from the GTD, but since they are

incorporated in an integral, they give bounded results in the caustic

regions of the GTD.

The strengths of equivalent electric and magnetic currents are

given by [4]

e • E^edge) r^~ A
'eq " - Z0sine. sined

 Dŝ '> VIk e , (2)

and

.• * — -j
e • H (edge) r%^~ A

Meq = - Y0sine. sined
 Dh<* ' * '> VjY * (3)

where the half-plane diffraction coefficient is given by

Ds (ip,^1) = 2
h

_e-j*/4

2 /2irk
1
\b-\b'

cos ~~2

1
+ iJH-iJ)1

cos 2



which can also be written as follows:

~sin i|;/2 sin i|»' 12
-e-jir/4 cos i|»/2 cos

rS1
> M = /2lTk cos * + cos *'

LhJ

The other parameters in Equations (2) and (3) are defined as follows:

A

e : unit vector along the edge direction

Z0 = Yg"
1 : free-space impedance, and

BI» (fyj) : the an9les between the edge and incident
(or diffracted) field direction.

To define the angles <|/' and yt one first projects the vectors in the

incident and diffracted field directions into a plane perpendicular to

the edge direction. Then V is the angle between the half-plane surface

and the projected incident field direction. The angle y is similarly

defined. The angles V and y are measured from the inner faces of the

waveguide.

The radiated electric field is computed by

jkZQ e-jkR

ESl = -*T 1 [R x R x Ieq + YQ R x Meq ] -R— df (6)
rim

v A

where R = RR is the vector pointing toward the observation point from a

source point on the rim. If the observation point is very far away from

the open end, one can make the following approximations:

R s r - r • F1 and R = r . (7a;b)

10



where r=rr is the vector pointing toward the observation point from the
A A

origin. Also, r '=x'x+y'y is the vector from the origin to the source

point. The unit vector in the observation direction is defined by

r = x sin0cos<|> + ysin8sin<|> + zcose (8)

where 9 and 41 are the elevation and azimuth angles.

As shown in Figure 2, the edges are numbered from 1 to 4. Singly

diffracted fields from each edge are calculated separately, and total

edge diffraction from the rim is found by adding the results for each

edge.

U'.y')

Figure 4. Numbering of the edges,

11



i.) Singly-diffracted field contribution from edges 1 and 2

Edges 1 and 2 are the upper and lower horizontal edges as shown in

Figure 4. Their contributions are similar in the far field; therefore,

the expressions for edge 1 are given first, then the total contribution

from both 1 and 2 are found.

According to the above definitions, one finds that

cose1 cose
(9a;b)

Slned = 'l-s1n2ecos2 .(10a;b)

[ E * c o s e + E f - s W ) ]

eq ZQ sine.sined

D
S(*.*')/3F x (11)

and

. I'l
Meq sing, sin 3.

V^'WlF x . (12)

Substituting Equations (11) and (12) into Equation (6) and adjusting the

domain of integration for edge 1, one obtains that

12



"jkr

jk /nr
V jk

+d>

1 cosA1 cosecos<f>-sine1 cosecosAE1) D (i|>,

+(-E1,cose1cosd>1sin<p + E1
0sin<f>1sind>) D.( p o n

(-EoCOse^osd^sinA - E1 sin A1 sin*)
u (J)

+(-E1.cos91cosA1cos9cosd> + ElsinA1 cos9cosA) D, (ip,V)< p o n

1 1ra jk[x' (sine cos* +sin9cosA) + b(s ines in<()+s in9s in*) ] . ,

)

(13)

This expression simplifies in the case of backscattering, namely

9i = e and *1=<)). As mentioned above, the contribution from edge 2 is

similar to Equation (13), the total contribution from edges 1 and 2 for

the backscatter case is given by

13



E'sl
1 e"J

12 ~ Trkr sin28. COS\|)

ka i kb i . isine cosij) + j —? sine sin<|>

(Elcos291cos2*1 - ElsW cos*1 cose1) sin2 ~
^ •

+(E1cose1cos<|>1sin<|>1 - Eg cos ~

^sin^1 - E^sin2^1) sin2 2~

+(E1cos2e1cos2<(>1 - E!:
<J) u

cos (14)

For the backscattered field scan in the x-z plane, where <j>1=0,

V=ir, one obtains that

-ikr ka i E1Q J K' i -XT- cinft' "- O

- - 6
j 2" sine1 Ee sinfkasine1)

sine
(15)

Since both horizontal edges scatter always in phase in this plane,

the singly diffracted field contribution of horizontal edges is

independent of the dimension b. For an observation scan in the x-z

plane none of the points along the horizontal edges satisfy the

Generalized Format's principle. Therefore, there is no edge diffraction

contribution from horizontal edges. But, since the edges are of finite

length, the corners give a scattered field in every direction. At this

14



time there is an available approximate, uniform corner diffraction

coefficient which is partly based on heuristic arguments [4]. If this

corner diffraction coefficient is employed, one will simply obtain the

result in Equation (15) as long as one is away from the shadow

boundaries of edge diffracted fields. However, since the latter will be

true in the present work, this ECM approach will yield the same result

as that obtained from the use of the above corner diffraction

coefficient. It is noted that in the far zone, only the corner

diffraction effects dominate the total rim scattering; i.e, only the end

points of the rim edges dominate rather than the whole length of the

edges except in the caustic region where the entire length of the rim

contributes to the field.

ii.) Singly-diffracted field contribution from edges 3 and 4

In this case, Equations (2) and (3) take the following form:

'e,

Meq

ZQsin0 i sing^

(Eicose1s1nV - Elcos*1) e
jk(as1n9 cos<|)

cp o

/BF" -

(16)

Dn(ii','i>
1) v j i k y

(17)

15



where p., 3., \\> and V are as defined in Equations (9) and (10).

Substitution of Equations (16) and (17) into Equation (6) and

defining the parameters for edge 3 one obtains

;si _ Ji
L3 "

sin<j> + E^cos^cosesin^) D (^.V

+ (E1.cos91sind>1cosd> - Elcos^cos^)
<p o

(Egcose^inifi^osf)) + E^

+ (-E^cosg1 sin^cosg sin<f> + E^cosg^ose sin<()) D.(ij;,V)

i Jk[a(sin91cos<()1+sin9cos<()) + y^sine^i . ,

(18)

16



The contribution of edge 4 is similar to Equation (18). The total

contribution from edges 3 and 4 for the backscatter case is given by

-jkr
1 e .

34 sin2s.

ka kb

Elcos291sin2d)1 + El

i i i i i i ^
• (E 'cos9 cos<j> sin<j> - E9cos2<|> ) cos2 2"

Vosg1* Elcos*1) cos A1 sin2 7

i i i i i i i ^
+ (E 'cos 29 sine). - E'cos<|) sin<fr cose ) cos2 J

(p D u . (19)

i iFor an observation scan in the x-z plane, where $ =0, i|>=11+9 , 3^=

one obtains

Esl
L34

e-jkr . T- ^I j 2 sin9n

irr e

COS 9

* i 9 i ®
^E^cos2 2" + 9 EgSin2 2"

(20)

17



iii.) Double diffraction from vertical edges in the case of x-z

plane scan.

The singly diffracted rays from edges 3 or 4 will travel across the

aperture and diffract once more at the other end of the aperture before

going back to the receiver. Since in the x-z plane scan case, there is

a continuum of doubly diffracted rays, the ECM is employed to obtain

their contributions.
— •» A

Let E.3, H.3 be the electric and magnetic fields in y-direction

incident on the fourth edge due to the diffraction from third edge, then

one obtains

E = y E (at edge 3) D^'^+91, ̂ J) - - (21)43 = , ^, /

and

H43 = - y Y (at edge 3) D h ( t ' , <|,=) - -j= - . (22)

This field E«3 is incident on edge 4, diffracts from edge 4 and

constitutes a part of the total doubly diffracted field. For the

backscatter case, these doubly diffracted fields have a caustic;

therefore, one needs to utilize the ECM to obtain a bounded result.

The equivalent electric and magnetic currents are given by

__
-34 /Sir
leq ' * - 1 - V F y • and (23)^ o
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TT

TIT y (24)

the doubly diffracted fields from these equivalent sources are given by

the integral of Equation (6) such that

.. «-Jkr
- T—~.4ir

The doubly diffracted fields due to diffractions at edges 4 and 3,

respectively, are given by similar expressions. The total doubly

diffracted field is found by adding these two contributions such that

,-Jkr be'
34 a

2

9

2~ -

O—
. (26)

In addition to doubly diffracted rays, there are multiply diffracted

rays at the aperture. The analysis of multiple diffractions can be done

in general by the GTD, provided that all multiply diffracted fields are

ray optical. As is well known, the GTD diffracted fields are not ray

optical in the transition regions [4]. In the case considered here one

vertical edge is exactly on the reflection shadow boundary of the other

edge, where it has to match the discontinuity of the GO (Geometrical

Optics) field. Since it is exactly on the shadow boundary, one can
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decompose the diffracted field into two ray-optical fields as done

previously [5]. The subsequent (double) diffration of these two ray

optical components of the singly diffracted fields can be done via

conventional application of the 6TD. The evaluation of the third order

diffraction follows similarly and is given by;

Es3 -L34 "

e-jkr

r

be-Jk2a

2ir /irjka y

91

i cos2~2

^ "cOS29 i

91-

, i sin2 2"

° t0 cos291

cosfkaslne) e J
a s n e (27)

The higher-order diffractions, beyond the third-order term, are not

considered here because they are very weak in comparison to the lower

order terms just analyzed.

iv.) Numerical results for Chapter III

To check the validity of the analysis, the calculated results are

compared with a set of measurements obtained using the Compact Range

Facility at ElectroScience Laboratory, the Ohio State University. The

measurements are done on an inlet model as shown in Figures 1 and 2. In

order to remove the interior cavity effects, the inner surface of the

back wall of the inlet is covered with absorbing material. Two sets of

measurement results are obtained.

a.) At a fixed frequency, the aspect angle (9) from the z-axis is

varied in the horizontal (or vertical) plane from 0 to 90 degrees.
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b.) At a fixed aspect angle in the horizontal (or vertical) plane

the frequency response is measured, starting from 8 GHz up to 12 GHz at

10 MHz steps. Therefore a bandlimited frequency response is obtained.

Then, this response is processed through a Kaiser-Bessel window, and its

inverse Fourier Transform is obtained using an FFT algorithm which

represents a time domain response. Since the measured spectrum is

bandlimited, the time domain response represents the impulse response of

the target which is convolved with

V

sinuxt

costot (28)0

where ov=half -bandwidth (2 GHz) and u> is the center frequency which is

10 GHz in this case.

The measured and calculated radar cross sections (RCS) versus the

aspect angle are shown in Figures 5 through 16 for different

polarizations and frequencies. In each figure measurements (solid line)

and calculations (dashed line) are drawn on the same scale of dB over

m2. Figures 5 through 10 correspond to a horizontal (x-z) scan;

whereas, Figures 11 through 16 correspond to a vertical (y-z) scan. In

both the horizontal and vertical scans, the radar cross section is
A A

measured and analyzed for two polarizations (<(> and e). Finally, each

case is repeated at three different frequencies, namely around 8, 10 and
A

12 GHz. In both the horizontal and vertical scans, a $ directed

incident electric field will not diffract from two edges which are

parallel to the scan plane. Therefore the contribution to the radar

cross section in these cases is dominated by the diffracted fields from
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90.
THETf l (DEG)

Figure 5. Aspect angle scan in horizontal (x-z) plane,
polarization, frequency = 8.02 GHz.

measured, — calculated results.

Vertical
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So. 30. 60.
THETfl (DEC)

90.

Figure 6. Aspect angle scan in horizontal (x-z) plane,
polarization, frequency = 9.98 GHz.

measured, — calculated results.

Vertical (*)
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o .

So. 30. 60.
THETfl (DEC)

Figure 7. Aspect angle scan in horizontal (x-z) plane,
polarization, frequency = 11.95 GHz.

measured, —- calculated results.

Vertical (<j>)
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30. 60.
THETR (DEC)

90.

Figure 8. Aspect angle scan In horizontal (x-z) plane,
polarization, frequency = 8.02 GHz.

measured, — calculated results.

Horizontal (9)
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o .

30. 60.
THETf l (DEG)

Figure 9. Aspect angle scan in horizontal (x-z) plane,
polarization, frequency = 9.98 GHz.
'.— measured, — calculated results.

Horizontal (e)
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30. 60.
THETf l (DEG)

Figure 10. Aspect angle scan in horizontal (x-z) plane,
polarization, frequency = 11.95 GHz.

measured, — calculated results.

Horizontal (9)
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So. 30. 60.
THETf l (DEG)

90.

Figure 11. Aspect angle scan in vertical (y-z) plane,
polarization, frequency = 8.02 GHz.

measured, — calculated results.

Horizontal (<f>)
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o .

So. 30. 60.
THETf l (DEG)

Figure 12. Aspect angle scan in vertical (y-z) plane,
polarization, frequency = 9.98 GHz.

measured, — calculated results.

Horizontal (<j>)
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o '
<oO. 30. 60.

THETR(DEG)
Figure 13. Aspect angle scan in vertical (y-z) plane,

polarization, frequency =11.95 GHz.
measured, — calculated results.

Horizontal (<j>)
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Figure 14

30. 60. 90.
T H E T R ( D E G )

Aspect angle scan in vertical (y-z) p l a n e ,
po la r i za t ion , frequency = 8.02 GHz.
- measured, — - calculated results.

Vertical (e)
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o .

So. 90.

Figure 15,

30. 60.
THETf l (DEG)

Aspect angle scan In vertical (y-z) plane,
polarization, frequency = 9.98 GHz.

measured, — calculated results.

Vertical (e)
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30. 60. 90.
THETfl (DEC)

Figure 16. Aspect angle scan in vertical (y-z) plane,
polarization, frequency = 11.95 GHz.

measured, — calculated results.

Vertical (9)
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the remaining two edges. As shown in Figures 5 through 7 and 11 through

13, the calculations agree reasonably well with the measurements.
A

However, for the other polarization (9), all four edges of the open end

contribute to the radar cross section; however the contribution from two

of these four edges reduces essentially to that from the end points (or

corners). As shown in Figures 8 through 10 and 14 through 16, the

agreement between the measured and calculated results is not as good as
A

the (^-polarization case, especially the horizontal scan. The reason for

this discrepancy will become clearer after discussing the frequency

domain responses, suffice it to say for now that it is due to the

imperfections of the model.

Finally one notes that the rim scattering analysis performed here

is valid for aspect angles away from the shadow boundaries of the

diffracted field. For aspect angles close to the shadow boundaries of

the edges (e close to 90 degrees) the approach described here should be

modified; this modification will not be given here.

Frequency scans are done in the horizontal (<|>=0) plane, with two

different polarizations and with the angle 9 fixed at four different

values, namely 0, 15, 30 and 45 degrees. The measured (solid line) and

calculated (dashed line) radar cross section results are plotted on the

same graph and given in dB over m2. The phase variation of the radar

cross section is also shown in the figures. To be able to make a phase

comparison, the measured data has been processed so that the two results

have the same phase center. The frequency spectra are then inverse

34



Fourier transformed to obtain the time domain responses. As explained

before the time domain response is not an impulse response although it

has been denoted like that on the plot for ease in understanding.

Therefore, to make the comparison easier, the curves corresponding to

measured and calculated time domain returns are shifted by equal amount

from the center line. The scale in the time domain is dimensionless and

should be taken as a relative scale. Finally, due to the malfunctions

of electronic instrument during measurements, there are some glitches in

the .measured data. They are kept as they appeared originally, since

their presence does not effect the overall characteristic of the curves.

As in the case of aspect angle scans, the amplitude and phase of

the measured and calculated RCS results are in good agreement especially
A

for a <|> polarized field (Figures 17 through 20). Also, it can be seen

from the time domain plots that almost all of the measured return is

from the rim at the open end. The absorber put at the back of the line

very effectively removed any internal cavity effects.
A

In the case of the horizontal (e) polarization, (Figures 21 through

24) the time domain plots show a relatively large return occuring later

in time than the return from the open end. The variation of the

position of that return with different 9 values implies that it is

coming from the external surfaces of the inlet model. Therefore as

shown in Figures 22 through 24, the comparison between calculated and

measured radar cross section results is not good. This also explains

the discrepancy in the aspect angle scan results of Figures 8 through 10.
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Figure 17a. Frequency scan in horizontal (x-z) plane,

<t>=0°, 9=0°, vertical (<j>) polarization.

measured, — calculated results.
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Figure 17b. Inverse Fourier transforms,
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Figure 18a. Frequency scan in horizontal (x-z) plane,
4)=0°, 8=15°, vertical U) polarization.

measured, —- calculated results.
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Figure 18b. Inverse Fourier transforms,
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Figure 19a. Frequency scan in horizontal (x-z) plane,
<(.=00, 9=30°, vertical (}) polarization.

measured, — calculated results.
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Figure 19b. Inverse Fourier transforms,
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Figure 20a. Frequency scan in horizontal (x-z) plane.
<t>=0°, e=45°, vertical (J) polarization.

measured, — calculated results.
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Figure 20b. Inverse Fourier transforms,
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Figure 21a. Frequency scan in horizontal (x-z) plane
<H>°, 6=0° , horizontal (e) polarization.
- measured, — calculated results.
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Figure 2lb. Inverse Fourier transforms.
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Figure 22a. Frequency scan in horizontal (x-z) plane,
<|>=00, 9=15°, horizontal (9) polarization,

measured, calculated,
measured (time gated) results.
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Figure 23a. Frequency scan in horizontal (x-z) plane,
<J>=0°, 9=30°, horizontal (e) polarization,

measured, calculated,
measured (time gated) results.
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Figure 23b. Inverse Fourier transforms,
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Figure 24a. Frequency scan in horizontal (x-z) plane,
<t>=0°, 9=45°, horizontal (e) polarization,

measured, calculated,
measured (time gated) results.
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Figure 24b. Inverse Fourier transforms.
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To compare the returns coming from the open end only, the unwanted

return is gated out from the measured time domain data and is indicated

as such in each figure. The actual measured and calculated returns are

shown with constant shifts, as before. These time domain plots were

then converted into the frequency domain and shown on the same graph.

As can be seen in Figures 22a, 23a, and 24a the calculated (long-dashed

line) and gated-out measured (short-dashed line) results agree fairly

well since they both correspond to the returns pertaining to the rim of

the inlet.

As explained before, the time domain responses shown are not the

actual impulse responses because of the bandlimited nature of the data

in frequency domain. If one had more frequency domain information then

the time domain results would be closer to true impulse responses. To

show this, calculations corresponding to Figure 20a are repeated and

expressions of Equations (20), (26) and (27) are extended down to 10

MHz. The resulting frequency domain plot is shown in Figure 25a. Then,

this data is inverse Fourier transormed, and the time domain result is

shown in Figure 25b. This result is closer to an actual impulse

response, and it clearly shows the single, double and triple

diffractions from the vertical edges of the open end. Note that the

double order diffractions originating from both edges return to the

receiver at the same time.
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Figure 25a. Frequency scan in horizontal (x-z) plane,

<f>=0°, 9=45°, vertical (<j>) polarization.
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CHAPTER IV

THE ANALYSIS OF INTERIOR CAVITY EFFECTS

As described at the beginning of this report, the coupling of

incident energy into the interior waveguide modes and their subsequent

radiation after undergoing multiple relfections between the back wall

termination and the open end comprise the cavity effects. The

relationship between the analysis of the problem of modal coupling into

and radiation from the open end is given in Appendix III. The classical

approach to determine the radiated field from the open end due to a

given mode involves an integration of the modal field across the

aperture. The edge effects inherent in this procedure are not as good

as predicted by the GTD. However, the edge effects given by the

aperture integration method can be improved by the modified PTD approach

as described in Appendix IV. The underlying argument in Appendix IV is

that one can improve the aperture integration by adding the Ufimtsev's

equivalent currents at the edges.

The modal field expressions in the rectangular waveguide as shown

in Figure 1 is given in Appendix I (Equations A1-A13). Each mode is

decomposed into four plane waves, each of which is a ray optical field.
A

The transverse (to z) components of the fields are as follows:
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Nnm
E = "47
modal

(-xU+yV) e

+ (-xU-yV) e a

jnax+jmby-jenmz
+ (xU-yV) e

+ (xU+yV) e
-jnax+jmby-j8nmz

and

Ynm Nnm

H nmodal

(xV-yU) e

+ (xV+yU) e

(-xV-yU) e

jnax-jmby-jenmz

-jnax-jmby-jenmz

(-xV+yU) e
-jnax+jmby-j3nm

(29)

(30)

The directions of propagation of these four rays are given by the

exponents.

The integration of the modal fields across the aperture provides an

approximate radiated field which is given by

JkZ,-Q a b
'a,nm " 4ir

0 0
RxR x 5e;j

odal + YQ R x Me^
oda1 dy'dx1

(31)
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where

j modal
eq = z x H.modal = mn nm xUcosn xsinnvy-yVsinn xcosm. y

(32)

and

jjj modal
eq Emodal xz -N,mn xVsi nnaxcosmby+yUcosnaxsi

(33)

RxR x = -Nnm Ucosna x sinmby

nm ysin2esin<|>cos4>+zsin9cos9cos<j>]
A A

+Y [-xcose+zsinecos(j)]

-NnmVsinn cosmby

Y [ycos9-zsin9sin<()]
A A

+Y [-xsin29sin<))COS(|)+y(l-sin29sin2()»)nm
f\

-zsin9cos9sin<)>]

(34)

In the far field

R = r - r1 • r (35)

and

RxRxJ7 modal. „ „ »modal
eq

-NnmVsin n

o eq = -NnmUcosn. xsinm. y

- 9cos

+Y [- 9cos <()+(t)COS 9si n <(>]

(Y[9cos9sin<).+<()COS<))+Y0[9sin<j)+4.cos9cos(()]}nm

(36)
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Substituting into Equation (31), one obtains that

~a,nm

kNnm .-jkr j ksine
-^p e

 J ej —2— (acos<j>+bsin((.)

/ N - f ,
- ecos <()( I+Y~~COS 6 J+(|isi n ((((cos 9+~Y~J

sin2"(ksin9cos<|>+na)
1 ksin9cos<()+na

.-\n sin"2(ksin9eos<t>-na)~
ksin9cos<|>-na

~ sin~2(ksin9cos<()+mb)
J ksin9cos<j>+mb

sin"2(ksin9cos<)>-mb)"

+V -9sin cos 9 )+<()Cos <})(cos 9+-Y~)

~ n sin~2(ksin9cos<|>+na)
J ksin9cos<|)+na

sin2"(ksin9cos<()-na)'
J) ksin9cos<|)-na

ksin9cos<()+mb ksin9cos<()-mb

(37)

sinx
As it is seen from Equation (37), the pattern has a ~£—type behaviour

in both 9 and <|> directions. There are four difference
sinx

forms, each

of which is due to the integration of a plane wave component of the mode

aS|described in Equation (29). Therefore each
sinx

peaks up at the
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corresponding plane wave directions. Also, as the waveguide dimensions

get larger, the peaks become sharper. As a result, only a few modes,

contribute strongly to the radiation around a given observation

direction.

As mentioned earlier, the edge effects given by aperture

integration are improved using a modified PTD approach as discussed in

Appendix IV. The equivalent electric and magnetic Ufimtsev edge

currents are [6] given by

A -,•

e • E (edge)
= - -=u Z (*•*') VjF

Sir *

and

e - ̂ (edge)

(38)

(39)

where the Ufimtsev diffraction coefficients are

,u/4

[sec [~2) - tan (~2)] + [secD"Ds = '

after simplification, it can be written as follows

,ir/4
u 2e J sin f -sin
S /Zwk COS(|H-COS)()'
h

. *'sin 2"

cos 2"

-tan

(40)

(41)
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Therefore, one obtains

nm
I = Y /~M7u o VJK sing^ingj

± x Ucosn x1 e = x

?jn x1 .
± y Vcosmby' e = y

Ucosn^x'
a

(-v)cosmby

for edge 1
for edge 2

"for edge 3
_for edge 4

(42)

and

= - Z. 2j

\m for edge 1
Vjsinngx' for edge 2

for edge 3
Ujsinmby for edge 4

(43)

The radiated field for these edge correction terms is then given by

-jkR

"u,nm Ĵ o
rim

R x Iu + YQ R x MJ (44)

In the far field, the above integrations for the radiated field can be

done analytically in closed form and the result is;
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 + ^) ksin9sin<()+mb

nm *\ * *\
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The total radiated field is the summation of Equations (37) and (45);

namely,

nm ~ a,nm u.nm * ' '

The total radiated field is the superposition of the radiation of all

propagating modes.

Numerical Results for Chapter IV

The experimental measurements and calculations are done in two

categories as in Chapter III; namely, aspect angle and frequeny scans

and they are given in dB over m2. Since it is difficult to

experimentally isolate the open end rim scattering from the cavity

effects, the calculations include both effects for comparison purposes.

The waveguide model is large in terms of the wavelength; therefore,

a large number of propagating modes can exist inside the cavity. For

example, at the frequency of 10 GHz, there are 172 propagating modes as

well as an infinite number of evanescent modes. Since the waveguide

axial length is very long with respect to the wavelength, the evanescent

modes will decay very significantly such that they can be neglected.

Then the next question is whether the propagating modes have a preferred

direction of radiation in that one can choose a few special ones rather

than all the propagating modes and include only those in the analysis.

It is obvious from Equation (47) that modal radiation occur at discrete

plane wave directions for each mode. Since each mode has a discrete

radiation direction, some will radiate close to desired direction, and

62



others will not. This being the case, one can anticipate that only a

few modes are significantly excited by the incident plane wave and

radiate significantly in the backscatter direction. This claim has been

checked numerically, and the results are shown in Figure 26. An

open-ended rectangular waveguide with dimensions equal to the

experimental model used in this study is analyzed at 10 GHz. The

backscatter field is calculated in (x-z) plane by varying the aspect

angle 9. Note that only the modal effects are included and the incident

field is assumed to be 4>-polarized. It is found that only the TE

modes are excited in this plane for this polarization. Their plane wave

directions or modal ray angles are tabulated in the figure. The

scattered field is calculated by including all modal contributions as

indicated by the solid line. For comparison purposes the contributions

of TE (n=l,...5) modes and TE (n=6...13) modes are shown in the

same figure. Note that the first five modes radiate strongly and almost

replicate the solid curve in the region close to their modal ray angle

directions. The remaining seven modes are major contributors for the

large aspect angles. After observing this fact, the research focused on

finding a rule of thumb procedure which could be used to select the

minimum number of modes needed for a given direction of incident plane

wave. From numerical results and comparisons with the experimental

data, it was found that in horizontal and vertical planes only three

modes were sufficient for the inlet under test. These three modes are

selected based on their modal radiation direction such that they are

closest to the incident plane wave direction. The aspect angle scan
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Figure 26. Importance of modes whose modal ray angles are near the
angle of incidence.
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results are shown in Figures 27 through 38. As done in Chapter III, the

experimental measurement results are indicated by the solid line and

calculations by the dashed one. In each case a comparison is provided

for the calculations which include all modes versus three modes. In all

cases a 1 dB/bounce energy loss is assumed to model the imperfection of

the conductivity of the model used in the measurements.

Since this new concept proved to be so valuable in the principal

plane, it is next applied to <f>=45° plane to see if it fails when the

incident plane wave direction is not aligned with the structural

symmetry. The aspect angle scan is calculated in the <|>=450 plane for
A A

both the <|> and e polarized incident fields. The results are shown in

Figures 39 and 40. In this case, the 18 preselected modes are compared

with the complete 172 modes as shown in each figure. Note that more

terms are necessary in this general case as indicated by the results

shown in Figure 41 where the six mode result is compared with the 18

mode one. Even so it is clear that one can use far fewer than the

complete set of modes.

Finally, the frequency scan results are calculated and compared

with measurements in Figures 42 through 49. As in Chapter III, the time

domain results are deliberately shifted to better illustrate the

comparisons. Note that in each case the comparisons are exceptional.

In Figure 50, the contribution of each mode is plotted separately

for the geometry associated with the results of Figure 45. It is seen

that as the mode number increases the given mode undergoes more bounces

inside the waveguide, travels a longer distance and therefore its return
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30. 60.
T H E T R ( D E G )

Figure 27a. Aspect angle scan in horizontal (x-z) plane.
Vertical (<f>) polarization, frequency 8.0 GHz,

measured, — calculated results.
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30. 60.
T H E T R ( D E G )

90.

Fiqure 27b Calculated aspect angle scans corresponding to Figure 27a,
_ All modes are included
xxx Only 3 modes are included
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30. 60.
T H E T R ( D E G )

90.

Figure 28a. Aspect angle scan in horizontal (x-z) plane.

Vertical (*) polarization, frequency 10.0 GHz,
measured, — calculated results.
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I/ 30. 60.
THETP (DEC)

90.

Figure 28b. Calculated aspect angle scans corresponding to Figure 28a.
All modes are included

xxx Only 3 modes are included
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So. 30. 60.
THETf l (DEG)

Figure 29a. Aspect angle scan in horizontal (x-z) plane.

Vertical (<(>) polarization, frequency 12.0 GHz,

measured, — calculated results.
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So. 30. 60.
THETfl (DEC)

90.

Figure 29b. Calculated aspect angle scans corresponding to Figure 29a,
All modes are included

xxx Only 3 modes are included
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30. 60.
THETf l (DEG)

90.

Figure 30a. Aspect angle scan in horizontal (x-z) plane.

Horizontal (9) polarization, frequency 8.02 GHz,

measured, — calculated results.
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So. 30. 60.
THETfl (DEG)

Figure 30b. Calculated aspect angle scans corresponding to Figure 30a,
All modes are included

xxx Only 3 modes are included
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Figure 31a.

30. 60. 90.
THETf l (DEG)

Aspect angle scan in horizontal (x-z) plane.
Horizontal (e) polarization, frequency 9.98 GHz.

measured, — calculated results.
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So. 30. 60.
THETf l (DEG)

Figure 31b. Calculated aspect angle scans corresponding to Figure 31a,
All modes are included

xxx Only 3 modes are included
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So. 30. 60.
THETf l (DEG)

Figure 32a. Aspect angle scan in horizontal (x-z) plane.
A

Horizontal (e) polarization, frequency 11.95 GHz.

measured, — calculated results.
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8*. 30. 60.
THETfl (DEC)

Figure 32b. Calculated aspect angle scans corresponding to Figure 32a,
All modes are included

xxx Only 3 modes are included
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i/X). 30. 60.
THETfl (DEC)

90.

Figure 33a. Aspect angle scan in vertical (y-z) plane.
A

Vertical (9) polarization, frequency 8.02 GHz,
measured, — calculated results.
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Sb. 30. 60.
THETfl (DEC)

Figure 33b. Calculated aspect angle scans corresponding to Figure 33a
All modes are included

xxx Only 3 modes are included
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i 30. 60.
THETf l (DEG)

90,

Figure 34a. Aspect angle scan in vertical (y-z) plane.
A

Vertical (e) polarization, frequency 10.01 GHz.
measured, —- calculated results.
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30. 60.
THETR(DEG)

Figure 34b. Calculated aspect angle scans corresponding to Figure 34a,
All modes are included

xxx Only 3 modes are included
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30. 60.
T H E T R ( D E G )

90.

Figure 35a. Aspect angle scan in vertical (y-z) plane.
A

Vertical (e) polarization, frequency 11.96 GHz,
measured, — calculated results.
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So. 30. 60.
T H E T R ( D E G )

Figure 35b. Calculated aspect angle scans corresponding to Figure 35a,
All modes are included

xxx Only 3 modes are included
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So. 30. 60.
T H E T R ( D E G )

Figure 36a. Aspect angle scan in vertical (y-z) plane.
A

Horizontal (<(>) polarization, frequency 8.02 GHz,
measured, — calculated results.
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So. 30. 60.
THETfi (DEC)

Figure 36b. Calculated aspect angle scans
- All modes are included
xxx Only 3 modes are included

corresponding to Figure 36a,
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30. 60.
THETfl (DEC)

90,

Figure 37a. Aspect angle scan in vertical (y-z) plane.
A

Horizontal (<f>) polarization, frequency 10.01 GHz.

measured, — calculated results.
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?„. 30. 60.
THETf l (DEG)

Figure 37b. Calculated aspect angle scans corresponding to Figure 37a,
All modes are included

xxx Only 3 modes are included
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30. 60.
THETfl(DEG)

Figure 38a. Aspect angle scan in vertical (y-z) plane.

Horizontal (<f>) polarization, frequency 11.96 GHz,

measured, — calculated results.
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Figure 38b. Calculated aspect angle scans corresponding to Figure 38a,
All modes are included

xxx Only 3 modes are included
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o .

So. 30. 60.
T H E T R ( D E G )

Figure 39. Calculated aspect angle scans in the plane <|>=450,

<{> polarization, frequency = 10.0 GHz.

All 172 modes are included (86 TE, 86 TM modes)

xxx Only 18 modes are included (9 TE, 9 TM modes)
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30. 60.
THETfl (DEC)

Figure 40. Calculated aspect angle scans in the plane <f>=45°,

0 polarization, frequency = 10.0 GHz.

All 172 modes are included (86 TE, 86 TM modes)

xxx Only 18 modes are included (9 TE, 9 TM modes)
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So. 90.30. 60.
THETf l (DEG)

Figure 41. Calculated aspect angle scans in the plane (f>=45°,

6 polarization, frequency =10 GHz.

All 172 modes are included (86 TE, 86 TM modes)

xxx Only 6 modes are included (3 TE, 3 TM modes)
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Figure 42a. Frequency scan in horizontal (x-z) plane.
A

<t>=0°, 9=0°, vertical (<)>) polarization.
measured, — calculated results.
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measured, — calculated results.
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Figure 45a. Frequency scan in horizontal (x-z) plane,
<|>=00, 9=45°, vertical (J) polarization.

measured, — calculated results.
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Figure 46a. Frequency scan in horizontal (x-z) plane,
<|>=00, 9=0°, horizontal (e) polarization.

measured, — calculated results.
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Figure 47a. Frequency scan in horizontal (x-z) plane.
<f>=00, 9=15°, horizontal (e) polarization.

measured, — calculated results.
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<f>=0°, 9=30°, horizontal (e) polarization.

measured, —- calculated results.
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Figure 49a. Frequency scan in horizontal (x-z) plane.
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is received later in time, causing a stronger modal dispersion. Also

note that the modal terms add up to form ripples in the total result

from the cavity effect. If not understood correctly one might think

this is indicating different scattering centers, which would not be

true. This shows that modal propagation should carefully be traced if

one wishes to obtain the true response for the cavity effects.
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CHAPTER V

CONCLUSIONS

The goal of this research is to understand the dominant scattering

mechanisms associated with a jet inlet structure and to develop some

simple and accurate techniques to analyze them. Basically the

backscattered field is composed of two major mechanisms; namely, the

diffraction from the open end and radiation from the open end due to

interior reflections or cavity effects. Both mechanisms are separately

discussed, analyzed, and compared with aspect angle and frequency scan

measured results. The analysis and numerical results for the

diffraction by just the open end is presented in Chapter III. The

results indicate that the GTD provides an accurate estimation of this

diffraction term. Chapter IV deals with the analysis of interior cavity

effects. The latter analysis is based on the expansion of the field

inside the inlet in terms of rectangular waveguide modes. The coupling

of the incident field into the waveguide modes and their subsequent

radiation from the open end are obtained by an integration over the

aperture at the open end. In appendix IV, it is shown that this

aperture integration can be corrected in the same way as the PO is

corrected via the PTD. However, the integration process does not give
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any physical insight to the problem, and as the number of propagating

modes increase with frequency it becomes cumbersome and inefficient.

Therefore, in this research, new approaches to substantially improve the

efficienty of these aperture integrals was investigated. It was shown

that every mode can be decomposed into four ray-optical fields each of

which is propagating in a particular direction. These directions are

called the modal ray directions. It was determined that the modal

radiation is strongest in these modal ray directions. Therefore, for a

given radiation direction one can include only the radiation of those

modes whose modal ray directions are closest to the radiation direction.

Numerical results are included to indicate that the contribution of only

three modes with modal ray directions closest to the given observation

direction accurately approximates the contribution of all the

propagating modes. This is an important result, because it combines

modal radiation with ray-optics, and therefore it can be applied to many

different and complex waveguide geometries to effectively select only

the few significant modes from the entire set of propagating modes.

Also, the same modal ray approach is useful in calculating the modal

reflection and transmission from interior inlet discontinuities.

The model studied here had a small interior discontinuity, and, as

expected, it did not seem to significantly influence the final results.

It is proposed as a part of future research, to build and analyze a

model.with more pronounced interior discontinuities which might occur in

practice.
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APPENDIX I

MODAL FIELD EXPRESSIONS IN A RECTANGULAR WAVEGUIDE

2-^-

* ^PERFECTLY
CONDUCTING WALLS

Figure Al. Rectangular waveguide geometry.

As described in [7], the modes in a rectangular waveguide as shown

in Figure A.I, can be classified into sets of transverse fields to a

coordinate direction.
A

The mode sets transverse to the axial (z) direction are important

and widely used, because it applies to uniform nonrectangular

cross-section guides. However, in many problems, mode sets transverse
A A

to x or y coordinate may be more suitable.
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These sets can be calculated from an axial or transverse vector
A

potential [7]. The TEnm and TMnm to z type modal field expressions are

given by:

TE Modes TE Modes

hz Nnm
h YO

(Al)

-Nnm sinaxsinmby (A2)

hx Nnm
h IS. sinnaxcosmby Yo mb s1nnaxcosV

hy Nnm ~IT 3nm % YQ na cosnaxsinmby (A4)

ex Nnm mb cosnaxsinmby Nnm na (A5)

y

<m

C

eon • eom
' Yo

1/2

+Nnm mb sinnaxcosmby

eon *
k • Y

1/2

(A6)

(A7)

(A8)

Nnm

u

Nnm
n_

-nil.
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h ewhere the normalization factors N and N are defined so as to

a b
/ / e x R • z dx dy = 1

o o
(A9)

and

on
1 if n = 0
2 if n * 0 (A10)

nir rnir
= ~b (All)

A1so» 8nm = /k2-nâ -m[j
2 is tne propagation constant in

z-direction, namely;

E"modal = [ex x + ey y + ez z] e
Snmz (A12)

Hmodal \ y + hz z] eH (A13)

Finally, Y =Z" is the free-space admittance
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The modal sets transverse to x-axis can be written as follows:

TEx,nm ̂ des TMx>nm Modes

e (na
2+mb

2) k2-na2
6x ° Am TB^ J^T cosnaxsinmby (A14)

n e (na
2+%2) "a'mb

ey -Nnm {na2+mb2)sinnaxcosV Nnm Ts^1%^ s1nVcosV

(A16)

h Y0(na2+mb
2)

hx <m~^ -
sin xcosm,, y

h Y0 (na
2-Hnb

2)
h -N ^ (na

2-Hnb
2) N "B" J " Y c o s n x s i n (A18)mn

n «m. cosn xsi nm, y

h YO ', , e <na2+%2) kYoN 3* ("a2^b2) N -p- t t r o s n c o s T (A19)nm

n cosn xcosm.y

From Equations (Al) through (A19), one can easily conclude that

k
TEx,nm = na TEnm ' mb 3^ ™nm (A20)

k

™x,nm = mb 3n^ TEnm + na ™nm (A21)
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or, alternatively,

TEnm
na2 V T

nm

na TEx,nm + mb Bnm ™x,nm (A22)

TM.nm
3nm

TEx,nm + na ™x,nm (A23)
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APPENDIX II

MODAL FIELD EXPRESSIONS IN A LINEARLY TAPERED WAVEGUIDE

Figure A2. Geometry of a linearly tapered waveguide.

In this problem, it is possible to find mode sets transverse to
A

x-axis. The fields can be computed from the scalar function

a2

az2
mr

(A24)

with appropriate boundary conditions. \p is the x-component of the

magnetic vector potential A in the TMX case and the x-component of the

electric vector potential F in the TEX case [7],
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Case 1 TE modes: These modes satisfy the relation E =0 and can be
- J\ J\

— >sderived from F=xi|>.

The field components are given by;

-i
Hp • JkZ0

(A25)

H, =
1 .

(|> JkZg P
(A26)

H - (A27)

The appropriate scalar function i|> is given by;

cos

(kp)

Ingoing Wave

Outgoing Wave

(A28)

where

2
(t (A29)

The explicit expressions for the outgoing field components are given by;

1 nnr mr rmr
r —• ~"~ ' ̂ ' ™ c T n f ^ ~ A/ I c T n i «™ '/fc (A30)

nir rcnr d (2)
E4, = sin (a x) cos (^ *] dp H|tllT | (A31)
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E = (A32)

H = ,njL
(a ) cos cos

_d
dp (A33)

1 (T~l cos (T~x] sin (A34)

1 2 nn
k sin cos (A35)

For small <(>0 and large p, the Debye Asymptotic approximation for the

Hankel function [8]

(A36)

V V IT
can be used. For small 7; cos-1 7+2" , so the above relation becomes;

(D
v ±j

(+j) e J 2_2 ± 4
(A37)

and

"" V H . / Z 2 - V 2 (*J) e (A38)

which goes to the large argument form [7] for z»v.
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If one makes use of Equations (A37) and (A38) in the field

expressions of Equations (A30) through (A35), one obtains the following

expressions (up to a common factor) for an outgoing wave;

E
P '

nir
sin sin (A39)

cos

Ex = 0

1 ,nir
Hp - jl̂ Zo- (F-)

where

,mr mi:
T

nir .
cos c cos

. , .
cos (me) Sin (4.) e

(A41)

(A42)

(A43)

(A45)

is the function determining the phase advance in p-direction. Note that

3nm is a function of p. By comparing Equations (A39) through (A44) with

Equations (A14) through (A19), one can see that the expressions of

slightly tapered waveguide fields may be approximated by TEX, TMx-type

rectangular waveguide mode sets. To do this, one has to make the

following approximations.
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(A46)

P<J> (A47)

p<f> -»• b (A48)

together with Equation (A45) where p-dependence cannot be approximated

by Equation (A48), since it is the function determining the phase

advance which is more sensitive to the approximations.

Case 2 TM modes: These modes satisfy the relation H =0 and can be

— Aderived from A=xi|».

The field components are given by:

Ep = 3P3x
1 3i|»

H _ — —-
p " P 9<l> (A49)

H«h = - 3P (A50)

32
Hx = 0 (A51)

The appropriate scalar function $ is given by:

nir
= cos <(>)

(mi

(ml

Ingoing Wave

Outgoing Wave

(A52)
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The explicit expressions for the outgoing field components are given

by:

E
p
 =

-1 rnr rnr mjr d /o\~
S n s n

<t>o

-1 1 nir rmr
7 (Tl t*~) sin

mr rmr
* cos 4

(A53)

(A54)

E =
1 mr nir „ imr

(k2-(!T)2) cos (T*} sin (A55)

1 mirx nir mir
H = cos -x cos (A56)

nir
= - cos c sin (A57)

(A58)

Again using Debye's Asymptotic form for the Hankel function, one obtains

the following field expressions:

,rmr v
jkY0 a S n sin

nmr

(A59)

.
sln cos (A60)

Ex =
1 , - nir mr mir

cos (T~X) sin riT<t>) e (A61)

H =
p

rmr mr
cos

mr
% = - /BnmP cos (a >0 sin U04>) (-JBnm) e

(A62)

(A63)
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These modal expressions under the approximations defined by

Equations (A46) through (A48) become equivalent to the TMX modes in a

rectangular waveguide.
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APPENDIX III

APPLICATION OF THE RECIPROCITY THEOREM TO FIND THE COUPLING
OF INCIDENT ENERGY INTO THE MODAL FIELD BY KNOWING THE MODAL

RADIATION FROM THE OPEN END OF A RECTANGULAR WAVEGUIDE

\

Figure A3. The geometry of the problem.

Figure A3 shows an open ended rectangular waveguide geometry with

perfectly conducting walls. Let there be modal fields inside the

waveguide propagating in +z direction and represented by:

(A64)

(A65)
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where e (or h ) is the transverse electric (or magnetic) field, and e"zn

(or R ) is the longitudinal electric (or magnetic) field, c is the

coefficient of the nth mode.

Some of the energy carried by this modal field will be radiated into

the free space through the aperture. The far field radiation can be

calculated approximately by the aperture integration of the modal field

and the resulting radiated fields are shown by Er and Hr.

The rest of the energy of the incident mode will reflect back to the

guide in terms of an mth mode.

• < • < 5 'z«, <A66>

<A67>

where r is the complete modal reflection coefficient from the open

end.

First consider the geometric plane defined by z=-L inside the

semi -infinite pipe, and let S denote the area of this waveguide cross

section at z=-L as shown in Figure A3. Then let S denote the surface

area which tightly encapsulates the complete outer (exterior) surface of

the semi-infinite waveguide, and also a portion of the inner walls of

this waveguide up to the distance z=-L within the guide. The surface S

does not include the plane at z=-L within the pipe. Let E denote the

sphere at infinity which surrounds the semi -infinite guide such that S

on the exterior or outer wall of the semi -infinite guide is connected to
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the surface E at z* -» as in Figure A3. Next, consider the following

two cases. In the first case, the semi-infinite rectangular waveguide

is excited from within by the modal fields with amplitude c which
A

propagate in the +z direction. However, in the second case, the

geometry is excited by external fields, Ee and He, which for convenience

is assumed to be produced by an electric test source J at R exterior

to and in the far zone of the semi-infinite guide.

Let the equivalent sources J and M be located at z=-L in the

guide,

J = n x t <fin+R
2n> eJ6"L

m
rmn < (-fim+fizm' e ' (A68)

Ms = -n x " " . m
rmn cn (e"m^zm) e (A69)

where n is the unit vector pointing into the volume V, enclosed by

surfaces S+SQ+i:. Form reciprocity one obtains:

/ /
s+s+s.

Erx He - Eex Hr nds = / / / J • Er dv
V e

(A70)

However, by the boundary conditions

n x E 1 i=0
on S

and

(A71)

n x Ec | = 0

on S

(A72)
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Also, (Er, Hr) and (Ee, He) satisfy the radiation condition on E.

Therefore Equation (A70) reduces to:

. MS ds // E£

S.
Js ds = pe (Rp) (A73)

since

= P (A74)

a point source in the far field.

In Equation (A74) R is the position vector from the reference point

to point P.

Inside the waveguide the fields Ee and He will have the following

representation

(A75)

(A76)

Substituting Equations (A75) and (A76) into Equations (A73) one obtains:

ds

(z x Rn)e J rmn(zxVe
m ds

(A77)
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Using the orthogonality properties of waveguide modes one obtains:

// en x fin - z ds A") 2 - p • ir (R) (A78)

(Rp)

-2 C
~

// en x fin . z ds
(A79)

JJTJ order to produce an incident field E1 = e E^ + 9 E1
 at the opening of

the waveguide, one can let

- i. 4ir
Pe

 = - <e E

Thus,

« -2<

JkR
P' P

4TT

ds

(A80)

(A81)
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APPENDIX IV

CORRECTION FOR THE APERTURE INTEGRATION

PERFECTLY CONDUCTING
HALF-PLANE

Figure A4. Scattering from a perfectly-conducting half-plane.

As shown in the figure, a perfectly conducting half-plane is located

in the region y=0, x<0. The half-plane is illuminated by a plane wave

ui=eJkpcos(«|H>')(ir/2 < ^<ir)>

Let St, Sb denote the top and bottom surfaces of the half plane,

respectively and S, denote the aperture surface at x=0, y>0.
a

Since the geometry is infinite in z-direction the problem can be

reduced to a scalar problem where the total field u may represent either
A A

the z-component of the electric field (EZ) or the z-component of the
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magnetic field (Hz). The former case is called the soft case and the

latter is called the hard case. The analysis for both cases are very

similar, therefore only the soft case will be considered here. In this

case, the total field Ez can be written as the combination of three

contributions; namely, the incident, the reflected and the diffracted

fields. The incident and reflected fields are also called as the

geometrical optics (GO) fields. The GO field is given by the following

expressions:
•f

r-go jkpcos(d>+<b') jkpcos((k+d)1) x 0. . i i 0 _t = e -e =e 2 j s i n k y ; o n S ^ , S

=0 ; on Sb (A82)

since S, is in the shadow region of the half-plane. In Equation (A82),

k^ = kcos<t>' and k» = ksin<f>' (A83a;b)

The transverse fields can be calculated using

-JkZQ H = (-y 17 + x -9}) Ez (A84)

Therefore, the transverse geometrical optics fields can be obtained

using Equations (A82) and (A83).

qo i jkxx i-jkZQ H* = jk' e x 2cosk'y (A85)

nn i Jkyx i
-JkZ HJ° = -jk' e x 2sink\ (A86)

J " J
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In the physical optics (PO) approximation, one uses the following

radiation integral to get the scattered field using the GO fields on the

illuminated side of the half-plane

E * / ds1 [-JkZQ GQ (nxH) + (nxE) x V GQ] (A87)
o

where

Go = 4 H (k|p-p'|) (A88)o

is the free-space Green's function in two-dimensions.

A —One notes that on St; n x E = 0. Therefore the PO approximation to

scattered field is given by:

E™ = / ds' [-jkZQ GQ (ixĤ
0)] (A89)

St

Using Equations (A85) and (A86) in Equations (A89), one obtains:

EZ° - - A-J"kZ0
 Hx • Gol dx' (A90)

The Green's function Go can also be written as:

-Jk
vy-jkyx -Jkyx-jk y

i » e y x j k y ' j « e y jk x'
Go = * 4^ / dk

v ~1T, - e y = - ^T / dk —r - e
-oa J A -oo A J-oa

(A91)

where

k: + k = k2 (A92)
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Substituting Equations (A85) and (A91) into Equations (A90) and

changing the order of integration, one obtains:

:PO _ ri
"2 ~ 2iT

oo e i - Jk yx' + jk x1

<1 \ e X dx1
y o

(A93)

-jkxx-jkyy ki

kx+kx
dk

Using the transformation

k =kcosa k =ksinax y

Equation (A94) becomes

PO
COSa+COSc))1 dot

a

where the integration path c is shown below:

(A94)

(A95a;b)

(A96)

Ima

"C,

Re a

Figure A5. The integration path c
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On the other hand, if one integrates the GO fields over S and S. toa D
get the scattered field, one obtains:

= / ds' [-JkZ G (xxy
Sa

(xxz ) x VG ] (A97)

since GO field is zero on S. .

Using Equations (A82), (A86) and (A91) in Equations (A97), one

obtains:

1 1J ,TT*- i4ir J

Using the transformations in Equation (A95), one finally obtains:

k _ J. , -jkpcos(o-*)
z - - 2ir J e

(A98)

— rCOSa+COS<f>' da

Equations (A96) and (A99) are exactly the same, therefore the Ufimtsev

edge correction [6] to Equation (A96) can be used without modification

to correct for the aperture integration result of Equation (A99).

135




