
SEMI-ANNUAL PROGRESS REPORT

1 December 1985 to 1 June 1986

to

National Aeronautics and Space Administration

on

NASA Grant NSG-326A

Entitled

"THE BOUNDARY LAYER ON COMPRESSOR CASCADE BLADES"

Submitted by:

Steven Deutsch and William C. Zierke

Applied Research Laboratory
The Pennsylvania State University

Post Office Box 30
State College PA 16804

N86-27607(NASA-CR-177279) THE BOUNDARY LAYER ON
COMPRESSOR CASCADE BLADES Semiannual
Progress Report, 1. Dec. . 1S65: - 1 Jun. .1986
(Pennsylvania State Uciv.) 20 p Unclas
HC A02/MF A01 . CSCL 20D G3/34 43225

https://ntrs.nasa.gov/search.jsp?R=19860018135 2020-03-20T14:11:15+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42840769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


«!*
*~'

(0

purpose Of NASA Research Grant NSG-3264 is to characterize the

flowfield aboufe^an airfoil in a cascade at chord Reynolds number ((RJ)

near 5 x £0y^ The program is experimental and combines laser Doppler

velocimeter (LDV) measurements with flow visualization techniques in

order to obtain detailed flow data [e.g., boundary layer profiles, points

of separation and the transition zone] on a cascade of highly-loaded

compressor blades. The information provided by this study is to serve as

benchmark data for the evaluation of current and future compressor

cascade predictive models, in this way aiding in the compressor design

process.-^

v- .Tfo±s—gepagt -Summarizes! the research activity for the period 1
A,

December 1985 through 1 June 1986. Progress made from 1 June 1979

through 1 December 1985 is pT-ocon<-o/4^in T?nfn^n(mjj 1 "I In uii^U-4-3--

Detailed measurements have been completed at the initial cascade angle of

53© (incidence angle 5 degrees). A three part study, based on that data,

has been accepted as part of the 1986 Gas Turbine Conference and will be

submitted for subsequent journal publication. jPwo NASA1 contrailLui'-a

rpportsr onp. pT-P.ggnt-i.ny-1 IIP, tJypur iinmifcaj—methods Aiid Eheir JTil Hrprnl_aLian

and the- second presenting—the data—have—aî o—been completed.—The f-irst—

as
^ , - nr~r

j^irrant repod? presents /data for a second cascade angle of A537 (an 0

incidence angle of 3 degrees).
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B. PROGRESS DURING THE PERIOD 1 December 1985 to 1 June 1986

B.1 Description of the Experiment

The ARL/PSU cascade tunnel is shown in Figure 1. With the current

fan system, maximum inlet speed to the cascade section is near 35 m/sec.

Inlet turbulence intensity, as measured with a hot-wire anemometer, is

below 0.2% as shown in Figure 2. To facilitate understanding, the

cascade experiments are described (in Section B.I) by using the data

taken at an inlet flow angle of 53 degrees for illustration.

The cascade test section is detailed in Figure 3. Note that blade-

pack side suction, as normally employed in cascade testing to maintain

two-dimensionality, is not possible because of the need for an LDV

window. Instead, a strong upstream side suction, controllable in the

blade-to-blade direction, is employed. Tailboards are used to control

the periodicity of the flow.

Since current computer codes assume a two-dimensional, periodic

cascade flow, data must be taken in such a flow field to be useful.

Here, two-dimensionality is taken to imply that the velocities and angles

of the flow are substantially the same in spanwise planes, while

periodicity means that velocities and flow angles in planes normal to the

blades leading and trailing edges are functions only of the distance from

a blade. In a successful two-dimensional, periodic, cascade flow, the

ratio of axial velocity at the leading to that at the trailing edge is

one. A typical (53°) outlet flow profile is shown in Figure 4, the

corresponding turning angle in Figure 5, and the blade static pressure .

distribution in Figure 6. Interpretation of these figures can be

facilitated by referring to the definitions of cascade flow angles given
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in Figure 7. The periodicity of the flow is clearly excellent. Also

apparent from the blade pressure distribution is the strong adverse

gradient on the suction surface and strong favorable gradient on the

pressure surface near the leading edge of the blade. One might then

anticipate at this incidence angle, flow separation at the leading edge

of the suction surface and laminar flow near the leading edge of the

pressure surface. The axial velocity ratio, found to be one, is

determined by averaging the local axial velocity over three blade

passages, centered at the minimum velocity ratio point of the central

blade wake. On a day-to-day basis, the variation in axial velocity ratio

was within 3%, while the variation in chord Reynolds number was within

1%. A more detailed exposition of the experimental techniques may be

found in [14].

A specially designed traversing mechanism which matches the arc of

motion of an optics cradle to that of the blade curvature is used for the

LDV measurements. All measurements were made in the plane of the local

blade normal. Translation of the optics cradle normal to the blade can

be accomplished in step intervals as small as 0.0254 mm. Prior to LDV

measurements, a reference distance was established by focusing the LDV

control volume on an insert which fit over the central measuring blade.

Narrow lines are etches on the insert so as to be at known locations from

the blade surface. Repeatability in establishing a measurement reference

was estimated to be + 0.05 mm, and this uncertainty is probably the major

source of scatter in the velocity data.

A schematic of the LDV optics system is shown in Figure 8. A two

Watt Spectra-Physics Argon-Ion laser was used for the measurements.
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Power on the blue line employed (488 nm) ranged between 0.6 to 0.8 Watts.

Standard TSI backscatter optical components were used: the focusing lens

(focal distance = 371.3 mm) allowed the measurements to be made at the

blade mid-span. The focal volume was ellipsoidal and was predicted to be

0.56 mm x 0.037 mm in the direction normal to the blade. Optical

shifting at 5 Mhz was employed. To measure close to the surface, the

optical cradle was tiled 1°. Silicon carbide particles having a mean

diameter of 1.5 urn were used for laser seeding. In an attempt to

maintain a uniform distribution, seed was injected well upstream of the

measurement station (see Figure 1) at the flexible coupling.

LDV data acquisition and reduction was accomplished by using a

direct link to a VAX 11/782 computer. Software allowed selection of

focusing lens half angle, laser wavelength, frequency shift, minimum,

cycles employed in the calculation and number of particle counts per run

(up to 4000). Initial output was in the form of a velocity histogram.

Minimum and maximum velocity limits were set by a cursor from the

histogram to eliminate obvious noise. Final output was mean velocity,

turbulence intensity and percent of particle counts employed in the

calculation. The latter served as a signal-to-noise indicator. It is

probably fair to state that at least 98% of the total particle counts

were employed for measurement stations in the boundary layer; at least

95% were employed for points in the free stream. Mean velocity here was

taken as a simple arithmetic average

1 N

u = £ Z u (1)
N , n

n=l

and local turbulence intensity (L.T.I.) as



Experience has shown that quite satisfactory repeatability of the mean

and turbulence intensity can be guaranteed in boundary layer flows by

using N = 1000 particle counts in regions in which the L.T.I, exceeds 5%,

500 points for L.T.I, less than 5% and 200 points for the free stream.

At each measurement station, profiles were defined by statistically

treating the data for six individual experiments.

The preliminary data analysis is automated on the ARL/VAX computer.

The effects of normal pressure gradient are accounted, for first. Details

of the technique are given in Reference [14] and are equivalent to that

used by Ball., et.al. [15] and Mellor, et.al. [16]. Briefly the

technique assumes that the profile may be represented as

u = u... + u. - U (3)meas BL. inv e

so that the edge velocity (Ue) can be determined by extrapolating the

outer inviscid flow (û nv) to the wall (where u^^ = UJJL = 0) in some

reasonable manner. The reconstructed boundary layer can then be analyzed

in several ways. For example, the mean profiles can be fit to Cole's

composite profile [17] or compared to a Falkner-Skan profile [18] (at

equivalent pressure gradient). For all the measured profiles, integral

parameters can also be calculated from a smooth cubic spline fit.

Finally, skin friction calculations can also be made, where appropriate,

using the Ludwig-Tilman [18] correlations.

B.2 Progress

For the cascade angle of 53°, eleven profiles were measured on both

the pressure and suction surfaces of the double circular arc blades; two
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profiles were measured in the near wake. Each profile contains mean

velocity and turbulence intensity information; for most of the profiles,

the skewness and kurtosis were also calculated. Analysis of these data

is complete. A three part article, based on these results, has been

accepted for presentation at the 1987 Gas Turbine Conference; Journal

publication is anticipated. Two NASA contractor's reports, the first a

description of experimental methods and an analysis of results and the

second, a compendium of both the raw and analyzed data, have also been

completed. The first of these contractor's reports has been issued as an.

ARL/PSU TR [14].

A two-dimensional periodic flow field has been established at a

second incidence angle of -3°. The incidence was changed by rotating the

entire blade pack from 53° to 45°. The measured pressure distribution,

outlet-to-inlet axial flow profile and outlet turning angles are shown in

Figure 9-11. The axial flow ratio is near 1.00 for a chord Reynolds

number of 5 x 10 . The pressure distribution is most interesting when

compared to the one taken at a cascade angle of 53°. In particular, at

45°, note the region of strong flow acceleration over the first 20% chord,

on the suction surface. Flow visualization studies at this second

incidence have also been completed. Transition was found on both the

suction 54.3 1+ 1% chord) and pressure (26.9 1+ 1.25% chord) surfaces, of

the blade.

Detailed boundary layer measurements at this second incidence angle

are well underway. Boundary layer profiles on the suction surface are

complete. Transition on the suction surface is through a laminar

separation/turbulent reattachment mechanism. The turbulent boundary



- 8

layer then separates near the trailing edge. Data analysis of the

suction surface profiles is continuing. Velocity profiles on the

pressure surface are also underway.

C. GOALS FOR THE NEXT REPORTING PERIOD

During the next six-month period, it is anticipated that:

* Detailed boundary layer and near wake velocity profiles at the

second cascade angle (45°) will be completed.

* Documentation of the data at 45° will be underway.

* A two-dimensional periodic flow field will be setup at a third

incidence angle (near design conditions).
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