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ABSTRACT

Contraction theory is applied to an iterative formplation
of electromagnetic scattering from periodic structures and a
computational method for insuring convergence is developed. A
short history of specfral (or k-space) formulstion is presented
witﬁ an emphasis on application'to periodic surfaces. The
mathematical background for fo?mulating an iterative equation
is covered using straightforward single variable examples
including an extension to vector spaces. Tlo insure a
convergent solution of the iterative equation, a process called
the contraction corrector method is developed. Convergence
properties of previously presented iterative solutions to
one-~dimensional problems are examined utilizing contraction
theory and the general conditioﬁs for achieving a convergen@
solution are explored. The contraction corréétpr method is
then applied to several scattering problems including an
infinite grating of thin wires with the solution data compared
to previous works. Problems associated with extending the
contraction corrector hethod to two—-dimensional iterative
formulations are ocutlined including the benefits of applying
this process to difficult practical problems such as knitted

mesh surfaces.
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I. INTRODUCTION

The electromagnetic scattering properties of periodic
structures have been of interest to engineers and scien-
tists for many years and various methods for solving the
scattering problem have been presented (1] - [8] . These
methods include solutions generated from static approxima-
tions, averaged boundry conditions, the method of moments,
physical optics, the geometrical theory of diffraction, and
a combination of these techniques. However, certain fre-
quency regions or certaiﬁ geometrical configufations (or
both) cause gravé difficulties which.cannot be overcome by

the methods mentioned above.

"Tsao and Mittra [9] presented a novel iterative
technique based on earlier spectral approaches which
can be traced to original work performed by Bojarski [10]
This technique, called the spectral-iteration approach, ex-
tended the scattering solution capability to regions pre-
viously untouched by other methods. In particular, Tsao
and Mittra [9] examined the scattering from periodic struc-
tures and their applications to frequency selective sur-
faces. The present author's area of interest is the pro-
blem of determining the reflection propeties of mesh sur-
faces [11] . Mesh surfaces are used in many applications,
but the most current application is for conducting reflec-

tors on space-born antennas. The mesh surface is a complex



periodic structure whose reflecting properties are not
readily analyzed by the methods mentioned above. For in-
stance, an attempt to solve the mesh problem by the method
of moments would require a cpecial set of basis functions
as well as an enormous amount of computer memory. Analysis
of the mesh surface by the spectral-iteration technique
would be of great value since the method is essentially in-
dependent of geometry, i.e., does not require explicit
knowledge of appropriate basis functions and does not re-
quire extreme amounts of computer storage. However, the
basic iterative scheme suffers from convergence problems
that are associated with most iterative formulations [12] .
This work treats basic iterative techniques, presents a
background on the convergence problems associated with
iterative techniques, details the formulation of a correc-
tive scheme to insure convergence of the iterative tech-
nique, and applies a version of the corrective scheme to

the specialized problem of a parallel wire grating.

Current techniques for solving complex scattering pro-
blems are limited by the difficulties ovutlined above. The
technique described herein provides a basis for the further
development of solutions to complex problems. Additionally,
the solution methodology provides a useful concept which
may be applied to problems outside the realm of electromag-

netic scattering.



Portions of the baékgrdund material presented below
follow directly from the referenced works and credits are
listed for these. The notation used herein is self con-
tained with attempts to follow the references as closely as
possible to maintain a common base, but ailowing for differ-
ences to insure clarity of the equations. This is included
for consistancy, completeness, and continuity. The reader

is advised to consult the references for greater detail.



IT. REVIEW OF THE FUNDAMENTAL FORMULATION

Bojarski [10 ] considered that field quantity ¥(x) and
a source density w(x) were governed by the differential

equation
L ¥(x)=-L w(x) (1)

where the form of the operators for an n-dimensional

problem are i
L )
L\y=.2 ai(3x—i) s p=1,2,---n (2)
i=0 P
m ai
and Lw= E bim sy p=1,2,---n (3)
i=0 P

subject to the constitutive equation

W(x) = q(x)+¥(x) (%)

The generalized integral representation of equation .(1)

is given by

_ ty , ' n_. -
y(x)= fglx,x") «wlx")dx" + ¥, (x) (5)
where g(x, x') is the appropriate Green function satisfying
equation (1) with w(x) replaced by §(x), the Dirac delta

function and y, . being the externally applied field.

C
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Equation (5) is the basic equation which is to be solved by

application of a transform technique.

The Fourier transform of a function f£(x) is given as
® jk
(o= /f(x)eJ *dx | (6)
-co

and the transform pairs formed are noted as E(k) «— f(x).
Thus, by taking the Fourier transform of equations (1), (2),

and (3), the k-space formulation of the problem becomes

Lw(k)‘i’(k)=Lw(k)w_(k) _ ' » (7)

~ m . . i ’

Ly(k)= 3 a; (Jk)© (8)
1=0

~ o i

Lw(k)=i§o b, (k) (9)

where j is the usual imaginary counter-clockwise rotation

operator. The integral equation (5) then becomes
w(k)=g(k)w(k)+?inc(k) (10)
still subject to the conditions of equation (4). This

approach yields two algebraic equations which may usually

be solved with much less effort than equation (5). With



this thought in mind, we now examine the application of
this procedure to the problem of electromagnetic scattering

from a periodic structure.

The electric field E generated from an equivalent mag-

netic source K can be represented by
E(x,y,2)= % vxF(x,y,2) (11)

where F is the associated electric vector potential of the
source and ¢ is the permittivity of the medium [13] . The
relationship between F and K is established with the use of

the position vector T and the free space Green function

. o) (kem) =
G = I (12)
4n [El
by
L‘v(f)=fé(f,f')-§(§'>d‘f' (13)

A
where k and £ are the respective unit vectors of the problem.
From this, the magnetic field intensity H can be derived

from Maxwell's equations and is given by

VV:F(X:}',Z) (14)
Jou

H(x,y,z)=-jue F(x,y,z)+

where y is the permeability of the medium. For the xy

planar set of magnetic currents shown in Figure 1, Fz=0 is



obtained from equation (13) since z=0 and G is then a

function of x and y only. Allowing the medium to be that
of free space, i.e. ¢= eoand M= U, and since Fz=0’ equa-
tion (14) is expanded in Cartesian coordinates x and y to

yield for z=0

. 2 a2
- 1 A oF . 3F - A
H (x,y)= = K FE + b4 + X ¢
8 J wug [( oX 33Xy 32
2 x FY ) A
+(k05+ 7% 7 + ayf) y]

where k = mﬁoeé is the propagation constant. The quanti-
ty given by equation (15) is a general representation for
the scattered magnetic field intensity generated from a

planar source of magnetic current in the xy plane.

Consider the planar periodic surface shown in Figure 1
to be the source distribution for che magnetic field of
equation (15). Upon substituting equation ﬂ13) into equa-
tion (15) and taking the Fourier transform of equation (15)

we obtain

a__#f
L~ fo] mn mn mn
A (q,8)= —2 Z *

S

Kk 2 2
o Ban
(16)

O

(“mn’ Bmn ) R ("'mn’ an) ed(appX + Bpp¥)
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Figure 1. a.) The planar periodic surface indicating
electric current density Eﬁn over the
aperture portion.

bh.) Unit cell definition.



for the transformed magnetic field where

om0 _Z%E - k_sin® cos?® (17
Bon™ ZZn - sz cotQ-kosinasin¢ (18)

are the Floquet modes[14] and

-

- -j
0‘mn’smn)

QR

(

X
2(k 2-a_2-g_2)

on -~ Pmn (19)

is the Fourier transform of the dyadic Green function [9] .
The discrete nature of Equafion (16) results from taking
the Fourier transform of a periodic function [15] . The
final step in completing the process of obtaining a useable
form of the magnetic field intensity in the aperture is
accomplished by taking the inverse Fourier transform of
equation (16), noting K=Eax2, using the equivalence theorem
and applying the appropriate boundary conditions on

A%(x,y) at z=0 [9] . This leads to

o 8 K 2 —y 2
T _ -2 mn ~mn o mn
Hejne(xoy) = Jou,
2 2
mn 'ko **on “mnfmn (20)
g ~

=4+ 3
(amn’an) Ea(amn.ﬂmn)eJ(amnX+any)
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where E;+( R is the transformed electric field in

“mn, “mn)

thelaperture and H (x,y) is the incident tangential mag-

tinc
netic field. The inverse of equation (20) is obtained by
extending the operations over the entire unit cell. The ex-
tended operator is necessary to insure the operations in-
dicated by equation (20) are in the domain of the solution.
That is, the boundary conditions of the problem are satis-
fied. This extension is accomplished by including the elec-
tric current density over the conducting portion of the

unit cell. The electric current density is included by in-

troducing the truncation operator and the complement trun-

cation operator defined .as

T(£(E)) = 0 for ¥ on the conductor
(21)
T(f(£)) = £(¥) for T in the aperture
and
T (£(¥)) =0 for T in the aperture
¢ _ (22)
Tc(f(f)) = f(¥) for ¥ on the conductor

This allows equation (20) to be extended over the unit

cell as



T, (.T(x,y))

11
= 2 % mnf mn ko2 -apn?
= Hijne(®oy) + Jou 2

° °k02+6mn “%mnB un
mn ¢

GC’mn’an) E;(ann’emn) e” mn- “mn

with J(x,y) reprsenting the electric current density on the
conductor.

Equation (23) is a form which can readily lend
itself to solution by iterative techniques.
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ITI. MATHEMATICAL FORMULATION OF ITERATIVE EQUATIONS

CONTRACTIONS AND FIXED-POINT THEORY

The use of iterative equations to solve mathematical
problems has been around for many centuries dating back to
B.C. 600 when this technique was used to solve problems
such as determining the square root of three. Beginning
with this early exploration of iterative techniques came
the plights of correct problem formulation and convergence
of the solution. Later methods, such as Newton's method of
solution, alleviated such problems but often forced other
constraints on the problem. One such constraint is that
the initial solution es;imate needs to Be in a region
reasonably close to the desired solution. Tsao and Mittra

[9] used this spirit of a priori knowledge in the form of
a variational correction to remain near the solution point
in their problem formulation. However, as will be demon-
strated later, the cases presented in their work did not re-
quire such a correction and, indeed, they even noted where

the iteration method failed even using such a correction.

The idea of using the iterative scheme to solve gener-
al scattering problems leads one to seek a way of determin-
ing the criteria for convergence and a way of generating a
convergent iterative formulation. Fixed-point theory and

contractor theory [16, 17] are applied to formulate a con-
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vergent iterative solution to the scattered fields derived

in Chapter II.

The general idea of fixed-point theory revolves around

finding the solution to an equation such as
£(x) =y = x> - 6x + 5 = (x-5) (x-1) = 0 (24)
This is accomplished by forming an iteration function as

X = g(xn) (25)

n+l

and finding the intersection y=g(xn) and y=x_ which yields
the fixed-point and solution to equation (24). This is
accomplished by startiqg with an initial guess X substi-
tuting into equation (25) to generate X,, and continuing
this process until X +1°%q%e where e is the allowed error.
At this time X=X is the approxiﬁate solution to equation
(25). The conditions for a convergent solution are in

general:

a.) on a closed interval I, g(x) maps I into itself

b.) g(x) is continuous on I

dg(x)

dx <1

and c¢.) g(x) is differentiable on I and

Thus the following theorem may be stated

Theorem 1. Let g(x) satisfy conditions a.), b.), and

¢c.). Then g(x) has exactly one fixed
point x* in I and starting with any X in
I, the sequence Ros Xy eee 5 X generated

by equation (25) converges to x*.
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The process outlined by the above theorem is illustrated in
Figure 2. The fixed-point x* is often said to be a point
of attraction for g(x). X .1 18 also said to contract to

x*,

To illustrate the use of this theory, one root of equa-

tion (24) will be determined. Let

xn2+5
x_,1=8(x )= S (26)
and find
d g(x) = X (27)
I I .

then, the interval I is defined as xéI and 1Ic[-3,3). Note
that the known root x=1 is in this interval and

3% g(x) =1/3. We then expect that the iteration function
x=1

will converge to the fixed-point x*=1 which is the correct
solution. The iterative process is contained in Table 1.
The question then arises, what happens when the sequence

will not converge?

To generate an iterative equation that will convege we
must meet the conditions listed in Theorem 1 above. As an

example, let us examine the roots of

F(x) = x% - x - 6 = (x+2) (x-3) (28)
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Table 1.

f(x) =x" - 6x +5 =0
2
g(x) =x = %+
6
g(x)
X5 2.0
Xy 1.5
X, 1.208
X4 1.077
X, -1.026
Xg i 1.009
Xe 1.003
Xn-1
x*=xn 1.000

Example of a convergent iterative equation

16
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which can be seen to be -2 and 3. By forming the iterative

equation
g(x ) = x_,,=x_% -6 (29)
and noting
_'%Qg(x)l ‘=l2X|X=-2,3'>l (30)

Qe see that the iterative equation will not converge. How-
ever, by properly forming a new iterative equation G(x)
that has %i G(x) | .__,<l , or %; G(x) | ,_3<1, the roots
may be obtained. Although manipulation of equation (29)
could yield a suitableté(x) [12] we seek a G(x) that can
be formed by a method known as relaxation. The relaxation

th

process generally uses a portion of the n iteration along

th (i.e. n+l) iteration to

with a portion of the iterated n
"relax" the process. The form of the relaxed iterative

equation is
G(xn) = Rxn+ (l-R)g(xn) (31)

where R is called the relaxation constant. The condition

4 cx)| =0 (32)

dx X=X
n

may be used to determine an optimum R such that convergence



18

of G(x) is assured. Performing the operation of equation

(32) on equation (31) yields

G(x)= R+(1-r) &_ g(x)|=0 (33)".
dx

=X X=X
n n

4
dx
and solving for the linear correction R

_ '(x)
R= %‘(Y)Tr (34)

where g'(x)= %; g(x{. This process of finding the optimum
R is called the cont?gzﬁion corrector (a name to be ex-
plained later in this ggctipn) and is used to iteratively
solve for the root x=3. This is illustrated in Table 2.
Equivalence between the contractioh corrector and Newton's
method can be shown and is illustrated in Appendix C.

Note that g(xn) would not converge by itself and thus G(xn)
is necessary for a correct solution to be obtained. As a
further note on the iterative process, the conditions that

g(x) maps I into itself is not trivial. For instance, note

that |
£(x) = x2 + 2 =0 (35)

will not yield a solution from an interative process unless
X is allowed to be complex and g(x) or G(x) maps into the
complex plane. The iterative equation G(x) may even re-
quire a complex relaxation or complex contraction correc-

tion constant and precautions governing complex algebra
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g(Xn) = Xnel1 T %*q T
= = -R) _ _ A_ 2
Xnel™ G(xn) Rxn+(1 R) g(xn) = Rxn—(l R) (xn -6)
2 X
R = n
2xn-l
n %1 Rh g(xn) G(xn)
1
0 100 2.0 -5.0 7.0
1| 7.0 1.07 | 43.0 | 4.24
2 4,24 1,13 11.98| 3.23
3 3.23 1.18 4,43 3.01
4 3.01 1.2 '3.06| 3.0
n Xh g(xn)
1 | 3.0001! 3.0006
2 | 3.0006{ 3.0036
3 {3.0036! 3.0216
4 3.0216! 3.130
5 |3.130 |3.798
6 (3.798 |8.424
Table 2. Example of a non-convergent iterative equation

with convergence achieved by applying the con-

traction correction method.
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and operations must be observed. In particular, the ana-
lytic nature of f(x), g(x), and G(x) in the interval T
should meet the requirements of Theorem 1. An illustration
of the nature of these problems is given in Table 3. In

two cases, a real X, never maps X, into the complex plane
and, as such, never yields a solution. Even applying the
contraction corrector method with a real X does not give a
solution. Only the one case using a complex X and the con-
traction corrector method convergés. This follows from the
conditions of Theorem 1. Since problems héve been observed
in the simple problems above, a proper choice of action is

to pursue the corrective method in a more general sense.

Stakgold [18] has formed a very sound collection of
theorems and definitions on the idea of metric spaces and
their transformations, and the following material is con-
densed from his book with the advice that the reader con-

sult his work for proofs and greater detail.

Definition 1. A transformation L of a metric space

x into itself is Lipschitz continuous
if there exists a p, independent of u
and v, such that
d(Lu,Lv)< pd(u,v) for all u,vex
where d(£,Z) is a proper metric in x. When the definition
above holds for some fixed |pl<l , the operation of L is

called a contraction on X.
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£(X) =X2 - X +2=0

S | . .
g(xn). X<+ 2 g°(X)) = 2X
. g‘(xn)
= G(X)=8X + (1 -8 ) g(X))
n g‘(xn) -1 n n°n n o
n xn g(xn) n xn g(xn) g (Xn) Bn G(Xn)
0 1.00 3.00 0 2.00] 6.00 4.00| 1.33 0.67
1 3.00 11.00 1_ 0.67| 2.44 1,33 4.00 |-4.67
2 11.00 123.00 2 -4.67{23.78 -9.33| 0.90 [-1,91
- - diverges 3 -1.91| 5.66 -3,83f{ 0.79 |-0.34
4 -0.34( 2.12 -0.69} 0.41 1.11
5 1.11] 3.24 2.23| 1.81 {-0.62
6 - - - - C -
n xn g(xn) Bn G(xn)

4.24 + j4.24 | 1.88 + 3§35.95 1.06 - 30.07 2.18 + j2.34
2.18 + 3J2.34 | 1,81 + jlo.24{ 1.09 - jO.13 1.13 + j1.45
1.13 + 31.45 | 1.20 + j3.29| 1.13 - jO.28 [ 0.64 + jl.25

W v = O

0.64 + j1.25 | 0.85 + j1.59| 1.05 - j0.40 | 0.50 + 31.31

X*s = 0,5 + jl.32

Table 3. Example of a complex valued iterative equation

and the use of a complex contraction corrector.
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Theorem 2. Let the operator L be a contraction

on a complete metric space X. Then,
u=Lu has one and only one solution
in X which may be obtained from any
initial starting point u, in X.
Thus, un—*'u* (the fixed-point) as
n-=© and u* exists and is unique in
X.

Note that u may have multiple components, i.e., u=u(zl,zz,..
.,zh) where z; are complex coordinates. P as given by defi-
nition 1 is the description of the measure of a general der-
ivative of an operator. Thus, the process used in the sing-
le variable examples ea;lié; may be extended to higher di-
mensional spaces with more general operators. This theorem
allows that the relaxed corrective iterative process out-
lined earlier is indeed a contraction, hence the name con-
traction corrector. This nomenclature is used to differen-
tiate this scheme from other corrective schemes applied to
iterative processes. The use of this definition and theor-
em as applicable to the spectral-iteration approach of equa-

tion (23) is detailed in the following section.
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Iv. THE PERIODIC STRUCTURE: A

CANONICAL CASE AND THE REGIONS OF SOLVABILITY

The total electric field for the structure shown in

Figure 1 may be expressed in terms of the incident and

scattered fields as [9 ]

( o
Ek. amnemn ko - %mn =
inc }, L 2 ) g G(umn’smn
Eyiné' mn|-k " + B ~%pnPmn
;} ' + 8 k f 0
S ifa . Z or z>
(*Pan ?( o™ mny) Zmn
E; e e
Ymn
. (36)
= 2 _ 2
%nnfmn % ~%mn |s a .B
z 2 , 5 2 8 G( mn’ mn)
mn |-k Ban  "mn mn
f;x | J(opnx * any)'kz;n for <0
mn
E; e e
Yo
where
2 2.8 2)i for k. 2>a 2+ 8 2
) -J(ko - e mn o mn mn (37)
z =
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mﬁvz

and and %: represent the transformed electric field
and are respectively the reflection and transmission coef-
ficients of the Floquet modes. Deriving H from equation
(36) and By enforcing the boundary conditions on the tan-
gential mégnetic fields across the cell at z=0, equation
(23) is generated again. This exercise is presented to
complete the field description and to illustrate the rela-
tionship between the aperture fields and the reflection and
transmission coefficients as the coefficients will be of

interest later in the section. Equation (23) is the begin-~

ning point to cast the problem in an iterative form.

The summation in éﬁuation (23) represents a discrete
Fourier series (DFS) for an infinite duration-(i.e., peri-
odic) sequence [19]. This representation allows for direct
transformation between the (x,y,z) domain and the (kx,ky,kz)
domain. Since the functions are represented by sequencés
with complex exponentials having a periodicity of 2n/m and
2n/n, one period of the aperture distributions, that is one
cell of the structure, can be used to completely specify the
transform. The use of one period to represent a periodic
function in this manner is known as the discrete Fourier
transform (DFT). It is important to note that the trans-
formation mentioned above is exact and this infers that no
aliasing will occur when the DFT is performed. Aliasing

can occur when a non-periodic function is truncated and
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and transformed with a DFT. Since information about the
original function is lost in the truncation, performing the
inverse transform can never return the original function.
However, when using exactly one period of the periodic func-
tion, the original function can be reconstructed when the
DFT and inverse DFT are performed. The most common form of
DFT algorithm is the fast Fourier transform (FFT) in which
special properties of the DFT are exploited to decrease the
computation time of the transform. Throughout this section,
the DFT and its inverse are represented by F and F'l re-

spectively. Implicit functional dependence is also used to

present a "cleaner" form of "the equations.

With the above thoughts in mind, we may solve equation

(23) in terms of Et as:

= -1 | &1
o |

(]}

« F

- - -1 { & =

TC(J) =T, [ Hoine + 2 F } G+ F [ T(Et)]§] (39)
J wH,

Note that the subscript indicating aperture field has been

remo§ed from equations (38) and (39) since the truncation

operator is included and the tangential field Et over the

~entire cell is used. Solving for Et in equations (38) with
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Tc(j) substituted from equation (39) yields:

: _ i
E(n“l):F‘l[c‘;‘l-F%Jﬂ‘n T (H. + 2 gl
C tinc

t
B [ E@) ) R ] ]

This is the form of iterative equation given by Tsao and

Mittra [9] and is the basic equation to which a scheme
called the contraction corrector will be applied. The con-
traction factor must be less than 1.0 to have a convergent
solution [18] and the contraction corrector scheme will

allow this condition to be met.

The iterative equation for one-dimension (Ex or Ey)

will converge if the conditions for a contraction given by
Stakgold [18] are met. The proper metric for the space X

and the operators in equation (40) is:

S
£ -ty [ 2] (41)

where u =(gyyg,5..+y g,) and v =(g, z55..., z,) are the

d(u,v) =.[,€1 -Cll LN €5 -Czl 2, +

vectors in X and £, represent the components of each vec-
tor. The u and v used in the metric d(u,v) may be any u,v
in X since the contraction must hold for all u,v in X. One
logical choice for u and v is B and 1) This choice

would allow the contraction process to be observed and
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would give the rglative error between each iteration. This
also allows the regions of convergence to be determined.
That is, for decreasing error, the solution is converging
and for increasing error diverging. Since we are interest-
ed in the contraction to a fixed-point, é wiser choice for

=(n)

u and v is E and (E(n) + e) where e is some small complex

number. Thus, at each component of E(n)

we essentially

have the ability to detefmine the general derivative of the
operator at each element. The contraction corrector is a
vector ﬁ(n) with one element for each component of E(n)'

The form of E(n) is exactly that of equation (31) for a one-
variable problem extended to an N component one-dimensional
‘problem. This powerful concept allows the regions of con-
vergence to be determined and allows the formulation of a
convergent solution as

gn+tl) _ g, gm) _ (f _gn)y | ¢ gln) (42)

with L being the operator defined by equation (40). Unique-
ness of the solution is guaranteed since the problem was
formulated from Maxwell's equations via a vector magnetic
potential and the appropriate boundary conditions were
applied. Note that this representation is for a one-dimen-
sional scattering problem. Additional conditions are nec-

essary for the general solution of two-dimensional problems

[12] . These conditions and other considerations for two-



28

dimensional problems are discussed in Section VI.

The contraction corrector R = Rl’ Rz,--- , Rn { nust

be determined in a general operator sense to behave as R in
equation (34). This implies that closer examination of De-
finition 1 is warranted. The determination of an operator
derivative must be formulated in terms of a contraction.
The derivative must be expressed in an analytical form that
allows the contraction to be determined numerically for
each R; of R. Thus, equation (42) will guarantee a conver-
gent solution when R is properly determined. The contrac-
tion is felated to the continuity of the operator (trans-

formation) L through Definition 1 as:
d(Lu, Lv) < P d(u,v) . (43)

with d(&,7 ) given by equation (4{3. The determination of

the contraction of L at U = u and v =(u + Au)is a represen-
tation that is thought of in operational calculus as the de-
rivative of the operator L for vanishing Au. Equation (43)

is then written as:

d[Lu, L(u + Au)] < p d[u, u + Au] (44)

If the §ector u has m components and equation (44) is expanded

using equation (41), the result is:
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3
+---+|L(um+Au)-Lum|2:|

2 , 2
[lL(u1+Au)—Lu1| + lL(u2+Au) - Lu2|

<o 45)

+hu)-u, |2 + +A‘)- 2 peeot|(u +au)-u_|? :
ul u -u1 uz u uz um u -um

Eliminating terms in the denominator of equation (45) yields:

, 13
l- IL(“1+A“)'Lu1|2 + |L(q2+Au)gLu2|2 +oses L(umﬁAu)—Lum|2—|
< p (46)
mlAuI =
Now, since m>1, a stroneer condition is written
=
2 2 2|#
[-‘lL(u1+An)-Lu1| + |L(u2+Au)-Lu2| +~--+|L(um+Au)-Lum| l
T5ua — <P (47)
Consider the following: given
. NE
[Illlz + Iazlz ¢¢o.+|am|2] .<_ all ¢ Iazl +ooo+|am| (48)
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Is the inequality true? Squaring both sides yields:

2
l +eeet+ |a < la 2, la +ooet

|

‘al 1 2

(49)

a a

m

EX RN a
l m-1

Iaz‘ + |a1 3

and the inequality is seen to be valid for non-zero a;.

Equation (47) is then written as:

+eo e 04

vL(u1+Au)-Lull‘+ lL(u2+zhn-Lu L(um+Am)—Lul

2

< p (50)
ou]

and then may obﬁiously be further reduced for each component

to: .
'L(ui+Au)-Lui\

2Py (51)

[ou

m
noting that Zo. <op,

1=Q'1
From equation (51) it is seen that a complex-valued pc may

i
be defined and the final form of equation (51) becomes:

L(ui+Au )-Lui

=0, (52)
Au i :

This form is the measure of -the derivative of the
operator L at each component and may be used to solve for

the contraction corrector R at each component uy € u. -
i
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Even though a powerful tool has been developed to
allow the computation of a convergent one-dimensional solu-
tion to electromagnetic scattering, the background problems
surrounding the contraction corrector scheme should be ex-
amined. This background material is of interest since the
breakdown of prior methods and the reasons_for non-conver-
gent solutions gives insight into what particulars of the
scattering problem cause the difficulties. 1In particular,
known geometrical problem areas are: conductor width, cell
size, aperture size, and the angle of incidence and polari-
zation of the impinging plane wave. The understanding of
the difficulties arising for certain values of those para-
meters can provide vital insight when attempting to extend
the solution to two-dimensinal configurations, especially
when mesh structures are involved. The reference point for
this background investigation is the work of Tsao and Mittra

[9] . A complete iterative flow is detailed in Appendix B.

Consider the case qf the free-standing strips shown in
Figure 3. This planar configuration of thin, perfect con-
ductors was the prime example used in the work of Tsao and
Mittra [9] . The case of a cell width of 1.4 , aperture
width of 0.6x , and incidence angle 0=0" was of particular
interest. Although the iteration equation (40), would per-
form adequately, Tsao and Mittra decided to apply a correc-
tion step to the iterative process. The idea of being

"near'" the solution in numerical methods (i.e., Newton's
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Method) to either insure or speed convergence is commom
place. The correction step was chosen to be a form of the

Method of Moments [28] .

(n+1)

The amount of amplitude error of E may be calcu-

E(n) with equation (40) and using an

lated from processing
amplitude correction C determined via a variational formula
calculated with Galerkin's method. This correction is

given by [9] :

cC= — (53)
“Fean, ¥ OB >
where:
* _ (54)
<§1, 5> - /il X x, « ds
aperture

with "*" denoting conjugation and ds the outward surface
normal. The value of C yields a weighted average error
based on the first moment's variation of the operator using

=(n)

E(n) as the test function. C will be equal to one when E

represents the averaged approximate solution to the problem.
This statement implies that oscillations of the solution

could average out and yield a solution that is incorrect.
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Numerical difficulties could then arise if a problem gener-
ated such a solution from the iterative process. Great

care is then warranted with this type of numerical method'
as is true with any numerical scheme. Additionally, as pre-
viously noted for iterative processes, just being near the
correct solution in amplitude does not guarantee a conver-

gent process.

The geometry given in Figure 3 for a=1.4), b=0.6X, 0=0°
and H-wave (Etinc parallel to strip edges) incidence is a
problem that converges by equation (40) without the aid of
the variational correction of equation (53). What then is
the useful purpose of Ehe cérrection C? The most useful
purpose of C is to speed convergence since an iterative
equation which is a contraction will converge from any ini-
tial estimate and will diverge if not a contraction. Anoth-
er useful (but applied with caution) purpose is the indica-
tion of accuracy of the iterated solution. The problem
above is taken from Tsao and Mittra [9] . The convergence
of the problem is shown in Figure 4. Figure 5 illustrates

=(n)

the convergence of E of the problem using equafion (40)

corrected by C of equation (53). The iterations of both

Figure 4 and Figure 5 are quite similar; however, the E(n)
shown in Figure 5 are converging more rapidly then the E(n)
in Figure 4 by one iteration. This is a very small difference

in convergence rates and indicates that the methods behave

similarly.
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Equation (42) is also used to solve the problem above.
The contraction corrector R is obtained using equation (52)
along with equation (34). The application of this contrac-

tion corrector yields results for glm)

shown in Figure 6.
Note that the first iteration is the same as the first
iteration in Figure 4. However, the second and third itera-
tions shown in Figure 6 are improved over those in Figure 5.
Even though this convergence improvement is by oﬁe itera-
tion, it is pointed out that the contraction corrector
guarantees convergence (except for possible numerical compu-
tational problems). The case for using the contraction cor-
rector over the other ﬁethods is not well presented in the
preceeding example. The basic iterative equation and the
variational corrected iterative equation break down and di-
verge for various cases. The following material is present-
ed to establish bounds for the regions of solvability for
the preceeding problem and to demonstate the usefullness of

contraction theory in this matter.

The basic iterative formulation is found lacking for
various cases. Conductor size, aperture size, cell size
and incidence angle are the parameters that are varied and
may cause convergence difficulties, The first case to be
examined is that of constant Floquet cell width and varying
aperture size. In paticular, let a = 1.4\ and 0.005x < b
< 1.3951 for perfectly conducting strips, incident angle ©=0"

and H-wave polarization. The contraction factor for this
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case is graphed in Figure 7. Recall that the solution will
diverge for a contraction factor greater than one. These
non-convergent regions are where the contraction corrector
must be applied to insure covnergence. Next, the cell size
is varied as 0.9)x < a < 1.4)\ for constant conductor size,
i.e., (a-b) = constant, and 0= 0° with H-wave polarization.
Figure 8 shows the contraction factor for a conductor size-
0.8Xx . This last example contained a conducting strip that
was a large portion of a wavelength. The case of a conduct-
or size 0.1X and cell width 0.2X < a < 0.9X for H-wave po-
larization and 6= 0° is presented in Figure 9. This example
represents a small strip and the contraction factor associ-
ated with its geometry. The last case to be examined is co-
cerned with the angle of incidence of the impringing plane
wave. A cell width a = 0.9X , conductor width b = 0.4

and aperturé width 0.5) is chosen for the convergence sur-
vey illustrated in Figure 10. Note that thg contraction
factor bumps above 1.0 around © = 8° and diverges from 1.0
for ©>60°. This indicates that the basic iterative scheme
will have problems with convergence around 0 = 8° and will
not CO;verge for 0>60°. The above examples offer seQeral
cases that point out problem areas in constructing a conver-

gent iterative solution.

The contraction corrector may be applied to construct

a convergent solution when the basic iterative scheme
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breaks down. Consider the case of Figure 3 with a = 1.4,
b = 0.61 and 0= 70°. At this incidence angle, the itera-’
tion equation (40) and variational correction of Tsao and
Mittra [ 9] break down and do not converge. Figure 11 illu-
strates that after six and seven iterations respectively,
neither method converges. However, Figure 12 reveals that
the contraction corrector method converges after six itera-
tions and has a small error over the conductor. Herein
lies the reason the contraction corrector method is pre-
ferred. Even when the basic method and variational cor-

rection schemes fail to converge, the contraction cor-

rector method assures that solution can be reached and does

' so with reasonable ease.

The foregoing examples have demonstrated the ability
of the contraction criteria to be apnlied to one-dimensional
scattering problems to determine the regions of solva-
bility. Additionally, the contraction corrector scheme has
been utilized to achieve convergence when the basic itera-
tive schemes failed. The examples presented give indica-
tions that the contraction corrector can be successfully

applied to planar wire surfaces.
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V. THE PROBLEM OF AN INFINITE GRATING

OF THIN WIRES

The structure shown in Figure 13 has been studied over the
years by various techniques to determine the reflection co-
efficient from the grid [1, 2, 20] . The reflection coeffi-
cient may be obtained from the transform of the aperture E
field in the form of the Floquet modes. For the case of
cell widths less than */2, this coefficient is obtained

from the n = m = 0 element of the E; variable for the

“mn
case of plane wave incidence as [9]

~(n) ~{n) -. -
r = E‘oo = E+ - E . (55)
y yoo yinc

The first atempt to solve the problem with a A/4 cell and
A/600 radius wire was performed with the variational correc-
(n) as a test function in the
variational scheme. This method fails to converge for vari-
ous sampling rates and various numbers of Floquet modes,

and a more suitable test function is sought [21]}. The

Dirac delta function is chosen as the test function and
gives acceptable results for small angles of incidence.

The delta function samples the response and allows point
matching to be utilized to improve the variational correc-
tion factor. The convargence properties achieved with these

two test functions are shown in Figure 14. Since the iter-

ation method should be convergent for all incidence angles,
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the development of a different form of correction is a

logical path to follow.

The iterative process of equation (40) is one derived

=(n+1)

for E from itself. ThatAis; the E was determined from

E(n) with an intermediate step in the iterative process
used to determine the surface current density j(n). The
iterative process then has two distinct parts and it is
reasoned that two distinct correction factors are required.
By weighting previous iterations of both E(n) and j(n)’ it
is found that convergence can be obtained for small cell
size and near normal angles of incidence. However, it is
also determined that the sfébility and speed of convergence
is critically dependent on the weights chosen. It is then
realized that a solution may only be obtained by an "acci-
dent'" as mentioned before. The hit-and-miss approach re-
quired by the weighted iterations may'allow the determina-
tion of a proper solution but the recursive time required
could be excessive. These facts then drive the iteration

equation toward a solution obtained by the contraction cor-

rector method.

The cases chosen for examination are »/8, A/4, and A/2
cell widths with both TE and TM incidence. The TE case cor-
responds to incidence angles ¢ = 0° and 0° <0< 90 while
the TM case corresponds to incidence angles ¢= 90° and 0°

<9< 90° , wi i E. . ivel -
<9< 0" , th either Elnc or Hlnc respectively co
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polarized to the wires. Since the determination of reflec-
tion from two-diménsional mesh reflector antenna surfaces
is the application toward which this work is directed, the
reflection coefficients must be carefully scrutinized to
ascertain the best definition of reflection. Wait [2] de-
fines a suitéble normal reflection coefficient and a com-
parison to his results will be made. The specular reflec-
tion is of interest in antenna work and the construction
of the geometry required is given in Figure 15 [22] . When

EinC is entirely co-polarized with the grid wires, the two
reflection coefficients agree in definition. With TM polar-
ization (vertical) incident, a pseudo-Brewster angle is ex-
pected at certain incidence angles, Variations of magni-

tude are also expected to occur with changing wire conduct-
ance. Before examining.various cases and comparing the re-
sults to those of previous authors, the wires must be con-

verted into equivalent strips to yield a structure equiva-

lent to that used by the previous authors [1, 2, 20, 271 .

Harrington [29 ] relates that equivalence between thin
metallic rectangular strips and small radius wires is ob-

tained if
b = 4w (56)

where b = radius of the wires and w = width of the strips.

Thus, using equation (56), we are able to use the strip ana-
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lysis to determine the reflection from a grid of cylindrical
wires. A further characterization of the wires is required
when the wires are of finite conductivity. Schelkunoff [23]

gives the internal impedance of a thin cylindrical wire as

ng Ko (YD)
Z. = s By (57)
int 27bKy yb)
where o™ jumw/( o * jwam')-l’i and Y = jumw(cm + jwem) %

with  ,e , and g being the electrical properties of the
m
wire and Ko, Kl being modified Bessel functions. These

principles may now be applied to the cases detailed above.

The cases of cell ;idtﬁs of A/8, A/4, and A/2 are now
presented with a wire radius of 2/600. Good agreement is
obtained between the results of the contraction correction
method and the results of Wait [ 2] for incidence angles of
both ¢= 0°and = 90°. The case of ¢= 0° is illustrated in
Figure 16. Recalling the other definition of reflection co-
efficient given in Figure 15, the reflection coefficients
for the case of %= 90° are shown in Figure 17. The expect-
ed pseudo-Brewster angle is observed as a.reflection mini-
mum near the angle of 67. The internal impedance of the
wire becomes important in the problem when the conductivity
of the wires becomes finite. Instead of the tangential
electric fields cancelling over the conducting portion of

the cell, they must combine to support the current at the

4
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surface as

E_. + E =1 Z.
tinc tscat o “int (58)

where Etscat = scattered electric field and To = current
along the conductor. The results of a finite conductivity
are shown in Figure 18 where equation (58) has been included
in the iteration equation. The results resemble that given
by Jordan and Balmain [307] for a lossy ground and follow

the idea that the grid represents a shunt impedance. Over-

all, good agreement is obtained with previously computed and

measured results.

As a final note, some concern has been expressed over
the non-convergence of the iterative technique  and over the
fact that increasing ﬁhe number of Floquet modes not not in-
crease the accuracy of the solution [24] . The first con-
cern has been addressed in the preceeding sections while the
second will be addressed now. When an iterative equation is
in a non-convergent region, the solution may only be arriv-
ed upon by an accident of computation unless special methods

of computation have been included.

The consequence of adding additional Floquet modes is
adding additional points that are in the non-convergent re-
gion. The result of this consequence can range from produ-

cing a large variation in the iterated solution to helping
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the iterated solution.  The control over the results is nil
with a non-convergent iterative scheme. However, when the
contraction corrector method is applied, the expected in-
crease 1n accuracy with increasing Floquet modes is obtain-
ed. Of course, a limit on accuracy still exists due to the
finite register length of the computing machine used. The
case of a A/4 cell width, A/600 radius wire with infinite
conductivity and ¢=0 = 0° is chosen to illustrate the above
comments. A plot of converged accuracy is shown in Figure
19. The usual leveling off accuracy is noted. This is due
to the higher order Floquet modes having less and less
effect on the solution, i.e., the farther away wires con-
tribute less and less t6 the fundamental cell when a con-

vergent process is used.
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VI. EXTENSION TO TWO~DIMENSIONAL PROBLEME

The present analysis has been limited to fields having
only one spatially varying coméonent. When a second spa-
tially varying component must be added, the difficulty in
applying the contraction corrector scheme is increased.
Each field component must have its own iteration equation
as can be seen from eqﬁation (23). These equations are
coupled, however, and this leads to new constraints that
must be applied to the problem [12] . For iterative equa-

tions of the form

x .1 = F(x.yy)

(59)

Yn+l B8(%Xp»¥y)

in a space X, the sufficient but not necessary conditions

for convergence are

of + of
ax oy p

X ay < P
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for all x,y in X where p< 1. As was observed in the one-

dimensional case, the conditions for convergence revolve
around the derivatives of the iterative equations. The de-
termination of the partial derivative follows the form of

equation (52) and may be written for f(xn,yn) as

e o 3 g x . £(x  + %, yn)-f(xn,yn) (61)
x- 3x  *x'*n'¥n -

Ax

where fx indicates the partial derivative of f(x,y) is
taken. Again, it is seen that contraction theory allows
the measure of the derivative to be calculated. The condi-

tions to insure convergence must now be determined.

The conditions given in equation (60) are sufficient
and not necessary and as such are fairly strong conditions.
Thus if a stronger condition is applied, the stronger condi-

tion is also sufficient. Such conditions are
f. =f_ = By = 8, = 0.0 (62)

These conditions can not be met unless a new set of equa-
tions are formed using the contraction corrector method.

The method for the one-dimensional case required the com-
bining of x, and X041 together to form a new iteration equa-

tion. The two-dimensional case requires che combining of
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the X, and x along with fx’ f

n+l > By and gy to meet the

y
requirements of equation (60). A form of equation that
conforms to the plan outlined above for X4 is

xn+1=F(xn,yn)=uxn+(1-ﬁ )f(xn,yn)+3yn- B g(x_ ,y,) (63)

The first term of equation (63) is that of the one-dimen-
sional case. The second term of equation (63) is seen to
be equal to zero when ¥, @pproaches the fixed-point y*.

Similarly, the iterative equation for y is:

n+l
Ype1 = G(x,,¥,) = [yyn+f1 - _Y)g(xn,yn) T+[ox - 3 f(xn,yn)]
R (64)

The complex constants o,B ,Y , and 9: are the contraction
corrector terms that must be utilized to force equations
(63) and (64) to meet the convergence requirements of equa-

tion (60).

The partial derivatives of equation (63) are set equal

to zero and are found to be:

0

]
o

Fx(xn,yn) a +(1-a )fx(anE) -8 gx(xn,yn) (65)
Fy(xﬁ,yn) = (l-a )fy(xn,yn)+8 -8 gy(xn,yn) =0 (66)

From these equations, B may be solved in terms of a as:
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a+(l -a)f_(x_,y.)
B = X D0 for B (X ,y,) # 0 (67)
gx(xn,yn)

which may be substituted into equation (65) to find:

£ (x_,y.)
n
[8,(xhy) - 1] Py - f,(xy)
a = y 7 8y "n>7n Y (68)
[fx(xn’yn) - 1] [gx(xn,yn) - 1] Cf(xy)
gx(xn,yn) y “n’/n

I1f gx(xn,yn) = 0, @ is found from equation (65) as:

T (x sy
Q

= (69)
fx(xn’yn) -1

which is seen to be the same form as equation (34) in the
one-dimensional case. This is expected since Fx(xn,yn) is

not affected by gx(xn,yn). B is found from equation (66)

as:

(a-1) fy
B = - for gx(xn,yn) =0 (70)
By

The case gy(xn,yn) = 1 is excluded for the problems of
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interest as this would indicate multiple solutions. Muiti-
ple solutions are excluded from the problems prsented here-
in since they are derived from Maxwell's equations and
appropriate boundary conditions and, as such, uniqueness is
guaranteed. The case that the denominator of equation (68)
equals to zero requires closer examination. This case
would yield an a +» . This implies that X = 0 as seen from
equation (63) and this case is a trivial one for the pro- °
blems of intefest. Therefore, this special case is not con-
sidered. The a and B determined above then allow the

iteration equation (63) to be solved for x = F(xn,yn).

n+l
With this corrected value of xn+1, a similar set of con-

traction correctors may be calculated for Yn and Yn+l

solved for. The contraction coefficients Yy and 3 are cal-

culated as:

\ - y +(1 - v) gy(xn+1,yn)

for fy(xn+1,yn) #0 (71)

f
y(xn+1,yn)

and

gy(xn+1’yn)

£ (xpay07p0-1] Ty (xpe10yn) B gx(xn+1'yn)
. - P .. y 729
[8?( Xn+1’Yn )=-1] [fy( Zn+1 ’yl'l )-1],

fy( Xn+1’yn)
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When fy(xn+1’yn

) = 0, arguments similar to those previous
hold and the following correctors are obtained as:
§y}xn+1’yn)

8n(Xp410Yn) -1

_ (y -1) gx(xn+1,yn)

(74)
1 - fox

n+1'7n

The y and 5 are then used in equation (64) to find Ynel =

G(x ). The iterative process is then repeated until a

n+1°7n
suitable accuracy has been achieved. An example of this

two~dimensional contraction corrector scheme is laid out in

Table 4.

Even though the foregoing text and results of Table 4
have indicated that the contraction corrector method may be
successfully applied to analytical two variable problems,
it remains to be seen that the theory is directly extend-
able to numerical methods. Current results of the applica-
tion of equations (63) and (64) with the correctors of equa-
"tions (67) through (74) as applied to the one-dimensional
problems of Sections IV and V agree with the previous data.
However, the application of the contraction corrector
scheme to a two-dimensional canonical problem has yielded
POOT results. The problem appears to be the numerical evalu-

ation of the partial derivatives. Without the accurate de-
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f(x,y)=x=2x+2y g(x.y)=y=x2+2y

F(X,y)=x=0x+(1-a)f(x,y)+By~Bg(xX,y)

G(x,y)=y=yy+(1l-v)g(x,y)+3x-3f(x,y)

n xn- Yn f(xn’yn) g(xn’yn)

0 1 1 4 3

1 4 3 14 22

2 14 22 72 240

K e — diverges —— -

X Vo o ] Y 3 F(xn,yn) G(Xn,yn)
1 1 0.67 0.67 - - 0.5 -
0.5 1 - - 0 1 - -0.25
0.5 -0.25 - - - - - -

* *
x =0.5 y =-0.25
Table 4. Example of a two-variable contraction

corrector method.
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termination of fx’ £ By and gy, it is doubtful the con-

y’
traction corrector method will be successful in arriving at
a convergent solution. Another problem that is not readily
apparent is the stringent conditions placed on the partial
derivatives. Invoking such strong conditions as given in
equation (60) may cause computational problems and eased or
adjusted conditions may be necessary ro reach a viable so-

lution method. These problems are being investigated and

useful results are expected in the near term [25] .

The usefulness of the two-dimensinal contraction cor-
rector can not be underestimated. For instance, when a
plane wave strikes a one-dimensional grating at an inci-
dence angle that induces -current along two axes, a cross-
polarized scattered field will be generated. The two-
dimensional ﬁature of the problem must be addressed to ob-
tain the valuable cross-polarized information. The solu-
tion for reflection of waves from actual mesh surfaces is
also of interest and involves the use of the method de-

tailed in this dissertation.

An illustration of an actual mesh surface is shown in
Figure 20. The material is molybedenum wire coated with
gold and woven in a double-knit fashion. Reflector sur-
faces of space-deployable antennas have surfaces of this
nature and their reflection characteristics must be known

to accurately predict their electrical performance. Figure
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21 illustrates the periodic nature of the mesh surface. It
can be seen from the outlined boxes that Floquet cells may
be formed. This periodic nature may be capitalized on and
used to formulate the mesh surface into a suitable problem

for the contraction corrector scheme.

Figure 22 is the discrete representation of one single
mesh path. The discretation of the mesh path is accomp-
lished with twenty-eight, approximately equal length,
straight segments. With these segments defined, it is pos-
sible to overlay a grid onto the segments to achieve a rep-
resentation of the mesh surface. - The equally spaced points

on the grid represent the sampled points required for the

Fourier Transform of the solution method. This typical
grid representation of the mesh surface will allow the de-
termination of the reflection characteristics of the sﬁr-
face. Other surface weaves and materials may be placed on
similar grids and their reflection characteristics calcu-
lated. Figure 23 illustrates the application of the grid

to the segmented single mesh path.
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Figure 22.

Single mesh path of the actual mesh surface.



73

Figure 23.

Grid representation of the segmented

single mesh path.
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VII. CONCLUSIONS |

A new method called the contraction corrector method
has been developed to insure the convergence of the one-
dimensional spectral-iteration approach when solving elec-
tromagnetic scattering problems. The method was presented
beginning with basic examples of the iterative method and
progressing to detailed iterative operator theory. Comput-
ed data generated from the scheme was critiqued and compar-
ed to work previously presented and was found to agree well.
The ability to predict the regions of solvability with the
contraction corrector scheme was demonstrated. The method
was then utilized to solve for the reflection coefficients
from an infinite grating of thin wires and the results were
compared to previously published data. The ideas of gener-
alization to a two-diﬁensional problem were discussed. A
solution techniqué for the two variable contraction cof-
rector method w;é developed and numerical difficulties in
applying the method were discussed. A sketch of an actual
mesh surface was presented and the application of the spec-
tral-iteration approach was detailed. A general reference
list and an over-view of ﬁoth the k-space problem formula-

tion and the spectral-iteration approach were .also included.

The material presented in this dissertation gives a

solid foundation for future research, and indicates that a
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suitable method for analyzing scattering from arbitrary
mesh surfaces can be developed. The recommendations for
future research should be directed toward understanding the
the shortcomings of the two-dimensional problem as detailed
in Chapter VI. With the proper constraints placed on the
two-dimensional problem and the correct evaluation of the
partial derivatives, a suitable method of solution is deemed
obtainable. Another alternative is the reformulation of

the problem with another method of attack. Many numerical
methods have yet to be applied to the problem and one may

will be suited for the two-dimensional scattering problem.



[1]
[2]

[31]

(4]
[5]
6]
(7]

(8]

(91

[10 ]

(1]

(iz]

76
REFERENCES

G.G. Macfarlane, "Surface impedance of an infinite
parallel wire grid at oblique angles of incidence,"
IEE, No. 93, Part III A, pp. 1523-1527, 1946.

J.R. Wait, "Reflection at arbitrary incidence from a
parallel wire grid, "App. Sci. Res., Section B, vol.
4, pp. 393-400, 1954, :

R.E. Collins, Field Theory of Guided Waves, McGraw-
Hill, New York, 1960.

R.B. Kiebuntz and A. Ishimaru, ''Scattering by a peri-
odically apertured conducting screen,'" IRE Trans. Ant.
and Prop., vol. AP-9, pp. 506-514, Nov. 1961.

N. Amitay and V. Galindo, "The analysis of circular
waveguide phased arrays," BSTJ, pp. 1903-1932,
Nov. 1968.

C.C. Chen, "Transmission through a conducting screen
perforated periodically with apertures,' IEEE MIT,

vol. MTT-18, pp. 627-632, Sept. 1970.

S.W. Lee, '"Scattering by dielectric-loaded screen,"
IEEE Trans. Ant. and Prop., vol. AP-19, pp. 656-665,
Sept. 1971. ~

J.P. Montgomery, ''Scattering by an infinite periodic
array of thin conductors on a dielectric sheet,'" IEEE
Trans. Ant. and Prop., vol. AP-23, No. 1, pp. 70-75,
January 1975.

C.M. Tsao and R. Mittra, "A spectral-iteration
approach for analyzing scattering from frequency
selective surfaces,'" IEEE Trans. Ant. and Prop., vol.
AP-30, No. 2, pp. 303-308, January 1982. '

N.N. Bojarski, "K-space formulation of the electro-
magnetic scattering problem," Tech. Rep. AFAL-TR
71-75, March 1971.

J.C. Brand and J.F. Kauffman, "Analytic considerations
for calculating the complex reflection characteristics
of conducting mesh antenna surfaces," Int. Sci. Radio
Union, Albuquerque, NM, May 1982.

S.D. Conte and C. DeBoor, Elementary Numerical

Analysis, McGraw-Hill, New York, 1972, .pp. 44 - 50.



[13]

[14]

[151]

[16 ]

[171
[18]

[191]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

77

R.F. Harrington, Time-Harmonic Electromagnetic Fields,
McGraw-Hill, New York, 1961, pp. 27 - 34, 98 - 100.

V. Galindo and C.P. Wu, "Numerical solutions for an
infinite phased array of rectangular waveguides with
thick walls,'" IEEE Trans. Ant. and Prop., vol. AP-14,
No. 2, pp. 149-158, March 1966.

A.B. Carlson, Communication Theory, McGraw-Hill, New
York, 1975, pp. 56 - 58.

W.M. Patterson, Iterative Methods for the Solution of
a Linear Operator Equation in Hilbert Space-A survey,
Lect. Notes in Math, 394, Springer-Verlag, New York,
1974, ‘

M. Altman, Contractors and Contractor Directions
Theory and Application, Marcel Dekkar, New York, 1977.

I. Stakgold, Green's Functions and Boundary Value
Problems, John Wiley, New York, 1979, pp. 223 -2959.

A.V. Oppenhiem and R.W. Schaffer, Digital Signal
Processing, Prentice-Hall, Englewood Cliffs, NJ,

+ Chapter 3.

M.I. Astrakan, "Averaged boundary conditions on the
surface of a lattice with rectangular cells,'" Radio
and Elec. Phys., No. 8, pp. 1239-1241, Aug. 1964.

J.C. Brand and J.F. Kauffman, "The application of
the spectral-iteration approach to conducting mesh
reflector surfaces,'" Int. Sci. Radio Union, Houston,
TX, 1983.

E.C. Jordan and K.G. Balmain, Electromagnetic Waves
and Radiating Systems, Prentice-Hall, Englewood
Cliffs, NJ, §§6%, pp. 144 - 150.

S.A. Schelkunoff, Electromagnetic Waves, Van Nostrand,
New York, 1943, pp. 204. '

J.P. Mongtomery, ''Analysis of frequency selective
surfaces using the spectral-iteration approach,"
Int. Sci. Radio Union, Houston, TX, 1983.

C. Christodolou, J.C. Brand, and J.F. Kauffman, to
be published.

R. Mittra, W. Ko, Y. Rahmat-Samii, "Transform approach
to electromagnetic scattering," Proc. IEEE, vol. 67,
No. 1, pp. 1486-1503, Nov. 1979.




[27] M. Kontorovich, V. Petrun'Kin, N. Yesepkina, and 78

M. Astrakhan, '"The coefficient of reflection of
a plane electromagnetic wave from a plane wire mesh,"
Radio Eng., vol. 7, pp. 222-231, 1962.

[28] R.F. Harrington, Field Computation by Moment Methods,
Reprinted by Roger F. Harrington, Cazenovia, New York,
1968, pp. 127 - 131.

[29] R.F. Harrington, Time-Harmonic Electromagnetic Fields,
McGraw-Hill, New York, 19€1,pp. 223 - 225.

[30] E.C. Jordan and K.G. Balmain, Electromagnetic Waves
and Radiating Systems, Prentice-Hall, Englewood
Cliffs, NJ, 1968, PP, 629 - 635.




79
APPENDIX A

The FORTRAN source code that follows will allow the
user to solve for the electric field in the aperture of
an infinite grating of thin wires as well as the reflection
coefficient from the grating. The program is written in
FORTRAN 4 and should run on most FORTRAN compilers with no
modifications except the unit numbers on the read and write
statements. The plot routine must be user supplied and the
program modified accordingly. The input variables are spe-
cified in comments internal to the program. Comments are
also included to help the user follow the flow of the pro-
gram. Some of the variables are self explanitory and the
others are listed below. A suitable DEL, the derivative
increment, has been found to be (0.01,0,.,01) for most cases.

E(I) Electric field in the aperture

JC(I) Current density on the strip

G(I) Transformed Green function

EUT(I) Dummy E field variable

CREF Complex reflection coefficient

HI Incident H field

ED(I) Incremented E field in the aperture

ALF(I) Contraction corrector.

CK? Constants used in the iterative equation

K Propagation constant

EOUT(I) Output variable used for the external plot

pA Internal impedance of the strip



Lines

176—400
410-520
530-610
620-640
650-720

740-920

930-990
1020-1110
1120-1130
1140-1150
1160-1200
1210-1230
1260-1290
1300-1370
1380-1440
1450-1510
1520-1580
1590-1610
1630-1670
1680-1740
1750-1780
1790-1840

1850

1880-1980

Program Flow

Input data

Initialize parameters

Calculate incident E and H fields
Calculate thin wire impedance '
Set up aperture/strip sample space

Calculate Floquet propagation constants and
Green function transform

Initial aperture ﬁé estiﬁate

Calculate constants in iterative equation
Store untransformed Ea

Take FFT of E, and (E, + DEL)

Perform G Ea

Take inverse FFT of G Ea

Perform complement truncation TC(F[G Ea])
Perform-FFT on Tc(F[G Ea])

Perform G 1 (FIT_(F[G ﬁa])])
Calculate reflection coefficient

Perform inverse FFT on G-l

(FIT,(FIG E,DD
Plot set up

Calculate contraction corrector

Apply contraction corrector if desired
Calculate finite conductivity effects

Perform FFT on first iterated Ea

Test for five iterations, next iteration
go to 1160

Output external plot and stop execution.

80



ORIGINAL PAGE IS

_ OF POOR QUALITY 81
C )
Cetnans FINALOS +2s%x D E R 7 V A T 1 V E C ORRECT wowster
C Author Jerry Co Breénr ’
C DATE August 12, 19°3
€ 2Ll richts reservec
c
c .
t pigsension all arrays
COMPLEX E(S12),JCCS12)4G(51),FUT(S12),DEL
COPPLEX PRI1,CREF,HI
COMPLEX ED(STEILALF(S12),,FRIPE(512),UT1(512),EDUT(E2)
COPPLEX J,CKT(512),C¥2(51¢),CK(512),2
DIMENSION FQUT(512,12,2)
REAL KyK2
C A = Floguet cell dimension
C F = Strip size
WRITE(S,*) ° INPUT FLOQUET CELL SIZ2E , STRIP SIZE”®
WRITE(E,*) ° NORMALITED IN WAVELENGTHS®
ReBD(5,%)A,E
C FREQ = Frequéncy in Hert:
WRITE(&,*) “ INPUT FPEQUENCY IM HEPT2”
READ(S,*)FREND
C MAY = FFYT size = Number of samcles per cell
C Jw = Log2(MAY) ; iees MPAX=224]4
C 1P = 0 No pnlct; 1P = 1 Pler;
C NOTEeeses External plot routiné required
C IAC = C No correction;
€ 1AP=1 Contraction corrector scheme appliec
WRITE(&,%) “INPUT A, LOGF(N), PLOT OPTION, ACJUST OPTICN”
READ(S,*) ™AX,IW,IF,TAD
€ S1¢ = Conductance cf strip :
WRITE(6,*) “ INPUT CONSUCTANCZ OF STRIP IN STEMANST
READ(S,*) S1G
C TH = Theta angle of incidence
C DEL = Complex increment ysec ir derivatijve routine
C PH = Phi angle of Incicence
WRITE(E,») ° INPUT THETA ANGLE, DERIVATIVE DELTA, PHI ANGLE"
487 READ(Sy=)TH,DEL,PH
WRITE(H,76) DEL
146 FORMAT("="," DEL®= 9 ¢E10.4)
IFCIADCGET) WRITE(6,299)
299 FORMAT("="," ADJUSTHMENT useo )
€ Initialize routine constants
PI=3.941592
TPI=P]e.,
C=2.9G7956¢% +8
UUS&LE=7+P1
EP=8.854C="¢
ETE=SQRTLUL/FP)
ITER={
J=(G.U,1.Q)
ALAMB=C/FREQ
rp=12C./°1
DR=1. /%D
£ Calculate incidernt electric and magnetic field components
€ for electric field pérallel to wiresy i.€¢ No cross=
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. . . 82
B L FePh T 045 o7 EING 5140 CRIGINAL PAGE- IS
.- [ ] RN ) - * w OF POOR
TF(PH CE.45.) EINC=COSCTH=LR) QUALITY
JF(PH LT«4S:) STH=(,. "
IF(PHGTea%s) STH=TH
HI=1/ETA*(COS(TH2LR)+J=SIN(TH*DR))
IF(PH LT 45,) I=1/ETA=COSC(TH*DR)
Z=SQRTC(TFI*FREQG*UU/Z24/7S1GI)I*(1,7,1.,D)/TP1/E
RRITE(L,15) 2
15 FORMAT(‘-.' ¢ zz(.’51’:‘o?’.'-’51002")')
Catculate number of sanples on strip and in aperture
TAUsA =P
N=IFIXCTRUZA*FLOAT(MEX))
N1=N+1
NMTI=N=1
VAXT=pLEX+T
WRITE(EL,1D)Y B, B, ,TAL JFREGyTHyN  »AY
1—0 FORMAT('-'.3F10.S,E17.3.”‘1;.4.2110)
IF(NT.GT.MAX) GOTO 9¢8
K=TPI/ALAME
Kg=K*K
SKSK*SINC(TH2DR)*COS(PH*(P)
SSK=KASIN(TH*DR)*S IN(PH=DEK)
W=TP14FREQ
MAXI=MAX~T -
Calculate Green functicn transform -
DO 4C I=1,MaX
IFCI.CT,VMAX/24+1)GOT0 ST
UsTPI®(I=1)/2=SK
GOTO €3
S5d U=TPI(I-MAX=1)/A=SK
65 UsUxU+SSK*SSK
IFC(ULGEL.¥2)GCTO 7C
G(I)==J»SQRRT(K2-U)
GOT0 &¢&
75 6(I)=-SQPT(uU=-KZ)
44 G(1)=G(I)=SSK*S3K/C(])
4% CONTINUE
Initial F fielc estimate
DO 32C 1:=1,4N
E(I)-‘-(?.C.".C)
32T EDC(I)=E(1)+DFL
0 32L I=NT,MAX
ED(I)z(GoO’GoC)
X3IC E(1)=(J.0,47.T)
NOTEeees lterative form useco in this program s X = AXeE
Catculate “38" rccecrtion ct iterative equation
00 11C 1=1,MAX
110 CXT1(I)=H1IrIewrLy
CALL FFTUCKTy1IW, ,MAX)
0O 120 1I=NY,YAY
120 CK2(I1)=H1*weUU/J
DO 14T I=14A
140 CKk2(1)=(0C40e0)
CALL FFTUCKcoIN ,MAX)
PO 130 I=1.MEX
13C CxCII=s(Cx1II+CK2C(1II/IG(I)
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00 30C I=1,Mayx
2IC vICIdX=E(T)
CALL FFTCED ,IW,MAX]
CALL FFTC(E,IW,MAX)
Pecin “AX"™ peortion of iterative eqguation
Perform (G*E)
80 DO 10C 1=1,MaX
EDC1)=CONJG(ED(])=C(]))
10C EC(I)=CCNJGCECI)*G(I))
Ferform inverse transfcrr of (G=E)
CALL FFTC(ELIWL,MAX)
CALL FFTC(ED 41w MEX)
WRITE (3,199) ITER
196 FORMAT(1CX,110)
Perform truncation operation T(G*g)
B0 150 I=1,N
ED(I):'(SOO'COO’
00 16C 1=NT1,rFAX
ED(I)=CONJR(ED(I))/IM=X
E(I)=CCNJGCE(I)I/MEX
Calculate current density on strip
16C JCCId=F(I3+ 3/ W/UU=}]
Perform inverse transfcrm cn T(G+*g)
CALL FFTC(S,IW,MAX)
CALL FFTC(ED,IwW,MAX)
Fertorm T(5xE)/G and acd constant il 10
O 17C 1=1,M8x
E(Y)= E(I)IC(I)*CK(])
EDCIY=EDCI) /R (TI)+CK(])
EDUTC(I)=CONJG(EDC(LI)) /M
EUTCI)=CCNJIGLECI)) /M2X
17C CONTINUE
Calculate reflection ccefficiert
PI=JeSINC(STH*DR)/CCS(STH*LR)
CREF=(ECTI)/MAXSEINCI*JI*STLUSTH*DRICABS (T 4=ABSC(E(I)/MEaX+LINC))
CREF=CREF/CCCSC(STHADE)HJ*SINCSTH*DR))
REF=CARS(CREF)
WRITE(E,L57) REF,CFEF
457 FOQMAT(bl,' REF= .|F1G.3'ZOXQ’CREF= "F1902,3x,r.1::.2)
Perfcre irverse transfcrmation to obtain ftirst iterated
electric field
CALL FFT(EUT,IW,MAY)
CALL FFTCENUT 41w eMEX)
DO 2CC JI=1,MaX
EDUT(1I)=CONJG(EDUT (1))
20C EUTCII=CONJGC(EUTC(I))
Flet optign
IFCIP.LT.0Y GOTO 1E3
CALL JPPLOTUEUT MA),,TTEn,ECUT)
180 ITER=ITiR+1
Call subrgutine to calculate derivative of operator and
contraction factor
CALL DERIVCEUTLEDUT,,"AY PRIME ALF ,JIAD,DEL,CON)
WRITE(£,340) CON
240 FORMAT(/,1%%y° CONTRECTICN = “4Fl0.4)

C Pertcre ccrrecticn on electric tield; NCTEseo It l2D=u
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ORIGINAL PARETIS
OF POOR QUALITY

¢ ro adjustment is usec as ALF(1)=3,7
DO 35C I=1,N
EUTCID)=ALFCI)=UI(I)+ (3 =ALF(I))=EUT(])
UICId=cutI(l)
250 EDUTCIY=EUT(I)+DEL
310 CONTINLE
C Catcutate field on strip due to finite conductivity
DO 21C 1I=NT,MAX :
EDUTCI)==JC(T1)+7+8B
| 21C EUT(I)==J(C(1)222B
' C Pertcre transforr of E fielc tc begin next iteration
CALL FFTC(EUT,1IW,MmAX)
CALL FFTCEDUT IwW,MEX)
D0 ¢20 I=1,Mr8X
ED(I)=EDUT(I)
2¢C E(I)=sEUT(I)
IFCITERLCTL5) GOUTO 2¢4C
GOTO EC '
240 CONTINLE
DO 777 1=1,Max
FINDEX=FLOAT(I=T)/FLOAT(MAX=T)w)
C Ferform plot furcticns frr external Plet routine

WRITE(ZZ2,778) PINDEXGEQUTUI,yT41)E0UT(I,2,71),80UT(2,2,1)

*,ECUT(1,4,1),E0UT(1,5,1)

WRITE(23,77E) FRINDEX,EOQOUT(I,1,2),E0UT(1,2,2),E0UT(1,3,2)

+,ECUT(I1,4,2),EOUT(],5,2)
77F FORMET(6F8,2)
777 CONTINUE

WRITE(S,26")
260 FOPRAT( =",1"X," T I » L L Y EXIT*®)
SIE WRITE(£,59) :

G9 FORMAT(“="y," E R R 0O R IN NT)
6$9% STCPF
END

SUPROUTINE JRPLOT(R2,INT ,ITZR,EOQUT)
COMPLEX 2(1) ]
DIMENSION AMP(S12) 4ECUT(S12,70462),PHASE(S12)
N=ITER+1
DO BL Y=T,INT
AMP(1)=caps(a(l))
PHY=AINMAC(A (1))
PHX=REALCAC(]))
IFCARS(PHX) e LTo1eE=20) FHXz], .=
PHRSE(I)=57295=2ATANZ(PRHY PHX)
EQOUT(I,Ny1)=8NMP(])
EOUTC(I Ng2)Y=FPHASE(])

BO CONTINUE
RETURN
END
SURKOUTINE DERIVUIE qED9g“AX yPRIMNE ZALF,TIAD,DEL,CON)

C This subroutine calculates the derivative and
C contractior factor of the ogerator

COMPLEXY E(MAXY) JED(MAX) JALF(MAX) ,PRIMF(MAX) ,DEL
Con=C,T
DO 10 1=1,MAX
FRIMECI)=(ED(I)=E(1))/NEL
CON=CCN+CCARS(PRIME(II*DEL))en?

84



ALF(I)=PRIVME(CI)/(PRIVYE(I)=1,T)
15 IFCIADLT.T) ALF(1)=7,0
CON=SQRTCCON/FLCAT(MAX) )/ CABS (DEL)
PETURN
END
. SUBROUTINE FFT (A M ,N)
C This is the FFY sutroutine called from the main program
COMPLEX A(N), U,W,T
. N=2arp
NV2=N/2
Nm1=N=1
J=1
DO 7 I=T,NM]
IF(I1.GFeJ) GOTO S
T=28(J)
£(J)=A(]1)
£(1)=Y
5 K=NV2
6 1F(K.GELI) GCTO 7
J=J=K
K=K/?
GGTO ¢
7 J=J+K
P1=3,1615976535897¢63
DO 22 L=1,¥
LE:Z*‘P
LE1=LE/C
U=Clecyuel)
W=CMPLXCCOSCPI/ZLET)TINCPI/LFT))
B0 27 J=71,LE?
DO 10 I=J,N,LE
Ip=I+LE1
T=A(IP)*U
ACIPY=A(I)~T

15 8C1)=A(1)+7
0 UsU»w
RETURN

END
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APPENDIX B

The general form of the basic iterative process is

given as

Ol

-1, | 2 -1
t F{ir“fc (ﬁtinc+'j'u_>11—oF

{g . F [T (Et(n))j ;) -ﬁtinc] } o0

The linear operations indicated in equation (Bl) may be
easier to understand if a flow of the operations is presented.
Figure B-1 illustrates the iterative process used in the
computer program of Appendix A. The initial estimate of
the electric field in the aperture is transformed and the
transformed Green function'is applied along with Floquet's
theorem. The inverse transform is applied to this result
to obtain the current density on the strip. The inverse
of the previous steps is then performed to obtain the
first iteratidn of the electric field in the aperture.

That is, the current density is truncated over the aperture
and transformed, the inverse transform Green function is
then applied along with Floquet's theorem to obtain the
iterated apérture electric field. This iterated electric
field may then be truncated and the process repeated until

a suitable solution and tolerable error is  obtained.

Figure B-2 illustrates where the basic iterative pro-
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cess may be interupted to accomodate the contraction cor-
rector scheme. This point is chosen since an iterated
solution has been generated. With this iteration and any
preVious iterations a filtering process may be employed.
The text pointed out the usefplness of the contraction
corrector scheme since it guarantees a convergent solution.
Thus, the iterative process can be viewed as a feedback
brocess whereby the errors of processing can be eliminated

and a useful solution of the problem obtained,



APPENDIX C

The optimum contraction corrector for the one-dimen-
sional problem is shown to be equivalent to Newton's

method. The proof is as follows:

f(xn) =0 (Cl)
G(xn) = X, =Rz, + (1-=R) g(xn) (C2)
g' g’
g1 **t "5 g (xp) (c3)
g| gl_l_gl
=31 *nt geT 9%y (c4)
g' -g(x,)
g1t eI (c3)
g'x_ = g(x))
= L I (C6)
g'-1
g'x_ - g(x ) +x_ =-x
- n n n (c7)
g'-1
(g'=1) x X = g(x.)
= n .4+ B t (C8)
(g'=1) g'-1
g(x_ ) = x f(x)
Xa+1 T Xn T n 2 = *n ~ . (C9)
g'-1l £'(x)
n
where g' = - gx)} .
dx X=X






