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ABSTRACT

Contraction theory is applied to an iterative formulation

of electromagnetic scattering from periodic structures and a

computational method for insuring convergence is developed. A

short history of spectral (or k-space) formulation is presented

with an emphasis on application to periodic surfaces. The

mathematical background for formulating an iterative equation

is covered using straightforward single variable examples

including an extension to vector spaces. To insure a

convergent solution of the iterative equation, a process called

the contraction corrector method is developed. Convergence

properties of previously presented iterative solutions to

one-dimensional problems are examined utilizing contraction

theory and the general conditions for achieving a convergent

solution are explored. The contraction corrector method is

then applied to several scattering problems including an

infinite grating of thin wires with the solution data compared

to previous works. Problems associated with extending the

contraction corrector method to two-dimensional iterative

formulations are outlined including the benefits of applying

this process to difficult practical problems such as knitted

mesh surfaces.
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I. INTRODUCTION

The electromagnetic scattering properties of periodic

structures have been of interest to engineers and scien-

tists for many years and various methods for solving the

scattering problem have been presented [l] - [8] . These

methods include solutions generated from static approxima-

tions, averaged boundry conditions, the method of moments,

physical optics, the geometrical theory of diffraction, and

a combination of these techniques. However, certain fre-

quency regions or certain geometrical configurations (or

both) cause grave difficulties .which cannot be overcome by

the methods mentioned above .

. Tsao and Mittra P] presented a novel iterative

technique based on earlier spectral approaches which

can be traced to original work performed by Bojarski [10] .

This technique, called the spectral-iteration approach, ex-

tended the scattering solution capability to regions pre-

viously untouched by other methods. In particular, Tsao

and Mittra [9] examined the scattering from periodic struc-

tures and their applications to frequency selective sur-

faces. The present author's area of interest is the pro-

blem of determining the reflection propeties of mesh sur-

faces [ill . Mesh surfaces are used in many applications,

but the most current application is for conducting reflec-

tors on space-born antennas. The mesh surface is a complex



2

periodic structure whose reflecting properties are not

readily analyzed by the methods mentioned above. For in-

stance, an attempt to solve the mesh problem by the method

of moments would require a special set of basis functions

as well as an enormous amount of computer memory. Analysis

of the mesh surface by the spectral-iteration technique

would be of great value since the method is essentially in-

dependent of geometry, i.e., does not require explicit

knowledge of appropriate basis functions and does not re-

quire extreme amounts of computer storage. However, the

basic iterative scheme suffers from convergence problems

that are associated with most iterative formulations [12] .

This work treats basic iterative techniques, presents a

background on the convergence problems associated with

iterative techniques, details the formulation of a correc-

tive scheme to ih:sure convergence of the iterative tech-

nique, and applies a version of the corrective scheme to

the specialized problem of a parallel wire grating.

Current techniques for solving complex scattering pro-

blems are limited by the difficulties outlined above. The

technique described herein provides a basis for the further

development of solutions to complex problems. Additionally,

the solution methodology provides a useful concept which

may be applied to problems outside the realm of electromag-

netic scattering.
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Portions of the background material presented below

follow directly from the referenced works and credits are

listed for these. The notation used herein is self con-

cained with attempts to follow the references as closely as

possible to maintain a common base, but allowing for differ-

ences to insure clarity of the equations. This is included

for consistancy, completeness, and continuity. The reader

is advised to consult the references for greater detail.



II. REVIEW OF THE FUNDAMENTAL FORMULATION

Bojarski [10] considered that field quantity Y(x) and

a source density w(x) were governed by the differential

equation

L y(x)=-L w(x) (1)
•f W

where the form of the operators for an n-dimensional

problem are / i \

%-E ailn) 5 P-1.2,— n (2)
i=o v P /

and Lw= £
 bi(lx̂ ) 5 P-1.2.— n (3)

subject to the constitutive equation

w(x) = q(x)

The generalized integral representation of equation (1)

is given by

w(x')dx' + v. (x) (5)

where g(x, x1) is the appropriate Green function satisfying

equation (1) with w(x) replaced by <s(x), the Dirac delta

function and Hfinc being the externally applied field.
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Equation (5) is the basic equation which is to be solved by

application of a transform technique.

The Fourier transform of a function f(x) is given as

f(k) = / f(x)ejk*xdx (6)L
and the transform pairs formed are noted as f(k) •*•»• f(x).

Thus, by taking the Fourier transform of equations (1), (2),

and (3), the k-space formulation of the problem becomes

L (kmk)=L (k)w(k) (7)
T "

£ a.(jk)1 (8)
i=o x

m
k)-Z Vjk)

where j is the usual imaginary counter-clockwise rotation

operator. The integral equation (5) then becomes

(10)

still subject to the conditions of equation (4). This

approach yields two algebraic equations which may usually

be solved with much less effort than equation (5). With
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this thought in mind, we now examine the application of

this procedure to the problem of electromagnetic scattering

from a periodic structure.

The electric field E generated from an equivalent mag-

netic source R can be represented by

E(x,y,z)= — VxF(x,y,z) (11)

where F is the associated electric vector potential of the

source and e is the permittivity of the medium [13] . The

relationship between F and K is established with the use of

the position vector r and the free space Green function

A /\

. ' . -j (k-r) =
G = - - I (12)

4ir|fl

by -F(r)=/G(r,fI)'K(rl)dr' (13)c=/G(r,fI
A

where k and r are the respective unit vectors of the problem.

From this, the magnetic field intensity H can be derived

from Maxwell's equations and is given by

S(x.y.z)— J«e F(x,y,z)+ vy^x.y.z) (14)

where p is the permeability of the medium. For the xy

planar set of magnetic currents shown in Figure 1, F =0 is



obtained from equation (13) since z=0 and G is then a

function of x and y only. Allowing the medium to be that

of free space, i.e. e=e oandy=y , and since F =o, equa-

tion (14) is expanded in Cartesian coordinates x and y to

yield for z=0

H (x,y)= -r̂ -
s 3 J am

a.
3F

2

3.
3F,

a,
9F,

(15)

where k = 01̂ :1 e is the propagation constant. The quanti-

ty given by equation (15) is a general representation for

the scattered magnetic field intensity generated from a

planar source of magnetic current in the xy plane.

Consider the planar periodic surface shown in Figure 1

to be the source distribution for che magnetic field of

equation (15). Upon substituting equation (1.3) into equa-

tion (15) and taking the Fourier transform of equation (15)

we obtain

mn

2 2
o mn

amn'mn

k 2-K

(16)

B y)'̂
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Figure 1. a.) The planar periodic surface indicating

electric current density J over themn
aperture portion,

h.) Unit cell definition.



for the transformed magnetic field where

- k sinG cos*a o (17)

a
_k sinesin$o (18)

are the Floquet modes [14] and

' CL 8 ^k mn' mn'
(19)

is the Fourier transform of the dyadic Green function [9] .

The discrete nature of equation (16) results from taking

the Fourier transform of a periodic function [15] . The

final step in completing the process of obtaining a useable

form of the magnetic field intensity in the aperture is

accomplished by taking the inverse Fourier transform of

equation (16), noting K=E Xz, using the equivalence theorem
3.

and applying the appropriate boundary conditions on

Hs(x,y) at z=0 [9] . This leads to

,2 2
Htine (x,y) =

-2
J

mn

mn amn

(20)
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where ̂ a(a ^mn) ̂ "s tne transf°rmed electric field in

the aperture and ̂ tinc^
x»y^ is the incident tangential mag-

netic field. The inverse of equation (20) is obtained by

extending the operations over the entire unit cell. The ex-

tended operator is necessary to insure the operations in-

dicated by equation (20) are in the domain of the solution.

That is, the boundary conditions of the problem are satis-

fied. This extension is accomplished by including the elec-

tric current density over the conducting portion of the

unit cell. The electric current density is included by in-

troducing the truncation operator and the complement trun-

cation operator defined .as

T(f(f)) = 0 for r on the conductor
(21)

T(f(f)) = f(f) for r in the aperture

and

T (f(f)) = 0 for r in the aperture
_ (22)

T (f(r)) = f(r) for r on the conductor

This allows equation (20) to be extended over the unit

cell as



am

amn8mn ko2 "amn

11
2

(23)

with J(x,y) reprsenting the electric current density on the

conductor. Equation (23) is a form which can readily lend

itself to solution by iterative techniques.
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III. MATHEMATICAL FORMULATION OF ITERATIVE EQUATIONS

CONTRACTIONS AND FIXED-POINT THEORY

The use of iterative equations to solve mathematical

problems has been around for many centuries dating back to

B.C. 600 when this technique was used to solve problems

such as determining the square root of three. Beginning

with this early exploration of iterative techniques came

the plights of correct problem formulation and convergence

of the solution. Later methods, such as Newton's method of

solution, alleviated such problems but often forced other

constraints on the problem. One such constraint is that

the initial solution estimate needs to be in a region

reasonably close to the desired solution. Tsao and Mittra

[9] used this spirit of a priori knowledge in the form of

a variational correction to remain near the solution point

in their problem formulation. However, as will be demon-

strated later, the cases presented in their work did not re-

quire such a correction and, indeed, they even noted where

the iteration method failed even using such a correction.

The idea of using the iterative scheme to solve gener-

al scattering problems leads one to seek a way of determin-

ing the criteria for convergence and a way of generating a

convergent iterative formulation. Fixed-point theory and

contractor theory [16, 17] are applied to formulate a con-
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vergent iterative solution to the scattered fields derived

in Chapter II.

The general idea of fixed-point theory revolves around

finding the solution to an equation such as

f(x) = y = x 2 - 6 x + 5 = (x-5) (x-1) = 0 (24)

This is accomplished by forming an iteration function as

xn+1 = g<V (25)

and finding the intersection y=g(x ) and y=x which yields

the fixed-point and solution to equation (24). This is

accomplished by starting with an initial guess x , substi-

tuting into equation (25) to generate x,, and continuing

this process until x +1=x +e where e is the allowed error.

At this time x=x , is the approximate solution to equation

(25). The conditions for a convergent solution are in

general:

a.) on a closed interval I, g(x) maps I into itself

b.) g(x) is continuous on I

and c.) g(x) is differentiable on I and de(x) < 1

Thus the following theorem may be stated

Theorem 1. Let g(x) satisfy conditions a.), b.), and

c.). Then g(x) has exactly one fixed

point x* in I and starting with any XQ in

I, the sequence x , x, , ... , x generated

by equation (25) converges to x*.
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The process outlined by the above theorem is illustrated in

Figure 2. The fixed-point x* is often said to be a point

of attraction for g(x). x
n+i is also said to contract to

x*.

To illustrate the use of this theory, one root of equa-

tion (24) will be determined. Let

(26)

and find

d g(x) = -* (27)

then, the interval I is defined as xtl and IcC-3,3]. Note

that the known root x=l is in this interval and

-T— g(x) =1/3. We then expect that the iteration function

will converge to the fixed-point x*=l which is the correct

solution. The iterative process is contained in Table 1.

The question then arises, what happens when the sequence

will not converge?

To generate an iterative equation that will convege we

must meet the conditions listed in Theorem 1 above. As an

example, let us examine the roots of

f(x) = x2 - x - 6 = (x+2) (x-3) (28)
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f(x) = x2 - 6x +5 = 0

x2 + 5g(x) **

X0
xl

x2

X3

X4 -

X5

*̂ £

6

g(x)

2.0

1.5

1.208

1.077

1.026

1.009

1.003

xn-l

x*=x 1.000n

Table 1. Example of a convergent iterative equation
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which can be seen to be -2 and 3. By forming the iterative

equation

= xn+l=xn (29)

and noting

(30)

we see that the iterative equation will not converge. How-

ever, by properly forming a new iterative equation G(x)

that has G(x) x=-2<1 or G(x) x= , the roots

may be obtained. Although manipulation of equation (29)

could yield a suitable G(x) [12] we seek a G(x) that can

be formed by a method known as relaxation. The relaxation

process generally uses a portion of the n iteration along
t~Vi

with a portion of the iterated n (i.e. n-t-1) iteration to

"relax" the process. The form of the relaxed iterative

equation is

G(x (l-R)g(xn) (31)

where R is called the relaxation constant. The condition

=0
x=x

(32)

n
may be used to determine an optimum R such that convergence
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of G(x) is assured. Performing the operation of equation

(32) on equation (31) yields

4- G(x)dx = R+U-R) 4- S<x)dx
x=x

= 0 (33)

x=xn n

and solving for the linear correction R

where g'(x)= -7— g(xj. This process of finding the optimum

nR is called the contraction corrector (a name to be ex-

plained later in this section) and is used to iteratively

solve for the root x=3. This is illustrated in Table 2.

Equivalence between the contraction corrector and Newton's

method can be shown and is illustrated in Appendix C.

Note that g(x ) would not converge by itself and thus G(x)

is necessary for a correct solution to be obtained. As a

further note on the iterative process, the conditions that

g(x) maps I into itself is not trivial. For instance, note

that

f(x) = x2 + 2 = 0 (35)

will not yield a solution from an interative process unless

x is allowed to be complex and g(x) or G(x) maps into the

complex plane. The iterative equation G(x) may even re-

quire a complex relaxation or complex contraction correc-

tion constant and precautions governing complex algebra
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- xn+l = xn - 6

x_.,= G(x ) =n = Rx
n=

(1-R)

2 xn

n

0

1

2

3

4

Xn

1.0

7.0

4.24

3.23

3.01

R
n

2.0

1.07

1.13

1.18

1.2

n

1

2

3

4

5

6

2x

g(xn)

-5.0

43.0

11.98

4.43

3.06

^
3.0001

3.0006

3 . 0036

3.0216

3.130

3.798

G(xn)

7.0

4.24

3.23

3.01

3.0

g(xn)

3.0006

3.0036

3.0216

3.130

3.798

8.424

Table 2. Example of a non-convergent iterative equation

with convergence achieved by applying the con-

traction correction method.
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and operations must be observed. In particular, the ana-

lytic nature of f(x), g(x), and G(x) in the interval I

should meet the requirements of Theorem 1. An illustration

of the nature of these problems is given in Table 3. In

two cases, a real x never maps x into the complex plane

and, as such, never yields a solution. Even applying the

contraction corrector method with a real x does not give a

solution. Only the one case using a complex x and the con-

traction corrector method converges. This follows from the

conditions of Theorem 1. Since problems have been observed

in the simple problems above, a proper choice of action is

to pursue the corrective method in a more general sense.

Stakgold Cl8l has formed a very sound collection of

theorems and definitions on the idea of metric spaces and

their transformations, and the following material is con-

densed from his book with the advice that the reader con-

sult his work for proofs and greater detail.

Definition 1. A transformation L of a metric space

x into itself is Lipschitz continuous

if there exists a p, independent of u

and v, such that

d(Lu,Lv)_< pd(u,v) for all u,v£x

where d(C,£) is a proper metric in x. When the definition

above holds for some fixed \p( <1 , the operation of L is

called a contraction on X.
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g'(Xn) 2X_

g'(XQ)
G<Xn> - 6 X + (1 - B ) g C X i

ff*(X ) — 1 n n n n n

n

0

1

2

-

Xn

1.00

3.00

11.00

-

g(xn>

3.00

11.00

123.00

diverges

n

0

1

2

3

xn

4.24 ••• J4.24

2.18 + J2.34

1.13 + jl.45

0.64 •«• jl.25

n

0

1

2

3

4

5

6

Xn

2.00

0.67

-4.67

-1.91

-0.34

1.11

—

g(xn>

1.88 + J35.95

1.81 •»• J10.24

1.20 * J3.29

0.85 •*• jl.59

g(xn)

6.00

2.44

23.78

5.66

2.12

3.24

—

g'cxn>

4.00

1.33

-9.33

-3.83

-0.69

2.23

—

Bn

1.06 - jO.07

1.09 - jO.13

1.13 - J0.28

1.05 - JO. 40

6n

1.33

4.00

0.90

0.79

0.41

1.81

—

G(Xn)

0.67

-4.67

-1.91

-0.34

1.11

-0.62

-

G(XD)

2.18 •»• J2.34

1.13 + jl.45

0.64 t- jl.25

O.bO * jl.31

X* - 0.5 -f jl.32

Table 3. Example of a complex valued iterative equation

and the use of a complex contraction corrector.
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Theorem 2. Let the operator L be a contraction

on a complete metric space X. Then,

u=Lu has one and only one solution

in X which may be obtained from any

initial starting point u in X.

Thus, u -*• u* (the fixed-point) as

n-*-» and u* exists and is unique in

X.

Note that u may have multiple components, i.e., u=u(z,,Z2,..

. ,z ) where z. are complex coordinates. P as given by defi-

nition 1 is the description of the measure of a general der-

ivative of an operator. Thus, the process used in the sing-

le variable examples earlier may be extended to higher di-

mensional spaces with more general operators. This theorem

allows that the relaxed corrective iterative process out-

lined earlier is indeed a contraction, hence the name con-

traction corrector. This nomenclature is used to differen-

tiate this scheme from other corrective schemes applied to

iterative processes. The use of this definition and theor-

em as applicable to the spectral-iteration approach of equa-

tion (23) is detailed in the following section.
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IV. THE PERIODIC STRUCTURE; A

CANONICAL CASE AND THE REGIONS OF SOLVABILITY

The total electric field for the structure shown in

Figure 1 may be expressed in terms of the incident and

scattered fields as [9 ]

Ê,
Z
mn

amn mn o - mn

~°mn mn

v mn

ran

x

Z
mnIamn mn B -a Bmn mn

2 1mn Is,

K1
mn J

(36)

°mn' mn

mn
-k -z

zmn
e

for z<0

a

wherex

mn

~ mn '°r ko2 » °mn2 + Bmn2

1 tor k.1 < a* + * z
(37)
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and E and E represent the transformed electric fielda a r

and are respectively the reflection and transmission coef-

ficients of the Floquet modes. Deriving H from equation

(36) and by enforcing the boundary conditions on the tan-
i

gential magnetic fields across the cell at z=0, equation .

(23) is generated again. This exercise is presented to

complete the field description and to illustrate the rela-

tionship between the aperture fields and the reflection and

transmission coefficients as the coefficients will be of

interest later in the section. Equation (23) is the begin-

ning point to cast the problem in an iterative form.

The summation in equation (23) represents a discrete

Fourier series (DPS) for an infinite duration (i.e., peri-

odic) sequence [19] . This representation allows for direct

transformation between the (x,y,z) domain and the (k ,k >k )x y z

domain. Since the functions are represented by sequences

with complex exponentials having a periodicity of 2ir/m and

2ir/n, one period of the aperture distributions, that is one

cell of the structure, can be used to completely specify the

transform. The use of one period to represent a periodic

function in this manner is known as the discrete Fourier

transform (DFT). It is important to note that the trans-

formation mentioned above is exact and this infers that no

aliasing will occur when the DFT is performed. Aliasing

can occur when a non-periodic function is truncated and



25

and transformed with a DFT. Since information about the

original function is lost in the truncation, performing the

inverse transform can never return the original function.

However, when using exactly one period of the periodic func-

tion, the original function can be reconstructed when the

DFT and inverse DFT are performed. The most common form of

DFT algorithm is the fast Fourier transform (FFT) in which

special properties of the DFT are exploited to decrease the

computation time of the transform. Throughout this section,

the DFT and its inverse are represented by F and F re-

spectively. Implicit functional dependence is also used to

present a "cleaner" form of "the equations.

With the above thoughts in mind, we may solve equation

(23) in terms of E~ as:

,-1 G"1 • F VJ) - Htinc (38)

and, for clairity write equation (23) as:

T (J) = Tc c
ti
tine +

,-1 8 T(Et) (39)

Note that the subscript indicating aperture field has been

removed from equations (38) and (39) since the truncation

operator is included and the tangential field E over the

entire cell is used. Solving for E in equations (38) with
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T (J) substituted from equation (39) yields

«• (n+1)
Et

p
= F

-1

*.F [T(lt<»>)] "Htinc

(40)

This is the form of iterative equation given by Tsao and

Mittra [9] and is the basic equation to which a scheme

called the contraction corrector will be applied. The con

traction factor must be less than 1.0 to have a convergent

solution [18] and the contraction corrector scheme will

allow this condition to" be met.

The iterative equation for one-dimension (E or E ̂x y}

will converge if the conditions for a contraction given by

Stakgold [l&] are met. The proper metric for the space X

and the operators in equation (40) is:

d(u,v) = (41)

where u =( ̂  > g2, ... , £n> and v =(?1» ?2"" ' ̂  are the

vectors in X and Ct z, represent the components of each vec-

tor. The u and v used in the metric d(u,v) may be any u,v

in X since the contraction must hold for all u,v in X. One

This choice

would allow the contraction process to be observed and

logical choice for u and v is E and E
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would give the relative error between each iteration. This

also allows the regions of convergence to be determined.

That is, for decreasing error, the solution is converging

and for increasing error diverging. Since we are interest-

ed in the contraction to a fixed-point, a wiser choice for

u and v is E and ^E~ + e) where e is some small complex

number. Thus, at each component of E~ we essentially

have the ability to determine the general derivative of the

operator at each element. The contraction corrector is a

vector R with one element for each component of E

The form of R is exactly that of equation (31) for a one-

variable problem extended to an N component one-dimensional

problem. This powerful concept allows the regions of con-

vergence to be determined and allows the formulation of a

convergent solution as

R(n) •' E(n) + (? - R(n)) • L E(n) (42)

with L being the operator defined by equation (40). Unique-

ness of the solution is guaranteed since the problem was

formulated from Maxwell's equations via a vector magnetic

potential and the appropriate boundary conditions were

applied. Note that this representation is for a one-dimen-

sional scattering problem. Additional conditions are nec-

essary for the general solution of two-dimensional problems

[12] . These conditions and other considerations for two-



28

dimensional problems are discussed in Section VI.

The contraction corrector R = < R i » RO'"' ' Rn must

be determined in a general operator sense to behave as R in

equation (34). This implies that closer examination of De-

finition 1 is warranted. The determination of an operator

derivative must be formulated in terms of a contr'action.

The derivative must be expressed in an analytical form that

allows the contraction to be determined numerically for

each R. of R. Thus, equation (42) will guarantee a conver-

gent solution when R is properly determined. The contrac-

tion is related to the .continuity of the operator (trans-

formation) L through Definition 1 as:

d(Lu, Lv) < P d(u,v) . (43)

with d(C,C ) given by equation (41). The determination of

the contraction of L at u = u and v =(u + Au)is a represen-

tation that is thought of in operational calculus as the de-

rivative of the operator L for vanishing Au. Equation (43)

is then written as:

d[Lu, L(u + Au)] <_ p d[u, u + Au] (44)

If the vector u has m components and equation (44) is expanded

using equation (41), the result is:
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,. +Au)-Lu, + L(u_+Au) - Lu01 i\ \ 4 A

< P

Ku1+Au)-u1 •J

•(45)

Eliminating terms in the denominator of equation (45) yields

+ . L(u +Au)-Lu_ f
< P (46)

m l A u l

Now, since m>l, a stronger condition is written

I2 + |L(u2+Au)-Lu2|
2 +.-.+I

P (47)

Consider the following: given

12 ; I 12 ̂  Ai[!• "* a2 *—* am (48)
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Is the inequality true? Squaring both sides yields:

m
(49)

m a. m

and the inequality is seen to be valid for non-zero a..

Equation (47) is then written as:

L(u,+Au)-Lu, Au)-Lu L(um+Am)-Lu

Au

< p (50)

and then may obviously be further reduced for each component

t0: L(ui+Au)-Lu1
1 Pi (51)

Au

noting that -f^P- < P»

From equation (51) it is

be defined and the final form of equation (51) becomes:

From equation (51) it is seen that a complex-valued p may
ci

L(u.+Au )-Lu.

Au
= P

Ci
(52)

This form is the measure of the derivative of the

operator L at each component and may be used to solve for

the contraction corrector R. at each component u- e u.
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Even though a powerful tool has been developed to

allow the computation of a convergent one-dimensional solu-

tion to electromagnetic scattering, the background problems

surrounding the contraction corrector scheme should be ex-

amined. This.background material is of interest since the

breakdown of prior methods and the reasons for non-conver-

gent solutions gives insight into what particulars of the

scattering problem cause the difficulties. In particular,

known geometrical problem areas are: conductor width, cell

size, aperture size, and the angle of incidence and polari-

zation of the impinging plane wave. The understanding of

the difficulties arising for certain values of those para-

meters can provide vital insight when attempting to extend

the solution to two-dimensinal configurations, especially

when mesh structures are involved. The reference point for

this background investigation is the work of Tsao and Mittra

[9] . A complete iterative flow is detailed in Appendix B.

Consider the case of the free-standing strips shown in

Figure 3. This planar configuration of thin, perfect con-

ductors was the prime example used in the work of Tsao and

Mittra [9] . The case of a cell width of 1.4X , aperture

width of 0.6x , and incidence angle 0=0* was of particular

interest. Although the iteration equation (40), would per-

form adequately, Tsao and Mittra decided to apply a correc-

tion step to the iterative process. The idea of being

"near" the solution in numerical methods (i.e., Newton's
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Conducting
Strips

>H-ncfinc

$5r$•̂ ifi,, v'.-y-»fjff*Kl:-̂ JivjE-S-M

4

X

Figure 3.
Free-standing conducting strips with Floquet
cell width a, aperture size b and conductivity

o.
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Method) to either insure or speed convergence is commom

place. The correction step was chosen to be a form of the

Method of Moments [28] .

The amount of amplitude error of IT may be calcu-

lated from processing E with equation (40) and using an

amplitude correction C determined via a variational formula

calculated with Galerkin's method. This correction is

given by [9] :

C =
tan, tan

tan

(53)

where:

(54)
ds

aperture

with "*" denoting conjugation and ds the outward surface

normal. The value of C yields a weighted average error

based on the first moment's variation of the operator using

E n as the test function. C will be equal to one when E

represents the averaged approximate solution to the problem.

This statement implies that oscillations of the solution

could average out and yield a solution that is incorrect.
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Numerical difficulties could then arise if a problem gener-

ated such a solution from the iterative process. Great

care is then warranted with this type of numerical method

as is true with any numerical scheme. Additionally, as pre-

viously noted for iterative processes, just being near the

correct solution in amplitude does not guarantee a conver-

gent process.

The geometry given in Figure 3 for a=1.4X, b=0.6X, 0=0°

and H-wave (E.. parallel to strip edges) incidence is a11 no

problem that converges by equation (40) without the aid of

the variational correction of equation (53). What then is

the useful purpose of the correction C? The most useful

purpose of C is to speed convergence since an iterative

equation which is a contraction will converge from any ini-

tial estimate and will diverge if not a contraction. Anoth-

er useful (but applied with caution) purpose is the indica-

tion of accuracy of the iterated solution. The problem

above is taken from Tsao and Mittra [9] . The convergence

of the problem is shown in Figure 4. Figure 5 illustrates

the convergence of E of the problem using equation (40)

corrected by C of equation (53). The iterations of both

Figure 4 and Figure 5 are quite similar; however, the E n

shown in Figure 5 are converging more rapidly then the E

in Figure 4 by one iteration. This is a very small difference

in convergence rates and indicates that the methods behave

similarly.
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Equation (42) is also used to solve the problem above.

The contraction corrector R is obtained using equation (52)

along with equation (34). The application of this contrac-

tion corrector yields results for E shown in Figure 6.

Note that the first iteration is the same as the first

iteration in Figure 4. However, the second and third itera-

tions shown in Figure 6 are improved over those in Figure 5.

Even though this convergence improvement is by one itera-

tion, it is pointed out that the contraction corrector

guarantees convergence (except for possible numerical compu-

tational problems). The case for using the contraction cor-

rector over the other methods is not well presented in the

preceeding example. The basic iterative equation and the

variational corrected iterative equation break down and di-

verge for various cases. The following material is present-

ed to establish bounds for the regions of solvability for

the preceeding problem and to demonstate the usefullness of

contraction theory in this matter.

The basic iterative formulation is found lacking for

various cases. Conductor size, aperture size, cell size

and incidence angle are the parameters that are varied and

may cause convergence difficulties, The first case to be

examined is that of constant Floquet cell width and varying

aperture size. In paticular, let a = 1.4X and 0.005A <_ b

_< 1.395X for perfectly conducting strips, incident angle 9=0

and H-wave polarization. The contraction factor for this
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case is graphed in Figure 7. Recall that the solution will

diverge for a contraction factor greater than one. These

non-convergent regions are where the contraction corrector

must be applied to insure covnergence. Next, the cell size

is varied as 0.9x <. a <_ 1.4x for constant conductor size,

i.e., (a-b) = constant, and 0= 0° with H-wave polarization.

Figure 8 shows the contraction factor for a conductor size-

0.8X . This last example contained a conducting strip that

was a large portion of a wavelength. The case of a conduct-

or size 0.1X and cell width 0.2 A _< a _^ 0.9 A for H-wave po-

larization and 0= 0° is presented in Figure 9. This example

represents a small strip and the contraction factor associ-

ated with its geometry. The last case to be examined is co-

cerned with the angle of incidence of the impringing plane

wave. A cell width a = 0.9X , conductor width b = 0.4 A

and aperture width 0.5X is chosen for the convergence sur-

vey illustrated in Figure 10. Note that the contraction

factor bumps above 1.0 around 0 = 8 ° and diverges from 1.0

for 0>60°. This indicates that the basic iterative scheme

will have problems with convergence around 0 = 8 ° and will
ŝ

not converge for 0>60°. The above examples offer several

cases that point out problem areas in constructing a conver-

gent iterative solution.

The contraction corrector may be applied to construct

a convergent solution when the basic iterative scheme
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breaks down. Consider the case of Figure 3 with a = 1.4 A,

b = 0.6X and 0= 70° . At this incidence angle, the itera-

tion equation (40) and variational correction of Tsao and

Mittra [9] break down and do not converge. Figure 11 illu-

strates that after six and seve'n iterations respectively,

neither method converges. However, Figure 12 reveals that

the contraction corrector method converges after six itera-

tions and has a small error over the conductor. Herein

lies the reason the contraction corrector method is pre-

ferred. Even when the basic method and variational cor-

rection schemes fail to converge, the contraction cor-

rector method assures that solution can be reached and does

so with reasonable ease.

The foregoing examples have demonstrated the ability

of the contraction criteria to be applied to one-dimensional

scattering problems to determine the regions of solva-

bility. Additionally, the contraction corrector scheme has

been utilized to achieve convergence when the basic itera-

tive schemes failed. The examples presented give indica-

tions that the contraction corrector can be successfully

applied to planar wire surfaces.
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V. THE PROBLEM OF AN INFINITE GRATING

OF THIN WIRES

The structure shown in Figure 13 has been studied over the

years by various techniques to determine the reflection co-

efficient from the grid [1 , 2, 20 ]. The reflection coeffi-

cient may be obtained from the transform of the aperture E

field in the form of the Floquet modes. For the case of

cell widths less than ^/2, this coefficient is obtained

from the n = m = 0 element of the E~ variable for the
• mn

case of plane wave incidence as [9]

~(n) -(n) -..
F = E- = E+ - E . (55)

The first atempt to solve the problem with a X/'4 cell and

A/600 radius wire was performed with the variational correc-

tion iterative process using E n as a test function in the

variational scheme. This method fails to converge for vari-

ous sampling rates and various numbers of Floquet modes,

and a more suitable test function is sought [21] . The

Dirac delta function is chosen as the test function and

gives acceptable results for small angles of incidence.

The delta function samples the response and allows point

matching to be utilized to improve the variational correc-

tion factor. The convergence properties achieved with these

two test functions are shown in Figure 14. Since the iter-

ation method should be convergent for all incidence angles,
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the development of a different form of correction is a

logical path to follow.

The iterative process of equation (40) is one derived

for E~ from itself. That is, the E was determined from

E~ with an intermediate step in the iterative process

used to determine the surface current density J . The

iterative process then has two distinct parts and it is

reasoned that two distinct correction factors are required.

By weighting previous iterations of both E ' and 7(n)' lt:

is found that convergence can be obtained for small cell

size and near normal angles of incidence. However, it is

also determined that the stability and speed of convergence

is critically dependent on the weights chosen. It is then

realized that a solution may only be obtained by an "acci-

dent" as mentioned before. The hit-and-miss approach re-

quired by the weighted iterations may allow the determina-

tion of a proper solution but the recursive time required

could be excessive. These facts then drive the iteration

equation toward a solution obtained by the contraction cor-

rector method.

The cases chosen for examination are A/8, A/4, and A/2

cell widths with both TE and TM incidence. The TE case cor-

responds to incidence angles <J> = 0° and 0° _< 0_< 90° while

the TM case corresponds to incidence angles $= 90° and Ou

<_ 9_< 90° , with either E". or H. respectively co-
"""" *̂ ~ •!• *• l̂ - i. Lit-
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polarized to the wires. Since the determination of reflec-

tion from two-dimensional mesh reflector antenna surfaces

is the application toward which this work is directed, the

reflection coefficients must be carefully scrutinized to

ascertain the best definition of reflection. Wait [2] de-

fines a suitable normal reflection coefficient and a com-

parison to his results will be made. The specular reflec-

tion is of interest in antenna work and the construction

of the geometry required is given in Figure 15 [22] . When

E. is entirely co-polarized with the grid wires, the twome °

reflection coefficients agree in definition. With TM polar-

ization (vertical) incident, a pseudo-Brewster angle is ex-

pected at certain incidence angles, Variations of magni-

tude are also expected to occur with changing wire conduct-

ance. Before examining, various cases and comparing the re-

sults to those of previous authors, the wires must be con-

verted into equivalent strips to yield a structure equiva-

lent to that used by the previous authors LI, 2, 20, 27-1 .

Harrington [29 ] relates that equivalence between thin

metallic rectangular strips and small radius wires is ob-

tained if

b = 4w (56)

where b = radius of the wires and w = width of the strips.

Thus, using equation (56), we are able to use the strip ana-
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lysis to determine the reflection from a grid of cylindrical

wires. A further characterization of the wires is required

when the wires are of finite conductivity. Schelkunoff [23]

gives the internal impedance of a thin cylindrical wire as

*0(Yb)
(

where nm= ĵ /( o^ + jo,̂ )"* and Y = jiŷ  + jcoej **

with ^ ,£_, and a being the electrical properties of them m m

wire and K , K, being modified Bessel functions. These

principles may now be applied to the cases detailed above.

The cases of cell widths of A/8, A/4, and A/2 are now

presented with a wire radius of A/600. Good agreement is

obtained between the results of the contraction correction

method and the resuLts of Wait Czl for incidence angles of

both *= 0°and $= 90°. The case of *= Ou is illustrated in

Figure 16. Recalling the other definition of reflection co

efficient given in Figure 15, the reflection coefficients

for the case of $= 90° are shown in Figure 17. The expect-

ed pseudo-Brewster angle is observed as a reflection mini-

mum near the angle of 67*. The internal impedance of the

wire becomes important in the problem when the conductivity

of the wires becomes finite. Instead of the tangential

electric fields cancelling over the conducting portion of

the cell, they must combine to support the current at the
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surface as

E + F = T 7
tine tscat o int (58)

where E = scattered electric field and I = current
U S C 31 O

along the conductor. The results of a finite conductivity

are shown in Figure 18 where equation (58) has been included

in the iteration equation. The results resemble that given

by Jordan and Balmain [30] for a lossy ground and follow

the idea that the grid represents a shunt impedance. Over-

all, good agreement is obtained with previously computed and

measured results.

As a final note, some concern has been expressed over

the non-convergence of the iterative technique and over the

fact that increasing the number of Floquet modes not not in-

crease the accuracy of the solution [24] . The first con-

cern has been addressed in the preceeding sections while the

second will be addressed now. When an iterative equation is

in a non-convergent region, the solution may only be arriv-

ed upon by an accident of computation unless special methods

of computation have been included.

The consequence of adding additional Floquet modes is

adding additional points that are in the non-convergent re-

gion. The result of this consequence can range from produ-

cing a large variation in the iterated solution to helping
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the iterated solution. The control over the results is nil

with a non-convergent iterative scheme. However, when the

contraction corrector method is applied, the expected in-

crease in accuracy with increasing Floquet modes is obtain-

ed. Of course, a limit on accuracy still exists due to the

finite register length of the computing machine used. The

case of a X/4 cell width, X/600 radius wire with infinite

conductivity and $=0=0° is chosen to illustrate the above

comments. A plot of converged accuracy is shown in Figure

19. The usual leveling off accuracy is noted. This is due

to the higher order Floquet modes having less and less

effect on the solution, i.e., the farther away wires con-

tribute less and less to the fundamental cell when a con-

vergent process is used.
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VI. EXTENSION TO TWO-DIMENSIONAL PROBLEMS

The present analysis has been limited to fields having

only one spatially varying component. When a second spa-

tially varying component must be added, the difficulty in

applying the contraction corrector scheme is increased.

Each field component must have its own iteration equation

as can be seen from equation (23). These equations are

coupled, however, and this leads to new constraints that

must be applied to the problem Cl2l . For iterative equa-

tions of the form

xn+l

(59)

in a space X, the sufficient but not necessary conditions

for convergence are

9f + 8f
13T -57

_ _ .
8x 3y
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for all x,y in X where p< 1. As was observed in the one-

dimensional case, the conditions for convergence revolve

around the derivatives of the iterative equations. The de-

termination of the partial derivative follows the form of

equation (52) and may be written for f(x ,y ) asn n

Ax' yn)"f(xn'yn)

where f indicates the partial derivative of f(x,y) is
Jv

taken. Again, it is seen that contraction theory allows

the measure of the derivative to be calculated. The condi-

tions to insure convergence must now be determined.

The conditions given in equation (60) are sufficient

and not necessary and as such are fairly strong conditions.

Thus if a stronger condition is applied, the stronger condi'

tion is also sufficient. Such conditions are

• fy ' Sx ' 6y - 0.0 (62)

These conditions can not be met unless a new set of equa-

tions are formed using the contraction corrector method.

The method for the one-dimensional case required the com-

bining of x and x , together to form a new iteration equa-

tion. The two-dimensional case requires the combining of
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the x and x , along with f , f , g , and g to meet then n * x x y x y

requirements of equation (60). A form of equation that

conforms to the plan outlined above for x +, is

-a >f (xn- V+6>V B S(xn-V (63)

The first term of equation (63) is that of the one-dimen-

sional case. The second term of equation (63) is seen to

be equal to zero when y approaches the fixed-point y*.

Similarly, the iterative equation for y +, is:

V ^[3xn-
 9 n

(64)

The complex constants a, 3 ,Y * and 3- are the contraction

corrector terms that must be utilized to force equations

(63) and (64) to meet the convergence requirements of equa-

tion (60).

The partial derivatives of equation (63) are set equal

to zero and are found to be :

(65)

yw * (1-<"Wyn)+6-'iy*n,yn> -
From these equations, (3 may be solved in terms of a as
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1 -a)fx(xn»yn:
g (x ,y )x n n

which may be substituted into equation (65) to find:

a = Y " " (68)

If g (x ,y ) =0, a is found from equation (65) as:x TI n

a = (69)

-1

which is seen to be the same form as equation (34) in the

one-dimensional case. This is expected since F (x ,y ) is
x n n

not affected by g (x ,y ). 6 is found from equation (66)
A il II

as:

( a -1) f

1 - g y

for gx(xn,yn) = 0 (70)

The case g,,(x ,y ) = 1 is excluded for the problems ofy n ' n r
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4

interest as this would indicate multiple solutions. Multi-

ple solutions are excluded from the problems prsented here-

in since they are derived frotn Maxwell's equations and

appropriate boundary conditions and, as such, uniqueness is

guaranteed. The case that the denominator of equation (68)

equals to zero requires closer examination. This case

would yield an a •*» . This implies that x = 0 as seen from

equation (63) and this case is a trivial one for the pro-

blems of interest. Therefore, this special case is not con-

sidered. The a and $ determined above then allow the

iteration equation (63) to be solved for x , = F(x ,y ).
n+l n J n

With this corrected value of x +, , a similar set of con-

traction correctors may be calculated for y and y

solved for. The contraction coefficients y and 3 are cal-

culated as:

Y +(1 - Y) gw(x^,1 ,y
3 --

and

~ gx
(xn+l'yn)

(72)
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When f (xn+i»yn)
 = 0» arguments similar to those previous

hold and the following correctors are obtained as:

(73)

(74)

The Y and 9 are then used in equation (64) to find

G(x ,,y ). The iterative process is then repeated until a

suitable accuracy has been achieved. An example of this

two-dimensional contraction corrector scheme is laid out in

Table 4.

Even though the foregoing text and results of Table 4
*

have indicated that the contraction corrector method may be

successfully applied to analytical two variable problems,

it remains to be seen that the theory is directly extend-

able to numerical methods. Current results of the applica-

tion of equations (63) and (64) with the correctors of equa-

tions (67) through (74) as applied to the one-dimensional

problems of Sections IV and V agree with the previous data.

However, the application of the contraction corrector

scheme to a two-dimensional canonical problem has yielded

poor results. The problem appears to be the numerical evalu-

ation of the partial derivatives. Without the accurate de-
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f(x,y)=x=2x+2y g(x,y)=y=x2+2y

F(x,y)=x=ax+(l-a)f(x,y)+By-$g(x,y)

G(x,y)=y=yy+(l-Y)g(x,y)+Sx-3f(x,y)

n

0

1

2

3

xn

1

4

14

yn

1

3

22

rHv«

^n'V

4

14

72

«<VV

3

22

240

n XQ yn a B y 9 F(xu ,yn) G(x n ,y n )

0 1 1 0.67 0.67 0 . 5

1 0.5 1 - - 0 1 - -0.25

2 0.5 -0.25 -

x =0.5 y =-0.25

Table 4. Example of a two-variable contraction

corrector method.
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termination of f , f , g , and g , it is doubtful the con-x y x y

traction corrector method will be successful in arriving at

a convergent solution. Another problem that is not readily

apparent is the stringent conditions placed on the partial

derivatives. Invoking such strong conditions as given in

equation (60) may cause computational problems and eased or

adjusted conditions may be necessary uo reach a viable so-

lution method. These problems are being investigated and

useful results are expected in the near term [25] .

The usefulness of the two-dimensinal contraction cor-

rector can not be underestimated. For instance, when a

plane wave strikes a one-dimensional grating at an inci-

dence angle that induces :current along two axes, a cross-

polarized scattered field will be generated. The two-

dimensional nature of the problem must be addressed to ob-

tain the valuable cross-polarized information. The solu-

tion for reflection of waves from actual mesh surfaces is

also of interest and involves the use of the method de-

tailed in this dissertation.

An illustration of an actual mesh surface is shown in

Figure 20. The material is molybedenum wire coated with

gold and woven in a double-knit fashion. Reflector sur-

faces of space-deployable antennas have surfaces of this

nature and their reflection characteristics must be known

to accurately predict their electrical performance. Figure
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Figure 20. Actual mesh surface.
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21 illustrates the periodic nature of the mesh surface. It

can be seen from the outlined boxes that Floquet cells may

be formed. This periodic nature may be capitalized on and

used to formulate the mesh surface into a suitable problem

for the contraction corrector scheme.

Figure 22 is the discrete representation of one single

mesh path. The discretation of the mesh path is accomp-

lished with twenty-eight, approximately equal length,

straight segments. With these segments defined, it is pos-

sible to overlay a grid onto the segments to achieve a rep-

resentation of the mesh surface. The equally spaced points

on the grid represent the sampled points required for the

Fourier Transform of the solution method. This typical

grid representation of the mesh surface will allow the de-

termination of the reflection characteristics of the sur-

face. Other surface weaves and materials may be placed on

similar grids and their reflection characteristics calcu-

lated. Figure 23 illustrates the application of the grid

to the segmented single mesh path.
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Figure 21. Floquet cells outlined on the

actual mesh surface.
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Figure 22. Single mesh path of the actual mesh surface
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Figure 23. Grid representation of the segmented

single mesh path.
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VII. CONCLUSIONS

A new method called the contraction corrector method

has been developed to insure the convergence of the one-

dimensional spectral-iteration approach when solving elec-

tromagnetic scattering problems. The method was presented

beginning with basic examples of the iterative method and

progressing to detailed iterative operator theory. Comput-

ed data generated from the scheme was critiqued and compar-

ed to work previously presented and was found to agree well,

The ability to predict the regions of solvability with the

contraction corrector scheme was demonstrated. The method

was then utilized to solve for the reflection coefficients

from an infinite grating of thin wires and the results were

compared to previously published data. The ideas of gener-

alization to a two-dimensional problem were discussed. A

solution technique for the two variable contraction cor-

rector method was developed and numerical difficulties in

applying the method were discussed. A sketch of an actual

mesh surface was presented and the application of the spec-

tral-iteration approach was detailed. A general reference

list and an over-view of both the k-space problem formula-

tion and the spectral-iteration approach were also included.

The material presented in this dissertation gives a

solid foundation for future research, and indicates that a
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suitable method for analyzing scattering from arbitrary

mesh surfaces can be developed. The recommendations for

future research should be directed toward understanding the

the shortcomings of the two-dimensional problem as detailed

in Chapter VI. With the proper constraints placed on the

two-dimensional problem and the correct evaluation of the

partial derivatives, a suitable method of solution is deemed

obtainable. Another alternative is the reformulation of

the problem with another method of attack. Many numerical

methods have yet to be applied to the problem and one may

will be suited for the two-dimensional scattering problem.
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APPENDIX A

The FORTRAN source code that follows will allow the

user to solve for the electric field in the aperture of

an infinite grating of thin wires as well as the reflection

coefficient from the grating. The program is written in

FORTRAN 4 and should run on most FORTRAN compilers with no

modifications except the unit numbers on the read and write

statements. The plot routine must be user supplied and the

program modified accordingly. The input variables are spe-

cified in comments internal to the program. Comments are

also included to help the user follow the flow of the pro-

gram. Some of the variables are self explanitory and the

others are listed below. A suitable DEL, the derivative

increment, has been found to be (0.01,0.01) for most cases.

E(I) Electric field in the aperture

JC(I) Current density on the strip

G(I) Transformed Green function

EUT(I) Dummy E field variable

CREF Complex reflection coefficient

HI Incident H field

ED(I) Incremented E field in the aperture

ALF(I) Contraction corrector

CK? Constants used in the iterative equation

K Propagation constant

EOUT(I) Output variable used for the external plot

Z Internal impedance of the strip
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Lines

170-400

410-520

530-610

620-640

650-720

740-920

930-990

1020-1110

1120-1130

1140-1150

1160-1200

1210-1230

1260-1290

1300-1370

1380-1440

1450-1510

1520-1580

1590-1610

1630-1670

1680-1740

1750-1780

1790-1840

1850

Program Flow

Input data

Initialize parameters

Calculate incident E and H fields

Calculate thin wire impedance

Set up aperture/strip sample space

Calculate Floquet propagation constants and
Green function transform

Initial aperture E estimate
3.

Calculate constants in iterative equation

Store untransformed Ea
Take FFT of l"a and (E& + DEL)

Perform G JE
£t

Take inverse FFT of G Ea
Perform complement truncation T (F[G E ])

C 3.

Perform FFT on T (F[G E ])
C £L

Perform G"1 (F[T (F[G E ])])
C £L

(F[T (F[G El)])
C £L

Calculate reflection coefficient

Perform inverse FFT on G~

Plot set up

Calculate contraction corrector

Apply contraction corrector if desired

Calculate finite conductivity effects

Perform FFT on first iterated E
81

Test for five iterations, next iteration
go to 1160

1880-1980 Output external plot and stop execution,



PAGE S3
Of POOR QUALFTY gl

C
C****** F INAL .S **** D E R I V A T I V E C O R R E C T * * * * * *
C Author Jerry C* Brznri

D A T E August 12, I^^S
Al l rights rese rved

Dirension all arrays
C O M P L E X E C 5 1 ? ) , J C ( M 2 > « G ( 5 1 i : ) f E U T ( 5 i ; ) , D E L
COMPLEX PI,CPEF,HI
COMPLEX ED(512),ALF(51?),F9If £(512),U1(512) ,E[)UT(5^2)
COMPLEX J»CK1(512) ,CK2(5U),CK(512),7
DIMENSION ? O U T ( 5 1 2 t I D f ? )
R E « L K ,K2

A = Floquet cell dimension
F = Strip size

WRITE(6,*) * INPUT FLOQLET CELL SIZE , STRIP SIZE'
URITP(6,*) ' NORMA11TED IN WAVELENGTHS*
R£AD(5,*)A,B

FREQ = Freauency in Hertz
WRITE«5,*) * INPUT F=>EQUENCy IN H£PT?'

MA> = FFT s i2e = Number of sair .cLes per ce l l
IW = l O y S C ^ A X ) ; i.e. ^ A X = ? * * 1 U
IP = 0 NO clct; IP = 1 »»lot ;
NOTE..,,. External plot routine required
IAC = C No correction;
IA!>=1 Contraction corrector scheme applied

WRITE(6,*) 'INPUT ^f LOfaZCN), PLOT OPTION, ADJUST OPTICN*
R£AD(5,*> ""AX, IW, IF,!A!i

SIP s Conductance cf strip
UAITE(6,«) * INPUT C O N D U C T A N C E OF ST»IP IN SIE-ANS*
READC5,*) S1G

TH = Theta angle of incidence
DEL = Comple» increment useo ir derivative routine
PH = Phi angle o* Incicence

WRITE(6,*> * INPUT TH£TA ANGLE, DERIVATIVE DELTA, PHI ANGLE'
48? Rt*CK 5,*)TH , DEL,PH

URITE(6,<»6) DEL
16 F09MATC-',' DEL= ',iE10.4)

2 9 0 FORMATC-',' A D J U S T M E N T U S E D
C Initialize routine constants

TPlsPI*2.
C*2,997956?+8

ETAsSQRTfUU/FP)
ITER=C
J=(D.C,1 .3)

«>D=18C./D1

C Calculate incident electric and magnetic field components
C for electric field p a r a l l e l to hires, i.e. no cross-



C COlarirat ion includec oiatr^M*. ^
I F f P H . L T . 4 5 . ) E I N C » 1 . C J2 ^ l PASEIS

IF fPH.GE.45. ) E I N C = C C S f T H - D S ) W TOOR QUALITY
I F C P M . L T . 4 5 . ) S T H = C .
IF fPH.GT.45. ) S T H = T H

H l s 1 . / E T A * f C O S ( T H » C R ) + J * S l N ( T H * D R ) )
IF fPH.LT .45 . ) w : = 1 . / F T A « C O S ( T H * D P )
Z = S Q R T f T P I * F R E O * U U / 2 . / S l G > * ( 1 . ? , 1 . 0 ) / T P I / 6
W R I T 5 C 6 . 1 5 ) Z

15 F O R K A T f - * , ' Z = C , ? = 1 C . ? , - f - , E l 0 . 2 f - ) - )
C Ca lcu la te number of s a m p l e s on strip and in aperture

NsIFlX(TAU/A*FLOAT(K*.X»

V AX1 = I»«X+1
WRITEC6 f?3)

IF(NLGT.MAX) GOTO
K=TPI/ALAMP

SK=K*SIN<TH*PR>*COS<°H*l,P)

C C a l c u l a t e Green funct ion t r a n s f o r m
DO 4C ISI .^AX

U = T P I * ( I - 1 ) / A - S K
G O T O 60

50 U = T P I * f I - M « X - 1 ) / A - S K

I F f U . G E . r 2 ) G C T O 7C
G(I) = - J * 5 Q « ? T ( K 2 - U )
G O T O 44

?C G(I)=-SQRTfU-K2)
4A G(I) = G(D-SStf*SS*:/C(!)
4C COK'TINUE

C Initial F fielC estimate
DO 32C 1=1,N
E(I)=(1.C,r.G)

32C EOCl)sF(I)*DEL
DO 22C I=N 1,»AX
ED(i)sCu.OtO.O)

C NOTE.... Iterative for« useo ir this program is x =
C Calculate "BM ccrtion ct it e r a t i v e equation

DO 11C 1=1, MAX
11C CK1 (I ) = HI*J«W*LU

CALL F F T C C K l t I W , « A X >
DO 120 I=N1,»AX

12C CK?(I)=HI*W*UU/J
DO IA'0 1=1 ,N

C A L L F F T C C I f 2 t I W , * » A X )
DO 13C 1=1, MAX

13C C K ( l ) * ( C r 1 ( I ) - » C K ? ( ] » / 6 ( Z )



00 30C 1 = 1, P»X 83
3DC U1CI )=E(J)

CALL F F T ( £ D , IU ,MAX3
CAIL F F T < E , I U , P ! A X )

Pecin "AX" portion of i t e ra t i ve equation
Perfor iB (6*E)
80 00 10C 1 = 1, M«X

E O C 1 ) « C O N J G < E D C I > * C C I ) )
10C E ( I ) s C C N J G < E ( I ) * G < I ) >
Ferfori" inverse t r a n s f e r * ol (G*E)

CALL F F T ( E , I W , M A X )
CALL FFT (ED , IW,M*X )
W R I T E (3,199) ITER

19S F O R M M C I C X t H O )
P e r f o r m t runcat ion opera t i on T ( 6 * t >

00 150 1=1 ,N
E D < I ) = C Q . O , C . O )

15C E( I)=(C. 0,0.0)
DO 16C I=N1,PAX
ED C I ) = C O N J P (?D (I)) / M ^ X
F.(I) = C C N J G C E < I ) ) / M * X

Ca l cu la te current dens i ty on str ip
16C JC(I) = F ( ! ) * J /W/UU-H
Per form inverse t r ans fe r * en T ( G * t )

C A L L F F T ( £ , I W , ^ A X )
CALL FFT<ED,IW,MAX)

Perform TCG*E)/G and acd constant trO"
DO 17C 1 = 1, M«X

EUT(Z)*CCNJG(E<2))/KAX
17C CONTINUE
Calculate reflection cce^ficiert

P I = J * S I N ( S T H * D R ) / C C S ( S T H * L P )

A53 FO«?MAT(6X,* «EF= * , Fl u. = , cGx , 'CRE F= ' , F1 0. 2 ,1 X , F1 C .
C Perfcrir irverse t r ansf c r^at ion to obtain first iterated
C electric field

CALL FFTCEUT, IU fPA>)
CALL FFT<EPU T»I«,M*X)
DO 2CC J =1 ,M«X
EDUTCI)=CONJG(EDUT<1))

20C EUT(I) = CONJG<EUT(D)
C Flct option

IFClP.LT.Cn GOTO 150
CALL JBPLOT (?UT ,l« A ) ,TT t K , tCuT )

180 ITER=IT£P+1
C Call subroutine to calculate derivative of operator and
C contraction factor

CALL DF3IV(EUT,EDUf ,"AX ,PR IN E , AL F , I AD , D£L ,CO^ )
WRITE (6t3iD) CON

34C FOfiMAT(/,1^X,* CON1R«CTICN = *vFlu.^)
C Perfcr* ccrrecticn on electric tield; NCT£... If l«D=u
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C ro adjustment is usec as A L F ( 1 ) = 0 . 0 ^ POOR QUALITY 84

00 350 1=1,N

E U T ( I ) * A L F ( X > * U 1 C X ) * < 1 . - » L F ( X ) ) * E U T C I )

35C EDUTCI)*EUT(I>+DEL
310 CONTINUE

C Ca lcu la te f ield on str ip due to f ini te conduct iv i ty
00 21C I«Nl t*AX
E D U T < I ) = - J C ( T ) * 2 * B

C Perfcr i r t r ans fo rm of E f ie lc tc begin next i terat ion
CALL FFT (EUT , IW,« IAX)
C A L L F F T ( E D U T , I U , M A X )
00 220 I=1 f P»X
ED(I )=EDUT(I )

2 tC E( I )=EUT( I )
I F C 1 T E P . G T . 5 ) G O T O 2<-C
G O T O 6C

24C C O N T I N U E
DO 777 I=1,M«X
P I N D E X = F L O ' T ( I - 1 ) / F L O A T ( V A X - 1 ) * A

C P e r f o r m plot f t r c t i cns 1f-r e x t e r n a l Plot rout ine
W R ! T E ( ? 2 , 7 ? f i ) P I N D E X , E O U T C I , 1 , 1 ) , E O U T ( I , 2 f 1 ) , £ O U T ( I , 3 t 1 )

* ,ECUT<1, A , 1 ) f E O U T ( ] , r , 1 )
WRITE(23,77£) SINDEX tEOUTU,1,?i,LOUT I I,2,2),EOU*(1,3 , 2)

+ ,ECUT<If4f?),EOUT( I,',2)
77F FORMAT(6F8.2)
777 CONTINUE

2 6 C F O P K A T C - ' t l T X , * T I * I L Y E X I T * )
?9 f W R ! T E ( 6 , ? 9 )
? 9 FORM«T( * - * , * E R R O R I N W )

999? S T C P
ENS
SUPROUTIME J °PLOT(* , INT , i T E R t t o u T )
COMPLEX «(1)
DIMENSION *^P(512) ,EOUT(512,10,2),PHASE(512)
N=ITER*1
DO 8C J=1,INT
AMP(1 ) = C*BS(«(!))

*II»AG(A (I) J

IF(ARS(PHX).LT.I.E-2:) FHX=1.t-2n

PHASE(I)=57.295*AT#NZ(PHY,PHX)
EOUT(I,N,1)=AKP(I)
EOUT( I,N,2)=PH«SE(1)

80 CONTINUE
RETURN
END
SURROUTINE DERIVCE ,EP,MAX,PKlH5,ALF,IAD,OEL,CON)

C This subroutine calculates tht derivative and
C contraction factor ol the operator

COMPLEX E(r*AX) ,ED(rAy)«ALF rn«x) « PRlKF(r.AX) .DEL
COK=C.C

PRIME (I)=(FD(D-E(l)?/ntL
COK=CCN+fC*BS(PRIMf(!)*D'L))*"2
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13 IF(!*D.LT.1> ALF(I)«~.n'
CON= SORT (COM FLO AT C M A X > >/C«faS(DEL)
RETURN
END
SUBROUTINE F F T C A f H f N )

C This is the FFT subroutine tailed from the main program
COMPLEX A(K)fUty,T

j=r
00 7 Is1,N«"1
IF(I.6E«J) GOTO 5
T=»(J)
A(J)*ACX>
A(I)=T

5 K=NV2
6 IF(K.GS.J) GOTO ?

GOTO e
7 J=J+K

DO 20 L=1t"
LE=2**L
LE1=LE/E

DO 2? J = 1,I.E1
DC 1C I«JtK,L£

7=A(IP.)*U
A(IP)=A(!)-T

10 «(I)=A(I)*T
ao u=u*w

END
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APPENDIX B

The general form of the basic iterative process is

given as

(n+1) -.-I

The linear operations indicated in equation (Bl) may be

easier to understand if a flow of the operations is presented.

Figure B-l illustrates the iterative process used in the

computer program of Appendix A. The initial estimate of

the electric field in the aperture is transformed and the

transformed Green function is applied along with Floquet's

theorem. The inverse transform is applied to this result

to obtain the current density on the strip. The inverse

of the previous steps is then performed to obtain the

first iteration of the electric field in the aperture.

That is, the current density is truncated over the aperture

and transformed, the inverse transform Green function is

then applied along with Floquet's theorem to obtain the

iterated aperture electric field. This iterated electric

field may then be truncated and the process repeated until

a suitable solution and tolerable error is-obtained.

Figure B-2 illustrates where the basic iterative pro-
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cess may be interupted to accomodate the contraction cor-

rector scheme. This point is chosen since an iterated

solution has been generated. With this iteration and any

previous iterations a filtering process may be employed.

The text pointed out the usefulness of the contraction

corrector scheme since it guarantees a convergent solution.

Thus, the iterative process can be viewed as a feedback

process whereby the errors of processing can be eliminated

and a useful solution of the problem obtained.
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APPENDIX C

The optimum contraction corrector for the one-dimen-

sional problem is shown to be equivalent to Newton's

method. The proof is as follows:

f(xn) = 0 (Cl)

G(xn> - xn+l

g'

- R) g(xn)

g'

<C2)

(C3)

g' g'-l-g'
x +

g1

n, g'-l

-g(xn)
n + g'-l

(C4)

(C5)

g'-l
(C6)

g'xn - g(xn)

g'-l
(C7)

xn . xn -

(g'-l) g'-l
(C8)

" x
xn+l = xn *

n

g'-l
x -n

where g1 = — g(x)
dx x=xn

(C9)




