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ABSTRACT

Steady solutions about a slender sharp-edged delta wing in a supersonic
freestream for moderate and high angles of attack are obtained numerically by
time integration of the unsteady compressible three-dimensional laminar
Navier-Stokes equations. The main features of the flow, including primary and
secondary separation, and vortex position and strength, are adequately simu-
lated in the numerical solutions, Improved resolution of the computational
grid in the 1leading~edge region from a previous solution had considerable
effect on the accuracy of the solutions. Good agreement between numerical
solutions and experimental data was obtained for two cases., A local
timestepping procedure is used to speed convergence by approximately a factor
of two.
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Uy VW Cartesian velocity components in x,y,z directions, respectively
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U vector of mass averaged variables
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Q {?']° - ;fmbietular viscosity coefficient
€sNs L transformed body fitted coordinates
o density

5T 5T components of viscous stress tensor

Subscripts

aw adiabatic wall value
LE evaluated at wing leading edge
max maximum value
min minimum value
loc local value
T pltot conditions
o freestream value

INTRODUCTION

In recent years, with the advent of the supercomputer, computational
aerodynamicists have devoted considerable effort to the solution of increas-
ingly complex three-dimensional separated flows with a view toward the solution
of airframe design problems. One of the most interesting and most practical
of these is the separated flow field associated with a slender sharp-edged
delta wing at angle of attack. Characterized by a pair of leeward spiraling
vortices emanating from the separated leading-edge flow this inviscid~viscous
flow problem has been computed using several techniques. Higher order panel
methods (1-3) have enjoyed some measure of success by modeling the vortex
roll-up as a sheet of quadratic doublets. However, this method requires the
presence of a vortex and some awareness of its size and position. These
restrictions are removed when a 3-D Euler approach is used (4,5). The physical
meaning of such solutions is questionable, however, given the apparent
dependency on grid resolution (6) and on the use of numerical viscosity. Using
a conical flow approximation, Vigneron (7) et al. obtained a Navier-Stokes
solution for a delta wing having a subsonic leading edge. With this approach,
the location and basic structure of the primary vortex may be accurately
computed, However, 1n cases where the adverse pressure gradient in the
outboard region of the wing, induced by the leading-edge expansion, 1s of
sufficient strength to produce a secondary separation, the conical approach
becomes inadequate as evidenced by the results of Reference 7. Previous
results presented by Rizzetta and Shang (8) illustrated that by using the full
3-D compressible laminar Navier-Stokes equations secondary effects may be
accurately resolved numerically. The current investigation adopts this
technique for an additional high angle-of-attack case and attempts to enhance
the results of the previous study by improving the grid resolution and
leading—edge definition. The present study investigates numerically the 75°
sweep delta wing studied experimentally by Monnerie and Werle (9) depicted in
Figure 1.
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GOVERNING EQUATIONS

The governing equations for this computation are taken to be the unsteady
compressible three-dimensional Navier-Stokes equations in mass—averaged
variables which may be expressed notationally in the following chain-rule
conservative form:
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Here x,y,z are Cartesian coordinates in the axial, normal and spanwise

directions respectively and €,n,; are the corresponding transformed coordi-
nates in a body-oriented system and
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The Cartesian velocity components are given by u, v and w, p is the density,
E the total energy per unit mass, and e the specific internal energy.
Completion of this system is provided by the perfect gas law:

P = pRT

and the Sutherland law for the molecular viscosity coefficient u. Freestream
values are specified as boundary conditions for all dependent variables at the
upstream, outboard, upper and lower computational boundaries, ie.,U=0U_. At
the wing midspan a plane of symmetry is imposed which results in:

(13)

3p . %u , 3w . 22E  _ y.o0alongr=0 (1)

On the upper and lower wing surface
umy=y=o

T T o (15)
9P o 0, where n 1s the unit normal to the surface
an

Because only computations corresponding to supersonic freestream condi-
tions were considered, no formal mathematical downstream boundary conditions
wvere needed. However, due to the requirements of the numerical algorithm
used, values of the dependent variables at the downstream computational
boundary are obtained by second-order extrapolation from the interior domain.
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NUMERICAL PROCEDURE

The laminar computation performed in Reference 8 for M=1.95 and o=10°
was repeated in the present study. Since it was of interest to compute a high
angle of attack, a 20° case was chosen for the same Mach number. This
necessitated increasing the size of the computational domain ‘due to the
expansion of the physical region of interest. The grid size was increased
from 20 x 64 x 40 to 21 x 70 x 50 in the &,n,r directions and was algebraically
generated in a fashion similar (Figure 2) with two notable exceptions. In the
work of Reference 8 the plane of symmetry was straddled to obtain a
second-order centered difference implementation of the symmetry condition.
While this technique was successful, the grid in this region was rather
coarse. For the present study points were exponentially clustered near the
plane of symmetry (Figure 2) to improve resolution in that region. This
becomes particularly critical for the 20° case because the gradients near the
plane of symmetry are greater due to the growth of the primary vortex and its
inboard migration. The second modification to the grid structure was made at
the wing tip, where resolution was increased and hence it was expected that
the expansion about the leading edge might be more accurately resolved. This
improvement, however, was gained at the expense of decreasing the time step
(Table 1) due to the decreased step size in the y direction. In order to
alleviate some of this degradation of efficiency, the lower surface n lines
were bent down and away from the surface near the tip, thereby increasing the
size of 8Y 4o (Figure 3).

For the purpose of 1improved vortex resolution the current grid system
employs an additional 6 n-grid lines (yielding a total of 46) on and above the
wing surface and an additional 5 r-grid lines (total - 29) inboard of the wing
leading edge. Further, 5 [-grid lines were added to the outboard field
region to resolve the expansion about the leading edge. An additional
n—-¢ plane was added at X = 0.05 to improve the resolution near the apex.

L

This grid, although sized for the a=20° case, was used for both the a=10°
and 20° cases to determine if for the present 0=10° case a higher degree of
accuracy might be obtained than its predecessor and for the purpose of
uniformity between the current solutions.

Steady-state solutions to Equation 1 were generated using the time-
dependent explicit unsplit two-step predictor—corrector finite-difference
algorithm due to MacCormack (10) which has evolved as a reliable technique for
numerical solution of a wide variety of fluid dynamic problems. As part of
this algorithm, a commonly employed fourth-order pressure damping term (11)
was used to suppress numerical oscillations in regions with large gradients in
the dependent variables. The form of this term is given as

3
3 2
I (A\,j) L l’au ‘EP‘ ‘uj+c where v 123=€, n, ¢
j=1 ™, ij a\»ﬂ P o (16)

which 1s then added to the new value of U at each time .step. In the present
study, as in the previous effort, a damping coefficient of B = 2.0 was used.
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Freestream values were used as the dinitial conditions save for the
interior boundary where surface conditions were applied. Tn orvrder to remove
the initial transients, the numerical flow filelds were allowed to evolve for
100 time steps in the time accurate mode with At chosen such that the maximum
Courant. Fredicks Lewy (CFL) number was 0.5. Subsequently, the CFL number was
increased to 0.8 and the computation was allowed to progress to steady state
in a local timestepping fashion, where each grid point advances at its own
rate (At corresponding to a CFL number of 0.8) for a given iteration. This
procedure ﬁas the advantage of advancing the solution to a steady-state value
much more expeditiously since the more coarse regions of the physical domain
are able to advance more quickly than in a time accurate mode. This modifi-
cation resulted in the appearance of the primary and secondary vortex struc—
tures in the numerical solution much earlier than in the work of reference 8.

The computations were made on a Cray 1-5 computer using a vectorized
solver (12) written specifically for the Cray 1 computer. The solver advances
the solution from one time step to the next in n~f planes by marching in the
g~direction, thus minimizing the data flow to and from central memory. Using
the previously ‘defined computational grid, approximately 1.124 x 106 deglmal
words of storage were required. - A data processing rate of 6.9 x 10 - CPU
seconds per time step per grid point was achieved where vectorization occurred
in the g-direction, with a vector length of 50.

RESULTS

Numerical solutions were generated for the flow about the delta wing
illustrated in Figure 1 at a Mach number of 1.95 (0.5 normal to the leading
edge) for 10° and 20° angles of attack. The freestream conditions correspond
to those of the experimental work of Monnerie and Werle9, the specifics of
which are given in the table on Figure 1.. A comparison of pitot pressure
contours from reference 8 to the current o = 10° solution is given in Figure
4, Both solutions are a marked improvement over the results of reference 7
which employed a conical approximation and did not capture the secondary
separation. However, while the shape and location of the primary and
secondary vortices are roughly the same, the pitot pressure levels on the wing
upper surface are mnot. The solution of reference 8 shows less evidence of
pitot pressure loss in the primary vortex region as shown by the large dis-
parity in the P /PT = 0.7 pressure levels. This may be attributed to the
improved resolutlon in the Ileading-edge tip region which leads to a more
accurate computation of the leading-edge expansion, hence the improved corre-
lation with experiment as shown in Figure 5. The expanded grid size in the n
and ¢-directions may also account for some of this improvement as the outer
boundaries are much .farther from the wing. In addition, the increased
resolution of the apex region by the addition of the X = 0.05 station improves

L
the modeling of the flow Dbeing entrained into the inviscid core.
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The dmproved resolution in the n or 'y direction accounts for the in-
creased clarity of the upper surface "oil flow" patterns shown in Figure 6.
While the position of the primary and secondary lines of separation (8, and S
respectively) and reattachment (Al’ A.) are mearly the same, thelr sharpness,
particularly near the trailing edge, is improved. This improvement is attrib-
uted to a second-order treatment of the downstream boundary condition. However,
in spite of these differences, the aerodynamic loading perceived on the wing
is similar as shown in the distributions given in Figure 7. Here the suction
peaks assoclated with the primary and secondary vortices are clearly in evidence
and are similarly located.

The development of the cross-plane velocity with X 1is illustrated in
Figures 8 and 9 for 10° and 20° respectively. Here the growth of the primary
and secondary vortices and their inboard migration with angle of attack are
evident and the non-conical nature of the flow field near the apex 1s re-
vealed. 1Interesting to note is the fact that the secondary vortex originates
at approximately X = 0.3 for both cases. These same features are also evident

L
in the upper surface "oil flow" pattern given in Figure 10. While the flow is
non-conical in the apex region, analysis of Figures 7-10 indicates that for
the majority of the planform the flow is fairly conical.

The effect of angle of attack on loading is emphasized in the comparison
of pressure coefficient depicted in Figure 11, The expected increase in
loading and the inboard shift of vortex—associated surface pressure loss with
¢ is evident. From analysis of the pitot pressure contours in Figure 12 one
can observe the growth of the secondary vortex and its displacement effect on
the primary. The increased circumferential wvelocity in the primary vortex
with angle of attack induces the observed pressure loss in the vortex core.
Comparison of the 20° solution to the experiment of Monnerie and Werle in
Figure 13 illustrates the remarkable accuracy of the laminar Navier-Stokes
computation in spite of the rather high Reynolds number of the experiment,

CONCLUSIONS AND DISCUSSIONS

Steady laminar solutions of the full 3-dimensional Navier—Stokes
equations have been generated for the supersonic (M = 1.95) flow over a 75°
sweep sharp-edged delta wing at 10° and 20° angles of attack. Comparison with
experiment and with the Navier-Stokes solution of vreference 8 shows the
following:

1. “For both cases, the flow field solution correlates well with experi-
ment. The position and strength of the primary and secondary vortices are ac-~
curately predicted. This leads one to believe that a laminar Navier-Stokes
solution to the leading-edge vortex problem is adequate for obtaining pitot
pressure, particularly for configurations with a Reynolds number less than 1 x
10° such as in the present study, at least until an adequate turbulence model
is developed for vortical flows.
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Z, An accurate geometrical modeling of the leading edge and considerable
resolutlon of the tip region appear critical to the accurate computation of
the leading—edge expansion. The agreement obtained in the present study is
attributed in part to these two modifications to the grid of reference 8. A
more accurate treatment of the downstream boundary condition: also accounts
for the improved solution in the trailing-edge region. 1In addition, the
expansion of the computational domain in the n and ¢ directions probably re-
sulted in some improvement in the 10° solution.

3. Because secondary separation develops axially as well as radially,
methods employing a conical assumption will not adequately resolve a large
portion of the flow field. In addition, resolution of the apex region is
critical due to its highly non~conical structure.

4. The use of a local timestepping procedure increased the convergence
rate by roughly a factor of two. It is estimated that each solution of the
laminar 3-dimensional compressible Navier~Stokes equations presented herein
required approximately 2 hours of CPU time on a CRAY 1-S computer to reach
steady state based on a four order of magnitude reduction in L2NORM for all
dependent variables.
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M a
1.95 10°%*
1,95 10°
1.95 20°

* Reference 8

TABLE I COMPUTATIONAL PARAMETERS

b Ymin/?LE  Ymax/?LE Zmax/zLE
9.7971 x 107]  -3.0 3.25 2.75
7.973 x 100 -3.7 4.6 3.5
7.973 x 10 -3.7 4.6 3.5

Iteration

6000
2500
2500

[ gty

3.5
e l
P_= 1 Bar
I T = 288%K 5
R = 9.5%10

70.0
|

Dimensions in mm

Figure 1. Delta wing geometry.
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Figure 2. Comparison of Y-Z grid structure.
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Figure 3. Comparlison of Y-Z grid structure in tip region.
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Figure 10. Upper surface oil flow pattern.
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Figure 11. Effect of & on pressure distribution, X/L = 0.8.
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Figure 12. Effect of & on Pitot pressure, X/L = 0.8.
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