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SUMMARY

The SSME Long-Life Bearing Program was conducted to extend the radial load and
speed capabilities of turbopump bearings for high-performance Oxygen/Hydrogen
rocket engines. Hybrid combinations of ball bearings with hydrostatic bearings
were analyzed and designed for operating conditions typical of high-pressure tur-
bomachinery, using the SSME high-pressure turbopumps as bases. Four types of
hybrid bearings were designed, including two parallel load and two parallel speed
configurations, each with an externally and internally fed hydrostatic element.
Prediction of the operation and performance of the four types of hybrid bearings
was made, including the effects on ball bearing 1ife, and the effect on damping
and stiffness arising from the hydrostatic element. Parametric treatments were
used to define the effects of geometric features of the hydrostatic elements on
the stiffness and damping characteristics obtained, and also to define methods
for identifying the optimum magnitude of damping for a rotor system, and the
optimum bearing geometry to obtain the desired results.

Three configurations of hybrid bearings based on a 45 mm bore ball bearing were
fabricated: PLEX (Parallel Load Externally fed) PLIN (Parallel Load Internally
fed), and PSIN (Parallel Speed Internally fed). The first two of these were
tested with LH2 and LN2, respectively. The hydrostatic elements were also tested
to determine dynamic characteristics.

A test method was defined to measure empirically the dynamic stiffness and damp-
ing coefficients of hydrostatic bearings. Damping tests with LH2 as the working
fluid were not successful in producing coefficients because of interference by
casing vibration. After modification of the tester mount, coefficients were suc-
cessfully determined for both externally fed and internally fed bearings using
Freon 113 as the working fluid. Separate direct and cross-coupling stiffness and
damping coefficients as well as effective coefficients (direct stiffness combined
with cross-coupled damping, and direct damping combined with cross-coupled stiff-
ness) were determined for the 75 mm diameter externally fed hydrostatic bearing
and for the 55 mm diameter internally fed bearing. Requisites for separated
coefficient determination were found to be a journal orbit ellipticity of at
least 1.175, and a high degree of journal roundness. Accurate centering of the
journal is also considered necessary. The externally fed hydrostatic bearing's
measured direct stiffness and damping coefficients were found to agree fairly
well with analytic predictions. Cross-coupled stiffness was negative rather than
positive as predicted. Cross-coupled damping was significantly larger than
predicted and speed dependent. For the net effective coefficients, the stiffness
was 30% lower and damping 150% higher than predicted. Stiffness and damping were
approximately proportional to supply pressure.

The internally fed bearing's coefficients of direct and cross-coupled stiffness
and direct damping were more speed dependent, but coincide with predictions at
200 to 250 Hz. Net effective stiffness was 35% of that predicted; net effective
damping was larger than predicted, although only about 10% of that for the
externally fed bearing.



In steady-state testing of the externally fed bearing with LH2, the stiffness was
greater and fluid flow was less than predicted by approximately 20X. Transient
tests simulating turbopump start and shutdown of the parallel load hybrid bear-
ings (externally fed with LH2 and the internally fed bearing with LN2) were
satisfactory. Accumulations of the silver plating from the internally fed bear-
ing jammed the bearing on two occasions. The initiating cause was concluded to
be particles in the working fluid.

These were the principal conclusions drawn from the analysis and testing:

e Hydrostatic bearings can be used in combination with ball bearings to
improve turbopump radial bearing capabilities for load capacity, life,
and dynamic characteristics of stiffness and damping.

e Externally fed hydrostatic bearings possess significant direct stiffness
and damping, with a reasonable magnitude of cross-coupling stiffness.

o Internally fed hydrostatic bearings with journal surface recesses and
smooth bearing surface have low effective stiffness and damping. This
characteristic does not rule out this type of bearing for all applica-
tions. Since fluid swirl is considered to be the cause of low effective
coefficients, means of attenuating fluild tangential velocity could mod-
ify the conclusions reached from this test series.

e Deriving separated coefficlients from synchronous testing has inherent
1imitations of minimum orbit ellipticity, which are difficult to achieve
with asymmetric stator stiffness.

Recommendations were made for continued development of hybrid and hydrostatic
bearings including: '

e Nonsynchronous excitation with a separately driven mass is recommended
as a means of bypassing the minimum ellipticity requirement.

o Testing of the Parallel Speed Internally fed configuration should pro-
ceed, as this configuration has the greatest potential for improvement
of speed and 1ife capabilities of propellant-cooled ball bearings.

e Development of internally fed hydrostatic bearings with means of
reducing fluid swirl to improve their stiffness and damping should
proceed.

o Materials studies to improve the wear and seizure resistance of hydro-
static bearings should be conducted to consider the use of wrought or
fusion-applied hard surfacing materials, ceramic inserts of materials
11ke Silicon Carbide or other hard materials. The studies should include
definition of mounting techniques that maintain compressive stress for
brittle materials. If sufficient wear resistance can be obtained, the
need for rolling bearings for start and shutdown may be eliminated.



INTRODUCTION

In the Space Shuttle Main Engine (SSME) turbopumps, the use of propellant-cooled
ball bearings achieves reduced turbopump size and weight by eliminating the need
for separate lubricants, and the attendant seals and heaters. Ball bearings are
capable of functioning in the severe environments typical of turbopumps, where
high speeds and loads are combined with large temperature excursions, negligible
lubrication and particulate contamination. Ball bearings with 440-C balls and
races and Teflon-fiberglass cages were entirely satisfactory for 1iquid hydrogen
and liquid oxygen service in single-flight engines l1ike the J-2 used 1in the
Apollo Program.

With the advent of reusable vehicles, the SSME and other advanced engine require-
ments have placed progressively greater demands on turbopump bearings in terms of
Jife, load capacity, speed capability, and rotor support characteristics, sur-
passing the capabilities of ball bearings. Speed capabilities exceeding 2 x 106
DN, with service l1ives of 10 h are required for advanced applications in the near
future with further increases anticipated. Achieving these increased performance
requirements is hindered by the often severe operating conditions encountered in
turbopumps. Ball bearing Tives will fall short of predictions based on fatigue
ratings due to wear resulting from the lack of lubrication provided by the pumped
propellants. In Fig. 1, the speed limit shown for a 10 h fatigue life is an
optimistic prediction for 1ightly loaded LHp or L0, cooled bearings. The
extent to which additional radial or axial load and propellant cooling will
reduce speed and 1ife 1imits will depend upon the magnitude of loads or misalign-
ments imposed, and the adequacy of cooling supplied by the propellant.

As a means of improving the 1ife and speed capabilities of ball bearings, hydro-
static bearings are attractive alternates, as they are theoretically speed 1im-
ited only by the centrifugal shaft stress, and thus can operate at journal speeds
up to approximately 5 x 106 DN, have increased load capacity (providing suffi-
clent fluid pressure and flow are avallable), provide improved shaft support
through greater stiffness and damping, and have essentially unlimited life if
rubbing contact is avoided. However, since they require pressurization from an
external source to develop significant Jload capacity, hydrostatic bearings need
some means of avoiding wear and heat generation during start and shutdown. Vari-
ous hybrid bearing configurations have been tested to combine the startup capa-
bi11ty of rolling bearings with the speed, 1ife, and damping advantages of film
bearings, (Ref. 1 through 11). The type investigated for cryogenic turbopumps
has been the parallel speed configuration for radial loads wherein the hydro-
static bearing is coplanar and concentric, surrounding the ball bearing outer
races that are free to rotate with the shaft (Ref. 1, 2, 7, and 11). Other
configurations have been proposed or tested with 0oi1 as the working fluid
(Ref. 3, 4, 5, 6, 9, and 10). Parallel load, as well as thrust bearing
configurations are described in Ref. 8.

Hydrostatic and hybrid bearings are adaptable to rocket engine turbomachinery,
since typical 1liquid rocket propellant delivery systems can supply the high-
pressure fluid required for hydrostatic bearings without significant performance
penalty. Potential improvements 1in speed and 14fe capability through use of
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hydrostatic or hybrid bearings to share load are indicated in Fig. 1. Hybrid
bearings have been tested and demonstrated to be feasible in turbopumps (Ref. 1,
7, and 11), and are being actively considered for incorporation into new turbo-
pump designs.

NASA/Lewls Research Center (LeRC) initiated the SSME Long-Life Bearing Program
under Contract NAS3-23263 with the goal of extending bearing capabilities by pro-
viding practical design information for improved radial bearings suitable for
SSME (Space Shuttle Main Engine) and other advanced propulsion systems.

The program effort focused on hybrid bearings using cryogenic working fluids in
rocket engine turbopumps. However, the results are pertinent to other classes of
rotating machinery utilizing more conventional fluids. The damping measurement
techniques developed can be used for fluid film bearings in general for confirma-
tion of dynamic stiffness and damping characteristics.

. The objectives of the program were to design and test hybrid ball/hydrostatic
bearings and to provide empirical data with which to confirm or modify analytic
methods and models used in hydrostatic bearing design. Comparative evaluation of
the internally and externally fed hydrostatic bearings for use as parallel Tload
elements was a specific goal of the testing.

Testing of hybrid bearings was conducted using LHp and LN3 as working fluids,
imposing speed, accelerations, pressure, flow, and temperature conditions simu-
lating turbopump environments. Fixed radial loads were imposed to determine
bearing stiffness. Tests to measure damping were conducted using LHp and Freon
113 as the working fluids. Journal eccentricity was the source of radial loading
for the damping tests.

In the cryogenic tests, the test hardware was chilled prior to applying working
fluid operating pressure and rotation. Transient tests were conducted by concur-
rently applying supply pressure and rotational power to simulate turbopump shaft
acceleration and pressure schedules.
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NOMENCLATURE

DESCRIPTION

Orifice Area m2 (1n.2

)

Recess Area Ratio = x y

Recess Circumferential Length, m (in.)

Direct Damping Ns/m (1bfes/in.)

Clearance, m (in.)

Coefficient of Discharge (=1.0)

Journal Diameter m (in.)

Orifice Diameter m (in.)

Gravitational Constant = 9.81 m/s® (386.4 1n./s°)
Turbulent Correction Factor for Viscosity

Film Height, m (in.)

Recess Depth

2

Mass Moment of Inertia of Cartridge, kg-m2 (1bein.")

Unit Vector in Circumferential Direction

Unit Vector in Axial Direction
Stiffness, N/m (1bf/in.)
Direct Stiffness, N/m (1bf/in.)

Nondimensional Direct Stiffness, cixx/(Ps-Pa)LD
Cross-coupling Stiffness, N/m (1bf/in.)

Inertia Coefficient

Bearing Length, m (1in.)

Recess Axial Length, m (in.)

Recess S111 Width, m (in.)



o¢ o 3

Number of rows
Number of recesses

Unit Normal Vector

Rotational Speed, rpm

Pressure, N/m2 (psia)

Ambient Pressure, N/m2 (psia)
Recess Pressure, N/m2 (psia)
Supply Pressure, N/m2 (psia)
Pressure Rat;o = (Pr;Pa)/(Ps—Pa)

Flow rate, m“/s (in."/s)

Journal Radius, (=0/2)

Fi1m Resistance, szl(N-mz) (52/1b-1n.
Orifice Resistance, szl(N-mz) (52/1b-1n.

Temperature, K (R)

Friction Torque, N-m_(]bf.1n.)
Fluid Velocity, m/sec (in./sec)
Bearing Load, N (1bf)

Axial Direction

Excitation frequency, rad/s
Circumferential Direction
Angular Tilt, radian

Attitude Angle, degree
Rotational Speed, rad/s

Bearing length to diameter ratio

Clearance to journal radius ratio

2

)



Recess circumferential length ratio = EEQ
wmD

Total recess axial length ratio = TEQ
L

$111 width ratio = bp
L
Eccentricity ratio = %

Recess pressure ratio = 'r ' a

Couette Reynold's number = cwRp
¥

3
Poiseutlle Reynold's number = 2 © p(PS'pa)pR

2., ¥
u (T—m) L

W

Nondimensional load
(Ps-P3)LD

m(L) (1- ¥) Q
D m

Gpc3 Pa(Ps-Pa)

Nondimensional flow

cK
XX

Nondimensional direct stiffness =
(Ps-P3)LD

c Kx

Nondimensional cross-coupling stiffness =
, (Ps-P3)LD

Nondimensional damping = (g)3

B._/ul
R XX

Nondimensional friction torque = Tf

(Ps—Pa)LDC

Bearing number = pwRl
2
Gpc (PS-Pa)



orifice restrictor parameter = p(Ps-Pa) c6R
2
u(AyCp)

R 2

Squeeze Number = un €
(Ps-P3)

(P - P.yct oK

Inertia Parameter = 's _ a’"~ Pe
288 (wu R)2
g6 c3P 2

Nondimensional orifice resistance = ° p-_'R (Ps'Pa)Ro

Ly, Y
whH-h
G c35 2
Nondimensional film resistance = ?97p° 'R (P-P,)R¢

mh Y



BEARING ANALYSIS AND DESIGN

Four hybrid bearing configurations, Fig. 2, were designed for the operating con-
ditions (Table 1) of the SSME, but which are representative conditions for high-
pressure LHp (1iquid hydrogen) and LO» (liquid oxygen) turbopumps. The con-
figurations are:

PLEX - Parallel Load Externally fed, Fig. 2a

PLIN - Parallel Load, Internally Fed, Fig. 2b
PSIN - Parallel Speed, Internally Fed, Fig. 2¢
PSEX - Parallel Speed Externally Fed, Fig. 2d

The geometric features of the hydrostatic members of the hybrid bearings are
1isted in Tables 2 through 5. A1l hybrid bearings incorporated the 45 mm bore
ball bearing described in Table 6. Factors that influenced the choice of 1inter-
nally fed bearings for LO, service were (1) the high-friction torque caused by
the higher density and viscosity of LO,, which favor small journal diameters
and (2) a source of high-pressure L0, currently exists in the shaft interior
of the SSME HPOTP, which would be readily adaptable to feed hydrostatic bearings.

In Fig. 2, schematics below each cross section represent the clearances (dead
bands) and forces linking the shaft to the housing both prior to pressurization

of the hydrostatic bearing and at steady-state operation with working fluid sup-
plied under pressure.

The predicted bearing performance characteristics are 1isted in Table 7.

The computer program HBEAR (Ref. 12) was used to analyze the hydrostat1c bear-
ings. Modifications of the program results were made for the internally fed
bearings to account for fluld swirl effects.

Ball bearing analysis was performed using the methods of A.B. Jones, (Ref. 13).

Parametric treatments of bearing geometric and performance variables were used to:

1. Define the effects of geometry on LHp - fed hydrostatic bearing
characteristics

2. Determine a method to define the optimum damping for a rotor

3. Identify the geometric features that most strongly affect the damping
obtained

10
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TABLE 6. BASELINE BALL BEARING DESIGN SUMMARY

TYPE - ANGULAR CONTACT VALUE UNITS

DIMENSIONS
BORE 45 mm
PITCH DIAMETER 59 mm
OUTER DIAMETER 15 mm
WIDTH 16.51 mm
BALL DIAMETER 8.73 mm
NUMBER OF BALLS 14 -
INNER RACE CURVATURE, R/D 0.53 -
OUTER RACE CURVATURE, R/D 0.52 -
INNER RACE SHOULDER, H/D 0.23 -
OUTER RACE SHOULDER, H/D 0.19 -
INTERNAL DIAMETRAL CLEARANCE
UNMOUNTED 0.101 mm
MOUNTED, AMBIENT 0.049 mm
MOUNTED, CHILLED 0.066 mm
CONTACT ANGLE, MOUNTED CHILLED 22.3 DEGREES
CAGE 0D CLEARANCE : 0.23 mm
CAPE POCKET CLEARANCE 0.616 mm
TOLERANCES
DIMENSIONS ABEC 7 -
BALL GRADE AFBMA 10 -
MATERIALS
BALLS 440C -
RINGS 440C -
CAGE GFT* -
STIFFNESS 8.0 x 107 N/m

(3874 rad/s, 3100 N preload)

*GLASS FABRIC SUPPORTED PTFE
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HYBRID BEARINGS
PLEX BEARING

The PLEX (Parallel Load, Externally Fed) hybrid bearing, (Fig. 2a), offers sig-
nificant increases in stiffness and damping over that of the ball bearing alone.
The 1ife benefit in the presence of radial load 1s shown in Fig. 3. For the ball
bearing alone, 1ife declines with 1increased radial 1load from point 1 to
point 2 . In the hybrid bearing, the radial load is shared between the
hydrostatic and ball bearing elements so that the ball bearing 1ife follows the
path from 1 , 3 , 4 , and 5 . In the test bearing design with the ball
bearing of Table 4 and the hydrostatic bearing, Case 1 of Table 7, from
points 1 to 4 , the ball bearing radial load is limited to the friction force
(product of preload and friction coefficient) required to move the outer race
through the dead band. From 4 to 5 , the hydrostatic bearing supports most of
the radial load by virtue of 1ts high stiffness, 31.9 x 107 N/m as compared to
8 x 10/ N/m for the ball bearing. Since the ball bearing runs at full rotor
speed, there will be no 1ife increase at low radial loads. However, benefits
would be obtained from the added stiffness and damping.

PLEX BEARING BALL BEARING LIFE
CONSTANT AXIAL LOAD = 3100 N

15
©)
® O]
\YBRID BEARING
10 <

B1 LIFE, HOURS

5 N

— 9

0 3000 6000 9000

RADIAL LOAD, N
Figure 3. Life Effect, Plex Bearing

A desirable characteristic of the parallel load bearings 1s that the forces
arising from the stiffness and damping of the film are transmitted directly to
the housing rather than through the ball bearing as 1in the parallel speed
bearings.

Avoidance of hydrostatic bearing contact during transients is an important advan-
tage of the parallel load bearings, particularly in bearings operating in LO;
or other reactive propellants where frictional heat might trigger ignition. An
additional margin of 0.027 mm (0.001 in.) clearance exists at low speeds due to
the allowance for centrifugal growth of the journal.
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Since the hydrostatic bearing working fluid is supplied from the turbopump dis-
charge, fluid pressure and properties will become functions of shaft speed as
represented by Fig. 4. In a multistage pump, the bearing working fluid would be
drawn from the lowest stage discharge which has sufficient pressure for bearing
operation to minimize heating of the fluid. The predicted hydrostatic bearing
performance characteristics including the speed effects, are presented in Fig. 5
for the bearing of Table 2. A similar determination of the speed dependent
characteristics of the bearings should be included in rotordynamic analyses as
part of the turbopump design process to define response during transient
periods. For example, the possibility of a rotor resonant condition, which
tracks rotor speed, may arise due to concurrent stiffness and speed variation
(Ref. 11).

‘' 10 r 1° 1
80 }—
—{100 @ 3
i F o
3 3 40— —2; 079
- ME ”-t: N\E Nx
"o
= g o E 2| 2| £
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¢ w @ a
w ] a > 2
- —
a >
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ol L | 0 =} 40 _JO

SPEED, 103 RAD/S

Figure 4. Speed Effects-LHp Bearing Conditions
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PLIN BEARING

As with the PLEX bearing, the hydrostatic element of the PLIN (Parallel Load
Internally fed) bearing, Fig. 2b, with a stiffness of 2.36 x 10° N/m supports
part of the radial 1load, extend1ng the fatigue 1ife of the associated ball
bearing (Fig. 6) with a 8 x 107 N/m stiffness, and also increases the combined
stiffness and adds damping (Table 7). For the test bearing design, the journal
diameter was selected to discharge the fluid (LO) between the 1nner race and
cage of the ball bearing, providing cooling without impinging on race or cage.
The bearing consists of a plain cylindrical inner diameter surface, while the
orifices and recesses are 1incorporated intoc the journal outer diameter surface.
The tangential velocity or swirl imparted to the fluid will theoretically
increase the damping obtained, but will also significantly increase the
cross-coupled stiffness. Fluid swirl effects were included in the predicted
characteristics of the hydrostatic bearing using the approach developed for seals

(Ref. 14).
PLIN BEARING BALL BEARING LIFE

20

s N

\%BEARING

81 LIFE, HOURS

0 ‘\\\\\\\
5 \ \

BALL BEARING ONLY \
0

0 3000 6000 9000
RADIAL LOAD, N

Figure 6. Life Effect, Plin Bearing

Figure 7 shows the speed dependence of fluid properties, pressures, and clearance
used to analyze and predict the internally fed hydrostatic bearing characteris-
tics that appear in Fig. 8.
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HYDROSTATIC BEARING DESIGN

The hydrostatic bearings for this program were designed with emphasis on
maximizing stiffness and damping and minimizing friction torque and flow rate.
Designs for other applications will require prioritizing of these quantities to
accommodate rotordynamic and other specific considerations. For example, maximum
stiffness may not be desirable for a particular design. Also, low friction tor-
que is more important for parallel speed hybrid bearings than for parallel load
bearings.

Operating conditions, fluid properties, and bearing envelope are assumed to be
governed by the turbopump configuration. Available supply (Ps) and ambient (Pa)
pressures, fluid viscosity (u) and density (p) and the shaft speed (N) are
assumed to be set for the application. Bearing geometry nomenclature 1is
j1lustrated in Fig. 9. The journal diameter (D) and bearing length (L) must be
compatible with space constraints. The optimization process involves selecting
the journal to bearing clearance (c), recess configuration, and orifice size
(dg) to achieve optimal performance. The following parameters are used to
describe the recess configuration:

Number of recesses (n)

Recess to journal area ratio (A;)

Number of rows (m)

Circumferential recess length (Bp)

Axial recess length (Lp)

Recess edge to bearing edge distance (Lé)

Considerations in selecting a candidate recess configuration include:

1. The number of recesses should be greater than four to avoid excessive
directional stiffness variation. From this aspect, there is 1ittle
benefit in using more than six recesses (Ref. 16)

2. Recess depth (h., Fig. 9)should be great enough to obtain uniform
pressure over the recess area. Using the criterion of a 10X maximum
pressure variation (Ref. 1),

2(B_+L <
1210 (dQ__El -« -0

2 3
w«n Gp PR (Ps—Pa) (hR+c) ]

where: Gp is the Poiseuille correction factor for turbulence and is a function
of the Poiseuille Reynolds' number (Rg).

Since:
*

Re =

3 —
2 ¢ p (P-P,) Py

2 y
m- (1 - m) L
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3. The recess volume should be kept small to avoid pneumatic hammer insta-
bi1ity. Reference 1 suggests that the total volume of recess and com-
pensating orifice not exceed the clearance volume in the land area for
LH> hydrostatic bearings. Since LO; is less compressible, the per-
missible volume ratio can be as much as 2 for LOp-fed bearings. This
criterion can be expressed as

n[(hR +C) Lp Bp] < 1.0 for LH2

(«OL - n Lp Bp) ¢ < 2.0 for LO2

4, Fludd velocities within the bearing flow path should be checked for
choking, which will occur 1f the local velocity exceeds the sonic vel-
ocity. :

When two rows of recesses are used, a staggered pattern is normally adopted, to
give more uniform load support, although only a minor effect 1s expected for
designs with more than four recesses per row. While the recess depth, corner
radius, length of orifice, and surface finish do not have much calculable impact
on performance, they require consideration as they do affect stability and choice
of manufacturing process.

OPTIMIZED DESIGN

General Approach

Maximizing an Objective Function is the suggested way to quantify a desirable
performance "score." The optimization process outlined below can be applied to
any hydrostatic bearing design.

The expression for the Objective Function is determined by the relative impor-
tance of the performance goals and is formulated for each bearing design indivi-
dually. An example of Objective Function use follows:

Given:

The journal diameter (D),

The fluid properties (u, o),

The operating speed (N),

The supply (Pg) and ambient pressures (P;) and
The bearing load (W)

Required:

e The bearing length (L)

& The journal clearance (c) .

¢ The recess configuration (n, m, Ar, Bp, Lp, Lp) which
maximize the value of the objective function J.
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where:

e J=1J (H1B, NZK' H3Tf. w4 m)
e J is a function to be defined

® w] through w4 are welghts assigned to each element
J 1s to be maximized while satisfying the following constraints:

e < €max to avoid rubbing

T¢ < Tmax to maintain a high fiIm speed for parallel speed bearings

m < ﬁmax where a 1imit can be set to maintain efficient pump performance.

K and B within a certain envelope depending on the rotor configuration

do < d0 to avoid blockage by particulate contamination.
min

Formulation of the Objective Function (J) should be as specific as possible. In
the absence of specific 1imits or constraints, subjective choices must be made
based on judgment.

Hydrostatic Bearing Design Optimization

The optimization procedure used for the hydrostatic bearings is outlined above
and 1s depicted in the block diagram of Fig. 10. The procedure started with a
preliminary selection of the clearance (c) and bearing length (L) based on the
following dimensionless quantities suggested in Ref. 15:

€ - 0.001, and
R

To achieve maximum stiffness and damping, a recess pressure ratio of near 0.5 is
required (Fig. 11). A candidate recess configuration was selected and, with the
help of design curves, such as Fig. 12, (film resistance versus clearance) and
Fig. 13, (orifice resistance versus orifice size) the orifice diameter was
selected to achieve a pressure ratio (PR) of 0.5.

The predicted performance of this trial design was then evaluated analytically
using the computer program "HBEAR", which is described in Ref. 12. The results
were then examined for matching of the objectives and constraints, and the
Objective Function's value computed. Should the objectives not be met, the pro-
cess was repeated after adjusting the candidate design elements. For example,
the Journal clearance and/or the bearing length was altered if permitted by con-
straints. The next adjustment, if necessary, was made to the recess configuration.
This process was repeated until all constraints were satisfied. At this point, a
feasible, but not necessarily optimal, design was achieved. The procedure could
then again be repeated until the Objective Function value was maximized. This
configuration was chosen as the final configuration, completing the design

process.
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HYDROSTATIC BEARING ANALYSIS
The following assumptions were adopted in the analysis:

1. The density change across the bearing 1is sufficiently small so that
incompressible flow can be assumed.

2.  The inertia force is negligible compared to the viscous force except at
the fi11m entrance from the recess; at this boundary, fluid is acceler-
ated so fast that the static pressure loss must be considered.

3. Since fluid viscosity is a function of the pressure and temperature, the
viscosity of the fluid at the inlet differs from that at the exit. An
average value between these two will be used as the effective viscosity.

The type of bearing considered in this analysis 1s a full 360-degree orifice com-
pensated hydrostatic journal bearing incorporating a number of feeding recesses
in the bearing or journal. Fig. 9 presents a description of the geometry of the
externally fed bearing shown in a schematic unwrapped view. Recesses are incor-
porated into the journal surface of the internally fed bearing. Each of the
recesses 1s fed by flow from a high-pressure supply that passes through an ori-
fice restrictor upstream of the recess.

Unusual factors concerning the use of cryogenic working fluids in hydrostatic
bearings include the low values of kinematic viscosity coupled with high relative
journal/bearing surface speed. As a result, the flow in the bearing film is vig-
orously turbulent. The level of turbulence is a function of the local velocity
field, and the viscosity coefficient factors used as inputs to account for tur-
bulence depend on the pressure distributions which are outputs to be determined.
Solution thus requires an iterative procedure, which 1is incorporated into 'HBEAR'.

The analysis of the internally fed bearings was conducted similarly to that for
the externally fed bearings, with stiffness and damping modified searately from
the computer program to account for fluid swirl.

PARAMETRIC DESIGN STUDY

A parametric treatment was made of a hydrostatic bearing element (Table 5) by
varying inputs individually to determine the effects on stiffness, damping, flow
rate, and friction torque.

It was concluded from the parametric study that stiffness and damping are
strongly affected by overall pressure ratlo, bearing size, and clearance. Recess
pressure ratio, controlled by choice of orifice diameter, is the most influential
parameter in maximizing stiffness and damping for a given bearing. Other design
and operating condition variables exert lesser influences on bearing perform-
ance. It 1s apparent that 1t 1s impractical to generate universally applicable
nondimensional design charts for hydrostatic bearings owing to the large number
of 1interacting relationships. A prohibitively large number of charts would be
required to cover a wide range of variables. However, a relatively few curves
can be utilized to characterize bearings that belong to the same category,
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e.g., having the same recess configuration or operating under similar Reynold's
numbers. A preliminary design can then be selected through interpolation or
extrapolation of these charts. Fipnal performance predictions should be refined
with the computer code for the selected bearing geometry. Preliminary designs
may be selected through use of the nondimensional charts, saving a considerable
amount of computer time.

OPTIMUM DAMPING

Parametric treatments were made of the rotordynamic requirements for damping and
the effect of bearing geometric features on the magnitude of damping attained.

Rotor Requirements for Damping

The effects of damping were analytically investigated to determine if a general-
1zed relation could be developed between rotor responses and the magnitude of
damping at the rotor supports. Simple rotor models were formulated, which had
properties typical of rotors in gas turbines and rocket engine turbopumps.
Fig. 14 and Table 8. present the rotor model properties. The bearing packages
were set up to represent hydrostatic or hybrid bearings. The approach used was:

1. Assign values to the bearing stiffness, and the damping and stiffness of
the bearing support

2. Calculate rotor synchronous responses over a range of speeds covering
two critical speeds

‘3, Parametrically vary support stiffness, damping, and bearing stiffness

A unit unbalance was applied at J5 (Fig. 14), first with the bearing packages
located at J2 and J4, then at J2 and J5. Parametric values were chosen to evalu-
ate the effect of support stiffness and damping vs bearing stiffness.

The load in bearing No. 2 was chosen as the parameter for comparison among the
various cases. MWith bearing No. 2 Tlocated at J4, increasing damping (for given
bearing stiffness) decreases the resonant response up to a point. For greater
damping the resonant speed is raised and the amplitude is larger than that with
lower damping for some cases (Fig. 15).

For the same rotor with bearing No. 2 relocated to 15, increased damping raises
response amplitudes 1in the vicinity of 25,000 rpm. Amplitudes are generally
attenuated in the vicinity of 35,000 rpm for increased damping. The loci of peak
responses as shown in Fig. 16 can be used to identify optimum damping for a given
configuration.

This analysis indicated that there is no general relation governing response and
damping for all rotors. It is evident that in some instances increasing damping
may lead to a worse condition than previously existed. While there may be no
general governing relation, a general approach to define optimum damping is to
perform a parametric study such as that described to evaluate damping and stiff-
ness 1interactions. The values used in the study do not necessarily have to be
those for specific geometries of dampers or fluid film bearings but should cover
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Figure 14. Rotor Models
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TABLE 8. ROTOR MODEL PROPERTIES
INERTIA MOMENTS

JT X MASS ID Ip ID - Ip
m kg Nem2 N-m< Nem?

] 0.0635 2.68 0.0278 0.0528 -0.0250

2 0.1270 2.68 0.0278 0.0528 ~0.0250

3 0.2540 5.35 0.0640 0.1056 -0.0573

4 0.3810 0.964 0.0039 0.0068 -0.0029

5 0.5080 8.68 0.2820 0.5549 -0.2729

a7 inch 1bm 1b+in.2 | 1b-4n.2 | 1b-4n.2
] 2.5 5.89 9.69 18.41 -8.72
2 5.0 5.89 9.69 18.41 -8.72
3 10.0 11.78 22.33 36.82 -19.99
4 15.0 2.12 1.37 2.39 -1.02
5 20.0 19.10 98.29 193.39 -95.10




BEARING LOAD N(ib)

@ € =3502N-s/m (20 Ibs/in.)
@ € =17500 N's/m (100 Ib's/in.)

® C€=35020 N's/m (200 Ib's/in.)

(@ C=87600N's/m (5001bs/in.)

(® = 175000 N's/m (1000 Ib's/in.)

(1000) |-
J2 J4
[ * ®
< <
K< ;CC kg Lic

1000 | ;; ;1[77I]/J'

700 K = 17.51 x 108 N/M (10° LB/IN.}

500

(100)

100

{10)

10

0 | | 1 | 1 | | 1 1
Y 2 4 6 8 10 12 14 16 18 20

SPEED, 100 rad/s

Figure 15. Overhung Rotor Response
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(and exceed) the range of expected values. Since the bearing location signifi-
cantly affects the results, rotordynamic analysis should be conducted con-
currently with conceptual machine design.

The forgoing parametric treatment of rotor response included only the effects of
damping. A complete rotor/bearing analysis should also include stability studies
accounting for the cross-coupled stiffness added by the film bearing.

Bearing Design for Damping

The sensitivity of the magnitude of damping obtained to bearing design variables
was assessed analytically by parametrically varying the geometry of a hydrostatic
bearing using the design 1in Table 5 as the baseline. The results are Fig. 17
(LHp) and 18 (LOp). The effects of design and operational variables are dis-
cussed in the f&%1ow1ng sections. The term "damping" 1s used to denote the
direct damping coefficient as calculated by the computer program HBEAR (Ref. 12).

Bearing Area. Increasing the projected bearing area, LD, produces a marked
increase in damping (Fig. 19). However, the designer may not be free to increase
diameter and length due to size restrictions. In addition, the increased fric-
tional heat generated in a larger bearing (Fig. 20), and the reduced tolerance to
misalignment must be balanced against the gain in damping from increased bearing
area.

Radial Clearance. As shown in Fig. 21 reducing radial clearance will increase
damping, however, the control over damping by clearance change alone will be
1imited in a practical situation because the bearing clearance will, in all prob-
abi1ity, be determined by over-riding considerations other than damping, such as:

Allowance for centrifugal growth due to speed

Margin for tolerances and distortion of the bearing

The size of particles contained in the coolant

Heat generation rates that increase with decreased clearance
Allowances for unknown thermal effects

N

Journal diameter may be determined by considerations other than damping, such as
shaft strength or, in the case of a hybrid bearing, by the rolling element bear-
ing envelope. Varying the Jjournal diameter may require adjustment of radial
clearance: significant increases in L/D may result in higher friction losses and
Tower misalignment tolerance,

Overall Pressure Ratio. Higher supply-to-sump pressure ratio initially results
in greater damping. However, when this ratio reaches approximately 5, no signi-
ficant further increase in damping is achieved (Fig. 22). Pressure dependence of
fluid properties was not considered. As shown subsequently, a damping increment
results from an increase in fluid density at higher pressures. 1In a practical
sense, the overall pressure ratio is normally a function of the required Tload
capacity or the conditions inherent in the application, and would probably not be
chosen to achieve greater damping.
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Recess Pressure Ratio. Damping varies with the recess pressure ratio and attains
a maximum at about Pp = 0.5 (Fig. 11), which approximates the condition pro-
ducing maximum stiffness. The pressure ratio at which maximum damping occurs
varies with recess geometry in an inverse relationship with the area ratio (A;)
Fig. 23.

Fluid Properties. Fluid properties influence damping as shown in Fig. 24 and 25
for Hy. In a practical sense, control over these variables is 1imited.
Increasing either the fluid density or viscosity increases damping. Since the
density and viscosity of Hp (and to a lesser extent, of 0p), are affected by
pressure as well as temperature, damping is increased by higher pressure or lower
temperature. Therefore, varlables that decrease friction in the bearing will
increase damping.

Recess Configuration. A 10 to 15% range of variation in damping can be obtained
by manipulating the recess configuration. A minor amount of control over damping
can be obtained by varying the number of recesses as seen in Fig. 26. For larger
numbers of recesses, some control 1is obtained by selection of area ratio
(Fig. 23). A value of approximately 0.07 will result in maximum damping. There
is no apparent correlation between the individual recess dimensions (i1.e., x. y)
and damping. An increase in the product x. y, which is the area ratio (Ar),
decreases damping by reducing the proportion of bearing area with minimum
clearance.

Excitation Frequency. For a bearing with fixed dimensions and operating condi-
tions, the squeeze parameter is analogous to the excitation frequency of external
vibration. For the bearing described in Table 5, Fig. 27 shows the sudden drop-
off in damping when the squeeze parameter value exceeds 0.05, while there is
practically no change in damping if the squeeze parameter is kept below 0.02.
This infers that there exists a maximum allowable vibration frequency for which a
bearing will maintain its inherent damping and stability properties. An addi-
tional aspect of the squeeze parameter is the critical mass, which is the largest
mass that the bearing can support at the operating conditions, without the occur-
rence of half-frequency whirl. Figure 28 shows how the critical mass is affected
by the squeeze parameter. It can be seen from Fig. 28 that the critical mass
drops sharply when the squeeze parameter is 0.15, and is practically zero when it
is 0.21.

Cross-Coupling Stiffness

If the design features incorporated to increase damping also increase the cross-
coupling stiffness, rotor stability may be adversely affected.

A parametric approach was taken to identify the influence of hydrostatic bearing
geometry on cross-coupling stiffness of the externally fed LH, hydrostatic
bearing of Table 5. The results show that radial clearance affects the coef-
ficients the most strongly of those features varied (Fig. 29), followed by speed.
Other geometric variables exerted only limited effects. Bearing area (LD) has
the most influence on cross-coupling stiffness for a bearing of the same size

with L0, as the working fluid (Fig. 30).
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Internally Fed Bearing Coefficients

In the internally fed bearing, additional cross-coupling is expected to arise due
to the tangential velocity imparted to the fluid because the recesses are located
in the journal surface. Modifying factors to compensate for this tangential vel-
ocity were calculated based on the predicted effects of fluid swirl and surface
roughness.

Fluid swirl. The stiffness and damping coefficients of the internally fed bear-
ing were modified to account for the tangential fluid velocity based on Childs'
derivation of dynamic coefficients for annular seals with turbulent flow and
inlet swirl (Ref. 17). Cross-coupling stiffness and damping are increased while
direct stiffness declines slightly with speed (Fig. 31) when whirl effects are
included.

surface Roughness. Roughening one or both of the bearing surfaces has been shown
to affect the damping and cross-coupling obtained in annular seals (Ref. 18, 19,
20). Analytic methods devised for seals were used to predict the effects of sur-
face roughness in hydrostatic bearings. The result obtained depends upon whether
the rough surface is on the stationary or the moving element. For example,
increased roughness of the stator surface 1s expected to increase damping (Fig.
32). However, increasing the rotor surface roughness induces more fluid tangen-
tial velocity and 1s expected to increase the cross-coupling stiffness (Fig. 33).

The internally fed bearing is considered to be represented by an extreme degree
of rotor surface roughening, since the recess depth is much greater than the rad-
1al clearance.

Coefficient Modification. Modifications were made to the coefficients predicted
by the program HBEAR (Ref. 12) for a recessed hydrostatic bearing by applying a
factor for fluid swirl over the entire surface and for journal roughness over the
proportion of the bearing area swept by the recesses. The coefficients 1isted in
Table 7 for the internally fed bearings have been modified. Results of testing
the PLIN hydrostatic bearing with Freon indicate that there is a significant
reduction in the value of coefficients compared with the unmodified predictions
of HBEAR.

Material Selection

The materials of the hydrostatic elements of the experimental hybrid bearings are
Tisted below:

LH7 LO2
BEARING JOURNAL JOURNAL BEARING
CONFIGURATION (STATIONARY) (ROTATING) ROTATING | STATIONARY
PLEX Cr/718 7118
PLIN Cr/7118 Ag/118
PSIN Cr/118 Ag/718
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The hydrostatic test bearing materials were selected for good performance in the
following categories

Chemical compatibility with Hy and 0p

Tensile strength - 90 Ksi minimum for journals

Adhesion of coatings and platings under thermal and mechanical shock
Corrosion resistance in moist air

Wear resistance

Thermal expansion/contraction compatibility with mating part
Producibility

~S N e W
e e e v e e »

LH,_Bearing. Alloy 718 was used throughout for thermal uniformity, chemical
compatibility, and strength. Thin dense chromium plating was used to enhance the
wear resistance of the ball bearing mounting surface, and was extended through
the hydrostatic bearing bore. Thin dense chromium plating was used not only for
its wear resistance but also because no postplating machining is required, an
important consideration for the recesses and orifices of the hydrostatic bear-
ing. The journal was not plated, as rubbing contact is avoided with the parallel
Joad design.

LO,_Bearings. Alloy 718 was used for all hydrostatic bearing components for
thermal and chemical compatibility and strength. The bearing finner diameters
were silver plated, while the journal surfaces were chromium plated. Thin dense
chromium was used for the parallel load bearing journal to avoid masking of or
postplating machining the recess and orifices. In the parallel speed bearing,
chromium was electroplated and ground to a finished thickness of 1.143x10-2 to
1.905x10-2 mm (0.00045 to 0.00075 in.). The silver was used primarily for
resistance to ignition in the event of rubbing contact in the presence of LOj.

Structural Analysis

Deflections caused by pressures and centrifugal forces were calculated using fin-
ite element analysis. The PSEX hydrostatic bearing was the most sensitive to the
operating conditions due to its relatively large diameter of 88 mm (3.5 in.) and
the high pressure of operation. Table 9 lists the deflections and the resulting
clearances determined for a AP of 13.8 MPa (2000 psi) and 3832 rad/s (36,600
rpm). For all the bearing designs, the clearance at operation was selected from
the optimized design procedure and corrections applied for speed and pressure to
arrive at the drawing dimensions. The ball bearing mounting surfaces were the
only dimensions requiring compensation for thermal differential contraction,
since all hydrostatic bearing and tester components were constructed of Alloy 718.
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FABRICATION
MATERIALS

A1l test bearings and the interfacing tester parts were constructed of nickel-
base alloy (ALLOY 718). The large parts, including the bearings, were machined
from forgings.

HEAT TREATMENT

Prior to final machining, all parts were solution heat treated and aged to
stabilize dimensions and improve stength and hardness. The solution heat treat-
ment consisted of 10 to 30 min at 1297 to 1339 K, followed by aging at 1033 K for
10 h then furnace cooled at 922 K for a total aging time of 20 h.

MACHINING

Conventional turning and milling were used to produce most dimensions, with
grinding required for diameters with small tolerances. The recesses were produced
by EDM (electrodischarge machining) with the exception of the recesses on the
PSIN bearing journal, which were ground. The PSIN orifices were incorporated into
inserts that were electron beam welded into the journal. This procedure was used
to assure that the orifice entrances were free of burrs that could cause uneven
flow division among the recesses.

PLATING

Thin dense chrome plating was applied to the bore of the PLEX bearing, and the
outer diameter of the PLIN journal. No machining was done to these surfaces after
plating. Thick (0.051 mm) electroplated chrome was applied to the journal of the
PSIN journal, with the final diameter produced by grinding after plating. Thick
(0.051 mm after final machining) silver was applied to the bores of the inter-
nally fed bearings.
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TESTING

Parallel Tload hybrid bearings and their hydrostatic elements were tested to vali-
date the design concepts and also to provide empirical data with which to anchor
or modify the assumptions and analytic methods employed in the design of hydro-
static bearings. A summary of the testing is contained in the following table.

HYDROSTATIC BEARING TESTING

RESULTS, REFERENCED
WORKING TO THEORETICAL
TEST CATEGORY FLUID TEST 0BJECTIVE PREDICTION
o DYNAMIC CHARACTERISTICS LHy MEASURE STIFFNESS AND INCONCLUSIVE
DAMPING
® EXTERNALLY FED BEARING | FREON | MEASURE STIFFNESS AND | DIRECT COEFFICIENTS
DAMPING EQUIVALENT AT SPEED
¢ INTERNALLY FED BEARING | FREON | MEASURE STIFFNESS AND | STIFFNESS: 70% LOWER
DAMPING DAMPING: EQUIVALENT
¢ STEADY-STATE OPERATION
¢ EXTERNALLY FED BEARING | LHp MEASURE STEADY STATE | 20% HIGHER
STIFFNESS
MEASURE FLOW 20% LOWER
o INTERNALLY FED BEARING | LH, MEASURE STEADY-STATE | 5% LOWER
STIFFNESS
MEASURE FLOW 4% LOWER

DYNAMIC CHARACTERISTICS TESTS

Testing was conducted with LHy and Freon 113 as working fluids to measure the
stiffness and damping of hydrostatic bearings. Data suitable for calculation of
stiffness and damping were not obtained with LH, due to casing vibration. For a
summary of dynamic coefficient testing conducted with LHp, see Appendix A.
After modification of the tester, testing with Freon 113 did produce satisfactory
data from which stiffness and damping of both externally and internally fed
bearings were determined. Direct and cross-coupled stiffness and damping
coefficients were separated for tests in which the orbit ellipticity was
sufficiently large. Otherwise, only net effective coefficients can be measured.
The dynamic characteristic testing with Freon 113 is summarized in Table 10.

TEST METHOD AND THEORY OF OPERATION

The test method for determining dynamic coefficients of hydrostatic bearings
involves generating a forced dynamic motion across the bearing fluid film, and
measuring the resulting fluid film displacements and forces. These displacements
and forces provide the means for computing the active set of rotordynamic
coefficients.
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The forced dynamic motion is generated as depicted in Fig. 34. The overhung test
bearing is located on the outboard end of a test shaft supported by two duplex
pair of ball bearings. The rotating part of the test bearing has been given an
intentional eccentricity (i.e., runout) at the test bearing location. When the
shaft rotates, the eccentricity generates an orbital pattern synchronous with
shaft speed. This orbital pattern 1s measured with a pair of eddy current dis-
placement probes mounted directly in the stator of the test bearing. In this
way, should the stator element also be in motion, the displacement probes will
directly measure the desired relative deflection across the fluid film.

The stator element is supported by eight tubes (flexure arms), one of which is
shown in Fig. 34. These tubes also direct the supply of fluid to the externally
fed test bearing. In addition to the stiffness of the flexure arms, the stator
element 1s elastically constrained 'n the radial direction by two pair of pre-
loaded strain gaged studs (Fig. 35 and 36). The studs were calibrated for load
sensitivity and stiffness by applying known static loads directly to the stator
at midplane of the test bearing. Under test conditions, the strain gage readings
will then reflect the sum of the fluid fiIm forces and the inertia force of the
stator mass. As determination of rotordynamic coefficients requires the fluid
f11m force by itself, the stator inertia force must be subtracted from the load
cell readings. With the mass of the stator known, this is done as follows:

- 2. .2 -
= - - 1
Fy = =Fy ¢ mg (d%/dt%) (-F /K ) ()
Foo= <F. +m_ (d%/dt%) (-F./K_) (2)
z 2 S ' sz
where
Fy 7" components of load cell reaction force acting on stator
Fy,z = components of fluid film force acting on stator
mS = stator mass
Ksy s7 ° stator support stiffness, can be asymmetric

The technique of using strain gage load data to compute the inertia term was
found equally effective as using stator-mounted accelerometers, and was employed
here since 1t involves processing fewer data channels.

The most general type of relative fluid film displacement orbits permissible in
1inear systems are elliptic in nature. Therefore, the goal of the measurement
process 1s to identify the ellipse that describes the relative displacement as a
function of time in the following form (relative = rotor - stator):

y(t) = a(coswt) + b(sinwt) (3)

Z(t) = g(coswt) + h(sinwt) (4)
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The four coefficients "abgh" are termed Fourier coefficients, and w 1s the
tester speed in radians per second. They can be obtained in one of two ways:
(1) by processing each data channel with an analog tracking filter to obtain
synchronous amplitude and phase, and then transforming these to cosine and sine
components or, (2) compute the frequency spectrum of each data channel and obtain
the Fourier coefficients directly. The second method was employed here as it
permitted the easiest processing of all data channels simultaneously.

The same procedure is applied to the load data to obtain Fourier coefficients 1in
the following form:

Fy = m(coswt) + N(sinwt) (5)

ry = p(coswt) + q(sinwt) ' (6)

The equations correcting for stator inertia now become

Fy = -[m(coswt) + n(sinwt)] + (ms/Ksy) (ﬁmz(COSut) + ﬁw2(51nut)) (M
F, = -[p(coset) + (sinut)] + (m/K ) (Puwl(coswt) + Gui(sinut)) (8)
or
Fy = m{coswt) + n(sinwt) (9)
F, = p(coswt) + q(sinwt) . (10)
where
m = M(-1+(m w’/K_)) etc
S sy '
mnpq = Fourier coefficients for fluid film force (acting on stator)

With the fluid film force and the displacement across the fluid fiIm now known as
functions of time, rotordynamic coefficients can be computed. The generally
accepted form for the relationship between these three sets of quantities 1is as
follows:

F K.. K B,, B y M. M y
v| My Svz| YL, Py Bz YL, [y Tz Y an
Fz sz KZz z Bzy Bzz z sz sz Z

The displacements and forces were defined above using Fourier coefficients. The
velocities and accelerations are obtained by differentiation with respect to
time. There are several ways to approach the problem of identifying the 12
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unknown rotordynamic coefficients. It should be noted that the measured forces
and displacements will vary with tester rotational speed. In fact, complete sets
of Fourier coefficients can typically be made available for any rotational speed
within the tester's speed range. Thus, one straightforward approach for computing
the K's, B's and M's would be to simply rearrange the above matrix equation into
the following alternate form (substituting in the Fourier coefficients):

r h

M
MYy

yz
gyy
kyZ
kYY
< yz \ .
WY
pZZ
g2y
K22
KkZY
&4
L J
Note that the 12 rotordynamic coefficients are the unknowns in this matrix equa-
tion, and that the two equations of the former relation have been resoslved into
sinot and coswt components (or real and imaginary). Since there are more
unknowns than equations, one could use data from multiple values of tester speed,
writing 4 equations for each. Data from 3 different speeds would yield 12 equa-
tions, and Gaussian elimination could be used to find the solution. Another
method would be to use more than 3 speed points, and a least squares equation
solver to find the "best fit" coefficient solution. - Neither of these approaches
will prove successful, however, since the coefficient solution will not be
unique. To circumvent this problem, the inertia coefficients must be eliminated
from the 19st of unknowns. This ylelds the following:

—au2 -gw2 bw bhw
-be™ -hw -aw -gw
0 0 0 0
0 0 0 0

0 0 0 0
02 0 0 0
3w, -gw beo hw
-bo~ -ho” -aw -gw

12)

O U
O O Tu
oo 0o
o0 OO
0T 53

r D
gyy
KYZ
b ho a ¢ 0 0 0 o0 VY m
-aw -gw b h 0 0 o of § gyz g =]/n (13)
0 0 0 0 bw heo a g g2y p
0 0 0 0 -aw -gw b h K22 q
KZY
L 72

Since data from multiple speed points must be used, it 1s necessary that the
speeds span as wide a range as possible to give the best definition of the
coefficients.

This type of coefficient solution yields one general asymmetric set of constant
stiffness and damping coefficients to fit the given data. 1In practice, however,
these coefficients could vary appreciably with speed. Efforts to expand the set
of unknown coefficients to 1include speed dependent terms will once again be
unsuccessful due to nonunique solutions. This occurs because in certain cases a
speed dependent set of skew-symmetric coefficients and a set of constant asym-
metric coefficients can both be solutions for the same data.
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For the type of fluid film element being measured here, the fluid inlet 1s made
circumferentially uniform by using & equally spaced, identical hydrostatic pres-
sure pockets, while the test bearing is centered in its clearance space with no
applied static load. These conditions dictate that the rotordynamic coefficients
will be skew-symmetric (i.e., Kyy.l(z , Kyz-—K , and similarly for B and
M). This reduces the number of unknowns so that ¥he matrix equation for rotor-
dynamic coefficients becomes:

[ Byyw
b h a g B m
-a -9 b hiQ, y; J24=In (14)
h -b g -a KYY_u¥Y, 2 p
-9 a h -b yz 'yz q
where -
o Js the excitation frequency (rad/sec)
Q 1s the shaft rotation frequency (rad/sec)
for all "synchronous only rigs" =0 always
and all coefficients are functions of Q.
Define:
K. K. -o°M (15)
yy Oy yy
' 2 16
Kyz = KyZ—Q Myz (16)

Note that the two unknown inertia coefficients have been combined with the stiff-
ness coefficients to form a combined pair of unknowns. This 1s necessary to
ensure a unique solution to the matrix. Since there are now only four unknowns,
the matrix solution can be carried out with data from only one speed point. Also,
for convenience, the shaft speed has been placed in the unknown column vector
instead of in the matrix elements.

The coefficients Kyy Myy and My, will, in general,
vary with rotational speed Q ang s1nce on1y 1inear model character1st1cs are
desired, they do not vary with excitation frequency w. . Tester data can be used
with the above matrix to determine how Ky Byy and By; vary
with synchronous frequency w=. Note that the dampeng terms are completely
separated from the stiffness terms without the need to vary tester speed. How-
ever, this requires that the fluid fi1lm displacement orbit be elliptic. If only
circular orbits were possible, the above 4 by 4 matrix would become 2 by 2, and
the stiffness and damping terms would need to be combined.

To show how such a separation is possible, and how effective this separation is,
consider the displacement orbit shown in Fig. 37. Any displacement ellipse can
be transformed into the ellipse of Fig. 37 without any loss in generality, and
without altering the coefficient solution (a special result for the skew-
symmetric coefficient arrangement). The same transformation is also enacted on
the corresponding force ellipse. This transformation (in space and time) results
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COORDINATES OF DISPLACEMENT ELLIPSE:
0
y=acoswt + B sinwt

0
z=g coswt + hsinwt

CORRESPONDING FORCE ELLIPSE
Fy =mcos wt+nsinwt

Fz = p coswt + q sinwt

Figure 37. Displacement Ellipse Transformation



in b=g=0 for the fluid film displacements, and establishes an easy solution for
the unknown coefficients as follows:

Byyo = ~(an+hp)/(a%-h?) (17
By - (ag-hm)/(a%-h?) (18)
K;y - (am-hq)/(a%-n?) (19)
K;z - —(ap+hn)/(a%-n?) . (20)

It 1s immediately apparent that for a circular displacement orbit (i.e., a=h) the
solution becomes undefined, and for a nearly circular orbit the solution is 11
defined. An adequate solution thus requires a sufficient amount of ellipticity
in the displacement orbit.

A further understanding of what 1s taking place is gained by rearranging the
above solution into a slightly different form:

By, otKyy = (ma)/( ash) (21)
—Byzw+K;y = (m-q)/( a-h) (22)
oKy, = (pEM)/(-ash) (23)
Bk, = (p-m)/( ash) (23)

In this "sum and difference form," half of the solution is well defined even for
circular orbits, while the other half is not. Synchronous excitation test rigs
specifically des1gngd to deliver cjrcular orbits (e.g., Ref. 19) can be used only
to measure (B zw+Kyy) and (8B yw—K z). The rema1qder of the solution cannot be
identified from circular orb1¥s. ¥he quantity (K +Byzw) is often referred to as
the net effective stiffness, and the quangyty (Byyu-KQZ)/u as the net

effective damping.

An error analysis has been performed on the coefficient solution to quantify the
sensitivity of the computed coefficients to experimental error as a function of
the ellipticity ratio defined as follows:

ellipticity ratio = f = h/a (25)
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Small percentage changes in the data become excessively magnified in the coef-
ficlent solution when f approaches one (i.e., when the displacement orbit

approaches a circle). As a function of f this error magnification is approximated
as follows:

error magnification = (f/2)/(1-f) (26)

Figure 38 shows this magnification plotted versus f. For the work reported here,
f was required to be outside of the range 0.87<f<1.175 so the magnification would
be less than 3.5. When f 1s outside this range, stiffness and damping constants
can be separated and quoted along with the net effective values. When f is inside
this range, only the net effective stiffness and damping values can be obtained.
With the test apparatus used here, the stator elastic support was made intention-
ally asymmetric, Kgy # Kg;, in order to generate the required ellipticity.

ERROR SENSITIVITY vs ELLIPTICITY RATIO
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Figure 38. Error Sensitivity to Orbit Ellipticity

Test Equipment

Externally Fed Test Bearing - The externally fed test bearing is the hydrostatic
element of the PLEX bearing shown in Fig. 2a. It is nominally 75 mm in diameter
and 25 mm long, with six recesses in the bore of the bearing, with geometry des-
cribed in Table 2. Figure 39 depicts the bearing and journal. In the tester
(Fig. 40), the working fluid flows through the tubular flexure arms, and into the
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bearing annulus, through the orifices to the recesses and finally through the
bearing's radial clearance to the sump. Relative radial motions of the Jjournal
are measured with two orthogonally placed proximity probes located in the center
of the bearing, but displaced 15 degrees from the vertical axis to avoid inter-
ference with the recesses.

Internally Fed Test Bearing - Six recesses and compensating orifices are incor-
porated into the 54.6 mm (2.15 in.) diameter journal of the internally fed hydro-
static test bearing shown in Fig. (41). The geometric features of the bearing
are listed in Table 3, and its cross-section in Fig. 2b. 1In operation, fluid fis
introduced to the 12.7 mm diameter hole in the shaft center through four slots
25.4 mm long by 6.35 mm wide by pressurizing the cavity between the two shaft-
riding seals located at the turbine end of the tester shaft as shown below the
centerline in Fig. 40. The bearing is then fed from the inner diameter of the
journal. The 25.4 mm (1 in.) Tong bearing (Fig. 42) has a plain cylindrical
bore. Relative journal/bearing motions are measured by eddy current probes,
which scan an extension of the journal surface.

Bearing Tester - The bearing tester, shown in cross section in Fig. 40 was
especially designed to test hybrid and hydrostatic bearings with LHp and LOp,
although it is suitable for use with most fluids. The shaft is supported on two
preloaded pairs of 45 mm bore bearings, and is capable of operation at speeds to
5325 rad/sec (50,000 rpm) driven by the radial inflow turbine operated by ambient
temperature gaseous hydrogen or gaseous nitrogen. Maximum speed achieved during
the testing was 4107 rad/sec (39,229 rpm) in the LHp test series. In the test
bearing location, the tester is constructed of Alloy 718 throughout to avoid
dimensional variations due to material thermal contraction differentials. The
test bearing is mounted in a stator housing, which is supported on a flexure con-
sisting of eight tubes. To obtain sufficient radial stiffness of the stator to
ensure adequate relative motion within the fluid film for the dynamic character-
istics tests, four strain-gaged compression studs were incorporated as shown in
Fig. 36. When preloaded against the stator, sufficient deflection is imposed to
prevent unloading of any stud under maximum load.

Tester Assembly - Prior to testing with cryogenic fluids, the tester components
were cleaned for propellant service and tester assembly was performed in a clean
room environment. Installation of components with interference fits was accom-
plished by chilling with LN,, or warming with a heat gun, or a combination of
both. The assembled tester is shown from the drive turbine end (Fig. 43), and
from the test bearing end prior to installation of the end cover (Fig. 44).

Instrumentation - For the LH, tests, the instrumentation 1isted in Tables 11,
12 and 13 were used to monitor control of the tester and performance of the test
bearing. The high-frequency force and motion data required for definition of the
dynamic characteristics were recorded on FM tape for subsequent analysis in the
analog facility. F1im thickness and force measurements were made in orthogonal
(separated by 90 degrees of arc) planes to provide required input for calculation
of stiffness and damping coefficients. Figure 35 depicts the sensor orientation
for the externally fed bearing for all dynamic testing. Low-frequency parameters,
such as pressures and temperatures, were digitally recorded on magnetic tape and
were later reduced to CRT plots. During the actual test, real-time variations of
key input and control test parameters, such as fluid pressures and temperatures,
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TABLE 11. HIGH-FREQUENCY INSTRUMENTATION

TAPE TAPE CALIBRATION
TRACK
NO. PARAMETER KEY NUMBER | (KN)* mv TO TR
1 SHAFT RPM NO. 1 (RAW) 10,000 mv 2000
2 A1Y ACCELEROMETER 140.6 GPP 2000
3 BEARING/HOUSING MOTION —B1Y 2000 mV 2000
4 FLUID FILM THICKNESS - BZY 400 mV 2000
5 BEARING HOUSING MOTION —B]Z 2000 mv 2000
6 FLUID FILM THICKNESS - BZZ 400 mv 2000
1 STRAIN GAGE LGI 4 mv 2000
8 STRAIN GAGE LG2 4 mv 2000
9 STRAIN GAGE LG3 4 mv 2000
10 STRAIN GAGE LG4 4 mv 2000
n SHAFT RPM NO. 2 (SCALED) 21,942 RPM 2000
12 A1Z ACCELEROMETER 140.2 GPP 2000
13 CASING ACCEL 51.2 GPP 2000
14 IRIG 'B' -




TABLE 12. LOW-FREQUENCY INSTRUMENTATION HYDROGEN TESTS
APTF--  LIMA STAND (BEARING) MSI--04/18/84
076076  TEST BRG SUPU PR 5000G6P3951.9
075075  SUMP PR 30006P2387.4
074074  RECESS 1 PR 5000GP4000.3
073073  RECESS 2 PR 5000GP4000.7
072072 0BD BRG CLNT SUP PR 5000GP3974.4
071071  TRB BRG CLNT SUP PR 50006P4017.9
070070  TRB INLET PR 500GP 399.6
069069  TRB BRAKE PR 500GP 399.1
068068 LOAD CYLINDER PR 5000GP4001.6
067067  TST BRG VENT IN PR 50006P3978.4
066066 LH2 TK11 PR 50006P3968.2
065065 LH2 RUN LINE PR 5000GP4037.9
064064 V650 LH2 TANK PR 200GP 157.2
095095 GH2 SUPPLY PR 5000GP4009.8
094094 GH2 PREVALVE PR 5000GP3986.4
093093  SPIN VENT U/S PR 2000GP1599.8
092092 V650 DO-MOT SUP PR 2000GP1600.3
091091  HYDRAULIC PR 5000GP4008.7
090090  TST BRG VENT 0P 2500P 200.4
089089  SPIN VENT DP 2500P 200.8
018018  SPIN VENT GH2 T CA 8.00
017017  BENTLY BOX T CA 8.00
107107  TANK 11 VENT T -425T1 398.9
106106  TST BRG SUP T -425T1 147.2
105105 SUMP T _ -425T1 399.4
104104 0BD BRG SUP T -425T71 400.8
103103 TRB BRG SUP T -42571 400.0
102102 LH2 PREVALVE TEMP -425T1 402.5
101101  LH2 RUN LINE T -425T1 405.3
048048  THROTTLE VALVE PL 107.9
049049 BRG LH2 SUP VALVE PL 106.1
050050  SPIN VALVE PL 106.2
051051  RAD BRG LOAD VALVE PL 106.5
079079 BRG TMP CONTROLV VALVE PL 107.4
084084  SHAFT RPM #1 RM27428.
083083  SHAFT RMP #2 RM27428.
052052  XDUCER POWER 5.00 v 8.00
999999
END
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TABLE 13. VISUAL RECORDER DATA LIST

D36 046 0%3 95210
LIBWAT : LIMA-I-005

PAGE & OF 6
WATANABE

LIMA STAND (BEARING TEST) DATECZQ&Qé?{

DG
CHANL SYS SEG ~ZERO- ~SPAN- KEY. NO RANGE PARAMETER

EVENT SEQUENCE START

1-1 SP5 123 0© DIV 32 DIV 3952 500 MV TEST BRG SUP PR
1-2 $P2 121 0 DIV 32 DIV 2395 500 MV SuMP PR

1-3 056 001 0 DIV 32 DIV 4004 500 MV RECESS 1 PR

1-4 029 002 O DIV 32 DIV 4001 500 MV RECESS 2 PR

1-5 812 118 0 DIV 20 DIV 27428 1 VOLT SHAFT RFK #1
1-6 Z2 DIV 20 VLY IRIG "B"™ TIMING

CHANL SYS SEQ ~ZERO~ =SPAN- KEY. NO RANGE PARAMETER

EVENT SEGUENCE START

1
2=1 047 003 O DIV 32 DIV 399.6 500 MV TRE INLET PR *
2-2 051 004 0O DIV 32 DIV 399.1 500 MV TRB BRAKE PR *

2=3 SP4 122 O pIV 32 DIV 3983 500 MV LOAD CYLINDER P
2=4 308 120 10 DIV 30 DIV 147.2 500 MV TEST BRG SUP T

48.8 OHM OkM
2-5 03% 005 10 DIV 3C blV 399.4 1 VLT SUNMF TENP
4.9 OHM OHM
26 2 DIV 20 VLT IRI& "B" TIMING

CHANL SYS SEQ@ =~ZERO- =SPAN= KEY. NO RANGE PARAMETER

EVENT SEQUENCE START

3-1 SVO 116 0 DIV 40 DIV 100 X 1 VOLT BRG TMP CNT VLV
3-2 SV0 126 O DIV 40 DIV 100 X 1 VOLT RAD BRG LOAD VLV
3-3 SV0 125 0 DIV 40 DIV 100 X 1 VOLT SPIN VALVE

3=4 SV0 124 O DIV 40 DIV 100 X 1 VCLT BRG LKH2 SUP VLV
3=5 SVO 115 0 DIV 40 DIV 100 %X 1 VOLT THROTTLE VALVE
3-6 2 DIV 20 VLT IRIG “B" TINING

* NO ZERD VALVE
MAKE SURE CONSOLE R=CAL IS OFF BEFORE SETTING SERVO VALVE PARAMETERS.

C->



shaft speed, and servovalve opening positions were presented on strip chart
recorders for visual tracking during the test runs. Pretest and posttest
calibrations of all signal paths were performed for each test. Calibration of
the temperature and pressure transducers is performed on a regularly scheduled

basis.

The proximity devices used to measure journal motion were calibrated at ambient
temperature and at 77.6 K (-320 F). The output voltage was determined for known
gaps by inserting shims a short distance into the bearing clearance at each end
of the journal while applying a uniform load toward the sensor with a spring
clamp. Cryogenic calibration required immersion of the entire test bearing with
shims and clamp in place into LN;. The output voltage reading was taken when
all boiling stopped. It was found that, while there was a DC shift in the signal
voltage, the scale factor (slope of voltage vs gap) did not change significantly
with temperature. The calibration of the strain gaged spoke members was also
performed at ambient and at 77.6 K. The temperature compensation of the full
bridge gages was effective in maintaining the same scale factor at ambient and
cryogenic temperature.

Instrumentation signal conductors required to pass through the tester housing
were routed through fittings sealed with Polyurethane adhesive. Since some leak-
age did occur along the signal conductors, Jjets of 1inert gas were directed at
instrument cable fittings to dilute the hydrogen gas. Positive static seals were
used at all ports and connections to prevent leakage of the test working fluid.

Liquid Hydrogen Tests

seven tests were conducted to determine the dynamic characteristics of the
externally fed hydrostatic bearing. These tests are summarized in Appendix A.
Data apalysis of the hydrogen tests was not successful primarily due to an
irreconciled anomaly 1in the phase relations between displacements and loads,
which has been concluded to be the result of tester mount resonances.
Modifications were made to stiffen the mount and to 1install additional
instrumentation prior to further tests for dynamic characteristics.

Testing With Freon

Dynamic characteristic testing was continued using Freon 113 with 5% lubricating
011 as the test fluid after these modifications had been made to the tester:

1. The stiffness of the mounting was increased by adding brackets to both
ends of the tester.

2. Accelerometers were mounted on the casing in the vertical and horizontal
directions in the plane of the test bearing.

3. Load measuring capability 1in both planes and asymmetric stiffness was
obtained by installing strain-gaged studs of higher stiffness 1in the
45-degree plane. A stiffness ratio of 1.88 was achieved in order to
enforce an elliptic orbit.

Fourteen sets of tests were conducted with the revised tester at speeds to 2377
rad/sec (22,700 rpm or 378 Hz) as summarized in Table 10.
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Externally Fed Test Bearing - The externally fed hydrostatic bearing tested with
LH, was used without alteration in the Freon testing. The bearing geometry 1is
described in Table 2; it is shown in cross section in Fig. 2a.

Internally Fed Test Bearing - The internally fed bearing is described in Table 3
with the exception that the radial clearance was 0.067 mm (0.00265 in.).

Test Facility - Freon tests were conducted using a test arrangement shown schem-
atically in Fig. 45. The installation of the tester appears in Fig. 46. Test
bearing fluid supply flow is obtained by pressurizing the run tank with GNj3.
From the tester drain, Freon enters a catch tank and is returned to the run tank

for the next test. The speed requlation and overspeed protection functions were
performed by a manually operated valve control unit.

Instrumentation - Dynamic data (Table 11), 1including signals from proximitors,
accelerometers, strain gages, and raw speed signals, were recorded on magnetic
tape. Phase relations were established by injecting oscillator signals simul-
taneously into each data channel so that corrections for tape head alignment and
effects of transmission lines can be made 1if necessary. Low-frequency data,
including pressures, temperatures, and analog speed, were recorded on strip
charts.

Test Procedure - The Freon run tank was pressurized to start fluid flow prior to
applying GN; to the drive turbine. The tester speed was manually controlled to
produce a slow speed ramp from rest to maximum and return.

Yesting - The testing conducted to measure dynamic characteristics of both
externally and internally fed hydrostatic bearings is outlined in Table 10. It
was found that in order to successfully produce stiffness and damping coeffic-
ients, the data must meet certain criteria:

1. The journal motion must have a minimum ellipticity ratio of 1.175 to
obtain separated coefficlients of direct damping and cross-coupled stiff-
ness. The same requirement also applies to separating direct stiffness
and cross-coupled damping.

2. Harmonics of synchronous frequency in the motion or load data are not
acceptable. Two sources of harmonics were experienced:

a. Minor deviations from a true circular form of the journal surface;
A three-lobe out of roundness of 0.002 mm was found to produce

excessive signal degradation.
b) Rubbing of the Journal in the bearing bore. Particular attention
to centering of the Jjournal within the bearing clearance was

required.

Freon Testing Procedure - The flow chart in Fig. 47 i1lustrates the sequence of
the major steps of the procedure for tester operation and calibration, data

acquisition, and data reduction.

A1l transducer signals used in computing coefficients are stored in analog form
on a single 14 channel FM tape. To ensure that channel-to-channel phase differ-
ences are preserved for data reduction, a series of sine waves are simultaneously
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SIGNAL GENERATOR
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CALIBRATION
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BEARING TESTER

|

FLUID FILM DISP.
STATOR SUPPORT LOADS
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4
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MINI-COMPUTER
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Figure 47. Test Data Acquisition and Reduction Flow Diagram
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recorded on all tape channels from a common source generator before every test.
On playback, any detectable phase differences between these sine waves are mea-
sured and used to correct subsequent phase errors for actual test data signals.

Before every test, calibration signals are also recorded on all active data
channels as a way of accurately documenting the effect of all gain amplifiers
used to individually optimize each signal amplitude for recording on tape. This
defines the ratio of transducer output voltage to tape recorded volitage for each

channel.

During data acquisition the supply pressure is held constant while the rotational
speed is slowly ramped across the desired speed range. The speed range of the
tester operating in Freon was 0 to 2377 rad/s (22,700 rpm or 378 Hz). The dura-
tion of any one test was 1imited to approximately 6 minutes for the externally
fed bearing and 3 minutes for the internally fed bearing by the capacity of the
freon tank.

The analog data stored on‘FM tape, including the phase calibration data, are then
digitized at 5000 samples/s and downloaded to a minicomputer. During this step
the digitized FM tape voltages are scaled back to transducer output voltages.

The first task performed on the minicumputer i1s to analyze the phase calibration
signals and phase correct all data channels. Next, the complex frequency spec-
trum s computed for each channel. The frequency spectrum operation performs the
same function as a tracking filter by providing the synchronous amplitude and
phase of each channel. The amplitude and phase are equivalent to the Fourier
coefficients described earlier. The frequency analysis 3is performed all along
the speed ramp, essentially providing a sequence of snapshots at discrete values
of tester speed.

As the flow chart shows, the load signal amplitudes (from data channels F45 and
F135 4n Fig. 35) are converted to units of force using the static load calibra-
tion constants, and the stator inertia loads are subtracted as shown previously.
Data from the pair of displacement probes (B2y and B2z) are converted to units of
length, and are rotated via a coordinate transformation to be compatible with the
orientation of the load sensors.

The data are now ready for use in computing rotordynamic coefficients via the
matrix analysis method previously described. Test results are obtained directly
from the output of this program.

Freon Testing Results and Discussion - Successful dynamic characteristic tests
were achieved using Freon 113 at ambient temperature as the working fluid. Both
an externally fed and an internally fed bearing configuration was tested. The
dimensions of each configuration appear in Tables 2 and 3. Thirty-three tests in
14 series were conducted. However, data from only 4 of the 14 test series could
be used to calculate rotordynamic coefficients. Only 2 of these had orbits that
were elliptic enough to permit separation of direct and cross-coupled coeffic-
ients for stiffness and damping.
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The externally fed bearing was tested with 2 different radial clearances and three
different amounts of journal eccentricity. The various combinations were achieved
by changing both the journal and the eccentric shaft sleeve onto which the bearing
journal is mounted. Usable data were obtained only for the smaller clearance with
the smallest and largest eccentricities, and separated coefficients were obtained
only for the smaller eccentricity.

The internally fed configuration was tested with two journals with the same
clearance, but different eccentricities. Only the test with the large eccen-
tricity had sufficient ellipticity to permit separating the rotordynamic coef-
ficients. For that particular test, one pair of load studs in one axis (F135 and
F315 of Fig. 35) was removed and replaced with eddy current displacement probes.
This 1increased the stator support stiffness asymmetry ratio (Ksz/Ksy) from
1.88 to 4.48, and increased the ellipticity of the relative journal orbit.

Externally Fed Bearing - The ellipticity ratio and the computed set of skew-
symmetric rotordynamic coefficients are shown for both upramp and downramp 1in
Fig. 48 through 50 for the externally fed bearing of test number F10 (Table 14).

Also shown in the figures are the predicted values for these coefficients
obtained numerically with the computer program HBEAR described in Ref. 12. The
orbit ellipticity ratio was greater than 1.175 and, therefore, separated stiff-
ness and damping terms were obtained. Measured coefficients exhibit the speed
trends predicted. The measured direct stiffness values are about 20% less than
predicted, and the measured direct damping values are roughly equal to the pre-
dicted values. The measured cross-coupled stiffness is less than predicted, and
is actually a stabilizing influence at low speed where Kyz<0.

For the test bearing configurations, the analytical code predicts low values of
cross-coupled damping, whereas the test measurements show a significant amount of
cross-coupled damping. To help place these results in proper perspective 1t
should be noted that one effect of cross-coupled damping is to either add to, or
detract from, the amount of asymmetry in the direct stiffness. The coefficient
reduction method employed here assumes symmetric direct stiffness. One way that
asymmetry in the direct stiffness can manifest itself is by the prediction of
nonzero cross-coupled damping coefficients. A moderate amount of stiffness
asymmetry would account for the cross-coupled damping found. In this particular
case, vroughly 17.5 MN/m (100,000 1b/in.) of asymmetry could produce the
cross-coupled damping coefficients shown.

Since neither of the stiffness curves show a strong variation with speed squared,
it 4s concluded that the bearing does not possess a significant inertia effect
over this speed range.

A major difference between test results and theory was that the empirical Ky,
was found to be negative rather than positive, as predicted. It 1s not current¥y
understood how a negative cross-coupled stiffness can arise in a hydrostatic
bearing; however, two observations can be made concerning potential causes. One
possible explanation 1s that unexpected asymmetry may exist in the direct
stiffness (not accounted for during data reduction). It can be shown
theoretically that this asymmetry can produce an apparent shift 1in the
cross-coupled stiffness value. As an example, a bearing with a direct stiffness
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of 3.67¢8 N/m (1.2 million 1b/in.), cross-coupled stiffness of 1.75e7 N/m
(100,000 1b/in.), and direct _damping of 6.13e4 N-:S/m (350 1b/in.) was
analytically given 1.75 x 107 N/m (100,000 1b/in.) of direct stiffness
asymmetry (1.e., K y increased by 1.75e¢7 and K,, decreased by 1.75e7).
Computing the cross-coupled stiffness according to ihe symmetric coefficient
reduction method resulted in a negative Kyz of -1.22e7 N/m (-70,000 1b/in.). To
explore this effect on the test bearing, the dynamic data from test F10 was
reduced to a single pair of stiffness and damping matrixes with equal and
opposite cross-coupled stiffness terms which permits the orthorgonal direct
stiffnesses to be different. When this was done, the direct stiffness did become
asymmetric, but Ky, remained negative (see page 114). Thus, direct stiffness
asymmetry 1s not Xecessar11y, or may be only partly, responsible for a negative
empirical Kyz.

It may also be conjectured that sign reversal of cross-coupled stiffness may
arise from the synchronous journal motion used in the test method, which is
different from that of a hydrodynamic bearing operating at a fixed eccentric
position. In the film with synchronous motion, the zone of decreasing radial
clearance, and, therefore, maximum film pressure, leads the location of minimum
fi1lm thickness, producing the damping force. Concurrently, the film thickness is
expanding behind the site of minimum clearance, reducing the film pressure rise
normally responsible for cross-coupled stiffness. 1If this effect 15 not entirely
contained in the damping term, a reduction or actual reversal of the assumed
positive sense of the force attributed to cross-coupled stiffness may occur.

Orbit ellipticity makes it possible to separate the stiffness from damping, so if
the orbits were too nearly circular, only net effective stiffness and damping
defined by Eq. 21 and 24 could be determined. Figures 51 and 52 show a comparison
of the measured and predicted net effective stiffness and damping values. For use
in analytical rotordynamic models, net effective values will suffice for perform-
ing unbalance response studies of symmetrically supported rotors, but they are
not adequate for performing rotordynamic¢c stability studies, or for unbalance
studies of asymmetrically supported rotors. As an example, direct damping and
cross-coupled stiffness represent energy transferral mechanisms. The
cross-coupled stiffness adds energy to the system and the direct damping
dissipates 1t. The energy balance between them determines: (1) system stability
and (2) response amplitudes to forcing functions. This energy balance 1is
dependent on the frequency of motion and whirl orbit shape. This dependency is
properly modelled only by separate stiffness and damping coefficients. Combined,
or net effective, values give the correct balance only for the special case of
circular synchronous orbits (i.e., for unbalance response of symmetrically
supported rotors).

The bearing of test F10 was operated with a bearing inlet pressure of 10.3 MPa
(1500 psi). 1In test F8 the same bearing was tested with an inlet pressure of 3.4
MPa (500 pst). Figures 53 through 57 show the ellipticity ratio and comparisons
of measured and predicted stiffness and damping. The results are similar to those
for test F10 except for the correspondingly lower magnitudes due to the lower
inlet pressure. Also, agreement with the predictions is not as close as for test
F10. Figures 58 and 59 directly compare the net effective values and show them
to be very nearly proportional to inlet pressure.
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In Test FB, as tester speed surpassed 200 Hz, the ellipticity ratio fell below
the 1.175 criteria for separable data (Fig. 53). At this point, the curves for
the separated coefficients become more erratic (Fig. 54 and 55). The net effec-
tive values of Fig. 56 and 57 should not, and are not, affected by the orbit
becoming more circular.

Since the bearing was much softer for test F8, larger displacements were experi-

enced which resulted in a larger signal to noise ratio than for test F10. As a

result, the data of test F10 are slightly more erratic than that of test F8. In

test F10, the relative displacements across the fluid film were on the order of

0.6 to 1.0 ym (25 to 40 u in), contrasted to the 1.5 to 2.5 um (60 to 100 u in) for
test F8.

The difference in coefficient values formed during upramp versus downramp may be
due to differences in orbit ellipticity (Fig. 48). It 1s not known why the
direct damping (Fig. 50) and cross-coupled stiffness (Fig. 49) are affected more
than direct stiffness and cross-coupled damping.

Test F26 of the externally fed configuration yielded data that could be reduced
for rotordynamic coefficients. Test F26 (Table 14) was essentially a repeat of
test F10 but with larger shaft eccentricity. Also, it employed a very fast speed
ramp rate up to about 250 Hz shaft speed. The displacement orbits were too
circular to permit separation of stiffness from damping, and thus only the net
effective values can be quoted. Figures 60 and 61 compare the stiffness and
damping obtained in tests F10 and F26. The net effective stiffness was somewhat
higher and damping lower for test 26. Although the operating conditions will not
theoretically affect the coefficients, test 26 was conducted with a larger
eccentricity and higher speed ramp rates.

Internally Fed Bearing - Two successful tests, F28 and F31, were conducted with
the internally fed bearing. In test F28 the ellipticity ratio was extremely close
to 1, and thus only net effective values can be quoted. The probable cause for
small ellipticity is that the internally fed bearing produces a much lower over-
all stiffness than the externally fed bearing, and thus generated less motion of
the asymmetrically supported stator. It is forced motion of the stator that
causes the relative orbits to be elliptic. For test F31 two load studs were
removed from one axis, as described earlier, and replaced with displacement
probes. This action increased the amount of stator support stiffness asymmetry,
and resulted in an ellipticity ratio that satisfied the 1.175 criteria. Another
consequence of removing the load studs from one axis was the reduction of control
over centering of the stator in that axis. The bearing's stator element is cen-
tered about the bearing journal by adjusting the preloads in the load cells. When
the load cells were removed, the ability to provide positive centering in that
axis was lost. [If the shaft 1s not centered, significant asymmetry in the fluid
fi1lm coefficients may result.

Figures 62 through 64 show the ellipticity ratio and the measured and predicted
net effective stiffness and damping for test F28. The differences between
predictions and measurements are qualitatively the same as those noted for the
externally fed bearing. The net effective stiffness was overpredicted by 100 to
150% versus about 20% for the externally fed bearing. The net effective damping
was both predicted and measured to be very small, and was underpredicted as it
was for the externally fed bearing. Meaningful percentage differences cannot be
quoted in this case as the measured and predicted values are of opposite sign.
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Internally Fed Bearing
NET EFFECTIVE DAMPING COEFFICIENTS

14
13
12
B
: 11 eff
£ 10
z 3 8 . o e, measured
~d 7 o i L. H e
3
Co 6
zZg 5
ek +
3
a 37
2 —
1 -
0 :
-1 4 predicted
O 8- g
-2 . : . . : : " ﬁ‘F
0 100 200 300 400

SPEED (Hz)

Figure 64. Net Effective Damping, Internally Fed Bearing, Test F28

Figures 65 through 69 show the ellipticity ratio and all measured and predicted
coefficients for test F31 (in which two load studs were removed). The separated
stiffness and damping coefficients do not exhibit the qualitative agreement with
predictions that the externally fed bearing shows. The measured and predicted
direct stiffness actually agree quite well in magnitude at high speed, but the
measurements show a major speed dependence not predicted. The direct damping was
measured to be negative at low speed, and also shows a major speed dependency not
predicted.

The net effective stiffness and damping values for test F31 compare favorably to
those of test F28, which had consistent correlation between measurement and
theory. Two potential causes exist for the prominent speed dependency exhibited
by the internally fed bearing:

1. The effect of fluld tangential velocity induced by the rotating recesses
may have more influence than anticipated in the analysis (see Internally
Fed Bearing Coefficients, page 55).

2. A static eccentricity (radial displacement of stator and shaft centers)
may be the cause of speed dependency, although the value in the test
bearing was low. Feeler gage checks of the test bearing clearance
indicated that the bearing was centered within 0.0016 mm (0.0003 in.).
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Internally Fed Bearing
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The data reduction process of Eq. 14 assumes the rotordynamic coefficients to be
skew-symmetric. If, in fact, they are not skew-symmetric as a result of bearing
asymmetry or miscentering, this condition will manifest itself in the data reduc-
tion process by causing the calculated coefficients, assumed to be skew-
symmetric, to vary with speed.

Speed Dependency vs Asymmetry - If the data for the internally fed bearing of
test F31 are reduced according to the asymmetric method of Eq. 13, the following
set of stiffness and damping values are produced:

Ky o] [22:3 29

= MN/m
;zy K, |~ |29 346
B, B [-.96 2.13]
B B..|=[-.62 13.0] KN-5/m
zy zz ‘ '

These values are dependent on the arbitrary orientation of the yz coordinate
system. Stiffness and damping values computed for the yz coordinate system of
Fig. 35 have been rotated to make the cross-coupled stiffness values of equal
magnitude and opposite sign. In this case, the required rotation is 28 degrees
counterclockwise. However, by enforcing skew-symmetry in Ky, and ,sz, large
asymmetry arises in the direct coefficients. The resulting direct stiffness
values are different by a factor of 1.55, and the direct damping values are dif-
ferent by a factor of 13.5, and are of opposite sign.
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The same procedure applied to the externally fed bearing test F10 results in:

[x 211 -6
yy vz ._ MN/m

Ky KZZJ +46 174

8, 8,,] [20-5-30.4

B. 8. |=|+.98 32.0[KN-5/m
zy ZZJ

Asymmetry 1in the direct stiffness and damping is much less pronounced for test
F10 with ratios of only 1.2 and 1.6, respectively.

Both reduction methods result in stiffness and damping values that produce excel-
Tent correlation between the measured forces and displacements. Therefore, decid-
ing which method is more correct involves choosing between the existence of gen-
eral asymmetry and speed dependency for the rotordynamic coefficients. One set of
coefficients contains asymmetry, but 1is unaffected by speed. The other set
assumes skew-symmetry, but yields a direct measure of speed dependency. The
choice myst be dictated by which of the two conditions is expected to be most
significant.

A1l predicted coefficients are skew-symmetric and vary with speed. Fiqures 49 and
50 for test F10 show that the measured speed dependency parallels the predicted
speed dependency. The asymmetric coefficient set for test F10 1indicates only
minor asymmetry of direct stiffness and damping. Figures 66 and 67 for the
internally fed bearing in test F31, however, show a dramatic difference between
measured and predicted speed dependency for skew-symmetric coefficients. At the
same time, the asymmetric coefficient set for test F31 shows large differences in
the direct stiffness and damping.

Thus, for test F31 either the coefficients are approximately skew-symmetric and
the measured speed dependency is real, or the coefficients are in reality asym-
metric and the measured speed dependency in the skew-symmetric coefficients 1is
part real and part due to asymmetry.

The most plausible source of significant coefficient asymmetry is static miscen-
tering of the stator about the bearing journal. The feeler gage checks
previously described indicated that the bearing was centered within 12% of the
clearance. Analysis of generic fluid film components has shown that miscentering
must be as much as 50% of the clearance to produce significant asymmetry. Thus,
the internally fed hydrostatic bearing may be more sensitive to miscentering than
other types of fluild film elements.

summary: Internally vs Externally Fed - Figures 70 and 71 show the net effective
stiffness and damping for all tests run at a common bearing supply pressure of
10.3 MPa (1500 psi). The internally fed bearing was physically smaller than the
externally fed bearing, and also had larger clearance. Both these differences
tend to lower the stiffness and damping, but are accounted for in the predicted
values. The most important aspects of a direct comparison of the internally
versus externally fed configurations are as follows:
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1. Both configurations had measured net stiffness values that were lower
than predicted, but the externally fed bearing was only 20 to 25% lower
whereas the internally fed bearing was 70% lower.

2. Both configurations had measured damping values that were higher than
predicted. The externally fed bearing was predicted, and shown, to have
significant damping. The internally fed bearing analysis, as modified
to account for fluid swirl, predicted low net effective damping. Test
results showed the bearing to have practically neutral net effective

damping.

The Tow net effective damping attained by the internally fed bearing 1is con-
sidered to be due mainly to fluid swirl. Fluid entering the bearing has the full
tangential velocity of the journal surface. Circumferential flow of this nature
1s predicted to have a detrimental effect on net effective damping because of the
large increase in cross-coupled stiffness (Fig. 31). The damping performance of
the internally fed bearing may be significantly enhanced by providing some type
of circumferential flow attenuating device, or by giving the stator increased
surface roughness, or both.

Freon Bearing Flow Rate - In addition to the dynamic characteristics determina-
tion, the testing with Freon included measurement of the flow rate of the inter-
nally fed bearing and comparison to the theoretically predicted values.

Bearing flow rate was determined by deducting the seal leakage from the total
flow entering the tester. Seal leakage rates were measured as a function of sup-
ply pressure by pressurization of the feed system while a nondrilled journal was
installed in the test bearing position, blanking off the exit of the shaft flow
channel. The seal leak rate was negligibly affected by speed.

The proportion of the total fluid flowing through the bearing remained relatively
constant over the pressure range (Fig. 72). Flow rate declined 7% as speed
increased to 2094 rad/s (20,000 rpm). Since recess pressure was not known, the
measured flow rate was reconciled with that predicted by trial and error calcula-
tions. A solution was obtained if the film entrance loss coefficient Ke was set
as 0.5 with an orifice coefficient C'y of 0.6 (see Fig. 73 for locations where
coefficients apply). The relatively Tow C'q value contains both the discharge
coefficient and the orifice entry loss which 1s expected to be large because
there 1s no lead-in chamfer or counterdrill of the orifice entrance at the
Journal inner diameter.

STEADY-STATE AND TRANSIENT TESTING

Testing was conducted to determine the steady-state stiffness and flow character-
istics of the PLEX and PLIN hybrid bearings and their hydrostatic elements. A
fixed radial load was applied after establishing steady-state speed and supply
pressure. Film thickness changes were measured with eddy current proximity
devices. It was found that the measured stiffness was higher than that predicted,
while the measured flow was lower than predicted.
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LHy Testing

Liquid Hydrogen Test Facility. The 1iquid hydrogen test facility, shown
schematically in Fig. 74, includes a 750 liter (200 gallon) run tank rated at
34.5 MPa (5000 psia) for bearing supply. Gaseous hydrogen from a high-pressure
source was used to transfer fluid, pressurize the working fluid, and drive the
turbine. Servocontrolled valves regulated test bearing supply and sump pressure,
and shaft speed. Set points for each of these parameters were preprogrammed for
each test. Test control and data flow are shown schematically in Fig. 75.

Liquid Hydrogen Tests. Prior to initiating the chil1l operation, the tester
housing was warmed for 8 to 12 h, then purged with GHe (gaseous helium) to
remove air and moisture. The run tank and tester were chilled by hydrogen
flowing from the low-pressure LHp storage tank through the tank, feed system,
and tester to the vent stack. The exhausted gas was ignited and continuously
burned to prevent a buildup of potentially explosive gas. The chilling process
was maintained until the flow to the tester was then closed, and the run tank

filled.

LHp Steady-State Testing. Test 19 (Table 15) was conducted to measure the
steady-state stiffness of the PLEX hybrid bearing. After chilling, LHy was
supplied at 16.2 MPa (2350 psia) and shaft speed raised to 3770 rad/s (36,000
rpm). After steady- state was reached, a fixed radial load was applied to the
test bearing three times by pressurizing the load piston (Fig. 40). The load was
measured through strain gages bonded to the stator flexure arms. An average
radial stiffness of 5.8x108N/m (3.33x106 1b/in.) was found, exceeding the
predicted value by 21%.

Table 16 summarizes steady-state stiffness tests of the hydrostatic bearing ele-
ment of the PLEX hybrid bearing. In test 43, static (no rotation) stiffness and
flow were determined for three values of supply pressure. Stiffnesses at three
speeds were determined for the design supply pressure of 16.2 MPa (Test 47), and
for half the design pressure drop (Test 48). As shown in Fig. 76, radial stiff-
ness was found to 1increase with speed, an effect considered to be mainly the
result of decreasing clearance due to centrifugal growth of the journal, with
some additional contribution from hydrodynamic action. Measured stiffness was
found to exceed that predicted by approximately 23%.

Flow rate declined with speed, probably in response to decreasing clearance. At
full speed, the volumetric flow rate measured for the hydrostatic bearing was
approximately 6% more than for the hybrid bearing, because the ball bearing outer
race was not present to restrict fluid exit from the film bearing. On a mass
basis, flow in the latter test was approximately 16% greater than during the
hybrid bearing test. This larger difference was caused at least in part by the
8% increase in fluid density due to the lower supply temperature achieved during
Test 47.

The results of steady state testing, e.g., stiffness higher and flowrate lower

than predicted, are similar to other tests of LHp-fed hydrostatic bearings
(Ref. 22).
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The theoretically determined flow rate was reconciled with measured values by
applying varying values of orifice discharge and fiim entrance loss coefficients
(Fig. 77) to match measured conditions of supply pressure, flow rate, and recess
pressure to yleld graphically a compatible pair of coefficients (Fig. 78). The
film entrance loss due to inertial effects, Ko was lower than assumed at 0.39
rather than 0.5 probably because the recess edges are not completely sharp. The
orifice coefficient C4 contains not only the discharge coefficient, but also
entrance loss; its value 1s 0.94 rather than the assumed value of unity.

STATOR

Figure 77. Flow Coefficient Locations, Externally Fed Bearing

LHp_Transient Testing. Two transient tests of the PLEX hybrid bearing were
conducted in which simultaneous speed ramp rates, load changes, and speed changes
were imposed with the profile shown in Fig. 79, 80, and 81. The conditions were
based on the flight duty profile of the SSME during launch, throttling, and shut-
down. Table 15, Tests 22 and 23, summarizes the tests, which proceeded as
planned with no anomalies.

The transient simulation demonstrated the capability of the PLEX bearing to start
and stop without rubbing contact of the hydrostatic journal. The tester's load-
ing capability was limited to 1930 N (434 1bs) by piston size and available gas
pressure, representing the lower range of expected SSME engine component loads;
loading to 4000 N (900 1bs) would have been desirable. A different loading sys-
tem has been fabricated since the tests reported that will permit loading to
10,000 N (2250 1bs).

Accuracy of Results. Reported values are considered to be accurate within the
following 1imits:

Pressures 1% full scale
Temperatures 0.5 K
Flow 5% of quoted value
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Figure 81. Transient Test Profile; Proximity, Load
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Speed 1% of quoted value

Stiffness 25% of quoted value
Load ) 15% of quoted value
Deflection 9% of quoted value

Stiffness. Since stiffness values are based on both deflection and load measure-
ments, 25% accuracy is expected for the highest stiffness calculated. Better
accuracy is probable for the other tests conducted at lower speeds and pressures
because the deflections are larger.

Deflection Measurement Accuracy, LH, Tests. The measured deflections used to
calculate stiffness are considered to be accurate within 9% at the minimum
deflection magnitudes of 0.005 mm (0.0002 in.), producing a signal voltage change
of 45 mv. The overall deflection accuracy estimate is based upon the accumula-
tion of accuracies for the proximity measurement system (2%) instrumentation sys-
tem (2%) and visual interpretation of the graphical output of the analog data
processing devices (5%). It was assumed that all effects of cryogenic tempera-
ture are included in the scale factor determined by calibration at LN, tempera-
ture (77 K).

Load Measurement Accuracy. The load values were determined by strain gage out-
puts and are considered to be accurate within 15% due to the accumulation of
inaccuracies in calibration (5%), the amplification of the signal (2%), the exci-
tation voltage (2%) and the visual interpretation of the processed data (5%).
Effects of temperature were assumed to be included in the calibration at LN
temperature.

Recess Pressures - Externally Fed Bearing

The pressures measured in the top and bottom recesses (clock positions of 12:00
and 6:00) were responsive to speed, radial load and the presence of the parallel
ball bearing during hybrid bearing tests. During the hybrid bearing testing
(Tests 12 through 23), the recess pressure ratio Pp = Pp-Pa/Ps-P5 was
approximately 0.75, whereas the ideal value would 1ie in the range of 0.45 to
0.55 for maximum stiffness and damping. The high recess pressure in these tests
probably resulted from flow resistance added by the ball bearing's proximity to
the fluld exit from the hydrostatic bearing. The recess pressures and P, were
reduced when the hydrostatic bearing was tested alone in Tests 43, 47, and 48,
becoming approximately 0.6 at full speed. Speed dependence was shown as P,
increased with speed primarily 1in response to decreasing internal clearance.
Optimum P, could be established at full speed by a slight reduction in orifice
diameter or increase in clearance.

variation between the opposing recess pressures under no-load operation was
approximately 4% with the ball bearing present, but for hydrostatic bearing alone
increased to approximately 15% at full speed and supply pressure. This difference
is considered to be due to the centering influence of the ball bearing. After a
load cycle, recess pressures returned to the preload value within approximately
3%.
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Conclusions
Conclusions drawn from the LHy testing were:

1. The hydrostatic element of the parallel bed externally fed hybrid
bearing has high values of radial stiffness and, thus, can be used to
Increase radial stiffness of the ball bearing and increase its 1ife
under radilal load. The ball bearing prevents rubbing contact of the
hydrostatic bearing during transient conditions.

2. Analytic stiffness prediction by current methdods is conservative for
steady-state operation with LHp as the working fluid.

3. Analytic flowrate predictions for LH, service are conservative with an
orifice coefficient of 1.0 and a film entry loss coefficient of 0.5.
Accurate prediction of flow requires lower values of these coefficients,
representing slightly greater orifice losses and lower film entrance
losses.

LN>_Testing

The PLIN hybrid bearing was subjected to steady-state stiffness and flow testing
(Table 17). LNy was used in these tests to check the bearing's operation with
a cryogenic working fluid while avoiding the risk involved with operation with
LO0p. 1In seven Tests, fixed radial loads were applied at speeds from 1256 rad/s
(12,000 rpm) to 3822 rad/s (36,500 rpm) to determine stiffness. Supply pressure
and speed were ramped simultaneously in four tests to simulate turbopump start
conditions.

The single test (Test N15) of the hydrostatic element of the PLIN bearing was
terminated after 24 s of operation at 1256 rad/s (12,000) rpm by jamming of the
bearing due to accumulation of globules of silver plating from the bearing inner
diameter. No erratic journal motion was noted prior to the sudden stoppage of
the shaft. The most probable initiating cause of silver accumulation was metallic
debris particles from a weld Joint that failed upstream of the bearing. The
bearing bore was subsequently machined 0.05 mm (0.002 4in.) oversize, restoring
the original surface texture. The same bearing was used in testing with Freon in
a later test series.
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LNp_ Steady-State Testing. After static flow tests and prior to initiating
powered rotating tests, the test bearing became jammed during hand rotation.
Particulate matter had apparently entered the bearing through the orifices and
been caught at the recess edges. Rotation caused plowing of the silver plating
from the bearing inner diameter by these particles. The silver galled and accum-
ulated into globules large enough to jam the bearing clearance. The silver pro-
truding above the surface was removed and the tester reassembled. The total area
of grooving was a small percent of the total bearing area and the radial clear-
ance outside the area swept by the recesses was not affected. The jamming of the
bearing demonstrated that pure silver 1s not a suitable material for bearings
with close clearances that particles may enter. Silver was selected for this
application because 1in rubbing contact, it 1s the most resistant material to
ignition in a L0, environment. The thin dense chromium plated surface of the
Journal was not damaged. Since rubbing contact is precluded in the parallel load
hybrid bearings, a harder bearing material could be used to advantage.

After preliminary tests (N1 through N4, Table 17), Tests N6 through N9 were con-
ducted to determine direct radial stiffness of the hybrid bearing, with LN,
supplied at 14.9 MPa (2165 psia) and with sump pressure maintained at 2.87 MPa
(417 psta). Fixed radial loads were applied at speeds of from 1256 rad/s (12,000
rpm) to 3577 rad/s 34,170 rpm). The speed attained was limited by turbine gas
supply source pressure, which was increased a small amount for each test to avoid
inadvertant overspeed until a maximum speed of 3821 rad/s (36,500 rpm) was
achieved.

LNo_Combined Transient Testing. Tests N10 through N14 combined transient start/
stop ramps with stiffness measurements. The supply pressure was reduced to 0.44
MPa (64 psia) at start of rotation. The pressure was then ramped to full inlet
pressure in 4 s. Shaft acceleration of 1288 rad/s? (12,300 rpm/s) was achieved
on start. In all tests, the fluid supply valve was shut simultaneously with the
turbine spin supply valve, while the turbine brake was activated, giving a decel-
eration rate of 2458 rad/s? (23,500 rpm/s) from full speed to rest. Supply
pressure decayed from 14.9 MPa to zero gage pressure in 1.5 s, which is less than
the 4 s period of deceleration in the engine shutdown profile.

Measured flow, which included the leakage of the two shaft seals used to force
flow into the shaft, was approximately 4% greater than predicted. Bearing flow
rates listed were derived by deducting calculated seal leakage from the total
measured flow.

LNo_Hybrid Bearing Stiffness Values - The steady-state tests resulted in stiff-
ness values with large variation which was caused in part by noise in the deflec-
tion signals. If the extreme values are dropped, the average stiffness from 14
test points becomes 2.27x108 N/m (1.75x106 1b/in.) for the hybrid bearing.
When the ball bearings calculated stiffness is deducted, the hydrostatic bearing
stiffness becomes 3.06x108 N/m (1.29x106 1b/4n.), or 5% lower than predicted.
This result 1is 1in reasonable agreement with the dynamic tests conducted with
Freon, wherein the magnitude of separated direct stiffness (Test F31) was approx-
imately as predicted at 1256 rad/s (12,000 rpm). The speed dependence of stiff-
ness indicated in test F31 was not predicted and 1s not currently explained. The
radically lower net effective stiffness of the internally fed bearing found in
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tests F28 and F31 are the result of combining direct stiffness and cross-coupled
damping. Since the damping force arises from dynamic shaft motion, it is prob-
able that 1ts effect would not be shown in the steady-state tests. The low
effective dynamic stiffness may not be a significant detrimental consideration
for applications with predominantly steady-state radial loading.

Test N15 - The ball bearing was removed prior to Test 015 so that the radial
stiffness of the hydrostatic bearing element alone could be measured. The test
was cut at 24 s by underspeed redline when the tester shaft stopped from 1256
“rad/s (12,000 rpm) 1in 0.7 s. At disassembly, the condition of jamming was
similar to that experienced prior to Test N1. After test N15, LN, testing was
discontinued to concentrate effort on developing the damping test method.

Consequently, the tester was removed for modification in preparation for dynamic
coefficient testing which was subsequently performed with Freon.

The conditions of the bear1ng and journal after test N15 are shown in Fig. 82 and
83.

Conclusions drawn from the LN, testing were:

1. The parallel load internally fed (PLIN) hybrid bearing is a viable con-
cept for load sharing and 1ife extension of ball bearings in propellant
cooled service; when particles were excluded, no rubbing contact of the
hydrostatic bearing occurred. Since the ball bearing supports radial
load during start and shutdown and prevents rubbing of the hydrostatic
bearing, this bearing configuration is a good candidate for use in LOp
turbopumps. Although dynamic tests with Freon showed the stiffness and
damping provided by the internally fed bearing is low compared to that
of the externally fed bearing, the damping supplied by the hydrostatic
bearing is substantially increased over that of a rolling bearing.

2. Systems using hydrostatic bearings must include filters or the bearing
materials must be hard and seilzure resistant to prevent damage by par-
ticulate contamination of the bearing clearance.

3. In locations where rubbing can occur, pure silver is not suitable as a
hydrostatic bearing material because of its tendency to gall, accumulate
and jam the bearing clearance.
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SUMMARY OF RESULTS

The SSME Long-Life Bearing Program encompassed analytic and empirical treatments
of hybrid and hydrostatic bearings for cryogenic turbopumps.

ANALYTIC RESULTS

Parallel load hybrid bearings can be used to extend ball bearing 1ife, increase
radial load capacity, and provide additional stiffness and damping. The preven-
tion of rubbing of the hydrostatic bearing surface during start and shutdown is
especially valuable for applications with reactive working fluids such as LD2.
Since the ball bearing must operate at full rotor speed, speed limits are not
raised, and the life extension is limited to that achieved by load reduction.
Inclusion of the fluid swirl effects in the internally fed bearing analysis
reduces the direct stiffness and increases the cross-coupling stiffness.

The most effective design variables affecting load capacity, stiffness and damp-
ing are: (1) bearing size, (2) radial clearance, (3) recess pressure ratio (the
pressure drop from recess to sump divided by total pressure drop across the bear-
ing). This quantity is controlled by balancing the flow resistances of the film
and the orifice. It should be close to 0.5 for maximum stiffness and damping.

EMPIRICAL RESULTS

Dynamic stiffness and damping coefficients were determined for a 75 mm diameter
externally fed and a 55 mm diameter internally fed hydrostatic bearing using
Freon 113 as the working fluid with a supply pressure of 10.3 MPa (1500 psig).
The externally fed bearing had a direct stiffness value approximately 20% lower
than predicted at 1.75¢08 N/m (1.0e06 1b/in.). Damping was approximately as pre-
dicted at 40,000. N-s/m (228 1bes/in.). Cross-coupling stiffness of -2.0e7
N/m (-114,000 1b/in.) was measured compared with a predicted value of +4.0e7 N/m
(+228,000 1b/in.). Separated coefficients of the internally fed bearing were
quite speed-dependent. The net effective stiffness of the internally fed bearing
at 3.0e07 N/m (171,000 1b/in.) was only about 30% of the predicted value. Mea-
sured damping was also low, at 7000 Nes/m (40 1b-s/in) but exceeded the
analytic value adjusted for fluid swirl. Separated coefficients could only be
determined if the journal orbit ellipticity exceeded 1.175.

Steady-state direct stiffness of the externally fed bearing operating with LH;
as determined by application of a fixed radial load was found to be 4.12e08 N/m
(2.35€06 1b/in.) with a supply pressure of 16.14 MPa (2340 psia) at a speed of
3810 rad/s (36,400 rpm). Steady state-stiffness increased with speed and supply
pressure.

Steady-state stiffness of the parallel load internally fed hybrid bearing with
LN2 as the working fluid was indicated to be 5% lower than predicted when the
calculated stiffness of the ball bearing was deducted, the hydrostatic element
stiffness was indicated to be 2.3e08 N/m (1.5e06 1b/in.). No significant test
results were obtained with the hydrostatic element alone.
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Flowrates were found to be lower than predicted. For the externally fed bearing
operating with LH2, adjustment of the orifice coefficient from 1.0 to 0.94 and
reduction of the fiIm entrance Toss coefficient to 0.36 from the assumed 0.5
reconciled the predicted and measured flow. For the internally fed bearing, Freon
tests also indicated flowrates lower than predicted. Since recess pressures for
the internally fed bearing were not measured, separation of the orifice and film
entrance loss coefficients was not possible. However, coefficient values of 0.6
and 0.5 for orifice and fiim entrance coefficients, respectively, 1s consistent
with overall measured flow.
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CONCLUSIONS
ANALYTICAL CONCLUSIONS

Hybrid bearings are an effective concept for increasing the capabilities of ball
bearings and are applicable to LH2 and L02 turbopumps as well as other types of
rotating machinery.

Parallel load hybrid bearings can be used to increase the load capacity, stiff-
ness, and damping provided by rolling bearings. Life of the rolling bearings
will be improved if the life-1imiting factor 1s radial load.

Hydrostatic bearing design factors most strongly affecting load capacity, stiff-
ness, and damping are bearing area, radial clearance, and recess pressure ratio.
Operating conditions of overall pressure ratio, fluid properties, and speed also
affect these bearing support characteristics.

Maximum damping is not necessarily the optimum in terms of unbalance response.
Rotordynamic analysis for turbomachinery designs should include determination of
the optimum damping and also the effect of the cross-coupling stiffness intro-
duced by the hydrostatic bearing on rotor stability. Transient analysis should
include speed-dependent factors; supply pressure and centrifugal growth will
affect bearing stiffness, introducing the potential for a rotor resonance to
track shaft speed.

TESTING CONCLUSIONS

parallel load hybrid bearings are applicable to cryogenic turbomachinery; the
ball bearings are effective 1in preventing rubbing contact of the hydrostatic
bearing element. '

Externally fed hydrostatic bearings provide significant direct stiffness and
damping at speed, which can be predicted with current analytical procedures. Net
effective coefficients are affected by speed; actual stiffness appears to be
lower and damping higher than theoretical values.

Steady-state stiffness in response to a fixed direction unvarying radial load fis
conservatively predicted.

Internally fed hydrostatic bearings with recesses in the Journal surface provide
low values of net effective stiffness and damping under dynamic loading due to
the effects of fluid swirl. Steady-state stiffness in response to fixed radial
load 1s reduced to a lesser extent and can be predicted analytically with good
accuracy.

Hard, wear resistant materials are necessary for hydrostatic bearing surfaces
that are subject to rubbing. Silver plating is not a suitable material for
close-clearance bearings since it tends to accumulate into globules that will jam
the bearing.
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Filtering or other means are required to exclude particles from the working fluid
to avoid blockage of the clearance. Particles tend to accumulate at the recess
edges, causing flow restrictions wear, and potentially jamming the bearing. A 10
micron nominal filter was found to be effective in preventing serious contamina-
tion for the test bearings with clearances of 0.038 mm (0.0015 in.).
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RECOMMENDATIONS

Further testing 1s recommended to characterize hydrostatic bearing damping and
stiffness, since only a 1imited number of dynamic coefficients were obtained. One
of the major drawbacks of the tester configuration used is the need for elliptic
orbits in order to separate stiffness from damping. Since the elliptic orbits
are obtained by having an asymmetric stator support stiffness, the tester will be
effective only when the fluid film stiffness 1s well matched with the support
stiffness. If the support is too soft or too stiff, sufficient ellipticity will
not be obtained.

Another drawback 1s the inability to measure asymmetric fluid film coefficients
as functions of speed. The only way to 1ift this restriction is to use an asyn-
chronous excitation source. Figure 83 shows one way in which the current test
apparatus can be modified to have an asynchronous excitation source. Mounted on
the tester shaft just outboard of the test bearing is a disk that can rotate at a
speed independent of test shaft speed. Unbalance masses added to this disk will
then impart orbital motion to the test shaft at a frequency equal to the speed of
the disk. By operating on the measured displacements and forces (using Fourier
coefficients as before) at the frequency of the rotating disk, the full general
set of 12 asymmetric rotordynamic coefficients can be identified as functions of
test shaft speed. Such a tester would make it possible to measure bearing non-
linearity and the effects of fixed radial eccentricity.

To conduct testing with an independent rotating disk, it will be necessary to
have accurate active control of both the test shaft speed and rotating disk
speed. While the speed of the disk is changing, the shaft speed must be held
constant. Also, the tester should have the capability to rotate the exciter disk
in both the forward and reverse directions.

ALTERNATE MATERIALS

Material development for hydrostatic bearings should continue with studies of
alternate materials with good compatibility, strength and wear resistance.
Materials considered to have good potential for use in LH, and LOp service,
including those requiring development evaluation are listed in Table 18. Material
categories are for base materials of construction, materials that should be con-
tained as inserts due to lack of tensile strength, and platings and coatings that
have potential for wear resistance.

An attractive alternate material for both journal and bearing surfaces is Stel-
1ite 6B. It 1s highly wear and corrosion resistant, but has marginal strength
based on ambient temperature properties. Strength increases due to cryogenic
temperatures are unknown at present. Stellite 6B has good resistance to impact
and thermal shock, at elevated temperature, with an estimated 40% reduction in
ductility at -400 F. It has excellent wear resistance in air, with a stator
coefficient of friction of 0.119 against itself. With an adhesive galling thres-
hold of over 72 KSI, the Stellite/Stellite combination should have excellent
resistance to selzure. High cost is a drawback for heavy sections of Stellite 68.
With development of oxy-acetylene deposition or plasma arc surfacing, significant
cost savings might be obtained. Some techniques for accommodating residual
stresses for these applied coatings would be required to assure permanent adhe-
sion to substrate, however.
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An attractive 1insert material 1s silicon carbide, which has shown good wear
resistance in rolling bearings. Made into inserts and kept under compression,
silicon carbide could prove to be an excellent hydrostatic bearing material. If
the sleeve could be hot pressed to net shape, difficult machining could be
avoided.

The ultimate goal of the material study should be identification of materials

that are sufficiently wear resistant that transient rubbing can be tolerated, so
that the necessity for including rolling bearings can be eliminated.
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APPENDIX A
LHp DYNAMIC CHARACTERISTICS TESTS

Seven tests (test numbers 033 through 042, Table 19) were conducted to determine
the dynamic characteristics of the hydrostatic bearing of the PLEX bearing pres-
surized with 1iquid hydrogen. The tester housing was electrically heated for 8
to 12 hours, followed by a gaseous helium (GHe) purge to eliminate air and mois-
ture prior to introducing cold hydrogen flowing from the low-pressure LH; stor-
age tank through the test hardware to the vent stack. The exhausted hydrogen was
ignited at the top of the vent stack and continuously burned to prevent a buildup
of explosive gas. The chilling process was continued until the fluid temperature
in the tester approached 50 K (90 R). The flow to the tester was stopped, and
the run tank topped off and pressurized. The test was then started as soon as
possible, as the temperature of the hydrogen in the run tank rises due to heat
from the ambient surroundings.

In the dynamic characteristics tests, the test bearing was subjected to the pres-
sure and speed profile shown 1in Fig. 85. Dynamic force and motion data were
recorded for later analysis.

TESTS 033, 034

A test bearing journal length of 25.4 mm (1 inch) was used. Bearing supply pres-
sure was 16.1 MPa (2350 psia) with a sump pressure of 2.4 MPa (350 psia). B2, or
journal deflection data were satisfactory, indicating a magnitude of 1.37e-2 mm
(0.00054 inch) p-p; however, dynamic load data were not obtained. Since it was
expected that load values could be recovered from the stator accelerometer sig-
nals, the tester was prepared for the next test by installing a longer journal (L
= 35 mm (1.375 inch) while data analysis was initlated. It was found that the
journal motion signals had a nonsinusoidal wave form, preventing successful
analysis for dynamic coefficients of data from these tests.

TESTS 035, 036

Tests 035 and 036 were run with the same total fluid pressure drop at supply
pressures of 16.2 and 18.6 MPa, respectively. The flowrate was not significantly
affected by the higher supply pressure. Although hydrogen fis s1ightly compres-
sible under these conditions, its density was essentially the same for both tests
because of the compensating effect of the higher supply temperature resulting
from more heating by the additional pressurizing gas required to achieve higher
run tank pressure.

TEST 038, 039

With the same long journal, an identical alternate test bearing with different
proximity probes was 1installed in an attempt to obtain undistorted B2 (film
thickness or relative journal motion) signals. Peak amplitudes of signals dif-
fered from the previous tests due to different scale factors of the new probes;
however, signal distortion was repeated, precluding successful data analysis.
Bearing supply/sump pressure drop was 13.8 MPa (2000 psi) and 6.9 MPa (1000 pst),
respectively, for the two tests. Flowrates differed approximately by the square
root of the pressure drops.
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TEST 040

In this repeat of test 039, journal and stator proximity probe cables were inter-
changed to identify the source of the B2 signal distortion, which remained with
the journal motion signals. This result indicated that the difficulty lay with
the journal. In more recent testing, 1t has been found that minor deviations
from a true circular journal surface introduces harmonics into the displacement
signals. The possibility that the observed distortion i1s due to deflection sig-
nal artifacts arising from residual magnetism of the journal was explored with
eddy current inspection equipment used to detect grinding burns in balls and ball
bearing races. As would be expected for Alloy 718, no indications were found.
In view of the more recent experience cited, the probable cause of the B2 signal
distortion was journal surface waviness in excess of 1.2e-3 mm (50e-6 inch).

TESTS 040, 041

In an attempt to achieve an elliptic journal orbit, the strain-gaged studs in the
45-degree plane were removed, thus providing an asymmetric stator stiffness.
Stator accelerometer signals were to be used to replace the missing strain gage
load readings. This action was taken as a result of discussion with
Dr. Dara Childs in which he indicated that the journal orbit must be elliptic for
the eccentric journal test method used to produce data that can be successfully
analyzed for separate stiffness and damping coefficients. The shorter Jjournal
was reinstalled to avoid the signal distortion noted in the previous tests. As
in the previous tests, the pressure drops across the test bearing were set at
13.8 and 6.9 MPa (2000 and 1000 psi) for tests 040 and 041, respectively. Visual
assessment of oscilloscope traces of the signal suggested that the data were good.

Data analysis of tests 33 and 34 indicated that there was a definite phase dif-
ference of approximately 90 degrees between force and displacement vectors. In
addition, there was a 180-degree phase shift of these vectors at 530 Hz. The
stator motion ceased, while the film motion continued, which could be interpreted
as a loss of capacity at this frequency. This response was not found in the
other dynamic tests. Additional checks of the instrumentation and data systems
showed no phase shifts from these sources. The data signal quality was suffi-
cient for processing by the analysis program, which was checked out with a trial
problem. Various trial phase shifts were imposed to determine if the solution
could be stabilized. The resulting coefficients were inconsistent.

Prior to test 41, two load-measuring studs were removed to produce elliptical
orbits for coefficient separation by creating asymmetric stator stiffness. The
data analysis program produced consistent but unrealistic coefficients at all
speeds. A stator resonance was produced at 525 Hz because of the softened sup-
port in one axis. Previously, the stator support stiffness was sufficient to
prevent resonances from occurring in the operating speed range.

It was concluded that the 1inability to extract realistic coefficients stemmed
from interference by casing resonances, and no further efforts were made to
analyze the data from tests 033 through 042, and all activities were directed
toward modification of the tester to eliminate housing resonances that would
interfere with production of reducible data. Subsequent testing was conducted
using Freon 113 as the working fluid, with the results noted in the main body of
the report.
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