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ABSTRACT 

Steady solutions about a slender sharp-edged delta wing in a supersonic 
freestrean? for moderate and high angles of attack are obtained numerically by 
time integration of the unsteady compressible three-dimensional laminar 
Navier-Stokes equations. The main features of the flow, including primary and 
secondary separation, and vortex position and strength, are adequately simu- 
lated in the numerical solutions. Improved resolution of the computational 
grid in the leading-edge region from a previous solution had considerable 
effect on the accuracy of the solutions. Good agreement between numerical 
solutions and experimental data was obtained for two cases. A local 
timestepping procedure is used to speed convergence by approximately a factor 
of two. 

NOMENCLATURE 

A attachment line 1 

c speed of sound (y~~)' 

pressure coefficient, 2(P-Pm)/pUm 
2 

internal specific energy 
total specific energy 
vector fluxes 
model length, mm 
freestream Mach number 
pressure 
Prandtl number, 0.73 for air 
components of heat flux vector 
gas constant 
Reynolds number, based on the root chord 
separation line 
time 
temperature 
Cartesian velocity components in x,y,z directions, respectively 
U,VsW 
vector of mass averaged variables 
Cartesian coordinates in axial, normal, and spanwise directions, 
respectively 
angle of attack 
numerical dampfng coefficient 
r a t i o  s f  s p e c i f i c  heats 
f i n i t e  d i f ference step s i z e  
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mo%ecular viscosity coefficient 
transfomed body fitted coordinates 

6, deaal ty  
T ,T T 

XX xy, XZ, 
a a T components of viscous stress tensor yy yz z z  

Subscripts 

aw 
LE 
max 
min 
loc 
T 
Q) 

adiabatic wall value 
evaluated at wing leading edge 
maximum value 
minimum value 
local value 
pitot conditions 
freestream value 

INTRODUCTION 

In recent years, with the advent of the supercomputer, computational 
aerodynamicists have devoted considerable effort to the solution of increas- 
ingly complex three-dimensional separated flows with a view toward the solution 
of airframe design problems. One of the most interesting and most practical 
of these is the separated flow field associated with a slender sharp-edged 
delta wing at angle of attack. Characterized by a pair of leeward spiraling 
vortices emanating from the separated leading-edge flow this inviscid-viscous 
flow problem has been computed using several techniques. Higher order panel 
methods (1-3) have enjoyed some measure of success by modeling the vortex 
roll-up as a sheet of quadratic doublets. However, this method requires the 
presence of a vortex and some awareness of its size and position. These 
restrictions are removed when a 3-D Euler approach is used ( 4 , 5 ) .  The physical 
meaning of such solutions is questionable, however, given the apparent 
dependency on grid resolution (6) and on the use of numerical viscosity. Using 
a conical flow approximation, Vigneron (7) et al. obtained a Navier-Stokes 
solution for a delta wing having a subsonic leading edge. With this approach, 
the location and basic structure of the primary vortex may be accurately 
computed. However, in cases where the adverse pressure gradient in the 
outboard region of the wing, induced by the leading-edge expansion, is of 
sufficient strength to produce a secondary separation, the conical approach 
becomes inadequate as evidenced by the results of Reference 7. Previous 
results presented by Rizzetta and Shang (8) illustrated that by using the full 
3-D compressible laminar Navier-Stokes equations secondary effects may be 
accurately resolved numerically. The current investigation adopts this 
technique for an additional high angle-of-attack case and attempts to enhance 
the results of the previous study by improving the grid resolution and 
leading-edge definition, The present study investigates numerically the 95' 
sweep delta wing studied experimentally by Naonnerie and Werle (9 )  depicted i n  
Figure 1, 



pus maasXs paauayao-llpoq s ay saaau 
-1~paoos parmogsuexa So~puodsax.zos aqa ax8 3*lr43 puw 6p~~aaadsaa suorlsaagp 
asymuwds pU8 TBmaOU 'l€?TXE Uy Saa8UyplOO3 UWySal383 ax8 r*Lox 3X;Plf 

:mo3 aATasaasaoa 
a~nz-u$~qa %u~noyqo3 aqa ny b~%@aoga@aoa gassaldxa aq dm qsTw 8i4TaBTlISA 

pagexane-esso sy suoyzsnba saqoqS-xarAeH rsue~suamyp-aaaql a~qyssazdmo:, 
dpsassun ;aql aq uayria aart rne~aegndmoa syqa neg au~qrrenba Iupane~o8 au 





me Cartes%= velocity camponeats are givceo by u, v caed v, p ds the densi ty,  
E the total energy per unit mss, amd e the spec i f ic  internal energy, -. - 

esmpletioa 02 thibs ra;ysl;enn is provided by the perfect gas l a w :  

P = pRT 
(13) 

m d  the Sutherland law for the molecular viscosity coefficient p. Freestrem 
values are specified as boundary conditions for all dependent variables at the 
upstream, outboard, upper and lower computationalboundaries, i . e . , , U  6 Urn. At 
the d n g  midspan a plane of ayPmmetrg is imposed which results in: 

On the upper and lower wing surface 
U 6 v = W 6 0  

&' Taw .% , 0, where n is the unit normal to the surface 
A 

an 

Because only computations corresponding to supersonic freestream condi- 
tions were considered, no formal mathematical downstream boundary conditions 
were needed. However, due to the requirements of the numerical algorithm 
used, values of the dependent variables at the downstream computational 
boundary are obtained by second-order extrapolation from the interior domain. 
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Freestream va lues  were used a s  t h e  i n i t i a l  condi t ions  save  f o r  the 
i n t e r i o r  boundary where s u r f a c e  cond i t i ons  were a p p l i e d ,  Jn order  t o  remove 
t he  i n i t i a l  t r a n s i e n t s ,  t h e  numerical f low f i e l d s  were allowed t o  evolve f o r  
100 time s t e p s  i n  t h e  time accu ra t e  mode with At chosen such t h a t  the maximum 
Courant Fredicks  Lewy (CFL) number was 0 - 5 ,  Subsequently,  t h e  CFL number was 
increased  t o  0.8 and the computation was allowed t o  progress  t o  s teady  s t a t e  
i n  a  l o c a l  t imestepping fash ion ,  where each g r i d  poin t  advances a t  i t s  own 
r a t e  (Atlo corresponding t o  a  CFL number of 0.8) f o r  a  given i t e r a t i o n .  This  
procedure gas  the  advantage of advancing the  s o l u t i o n  t o  a  s t eady- s t a t e  value 
much more exped i t i ous ly  s i n c e  the  more coarse reg ions  of t h e  phys i ca l  domain 
a r e  a b l e  t o  advance more quick ly  than i n  a  time accu ra t e  mode, This  modifi- 
ca t ion  r e s u l t e d  i n  t h e  appearance of t h e  primary and secondary vo r t ex  s t r u c -  
t u r e s  i n  t h e  numerical s o l u t i o n  much e a r l i e r  than  i n  t he  work of r e f e rence  8 ,  

The computations were made on a  Cray 1-S computer u s ing  a  vec to r i zed  
s o l v e r  (12) w r i t t e n  s p e c i f i c a l l y  f o r  t h e  Cray 1 computer. The s o l v e r  advances 
t h e  s o l u t i o n  from one time s t e p  t o  t h e  next  i n  n-5 p lanes  by marching i n  t he  
6-d i rec t ion ,  t hus  minimizing t h e  d a t a  flow t o  and from c e n t r a l  memory. Using 
t h e  p rev ious ly  def ined  computational g r i d ,  approximately 1.124 x 106 de irnal 
words of s t o r a g e  were requi red .  A d a t a  processing r a t e  of 6.9 x lo-' CPU 
seconds pe r  t i m e  s t e p  per  g r i d  p o i n t  was achieved where v e c t o r i z a t i o n  occurred 
i n  t h e  <-d i rec t ion ,  wi th  a  vec to r  l eng th  of 50. 

RESULTS 

Numerical s o l u t i o n s  were generated f o r  t h e  flow about t he  d e l t a  wing 
i l l u s t r a t e d  i n  F igure  1 a t  a Mach number of 1.95 (0.5 normal t o  t h e  l ead ing  
edge) f o r  10" and 20" angles  of a t t ack .  The f r ees t r eam condit ions correspond 
t o  those of the  experimental work of Monnerie and ~ e r l e g ,  t he  s p e c i f i c s  of 
which a r e  given i n  t h e  t a b l e  on Figure 1. A comparison of p i t o t  p re s su re  
contours  from re fe rence  8 t o  t he  cu r r en t  a = 10" s o l u t i o n  i s  given i n  Figure 
4. Both s o l u t i o n s  a r e  a  marked improvement over  t h e  r e s u l t s  of r e f e rence  7 
which employed a  con ica l  approximation and d i d  not  cap tu re  t h e  secondary 
sepa ra t ion .  However, while  t h e  shape and l o c a t i o n  of t h e  primary and 
secondary v o r t i c e s  a r e  roughly the  same, t h e  p i t o t  p ressure  l e v e l s  on the  wing 
upper s u r f a c e  a r e  no t .  The s o l u t i o n  of re ference  8 shows l e s s  evidence of 
p i t o t  p re s su re  l o s s  i n  t h e  primary vo r t ex  reg ion  a s  shown by the  l a r g e  d i s -  
p a r i t y  i n  t h e  PT/PT, = 0.7 pressure  l e v e l s .  This  may be a t t r i b u t e d  t o  the  
improved r e s o l u t i o n  i n  t h e  leading-edge t i p  reg ion  which leads  t o  a  more 
accu ra t e  computation of the  leading-edge expansion, hence the  improved cor re-  
l a t i o n  wi th  experiment a s  shown i n  F igure  5. The expanded g r i d  s i z e  i n  t h e  r~ 
and < -d i r ec t ions  may a l s o  account f o r  some of t h i s  improvement a s  t h e  o u t e r  
boundaries a r e  much f a r t h e r  from t h e  wing. I n  a d d i t i o n ,  t he  increased  
r e s o l u t i o n  of t h e  apex reg ion  by the  a d d i t i o n  of t h e  - X = 0.05 s t a t i o n  improves 

L 
t he  modeling of t h e  flow being en t r a ined  i n t o  t h e  i n v i s c i d  core ,  



The improved resolution in the q or y direction accounts for the in- 
creased c l a r i t y  of the upper surface "oil flow" patterns shorn in Figure 5 ,  
While the position of the primary and secondary lines of separation (S and S2  1 
respectively) and reattachment (A A ) are nearly the same, their sharpness, 1" 
particularly near the trailing edge, 1s improved. This improvement is attrib- 
uted to a second-order treatment of the downstream boundary condition. However, 
in spite of these differences, the aerodynamic loading perceived on the wing 
is similar as shown in the distributions given in Figure 7. Here the suction 

and are similarly located. 
peaks associated with the mary and secondary vortices are clearly in evidence 

The development of the cross-plane velocity with X is illustrated in 
Figures 8 and 9 for 10' and 20" respectively. Here the growth of the primary 
and secondary vortices and their inboard migration with angle of attack are 
evident and the non-conical nature of the flow field near the apex is re- 
vealed. Interesting to note is the fact that the secondary vortex originates 
at approximately 2 = 0.3 for both cases. These same features are also evident 

L 
in the upper surface "oil flow" pattern given in Figure 10. While the flow is 
non-conical in the apex region, analysis of Figures 7-10 indicates that for 
the majority of the planform the flow is fairly conical. 

The effect of angle of attack on loading is emphasized in the comparison 
of pressure coefficient depicted in Figure 11. The expected increase in 
loading and the inboard shift of vortex-associated surface pressure loss with 
a is evident. From analysis of the pitot pressure contours in Figure 12 one 
can observe the growth of the secondary vortex and its displacement effect on 
the primary. The increased circumferential velocity in the primary vortex 
with angle of attack induces the observed pressure loss in the vortex core. 
Comparison of the 20" solution to the experiment of Monnerie and Werle in 
Figure 13 illustrates the remarkable accuracy of the laminar Navier-Stokes 
computation in spite of the rather high Reynolds number of the experiment. 

CONCLUSIONS AND DISCUSSIONS 

Steady laminar solutions of the full 3-dimensional Navier-Stokes 
equations have been generated for the supersonic (M = 1.95) flow over a 75" 
sweep sharp-edged delta wing at 10" and 20' angles of attack. Comparison with 
experiment and with the Navier-Stokes solution of reference 8 shows the 
following: 

1. For both cases, the flow field solution correlates well with experi- 
ment, The position and strength of the primary and secondary vortices are ac- 
curately predicted. This leads one to believe that a laminar Navier-Stokes 
solution to the leading-edge vortex problem is adequate for obtaining pitot 
pressure, particularly for configurations with a Reynolds number less than 1 x 

6 10 such a s  in the present study, at least until an adequate turbulence model 
is developed f o r  v o r k i e a l  f lows.  



2, An accurate geometrical modeling of the leading edge and considerable 
resolu%.Esn of the tip region appear critfcal to the accurate cornpatation of 
the Leading-edge expansion. The agreement obtalned l z l  the present study is 
a t t r i b u t e d  in part to these two modifications to the grid of reference 8. A 
more accurate treatment of the downstream boundary condition also accounts 
for the improved solution in the trailing-edge region. In addition, the 
expansion of the computational domain in the Q and 5 directions probably re- 
sulted in some improvement in the 10' solution. 

3. Because secondary separation develops axially as well as radially, 
methods employing a conical assumption will not adequately resolve a large 
portion of the flow field. In addition, resolution of the apex region is 
critical due to its highly non-conical structure. 

4. The use of a local timestepping procedure increased the convergence 
rate by roughly a factor of two. It is estimated that each solution of the 
laminar 3-dimensional compressible Navier-Stokes equations presented herein 
required approximately 2 hours of CPU time on a CRAY 1-S computer to reach 
steady state based on a four order of magnitude reduction in L2NORM for all 
dependent variables. 
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Figure  1, Cel ta  wing geometry, 
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Figure 2. Comparison of Y-Z grid structure. 
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F i g u r e  3, Co~aparison of Y-Z g r f d  s t r u c t u r e  i n  klp region, 



EXPERIMENT 
REFERENCE 9 

z n m  a/z, 

F i g u r e  5. Comparison of P i t o t  p r e s s u r e ,  X/E - 0-8,  



I PRESENT STUDY 

Figure 6. Upper surface oil flow pat tern ,  a = 10'. 

REFERENCE 8 PRESENT STUDY 

F i g u r e  7. Spanwise p r e s s u r e  d i s t r i b u t i o n ,  a = 10" X/L = 0*8. 



Figure 8. Development of cross-plane v e l o c i t y ,  a = 10'. 

F i g u r e  9, Development o f  cross-plane v e l o c i t y ,  a - 20°,  



Figure 10. Upper surface oil flow pattern. 

F i g u r e  II. Effect  of ff on p r e s s u r e  d i s t r i b u t i o n ,  X / L  = 0,8, 



Figure 12. E f f ec t  of a on P i t o t  p r e s su re ,  X/L = 0.8. 
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F i g u r e  13, Comparison of 

NUMERICAL SOLUTION 

P i t o t  p r e s s u r e ,  a = 20"- 




