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SUMMARY

This study was initiated to assess the feasibility of an eight-passenger,

supersonic-cruise long range business jet aircraft concept that could be converted

into a military missile carrying interceptor. The baseline passenger version has

a flight crew of two with cabin space for four rows of two passenger seats plus

baggage and lavatory room in the aft cabin. The ramp weight is 61,600 pounds with

an internal fuel capacity of 30,904 pounds. Utilizing an improved version of a

current technology low-bypass ratio turbofan engine, range is 3,622 nautical miles

at Mach 2.0 cruise and standard day operating conditions. Balanced field takeoff

distance is 6,600 feet and landing distance is 5,170 feet at 44,737 pounds. A

typical overland mission of New York to Los Angeles was evaluated and resulted in

a ramp weight of 49,702 pounds for the 2,130 nautical mile range. By flying an

optimum climb/accelerate profile, sonic boom overpressure would be less than 1.0

psf. In addition, a maximum range subsonic mission was analyzed and resulted in
3,780 nautical miles at Mach 0.95 cruise.

The passenger cabin section from aft of the flight crew station to the aft

pressure bulkhead in the cabin was modified for the interceptor version. Internal

structural and equipment modifications were made in this area only. Bombbay type

doors were added and volume is sufficient for four advanced air-to-air missiles

mounted on a rotary launcher. Missile volume was based on a Phoenix type missile

with a weight of 910 pounds per missile for a total payload weight of 3,640

pounds. Structural and equipment weights were adjusted and result in a ramp

weight of 63,246 pounds with a fuel load of 30,938 pounds. Based on a typical

intercept mission flight profile, the resulting radius is 1,609 nautical miles at

a cruise Mach number of 2.0. Takeoff and landing performance for the interceptor

version is essentially the same as for the passenger version.



INTRODUCTION

m

Studies of the application of advanced _ustained supersonic cruise aero-

dynamic technologies have resulted in the concepts reported in references I-I,

I-2, II-I, and 11-2. From the results of these studies an investigation was

initiated, and reported herein, to determine the feasibility of designing a long

range supersonic-cruise, eight-passenger executive aircraft that could be

converted into a missile carrying, military interceptor type aircraft. The main

study constraint was that the external geometry of the concept would be retained

so that aerodynamic performance would be the same for both missions. Only those

internal structural and equipment changes necessary to convert from a passenger to

an internal missile carrying concept would be permitted. For the passenger

version, the following constraints and targets were established.

o Cabin room for eight passengers and baggage plus lavatory.

o Minimum cruise Mach number 2.0.

o Two man flight crew.

o Design range 3,650 nautical miles.

o Takeoff and landing field length to be a fallout.

o Improved version of a current technology low-bypass ratio turbofan engine.

o Standard FAR flight rules for mission analysis to determine range and fuel

reserves.

For the missile/interceptor version, internal volume is to be sufficient to

carry four Phoenix type missiles and the required electronic and hydraulic

provisions and equipment. The ramp weight and mission radius will be based on

maximum internal fuel capacity only, and, therefore, radius is a fallout of the

performance analysis. The mission profile is a representative but hypothetical

mission.
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SYMBOLS

A cross-section area
X

• c wing chord

mean geometric chord

CD drag coefficient, iDrag_

CL lift coefficient ,Lift,

g acceleration due to gravity

h altitude

L/D lift-drag ratio (CL/C D)

M Mach number

Ap sonic-boom overpressure

q freestream dynamic pressure

S or Sre f wing reference area

W aircraft weight

x, y, z Cartesian coordinates

angle of attack

deflection angle of movable surface, normal to hinge line

Subscripts:

f friction

F wing flap

FIF full internal fuel

H horizontal tail

i induced

• LE leading edge

LEF leading-edge flap



LET leading-edge thrust

max maximum

R roughness

TE trailing edge

TEF trailing-edge flap

W wave



PART I. - CONFIGURATIONDESCRIPTION

E. E. Swanson

This study in this report was initiated to assess the feasibility of an eight

passenger, supersonic-cruise long range business jet aircraft concept that could

be converted into a missile carrying interceptor. The baseline configuration is

similar to those studied and reported in references I-i and I-2. The primary

study objective is to configure an eight passenger two-man flight crew concept

with a targeted range of approximately 3,650 nautical miles at a cruise Mach num-

ber of 2.0 using a modified version of a low-bypass ratio turbofan engine.For the

interceptor conversion, the envelope dimensions and weight provision for four

advanced Phoenix type missiles would be provided internally with the cruise range

to be a fallout based on maximum fuel available on board. No external line

changes for conversion from the passenger version is required. A general arrange-

ment of the concept is shown in figure I-I. Table I-I lists the geometric charac-

teristics of the study concept.

Figure I-2 shows the interior arrangement comparison for both the passenger

and interceptor versions. In the passenger version the main fuselage section con-

tains four rows of two seats with an elliptical cross section as shown in figure

I-3. The two place flight crew is located forward of the entrance door with a

visor nose provided for improved pilot vision during takeoff and landing. Main

landing gear is a two wheel single strut arrangement, wing mounted, and retracts

into the fuselage forward of the wing carry-through structure. Nose landing gear

is mounted forward of the entrance door and retracts forward below the flight crew

compartment. A combined lavatory and baggage area is located in the aft end of

the passenger section and provides space for approximately 50 cubic feet of pas-

senger and crew baggage. Environmental control and electrical system space is

provided aft of the passenger section pressure bulkhead. Engine accessories and

hydraulics are located in the fuselage body below the wing carry-through struc-

• ture. Accessories are powered by a quill shaft from each under wing mounted

engine. The remaining fuselage volume is used for fuel tanks as shown. Wing fuel

is located in integral tanks similar to that of reference I, adjusted in volume to

reflect the change in wing area.



For the interceptor conversion, it was assumed that the aircraft would he

unchanged aft of the passenger section pressure bulkhead. All structure and sub-

systems would remain the same. The pressure bulkhead would he moved to a position

directly aft of the entrance door. The four Phoenix type missiles would be
t

mounted on a rotary launcher in the passenger/baggage section of the fuselage.

This fuselage section could be replaced or provisions designed into the passenger

version to permit a bomb bay door to be installed in the lower fuselage. Any

additional power requirements, such as electrical or hydraulics, would he provided

as part of the missile installation package. Missile related electronic systems

are mounted aft of the crew station across from the entrance door. The crew

instrument panels and nose mounted radar would be replaced as required to satisfy

discrete missile operating systems and requirements.

REFERENCES
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TABLE I-I. - GEOMETRICCHARACTERISTICS

GEOMETRY WING HORIZONTAL VERTICAL

Area (Gross), S ft 2 1067 71 65.4

Area (Ref), SREF ft 2 972 71 55.6

Mac (Ref), _REF ft 2 '28.28 7.n34 9.682

Span, b ft 48.00 11.3_4 6.094

Aspect Ratio (Ref) 2.370 I.£ .668

Sweep Angle, ALE deg. 74,70,55 60 65

Root Chord, (Ref) ft 46.674 10.049 13.032

Tip Chord, (Ref) ft 5.372 2.512 5.213

Root t/c % 3.0 3.0 4

Tip t/c % 4.0 3.0 4

Taper Ratio, XREF .115 .250 ._00
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Figure I-i. - Aircraft general arrangement.
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Figure I-2. - Interior arrangement.
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PART II. - LOWSPEEDAERODYNAMICCHARACTERISTICS

• F.L. Beissner, Jr.

The untrimmed low speed aerodynamic characteristics of this aircraft have

been estimated for trailing edge flap deflections of O, I0, 20, and 30 deg with

appropriate leading edge flaps. These estimated characteristics are based on

experimental data for a supersonic transport using a similar wing as reported in

reference II-I. A three view of the model including the flaps and flap nomencla-

ture is shown in figure II-I. A similar three view of the study aircraft is shown

in Part I. Corrections were made to the data to account for geometry differences.

The high lift system consists of segmented, plain, leading- and trailing-edge

flaps. The leading edge flaps consist of two wing-apex segments and an outboard

segment as shown in figure II-I (from reference II-I). These leading edge flaps

are used primarily for improving the pitching moment characteristics by suppress-

ing the leading edge vortex• Deflections are 30 deg at the apex and 45 deg

outboard. Because the aircraft leading edge flap is geometrically similar to the

model, no corrections were necessary.

The trailing edge flaps are used to provide increased lift for the takeoff

and landing configuration. The configuration adopted, after examining the data

and configurations available in reference II-I, was to droop both the outboard

flap and the aileron, t s and t 6. The amount of droop is 5 degrees. Flap deflec-

tion, for the balance of this section, will refer to the deflection of the inboard

and mid span flaps, t I and t 3 (fig. II-I).

The lift values were adjusted for planform differences by increasing the

slope of the experimental lift curve as a direct function of the increase in

aspect ratio (AR) from the model value of 1.907 to the aircraft value of 2.370.

Flap geometric differences (t s and t6) between model and aircraft were examined hy

the method of reference 11-2. The sum of the flap lift functions were identical.

Therefore, no adjustment was required to the flap lift increment.

The experimental drag polars were adjusted for AR differences, model to air-

craft, by assuming the same effective span efficiency versus angle of attack

variation (where COL = CL2/_ARe ). This was done for each of the flap deflections

II



considered. No adjustments were made due to flap differences because of the

reasoning of the preceding paragraphs.

The estimated lift curves and drag polars are shown in figures 11-2 and 11-3.

REFERENCES

11-1. Smith, Paul M.: Low-Speed Aerodynamic Characteristics from Wind-Tunnel

Tests of a Large-Scale Advanced Arrow-Wing Supersonic-Cruise Transport

Concept. NASA CR 145280, April 197_.

11-2. Staff of Hampton Technical Center: Advanced Supersonic TechnolocLv Concept

Study Reference Characteristics. NASA CR 132374, December 1973.
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PART III. - HIGH SPEEDAERODYNAMICS

A. Warner Robins

Aerodynamic Development

The wing planform differs from that of reference 111-1 only over the wing

outermost panel which has heen extended 14.37 percent in semispan, retaining tip

chord and local trailing-edge sweep. As in the configuration of reference Ill-l,

sufficient trimming moment was provided through camber and twist (using the method

of references III-2, III-3, III-4, and 111-5), and through center-of-gravity

control to allow trimming over the entire supersonic-cruise leg with positive

(trailing-edge down) tail deflections. Wing camber-surface shape is shown in

figure III-1.

Wing shape having been set, the remaining components were developed and

assembled so as to retain the trimming and drag-due-to-lift characteristics of the

basic wing at cruise while substantially reducing zero-lift wave drag. The

largest-volume component, the fuselage, was integrated into the supersonic lifting

system by providing that its rate of change of cross-section area above the wing

camber surface he equaled by that of the cross-section area beneath it (see refs.

111-6 and 111-7). The far-field wave drag method, based on that of reference

111-8, was then employed. A feature of this program is an ability to define a

least-drag fuselage area-distribution through a set of constraining fuselage

stations in a given assembly of components at a given Mach number. This feature

was used after careful tailoring was done to alleviate sharp local changes in area

development such as at the junctures of the thick upper elements of the vertical

tail and the horizontal tail, and at the empennage/body juncture. The empennage

pods and dorsal fin are results of such tailoring. The final fuselage area

distribution is shown with the specified constraint stations in figure 111-2. The

Mach 2.0 average-equivalent-body area buildup is shown in figure 111-3. The

numerical model of the complete configuration in the format of reference 111-9 is

shown in table 111-I. A computer drawing of this modeling is shown as figure
111-4.
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Performance Aerodynami cs

The buildup of zero-lift drag for the complete configuration is shown as a

• function of Mach number in figure 111-5. The values shown correspond to the

altitude at the base of the tropopause (h = 36,100 feet). Skin-friction drag

values were found by the Sommer and Short T' method of reference III-I0. Form

drag was found by the subsequent application of geometry-dependent factors of

reference III-II, and roughness drag was estimated from previously-developed

empirical data. Wave-drag evaluation was, as previously noted, accomplished by a

method based on reference 111-8.

Supersonic lift-dependent drags (CDi and ACDLET) were evaluated by
the modified linear-theory method of references 111-2 through 111-5. (Angle-of-

attack and static longitudinal stability characteristics were also obtained by

this method.) Figure 111-6 shows lift-dependent drag for the supersonic end-of-

cruise point at h = 58,000 feet. The final supersonic drag values differ from

the no-leading-edge-thrust polar by an increment, ACOLET, which contains not

only the leading-edge thrust attainable, but also that portion which manifests

itself as vortex lift (see ref. 111-12). The drag for the aircraft essentially

achieves the ideal full-leading-edge-thrust values in the range of cruise lift-

coefficent (.078 _ CL _ .097). Complete drag polars for supersonic Mach numbers

from 1.2, 1.6, and 2.0 are shown in figure 111-7, while maximum lift-drag ratio

and those operating lift-drag ratios corresponding to minimum-fuel climb and for

beginning and end of cruise are shown in figure 111-8.

Subsonic lift-dependent drags, including the effects of leading-edge thrust

and vortex lift, were obtained by the method of reference 111-13. This method was

also used for preliminary design of the outboard leading-edge flaps. These plain

flaps are necessary to the achievement of some leading-edge thrust over the sharp-

leading-edge outermost wing panel• Figure 111-9 compares the Mach number .8 drag

polars of the wing-body shown with leading-edge flaps at various flap deflections

• with the corresponding full-leading-edge-thrust and no-leading-edge-flap polars.

Substantial drag reductions from those for the undeflected-flap case are seen.
t

Complete subsonic drag polars reflecting this leading-edge flap treatment are

shown for Mach numbers .6, .9, and .95 at an altitude of 36,100 feet in figure

III-I0.
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Sonic Boom

Sonic-boom overpressures were estimated using the simplified process

described in reference 111-14. Rather than use the simple shape factor charts,

however, equivalent cross-section areas due to both volume and lift were combined

for six flight conditions to provide the characteristic shape factors for this

specific study configuration. The results are shown in figure III-II in which

sonic-boom overpressures are plotted as a function of altitude and aircraft weight

for Mach numbers 1.2 and 2.0. The effects of various boom-alleviation profiles on

both sonic boom and fuel consumption are shown in the section on aircraft

performance.
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TABLE III-I.- NUMERICALMODELOF THE COMPLETECONFIGURATION.

SXJT14A...EXEC.K,TETIINTERCEPT...A OPT. CAB... 1120M...SF'AN=48.0
I 1 -1 I 1 1 15 20 I 19 3(7) 3 15 -2 IO -I 10

972. 1 28. 297 55.000 REFC]X
O.€)()O .500 1.0C)0 1 500 2.500 5.00€) 10.000 15.000 20.000 30. r)()()XAF 1(7)

40.000 50.000 60.00(7) 70 (7)0075.000 8C).000 85.000 90.00C) 95.00(.'.)100.000 XAF 2(:)
24. 193 2.418 3.439 47. 284 WI'IRG I
26.731 3. 147 2. 768 44 725 W(]RG 2
30.396 4.197 1.969 41 043 WORG 3
34.056 5.246 1.333 37 364 WI]RG 4
40. 192 7,005 0.714 31 188 WOR8 5
45. 033 8.393 0.385 26 728 WDRG 6
5(').391 9.93_ O. 199 21 79(i) WI'IRG 7
54.948 I | .515 0.263 17.665 W[IRG 8
58.0,15 12.591 (i). 180 15.519 WrIRG 9
61.064 13.640 O. 127 _3.427 WORG 10
65.642 15.230 0.061 10.256 WDRG II
65.643 15.231 0.061 I0.256 WORB 12
69.06°4 17.605 0.131 8.934 W(]RG 13
73.665 20.801 O. 156 7. 154 WI]RG 14
78. '/.72 24,0()(] 0. 141 5.372 WflRG 15

0.0o0 .()02 .0C)3 .0C)5 .002 -.018 -. 143 -. 321 --.522 -. 948 IZ4A. 1
-1.371 -1.765 -2. 127 -2.459 -2.615 -2.766 -2.910 -3.(:)46 -':_.174 -3.287 T74A.2
(7).OOC) .0()3 .006 .009 .016 .001 -. 093 -: 234 -.395 -. 742 I ZS. 1

-1.088 -1.417 -1.724 -2.012 -2.151 -2.285 -2.416 -2.541 -2.660 -2.768 175.2
0.000 .005 .010 .015 .025 .040 -. (.)04 -.088 -. 187 -.413 176. 1
-.646 -.877 -I. I(7)3-1.325 -1.437 -1.548 -1.658 -1.766 -I .87(i)-1.969 IZ6.2
O. _)(:)0 .007 .014 .021 .034 .060 .057 .021 -.o31 -. 163 rz7. 1
-.310 -.465 -.627 -.796 -.884 -.974 -1.065 -1. 156 -1.246 -1.333 TZ7.2
0. 000 .008 .(1)16 .025 .041 .074 .100 .Ir)5 .()9a, .(11)54TZ8. I
-.012 -.095 -. 194 -.3(1)8 -.37C) -.436 -.504 -.574 -.644 -.714 178.2
0.0(.)C) .007 .015 .022 .037 .073 .115 .137 .144 .137 TZ9. I
.107 ,059 -,006 -,085 -,130 -,177 -.227 -.279 -.331 -.385 TZ9.2

O. 00C) .0(.)5 .010 .(.)15 .(:)26 .C)51 .090 .111.'3 .126 .132 TZI().I
.121 .095 .056 .C)05 -.(i)25 -.(')57 -.(')90 -. 125 -. 16:_ -. 199 ]Z10.2

0. 000 .003 .(7)06 .009 .014 .(i)28 .046 .059 .()_,6 .()61 TZ 11. 1
.044 .015 -.026 -.(')76 -. 1(i)4 -. 133 -. 165 -. 197 -.2.79 - "263 TZJ I._

0. (7)00 . (')02 .0(')4 .006 . C)10 . (')21 . (')42 . (1)54 . (i)61 (i)59 TZ 12. 1
•(7)45 .(:)2"2-, (7)09 -. (I)46 -. (7)67 -.(7)88 -. I1() -. 134 -. 157 - I8(i) TZ 12.2

(). ()()r) .0¢)2 . (')(')4 . (I)05 . (')09 • (')18 .036 . ()4:3 . (.)5(i) (i)5(11) lZ 13. 1
.038 .020 -.005 -.(i)'$4 -.05() -.065 -.(i)81 -.096 -. ]I'._ - 127 IZ|3.';'

0. ()_')<) .000 .0C)1 . (:)(i)1 .002 .004 . (i)(7)7 . C)()8 . ()1 'Z (i)(i)9 'TZ 14. 1
.()02 -.0C)7 -. 017 -. (:)29 -. (:)36 -.042 -. (i)46 -.(.)5J -.0,56 -. (:)61 fZ 14.2

O. 000 . r)):)o .001 . O01 .002 .004 .007 .008 . (:)l 2 ,0()9 f z 15.1
. ()()1_. -. r)o ;, -. 018 -. (i)29 -. (7)36 -. 042 -. (:)46 -. c)51 -. (")56 -. 061 T Z15.2

(._.0()(?) -. ()([)1 -. 0()3 -. 004 -. (7)(i)7 -. (7)14 -. (.'.)251 -. ()32 -. ()39 -. (')53 'rz ] 6. 1
-. (),h-/ -. ()79 -.093 -. ](:)5 -. 11() -. 115 -. 1'20 -• 124 -. 1"47 -. J3I 1Z 16. ',.'
(). (1)()(::) -. 002 -. 00:3 -. 005 -. 0(:)8 -. (7)17 -. (7)33 -. (.)49 -. ()a.() -. ()8 ] T7 ] 7. 1
-.Jr)€) -.118 --. 130 -.141 -.144 -.147 -.150 -.152 -.154 -.156 1717.2
('). 0)")(') -. ())')| -. (')(]2 -. (.')0:.'_ -. 006 -. 010 -. 022 -. (')32 -. ('_4:'T. -. 064 1"718. i
-.081 -.097 -.106 -.116 -.121 -.124 -.129 -. 13"2 --. 137 -.141 1718.2

(').(.) .231 .325 .396 .503 .697 .956 I.132 1.264 I.429 WI)RD I.I
I.479 I.479 1.477 1. 100 .980 .787 .592 .396 .2(:)3 ().() WnRI) I.2
O. (7) .225 .31 _ .386 .49(.) .679 .9:31 i.I):)::_1._::_2 i.392 wn_ir)2.
1.441 1.441 1.437 1. 132 .953 .765 .576 .385 .197 o.() Wr_Rr)?.2
0.0 .216 .3(:)4 .37(') .470 .651 .894 1.059 I. 182 1.336 WI')RD3. I
1.383 1.383 1.341 1.056 .889 .714 .537 .360 .184 0.() W[IRD 3.2
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TABLE III-I.- Concluded.

• 0•0 .208 .294 .358 .455 •631 •866 1.025 I.144 1 293 WORD 4. I
1.338 1.338 1.277 1.006 .848 .681 •512 .343 .175 0.(1) WORD 4.2
0.0 .200 •283 •344 .438 •607 .833 •987 I. 101 1 244 WORD 5. I
1.287 1.287 I. 186 •935 •788 .633 .476 .319 .163 (b.0 WORD 5.2
0.(1) .198 .280 .341 .435 .6C)2 •827 .979 I.()92 1 234 WORD 6. I
1.277 1.277 I. 161 .915 .771 .619 •466 .312 .159 ().() WORD 6.2
0.0 •201 .284 .345 .440 .609 .836 .990 1. 1()5 I 248 WORD 7. I
1.292 1•292 I. 149 .906 •763 .613 .461 .309 .156 ().0 W(JRD 7.2
0.0 .222 .314 .382 .486 .672 •923 1.094 1.22[ 1 380 WORD 8. I
1.428 1.428 1.238 •976 .822 •661 .497 •333 ,170 0.(') WORD 8.2
0.() .238 •335 .408 .518 .718 .986 I.168 1.3(/)3 1 473 WORD 9. 1

1.524 1.524 1.321 1.(:)42 .EJ78 .7(/)5 .531 .355 .181 0.() WORD 9.2
().0 .257 362 .440 .560 .775 1.064 1.260 1.4(i)6 I 59(/) WORDIO. I
1.645 1.645 1.427 I.124 •947 .761 •572 .383 .195 0.(: WORDIO.2
(').() .313 44(i) .536 .680 .941 1.292 1.531 1.7¢_9 I 932 W()RD11. I
2.0(]0 2. 000 I.733 1.365 1, 149 .923 .695 .465 .2".7 ().r) WORDI I.2
(1).() .(i)4(?) .079 .118 .I95 .380 .720 1.(/)2(1)I.::'8_i)I 68(') WORD 12. I
1.920 2.000 1.92(I) 1.680 I.500 1.280 1.020 .72(i) ._?) ().() Wr]RI)I2.2
0•0 .038 .076 .113 .187 .364 .690 .977 1.226 1 61(11) WORD13. 1
1.840 1.916 1.84¢) 1.61(/) 1.437 1.226 .977 .690 .36,! 0.() WORD13.2
(1).0 .035 .070 .104 .171 .334 .633 •896 I. 125 I 476 WORD14. 1
1.687 1.757 1.687 1.476 1.318 I. 125 •896 .633 .334 0.() WORD14.2
(').0 .(1)29 •059 .088 .146 •285 .541 .766 .961 1 261 W[)RD15. I
I•440 1.500 1.440 1.261 I. 126 .961 .766 .541 .2E)5 ¢)._) Wf')RI)I5.2
0.0 3,552 7.1(1)3 10.655 14.207 17.759 21.310 24.862 28.414 31.966 XFIJSE I(')
35.517 39.069 42.621 46.172 49.724 53.276 56.828 60.379 63.931 67.483 XFUSE 2(1)
71.(:)35 74,586 78.138 81.690 85.241 88.793 92.345 95.897 99.448 103.000 XFIISE 30
4.409 4. 409 4.4(1)7 4.399 4. 385 4.376 4. 319 4. 145 3.81:9 3. 464 7F(JSF I
3. 074 2. 681 2.295 I.924 I.576 1.255 .959 .692 .4,5_ .244 ZFI;SE 2
•(1)68 -. (:)61 -. 145 -. 162 -. 123 -.(i)44 .(1)7(1) .21(i) .360 .5;08 ZFUSE 3
0.0 2.156 6.015 11.019 15.807 21.292 27.596 29.881 3().()28 29.6(i)5 AFUS I(1)
28.116 25.419 22.614 20.827 19.196 18.753 17.688 17•416 16.865 16.173 AFIIS 20
14.698 13.773 12.(.')3810.069 8.336 6.186 3.936 1.9(')J .6/4 ().0 AFIJS 30
96. I00 0.0 7.(-')94 P_)I)ORG I,
0.0 2.0 4.0 5.0 5.6 6.3 7.0 7.6 1(?).2 12.(] XP(]D I-I
13.5 14.7 16.(/) 17.5 19. 1 XP(]D I--2
O. 0 .260 .402 .420 .381 .25c) .(')90 .(1)(')0 .()0(1) .160 PODR I- 1
•32(] .400 .4()0 .24(:) 0.0 POI)R I-2
56.380 6.834 -1.60 NAC(]RG 2
0.0 2.() 3.5 5.5 7.0 8.032 9. J64 10. 164 11./J64 I_.(1)07 XPOD 2--I
15.965 17.132 17.664 19.164 19.565 XF(]F)2-2
1,347 1.387 1.417 1.45'7 1.486 1.5(.')7 1.521 1.533 1.551 1.568 P_]DR 2-I
I.6(?)4 I.6(?J4 I.604 1.604 1.604 F(]DR 2-2
71. (] 15. 230 .(')61 P(II)(1RG 3
0.0 I.(1) 2.0 2.5 3.0 3.5 4.0 4.5 5.(') 5.5 XPOI) 3. I
6,0 6.5 7,0 8.0 9.0 XFf]D 3.2
0.() .(?)92 .185 .231 .278 .324 .370 .411 .435 .44(1) P(]DR 3. I
.418 .370 .296 .148 (1).(i) F'r_I)R 3.2
75. 033 0.0 I.(Z)0 26. 064 91.277 0. (i) 2.50 II. I(i)7 FNf)RG I
O. 0 1(1).0 2(*.).0 30.0 40.0 50.0 6(). 0 70. (') 9(11).(') 1(1)().() XF IN I
0. (1) .23(i) .430 .588 .697 .748 .749 .749 .,'fi°,2 ().(') FNORI)I-I
O. (1) .518 .941 1•267 I.498 1.633 I•672 1.555 .7_'? O. (1) FNORD1 -2
91.277 0.0 2.5(') II. I(i)7I01. 1130.0 7.(:)94 5.213 FNr)I_G 2
0. (1) 10.0 2(i).0 30. (1) 4(1).(i) 50.0 6(1).0 7,).0 90.0 1(:_().(1) XF IN 2
0.0 .518 .941 I.267 1.498 I.633 I.672 I.555 .7_ 9 O. 0 FNflRI)2-1
0.0 .918 1.669 2.251 2. 667 2. 917 3.000 2. 814 I.317 ().(1) FNOR)_2_ 2

. 101.13 0.0 7.094 10.049 110.92 5.652 7.094 2.512 H rORG
0.0 10.0 20. (1) 30.0 40.0 50.0 6(i).(i) 70.0 90. r) 1(i)0.<i) xHTA IL
0.0 .533 .948 I.264 I.448 I.5('30 I.448 1.264 .533 0. (1) H TORD
('). (i) .533 ,948 I.264 I.448 1.500 1.448 1.264 .533 O. (') H rORD
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Figure III-4.- Computer drawing from numerical model of complete configuration.
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Figure 111-5,- Buildup of zero-lift drag coefficient as a function of Mach number.
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PART - IV. - PROPULSION

W. A. LOVELL

• The engine used in this study is based on a current technology engine and was

assumed to have an upper operational limit of Mach 2.4 at an altitude of 70000

feet at standard day atmospheric conditions•

The current technology was modified based on anticipated technology advances

and the potential for improving the supersonic performance, by modification of the

fan and low pressure turbine for high supersonic propulsive efficiency. These

modifications were estimated, based on existing supersonic cruise engines, to have

the potential to reduce the supersonic specific fuel consumption by about 2_%.

The engine weight was assumed to be 3% less than existing current technology

engines• Engine performance has been adjusted for the effects of Military speci-

fication inlet pressure recovery, however, installation drag, power extraction and

service airbleed have not been accounted for. This data is, therefore, somewhat

optimistic as used in this study.

BASELINEENGINE

The baseline (current technology) engine as designed, is a two-spool low-

bypass ratio augmented turbojet engine. It has a 3-stage low compressor, l-stage

low rotor, lO-stage compressor and a 2-stage turbine high rotor. A full annular

duct surrounds the basic gas generator and supplies cooling air to the augmentor

and nozzle. The inlet guide vanes, located ahead of the low compressor, have a

movable trailing edge to achieve variable airfoil camber. This improves the inlet

distortion tolerance, low compressor efficiency and enhances the engine acceler-

ation characteristics. The high compressor has variable stators to improve

starting and high Mach number characteristics.

The engine's exhaust nozzle is a variable throat area balanced flap

• convergent-divergent design. Nozzle area ratio varies as a function of nozzle

throat area, so that both the throat and exit areas are simultaneously near

optimum throughout the operating range•
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Baseline engine performance is based on the 1962 U. S. Standard Atmosphere

and Military specification inlet recovery (MIL-E-5008C). Since no other instal-

lation effects were considered, the performance used in this study is optimistic.

Baseline (as designed) engine characteristics at maximum power (with augmen-

tation), sea level static and standard day atmospheric conditions are tabulated

below:

Total engine corrected airflow rate 178 Ibm/sec

Fuel lower heating value 18,400 Btu/Ibm

Net thrust 21,000 Ibf

Net specific fuel consumption 1.82 Ibm/hr/Ibf

Bypass ratio 0.155

Weight (including nozzle but no thrust reverser) 2,840 Ibf

Maximumenvelope diameter 38.5 in

Length of engine plus nozzle 161.8 in

STUDY ENGINE

Based on projected advanced technology, the baseline engine was modified as

follows:

o Net thrust (gross thrust-ram drag) levels have been increased by 20

percent at all Mach numbers above 1.4

o No change in fuel flow rate for thrust increase.

o Engine weight (including nozzle but no thrust reverser) has been

reduced by 3 percent.

o No change in the exterior engine geometry.

These changes would necessitate a modification to the low pressure spool of

the engine. That is, one of the three stages of the low pressure compressor would

be eliminated and the remaining two stages reduced in diameter to reduce the

bypass ratio. Associated with these modifications would be the requirement to

modify the low pressure turbine to achieve the proper work balance between the

turbine and compressor. Subsonic performance of the engine would also be affected

by this modification. However, it has been assumed (optimistically) that subsonic

performance decrements could be offset by incorporating a turbine bypass in the
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engine. On the basis of these modifications, the haseline engine weight ef 2,84N

Ibf is reduced to 2,755 Ibf including the nozzle but not a thrust reverser.
e

To estimate the nacelle drag and weight of a nacelle for the study engine,

• the engine was fitted with a NASA/Ames "P" inlet sized to match the engine. This

inlet is a typical axisymmetric mixed compression design with a translating

center-body sized for supersonic cruise conditions. A nacelle concept layout to

house the engine incorporating a NASA/Ames "P" inlet and a variable throat area

balanced flap convergent-divergent nozzle is shown in Figure IV-I.

Estimated standard day engine performance, adequate for preliminary aircraft

mission performance analysis is presented on figures IV-2 through IV-6 for maximum

augmented power, maximum non-augmented power and maximum and part power ratings.

35



c,o
o'_

 8!,00
-' ] L12"OOD" 1

--32.33 D.

Figure IV-1. - Engine nacelle geometry.

ul nl • t



26x103

0 20 40 60 80×103

Altitude, ft
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PART V. - MASSPROPERTIES

E. E. Swanson

Mass properties analysis for this study was conducted using the weight analy-

sis method in the Flight Optimization System (FLOPS) computer program described in

reference V-I. Conventional titanium structure was assumed with no improvements

in material or manufacturing technology applied. Table V-I lists a weight break-

down by subsystem for the baseline passenger version. The interceptor version is

shown in table V-II. For this concept, furnishings and equipment, along with pas-

sengers and passenger services, have been removed. The fuselage weight has been

increased to reflect the installation of the missile rotary launcher and bomb bay

doors. Since one of the objectives of the convertible concept was to maintain

maximum commonality, the intercept mission was defined as takeoff, cruise super-

sonically to intercept, deliver payload and return. Therefore, no structural

weight penalty was assessed for maneuvering load factors. Additional weight has

been provided for missile related avionics and systems. It was assumed that each

missile would weigh 910 pounds for a total disposable payload weight of 3,640

pounds.

Figures V-1 and V-2 show the center-of-gravity envelope for each of the study

versions. No aircraft inertia calculations were performed during this study.

REFERENCES

V-1. McCullers, L. A.: Aircraft Configuration Optimization Including Optimized

Flight Profiles. Recent Experiences in Multi-disciplinary Analysis and

Optimization, NASACP 2327, April, 1984.
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TABLE V-I. - GROUPWEIGHT SUMMARY
• INTERCEPTORVERSION

Ibf

WING 6,936.
HORIZONTAL TAIL 658.
VERTICAL TAIL 596.
FUSELAGE 4,735.
LANDING GEAR 1,771.
NACELLE 1,890.

STRUCTURETOTAL ( 16,586.)

ENGINES 5,6R0.
MISCELLANEOUSSYSTEMS 353.
FUEL SYSTEM-TANKSAND PLUMBING 705.

PROPULSION TOTAL ( 6,738.)

SURFACECONTROLS _72.
INSTRUMENTS 234.
HYDRAULICS 521.
ELECTRICAL 1,133.
AVIONICS 950.
FLIRNISHINGS AND EOUIPMENT 250.
AIR CONDITIONING 321.
ANTI-ICING 147.

SYSTEMSAND EOUIPMENTTOTAL ( 4,426.)
WEIGHT EMPTY 27,750.

CREWAND _AGGAGE- FLIGHT, 2 450.
UNUSABLEFUEL 371.

ENGINE OIL 131.

_i OPERATINGWEIGHT 28,7n_.

CARGO 3,640.

ZERO FHEL WEIGHT 32,342.

MISSION FUEL 3n,gOa.

RAMP (GROSS) WEIGHT 63,2afi.
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TABLE V-II. - GROUPWEIGHT SUMMARY
PASSENGERVERSION

Ibf

WING 6,936.
HORIZONTAL TAIL 658.
VERTICAL TAIL 596.
FUSELAGE 4,294.
LANDING GEAR 1,771.
NACELLE 1,_90.

STRUCTURETOTAL ( 16,145.)

ENGINES 5,680.
MISCELLANEOUSSYSTEMS 353.
FUEL SYSTEM-TANKSAND PLUMBING 705.

PROPULSION TOTAL ( 6,738.)

SURFACECONTROLS 872.
INSTRUMENTS 234.
HYDRAULICS 521.
ELECTRICAL 1,133.
AVIONICS 500.
FURNISHINGS AND EOUIPMENT 1,350.
AIR CONDITIONING 330.
ANTI-ICING 147.

SYSTEMSAND EOUIPMENTTOTAL ( 5,n£6.)
WEIGHT EMPTY 27,969.

CREWAND BAGGAGE- FLIGHT, 2 45n.
UNUSABLEFUEL 371.
ENGINE OIL 13l.
PASSENGERSERVICE 103.

OPERATING WEIGHT 29,024.

PASSENGERS,8 1,320.
PASSENGERBAGGAGE 35?.

ZERO FUEL WEIGHT 30,696.

MISSION FUEL 30,904.

RAMP (GROSS) WEIGHT 61,600. .
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PART VI. - PERFORMANCE

F. L. Beissner, Jr.
Q

The study of a dual purpose supersonic cruise aircraft resulted in an air-

craft which could have an executive transport and a military interceptor

capability. The range characteristics are considerable in either role, and the

missions are quite diverse. The modifications required for change from one

mission configuration to the other are minimal. The external lines are identical.

The aircraft is capable of a 3,622 n.mi. (M = 2.0 cruise) flight with the

full payload of 8 passengers and crew of 2 on a full internal fuel load of 30,904

Ib of fuel. The resulting ramp weight is 61,600 lb. The mission performance

summary is shown in table VI-I. In the interceptor role, table VI-II shows the

radius capability of 1,638 n.mi. with the same fuel load but with a payload of 4

Advanced Long Range Air to Air Missiles. Again, there is a crew of 2 with a

totally different mission and the ramp weight is now 63,246 Ib with the new pay-

load. The two mission profiles are shown in figures VI-I and Vl-2.

Table VI-III is included to show the performance differences in a side by

side comparison of this aircraft as it is employed in these two different

missions. The primary difference in the mission execution of the aircraft in each

of the two roles is the type of climb/acceleration that is performed• The trans-

port is flown on a climb/acceleration that minimizes the fuel for the total

mission (distance). It must also meet the FAA climb requirement, V _ 250 KCAS

below I0,000 ft altitude. The purpose of the interceptor is quite different,

highly specialized, and is a military mission, not subject to the FAA climb

restraint. The interceptor climb/acceleration minimizes the time to distance in

order to achieve the intercept as quickly as possible. (This minimum time to

distance climb/acceleration also achieves the alternate interceptor objective of

intercepting inbound hostile aircraft, bogies, at the maximum distance out.) The

aircraft is limited to M < 2.0 and maximum dynamic pressure of 1,500 Ib/ft 2 at all

times. Figures VI-3 and VI-4 compare the climb/acceleration schedules and flight

paths in these two different missions. The other differences in missions involve,

for the interceptor, a combat allowance (M = 2.0, 55,000 ft, 2g sustained turn of

540° , no distance credit), ordnance delivery, and return to home base.
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Mission performance includes taxi-out and takeoff allowances 110 rain fuel

flow at idle power setting and 1 rain fuel flow at takeoff power setting, nonaug-

mented in this case) followed hy the selected climb/acceleration to cruise speed

and altitude. Continue along M = 2.0 optimum cruise climb (combat and ordnance

delivery for the interceptor, then continue) and descent to destination. Reserves

are included which provide for flight continuation to the alternate airport

including missed approach allowance (I min fuel flow at takeoff power setting)

climb and subsonic cruise at 30,000 ft, hold for 30 min and descent to the

airport. The alternate airport is located 250 n.mi from the destination. The

performance is calculated by the Flight Optimization System (FLOPS) computer

program described in reference VI-1. All performance in this study is for

standard day, no wind conditions.

One apparent operational anomaly in the mission rules just stated is the use

of nonaugmented power setting for the military interceptor configuration. Refer-

ring to table VI-II, the taxi-out allowance of ten minutes idle requires 371 Ib of

fuel and the takeoff consumes 357 Ibs (1 min). At full internal fuel weight, the

maximum augmented takeoff run requires 16.11 seconds to the obstacle which

requires 350 Ib of fuel.

An alternate mission from New York to Los Angeles for the transport configur-

ation was analyzed to determine the fuel required and the associated ramp weight.

This 2,130 n.mi. overland flight requires fueling the aircraft with IR,881 Ib of

fuel to a ramp weight of 49,557 lb. The sonic boom overpressure during acceler-

ation for this mission for minimum fuel and reduced overpressure is presented in

table VI-IV. The increase in fuel/takeoff weight to _g,702 Ib is inconsequential.

A maximum subsonic range mission at Mach 0.95 for the transport configur-

ations also analyzed. Using the same basic mission rules for the transport

configuration, the maximum subsonic range is 3,780 miles, as shown in table VI-V.

This is only slightly better than the M = 2.0 range capability, but could be used

to stretch the aircraft's range capability if desired.

Emergency loss of an engine in this aircraft presents no range problem.

Operation would be restricted to subsonic speed. The worst possible case of

engine loss at mid mission (subsonic) would require emergency use of some of the

planned reserves to reach the destination.

48



Airfield performance for the study aircraft includes a balanced field length

of 6,600 ft for the fully fueled transport aircraft. Normal two engine takeoff

• distance over a 35 ft obstacle is 4,640 ft. Maximum nonaugmented power is the

takeoff power setting. Landing field length over a 50 ft obstacle is 5,170 ft at

44,737 lb. All airfield performance is computed at sea level standard day

conditions with no additional conservatism. The trailing edge flap deflection of

20 degrees for takeoff was selected on the basis of minimum balanced field

length. The landing configuration has a 30 degree flap deflection.
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TABLE VI-I. - MISSION PERFORMMANCESUMMARY

TRANSPORTDESIGN MISSION

o WEIGHT FUEl_ DISTANCE TIME ALTITUDE L/D WT/SREF
(LB) (LB) (N.MI.) (MIN.) (FTI (LB/FT2)

RAMPWEIGHT 61,600.

TAXI OUT 371. I0.0

TAKEOFF WEIGHT 61,229. 63.0

TAKEOFF 357. 1.0

START CLIMB WEIGHT 60,872.

CLIMB 4,q42. 32X.4 26.5

START CRUISE WEIGHT 55,930. 52,973. 7.18 57.5

CRUISE 20,890. 3,155.9 165.1

END CRUISE WEIGHT 35,040. 58,204. 6.24 36.1

DESCENT 324. 138.4 15.4

END DESCENTWEIGHT 34,717. 35.7

RESERVE 4,021.

ZERO FUEL WEIGHT 30,696.

TAXI IN 371. i0.0

TOTAL FUEL 30,904.

DESIGN RANGE 3,622.8

FLIGHT TIME 270.0

BLOCK TIME = 3.80 HOURS
BLOCK FUEL = 27,254. POUNDS



TABLE VI-II. - MISSION PERFORMMANCESUMMARY

INTERCEPTDESIGNMISSION

WEIGHT FUEL DISTANCE TIME ALTITUDE L/D WT/SREF
(LB) (LB) (N.MI.) (WIN.) (FT) (LB/FT2)

RAMPWEIGHT 63,246.
TAXI OUT 371.

TAKEOFFWEIGHT 62,875.
TAKEOFF 357.

STARTCLIMB WEIGHT 62,518.
CLIMB 3,760. 34.1 2.6

STARTM=2.0 INTERCEPT 58,757. 52,304. 7.25 60.4
FLY IN 12,040. 1,603.9 83.9

STARTCOMBAT 46,717. 55,182. 6.87 48.1
COMBAT 1,593. 1,638.0 86.5

ENDCOMBAT 45,124.
DELIVERORDINANCE(3,640)

STARTM=2.0 RETURN 41,484. 56,506 6.62 42.7
FLY OUT 8,528. 1,481.8 (77.5)

ENDRETURNCRUISE 32,955. 58,723. 6.08 33.9
DESCENT 390. 198.1 (17.6)

ENDDESCENT 32,565.
RESERVE 3,863.

ZEROFUEL 28,702.
TAXI IN 371.

TOTALFUEL 30,904.

DESIGNRADIUSAND 1,638.0 86.5
TIME TO INTERCEPT



TABLE VI-III. - PASSENGER/INTERCEPTORCOMPARISON
B

CONFIGURATION PASSENGER INTERCEPTOR

PAYLOAD

8 PASSENGERS,LB 1,672

4 MISSILES, LB 3,640

WINGAREA(REF) SQ FT 972.1 972.1

TAKE OFF GROSSWEIGHT(FIF), LB 61,600 63,246

FUEL WEIGHT(FIF), LB 30,904 30,904

MISSION RANGE* 3,622

RADIUS* 1,638

CLIMB/ACCELERATIONDESCRIPTION MIN FUEL MIN TIME

FLIGHT TIME TO COMMONPOINT (500 N.MI.) MIN 35.1 27.0

FLIGHT FUEL TO COMMONPOINT (500 N.MI.) MIN 6,286 7,517

*MRT TAKEOFF AND TAXI ALLOWANCEINCLUDED. SAME RESERVERULES.
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TABLE VI-IV.

° TRANSPORTAIRCRAFT, NEWYORKTO LOS ANGELES ROUTE, M = 2.0 CRUISE

SAME RESERVES

r

MISSION TYPE MINIMUM FUEL REDUCEDBOOM

RAMPWEIGHT, LB 49,577 49,702

FUEL WEIGHT, LB 18,881 19,006

RANGE, N.MI. 2,130 2,130

ACCELERATION (M = 1.2)

ALTITUDE, FT 43,150 46,000

WEIGHT, LB 47,100 46,950

OVERPRESSURE,PSF 1.05 1.00

START CRUISE (M = 2.0)

ALTITUDE, FT 55,920 55,948

WEIGHT, LB 43,866 43,759

OVERPRESSURE,PSF .90 .90
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TABLEVI-V. - MISSION PERFORMANCESt_MARY

SUBSONICMISSION - TRANSPORTVERSION

WEIGHT FUEL DISTANCE TIME ALTITUDE L/D WT/SREF
(LB) (LB) (N.MI.) (MIN.) (FT) (LB/FT2)

RAMPWEIGHT 61,600.

TAXI OUT 371. I0.0

TAKEOFFWEIGHT 61,229. 63.0

TAKEOFF 357. 1.0

STARTCLIMBWEIGHT 60,872.

CLIMB 1,552. 36.0 5.1

STARTCRUISEWEIGHT 59,320. 33,951. 12.27 61.0

CRUISE 24,312. 3,648.6 401.4

ENDCRUISEWEIGHT 35,007. 44,173. 11.85 36.0

DESCENT 296. 95.4 12.4

ENDDESCENTWEIGHT 34,711.

RESERVE 4,015.

ZEROFUEL WEIGHT 30,696.

TAXI IN 371.

TOTAL FUEL 30,904.

DESIGNRANGE 3,780.0

FLIGHT TIME 418.9

BLOCKTIME = 7.33 HOURS
BLOCKFUEL = 27,260. POUNDS



M=2.0
OPTIMUMCRUISE CLIMB-_

(20,890LB) _. _,- END CRUISE
BEGIN CRUISE--_ '--'--- _ ALT=58,204 FT

ALT=52,973FT _*k \
_ f DESCENT/DECELERATE

CLIMB/ACCELERATE., _ _ (324LB)

I MINUTETAKE-OFF__[ \ riO MINUTE TAXI IN
(357 LB) // \ \ (371 LB)

10 MINUTE TAXI_ I/ \ \

(371LB).

TRIP RANGE 3,622 NoMI°TRIP FUEL 26,512LB r_

BLOCK FUEL 27,254 LB

--_ BLOCK TIME 3.80 HRS

A. Main Segment.

M=.85 AT 30,000 FT ALTITUDE

CRUISE_ HOLD 30 MINUTES

1,116 LB_ _ (1,607LB)

LB) .DESCENTLB)
MISSED APPROACH__ _€_ (231

(357LB) _J

1 250 N,MIo I
I_---T0 ALTERNATE

(4,021LB)

B. Reserve Segment.

• FigureVI-I. Transportdesign missionprofile,M=2.0 cruise,
full internalfuel.
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M=2.0
CRUISE HOME
(8,528LB)

END CRUISE
ALT=57,723 ORDNANCE DELIVERY

3,640 LB

:OMBAT540° 29 TURN
OPTIMUM M_2.0 SUSTAINEDM=2.0

DESCENT/DECELERATE--_ INTERCEPT (1,593LB)
(12,040LB)(390 LB) \

BEGIN INTERCEPT
ALT=52,304FT

I

1 MINUTE TAKE-OFF :LIMB/ACCELERATE
(357 LB) (3,760LB)

10 MINUTE TAXI i
(371LB) _

J_<---RADIUS1,638 N MI

A. Main Segment.

M=.85 AT 30,000 FT ALTITUDE

CRUISE HOLD 30 MINUTES

(1,085LB)'-_ _. (1,557LB)

F<_-TO ALTERNATE_
(3,863LB)

B. Reserve Segment.

Figure VI-2. Interceptormissionprofile,M=2.0, full internalfuel.
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TRANSPORTCLIMB SCHEDULE_
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Figure VI-3. Climb/accelerationschedulecomparison,
transportversus interceptor.
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INTERCEPTORCLIMB PATH (TYPICAL) \ _.
F RAMPWEIGHT: 63,246 LB _ _.-_-"

MINIMUMTIME TO INTERCEPT _..._ _ _"

/
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Figure VI-4. Effect of two different climb/acceleration schedules on
flight path performance, transport versus interceptor,
both full internal fuel and including payload.
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