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SUMMARY

A new inverse boundary layer method is developed and applied to incompressible
flows with laminar separation and reattachment. Test cases for two—dimensional
flows are computed and the results are compared with those of other inverse
methods. One advantage of the present method is that the calculation of the
inviscid velocities may be determined at each marching step without having to
iterate.

The inverse method was incorporated with the direct method to calculate the
incompressible, conical flow over a slender delta wing at incidence. The location
of the secondary separation line on the leeward surface of the wing is determined
and compared with experiment for a unit aspect ratio wing at 20.5 deg incidence.
The viscous flow in the separated region was calculated using prescribed
skin-friction coefficients.

INTRODUCTION

The flow field over slender, highly swept delta wings at moderate incidence is
dominated by the presence of large counter-rotating, leading-edge vortices as shown
in fig. 1. As the flow moves spanwise towards the leading edge, the adverse
pressure gradient caused by the leading-edge vortices causes the boundary layer to
separate along a secondary separation line, indicated in fig. 2.

A direct boundary layer method (one in which the external pressure is pre-
scribed from an inviscid calculation or experiment) may be used to determine the
location of the secondary separation line (ref. 1). However, in order to continue
the solution from the secondary separation line to the leading-edge using boundary
layer theory, an inverse method (one in which the wall shear or displacement thick-
ness is specified) must be employed.

Inverse methods have been used by numerous authors since the early work of
Catherall and Mangler (ref. 2). Catherall and Mangler used a prescribed displace-
ment thickness distribution to drive a boundary layer method in which the external
pressure was determined as part of the solution. In this manner, they were able to
obtain a regular solution at separation. However, their numerical scheme
developed instabilities in the reversed flow region and the integration was con-
tinued only by reducing the convergence criteria at each marching step. This
problem of reversed-flow velocity profiles led directly to the FLARE approximation
of Reyhner and Flugge-Lotz (ref. 3). In the FLARE approximation the streamwise
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“convection of momentum is set equal to zero in the veversed flow region and the
calculations proceed with the usual forward marching procedure.

For two—dimensional flows, Klineberg and Steger (ref. 4), Carter (ref. 5) and
Cebeci et al. (ref. 6) have developed globally iterative schemes for flows with
separation‘and reattachment. In those methods either the wall shear or displace-
ment thickness is specified and the pressure is obtained iteratively using succes-
sive-under—-relaxation schemes. Semi-inverse methods have been developed for inter-
acting an inverse boundary layer method with an inviscid solution by Le Balleur
(ref. 7), Carter (ref. 8), Kwon and Pletcher (ref. 9) and Veldman (ref. 10) among
others. In these methods, the inviscid calculation proceeds in the direct manner
with the viscous calculation performed in the inverse mode. Thus, an edge velocity
is determined in both calculations which must be the same after convergence.

In three—-dimensional flow calculations, several possible combinations of the
viscous parameters could be used to drive an inverse method (e.g., CFX, CFY or DTX,
DTY). However, Edwards and Carter (ref. 11) have shown that specifying the three-
dimensional displacement surface and the component of vorticity normal to the
surface leads to an elliptic set of equations and departure solutions for forward
marching schemes.

In this paper, a new inverse boundary layer method is developed for separated
flows. The method is non—-iterative based on a predictor-corrector linearization
of the discretized governing equations. For two-dimensional flows, the new method
is used to compute the test case of Klineberg and Steger (ref. 4) for a specified
wall shear and that of Carter (ref. 5) for the displacement thickness prescribed,
The method is also applied to the incompressible, conical, laminar boundary layer
flow on the leeward surface of a slender delta wing at incidence. The inviscid
solution for the delta wing is determined using the Free Vortex Sheet (FVS) code
which was orginally developed at Boeing (ref. 12) and significantly enhanced by
Luckring and others (refs. 13, 14) at NASA Langley. The viscous solution for the
delta wing is determined in the direct mode until the secondary separation line is
encountered (CFY < .0), then the calculations are continued in the inverse mode to
the leading edge by specifying the skin-friction coefficients to be constant and
equal to their values at separation (CFX > 0, CFY < 0). The calculations are per-
formed on a unit aspect ratio wing at 20.5 deg incidence which corresponds to the
experiment of Hummel (ref. 15).

ANALYSIS
Governing Equations
For steady, incompressible flows, the three—dimensional laminar boundary layer

equations in non—dimensional Cartesian coordinates are:

du  8v 3w

ax * 3y 3z 0 (1)
du du 2
Ju du au e e 3 u
Y %% v 3§'+ Yoz T Ve ox * Ve oy * R 2 (2)
z
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The velocity components u, v, and w are in the x, y, and z~directions, respec-—
tively, where x is in the streamwise direction, y is spanwise and z is normal to
the x~y plane., The Reynolds number has been removed from eqs. (1)-(3) by defining

x=x/L, y=y/L, z =VRe z/L, u = u/Uy, v =v/U, and w = /Re w/Uys The super-—

script bars indicate dimensional quantities and Re = ﬁoi/;. The complete derivation
of egqs. (1)-(3) is provided in reference 16. The boundary conditions on egs.
(1)-(3) are:

at z=0: u=v=w=0
(4)

and as z *> o ! u »> U, Vv vy
Two—-dimensional Flow

For two-dimensional flow, v = 0 and eqs. (1) and (3) are transformed by
defining,

1/2
Ye

X =x n = (;—) z (5)
along with a stream function, ¥, where

u 5z and w % (6)
Define a parameter £, such that

1/2

v = w2 ¢ )
Using eqs. (5) and (7) in eq. (6) yields,

u of

— = —— = F(n) (8)

Ye  3n ,

With eqs. (5)=(8), eq. (2) may be written as,
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9°F . OF [, 9f . ,mtl 2. .. aF
;“92"4"5;[}(‘,;3?4“ ?)f}+m(lf)_XFm3X (9)
du
X e
where m == o (10)
The boundary conditions for eq. (9) are
n=0 : £=F=0, n=ne: F=1.0 (11)

Conical Flow Over Delta Wings

For the delta wing a body—oriented coordinate system is defined through the
transformation,

X=x, Y = (y/x)tan A , Z=1z/x (12)

where A is the sweep angle of the delta wing. Define transformed velocity com—
ponents by,

U=u, V=vtan A - uY , W=w- uZ (13)

Using eqs. (12) and (13) in eq. (1) it becomes,
3,2 9 ) _
3% (xv) + 5y (Xv) + 7 (XW) = 0 (14)

Next define two stream functins, § and ¢ as

20 - 3% = 93¢ = -9V _ 3¢
XU ==, XV ==, XW X T oY (15)

and a boundary layer variable, n, by

n = (UeX)l/ZZ (16)

Introduce two functions f(X,Y,n) and g(X,Y,n) where,
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For conical inviscid flow, fluid properties do not vary along rays; therefore,
for any flow parameter, H, 0H/3X = 0. Then using egs. (12), (16) and (17) in eq.
(15), the following are obtained:

U of

T " F(Y,n) (18a)
e

v _38_

Ve v G(Y,n) (18b)

Equation (18) may be written as the vector equation,

3h _ 4 (19)

f i
where h = and H= (20)
N G

With eqs. (12)-(20), eqs. (2) and (3) may be combined and written as,

2 A
afm, om, Ve g M _ o 2H)
7t Ot G5y - Ca) T T (21)
9 e
where o = 1.5f + Bg v (22)
Bu(FG-1)
and I = (23)

(FG-1) + By(G2-1)

The boundary conditions for eqs. (19) and (21) are:

1
i
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Equations (19) and (21) may be solved in the direct mode, using prescribed inviscid
velocities, to calculate viscous properties such as skin—friction coefficients and
integral thicknesses. However, in the inverse mode, the inviscid velocities are
unknown functions and must therefore be eliminated from the left-~hand side of eq.
(21). This is accomplished through the additional transformation,

Y = [ (35) a4 (25)

2
9__;14.0%11 _a_g_*_gﬁ_—(;é}i*:l" (26)
an nooay N Y
du dv
1 e 1
where now, By = T BT T, (27)
e dy* e dY

Numerical Procedure:

The governing equations are differenced using the half-implicit finite-—
difference scheme of Matsuno (ref. 17). The scheme is second-order accurate and
unconditionally. stable, and was demonstrated by Woodson and DeJarnette (ref. 18) to
yield accurate numerical results when compared to the exact solution of the three-
dimensional boundary layer equations for parabolic flow over a moving flat plate.

For fully three-dimensional problems the scheme has the advantage that the
crossflow derivative formulas are formed independent of the direction of the cross-
flow. Further, the scheme is non-iterative based on a predictor—-corrector linear-—
ization, a convenient feature for inverse boundary layer methods. For any flow
parameter, H, the notation Hj,k = H(Y;,nk) is used where,

* .
oL Y? + AY* i = 1,2,¢..,JMAX
(28)
n n
k+1 = k+An 5 k= 1,2,0..,KMAX
Central difference operators are defined by:
B Hy po= (Hj,ktl = Hj,k=1)/4n (29)
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*
AY*Hj-’rl/Z,k = (Hj+l,k - Hj,k_)/AY (30)
SpHy k-1/2 = (Hj k = Hj k-1)/bn (31)
2. . A
SnHj k= (Hj k+l = 2Hj ) + Hj k-1)/An? (32)

and a backward difference operator for the predictor stage by,
*

Vy*Hi+1/2,k = 2(Hj+1/2,k = Hj,k)/AY (33)

With the operators defined above, eqs. (19) and (26) become at the predictor stage,
respectively,

Snhyj+1/2,k-1/2 = (Hy+1/2,k + Hi+1/2,k-1)/2 (34)

2
5nHj+1/2,k + Uj,kAnHj,k + Vy*gj+1/2,kAnHj,k - Gj,kVY*Hj+1/2,k = Tj,k (35)
at the corrector stage they are,

Snhi+l,k-1/2 = (Hj+1,k + Hysl,k-1)/2 (36)

2
5n(Hj+l,k + Hj,k)/Z + 0541/2,kBnHi+1/2,k

(37)
+ Ay*84+1/2 kBnHi+1/2,k — Gi+1/2,kAYy*Hi+1/2,k = Ty+1/2,k
Equations (34)~(37) may be written in the block tridiagonal matrix form,
. An
hy = hg.y + 7 (Hk + Hy~1) (38a)
= Hyp—y + BgHg = Hg4+) + aghyp = Dy (38b)

where ay and By are 2x2 coefficient matrices and Dy 1s a vector. Equations (38)
are linear tridiagonal matrix equations and may be solved using a block form of the
Davis modified tridiagonal alogrithm (ref. 19).
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Inverse Method

The term Dy in eq. (38b) contains terms with both B, and By as coefficients.
However, in the inverse mode these parameters are unknowns which must be determined
from the solution. Taking advantage of the fact that eq. (38) is linear, one may
write,

Dy = Dﬁo) + BuDﬁl) + evnﬁz) (39a)
(0) (1) (2)
H, = Hc + ByHk + ByHk (39b)
2
and hy = hﬁo) + Buhil) + thi ) (39¢)

where the unknowns By and By are given by eq. (27). The boundary conditions
associated with eq. (39) are:

i i
at n=20: hf ) = Hi ) =0, i=0,1,2
(40)
and at n = ne ! Hﬁﬁ&x =1, Héégx =0, i=1,2

Carrying out the operations of eqs. (29)-(33), one may equate like powers of B, and
By to obtain

B = it A e - m{t)) 10,1, (41a)
- utl) ¢ ) - w4 gt = o), i=0,1,2 (41b)
(i) (1)

This system of equations may be solved to obtain hy and Hy for i = 0,1,2. The
parameters Ug and Ve are then determined from either the specified wall shear
stresses or integral thicknesses. A streamwise integral thickness is defined by,

—% 0 U -
8y = oj (1 - Ue)dz (42)

Using eqs. (16) and (18a) in eq. (42) and integrating gives,
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X
DTX = :==¢Rex =1, — f(ng) (43a)

In a similar manner,

.:*
0

*
DTY = —— /R

e, = Ne = 8(ne) (43b)
X

With eq. (39¢), eq. (43) may be written as,

(0) (1) (2)

DIX = me - fxMAX - BufkMAX — BvERMAX (44a)
DIY = ne - gKiAX — BugkiAx - BvEikx (44b)

Equations (44a) and (44b) are solved to obtain By and By. Now, returning to
eq. (27) and taking second-order differences about the point j+1/2,

2
Bu(U + U0 )=— (U - U
ej+1] ey AY* ej+] ej

Then it follows that

2 2
o= U (1+ )/ (1 - ) (45a)
ej+1 &) ByAYY BuAY*
2 2
= 1+ /(1 - (45b)
ej+1 ej(> BVAY*) ( BVAY*)

Next, consider if the wall shear were perscribed. The surface skin-friction
coefficients are defined by

R G Cpoy = v /307 (46)

Using eq. (5) in eq. (46) one obtains,

CFX = C, /Re = 2(2E)

(47a)
X p.o on’w h
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Fo = (28
YRe = Z(an)w (47b)

Using second-order accurate difference expressions for the derivatives in eq. (47)
yields,

18F, - 9F3 + 2F4

2

CFX = 35 (48a)
18G., - 9G, + 2G
CFY = —2 3.4 (48b)
3An

Substituting eq. (39b) into eq. (48) gives two equations for the two unknowns, By
and By, An advantage of the present method over some earlier methods (refs. 4-6)
is that the solution for 8,, and By is obtained without column iteration, as opposed
to using an under-relaxation scheme. For regions of reversed flow the FLARE
approximation is made at the predictor stage,

G—=0 (49a)
aY*

while at the corrector stage,

H,

H —
3H +1/2,k K
il P o . ’*/ =) (49b)
oY ’ AY"/2

Equation (49) insures diagonal dominance of the Davis modified algorithm in the
reversed flow region. Note that eq. (49) reduces the accuracy of the finite-
difference method to first order. Carter (ref. 5) added an artificial "time-like"
term to the By term in eq. (38b) to ensure unconditional diagonal dominance in his
solution algorithm. For the cases computed thus far, no instabilities were
encountered in the reversed flow region when evaluating the convective derivatives
according to eq. (49).

RESULTS AND DISCUSSION

Two—-dimensional Flow
Calculations using the inverse boundary layer method are first discussed for

flow over a circular cylinder. The inviscid solution for flow over a circular
eylinder is given from potential theory by,

Ug = 2sin 0 (50)
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where 6 is the angle measured with respect to the x axis which defines the cylinder
(0 £ 8 € 7). The boundary layer was computed in the direct mode until separation
was encountered at 6 = 104.5 deg and then the calculations were continued in the
inverse mode by specifying the skin-friction coefficient to be constant and equal
to its value one marching step beyond separation (CFX = O or slightly negative).
Let £ in eq. (8) and F in eg. (9) be written as,

£ = 680 + melD) (51a)
(0) (1)
F = Py + uFy (51b)

with corresponding boundary conditions,

at n=20: f&i) = F%i) =0, i=20,1
(52)
(0 (1)

and at n =ne ! FrMaAx =1, FRMAX =

After substituting eq. (51) into eq. (9), two separate equations result; one for
the variables with superscript (0) and another for superscript (1). After solving
these two equations, the value of m can be calculated by substituting eq. (51) into
eq. (48a). The values of m can then be used to numerically calculate us at each
marching station. The resulting edge velocity is shown in fig. 3. The edge
velocity from the inverse calculation departs tangentially from the potential flow
curve at the separation point and 6 = 7 is no longer a stagnation point. The
inverse method could be used to calculate the edge velocity over the entire
cylinder provided the wall shear or displacement thickness distribution is known.

Klineberg and Steger (ref. 4) constructed a test case for a flow with separa-
tion and reattachment by prescribing the skin—-friction distribution as,

CFX = L%gi (*=2)(X-6) = 1, , X<2, X>6
(53)
CFX = 1, [1 + a(X-2)(x-6)] , 2<X<6

where o is a given parameter. The resulting pressure gradient parameter, m, for

6 = 0.225 was calculated and is compared to that which was determined by Klineberg
and Steger in fig. 4. Klineberg and Steger required between 400 to 800 iterations
using a point successive-under-relaxation scheme for the calculation of m while the
present results were obtained with one downstream pass. The corresponding displace-
ment thickness and edge velocity for this case are given in fig. 5, and velocity
profiles at three marching stations are shown in fig. 6. It was found that for
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attached flow the profile for Fél) was primarily positive, while for separated flow

(1)

the majority of the Fp ~ profiles were negative.

A second test case is that of Carter (ref. 5) in which the displacement thick-
ness is perscribed according to the relation,

DTX = a; + ap(X-Xy) + a3(X-Xg)2 + a4(X-X5)3 , X < X,
(54)
DIX = a) + ap(X-X)) + ag(X-X)% + a,(x%)3, % <X <X
where X, = 1,065, X] = 1.35, X3 = 1.884 and the values of the a's are determined

such that at X = X, the value and slope of the displacement thickness match the
Blasius flat plate distribution, and at X = Xj, DTX reaches a maximum value. The
case identified by Carter as Case B has a maximum displacement thickness of 8.6 and
its distribution is presented in fig. 7a along with the resulting skin-friction
distribution in fig. 7b. The calculated value of m for this case is compared with
Carter's results in fig. 8a. Carter also developed an "approximate forward march-
ing"” technique in addition to his globally iterative method, which employs the
FLARE approximaton. Both of his methods, however, used an under-relaxation scheme
for the calculation of m. For the grid indicated in fig. 8, Carter's globally
iterative scheme converged in 130 iterations and his forward marching procedure
required an average of 41 column iterations at each marching step. The present
method required only one downstream pass. The edge velocity is presented in fig.
8b.

This test case has a more extensive separated flow region than the Klineberg
and Steger case with the approach to separation and reattachment much steeper.
Note that m reaches a relative minimum just prior to separation and reattachment
which satisfies Meksyn's criterion (ref. 20) for a regular solution.  Velocity
profiles at two x—locations are given in fig., 9. At the point X = 1.393, nearly
half of the profile is in the reversed flow region, however, the magnitude of the
reversed flow velocity is small compared to the edge value., For this test case,
the maximum negative value of u is about one-tenth of ug.

Conical Flow Over Delta Wings

The inviscid solution for the Hummel delta wing at 20.5 deg incidence was
determined using the Free Vortex Sheet (FVS) theory (refs. 12-14). The FVS code
solves the linearized Prandtl-Glauret equation for potential flow. It represents
the wing, wake, and rolled-up vortex sheets by continuous quadratic doublet sheet
distributions and the vortex core by a line distribution of vortices. Detailed
pressure distributions as well as overall forces and moments are predictd by the
FVS code; however, no effort is made to model the secondary vortices in the
inviscid calculation.

The viseous calculations were begun in the direct mode beginning at the

reattachment line (which was found to be located along the wing centerline for this
case) and marched spanwise until the secondary separation line was encountered.
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The secondary separation line 1s assumed to be the line along which CFY first goes
through zero. The solution was then continued in the inverse mode by specifying
the skin-friction coefficients to be constant and equal to their values at separa-
tion (CFY < 0 but CFX > 0). The spanwise distribution of the skin-friction coeffi-~
cients is presented in fig. 10a with corresponding integral thicknesses in 10b. The
secondary separation line was calculated to be along Y = 0.70. Hummel (ref. 15)
observed from oil flow studies a secondary separation line along Y = 0.67. A
discrepancy between the calculated and observed secondary separation line was
expected, since the inviscid solution ignores completely the influence of the
secondary vortices. Reference 1 showed that the secondary separation line could be
calculated accurately with the direct boundary layer method when experimental
pressure data were used. The momentum integral thicknesses and shape factors are
shown in fig. 11. Both shape factors increase sharply in the vicinity of the
secondary separation line with the spanwise shape factor remaining nearly constant
afterwards while the streamwise shape factor decreases continually toward the
leading edge. Velocity profiles at three spanwise stations are presented in fig.
12. Both profiles indicate the spanwise thickening of the boundary layer and the G
profiles beyond the secondary separation line show a small region of reversed flow
near the surface. The inviscid velocities determined from the FVS code and those
calculated with the inverse method are presented in fig. 13. "As ‘expected, the
gradients in the inviscid velocities calculated from the inverse boundary layer
method are much less steep than those of the inviscid solution calculated neglect-
ing the boundary layer.

Research is in progress to interact the boundary layer solution with the
inviscid solution. Reference 21 used a three-dimensional integral turbulent
boundary layer method to solve the flow field over a delta wing at incidence. The
viscous and inviscid solutions were coupled and the resulting pressure distribution
showed some improvement over the inviscid results near secondary separation.

CONCLUDING REMARKS

A three—dimensional, direct boundary layer method was extended to the inverse
mode for separated flows. It is a predictor—corrector finite—-difference method in
which the FLARE approximation is made to the streamwise momentum term in the
preditor stage but a finite—-difference quotient is used for the corrector stage.
This method allows the inviscid velocity to be calculated without iterations by
marching into the separated flow region using prescribed skin-friction coefficients
or integral thicknessess

Two—-dimensional test cases for laminar separation with prescribed skin friction
or displacement thickness were found to compare well with other methods. Solutions
were also obtained using the direct and inverse modes for conical ‘inviscid flow over
a delta wing at incidence. The direct mode was used to the secondary separation
line and then the inverse mode continued the solution into the separated flow region
with both skin-friction coefficients maintained at their values at secondary
separation. Further studies are needed for the inverse mode in fully three-
dimensional flows and interacting the boundary laver solution with the inviscid
solution.
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SYMBOLS

ap By coefficient matrices in eq. (38)
CfX’CfY* skin-friction coefficients defined by eq. (46)
CFX,CFY Cfxfie; , ch*/lTé;
Dy vector in eq. (38)
DIX,DIY 5. 5
R i -7
X ok X
f,g functions defined by eq. (17)
F,G velocity ratios given by eq. (18)
H,h vectors defined by eq. (20)
HX,HY MTX/DTX, MTY/DTY
JMAX number of mesh points in spanwise direction
KMAX number of mesh points across the boundary layer
L reference length, m
m parameter defined by eq. (10)

MTX,MTY momentum integral thicknesses

Re freestream Reynolds number, ﬁgEYC

Rey local Reynolds number, (UgX)Re

u,v,w non-dimensional velocity components in x, y, and z directions,
respectively

u,v,w transformed velocity components given by eq. (13)

ﬁg freestream velocity, m/s

X,¥,2 non—dimensional Cartesian coordinates streamwise, spanwise, and normal

to the wing surface, respectively

X,Y,Z transformed coordinates given by eq. (12)

Y* transformed spanwise coordinate given by eq. (25)
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parameter in eq. (53)

2>

A du
By = w;

Ue
5y 1 Te

U dY
B By — «3By
T parameter defined by eq. (23)
§ central difference operators given by eqs. (31), (32)
5 of” (1 - e

Ue
B S0 -Da
Ve

A central difference operators &efined by eqs. (29), (30)
v backward difference operator defined by eq. (33)
n transformed normal coordinate defined by eqs. (5), (16)
0 angle of rotation for circular cylinder
A sweep angle of the delta wing
v kinematic viscosity coefficient, mz/é
o parameter defined by eq. (22)
AN stream functionsﬂgiven by eqs. (7), (15)
Subscripts
e edge value
ik mesh point locations given by eq. (28)
v viscous calculation
W wall

Barred parameters are dimensional quantities.
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