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Introduction

The study of the absorption, emission, and scattering of electromag-
netic radiation as it passes through a medium with which it interacts is
a fascinating subject involving the close interconnection of many disci-
plines in mathematics and physics. This subject originated in the study
of the properties and fate of radiant energy as it traverses stellar inte-
riors, and much of the terminology and many of the definitions reflect
the impetus given by the early researchers in the field. More recently,

a great body of this theory has been applied to the study of the pas-
sage of solar and terrestrial radiation through the Earth's atmosphere,
as well as to the study of radiation in the atmospheres of the other
planets. In particular, studies of climate and climate models, and the
detection and measurement of the distribution of water vapor, trace

gases, and aerosols in the atmosphere have given additional importance
to this topic, and literally hundreds of technical papers have been writ-
ten in the past 20 or so years in which applications of radiative transfer
(RT) theory have been made to these and other topics in atmospheric
physics.

The lack of standardization of symbols and terms in current radia-
tive transfer literature has caused some difficulty, especially for the neo-
phyte researcher, in comparing analyses and numerical results among
the published texts and papers in radiative transfer theory; this conse-
quently presents the new researcher with some difficulties in developing
an integrated picture of, or feel for, this most fascinating subject. The
present monograph is an attempt to alleviate this frustrating circum-
stance by developing some of the fundamental concepts in RT theory,
and by defining some of the more useful approximate solutions to the
radiative transfer equation (RTE) using as consistent a set of definitions
and symbols as is practical. This will hopefully make the newcomer's
transition to the more formal technical literature somewhat less painful.

The radiative transfer equation appears in many forms in the
literature, depending on the discipline, the area of application, and the
whims of the writer. The various forms derived herein are those most

generally encountered in atmospheric applications. As in any scientific
discipline, the technical literature is generally written by experts for
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experts, and, as a consequence of long familiarity with the basic theory,

a great deal is generally omitted from their papers as being well known

or implied, causing still more confusion to the researcher new to the

field. Frequently, for example, one paper presents specialized forms

of the RTE which supposedly represent the same physical situation

as in another paper, and yet the physical forms of the corresponding
equations are dissimilar. The present book will hopefully aid the reader

in recognizing these differences and the reasons for them, and thus allow

the reader to construct a mental link between the seemingly different
results.

Some of the classical solutions to the various forms of the RTE

will be derived in detail. These will include the thin-atmosphere

approximation, the single-scattering solution, various forms of the two-

stream solutions, the Eddington solution, and the discrete ordinates

method of Chandrasekhar. In some cases, numerical examples will be

given so that the reader can develop a feel for the order of magnitude of

the numbers involved. Appropriate caveats will be rendered concerning
regions of applicability of the approximation methods.

A working group of the Radiation Commission of the International

Association of Meteorology and Atmospheric Physics (IAMAP) headed

by Jacqueline Lenoble of the University of Lille, France, has edited

an extremely comprehensive but very compact two-volume set of notes

containing descriptions of all the presently used methods for comput-
ing the radiative transfer through scattering atmospheres. Because of

its scope, this document is difficult to use as a tutorial guide, but is

an excellent reference source for the experienced researcher. Its title

is "Standard Procedures to Compute Atmospheric Radiative Trans-

fer in a Scattering Atmosphere"; it is published by the IAMAP, and
is obtainable from NCAR, Boulder, Colorado. This document dis-

cusses all the current problems in radiative theory, all the methods

currently in fashion, and gives hundreds of references. It is highly rec-
ommended for source material once the fundamentals of the present

text are fully grasped. Prof. Lenoble has edited and revised a set of

these documents, which is available as Radiative Transfer in Scatter-

ing and Absorbing Atmospheres: Standard Computational Procedures,

A. Deepak Publishing, Hampton, Virginia, 1985 (ISBN 0-937194-05-0).

The present book is not intended to be a textbook on radiative

transfer theory, nor is it intended to be authoritative or complete--

the author has neither the inclination nor the expertise to attempt

such a monumental task. It is meant rather to be a set of notes,

mathematically more detailed than one usually finds in a textbook

or formal paper, presenting the derivations and solutions to various

forms of the integro-differential equation which describes the transfer of
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Introduction

radiant energy through an absorbing, scattering, and emitting medium.

The basic thrust of these notes is twofold: first, to provide the reader

with a firm physical foundation of the basics of radiative transfer which

will permit a ready transition to the more formal literature from which

this foundation can be expanded; second, to present some of the more

elementary, but perhaps more useful, solutions to the RTE in sufficient
detail for the reader to be able to concentrate on the physical principles

involved in these developments rather than being bogged down by a lot

of superfluous mathematical detail, thereby helping the reader develop

a physical feel for the way the various components interact and for their

relative importance.

To give proper credit where it is due, it should be mentioned that
except for the specific papers referenced in the body of the text, most of

the material for this monograph was extracted from three texts: those

of Chandrasekhar (1960), Liou (1980), and C)zisik (1973)--in particular,

chapters 1-5 of Chandrasekhar, chapters 1 and 6 of Liou, and chapters

1, 8, and 9 of Ozisik.





Chapter 1

Introductory Concepts

All substances continuously emit electromagnetic radiation as a
result of the thermal motions of the molecules and atoms of which

they are made. The thermal agitation of these particles increases

with temperature, and consequently, the emitted radiation frequencies

increase with temperature. The wavelengths of these radiations range
from several kilometers for very long wavelength radio transmissions

down to 10 -12 cm and less for cosmic rays and beyond. A very rough

and somewhat arbitrary division of the electromagnetic spectrum is

given below in table 1-1.

TABLE 1-1. THE ELECTROMAGNETIC SPECTRUM

Wavelength Type of radiation

10 -1 to 101° cm

10 -4 to 10 -1 cm

10 -5 to 10 -4 cm

10-6 to l0 -5 cm

10-9 to 10 -6 cm

10-12 to 10-9 cm
? to 10-12 cm

Radio, radar, TV, etc.

Infrared

Visible

Ultraviolet

X-rays
Gamma rays

Cosmic rays

The term thermal radiation is normally reserved for radiation that

can be detected as either heat or light, and so is generally applied to

that region of the spectrum ranging from about 10 -5 to 10 -1 cm; i.e.,

the visible and infrared portions of the spectrum. Since we shall be

primarily concerned with the infrared portion of the spectrum, a unit
called the micron, equal to 10 -4 cm (or 10 -6 m) will be used throughout

these notes. In these terms, the thermal radiation regime extends from
about 0.1 to 1000 microns.

PRECc.DtNG PAGE BLANK NOT FiLiV;EL", 5
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Introduction to the Theory of Atmospheric Radiative Trqnsfer

Now, in addition to emitting their own radiation, most atmospheric

constituents, from molecules to water vapor droplets and aerosols, also

affect radiation incident on them by the processes of absorption and

scattering. Scattering can be thought of as the process of changing

the direction of the incident radiation--in some cases, by changing

the frequency of the scattered radiation. The problem of scattering

radiation without changing its frequency is the main topic of these
notes.

The relative proportion of the incident radiation which is scattered

in various directions by the scattering particles is a function of basically

two parameters: the size of the particle relative to the wavelength of

the incident radiation, and the (complex) index of refraction of the

material of which the particle is made. The shape of the particle is also

quite important, but the theory developed thus far, the Mie theory, is

reasonably complete only for spherical particles, although particles of
cylindrical and fiat plate geometries have recently been addressed with

some success. The basic parameters resulting from these analyses are

the particle's phase function, which describes the spatial distribution of

the scattered radiation, the scatter cross section, which determines the

fraction of the incident radiation which is scattered, and the absorption

cross section, which, for particles with a nonzero imaginary index of
refraction, defines the fraction of the incident radiation that is absorbed

by the particle.

The determination of these parameters is a subject of its own and

will not be addressed in these notes--here, these parameters will be

assumed to be known. The text by Liou, cited earlier, gives a good

introduction to this subject, and the classical texts of van de Hulst

(1957) and Deirmendjian (1969) should be consulted for more details.

The texts by Kerker (1969) and Stratton (1941) are also quite readable

and useful, and the excellent review paper by Hansen and Travis (1974)
covers the scattering problem very concisely, as well as many of the

other topics presented in the present text.

The theory of radiant energy propagation can generally be consid-

ered from two different viewpoints: classical electromagnetic wave the-
ory, and quantum mechanics.

The classical theory begins with Maxwell's equations and considers

the energy propagation characteristics of electromagnetic waves. How-
ever, the classical theory generally ignores the microscopic interactions

of the radiation with matter, and treats only the macroscopic behav-

ior. Consequently, many of the parameters of interest in the study of

the propagation of radiation through absorbing, scattering, and emit-

ting media are defined quantities which must be determined through

experiment.



Chapter 1

The situation is quite similar to that found in classical thermody-
namics. Acceptance of the first and second laws of thermodynamics,
an introduction of the perfect gas law, and the concept of entropy al-

low a great many mathematical statements to be made which correctly
identify basic trends and gross features of thermodynamic systems in
equilibrium. These classical concepts by themselves, however, generally
do not permit the detailed calculation of numerical results. Certain con-
cepts and groups of parameters are related to others through arbitrary
constants of proportionality which must be experimentally determined.
Such parameters as specific heats, heat transfer, diffusion coefficients,
thermal conductivity, and viscosity coefficients are merely "constants
of proportionality," and classical thermodynamics offers no means of
directly computing their numerical magnitudes from first principles or
of predicting the way in which these parameters will vary with such
macroscopic thermodynamic properties as temperature, pressure, etc.

Classical statistical mechanics does attack these problems within the
framework of classical physics by making some hypotheses concerning
the molecular structure of the material; i.e., it assumes a mathematical
"model" of the system. In this way, many of the above-mentioned
coefficients can be computed in terms of the modeled physical properties
of the molecules and the local properties of the system. These results,
which are to a greater or lesser extent constrained by the fidelity
of the assumed model, generally can predict the gross characteristics
of these coefficients adequately and, when applied to systems which
are known to fall within the realm of "classical physics," predict

numerical magnitudes reasonably well. However, ultimately, an appeal
to quantum statistical mechanics must be made to account for behavior
which classical theory cannot handle. Unfortunately, the mathematical
structure of these equations is generally very complex, and much of the
insight offered by the classical theory is lost.

Initially, we shall adopt the quantum mechanical approach for the
analysis of the radiation field. That is, we shall consider the field
to be composed of photons rather than waves, and shall define the
basic properties of the field in these terms. However, frequently
an appeal to the classical approach will be made in the interest of
clarity or expediency. For example, while the basic property of the
radiation field, the spectral intensity, will be defined from the photon
model, the concepts of absorption and emission coefficients will be
introduced in classical terms as constants of proportionality in equations

which describe the changes in spectral intensity as the radiation passes
through and interacts with an optically active medium. The two
approaches will also be combined in the derivation of the basic radiative

7
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transfer equation, where the absorption and emission coefficients will

be related to the annihilation and production of photons.

The concepts of absorption and emission coefficients can be devel-

oped by a formal quantum mechanical approach which relates the ab-

sorption and emission properties of the medium to the Einstein Transi-

tion Probability coefficients, which ultimately permit their calculation

in terms of the microscopic properties of the medium.

Definitions

The initial concepts to be presented below are those which for the

writer were initially the most difficult to understand and to relate to

physically meaningful ideas. Consequently, extreme and frequently

painful notational rigor will be adhered to initially, and parenthetical
references to variable dependencies will be used in abundance. Both

of these cumbersome nuisances will be relaxed or dropped in subse-

quent sections, as familiarity with their concepts and implications will
hopefully have been attained by then.

Suppose one has an arbitrary volume, V, which contains N photons.

These photons all travel with the speed of light, c, but they have

definite distributions of energy and directions of motion. If the volume

is assumed to be in thermodynamic equilibrium, the energy distribution

is given by the well-known Planck function,

2h_ 3

By(T) = c2[exp(hu/kT ) _ 1]

in which h is Planck's constant, 6.626 × 10 -34 joule-sec, c is the velocity
, 23of light, 2.998 × l0 s m/sec, k is Boltzmann s constant, 1.381 × 10-

joule/deg, v is the frequency in hertz, and T is the absolute temperature

in kelvins. Then, By(T) has dimensions of watts/(m2-sec-st). We also

follow Planck in postulating that if a particular photon has a frequency
associated with it, then the energy of the photon is hr.

Now consider thequantlty n, where n = N/V is the total number of

photons per unit volume, with all permissible energies and traveling in

all directions. Of all these photons, let us single out all the ones whose
energies lie in the range h_ to h(_ + dr), and let nv symbolize these

selected photons. Obviously, then,

_0 °°
n = nv dv (1-1)

Let us further restrict our selection of photons to all of the nv photons

which are traveling in a specified direction defined by the unit vector l-l,

8



Chapter 1

and which lie in a differential solid angle centered on fl. (See fig. 1-1.)

From this, we define a photon distribution function, f_,, as the number of

photons per unit volume having the direction of propagation fl within

the solid angle di2, whose energies lie in the range of hv to h(_ + dr),

and which are passing through a unit area in a unit time. Then,

nL, = / fv(fl) dft (1-2)

n

dA

Figure 1-1. Solid angle and direction of travel of the selected fv photons.

Now, if we consider the area element dA whose normal fi makes

an angle 0 with the n-vector, then dAcos0 is the projected area of
dA normal to the direction of propagation fl. If the photons are

traveling with a velocity c then in time dt the total volume enclosing

all the photons which have passed through dA in the direction of fl

is (dAcostg) (c dt), and thus, the number of selected photons in this

volume is cf(fl)cos/_ dA dt dv dl2. Since each photon has an energy

h_,, the total energy of all the selected photons is

dWL, = hvcf_,(fl)cos_9 dA dt d_ dl2 (1-3)

From this basic expression we can extract all of the definitions we need

for our development, and hopefully for understanding other writers'

definitions.
First of all

dW_, = hvcf_,(fl)
Iv(n) = (dAcos_9) dt dv dl2

(1-4)

is defined as the spectral intensity or radiance, and is, at least in

theoretical developments, perhaps the most fundamental and useful

property of a radiation field. It can be seen that the radiance is defined

as the total energy per unit time in the frequency interval dv crossing

9
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the unit projected surface area normal to the direction of propagation
and in the infinitesimal solid angle centered around the direction of

propagation.

Also from equation (1-3) we write

and so

dW v

dpv = (dAcosO)(c dt)dv = hvcfv(n) dl2

f

p,_ = J h_fv(n) dl2 (1-5)

is the total energy per unit volume of all the photons whose energy
range is h_ to h(_ + d_,), but which are traveling in any direction. This

is called the spectral energy density, and can be related to the radiance,

Iv(t]), by the use of equation (1-4)

1/pv = - Iv(n) da (1-6)
C

We now accept Iv(n) as our fundamental parameter, write equa-
tion (1-3) in terms of this parameter, and use

dWv = Iv(n) dAcosO dt dfl dv (1-7)

as our basic equation. This equation is frequently presented as an

intuitive relation, relating the total energy functionally to the area

element, frequency, and the direction of propagation, in which case the

radiance is frequently inserted as merely a constant of proportionality--
hardly an auspicious introduction for such an important parameter.

It can be seen from equation (1-4), however, that the radiance can

be defined from more fundamental principles, and has a real physical
identity of its own.

The quantity

dW v

ev(f_) - dA dt dl2 dv = Iv(n)cos0 (1-8)

is called the spectral emissive power. This is the total energy per unit

time in the frequency interval d_, crossing the total unit area into the
unit solid angle centered about the direction of propagation n, and is

a function of 6, as distinct from the definition of Iv(l_).

From equations (1-7) and (1-8) the quantity

dW_
dFv = dA dt dv = Iv(n) cos8 d_'/

10
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or
g*

/I,(fl) cos0 df2 (1-9)F.

is called the spectral flux or irradiance, and is probably the second most

useful property describing the radiation field. This is the total energy

within the frequency range d_, passing through the unit area per unit

time, traveling in all possible directions.

Lastly, we define

dW_,

dE - dA dt - I,(fl) cos0 df_ dv

or
gg t"

E=H i.(.) cos0d. =] r. ¢1-10)
as the total emissive power. This is the total energy, or total flux per

unit volume at all frequencies and in all directions passing through the
unit area in unit time.

This completes the set of basic definitions. It is hoped that by

appealing to the corpuscular approach, rather than the classical concept

of waves with their associated energies and intensities, the above

definitions will be easier to grasp.

As somewhat of an important aside, let us now make the assumption
that all directions of motion of the photons are equally probable.

This defines the concept of isotropy of radiation, and is one of the

characteristics of blackbody radiation. All of the definitions given thus

far are perfectly general and apply to any radiation field. In an isotropic

field, some of these appear in a simpler algebraic form which will

perhaps assist the reader to recall their physical significance.

From equation (1-2), nv = 47rfv, or

/_ _-- n_, (I-11)
4_

or, the number of photons per unit volume in the direction of any solid

angle is equal to the total number of photons per unit volume divided

by the area of the unit sphere; i.e., the directions of travel are uniformly
distributed over the unit sphere. From equation (1-6)

47rI_
p_, -- -- (1-12)

C

and using equations (1-4) and (1-11)

Pv = 47rhufu(fl) = hunu (1-13)

11
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The energy density of all photons in the frequency interval dv traveling

in any direction is equal to the energy per photon, hv, times the number
of selected photons.

From equation (1-9)

f f2.f /2jo= cos 0 sin 0 dO dO
F. = I.(fl)cos0 di2 I. j0 (1-14)

Fv = 7rIv (1-15)

and from equation (1-10)

E = rI (1-16)

where I -- f0o° Iv d_ is called the total intensity, so that the total
emissive power E bears the same relationship to the total intensity I as

the radiant flux Fv bears to the radiance Iv. Note in equations 0-4) and
(1-14) that the upper limit in the 0 integral is ;T/2 rather than _r. This is

because these quantities are usually defined in the literature relative to
an emitting surface, and hence can only emit into a hemisphere centered

on the elemental area. Thus Fv is sometimes called the hemispherical

spectral radiant flux--quite a mouthful-- and E is sometimes called the

hemispherical total emissive power. Note, however, that the net flux is

found by integrating over the whole unit sphere.

Substituting equation (1-12) into equation (1-16)

c/E = _ Pv d_, (1-17)

and using equation (1-13)

c/E = _ hunv d_, (1-18)

Finally, using equation (1-12) to eliminate I in equation (1-15)

c

Fv = _Pv (1-19)

which relates the spectral radiant flux to the spectral energy density.

Up to this point, we have used a somewhat quantum mechanical

approach, in that we have considered the radiation field to be composed

of photons rather than waves, as in the classical approach. All of the
previous equations and their relationships to one another could have

been derived from classical electromagnetic theory, naturally, and in
fact historically have been derived in just this manner.

12
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We will now shift temporarily to a more macroscopic approach in

the sense that we will define some quantities which are used to describe

the way radiation energy interacts with the medium through which it

is propagating in terms of experimentally derived characteristics rather

than formal analysis. We will find that certain observed properties of

the radiation field are related to certain properties of the medium, and

prescribe certain constants of proportionality to form useful mathemat-

ical relationships. Classically, these constants are found by experiment,

much the same way some of the classical thermodynamic coefficients

mentioned earlier are found. Quantum mechanically, they can, at least

in theory, be derived from considerations of the molecular structure
of the medium and the electromagnetic interactions between the field

produced by the medium and that produced by the radiation.

Absorption of Radiation

Consider a beam of monochromatic radiation of specific intensity

Iv(r, i21); note, we now include the spatial dependence r-- confined to

an element of solid angle d_ t that is incident normal to the surface

dA of a slab of optically active material of thickness ds. (See fig. 1-

2.) As the radiation passes through the slab, some of the photons

will be absorbed by the material in the slab, some will be scattered

out of the beam by the material, and the rest will emerge from the

opposite face of the slab. We confine ourselves for the present to the

photons which are absorbed. Define Kv(r) as the spectral volumetric
absorption coe_cient. This coefficient has units of m-1 and represents
the fraction of the incident radiation that is absorbed by the matter in

the slab per unit length along the path of the incident radiation. Then,

the total amount of radiation absorbed by the slab per unit time, per

unit frequency interval in the solid angle dl2 r is

Kv(r)Iv(r, 12') d_' dA ds (1-20)

Figure 1-2. Infinitesimal cone of radiation intensity impinging on a thin slab.

It can be shown (e.g., Sparrow and Cess, pp. 17-18) that 1/Kv(r)

can be interpreted as the mean free path for photon absorption; i.e., 1/e

13



Introduction to the Theory of Atmospheric Radiative Transfer

of the incident photons will be absorbed within a distance of 1/Kv(r)
of the front surface.

The volumetric absorption coefficient can be related to the more

commonly used molecular absorption coefficient, Kin(r), and the mass

absorption coe_cicnt, Kd(r), as follows: assume that the opticallff

active material in the slab has a number density of rim(r) molecules/m _.
Each molecule has an absorption cross section of Km(r) m2/molecule

associated with it. Then the total absorption of the incident radiation

in the length ds will be

Km(r)Iv(r, fl') d_t' nm(r) dA ds (1-21)

Comparison of equation (1-20) with equation (1-21) reveals that

Kv(r)=Km(r)nm(r) (1-22)

Similarly, if the optically active material has a mass density of

Pm kg/m 3, then the analogue to equation (1-21) is

Kd(r)Iv(r, fl') d_2' pm(r) dA ds (1-23)

and

Kv(r) =K_(r)pm(r) (1-24)

Note that the units for K_ are m2/molecule, and for K_ are m2/kg.

Scattering of Radiation

In addition to the attenuation of the incident beam by absorption,

some of the photons of the incident beam are removed by the process

of scattering. Let av(r) denote the spectral volumetric scattering

coe_cient. This coefficient has dimensions of m -1, and represents the

fraction of the incident radiation that is scattered by the optically active

material in the slab, in all directions, per unit length in the slab. Thus,

the quantity

av(r)Iv(r, l_') dfl' (1-25)

is the amount of incident radiation scattered in a unit length by the

matter in all directions, per unit time and per unit frequency centered
about v.

This relation does not supply any information about the directional
distribution of the scattered radiation. We therefore introduce the

14



Chapter 1

concept of the phase function, Pu(12,121), such that

__1 PL,(12, II') dl2 (1-26)
4rr

describes the probability that the incident radiation, Iu(r, fll), will be

scattered from the solid angle dl2 _ centered about 12_ into an element of

solid angle df_ centered about the direction of f_. The factor 4r is the

total solid angle, and is introduced for normalization

1/ P_(f_, [l') dfl = 1

12

(1-27)

which says that all of the scattered radiation must go somewhere in the

unit sphere.

We should note that some authorities, notably Chandrasekhar,

define the integral in equation (1-27) as

1 / Pu(fl, 12') dfl = cSu
fl

where c)u is the single-scattering albedo, a concept to be introduced

later, and thus represents the fraction of the total incident energy lost
from the beam due to scattering only. Many authorities currently follow

this practice; nonetheless, more and more experts seem to be adopting

equation (1-27), which is preferable, in this writer's opinion, as it allows
the parameter c5_, to be injected into the formal Radiative Transfer

Equation (RTE) somewhat less artificially. Hence equation (1-27) is

the definition used in the next chapter when deriving the RTE.

Putting equations (1-25) and (1-26) together, then,

[av(r)Iu(r, fl')df_'] [1Pv(fl, fl')df_]L_Tr

is the amount of the incident radiation which is scattered by the slab

per unit time, volume, etc., into an element of solid angle dfl centered

about fl. Integrating this expression over all angles of incidence gives

lau(r) dn f Iu(r, fl') Pu(fl, fl') dl2'

fF

(1-28)
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Iv[(_ + d_), _]

dQ

Figure 1-3. Geometry of the scattering process. The angle #o is the scatter angle.

which is the total radiation scattered into the element dl2 from all

directions of incidence per unit time, etc.

Figure 1-3 shows the geometry of the scattering process. The angle
80 is called the scattering angle (what else?). One usually assumes that
the phase function depends only on the scattering angle. In that case,
one usually writes

Pv (fl, fl') = Pv (cos 00) (1-29)

and hence writes equation (1-28) as

lay(r) df_ _2n fo /2i (r,O,,¢,)p.(eosOo) dO'de' (1-30)

where the angles 8'and Ct are the usual colatitude and azimuthal polar
coordinates. (See fig. 1-4.) Letting O and ¢ represent the corresponding
quantities for the scattered ray, we can write the expression for the unit
vectors l'l and fl t,

sin 0 cos ¢ ] [ sin 8' cos Ct ]1"1= sinOsin¢/ fl'= [sinO'sin¢'[ (1-31)cosO ] cos8' ]

Then, since cos 0o = fl • fl t,

cos O0= cos 0 cos 8' + sin 0 sin O' cos(¢' - ¢) (1-32)

16
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I

x \ I
\,,l

-_y

Figure 1-4. Spherical coordinate system used to define the scattering angle. The

z-axis is normal to the slab.

or, as it is usually written, with # = cos t_

_0:##'_ (1--#2) 1/2 (1--_'2) 1/2 C0S(¢' -- ¢) (1-33)

It might be worthwhile to elaborate somewhat on the form of the
phase function as given by equation (1-29), even though some of the
ideas we use will not be formally introduced until a later section. We are
interested here in the form of the phase function when it is a function
of the scattering angle only, and not a function of azimuth. This is a
constraint that is almost universally applied in the literature.

For most atmospheric applications, the phase function has a shape

which generally resembles the sketch in figure 1-5--the figure is rota-
tionally symmetric. The scatter function generally has a small backscat-

ter component (a), one or more "side-lobes" of various angular arrange-
ments and magnitudes (b), and generally a strongly forward-scattering

peak (c). The ratio of forward to backward scattering may in many
cases exceed several hundreds.

a
c

Figure 1-5. Sketch showing a typical scatter pattern. For most materials, the

figure is rotationally symmetric about the slab.

17



Introduction to the Theory of Atmospheric Radiative Transfer

Generally in radiative transfer work, one tries to expand the phase

function in a series of Legendre polynomials (see the expansion of

eq. (2-31)):

N

P(cosO0) = E wJ Pj(cosOo)

j=o

(DO = 1) (1-34)

with cos 80 given by equation (1-33). It is quite obvious that the more

forward scattering we have, the more terms in equation (1-34) may be
required to accurately describe the phase function; i.e., N may have to
be several hundred.

In all of what follows, we shall not be quite so ambitious in our

expansions. Practically all of the authorities from whose work most of
the remaining text is drawn content themselves with at most two or

three terms of equation (1-34). This makes the mathematics tenable

and makes the physics of the process much more transparent in the

resulting equations. Also, somewhat surprisingly, the numerical results

are not too bad, and are of acceptable accuracy for many applications--
for example, in climate modeling.

Start with the one-term expansion

P(cos O0) = 1 (1-35)

which is obviously the simplest possible case, and which describes the

very important case of isotropic scattering--i.e., scattering that is the

same in all directions. The reader should not dismiss this simple case as
being too elementary to be useful. Many radiative transfer processes are

in fact very nearly isotropic and can be adequately studied by means

of this analysis. Moreover, the comparatively simple solutions which

follow from this assumption can be extrapolated to more complex cases,

as the use of so-called "similarity" transformations frequently permits

a transformation of variables from a more complex anisotropic case to

an equivalent isotropic form. (See chap. 7.)

Chandrasekhar presents some interesting results for the two-term
expansion

P(cosSo) = 1 + (_1 COS_O (1-36)

The three-term expansion

P(cos 00) = 1 + _)1 cos00 + w2P2(c0s 00) (1-37)

is also of particular interest, as for the special case in which 0_1 = 0 and
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_2 = 1/2; this reduces to the well-known Rayleigh phase function,

P(cos 00) = 3 (1 + cos 2 00) (1-38)

This phase function has equal forward and backward scatter peaks and
is used to describe scatter phenomena by particles which are very small

compared to the wavelength of the incident radiation. (See fig. 1-6.)

Figure 1-6. Sketch of the Rayleigh phase function. The figure is rotationally
symmetric about the long axis.

Finally, the Henyey-Creenstein phase function is frequently used

when a large forward-scattered peak is desired. This phase function is

given by

1 - g2 (-1 < g < +1) (1-39)
P(cos00) = (1 + g2 _ 2gcos00)3/2 - -

where g is known as the asymmetry parameter, and controls the size of

the forward peak. Equation (1-39) is particularly useful in theoretical

studies involving asymmetric scattering because it is a generating

function for Legendre polynomials and has the simple expansion

(X3

P(cos 00) = E (2n + 1)gnPn (cos 00) (1-40)
n=O

Positive g gives a forward-scattering peak, while negative g gives a

larger backward-scattered component. In order to achieve a better

approximation to a given phase function, two or more expressions of

the same type as equation (1-39) or equation (1-40), with different

values of g, could be combined. Note that g -- 0 in equation (1-39) or

equation (1-40) gives the isotropic phase function.
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The ratio of the size of the forward peak to the backward peak can
be found from equation (1-39)

P(O0 = O) (1 +g_3
P(OO = r) - \i-L-g_ g] (1-41)

from which table 1-2 can be extracted. Many aerosols have ratios of

forward- to backward-scattering peaks of the order of several hundreds,

and can thus be adequately represented for many purposes by the
Henyey-Greenstein phase function with g of the order of 0.65 to 0.70.

TABLE 1-2. RATIO OF FORWARD- TO BACKWARD-SCATTERING
PEAKS FROM THE HENYEY-GREENSTEIN PHASE FUNCTION

g p(Oo = o)/P(Oo = _)
0.0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.000

1.826

3.375

6.405
12.704

27.000

64.000

181.963

729.OOO

6859.000

The azimuthal integration of equation (1-34) gives some particularly

useful results. From the complete expansion given later in equa-
tion (2-32), this results in

1P(p, p') = _ P(cos 00) de (1-42)

It can be seen from equation (2-32) that all terms except those for
m = 0 integrate to zero over the range of 0 to 2r, and we are left with

¢<3

P(#,,') = _ _jPj(,)P_(,') (1-43)
j=O
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and this in the two-term expansion gives

P(#, p') = 1 + _)1## t (1-44)

while the three-term Rayleigh expansion gives

P(/z,/z') = 1 + _(3# 2 - 1)(3t, '2 - 1) (1-45)

a particularly simple and useful form.

The &l in equation (1-44) is related to the asymmetry parameter,

1 f? P(cosO0) cosOodcosO 0(cosO0)= 1 (1-46)

for which, in the case of the Henyey-Greenstein phase function,

(cos 0o) = g (1-47)

For this case,
= ag (1-48)

It is important to grasp the conceptual differences between scatter-

ing and absorption. In the scattering process, the photon interacts with
a particle of the medium in such a way that, macroscopically speaking,

the direction of travel of the photon is altered, but (in all cases consid-

ered in these notes) its energy remains constant. It can be imagined

that the photon "bounces off" the particle in a particular direction,

with no exchange of energy with the scatterer. Thus, neither the inter-

nal nor the kinetic energy of the particle is changed, and consequently

the "temperature" of the medium is unaffected by pure scattering.
In the absorption process, on the other hand, the energy of the

photon is completely transferred to the particle, and the photon ceases
to exist in its original form. The kinetic energy of the particle is thereby

raised--the "temperature" of the medium increases. Emission is the

opposite of absorption. The medium particle ejects a photon and the

particle loses energy--the "temperature" of the medium decreases.

In general, a medium can absorb and emit radiation, and can scatter
radiation, but only the absorbed or emitted portion of this energy,

gained or lost from a given beam of radiance, can contribute to the

energy change of the medium. In the present text, the term conservative
scattering will refer to the process of pure scatter with no absorption
or emission.
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The Equation of Transfer

We now derive the integro-differential equation which describes the

total change in the spectral intensity, or radiance, as it traverses an

infinitesimal distance through an optically active medium which can

absorb, emit, and scatter electromagnetic energy in the wavelength
interval du centered about u. The equation will be derived first in

a very general form, and then specialized to the various forms usually

seen in the applications literature.

Consider an absorbing, scattering, and emitting medium whose

optical properties are characterized by a spectral volumetric absorption

coefficient, K_(s), and a spectral volumetric scattering coefficient,

av(s), where s is the distance along the absorbing path. A beam of
monochromatic radiation of spectral intensity I(s, n, t) travels through

the medium in the direction l-I along the path ds, and is confined to

the solid angle dFt centered about the direction ft. (See fig. 2-1.) We

can write the outgoing intensity as

Iu(s, fl, t) + DIu(s, fl, t) (2-1)

dA ds

t + dt)

Figure 2-1. The change in intensity of a monochromatic beam of radiation as it
passes through an optically active medium of length ds.

where the total differential term represents the difference between the

intensity entering the left face of the slab and that leaving the right
face.

Let Wu denote the net gain or loss of radiation by the beam in this

volume element per unit volume, time, etc. Then quantity

Wu dA ds d_ dv dt (2-2)
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Introduction to the Theory of Atmospheric Radiative Transfer

represents the net gain of radiant energy by the volume element. But,

by definition of the radiance, I_, this is precisely equal to

DI_,(s, n, t) dA dl2 dv dt (2-3)

and hence
DI_,(s, 12, t)

Ds -- Wu (2-4)

We have taken here an Eulerian approach to equation (2-4); i.e., we
have assumed that we are stationary and are describing what goes on

inside a fixed volume element dA ds--hence, the use of the total or

substantive derivation in equation (2-4). Equation (2-4) can be written

in terms of the more common time and space derivatives by using the
usual transformation

-- °

Ds c Dt c

where c = cf_ is the velocity of light (the velocity of the photons). Thus

equation (2-4) becomes

1 Oil, (s, f_, t)

c cot
+ n. vX (s, t) = (2-s)

The second term is simply the directional derivative of I_ in the

direction s, so we get

1 OI_(s,n,t) OI_(s,n,t)
+ -W_ (2-6)

c Ot Os

The net energy gain, Wv, can be broken down into four separate
pieces:

Wv 1

W_, 2

Wv3

Wv4

energy emitted by the volume element

energy absorbed by the element

energy scattered out of the volume element

energy scattered into the volume element from all
directions

For now, let us simply denote the total energy emitted by the volume
element into the direction fl by

(2-7)
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The contribution Wu2 is given by equation (1-20), written per unit

volume and solid angle

Wv2 = -Kv(s)Iu(s, gl, t) (2-8)

Wt] 3 is the loss of radiant energy scattered out of the incoming beam
by the scatterers in the medium (see eq. (1-25))

w. 3 = -o_(s)r_(8, n, t) (2-9)

and Wva, the energy scattered into the beam, is given by equa-

tion (1-30)

1 /wv4 = -_a.(s) P(cosOo)I_,(s,W,t) df_' (2-10)
fl/

Substitute equations (2-7) through (2-10) into equation (2-6)

10lv (s, n, t)
c Ot

+
oI,,(8, n,t) ._

Os - 3.(s,t) - K.(s)I,.(s, fl, t) - a_(s)I,.(s, fI,t)

+ la.(s)/ P(cosOo)I_(8,fY,t) d_' (2-11)
fF

and equation (2-11) is the radiative transfer equation (RTE) in its most

general form for our purposes.

For practically all atmospheric propagation problems, the first term

on the left-hand side of equation (2-11) is many orders of magnitude

smaller than the other terms, and can safely be dropped from further
discussion.

The term if(s, t), which represents energy added to the emerging
beam by emission, and the integral scattering term, which represents

energy added to the emerging beam through scattering, are usually

combined to give what is usually referred to as the source term, jr,

which represents the total energy added to the beam by emission and

in-scattering:

1 /jv = jeu(s,t) + _nau(s) P(cosOo)I_,(s, fl',t) d_'

fl'

(2-12)
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and hence, we can write equation (2-11) in the form

dlv(s, It)
-- iv - Kv(s)Iv(s, It) - av(s)Iv(s, 12) (2-13)

ds

in which the time-dependent term has been dropped. Note that we have

switched to a total derivative notation in equation (2-13). This is not
strictly correct, as Iv is a function of more than one variable. However,

this is a convention that has been adopted in the RTE literature, and

hence will be adopted here.

Finally, we divide through Kv(s) + av(s) and write equation (2-13)
as

1 dIv(s, It)
+ Iv(s, f]) = Jr(s, n) (2-14)

 v(s) + or(s) ds
where

Jv = Kv(s) + av(s) (2-15)

is referred to as the source function.

Equation (2-14) is very general. We now make a very important

assumption, namely, that the volume element is in local thermodynamic
equilibrium (LTE) with the surrounding medium. This LTE assumption

is valid in most atmospheric problems, at least below 30 to 50 km. Then,

Kirchhoff's law allows us to define j_ in terms of the Planck function,

By(T),

j_, = Kv(s)Bv(T) (2-16)

where T is the absolute temperature of the medium in the volume
element dAds. The source term then becomes

jv = Kv(s)Bv(T) + lay(s) f P(cosOo)Iv(s, it') df_' (2-17)

121

Define the spectral volumetric extinction coe_icient,

fly(s) = Kv(s) + av(s) (2-18)

and the ratio

or(s)
]_v(s) (2-19)

&v is called the single-scattering albedo, or the particle albedo, and

expresses the fraction of the attenuated beam which is lost to scattering
alone. In terms of wv,

Uv(s)

fl_(s) = 1-&v (2-20)
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_:0
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Figure 2-2. Geometry of plane-parallel atmosphere. The direction z is mea-
sured upward from the planet surface. Positive # denotes upward-traveling
radiation.

and hence, we can write equation (2-14) as

1 dM_, n)
fl_(8) &

+ r.(s, n) = &(8, n) (2-21)

where the source function is

_" / P(cosO)Iv(8, FI') d_'Jr(s, l'l) = (1 - CJw)B(T) + -_r
fll

(2-22)

The RTE in Plane-Parallel Atmospheres

We now further confine our attention to the passage of radiation

through a plane-parallel medium. This is a medium which is stratified

in planes perpendicular to a given direction z, such that the optical

properties of the medium are functions of z and v only. Since the

thickness of a planetary atmosphere is generally small compared with its
radius, this assumption is almost universally made in applications of the

RTE to atmospheric radiation studies. Now, d( )/ds = cos0d( )/dz =

#d( )/dz (see fig. 2-2), so that we can rewrite equations (2-21) and

(2-22) in terms of z, #, and ¢:

tt dZv(z,#,¢)
+ I_(z, #, ¢) = Jr(z, it, ¢) (2-23)

#_(z) dz

27



Introduction to the Theory of Atmospheric Radiative Transfer

so that

Here, in Jr,

d_ I = sin O' dO' de' = -d#' de'

Jr(z, lz, ¢) = (1 - _ov)Bv[T(z)]

47r JO J+l

(2-24)

P(cosOo)Iu(z,l_',¢' ) dD' de' (2-25)

It is also convenient at this time to introduce the concept of optical

depth, Tv, defined to be

fz °
Tv = /_v(z') dz' dw = -fly(Z) dz (2-26)

Note that the optical depth is defined to be zero at the top of the

atmosphere, and increases as one descends through the atmosphere,

in the opposite direction from that in which z is defined. This

convention is a carry-over from the astrophysical literature, where,

in studying the radiative properties of stellar atmospheres, distance

and optical parameters are measured positive from the surface of
the star inwards. Since much of radiative transfer theory has been

developed and published in connection with studies of stellar interiors,

this convention has, for the most part, been adhered to in applications

of radiative transfer theory to planetary atmospheres.

If the height variable z is replaced with the optical depth Tv, in

equation (2-23) (see fig. 2-3), then

dIv (vv, #, ¢)

# dw
+ xv fly, _, ¢) = Jv (rv, _, ¢)

or

with

dIv (rv, #, ¢)

g dw
Iv (Tv, #, ¢) -- Jv (vv, #, ¢) (2-27)

Jv (ru, I_, ¢) = (1 - ¢5v) By IT (rv)]

_vf2_f 1 P(cos0o)r_ff_,.',_') e.' a¢'
+ _ J0 J-1

(2-28)
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Figure 2-3. Sketch showing the relationship between the vertical coordinate z
and the optical depth, rv.

Further Specialized Forms

Two further specializations of equations (2-27) and (2-28) are fre-

quently encountered.

First is the case where the emission term, By IT (W)], is small and

can be neglected. In this case, only scattering and absorption are
included in the transfer process; this is the situation usually encountered

in studying radiation emitted directly by the Sun. This radiation is
absorbed and scattered by the Earth's atmosphere, but the atmosphere

itself is cold compared to the Sun, and thus, at solar wavelengths its

radiation is small compared with that emitted by the Sun. Thus, when

the emission term is small, equations (2-27) and (2-28) are usually

written as the single equation

dIv (rv, #, ¢)

dry

= I. (w, _,, ¢) - _- 1
P(cosOo)I_ (r,,_,',¢/) d_' de' (2-29)

Equation (2-29) and sundry of its equivalent forms will be the

starting equation in much of what follows in these notes.

The second specialized case for equations (2-27) and (2-28) occurs in

the IR spectral region, where it is the scattering which can be neglected

(except in clouds). In the case of measuring IR radiation from the

Earth's atmosphere, the emission term is the only source of radiation,

and hence must be included. For this case, C)v = 0, and equations (2-27)
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and (2-28) become

= Iu (Tu, #, ¢) + Bu IT (Tu)] (2-30)

Expansion of the RTE into Legendre Polynomials

Equation (2-29) is still extremely difficult to solve. Part of this

difficulty is due to the azimuthal dependence of Iv through the phase

function. By expanding the phase function in a Legendre polynomial

series, the azimuthally dependent terms in the function can be uncou-

pled. The form of the expansion will then suggest that the radiance
should be expanded as a Fourier cosine series. The result of substi-

tuting these expansions in equation (2-29) is a set of uncoupled linear

integro-differential equations for the various orders of expansion. From

this, we will show that only the azimuthally independent equation con-
tributes to the flux calculations. Since this is the parameter of great-

est interest in most atmospheric applications, we can then confine our

future attention to the solution of only this azimuthally independent

equation.

First, we expand the phase function, equation (1-29), in a Legendre

polynomial series of order N:

N

P(cosO0) = Z _zj Pj (cosO0) (_0 = 1)

j=o

(2-31)

where cos 00 is given by equation (1-33). Then by the addition theorem

for Legendre polynomials we can write equation (2-31) in terms of

#, _u', ¢, and ¢':

N N

P(#,#',¢,¢') = E Z _r_P[n(#)P[ n(#')c°s[m(¢'-¢)]
m=O _=m

(2-32)

where

(g - m)!

= (2:- m)! 0<m<N )e= m,m +-i,...,N

3O
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dlv (rv, #, ¢)

dTv

N N

m=O e----m

X f21r[1 P_ (l_l)Iy('rb''t'_l'¢l)¢Os[m(¢l -*)] dl _1 d¢ I

JO J-i

(2-33)

Note that the phase function has separated into the product of a
function of/_ and #l only, times a function of (¢1 _ ¢) in each term.
This suggests that if we expand Iv(w, it, ¢) in a Fourier cosine series
in ¢, we ought to be able to separate the azimuthally dependent terms
from the azimuthally independent terms by equating like coefficients
of cos m(¢ r - ¢). The direct sunlight, which is usually taken to be the
source of the radiation in the atmosphere, is assumed to be directionally
defined by the angles (t_0, ¢0) (see fig. 2-4). Since most of the radiation
will be along this direction, let us expand about this unit vector

N

¢) = ,) cos[re(C0- ¢)] (2-34)
m=0

where the coefficient Im is a function only of Tv and tt but not of ¢.

Figure 2-4. Sketch showing the scattering of an incoming collimated beam of
solar radiation.

31



Introduction to the Theory of Atmospheric Radiative Transfer

Substitute equation (2-34) into equation (2-33)

N

E ]idIm(rv' #) c°s[m(¢0 - ¢)]
dry

rn_O

N N N f2_ fl

: E/r(.v,)¢<m(+o-_)j-_ E E_r"r(,)]o Ll"r(,')
m----O ra=Ol----m

N

x _ 1_(w, _'1 cos[p(¢o- ¢'11 cos[m(¢'- _11d.' de' (2-35)
p----0

Examine the integral term of equation (2-35)

27r 1 N

f f ,)r(,-,')E'_("-,.')<:°_t,'(00-+')l°os[,-n(¢'-<<,,,'<_+'
J0 J --1 p_--O

N 1 2_-

: El_ ,:'r(,.'),_(,,.,,,')<,,,'f_o_E.(<_o-+')l_o_i,,.(+'-<,)j,_<,'
p--_0 1 J0

(2-36)
Now

2. cos[p(¢o- ¢')] cos[m(¢'- ¢)] de'

= 2_r (p = m = O)

= 7r cos m(¢0 - ¢) (p = m ¢ 0)

=0 (p¢ m)

Thus, we are able to write the right-hand side of equation (2-36) as

ff P[_(,')C(T..,') d ;(1 -t-(_g) 7rcosm (¢o - ¢) 1 (2-37)

If we now substitute equation (2-37) into equation (2-35) and equate

coefficients of cos[re(Co - ¢)] on both sides of the equation, we can write

for the I m component

N

m _" (1+ _g) E coyPr(.)dIy(r.,.) d# = Iv (rv,#) - --_-# dw

l rn # rn
x P_ (#)Iv (rv,lx')d#'

1

(2-3s)
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The definition of spectral flux, equation (1-14), can be written as.

= [2_ [rlv(rv,O,C)cosOsinO dO d5Jo Jo

Fv(ru) U'Iv (w, U', ¢') d#' de' _'Iv(w, #', ¢') du' de'
_- --30 J1 J0 J--I

(2-39)

Substitute equation (2-34) into equation (2-39)

2n 1 N

F.(v.)---- fo /_ I_ _ Ium(vv,#)cos[m(¢o-¢)]d#d¢
1 m=O

= #I v (rv,/_) d_u cos[m(¢o- ¢)] de
=

But this vanishes unless m = 0, in which case we get

rv(rv) = /? 1 ,) d, (2-40)

This demonstrates that the flux depends only on the m = 0 term--that

is, the azimuthally independent term of equation (2-38). So, we will
now restrict all future developments to equation (2-38) with m = 0 and

drop all the superscripts:

N

I_ dIv(rv,#)dvu = Iu(rv, #) - -_ _"_we.P_(U) l Pe(lat)Iv(ru'U') dl'tt
t=o

or in a somewhat prettier form

dIu(vv, #) wu f'___"# dTu -- Iv(Tv, #) -- --_ 1 Iv(Tu, #')P(I.t, #') dlz'

N

P(#' #') = Z (°ePe(l'z)Pg(IJ)
g=o

where

(2-41)

(z-42)
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Equations (2-41) and (2-42) are the forms most frequently seen in
the literature. Remember the restrictions, however:

1. No thermal emission,

2. plane-parallel atmosphere,

3. phase function expandable in Legendre polynomial series, and

4. azimuthal symmetry.

RTE for Diffuse Component Only

We now derive one other form frequently seen in the literature. In

the preceding development, the term Iv was considered to be the total
spectral intensity. In problems of atmospheric physics, the assumption
is usually made that the Sun's rays consist of a parallel, or collimated,
beam of radiation hitting the top of the atmosphere at some direction
specified by the angles 80 and ¢0. Some of this radiation is multiply
scattered and appears at various values of rv in the form of diffuse
radiation; i.e., radiation which has been multiply scattered and is now
traveling in all directions. Another portion of the incoming solar beam
is absorbed by the intervening atmosphere between the entry point and
the current value of T_. The remainder appears at T_ as attenuated
solar radiation. This component is referred to as the direct component,
traveling in the same direction as the incoming beam. In analysis,
it is frequently convenient to separate these two components in equa-
tion (2-29) so that the resulting equations describe the behavior of
the diffuse component only. This also simplifies in many ways the
application of the boundary conditions.

So, let us write

I_, = ID + IuS (diffuse + solar) (2-43)

As indicated above, the direct beam consists of photons which were
originally in the incoming solar beam. These represent what is left over
after all the scattering and absorption has taken place. It does not
include photons which have been scattered out of the incoming beam
and then scattered back into the original direction--these are part of
the diffuse component. It also does not include photons emitted by the
layers of the atmosphere above it--these are also part of the diffuse
beam when, rarely, the emission terms are included in the RTE. Thus,
the direct, or solar, beam satisfies its own differential equation, of the
form

dI_(T_,, #, ¢) _ iSu (Tt_,#, ¢) (2-44a)
dry
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with the upper boundary condition prescribing the incident radiance to
be a beam collimated in the direction (Oo, ¢o)

Iu8(0,-#0, ¢0) = ;rFo6(l_ - #0) 6(¢ - ¢0)

Solving and applying the boundary condition yields the intensity for
the direct beam in terms of the incoming solar flux, ;rF0

ISu(rv, -#, ¢) = rFoe-W/u°5(# - #o) 5(¢ - ¢o) (2-44b)

where the 5 are Dirac delta functions. The factor _r is frequently

introduced into the solar flux because of the way Chandrasekhar defines

the flux term, He defines the flux as

7rFu(Tv) ---- 1

rather than our definition in equation (2-39). The reason for this is that

the factor ;r then cancels out of both sides of many of the flux equation

forms, thus eliminating the necessity of carrying the ;r-factor through

a lot of theoretical development.

Now, put equation (2-43) into equation (2-29)

dIy(rv,#,¢) dISv(rv'u'¢) --ID(rv,#,¢) +I_(rv,l_,¢)
# dw + ,u dru

4_r 1P(/z' ¢; #'' ¢') ID(rv'l_"¢')

+ IS(w,,',¢')] d_' de' (2-45)

From the differential equation (2-44a), the second term on the right-
hand side and the second term on the left-hand side of equation (2-45)

are equal. Substitute equation (2-44b) into the I S part of the integral

term of equation (2-45)

4--_- P(_,¢;g', ¢')TrFoe-r_/_°5(# '- #o)5(¢'- ¢o) d/z' de'

= -_TrFoe-_/_°P(#, ¢; -tto, ¢o) (2-46)
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Use equation (2-46) to write equation (2-45) in the following form,
dropping the superscript D, where Iv is now understood to be the

diffuse component only

_ f _ /_ldIv (rv, #, ¢) _ Iv (rv, #, ¢) - P(#, ¢; #', ¢')Iv (rv, #', ¢') d#' de'
dry _ Jo 1

4 F°e-W/u° P(#, ¢; -#o, ¢o) (2-47)

Note that for the speciM case of isotropic scattering, P(_, ¢; #', ¢_) = 1,

=Iv(rv,#,¢) - 4---_j ° J-11v(ru,#',¢') du' de'

4VFoe-W/u°P(#, ¢; -#0, ¢0) (2-48)

and if in addition we assume azimuthal symmetry

ff:v i1 Iv(rv,#') d#'

4UFoe-n'/u° P(#, -#0) (2-49)

The azimuthally symmetric form of equation (2-47) is

dIv(Tm#) _lv(7_,12) _ (zv fl_# dTv T 1P(#,#')Iv(ru,I It) d#'

4V Foe-n' /tm P(# , -:tO)

Substituting equation (2-42) in equation (2-50) gives

(2-50)

dIv (rv, #)
# dry _v N f l= Iv(r.,#) - --_Z&tPt(#) Pe(#')Iv(ru,#') d#'

_=0 1

N
~

4 _ F°e-W/u° E C°tPt(#)PI(-#°) (2-51)
t=O

This equation is frequently used as the starting point for the devel-

opment of the diffuse components of the two-stream and Eddington
solutions to be derived in chapters 5 and 6.
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Notice the obvious differences between the forms for the azimuthally

independent equations, (2-41) and (2-50). The latter equation contains
the solar flux exponential term while the former does not. The presence
of this exponential term is a giveaway that the radiation term contains
the diffuse component only, whereas the form of equation (2-41) includes
both the direct and the diffuse components. This difference, while

obvious now, is not always pointed out by authors in the open literature
and, hence, a careless application of their equations may result in rather
strange-looking results, especially when applying boundary conditions.
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Formal Solutions to the Intensity and Flux Equations

Return now to the form of the RTE in a plane-parallel atmosphere,

equation (2-27)

dIv(rv,#,¢) = Iv(rv,#,¢) - Jv(rv,l_,¢) (3-1)
# dry

and derive the formal solution to this equation. It should be remarked
that this is not really a solution to equation (3-1) in the normal sense

of being used to derive very complex numerical results. It can, in fact,
be used in some very simple cases, as will be demonstrated later, but

in general the coupling between the intensity and the source function
precludes the formal extraction process of yielding Iv as an explicit
function of rv and/_. The formal solution's utility is that it forms the
starting point, either in the spectral intensity form or the flux form,
both for theoretical analyses and for some elementary methods.

It is convenient to break the solution into two parts, one for the

upward component

I_(_-_,,u, ¢) (o _<u _<1)

and one for the downward component

Ilu(rv,u,¢) (-1 < # _<O)

with the solution subject to the boundary conditions

x_,(o,-u, ¢) = I_(o,-u) (3-2)

(3-3)
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Introduction to the Theory of Atmospheric Radiative Transfer

Note now that

dr-Td[I_(rv,_,C)e-Wl_'] - dI_'(rv'g'C) e-w/_dr,, - gl lv(rv'#'C)e-W/_

so if we divide equation (3-1) by /z and multiply by e -w/_, equa-

tion (3-1) becomes

dry ]z

Let us integrate this equation between the general limits tl and t2

e-t2/"I.(t2,_,¢) - ¢-tl/_lv(tl,D,¢) -- - e-r_/#Jv(f_,#,ep)"_ - (3-4)
1

Now, we want to find the upward component of radiation at rv.

This radiation comes in part from the surface at rv = 7", and also from

all of the infinitesimal layers of the atmosphere between Tv and r*,

all properly attenuated by the intervening layers of atmosphere. (See

fig. 3-1.) So, in equation (3-4) we let tl = ru and t2 = r_ and solve for

I_ (r v, #, ¢)

f-+ e-(r'_-w)/"J_ (r_, I_, ¢)dT_ (3-5)

T
v

Tv

T *
v

Figure 3-1. Upward radiation at rv due to radiation from the surface at r* and
!

from intermediate layers of atmosphere at rv.

Similarly, the downward component of intensity at rv is equal to the

downward intensity impinging on the upper boundary at Tv = 0 plus

all the source terms between the top layer and rv, also attenuated by

4O
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the atmosphere. (See fig. 3-2.) Thus, in equation (3-4) we let tl = 0

and t2 = rv and solve for Ivl(vv,_, ¢)

IJ(T.,,, ¢) = I_(0,,, ¢)gv/.

[ ¢)a¢
jo rv e-(r_-w)/'Jv(¢, la, I_ (3-6)

in which -1 < # < O.

!

"r_o

T

II////lllllllll/l/llllllllllll/l'lll T *

Figure 3-2. Downward radiation at rv due to radiation impinging on the top
surface rv = 0 and the intermediate layers of atmosphere at rv.

Equations (3-5) and (3-6) demonstrate the usual exponential nature
of the attenuation of monochromatic radiation with increasing optical

depth. This requires, of course, a negative argument in the exponential,

while equation (3-6) appears to produce a positive argument. However,

# is negative, thus giving the proper sign. So in order to make

the equation look right, most atmospheric physicists at this point

replace the _uwith -# and incorporate the minus sign explicitly in the

exponential term of equation (3-6). This convention tends to complicate
the interpretation of the ensuing equations to some degree, but as it is

a relatively minor nuisance, and is consistently done in the literature, it

will be followed here also, with appropriate caveats as the need arises.

Then equation (3-6) becomes

I_v(rv, -#, ¢) = Iv1(0, -#, ¢)e -w/_

f _)_"joTve-(T_-_")/, &(r L, -_,+ (3-7)

Equation (3-7) is the desired equation for the downward component of

spectral intensity.
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To get the flux components, we proceed from equation (2-39)

_- [2r fl #It/(7"_,/_, ¢) d. de
F_(w) J0 J-i

which we break into components as

(3-s)

2= 0 1 1

At this point we must be wary in the literature. If the convention
-1 _< # < +1 for # is adhered to, then equation (3-9) can be continued
directly as

Fv(vv) = F_(Tv) + FJ(Tv) (3-10)

with

and

f0 7r/01F_(Tv) ---- /ZI_(vu,tl,¢) dlx de (3-11)

[_. [o #1J(r_,_,,¢)d# d¢F_(_) = go g-1 (3-12)

But if the convention 0 < # < +1 for # is followed, and we replace
# with -# for the downward component, then we proceed from equa-
tion (3-9) as

r2= r0

, ¢=f_1 .
= -- gO JO J

=S027CSol#It(rl..,#,¢)d#d¢- fl" fil.lIl(rl..,-.,¢)dlsd¢
,/0 go

= FJ (7L.) - FJ (TL.) (3-13)

where

and

=[2.[1
F_(r_.) g0 J0 #IJ(rv, #, ¢) d# de

F_(r_,) = 70 2= LI #.lI2(ru,--I.t, ¢)dtti de

(3-14)

(3-15)
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Note the difference in signs and the difference in the integration limits

between equations (3-10) and (3-13). F_(r_,) is evaluated in the same

way in both cases, but F_ (W) is handled somewhat differently. So, we

will develop F_ (Tv) first, and then develop both expressions for F_ (Tu).

F_(T_,) is given by either equation (3-11) or equation (3-14), using

Iu(w,#, ¢) from equation (3-5)

L2r LI
F_ (r_) = #IS (r;, #, ¢)e--(r;--r_)/U dtt de

[i fr; .dr"+ L2n JO # Jw e-(r'-w)/t_Ju(r_,tt, O)--_- d# de (3-16)

This is about as far as we can go analytically with equation (3-16)

without having any knowledge about either the directional distribution
of the radiance or the source function. We can proceed with this

development if we make the assumption that the phase function, and

hence the source function, are isotropic. This is a rather limiting

restriction, and applies only to the case where the source function

can be replaced by the Planck function, as in equation (2-30). This

then becomes a problem of emission and not scattering. The resulting

equations are not applicable to general scattering problems, but are

applicable to studies of infrared radiation. These forms are frequently

seen in the literature, and it was thought not unreasonable to present

them here, even though the main thrust of these notes is with the

scattering problem.

In any event, we make the above assumption and write equa-

tion (3-16) as

fo
C(n,) = 2_s_(_-,:,) e-O-:'-")l"v du

fr, /o1
J TI.J

(3-17)

The #-integrals are exponential integrals of various orders, where

_1 °° e -xtEn(z) =- -_ dt (3-18)
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Evaluation of the first integral:

Let
1 d_

then

fl _e -(r;-w)/_ /i
d# = - le-(r;-rv)_d_

Jo _ &

fl _ e -(r;-r_)_= _3
d_ = E3(r_ - rv)

Evaluation of the second integral:

Let

1e -(r_-r_')/" d_ = - e -(r_-n')(d---{_
&

_ e-(r'-_)_= _2 d_ = E2(r_ - rv)

so that we can write:

f_F_(rv) = 27rI_r_E3(r_ - Tv) + 2r E2(r_ - ru)Jv(r_) dr_ (3-19)
*' TV

This equation could stand as it is, but it is more convenient to put it

into another form--from equation (3-18)

dEn(x) _1 _ e -xt _l°° e -xt-_x - -t--_-ff-dt = - t--ff__ldt = -En-l(X)

= -E2(e - _)

Thus

dEa(T_-- Tv) [dE3(r_:--__)] Fd(r_-- rv) ]
de --i d(¢- rv) J L -dJ_ J

so that we can write equation (3-19) as

F_(vv) = 2_rI_(T;)E3(T; - rv)

(3-20)fr_; dE3(r"-- 2_ J_(e) d-;_ __)dr"
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Chapter 3

FvT(rv) = 27cE3(T v -- rv)[IvT(rv)- Jv(T*)] + 27rJv(Tv)

[r: ,d Jr(E).,
+ 2r E3(rv t - rv)---_rlvar v

J TI.,,

(3-21)

The reason for bringing in the E3 in the second integral rather than

leaving the form as E2 is that, as we will see later in equation (4-26),

2E3(Tv) is an angular integrated monochromatic transmission function,

7"r (Tv), which, when integrated over frequency, can in some cases easily

be evaluated from band transmission models. Guided by this concept

then, we write equation (3-21) in final form as

fr$ ,d Jr(try) ,,+ rr 7"r (rtv - rv)------527----tarv
w d'v

(3-22)

Note the physical difference between the two terms in the bracket:

= flux from the surface at rv = r*

= source flux from the atmosphere immediately

above the surface at rv = r_

Now we evaluate the downward flux components. This is done

exactly as above for FvT(Tv), except that there are some mildly tricky

steps involved in the manipulation of the E-integrals that can easily

give wrong signs if one is not very careful.

First, we will evaluate equation (3-12). Then we must use the Ivl (Tv)

defined by equation (3-6)

Fl(rv) = fo2_r /__ # [Iiu(O,#,¢)erV/U - forVe-(r_-rv)/UJv(rlu,l_,4)) dv--_l dude

(3-23)

and if we make the isotropic assumption on Iv and :Iv this reduces to

/2 £ fFul(rv) = 27rlvl(0) ,e r"/_t dtt - 27r Jv(r[_) dr_ e -(rc-w)/u dla
1 1

(3-24)
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Evaluate the first integral:

Let

d_
1 d# - _2g=--_

S__Oluen'/"dlu = if°° (I) e-w4d_1 -_ _-_ = --E3(Tv)

Evaluate the #-dependent part of the second integral:

e- (rr,-rt_) _

Again convert E2 to an E3 derivative:

dE3(rv - T_) dE3(rv - rtu) d(vu - r_,)
- = E20" v - rlt,)

dr" d(_ - r') dr'_

Hence, equation (3-24) becomes

Integrate by parts and write equation (3-25) as

d_ = E2(ru - rtu)

FI(Tv) = -- 2ull(w)E3(v.) - 2rJv(Tv) + 2rJv(O)E3(Tv)

+ 27r foW E3(Tv -- T_)_dvludrb

or, in terms of the transmission function

=- _.(_.)[_(o)- J.(0)]- 2.J.(_.)
, . dJt, OL ) ,

+ _fo_ %(_ - _)--g;_, d_.

46

(3-25)

(3-26)

(3-27)



Chapter 3

The net flux follows from equation (3-10), using equations (3-22)

and (3-27)

* " dJ_'(T_ )JT'+. _r(¢- a,_,Tv)_ a V

Now, :Fr(W - r_) = Tr(T_ -- W), since these are transmission functions
between the optical depths r. and rtu, and are assumed to be the same
numerical value when taken in either direction. Thus, we get

J,,(o)]
[r* , dJv(T_) ,

+ _ ]o _r(T,..-_)---ZZr--_,d_vd,_ (3-2s)

This equation for the net flux forms the starting point for many studies

of the temperature structure of the Earth's atmosphere, and is used to
describe the infrared cooling part of this structure. See, for example,

Rodgers and Walshaw (1966).

Now, we develop F 1(_) from equation (3-15), where in this case we

must use equation (3-7) to define II(Tv,--_, ¢)

_f2'a'[1 [ +[rue_(r_,_r_)/#jv(rt,_l,_,q_)dr__] dDd¢FJ(,_) Jo J0 u I_(0)_-_/" au Jo

2_rI_(O) f .e -w/" au + 2_r J_,(r[,) dr" e'( w-_')/" au (3-29)
Jo

Evaluate the first integral:

p = -1/_

fo
pe -w/u du = E3(Tu)
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Evaluate the it-dependent part of the second integral:

£1 dr = E2(r_ -e-(rv-r_)/#

so that equation (3-29) becomes

fOw dE3(rz, - r_) dT_F_ (vv) = 27rII(O)E3(TL,) + 2rr J_(r_) d7_

Integrate by parts and equation (3-30) becomes

or

F_(Tu)----2_rE3(Tu) [I_1 (0)- Ju(0)] + 27rJu(ru)

fow ,. d J_, ( r_ )-- 27r E3(W -- r_,)---577----e:r,',
dw

f , dJ_(r_) ,_ .l TM - r_ ) ---977--dr V
d,_JO

(3-30)

(3-31)

(342)

It can be seen that equation (3-32) is exactly the negative of equa-

tion (3-27)--which is extremely fortunate or we would have a serious

problem in computing the net flux--and hence, the net flux, given now

by equation (3-13), also produces equation (3-28).

The message here is that, when reading the literature, one's atten-

tion must be drawn to the way the author defines the downward flux;

i.e., whether with -1 _< p _ 0 or with 0 < _ < +1, and, hence, whether
the net flux is defined by equation (3-10) or equation (3-13).
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Reflection and Transmission Coefficients, Surface Effects,
and Albedo

In many applications of radiative transfer theory, we are not partic-

ularly interested in what goes on in the interior of the atmosphere, or
inside a finite thickness of the atmosphere. For instance, we may be in-

terested only in what comes out of the top of the atmosphere at rv = O,
or what comes out of the bottom at Tv = r_. In order to simplify the

extraction of these data from the radiation field, a theoretical approach

known as the principle of invariance was developed by Ambartsumyan

(1958), and further developed and clarified by Chandrasekhar (1960).
We mention this principle here in order to provide a springboard

for introducing the concepts of reflection and transmission functions,

to which this chapter is devoted. The principle of invariance will be
discussed in detail in chapter 8. For now, we merely state that if

the reflection and transmission properties of two thin slabs of optical

material are known, then the principle allows us to determine the overall

reflection and transmission properties of a composite slab made by

placing the two thin slabs face to face. The solution to the radiative
transfer equation for a thin slab is relatively simple (see chap. 5).

Thus, when working with atmospheric problems we could divide the

atmosphere into a number of thin layers, use the thin-layer solutions
for the RTE to determine the transmission and reflection properties

of the thin layers, and then use the principle of invariance to build

up the atmosphere layer by layer, and thus compute the reflection
and transmission properties for the finite-thickness atmosphere without

having to solve the complete form of the RTE. This is a particularly
useful concept in deriving numerical results for both homogeneous and

nonhomogeneous atmospheres.
We proceed now with the introduction of the transmission and

reflection functions.

Chandrasekhar defines the scattering function,

s(_* : _, ¢, _o, ¢0)

49



Introduction to the Theory of Atmospheric Radiative Transfer

and the transmission function

_(r* : _, ¢, _0, ¢0)

by the following equations

lf2"f 1-- S(v* : tt, C,#l, Ot)liNc(tt',O ,) dtt' d01 (4-1)
IREF (0, #, ¢) : 4_rtt J0 J0

lf2"_f _ "I'(v* :tt,¢,ttl,¢t)IiNC(ttI,(b t) art I de s (4-2)
ITRANS(7*'--#'¢) ---- 4-_ J0 J0

where/REF is the reflected diffuse radiation, ITRANS is the transmitted

diffuse radiation, and IINC is the incident radiation. Both S and :_ are

explicit functions of the total optical depth, r*. The factor 1/# was

introduced to secure the symmetry of S and T in the pairs of variables

(#, ¢) and (#o, ¢0); i.e.,

8(r* : v,¢,vo,¢o) = s(_* : _o,¢o,v,¢)

T(** : v, ¢, _o, ¢0) = T(_* : _o, ¢o, V,¢)

If the incident radiation is considered to be solar radiation, entering
the atmosphere in a parallel, or collimated, beam, then we can write

(see eqs. (2-44))

INC(t t , Ct) 7rFob(# t - #0)(_(¢ t ¢0) (4-3)

where _rF0 is the solar flux, and the 5 are Dirae delta functions.

Substitution of equation (4-3) into equations (4-1) and (4-2) gives, for

a collimated incident beam,

IREV(0,U,¢) = .r--°S(_*
a#

ITRANS(r*,--., ¢) = T(r*

: #, ¢, tto, ¢o) (4-4)

: it, ¢, #o, ¢0) (4-5)

Note that T defines the diffuse component of the transmission only.

The reduced direct component, _Fo e-T/_o, is not included in T.

There is another set of definitions of reflection and transmission

coefficients which appears frequently in the literature (e.g., Liou, 1980),
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which is defined by the relations

IREF (0, #, ¢) = _ R(#, ¢: p', ¢')/INC (--#', ¢')/J d#' de'

(4-6)

i f02 f01ITRANS(T*, --#, ¢) = _ T(p, ¢: #', ¢')/INC(--#', ¢')_u' d#' de'

(4-7)

Note that these differ from S and 7" in that they drop the 1/# in front of

the integrals, but include a # under the integral. Thus, the integrals in

equations (4-6) and (4-7) are closely related to flux integrals. This is the

reason for the 1/n factor, changing the integral from flux to radiance,

as required by the left-hand side.

If we again use equation (4-3) for the incoming flux, we get

IaE (0, U,¢) =  0FoR(u, ¢ : ¢0) (4-8)

ITRANS(T*, --#, ¢) ----#oFoT(#, ¢ : #0, ¢0) (4-9)

Comparison of equations (4-4) and (4-5) with equations (4-8) and (4-9)

gives the correspondences between the two sets of coefficients

S
R = -- (4-10)

4#0#

T -- (4-11)
4#0_

Frankly, it is not at all obvious which set, if either, is better to use--
R and T, or S and T. There seem to be some small practical advantages

in using R and T, since they are defined in terms of fluxes rather than
radiances, and since the albedos are generally also defined in terms of

flux quantities. The set S and T seems to be used more frequently

in high-powered theoretical developments than does the set R and T,

but this may be due more to the impetus given these parameters by
Chandrasekhar's studies and influence than to any inherent advantage

of their own.

From the definitions of equations (4-6) and (4-7) we can immedi-

ately write expressions for the diffusely reflected flux and the diffusely
transmitted flux

_02_ _01FREF(0,#,¢ ) = R(_,¢ : #', _bl)IINC(-_t1, ¢')# I d# r de _ (4-12)
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f0 2_ fO 1
FTRANS(T* , --_, ¢) = T(/t, ¢ :/t', ¢')IINC(--/_t, ¢')#t d#¢ dCt

(4-13)

We define the planetary or local albedo as the ratio of the total

outgoing flux at the top of the atmosphere to the total flux entering the

atmosphere at the angles 00 and _b0. The total incoming flux is

= [27r [I
FINC dO JO [INC(--Pt' ¢')/t' d/J dO'

and for the collimated beam of equation (4-3)

FINC = rF0/_0 (4-14)

The total outgoing flux is found by integrating equation (4-8) over all

angles # and ¢:

[2_ [1 pR(/_, ¢ :/_o, ¢o) d# de
FREF =/t0F0 ,t0 J0

(4-15)

and hence, the planetary albedo, r(/to) , is given by

FINC = _ R(/_,¢:/_0,¢0)# d# de (4-17)

Similarly, the diffuse transmission function, t(_o), is written

FTRAN S (T*, --/_, ¢) (4-18)

t(uo) = F_Nc

1 fO2r £1= - T(/a, ¢:/no, 0o)# d# de (4-19)
7g

Again, for emphasis, equation (4-19) describes the diffuse transmission

function only. The direct transmission function is given by e -r*/¢_°.

However, the more fundamental definition in equation (4-18) may

include both transmission components.

For the special case of azimuthal symmetry, equations (4-17) and

(4-19) reduce to

/o'r(#0) = 2 R(#,/_o)# d# (4-20)

and

52



Chapter 4

1t(tto) = 2 T(#, #o)# d# (4-21)

respectively.

The spherical aIbedo is defined for a planetary atmosphere as the

ratio of the total flux reflected at all angles by the planet to the total

flux incident on the planet. If we let the radius of the planet be a, the
total flux incident on it is

(_ro)(_a 2) (4-22)

We want to find the total flux reflected by the planet. Let dA be the

area of the elemental ring on the surface of the planet as shown in

figure 4-1.

dA = 2ra 2 sin 00 dOo

_TF0

Figure 4-1. Sketch of the geometry involved in computing the spherical albedo.

The elemental area normal to the incoming rays is

dA cos Oo = 2_ra 2 sin60 cosO0 dSo .............

or, with P0 = cos O0

tto dA = -2a2tto dtto

Thus, the total flux reflected by the element dA is

(-27ra2#0 d#o) [TrFor(#o)]
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and integrating over/to from 1 to 0

_o 1FREt = (2-a:)-Fo /tor(,o) d,o (4-23)

The spherical albedo, _, then becomes

(21ra2)rFo fo 1 #0r(/to) d/to

7ra 2 . _rF 0

/o'P = 2 #or(to) d/to (4-24)

In a similar manner we can define a spherical transmission function

jfo 1= 2  ot( o) dm (4-25)

The spherical transmission function for the direct component is

1to = 2 /tOe-r*/_° d#o = 2E3(7") (4-26)

(See eq. (3-18).) We see that E3 is related to the direct transmission

and that this is the reason for changing from E2 to E3 in the develop-

ment of the flux equations in the last chapter.

Inclusion of Surface Effects

The reflection functions and albedos we have derived so far are

for the atmosphere alone. If the atmosphere is bounded below by a

reflecting surface, as it obviously is, then the reflection function and the

albedo of the total system must be modified somehow by the presence
of the surface. We now consider this problem, and use the approach

of Tanr_ (1982). This approach permits us to work the atmospheric
problem alone, without considering the surface effects, and then add

the surface effects separately. Thus, the optically thin atmosphere and

the single-scattering solutions introduced in the next chapter acquire

considerable importance.

Consider an atmosphere of optical depth T* bounded below by

a Lambertian surface; i.e., a surface which reflects equally in all
directions. Assume that each point of the surface is Lambertian with

a reflectance Ps, and that each part of the surface receives the same
downward flux. The solar flux at the top of the atmosphere is, as
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usual, denoted by rF0, and it enters the atmosphere at the angles #o
and ¢o. The total flux received by each surface element is the sum of

three separate components (as shown in fig. (4-2):

1. A direct flux component--the incoming solar flux attenuated along

the slant path,

7r#oFo e-r * / uo (4-27)

2. A diffuse transmission component, arriving at the surface after

multiple scattering (see eq. (4-19))

rl_oFot(-po) (4-28)

3. A diffuse component arriving at the surface after multiple scatter-

ings and reflections between the atmosphere and the surface.

Figure 4-2. Sketch illustrating the three ways a specific photon can interact with
the surface.

Write the total transmission through the atmosphere as

Tr(-,o) = t(-t,) + e (4-29)

Then, the total flux which reaches the surface before any surface

reflection occurs is
7r/zoFoTr (-#0) (4-30)

and the total flux reaching the surface after multiple reflections and

scatterings between the surface and the atmosphere is

7r#OForr(-Izo ) [psr + p2_2 + p373 +...] (4-31)

where _ is the spherical albedo of the atmosphere alone. (Note that the

relative simplicity of this expression stems from the assumed Lamber-
tian character of the surface. If the surface were not Lambertian, this
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would be a much more complex problem see Tanrd.) The first term
in the bl:acket represents flux which has been reflected once from the

surface, and then scattered back down to the surface. The second term

represents flux which is reflected upward from the surface, scattered

down by the atmosphere, reflected back upwards by the surface, and

finally scattered back downward by the atmosphere. The remaining

terms are interpreted similarly as multiple reflections and scatterings
between the surface and the atmosphere.

The total flux which reaches the surface from the multiple scattering,

then, is the sum of equations (4-30) and (4-31)

FT(#O) = 7r%oFoTr(-#O) [1 + Psr + p2_2 + p3_3 +...]

  oFoTr(- o)
1 - p_

(4-32)

since Psr < 1.

Since the surface is assumed to be Lambertian,
reflected by the surface is

the total flux

FRE = p FT(#O) =  ,oFop Tr(- O)
1 - Psr

(4-33)

Now, look at the total flux leaving the top of the atmosphere in

the specific direction cos -1 p. This too is composed of three parts (as

shown in fig. 4-3):

1. A component of the incoming solar flux which is directly scattered
into the direction cos-1 # before it reaches the surface

7u_oFoR(#, /_0 ) (4-34)

2. The total flux received at the surface, reflected by the surface, and
directly attenuated by the atmosphere

_/zO FopsTr (- #0)e- r*/u (4-35)
1 - Psr

3. The total flux received at the surface, reflected by the surface, and

diffusely attenuated by the atmosphere

 #orop, T,-(-#o)
1 --Psr

t(#) (4-36)
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(1)

Figure 4-3. Sketch of some of the ways a given incoming photon can interact with

the atmosphere and surface and finally escape.

Thus, writing

Tr(#) = t(#) + e -r*/u (4-37)

we can write the total flux leaving the top of the atmosphere in the

direction defined by g as

FREV(U, =  ruoFoR(z, +
 uoFop Tr(-uo)Tr(,)

1 - Psr
(4-38)

Following equation (4-16), we can define the total bidirectional

reflectance of the atmosphere-surface as

r*(tt,#0) - FREF(#'tt0) -- R(#,#O) + psTr(-tto)Tr(tt) (4-39)
FIN c 1 - ps_

(Note again the symmetry r*(#,#o) = r*(#o, tt).) Then, by analogy

with equation (4-20), if we multiply equation (4-39) by 2it d# and

integrate over all #, we get the planar albedo of the atmosphere and

surface system,

r* (#o) = r(#o) + psTr(-#o)Tr (4-40)
1 - ps_

where

1_'r = 2 ttTr(tt) d# (4-41)

Finally, the spherical albedo is obtained from equation (4-40) by

integrating over #0:

_* = _ + -- (4-42)
1 - Ps_

Liou (1980) develops these same relations in a much more rigorous
way by applying the basic definitions of the R and T functions to the

RTE. It is felt, however, that the more heuristic approach given here,

following Tanr6, brings the physics of the process more directly into
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the derivation, and, hence, may be more appealing to the reader, who
wants to see physically how the various terms react with each other.

Liou's development should not be ignored, however, as it permits
one to derive the same results by a more rigorous manipulation of the

basic definitions and concepts and, hence, to attain some fluency in the
use of these more formal statements. In this same context, see also

section 72 of Chandrasekhar (1960).

It should be pointed out that for homogeneous atmospheres t(#) =
t(-tt), but this is not generally true for nonhomogeneous atmospheres;

i.e., the upward transmission function for a nonhomogeneous atmo-
sphere is not, in general, equal to the downward transmission.
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Approximate Analytical Solutions to the RTE

There are a number of approximate solutions to the various forms

of the RTE we have developed so far, and considering their simplicity,

for the Earth's atmosphere many of them are surprisingly accurate

when compared with "exact" solutions. The reason for this is that,

except in the cases of radiation through clouds, heavy fog, or haze, the
Earth's atmosphere is optically thin. Many of the approximate solutions

are based on thin atmospheres, which allow only very low orders of

scattering to dominate, and thus, when applied to many problems
or studies in the Earth's atmosphere, yield numerical solutions which

compare very favorably in accuracy with much more sophisticated
"exact" solutions. However, some care must be taken to insure that the

solutions presented in this chapter are only applied under the conditions

for which they were derived. Long-term familiarity with, and perhaps

daily application of such solutions, frequently causes even the expert

to forget the regions of applicability, so one must be wary of trying to

apply these approximate results to problems for which the generating

assumptions are not valid.
The first two solutions covered in this chapter--the thin-atmosphere

approximation, and the single-scattering solution--are either applicable

only to, or are generally more accurate when applied to, a thin atmo-

sphere; i.e., an atmosphere dominated by low orders of scattering. This

can occur in an atmosphere of small optical depth, or in an atmosphere

of large optical depth if its absorption is also large--i.e., &v << 1. (See
the discussion in Irvine, 1968, or Irvine and Lenoble, 1973.) The sundry

forms of the two-stream solution are applicable to atmospheres of any

thickness.

The two-stream solutions, presented later in this chapter, and the

Eddington solutions of the next chapter, are examples of a frequently
recurring theme in RTE work, namely, the directional averaging of
the radiance in order to achieve computationally tractable results.

The methods of Schuster-Schwartzschild, Sagan-Pollack, and Coakley-

Chylek all use different directional averaging devices to reduce the
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radiances in the upper and lower hemispheres to constant parameters

independent of direction. This process results in a pair of coupled

linear differential equations with constant coefficients (for homogeneous

atmospheres), one for the upward intensity and one for the downward
intensity.

Thin-Atmosphere Approximation

The thin-atmosphere approximation is probably the most direct and

simplest solution of the RTE. (We assume here only the azimuthally

symmetric case.) It can be obtained directly from the RTE by simply

assuming that the atmosphere is so thin optically that the derivatives

dI. #)
dry

can be replaced by their finite difference forms see equations (5-7) and
(5-8) and Coakley and Chylek, 1975.

Start from equation (2-41)

- I.(r., #) - Iv(T., it')P(#, #') d#' (5-1)

with the normalized, azimuthally averaged phase function

if 1 P(#' #') = 1 (5-2)

Recall from the discussion in chapter 2 that equation (5-1) contains

both the direct and diffuse radiation components.

Separate the integral in equation (5-1) into the upward and down-

ward components

P dr.

or

dIv (r., #)

# dr.
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wv/; Iu(ru, #') dtZ-- I.(ru, #)- -_ 1 #')P(#'

_2. £15 I_ (rv, it')P(#, it') dlt'

- I"(rv'tt) - -_ Jo Iv(r"'tt')P(#'tt') d#'

(o.
f l I.(Tv, --tt') dtt'

2 JO -it')P(#, (5-3)
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Now, let us distinguish the upward and downward components of

intensity by the symbols

I_(_,r ) = I_(_,r)

and then write equation (5-3) for each component separately. For the

upward component

dI_(rv,#)
-- /_(Tv, r)- _v _1r dry T _= If (rv, r')P(r, r') d#'

¢_v 1

£ II(rv,#')P(r,-r') d# t (5-4)

To get the downward component, replace r with -# in the first, second,

and fourth terms of equation (5-4). This is not necessary for I_ in

the third term, as this is the upward component of intensity which is

scattered downward:

dllv(Tv, r)
-- [_(Ttz,#)- _v' _lIt dru T__ I_(ru,#t)P(-#,r') dr'

Qv2 ./o I I_(rv, r')P(-r,-r') dr' (5-5)

Recognizing that
P(-r, -r') = P(r, r')

(see eq. (1-43)) we can write equation (5-5) as

dllv(rv,#)

# dry 1-- I_(r_,,r)- -_ I_(r_,,r')P(-r,r') dr'

_v 1
[
JO

Now, replace the derivatives with the finite difference forms

(5-6)

and

dw ru

dry Tv
(5-8)
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Put equation (5-7) into equation (5-4) and solve for I_(0, #)

I_(O,p) = 1 - IT(vu,#) + -_---_ I_(vu,_')P(#,# I) d# I

ruby _01+ -;y I_('_,,')e(,,-it') d,' (5-9)

Note the physical significance of the terms in equation (5-9) as sketched

in figure 5-1. The first term on the right-hand side is the upward

intensity at Tv in the direction # which is not scattered--it only

undergoes absorption along the slant path from vv to Tv = 0:

e-W/tL_ 1 -v_# (_ << 1)

Figure 5-1. Sketch illustrating the physical interpretation of the terms of
equation (5-9).

The second term is the upward intensity at v_ in the upward

direction #1 which is scattered into the direction it, and the third term

is the downward intensity at v. in the direction _it1 which is scattered

upward into the direction it.

Now, we want to eliminate the I_ term in the second integral of

equation (5-9). So we substitute equation (5-8) into equation (5-6) and

solve for I_(r.,it)

I_(T_,,it) = I_(O, it) 1 -- + --_--_ I_(vv,itl)P(--it, it I) dit I

ru Cdu £1+ p-_ I_(ru, it')P(it,it 1) dit' (5-10)

The terms in equation (5-10) have a similar interpretation to those of

equation (5-9). If equation (5-10) is substituted into equation (5-9) and

62



Chapter 5

27rI_(Tv,#) = 0 (5-13)

Then equation (5-11) becomes for this case

it (0,#) _ rv _v F0 p(#,-#0) (5-14)
# 2 z

The reflected flux is given by

j(O 1 7r ~ _01F_(iz ) = 2rr #I_(O, Iz) d# = -_VvwvFo P(#,-I_o) d# (5-15)

and from equation (4-17) the planetary albedo is

l ru~ _0 [---wv P(/_,-#0) d# (5-16)r(it0) = 2 Ito

We can use equation (5-11) to find the transmission function, T(it0),

even though equation (5-11) describes the upward intensity component,

by the simple artifice of letting the solar flux impinge on the bottom of

the layer and examining the flux emerging from the top of the layer.

Note that we use T(#o) rather than t(#0) to denote the transmission
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only first-order terms in r_ are retained, then

and equation (5-9) becomes

"rv _v 1

I_(O,p) = (1-_)Iut(ru,/_) + -_--_- fo I_(r"it')P(tt'it')dit'

It T 11(0' It')P(it' -It') dit' (5-11)
+

We can get the reflection and transmission coefficients of a thin

atmosphere directly from equation (5-11) (see Coakley and Chylek,

1975). To get the reflection function, assume a solar beam incident

on the top of the atmosphere

27rI_1(0, It0) = rFoS(# - It0) (5-12)

(the factor 21r arises from the azimuthal integration) and assume the
incident diffuse radiation at the bottom of the atmosphere
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function, as here we are determining the total transmission function and

not just the diffuse component.
We have the boundary conditions

and

(5-17)

Put these into equation (5-11) to get

(I_(0,.)= 1-- -_ 5(.-.0)+

Again the flux is given by equation (5-15)

(F_(0)=2..0 1- y+27rruyy

w w_" F-° p(p,.0 )
.22

P(.', .0) d#'

The transmission function is gotten from equation (4-19)

(TV') q'v CO_, f 1T(.) = 1 --_o + .o 2 Jo P(.',.o) d.' (5-19)

The first term on the right-hand side of equation (5-19) represents the
contribution of the direct transmission

and the second term, which is analogous to equation (5-16), is the
transmission function for the diffuse term.

We can use the normalized property of the phase function, equa-

tion (1-27), to write this in another form. From equation (1-27) and

azimuthal symmetry, we have

"2 1 P("' #') = 1

or
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lfol 1£ 1e(., -d) dd + _ P(., d) dd = 1
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and since

P(/_,/_') = P(/t', #)

P(#, -#') = P(-#, #')

we can write the integral form of equation (5-19) as

1/: ill-_ P(t _', PO) dI t' = 1 - _ P(#',-Ito) dtt'

and hence write equation (5-19) as

T(_u0) = 1_ r v [l__v+_v fi ]#0 _- Jo p(#' -/_o) d_ (5-20)

Equations (5-16) and (5-20) show that for a thin atmosphere, both
the albedo and the transmission functions are linear functions of optical

depth.
Define

1_01_(1_0) = -_ P(t _, -#O) dp (5-21)

Then from equation (5-16)

r(/_o) = T---uif?v/3(#0) (5-22)
#0

And from equation (5-20)

T(#O) = 1 - Vv [1 -- _v + _v_(#0)] (5-23)
_0

Finally, if we define

L 1= /3(#0) d/_o (5-24)

we can get the spherical albedo and spherical transmission function by

using equations (5-22) and (5-23) in equations (4-24) and (4-25)

= 2w_,,_3 ' (5-25)

= 1- 2r. (i - _ + _) (5-26)

The quantities/_(/_0) and _ are used quite extensively in the litera-

ture, especially that pertaining to the derivation of approximate solu-

tions to the RTE. The quantity 13(po) is the backscatter fraction for a
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beam of radiation entering the atmosphere at the angle cos -1 P0. This

is geometrically proportional to the fraction of the total surface area

of the phase function above the horizontal plane through the scatter-

ing center, as sketched in figure 5-2. The quantity _ is the integrated

backscatter fraction over the whole range of entry angles. Azimuthal

symmetry has been assumed throughout this section, and hence, also
in the definition of/3(it0) and _.

-1

u 0

Figure 5-2. Interpretation of the backscatter fraction. The phase function is the
Henyey-Greenstein type for small asymmetry parameter, g.

Wiscombe and Grams (1976) discuss these backscatter fractions in

detail and give integral methods of evaluating them for general phase

functions. Table 5-1 shows fl(#0) computed by their method for various

values of g (asymmetrical parameter) and _u0, and table 5-2 shows values
of _. Both tables are for the Henyey-Greenstein phase function. The

table data are also plotted in two accompanying figures (figs. 5-3 and

5-4).

The tables reflect one's intuition about the behavior of/_(tt0) and

_. For isotropic scattering, _(tt0) = _ = 1/2 for all it0 (one-half of the

radiation is scattered forward and one-half is scattered backward for any

entry angle). For very elongated phase functions (g near 1), most of the

radiation is scattered in the forward direction. Hence, both _(_t) and

approach zero (very little backscattering). For very low incidence angles

near 90 degrees (/t -:_ 0) a somewhat higher fraction is backscattered

than for near-normal incidence angles, _(/l = 1) >/_(#0 = 0).

The reflection and transmission functions from equations (5-22) and

(5-23) are compared with some exact computations using the doubling

method (Liou, 1973) in figures 5-5 and 5-6. Note that, as expected,
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TABLE 5-1. VALUES OF fl(#o) vs. g FOR VARIOUS #0

[For the Henyey-Greenstein phase function]

g #0 --- 0.1 /z 0 = 0.2 /_0 -- 0.3 /z 0 = 0.4 /zo = 0.5

0.00

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00

0.500

.496

.492

.489

.484

•480

.476

.471

.465

.459

.452

.443

.434

.421

.406

.385

.356

.314

.247

.141

.0

0.500

.492

.485

.477

.469

.460

.451

.442

.431

.419

.405

.390

.372

.350

.324

.292

.252

.202

.141

.072

.0

0.500

.489

.477

.466

.454

.441

.428

.413

.398

.381

.362

.341

.318

.291

.260

.225

.185

.141

.O94

.046

.0

0.500

.485

.470

.454

•438

.422

•404

.386

•367

•346

.323

.298

.272

.243

.211

.177

•142

•105

.069

.033

.0

0.500

.481

.462

.443

.423

•403

.382

.360

.337

.313

.288

.262

.234

.205

.174

.144

.113

.085

,053

.026

.0

the solutions (5-22) and (5-23) for the thin atmosphere (r = 0.0625)

show better agreement with the exact calculations than do those for

the thicker atmosphere (T ---- 0.25). For both thicknesses, the agreement

is also better for steep incidence angles (#0 _ 1) than for shallow

incidence angles (#o _ 0), because for steep entries there is less chance

for multiple scattering to occur.

Single-Scatter Solution

The single-scattering solution to the intensity equation is probably

the next simplest solution to the RTE. In this solution, we permit the

incoming solar radiation to be scattered only once, and compute the

resulting upward and downward intensities resulting from this single

scatter.

Many phenomena involving atmospheric scattering can be ade-

quately represented by the single-scattering approximation, the most
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TABLE 5-1. Concluded

g #o :- 0.6 #o = 0.7 /_o = 0.8 #o = 0.9 #o = 1.0

0.00

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00

0.500

.477

.455

.432

.409

.385

.361

.336

.311

.284

.258

.230

.203

.175

.147

.119

.093

.067

.043

.021

.0

0.500

.474

.440

.421

.394

.368

.340

.313

.286

.258

.231

.204

.177

.151

.125

.101

.078

.056

.036

.017

.0

0.500

.470

.433

.410

.380

.351

.321

.292

.263

.236

.208

.181

.156

.132

.109

.087

.066

.048

.030

.014

.0

0.500

.466

.425

.399

.367

.334

.303

.273

.243

.215

.188

•163

.139

.116

.095

.076

.058

.041

.026

.012

.0

0.500

.463

.423

.389

.353

.319

.286

.255

.225

.197

.171

.147

.124

.103

.084

.067

.051

.036

.023

.011

.0

notable exceptions being the scattering characteristics of clouds, heavy

haze, and fog, and possibly heavy aerosol concentrations. The extinc-

tion coefficient for background aerosols in the stratosphere, for example,

is of the order of 2× 10 -4 km. Thus, the mean free path for stratospheric

aerosol extinction is of the order of 5000 km, and the single-scattering

solution should suffice for all but the most shallow solar flux entry an-

gles, along which the possibility of more than one scatter might take

place (see Buglia, 1982). In the troposphere, a clear-day extinction

coefficient might be of the order of 2 × 10 -2 kin, giving a mean free

path of the order of 50 km, so that even here the single-scatter solution

might be used for some problems. In a heavy fog or haze, the extinction

coefficient might be of the order of 1 to 10 km, and obviously one could

not try to use the single-scatter solution under these conditions.

We start with the formal solutions for the upward and downward

intensities, equations (3-5) and (3-7), which we now write, dropping the
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TABLE 5-2. VALUE OF _ vs. g

[For the Henyey-Greenstein phase function]

Chapter 5

g Z g Z
0.00

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

0.500

.481

.462

.444

.425

.405

.386

.366

.346

.326

.305

0.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00

0.283

.261

.238

.214

.188

.161

.131

.098

.058

.000

v subscript, as

I(r,t,, ¢) = I(T*,.,¢)e -(r*-')/_ + J(r',.,¢)e -(r'-,)/ÈdT'
#

(5-27)

j_o T

I(v,-#, ¢) = I(0,-it, ¢)e -r/t_ + J(T',--#,¢)e -(r-r')/pdr--_ (5-28)
#

The source function, J(v,#,¢), is the singly scattered incoming solar

radiance, which we write as

J(T, #, ¢) = rFoe-T/t_O(o P'#'(
¢ ¢0)_ _O _

4_
(5-29)

and which is the product of three terms:

7rFoe- _/ _o the incoming direct solar intensity attenu-
ated to the level _-

P(_,¢:-_0,¢0)
4_r

the single-scattering albedo; i.e., the frac-
tion of the incoming solar radiance which

undergoes scattering

the fraction of the scattered radiance which

is scattered from the direction (-#0, ¢o)

into the direction (it, ¢).

69



Introduction to the Theory of Atmospheric Radiative Transfer

I I I

c_ _ c_ _ o

0

r-.-

CO

0

0

0

o,J

_g

0

0

o

0

_r

_._

_2

?O



I I I I F

1 I I i

u"_ ,_" 0") C'J

IQ2z

Chapter 5
o

CO
• 0

o

_5

71



Introduction to the Theory of Atmospheric Radiative Transfer

1.0
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r(_o), T(_ O)
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Exact (doubling) method

o Thin-atmosphere approximation

o Equations (5-22), (5-23)

r(Po)
T

C _ _ 0.0625

.2 .4 .6 .8 l .0

PO

Figure 5-5. Comparison of the thin-atmosphere approximation, equations (5-22)
and (5-23), with the exact (doubling) method for two values of the optical
depth, v = 0.0625 and r = 0.25. The Henyey-Greenstein phase function was
used with g = 0.75, &o = 1.0.
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Figure 5-6. Comparison of the thin-atmosphere approximation, equations (5-22)
and (5-23), with the exact (doubling) method for two values of the optical
depth, r = 0.0625 and r = 0.25. The Henyey-Greenstein phase function was
used with g = 0.75, &0 = 0.8.
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We assume as boundary conditions

I(0, -/2, ¢) = 0

I(r*,/2, ¢) = 0

(5-30)
(5-31)

i.e., no diffuse radiation enters the top or bottom of the atmosphere.

From equation (5-27), with equation (5-29) and the boundary
conditions

() lrFoP(/_, ¢ : -/_o, ¢o) e-r'/_e -(r'-rl/t*dr'
I(r,/2, ¢) = _ /2

4 -_ -/20, ¢o) _+_-_° o er/_= =FoP(/2,¢ :

r -r(-, _-r"
(5-32)

In particular, at the top of the atmosphere V = 0, and we get

I(O,/2,¢)--4_fl_-F-_/2o)P(/2,¢:-#O,¢O)[1-e-r*(_'-_!6+J) ] (5-33a)

Comparison of equation (5-33a) with equation (4-8) shows that we can
write the reflection coefficient for single scattering as

[ 1R(/2,/2o) - & P(/2, -/20) 1 - e (5-33b)
4 /2 +/20

In a similar way, we get the downward component of the intensity

by substituting equation (5-29) and the boundary conditions into

equation (5-28)

() /og: e_r, l_ e_(r_r,)l _ dr'
I(T, -/2, ¢) = _ 7rFoP(-I_,¢: -/2o,¢o) /2

~ . e--T/p, r t'/" 1 1 '_

-----4FoP(-/2,¢ : -/20,4)0)7 _ e -r t-fi'6--fi) d.r,

Here, we must distinguish between two cases:

1. /2 =/2o, and

2./2#/20.
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: For case 1 we get immediately

Ii(r,-#,¢) = 4FoP(-#,¢ : -I_o,¢o) T--e-r/_*° (5-34)
#0

and for case 2,

.0F0 [e-T/. e-'/.o]
: 4 _---_0 P(-#' ¢: -#0, ¢o) - (5-35)

Emerging from the bottom of the atmosphere

-- $

Ii (r *, -#, ¢) = _FoP(-#,¢ : _0_ ¢0_ _ _ /_0 (5-36a)
Lt /_o

I2(r*,-#, ¢) -- & #oFo p(_#,¢ :-#0,¢0) [e-r*/u4 _ 1
(5-36b)

Comparing equation (5-36b) with equation (4-9) gives the diffuse trans-

mission coefficient for single scattering

The direct component of the transmission coefficient is, of course,

e-r*/l_O

For case 1 (# =/_0), the diffuse part of the transmission function is

" _3T* --r*l.^--"

tl(/*,/_0) = _#-_0 e "ru/-'(-_u0,¢0 : -#0,¢0) (# = _u0) (5-37b)

We can now easily show that for a thin atmosphere, r* << 1,

equations (5-32) and (5-35) reduce to the thin-atmosphere solution
derived earlier. For r* << 1, we get from equation (5-32)

CoFor* p(#, ¢ : -#o, So) (5-38)
I(r,/_,¢)- 4 /a

Assuming azimuthal symmetry the upward flux at r = 0 is

1 _ r*FT(O) = 27r tz-_FoTP(#,-t_0) d# = r&For*/3(#o)
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which is identical to equation (5-15), derived from the thin-atmosphere

assumption.

The direct component of the downward flux is

" (;0)F_(r *) = 7rF0P0e-r /_o _ _-F0_t 0 1 - (5-39)

The diffuse downward component of intensity becomes, from equa-
tion (5-36b)

" [ r* r*] _ r*i( .,__,¢)=w_4__#0_0F0 P(-#,¢:-_0,¢o) 1 _- 1+_00 =_-F0-_P(-lz,-#0 )

and the diffuse component of the downward flux becomes

/014 *FI(T *) = 27r # FOrp(-P,-#0) d# = 7r_For* [1 -- _(#0)]
#

The total downward flux is thus

( r,)FI(T *) = 7rF0#0 1 - _0 + 7rFo_r*[1 - #(#0)]

From this, the total transmission function emerges as

T(#o) -- 1 - v-- [1 - _ q- _(/zo) ]
/zo

which is identical to equation (5-23). Note the difference between the

thin-atmosphere and single-scattering solutions. The single-scattering

solution makes no assumptions about the thickness of the atmosphere---

it only assumes that the photons are scattered only once.

Two-Stream Solutions

The two-stream solutions are, in general, arrived at by writing the

RTE for the upward and downward components separately, and assum-

ing that the upward intensity is constant over the upper hemisphere

and independent of the angle #, and that the downward component
is a different constant over the lower hemisphere, also independent of

_. The differential equations each involve an integral, and the method

of approximating the integral leads to a set of two linear differential

equations. These equations have constant coefficients when applied to

homogeneous atmospheres, as they are here.
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We consider in this chapter three such methods of approximat-

ing the integral mentioned above. These lead to well-known ap-

proximate solutions--the Schuster-Schwartzschild approximation, the

Sagan-Pollack approximation, and the Coakley-Chylek approximation.

This third form, the C-C approximation, appears to have a slightly

less rigorous formulation than the others, but it retains the dependence
of the solution on the solar incidence angle, #0. When appropriately

applied, these equations all give numerical results which are in good

agreement with other solutions.

The differential equations resulting from these three approaches are

identical in algebraic form, the only differences appearing in the terms

making up the constant numerical coefficients.

These three sets of two-stream approximations will be derived in
this subsection. The reader is invited to examine the excellent review

article by Meador and Weaver (1980), in which a number of well-known

approximations, including other than the classical two-stream solutions

developed here, are discussed and compared. Meador and Weaver

neatly identify the theoretical thread common to all of these methods
and show that they all reduce to the same algebraic form, except for

the grouping and definition of some constant algebraic parameters. The

paper by Lyzenga (1973) is also worthy reading, in that he shows that

the Sagan and Pollack formulation can in fact be rigorously derived by

assuming a two-point Gaussian quadrature formula to approximate the

integrals mentioned above. He also shows that a single transformation
relates the two-stream and the Eddington approximation discussed in

the next chapter. Lyzenga's approach is used below to derive the Sagan-

Pollack equations.

The two-stream analysis is applied to the azimuthally symmetric

form of the RTE, for either the total intensity (direct plus diffuse,

eq. (2-41)), or for the diffuse component only (eq. (2-50)). We will
not derive in detail all the possible combinations here, as the repetition

would serve no purpose, but will derive one total intensity solution and

one diffuse intensity solution. Some limited numerical comparisons will

also be given.

The Schuster-Schwartzschild (S-S), the Sagan-Pollack (S-P), and

the Coakley-Chylek (C-C) equations can all be reduced to the same

differential equation form. These three forms will be derived separately

below, and the general form of the solution given.

Schuster-Schwartzschild (re]:. e.g., _)zlsik, 1973). Start with

the form of equation (2-41) and write the upward and downward

components separately, as in equations (5-4) and (5-6): We will drop
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the subscript u from the I, the r, and the &, but must keep in mind

that these developments are for monochromatic radiation only.

dlT(r'p) iT(7,#) _ _0 l-- - I T(V,/z')P(it,/a') d#'
P dr

-_ It(r,#')P(#,-#') dit' (5-40)

dI l (T, It) _ i_ (7, It) -- Co _1It dT _ I T (r, IT')P(IT, -Itt) dIt'
_Lt

f I_(T, IT')P(IT, IT') dIt'
JO

Multiply equation (5-40) by dit and integrate from 0 to 1

(5-41)

1 /o1 I /01_rr #I T(r, #) d# = I T(r, #) d# - _ d#

2 d# IJ'(r,/.t')P(t_,-/.t ') dlz'

Interchange the order of integration in the last two terms

d _01 _01 _O1 _1uf(T,u) du = f(r,u) du- _ IT(_,_') du' P(_,U') du

- 7 I*(r,.')P(la,-#') d: (5-43)

Since by equation (1-33) and the symmetry in #, Its,

P(p, -it') = P(-IT, It')

we have with the definition of equation (5-21)

d _01 _01 _01/_IT(z, #) d/_ = I T(T,/_) d/z - D[1 - _(kt)] I T(r,/_') d/L

- _(_,) I_ (r, _') du' (5-44)

To this point, equation (5-44) is exact--at least insofar as the differ-

ential equation (5-40) is exact. Now, we make one of the approximations

IT(v,u')P(u,U ') d#'

(5-42)
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mentioned abov_we assume I to be independent of # in each hemi-

sphere, so that I T (r, #) --* IT(T) (and similarly for It). This gives the

S-S approximation

and we write equation (5-44) in the form

1 dlT (v) _ IT(T ) _ &[I -/_(tt)]IT (v) - &fl(p)II(r) (5-46)
2 dT

In a similar manner we can develop equation (5-41) to the form

1 dll (T) _ i1 (T) -- (Zfl(#)I t (r) -- _[I - j_(#)]I 1 (T) (5-47)
2 dr

Equations (5-46) and (5-47) are the S-S form of the differential equa-
tions describing the upward and downward components of the total

intensity fields in the two-stream approximation.

Sagan-Pollack (Sagan and Pollack, 1967; see also Lyzenga, 1973).

Again we start with equation (2-41) with the subscript u dropped from

I, r, and

dI(r, _) (v [_
- j_ I(r, p')P(I a, p') dla' (5-48)# dr =I('r'la) 2 1

Lyzenga argues that instead of taking I T and I 1 to be some average

value of I over their respective hemispheres, it is more appropriate to

be guided by the two-point Gaussian quadrature method of numerical

integration, and take for the average value of I that value which

would be obtained if we solved equation (5-48) along the ray given by

# = +lye. This conclusion can be substantiated more formally from

equation (2-41), if we replace the integral with a two-point Gaussian
quadrature and write our equation for each ray separately. This gives

the pair of equations

v_l dlT(T)-IT(T)-W/'- I(r'P')P( 1)-dr 2 1 -_' I_' dp'
(5-49)
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and

1 dIl(r)-Ii(r)-(° fl I(T, pt)P(-_3,t]) d#' (5-50)

Apply the Gaussian two-point quadrature formula to the integrals in

equations (5-49) and (5-50)

__ 1 1 ii(r)p ,

1 1 I ll(r)p 1 )I(r,#t)P(--_,#) d.t _It(r)P( 1 + ( ,
(5-52)

If we use the two-term expansion of the phase function, equation (2-42),

we get
P(#,/_') = 1 + CO1 Pl (/_)Pi (#')

the integrals in equations (5-51) and (5-52) become,and hence,

respectively,

It (r) (1 + -_) -t- It(v) (1 - -_)

and

and equations (5-49) and (5-50) become

1 dlT(r) = It(r ) _ &(1 -- b)It(r) - _obll(r) (5-53)
V/g dr

and

1 dll(r)

v'g dr
in both of which

- I ! (T) - _obI T (r) - c5(1 - bil I (r)

b=-_

(5-54)

(5-55)

These are the S-P forms of the two-stream equations. We can further

evaluate _1 in terms of the more familiar asymmetry factor, g, which
is the first moment of the phase function (see eqs. (1-46) and (1-47))

1/ pP(#) dp (5-56)
g = "2 1

8O

l z

]i
],
]
+

+,

i

+i

+



andwith equation(2-31)weget

if-g = 2 1 # 2 (0JPJ(_) d_

j=O

N 1

._3 1 #P3(#) dtz

1'< f
j_l PI(p)Pj(p) d# = 0= -2 (0J 1

1~ f9 #2 dp (Ol= _1 1 = -2

Hence, we can define b in the more familiar way

(j # 1)

Chapter 5

(j = 1) (5-57)

b = 1 (1 - 9) (5-58)

Coakley-Chylek (Coakley and Chylek, 1975). The C-C form of the
two-stream equations is found directly from equations (5-4) and (5-6)

simply by assuming that I T and [1 are independent of #, and using

the definition of equation (5-21). This gives immediately the pair of

equations

d/T(T) -- I T (011
# _ (r) -- -- J(p)llT(r) - (0_7(#)II(r) (5-59)

dIi(T) _ ii -&[1
-#-_--r-- (7)-(077(#)II(r) - _7(V)]/I (r) (5-60)

Solution of the Two-Stream Equations

Comparison of equation (5-46) with equation (5-47), equation (5-53)

with equation (5-54), and equation (5-59) with equation (5-60) shows

that they all can be put into the same algebraic form

dI T(T) _ IT (T) -- (0(1 -- q)/T (T) -- o5_11 (r) (5-61)
_1 dr
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dll (r) - II(T) -- &_IT(r) -- &(1 -- _)II(r)
#1 dT

in which we have the correspondences recorded in table 5-3.

TABLE 5-3. COMPARISON BETWEEN #1 AND
FOR THE THREE SOLUTION METHODS

Solution

method #1

S-S 1/2 /_(#)

S-P l/x/3 b

oc t,

(5-62)

It is comforting to note that equations (5-61) and (5-62) satisfy our

physical intuition. For example, let us look at equation (5-61) at some

altitude. If we increase z to z + dz, then T decreases by tiT. If we write

equation (5-61) in the form

-- (1 - &)IT (7) + &"�It(T) -- &2II (7)

we see that IT(z + dz) is reduced by the first right-hand-side term, the

absorption of the upward radiance between z and z + dz, as well as by
the second right-hand-side term, the radiance backscattered out of the

upward beam, and that it is increased by the last term, the part of the

downward beam which is backscattered in the upward direction.

Equations (5-61) and (5-62) can be solved by any number of stan-

dard techniques. We select here the operator approach. Put equa-

tions (5-61) and (5-62) into the form

{/21 d --[1-&(1-7)]} 11(7) = -C°2II(r) (5-63)

{ttl_ + [1 - w(1 -- "7)]} I1(7) = &fliT(7) (5-64)

Solve equation (5-64) for 11(7). Substitute into equation (5-63) and

expand the operator to get

(" )_T 2-_2 i T(7)=0 (5-65)
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where

_2 = a2 _/_2 (5-66)

1- _(1 - _)
= (5-67)

#1

= ___V (5-68)
#1

Equation (5-65) then solves immediately as

IT(r) = Ae _r + Be-f v (5-69)

where A and B are constants of integration. Put equation (5-69) into

equation (5-63) and solve for It(r),

I l (r) = Awe _r + Bye -St (5-70)

where

and

w-- /3 (5-71)

a+_
y--

Finally, apply the boundary conditions

(5-72)

I _ (0) -- Io (5-73)

I T(r*) = 0 (5-74)

where r* is the total optical thickness of the atmosphere. Solve the

resulting expressions for A and B to give the intensity solutions in final
form

[e-_(r*-_) _ e¢O*-r)"
ir (_): _o / (5-75)

veer*

-_(r*-r) _ ve_(r*-r)
It(v) = IO _-_-z-_ (5-76)

we__ r veer*

From these, the reflection and transmission functions are found to be

IT(0) e-( r_ - e_r_
R _ _ _

lo we-_ _* - ve_ _* (5-77)

1
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and

T = It(r*) _ w - v
Io we__. _ ve¢T, (5-78)

Thus, if we for instance use the S-P parameters from table 5-3,

the resulting expressions may be algebraically different from those of

Sagan and Pollack (1967), but the results will be numerically identical
to theirs.

Solution for conservative scattering, & = 1. The case of conservative

scattering, & = 1, cannot be found directly from the solutions of

equations (5-75) and (5-76) simply by setting & = 1, because _ = 0

for & = 1, and the solution falls apart. The conservative scattering case

must be gotten by starting with the differential equations (5-61) and
(5-62) and setting _ = 1

dI T(T) _ ._IT (T) - -_I 1 (r) (5-79)
Pl dT

dI l (T) _ .711 (T) - -7I T(v) (5-80)
#1 dT

The right-hand sides of these equations are identical and must, there-
fore, be constant

-7I l (r) - 3,I 1 (r) = M (5-81)

M is a constant. Equation (5-79) has the immediate solution

IT(T ) Mr= -- + B (5-82)
#1

where B is again a constant of integration (not the same B as we just

used earlier). Similarly, equation (5-80) gives

I 1 (r) = M____r+ B' (5-83)
#1

Substitute equations (5-82) and (5-83) into equation (5-81) to evaluate

the constant M. Since M is constant for all r, it is most conveniently
evaluated at r = 0. This gives

M = _/(B - B')
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and equations (5-82) and (5-83) are rewritten as

IT(r) = B (1 + "/_11)--"ITBI_I (5-84)

II(r) = _/rB+ (1-7_1 ) B t (5-85)#1

The constants B and B t are evaluated from the boundary conditions

of equations (5-73) and (5-74), and hence, the final solutions for the
two-stream conservative scattering case can be written as

It(r) I0 [ _(,-*-r)= '1+ r2__1. ] (5-86)

[1 l(r) = I 0 1 -
1+ _Z_-1-

The reflection and transmission functions become

(587)

R- iT(o) m (5-88)
I0 1+-2_-

Pi

T = I_(v*) 1
I0 = 1 + 2_r2_ (5-89)

ux

Note in this case that R + T -- 1, as there is no absorption in the case

of conservative scattering. Also, in the limit as T* ---* CO for & = 1,

R(T* --_ co) = 1 (c_ = 1)

T(r* --* co) = 0 (_ = 1)

Since there is no absorption, all of the incoming radiation eventually

escapes from the atmosphere (R = 1), and obviously, nothing passes

through the infinite optical depth (T = 0).

The two-stream flux equations are simply obtained from the radi-
ance solutions

1F'_(r) = 27r #It(r)d# = 27rplIT(r) (5-90)
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/o1FI(T) = 27r #It(r)d# ----27r#111(r ) (5-91)

Solution for diffuse component only. The two-stream solutions

presented thus far have involved the total intensity--the diffuse plus

the direct components. Liou (1980) presents a solution for the diffuse

component only. The solution closely parallels the development given

above, so just the barest outline will be given here. Start with equa-
tion (2-51) and evaluate the integral by the Gauss method:

f n] f(x) dx .._ _ ajf(xj) (5-92)

(e.g., Abramowitz and Stegun, 1970), where the weights

1 f" P2n(X)
aj = ]_ dx

P2n(Xj) 1 x - xj

and the xj are the zeros of the even-numbered Legendre polynomials.
Also, we have

n

a_j = aj x_j ------xj E a j----2

and thus can write equation (2-51) for a ray defined by #i as

dI(r, lai) =I(r, #+) - _ E (vePe(#) aJPe(Ui)I(v' #J)#i dr
,e=O j=-n

N

4 Fo E(- 1)tCztpe(#i)pe(-#o)e-r/t_o
t=O

(5-93)

in which we have used the property of Legendre polynomials

Pn(--X)=(--:)nPn(x)
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For the two-stream solution, we take i = 4-1.

3-1/2 and al = a-1 (Abramowitz and Stegun,

equation (5-93) into two equations

Then since /_1 =

1970) we can break

dI? (r) =I T(r) - _(1 - b)I 1 (r) - (obI 1 (r)
#1 d----7--

F0(1 - 3g#otil )e -r /l*° (5-94)

dI 1 (r) =i t (r) - c)(1 - b)I _ (r) - _zbI T(r)
-#1 dr

Fo(1 + 3g_om)e -_l_'° (5-95)

Proceeding as before, writing equations (5-94) and (5-95) in operator

notation, we find after some messy but straightforward algebra that

I T (r) = Ave kr + Bue -kr + ee -r/u° (5-96)

I _ (r) = Aue kr + Bve -kr + Ae-r/_'°

where the following definitions hold:

(5-9r)

1-a l+a a-_3 a+fl a2 1-b12-- V-- _-- E-- _---
2 2 2 2 1 - _g

OL --
Zl# 2 /__ z2/_ 2 k2 = (1- _g)(1-c_)

-(1 - gag)(8- + 8+) (8- - 8+)

Zl = _2 + #OPl

-(1 - 05) (8- - 8+) (8- + 8+)

Z2 = _21 + _0#1

84-
= 4FO(1 4- 3g#0_Ul)

The application of the boundary conditions usually used with the diffuse

component

I_(0) = IT(r *) = 0
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gives the constants

A

eve-r* /oo _ Aue-kr*

u2e-kr* _ v2ekr *

,_vekr* _ cue-r*/#o
B=

u2e-kr * _ v2ekr *

With the fluxes determined from equations (5-90) and (5-91), the

planetary albedo is given by equation (4-16) with the incoming col-

limated flux by equation (4-14). From these, after some algebraic
reduction,

r(/_0)- F](0)
7rF0,0

2ttl [(v2_u2) (O2-gl)e-r*/tto=--5-

-t- ( G1 "1-G2)(e -k'g* -ekr*)] --uv 2 + 2#1 (Ga -2 a,) (5-98)

in which
_#o 1-_

G2-1- k2#g [_ + (_)g/tl --

O = u2e -kr* - v2e kr*

The diffuse transmission coefficient can similarly be written as

FI(_*)
t(,o)- _Fo_,---7

2/_I{uv(G2--_I (_0 -Fk) ]
-J- (U2 -- V2) (G2 ; el) }

The total transmission coefficient, diffuse plus direct is, of course,

T(#o) = t(ttO) + e -r*/l_° (5-99)
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If we consider the special case of an infinitely thick atmosphere,

r* ---* oo, we find that in the limit, the albedo of an infinitely thick

atmosphere becomes

r(/20):2_Ul [( G2-G1)2 _- u (G24"G1)]2 (5-100)

Note that this is not unity, as we found before for the conservative

atmosphere case. Here, _ _ 1 and there is absorption present, so not

all of the incident radiation escapes from the top of the atmosphere.

In the next chapter, results from equations (5-98) to (5-100) will be

compared with those from the Eddington approximation.

The conservative solution, in which _ -- 1, also proceeds from

equations (5-94) and (5-95)

dIT (r) _ bi T(r) - bI l (r) - s-e -r/#°
/21 dr

(5-101)

dlt(r) - bll(r) - bll(r) + s+e -r/#° (5-102)
/21 dr

the solutions to which are

br) _ B2br -F _iFo e-r/_°IT(r) = BI 1 "4- _1 _1 (5-103)

in which

and

II(r)= Bl b--_-r+ B2 ( 1-/21 b--_l) + _lFoe-r/_°

B 1
-(

B 2 -- -filE0

= --( 2b #0"]
1/z 0 1-3g/20#1-

&l 4/21 _1"1/

1.o(1+ +31 - 4 121 /21 ]

(5-104)
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The fluxes, as before, are given by equations (5-90) and (5-91). The

upward flux at the top of the atmosphere is

+ uo
FT(0) ---- (5-105)

1 + bj__*
Ul

and hence, the planetary albedo becomes

hr.__*_*+ ½(1- 3g#otq- 2b_b_-_) (1- e-r*/uo)
r(#0 ) = ul (5-106)br*

1+ U--i-

As it should, this also approaches 1 as 7* becomes infinite.

Similarly, the downward flux at the surface, v = v*, becomes

Ft(T*) =-_ 2,zrttl [Blbr* + B2 (1- bT*') + l:_lFoe-r*/uo]
L #1 _1 ,I

and since the scattering is conservative

t(#o) = 1 - r(ttO) (5-107)

from which the diffuse transmission function can be found.

There is a very interesting extension of the Schuster two-stream

method to n streams in a paper by Acquista, House, and Jafolla (1981).

No azimuthal symmetry is assumed, and instead of just considering an

upper and a lower hemisphere, as done above, the authors break each
hemisphere into an arbitrary number of nonoverlapping patches and

compute the radiance stream for each patch. No numerical data are

presented, but it is reasonably claimed that computational costs are

substantially less than for other more nearly exact methods for a given

accuracy, and great flexibility in the choice of patches is claimed, for

minimizing computational costs for particular applications.
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The Eddington Solution

The basic differential equations describing the Eddington approxi-

mation are derived somewhat differently from those of the two-stream

solutions. However, the mathematical technique leading to the solution

is quite similar, and hence, will not be given in the same detail as in

the preceding chapter.
The Eddington solution begins by assuming that the intensity,

instead of being approximated by different upward and downward

constants, can be approximated by a linear function of _uof the form

I(r, #) = Io(r) + #Ii(r) (6-1)

where I0 and I1 are functions of r only, and not of #. Now, if we apply
the same two-stream approximation to equation (2-51), i.e., let N = 1,

we get

[ //dI(r,p) Co (ooPo(#) d#'
12_ =I(T, #) -- -_ 1 Po(IJ)I(r, #')

/1_1 Pl(#')I( T, #') dtz']+ _IPI.(#)

4Foe rl.o [_oPo(#)Po(-#O) + wlPI(#)PI(-/_O)]

or

If f ]dI(r,#) =I(r,/_)- & I(r,#') d#' +(o1# #'1(7,#') dlL
P dr 2 1 1

_-F, e-Tl"o (1 _1##0) (6-2)
4 0

which is identical to assuming a two-term expansion of the phase

function directly in equation (2-50)

P(_, _') _ 1 + 0_1_ r
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The Eddington method for solving the RTE also leads to a two-
stream type of solution, but as indicated earlier, and discussed in detail
below, begins in a completely different manner. It will be seen that the
intensity boundary conditions cannot be completely satisfied at either

surface, although the flux boundary conditions can be at least formally,
if not exactly, physically satisfied. For this reason, the Eddington
solution is more accurate for very thick optical depths. It also uses a
two-term expansion for the phase function, resulting in a solution that
is most accurate for scattering, which is close to isotropic. This occurs
well inside an optically thick atmosphere, after multiple scatterings have
taken place (see Irvine, 1968). Multiple scattering deep in the interior
effectively smooths out the phase function in that the sharp maxima
and minima usually present in the phase function disappear, and the
scattering becomes more nearly isotropic.

The integrals in equation (6-2) can be evaluated with the use of the
Eddington assumption, equation (6-1)

l_I(T,l_')d#' _--210(v )
1

f_ 21 #'I(r, #')d#' = 5Ii(r)
1

and with equation (5-57), equation (6-2) can be written as

d
#d-_z [I0(r) + _ulI(T)] =I0(r) + plI(T) -- ¢b[I0(r) + g_Ii(r)]

FOe-r/o° (1 - 3gp#0)4 (6-3)

Equation (6-3) can be broken up into two equations for II(T) and
IO(T ) as follows: multiply equation (6-3) by d# and integrate from -1
to +i.

dI1 (T)
= 3(1 - _Z)Io(r) - 3('zFoe-r/"° (6-4)

Now, multiply equation (6-3) by #d# and integrate over the same limits

dI0(r)
- (1 - _zg)ll(r) 4- _(_Fog#o e-r/_° (6-5)

dr "i

We now again have two coupled linear ordinary differential equations
with constant coefficients. These are solved the same way as for the
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two-stream solution, and give

Io(r ) = Ae kr + Be -kr + c_e-r/tzo

I1 (r) = aAe kr - abe -kr +/3e -r/t_°

in which the following definitions hold

(6-6)

(6-7)

and

1 --- _--tt_ ]' _/= 17 k2---g02

k 2 = 3(1 - &)(1 - &g)

Go = 1 -&g+g

1
GI = 3(1 -c_)g#0 + --

#0

Note that here we cannot apply the boundary conditions

Ii(O) = O, IT(r *) = 0

since to do so would result in two equations in four unknowns. The

reason for this is that equation (6-1) is really the first two terms of a

Legendre polynomial expansion for the radiance, I(r, p)

I(r, _) = t0(r)P0(,) + 5(_)P1(_)

and we cannot depict a constant function (constant zero flux at all entry

angles #0) with only a two-term expansion. However, we can at least

formally apply the boundary conditions to the flux form of the solution.

Using equation (6-1) in the flux definition

/01 [ ,]F_(T) = 27r #I(r,#)d# = 7r I0(r ) + Ii(r (6-8)

F;(r) = 2rr f°l#I(r,#)d#=rr IIo(r)-2Ii(r)] (6-9)

Insert equations (6-6) and (6-7) into equations (6-8) and (6-9)

F T(r) = Ave kr + Bue -kr + ee -r/u° (6-10)
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F l (T) = Aue k_" +Bve -kr + ^/e -r/_t°

where

(2)v=_r l+_a

u=_" 1-ga

Then, from the flux boundary conditions

FT(r*)=0 F_(0)= 0

(6-11)

vee-r */#O _ ,,tue-kr *
A=

U2e-kr* _ v2ekr *

B .= v"/e-kr* -- uce-r*/_°
u2e-kr* _ v2ekr *

Just as we did in chapter 5 for the two-stream case, we can write

the reflection and diffuse transmission coefficients for the Eddington
solution as

1
r(_tO) = _ ILl (y 2 -_2)e-v*//_°- L2_tv(e -kv* --eA-kr*)]-_- L 1 (6-12)

(6-13)
where

& [3(1-_z)gtt_+l-_(1-wg+g)#o]L1 = _ 1 --k2#--_O

& [3(1-w)gp2+l+_(1-_zg+g)#o]L2 = _ 1 -- -k2-#_

D = u2e -kr* -- v2e kr*
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For a semi-infinite atmosphere

r(#o) = LlV - L2u (6-14)
v

The case of conservative scattering, & = 1, must again be handled

separately. Start with equations (6-4) and (6-5) and set & = 1

dll(r) _ 3Foe_r/#o (6-15)dT

and

dI°(v) - (1 - g)Ii('r) d- 3
dT _ Fog#o e-r/uo (6-16)

Equation (6-15) immediately integrates to

3 _ -r/' o
II(T) = -_FoPoe "_ + K (6-17)

where K is a constant of integration. Substituting equation (6-17) into

equation (6-16), and integrating, yields

3 2 7"

IO(T ) = ___FoPoe- /tto + (1 - g)Kv + H (6-18)

where H is another constant of integration.

If now equations (6-17) and (6-18) are put into the flux equa-

tions (6-8) and (6-9), and the same boundary conditions are applied,

we get finally

H-F°#° (1+3)2K2 -_#0 +3 (6-19)

with

K= -_F0# 0 [1 + _#0 + (1- '_#o)e-r*/g°] (6-20)

3(1 - g)z* + 4

From these results, the albedo for conservative scattering in the

Eddington approximation becomes

2L (v*, #0) (6-21)
r(/_0) = 1 - 3(1 - g)T* + 4

where

3(3)L(T*,_O) = 1+ _ttO + 1 - _#0 e-r'/"° (6-22)
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Two-Stream and Eddington Solutions for Semi-Infinite
Atmospheres

For an infinitely thick atmosphere, T* _ OC, the two-stream albedo

is given by equation (5-100) and the Eddington solution by equa-

tion (6-14).

The two-stream and Eddington solutions for a semi-infinite at-

mosphere are compared in figure 6-1. (The figure also shows other

solutions--including the delta-Eddington which is discussed below.)
The particular numerical values were selected to permit comparison

with numerical results in Irvine (1968). We can see that, in general,

the agreement is quite good, with the Eddington albedo being slightly
lower than that given by the two-stream solution in all cases. For an

excellent discussion of the relative accuracy of these two methods, com-

pared with some exact results, see the review article by Irvine and

Lenoble (1973).

The Delta-Eddington Method

Possibly the most challenging problem to be faced in radiative trans-

fer theory is how to handle very asymmetric phase functions. Neither

the simple two-stream approximation nor the Eddington solution can

adequately cope with a phase function with a sharply scattered for-

ward peak, which is the type usually encountered in aerosol and cloud
studies.

The delta-Eddington method was devised by Joseph, Wiscombe,
and Weinman (1976) to allow the computationally simple Eddington

method to be applied to sharply peaked forward-scattered phase func-

tions. They approximate the phase function by a Dirac delta to account

for a portion of the forward peak, and a two-term expansion for the rest

of the phase function. The two-term expansion of P(cos 0) follows from

equation (2-31) as

P(cosO) _ 1 + 0_lPl(cosO )

and with the definition of the asymmetry factor g of equation (5-57)
this becomes

P(cos 0) = 1 + 3gPl(cos 0)

The delta-Eddington phase function can now be written as

P(cos 0) = 2f5(1 - cos0) + (1 - f)(1 + 3gcos0) (6-23)
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_ _Eddington
m Exact (doubling) method

o Delta-Eddington

0.8_

O. -_o_ _v

.99

A1bedo

O.Z

0.I t i i i I

0 0.2 0.4 0.6 0.8 1.0

_0

Figure 6-1. Comparison among four methods for a semi-infinite atmosphere. The
dark circles axe for the exact (doubling) method. Henyey-Greenstein phase

function with g = 0,5,
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where f is the fraction of the radiation scattered into the forward peak.

The azimuthal averaging of the phase function follows as

P(#, it') = _ P(cos O) de (6-24)

and using equation (1-33) with

3(1 - cos/9) = 27r3(# -/_')3(¢ - ¢')

we write equation (6-24) as

P(/z, #') = 2f3(tt -/_') + (1 - f)(1 -t2 3gp/z') (6-25)

Now, from the azimuthally averaged form of the RTE, equa-

tion (2-41)

dI ('r, I.t)

I,* dr

o_ fl

l(r,#) =_ __-/-1 2f6(/_ - la')I(r, lz') dp,'

(1 - 1)(1 + 3g./)s(_,/) a/
+2

=_fi(_,.) + _(1_-I) [_ (1 + ag_,.')i(_,.') d.'
g_ J- 1

which can be rearranged to give

5,/-I (l-f)

dI(r,#) I(T,#) = J_ i--'_--](1 + 3gl_lZt)I(T,l_') dl.t' (6-26)I_ (1 - if;f) dT -2 1

But this is precisely the form of the RTE, equation (6-2), if we define

/ = (1 - &f)Z (6-27)

and

&, = (1 -- f)& (6-28)
1 -_f

Joseph et al. also show that for the delta-Eddington phase function to

have the same asymmetry factor as the original phase function (the one
we are trying to approximate), then

g = f + (1 - f)g'
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or

g' - g - f (6-29)
1-f

Finally, if the Henyey-Greenstein phase function is used, which does
indeed produce reasonable results for many applications, they show
that

f = g2 (6-30)

and hence, equation (6-29) becomes

g,_ g (6-31)
l+g

Thus, the same equations derived earlier for the Eddington solution

may be used if we replace &, T, and g with J, r I, and gl.

Comparison of Two-Stream and Eddington Results

The two-stream, Eddington, and delta-Eddington solutions are

compared with the exact (doubling) method (Liou, 1980) in figures 6-2

to 6-5, for the case of conservative scattering (_ -- 1) and one case of

nonconservative scattering (_ = 0.8) for two optical depths, T* = 4.0

and T* = 0.25, with g = 0.25 used in both cases. The superiority of

the delta-Eddington method is clearly evident, especially at the more
nearly vertical incident angles (it _ 1.0).
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Chapter 7

Discrete Ordinates Method

The discrete ordinates method is a very powerful analytic approach

to solving the RTE. This method was developed by, or at least perfected
and popularized by, Chandrasekhar. The procedure can be used to ex-
tract numerical results for the simpler forms of the phase function, and
has been used for numerical studies of nonhomogeneous atmospheres.

Its greatest utility, however, seems to be a starting point for many
theoretical attacks on the RTE. The theory has been developed to a very

high degree of sophistication, and for that reason, it is worth spending
some detailed effort in introducing this approach. The mathematics

appears formidable at first glance, but once the reader gets into it, it
emerges much simpler than imagined.

The analysis here is confined to homogeneous semi-infinite atmo-
spheres, and is carried far enough to permit the introduction of the
well-known H-function of Chandrasekhar. The principle of invariance
for semi-infinite atmospheres is introduced and the integral-equation
formulation of the H-function derived. The zeroth and first-order so-

lutions to the integral equation are also derived, and some numerical
results are given for higher-order approximations. Finally, some ele-

mentary applications are presented.
The extension to finite atmospheres is not given here, as it would

be far beyond the intended scope of these notes. However, once the
semi-infinite atmosphere case is understood, the reader will have little
difficulty extrapolating to the finite atmosphere development, and the
X- and Y-functions, which are the finite atmosphere analogues to the

H-function, will no longer seem quite so formidable or incomprehensi-
ble.

The analysis to be presented here follows chapter 3 of Chandrasekhar
very closely, and merely supplies some of the missing steps in his
development, although his text is so well written that it is difficult,
even within the confines of the present supplement, to improve on it
much. The analysis is restricted to two cases: (1) conservative isotropic
scattering, and (2) nonconservative isotropic scattering. Again, his

,. .,,,-C __;!,._ p._GE BL.A_ KOT _.MED lo5
r'Kr- - PAll6__._|hIgtl IIONALLY BL_i_K
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results for nonisotropic scattering can easily be followed once the
isotropic case is understood.

To repeat something stated earlier, the isotropic case should not be

dismissed lightly. As discussed in Irvine and Lenoble (1973) and Sobolev
(1975), it is possible to develop similarity relations which can be used

in some cases to approximately reduce an anisotropic scatter problem
to an equivalent isotropic one. These relations allow an equivalent

isotropic optical depth and single-scatter albedo to be defined in terms

of the real anisotropic parameters. The isotropic problem is then

solved and the solution transformed back to the "real" problem space.

Similarity relations will be discussed briefly at the end of the chapter.

Gaussian Integration

We first present a few identities derived from Gaussian integration,
as some of these results are needed in later developments.

Basically, the integral of a continuous function is replaced by a finite
sum

1 ex a f( j) (7-1)

where the weights aj are given by

1 f; P (X)dx (7-2)
aj -- pIm(Xj ) 1 x- xj

and the ordinates xj are the zeros of the Legendre polynomials, Pm(x).
For our present needs, it is convenient to restrict ourselves to the zeros

of the even-numbered polynomials, P2m(X). (See the discussion in

Chandrasekhar for more details as to why this is so.) For these divisions

a i = a_i, x-i = --x i (7-3)

For the case in which f(x) = x m we get

2X m dx-

1 m+l

=0

(for m even)

(for m odd)

Then, since

]_;1xmdx --__
n

E ajx_
j------n
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n 2
ajx? - (for m even)

m + 1 (7-4)
j_--n

= 0 (for m odd)

Abramowitz and Stegun (1970) give tables of aj and xj for a number of
orders n. See Chandrasekhar, or any good text on numerical methods,

for more details of the Gaussian method.

RTE for Conservative, Isotropic Scattering

The governing equation for this problem is equation (2-41), with

= 1 and P(cos0) = 1

dI(r, #) 1 ft I(v, pt) d#'-_T -- [(T, #) -- -_ 1 (7-5)

Replace the integral with the Gaussian approximation and evaluate

equation (7-5) at each of the 2n streams defined by the Gaussian

quadrature points (see fig. 7-1).

rt

dI i 1
I_i-_T = Ii -- _ .Z aJ6 (7-6)

3=--n

Thus, equation (7-6) becomes a system of 2n linear equations with
constant coefficients. As usual with systems of differential equations of

this type, assume a set of exponential solutions

I i = gie -kr (i : 1,2,...,n) (7-7)

where the gi are unknown constant coefficients. Substitute equa-

tion (7-7) into equation (7-6) and reduce

1 n

gi( 1 + #ik) = -2 Z aigi (7-8)
3=--n

Now, even though we do not know what the numerical values of the

gi are, they are constants, and the right-hand side of equation (7-8)
directs us to sum over all these constants. Thus, the right-hand side of

equation (7-8) is also a constant, K, and therefore, the gi must be of

the form K (7-9)
gi = _ mk
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IJ_ 2

la_1

Figure 7-1. Sketch showing the ray directions for the n = 4 case discussed in the
text as the running numerical example.

If we substitute equation (7-9) back into equation (7-8), we get

1 n aj

Z 1 _jk -- 1 (7-10)

Now, the limits on the sum are from -n to +n. We can use equa-

tion (7-3) to simplify equation (7-10) and write it in a neater form. If
we expand equation (7-10) and look at the j = m term

1 [ a-m am1=_ '"+ l+lgmk +'''+ 1-pmk
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Since each j produces a pair of terms like this, we can write, using

equation (7-3)

1[ ]1----_ ...+ 1-_2k2 +""

so that we can write equation (7-10) as

n

aj
1 .2k 2 : 1 (7-11)

j=: - _j

This is the characteristic equation for the equation set (7-6), from which

we can get the 2n eigenvalues, ka. Equation (7-11) is of degree n in k 2,

and, thus, it can be seen that the eigenvalues occur in pairs, :t:ka. For

k 2 = 0, we have from equation (7-11)

n

Eaj = 1

j=l

while equation (7-4) gives, for m = 0

n n

aj= 2=_ Eaj= l

j=-n j=l

and hence, k 2 = 0, or k = 0 is also a double root of equation (7-11).
Note that this results from the assumed conservative scattering.

Note that equation (7-11) has n vertical asymptotes (see, for ex-

ample, fig. 7-2)--namely those values that occur at k = 1/# i. If we
write

n

aj 1

j=l

we see that F(0) -- 0, and for k << 1, F(k) > 0. Also,

lim r(k) = -1
k--.0

Thus, F(k) plots as shown in figure 7-2, where we have used n -- 4 as
an example. (The 4-point Gaussian example will be carried throughout

this chapter.) Since #(= cos0) _< 1, the eigenvalues are positive, with
one root at k = 0. The roots can be found by the Newton-Raphson

method

F(kn) (7-12)
kn+l = kn Fl(kn)
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where the starting values can be taken as (I/# + e), where c is some
small number.

For n = 4 (4-point Gaussian quadrature), Abramowitz and Stegun

(1970) give the following:

#l = 0.1834346425

#2 = 0.5255324099

#3 = 0.7966664774

g4 = 0.9602898565

al = 0.3626837834

a2 = 0.3137066459

a3 = 0.2223810345

a4 = 0.1012285363

Using equation (7-12), we get the roots in table 7-1.

TABLE 7-1. ROOTS FROM EQUATION (7-12)

ka
0 O.

1 1.103185321

2 1.591778876

3 4.458085719

With the ka now given, equation (7-7) gives the complete solution
for I i as

Ii= _ \_-_-_ + E (7-13)\i --

where La and L__ are constants of integration.

But, we have not yet included the k = 0 root. Guided by the grey

Eddington solution (see e.g., Kourganoff, 1963), we assume for I i the
solution

I i = b(r + qi) (7-14)

with b and qi constants. Substitute equation (7-14) into equation (7-6)

#i -----qi - -_ . ajqj (7-15)
.7 ------ r_

and these equations can be satisfied if we let

qi = Q + #i (7-16)
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where Q is another constant. Thus, with equation (7-13), the complete
solution to equation (7-5) is

In-_i(iv_ e-kerr ) n-l(L-o_ekc_r) lI i : b k 1-+p---i-_ + Z r + + Q (7-17)

In equation (7-17), the b, Q, and L+a ((_ = 1,2,...,n- 1) are the 2n
constants of integration.

We can eliminate some of these immediately. The radiance should

not, of course, become infinite as r -_ c_. Thus, all the L-a must
vanish, and equation (7-17) reduces to

]Ii = b \_ +----_ika + r + #i + Q (7-18)

One relation among the remaining constants can be found by applying
the boundary condition that the incoming diffuse radiation at the top

of the atmosphere (r = 0) be zero for all the -#i. This gives, for
equation (7-18),

n-1
La

0 = _ 1 --_/ka _ui + Q (7-19)

Equation (7-19) gives n equations in n unknowns, Q and n - 1 values

of La. The constant b is not as yet found it is left arbitrary for now.
Thus, of the 2n original constants of integration, n - 1 are found to be

zero by the requirement that I i remain finite as r --_ co, n are found

from equation (7-19), and b is as yet unknown.

Somewhat later in his text, Chandrasekhar goes to great lengths
to develop a direct and simple way to determine numerical values for

the constants La and Q--probably because at the time his original
text was written, there were no efficient and accurate methods for

inverting large matrices or for solving large systems of linear equations.
With modern computers and numerical techniques, these sophisticated

algebraic methods are no longer needed and will not be developed

in these notes. Instead, we will solve directly the system of equa-
tion (7-19).
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For the 4-point Gaussian example, equation (7-19) gives the system

of equations

1.253703L1 + 1.412414L2 + 5.487454L3 + Q = 0.1834346

2.379598L1 + 6.117365L2 - 0.744676L3 + Q = 0.5255324

8.255792L1 - 3.729726L2 - 0.391910L3 + Q = 0.7966655

-16.840604L1 - 1.891903L2 - 0.304781L3 + Q = 0.9602899

The solution to these equations gives

L1 : -0.009461126

L2=-0.036186730

L3 : -0.083921097

Q= 0.706919484

(The values in Chandrasekhar are inadvertently given in reverse order.

A note found in Kourganoff, 1963, p. 104, points out this reversal.)

Some Elementary Identities

Note that the solution of equation (7-18) contains a term similar to

n-1
1

E1 + #ik_
oz----1

It will be convenient to generalize this to a continuous function, and
define the moments

aipm (7-20)
Vm(x)=E l+pi x

i

We can derive a recursion formula for Din(x)

Dm_l(X ) E aiu_ -1 ( _-_
: i 1+#i x --El aium-1 1 l+ttix]

ai#mx
:- E ai"m--1-- E X-'_-_iX

i i
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But by equation (7-4)

E m-1 = __25 (5 = 0 for m even)aitti m
i

(5 = 1 for m odd)

hence

Din-1 (x) - 25 x E lai#-------_+Pi x = __25m- xDm(x)
m i

or

i x,]Din(x) = x

is the required recursion equation. Thus we get, for m odd

(7-21)

D2j-l(X) = x 2j-- 1 D2j-2(x)
(7-22)

and for m even

D2j (x) = -1 D2j_ 1 (x)
x

By comparing equation (7-20), with m = 0, to equation (7-10)

(7-23)

n

aj --2
Do(xj)= E l+#ixj

n"_ _3

(7-24)

and, thus, from equations (7-22) and (7-23) we get the sequence

D0(x)----2

Dl(x) =0

D2(x) ----0

2

Da(x) 3x

By repeated application of equations (7-22) and (7-23), with the above,

it is possible to establish the general formulas (see Chandrasekhar),
since k is a root of the characteristic equation.

2 2 2

D2j-l(k) - (2j - 1)k + (2j - 3)k 2 +"" + 3k2J----------_ (7-25)
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-2 2 2

D2j(k) = (2j- 1)k 2 - (2j- 3)k 4 .... 3k2J -2 (7-26)

where j = 2,3,...,n.
The even Legendre polynomials can always be written in the form

n

P2n(P) = E P2J I'z2j (7-27)

j=O

where the P2j are constant coefficients.
Consider the expansion

n m ,_n 2i
Ep2jV2_(_)=Ep_ 22 a_-.j_T_k
j=0 i=0 j=-n

n m

aj
= E 1_:;kkE p2,d'

j=-n i=0
n m

aj= _ l-_--gjk P2i(#j)
j=-n "=

But, by the Gaussian quadrature procedure we have adopted, the pj
are zeros of the even-numbered Legendre polynomials. Hence, the right-

hand side of the above equation is equal to zero, and we have

n

Ep2jD2j(k) =0 (7-28)

j=0

From this Chandrasekhar derives an equation which is used in several

places in the remaining development

1

{kl,k2...,kn-1)(#l,_2...,/An) = _ (7-29)

(Note the different ranges on the subscripts of equation (7-29).)

The Flux Equation

The flux is defined as before, for azimuthally symmetric radiation

e(T) = 2_ f UI(T,,)du
1
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Or, in the Gaussian approximation

n

F(T)----27r E ajIj#j

j_-----n

If we substitute the solution (7-18) into equation (7-30)

(%30)

[_ _ aittiLae-kc: 1 + l_ika
F(T) 27rb

k_--I i-----n

+ (1" + Q) aid i .-F aid

{-_ --n i ---_--n J

From the definitions of Din(x) in equation (7-20) this becomes

F(r)=27rb[_Lae-karDl(ka )
k_= 1

+ (r + Q) aiu i + aid

i=-n i=-n ,J

But Dl(ka) = 0, and from equation (7-4)

E ai_ i =0
i

E ai# 2=5
i

and thus we get

F(v) = _-b (7-31)

Since b is a constant, this equation says that the flux is constant at

all r--which is indeed true for this problem. (Since we have considered

the equilibrium problem of conservative scattering in a semi-infinite

atmosphere, the net flux in must equal the net flux out, and the net flux

is conserved at all altitudes because there is no absorption or emission.)

Equation (7-31) allows us now to evaluate the constant b

and, hence, this establishes our final constant of integration. The

solution of equation (7-18) becomes
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in which all the constants are now known.

(7-32)

The Source Function

From differential equation (7-5), the source function for this problem

is written in the Gaussian quadrature form

if 1 °l(r,p) d# _ E aiIi (7-33)J=2 1 2.
_:--'rt

Insert the solution equation (7-32) into equation (7-33) and proceed

as in the F-integral; i.e., interchange orders of summation and use the

D M(x) definitions, and we find that J reduces to

n_, ) (7-34)

Following Chandrasekhar, define

n-1

q(T) = E Lae-kc_r -_ Q (7-35)

and we can write the source function in the Eddington form

J = _irr[r + q(r)]

Inserting our numerical values in equation (7-_35), we get

(7-36)

q(r)=0.706919 - 0.009461 exp(-l.lO3188r) - 0.036187 exp(-1.591778r)

- 0.83921 exp(-4.45808r)

See table 7-2.

Given the source function, we can now use equations (3-5) and (3-6)

to get the intensity at any r, g (assuming, of course, the same boundary

conditions and symmetry in # = -p). Thus, we write equations (3-5)

and (3-6) as

fr c_ y(t)e_(t_r)/t _dt=
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1(7,-#) ----_r j(t)e_(r_t)/#d t
it

Substitution of equation (7-34) into the above and integrating poses no
major problems. The results are

n-1 e_ka T II(r, it) = rF (a__l L_ Y-_ -_it + 7 + tt + Q (7-37)

I(r,-tt) = nF 1 - kc_tt
La=l

]

.3

(7-38)

TABLE 7-2. VALUES OF q(r) FROM

EQUATION (7-35)

v q(T)
O,

0.1

1.0

3.0
5.0

10.0

co

0.577350

O.613849

0.695441

0.706268

0.706868

0.706919

Q

These are the final forms for the upward and downward radiance

components in the nth approximation. Note that this is the intensity in
direction it based on a 2n-stream approximation for the source function.

The Law of Darkening

By putting _- = 0 in equation (7-37), we get the angular distribution
of the radiation emerging from the top of the atmosphere; i.e., the law

of darkening or the limb darkening equation

1 + kait + it + Q (7-39)

From our numerical example, we get

I(0, tt) 3 [ -0.009461 0.036187 0.083921 ]"_- =4 [l__tt - 1+ 1.159178tt 1 +4.458080tt +tt+0.706919
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#

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1.0

0.433013

0.531852

0.620516

0.704562

0.786070

0.866012

0.944910

1.023094

1.100699
1.177915

1.254812

0.345082

0.423850

0.494509

0.561488

0.626444

0.690152

0.753029

0.815321

0.877182
0.938718

1.0

See table 7-3.

Compare equation (7-18), a set of equations with a discrete argu-
ment, Pi, with the parenthetically enclosed term of equation (7-39),

which is a continuous function of #. These are identical in form, except

for the sign of the #. As a lead-in to the H-functions, we define the
continuous function

n-1 La

S(#) = y_ 1 - k_# # + Q (7-40)

From this, we can write the boundary conditions (7-19) as

S(#i) = 0 (i = 1,2,...,n) (7-41)

and the law of darkening, equation (7-39), can be put into the form

I(0, #) = _TrFS(-u) (7-42)

a form which will be found to be more useful after we have derived the

H-function. Note that the quantity 3_S(-#)/4 can be to some extent
interpreted from equation (7-42) as a diffuse reflection coefficient; i.e.,

it gives the angular distribution of the reflected radiance in terms of

the incoming flux, F.
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The H-Functions

Note from the definition of equation (7-40) that the S-function is

defined in terms of the La and Q. These must in turn be obtained

by solving a set of linear equations, equation (7-19). Knowledge of the

Ls and Q permits us to determine the intensity and flux components

at any point within the atmosphere. However, in many cases we
are not concerned about the detailed structure of the radiation field

inside the medium, but really need to know only what comes out

of the top and/or what comes out of the bottom of the atmosphere.
Chandrasekhar presents a method for doing just this, and this analysis

leads to the definition of the H-functions, a set of functions which, for a

given phase function, can be computed once and for all and tabulated.

Note carefully the distinction between emission and scattering in the

following development. Equation (7-51) expresses emission in terms of

the H-fimction, while equation (7-84) expresses scattering in terms of

the H-function with two different arguments. We proceed now with
this derivation.

The summation in equation (7-40) contains the expression (1 - ks#)
in the denominator of each term. If we define the function

n-1

R(#) = I-I (1 - ks#) (7-43)
c_-----1

then, by multiplying S(#) by R(#), we get a function which is clear of
fractions.

n-I n-1 Ls )S(#)R(#) = _=ll-I(1 - ks#) (a_= 1 1 - ka# # + Q (7-44)

Since R(#) is a polynomial of degree (n - 1) in #, the presence of the
#-term in the parentheses of equation (7-44) means that the product

S(#)R(#) is a polynomial of degree n in #. Also notice that S(#)R(#)

vanishes for # = #i, i = 1, 2,..., n, since by equation (7-41) S vanishes
for these values.

Define the polynomial

P(#) = 1-I (# - #i)
i=l

(7-45)
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which is also a polynomial of degree n in _. Since P(#) and S(#)R(I_)

are both of degree n in #, and have the same roots, #i, they can differ

from each other by, at most, a multiplicative constant; i.e.,

S(#)R(#) = KP(_) (7-46)

The constant K can be determined by comparing any power of # on

both sides of equation (7-46). In this case, it is easiest to compare
coefficients of the highest power; i.e., of #n. From equation (7-44), it

can be seen that the coefficient of #n on the left-hand side is

(-1)nklk2... kn-1

while the coefficient of #n on the right-hand side is unity. Thus

K = (-1)nklk2...kn-1

and hence, from equation (7-46)

P(#)

S(#)=(-1)nklk2...kn-l_
(7-47)

With the definition equations (7-43) and (7-45), and equation (7-29),

this can all be put into the form (changing the sign of #)

n

H (/_ + #i)
1 1 i=l

S(-U) = "_/,tl#2..-#n n-1

1"I(1 +k,#)
_----1

(7-48)

which now only contains the discrete coordinates, #i, and the eigen-

values, ka, of the original system of equations. From equation (7-48)
comes the discrete form of the definition of the H-function

n

17[(, + #d
H(#) = 1 i=l (7-49)

_1#2 • • • _n n=l

H (1 + ka#)
c_=l
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The equation (7-48) can be written

1

S(-_) = _H(p) (7-50)

and the law of darkening, equation (7-42), becomes

I(0, p) = -_TrFH(p) (7-51)

For our numerical example, in which n = 4, we get from equation (7-49)

l [(_ + 0.18343)(_ + 0.52553)(# + 0.79667)(# + 0.96029)]H(_) = 0.07374----_ _77_)'_71.5_-_7_ j

See table 7-4.

TABLE 7-4. VALUES FROM EQUATION (7-49)

P H(#)n=4 H(p)exact
0.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.000000

1.228240

1.433003

1.627100

1.815335

1.999953
2.182162

2.362674

2.541940

2.720262

2.897849

1.0000

1.2474

1.4503
1.6425

1.8293

2.0128

2.1941

2.3740

2.5527

2.7306

2.9078

The exact solutions were computed from an integral equation to be

developed later. It can be seen, however, that the fourth-order solution

is not too bad, considering the relatively simple arithmetic involved.

As mentioned earlier, Chandrasekhar goes to great lengths to de-

velop expressions similar to equation (7-47) for the constants La and

Q. These derivations will not be repeated here, for reasons already
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stated, but his results will be given for completeness and reference.
Define the polynomial

n-1

R.(,) = I] (1 - kZ,) (7-52)
_=1

Then the constants La and Q can be found without having to invert
any matrices, from the relations

P(1/kc_)

La = (-1)nklk2...kn_l _)

with P(x) given by equation (7-45), and

(7-53)

n n--1 1

Q=E. -E E
i=1 a=l

From our numerical example, we get

(7-54)

P(1/ kl ) = -0.00162775

P(1/ k2 ) = 0.00255488

P(1/k3 ) = -0.00518676

R1 (1/kl) - 1.346865

R2(1/k2) = -0.552715

R3(1/k3) --- 0.483843

We also get klk2k 3 -- 7.828524. Then, using equations (7-53) and
(7-54) we get

L1 = -0.0094611411

L2 = -0.0361860937

L3 = -0.0839211267

Q= 0.70691923070

which can be compared with the values found earlier, following equa-
tion (7-19), by inverting a 4- by 4-matrix.

Chandrasekhar also derives an accuracy check

n-1

Q + _ L. = ± (7-55)
_--1 V/3
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and, using our numerical data, we get for the left-hand side
0.5773508692 compared with the exact value of 0.5773502692.

So far, we have achieved a number of significant goals:

1. We have completely solved the simple case of the radiant field

for which the net flux is constant, and a conservative, isotropic

scattering medium.

2. We have gotten some numerical values--in the fourth-order

approximation--for some of our expressions. These do not seem
quite so frightening any more.

3. We have developed some basic concepts and ideas which will be of

more use later on--specifically the S- and H-functions.

4. We have solved the limb darkening case for this simple problem.

Now, we consider a somewhat more difficult and useful problem.

Diffuse Radiation With Non-Conservative, Isotropic Scattering

We will now consider the problem of the scattering of a collimated

beam into a semi-infinite atmosphere; i.e., the scattering of sunlight

by a planetary atmosphere. Our starting equation is equation (2-50),

which, for isotropic scattering, becomes

dI(r, #) (v r"
- - l

# dr -2 J- 1 I(r, #) dp - 4&Fe -(r/_o) (7-56)

Here, & is the single-scattering albedo, and it is assumed that a parallel
beam of solar radiation of flux F is hitting the top of the atmosphere
at the angle 00 -- cos-1/_0.

The development given here will be somewhat sketchier than that

in the earlier part of this chapter, as they are very similar and should
not now pose any difficulty.

Again we discretize the integral and solve equation (7-56) along the
discrete rays defined by #i,

dli =Ii-2_ _ Ijaj-4&Fe-r/_t°"_ -&r (i = +1,±2,...+n) (7-57)

We first solve the homogeneous system

dI i 1~ n
Iti--_7 =I i- _w Z ajIj

3_--n

(z-58)
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by assuming, as before,

I i = gi e-kt

If we put this into equation (7-58) and reduce, we get the characteristic

equation for this problem

n

aj

zD _ 1 -'_2k2 = 1 (7-59)
j=l - _j

This is identical to equation (7-11), except for the presence of the &.

But this is a big "except," for now there are no roots at k = 0, and it

will not now be necessary to introduce the somewhat artificial solution

(7-14) into the system. The complete solution follows directly.

The asymptotes of equation (7-59) occur at the same place as those

of equation (7-11), but the roots are somewhat larger, depending on

the value of &, since

aj 1 >_11 - p2k2 w
"__-- i

The roots of equation (7-59) can be found for any _ in the same way
as before. For the n = 4 case the data are as in table 7-5.

TABLE 7-5. ROOTS OF EQUATION (7-59)

a=l a=2 a=3 a=4

1.0

0.9

0.8

0.7

0.6

0.5
0.4

0.3

0.2

0.1

.

0.525430

0.710413

0.828671

0.907693

0.959481

0.992327

1.012963

1.026230

1.035120

1.103186

1.108937

1.116799

1.127655

1.142395

1.160900
1.181880

1.203057

1.222732

1.240155

1.591779
1.615640

1.642629

1.672473

1.704602

1.738275

1.772515

1.806656

1.840027

1.872179

4.458086

4.554851

4.652965

4.752078

4.851871

4.952060

5.052401

5.152683

5.252727

5.352384
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So, a set of solutions to the homogeneous equations is

j=l t I + #ikj ) + _ (7-60)j----1 t 1-lzikJ']

Now, we need a particular solution to equation (7-57). Assume one
of the form

I i = 4&Fhie-r/_o (7-61)

where the h i are constants. Substitute into equation (7-57) and we find
that the h i must satisfy

( #i) =l& _ ajhj +1h i 1 + -_o
3=--n

(7-62)

and hence the h i must have the form

"7 (7-63)
hi-- l+_j -

#0

where 3' is an unknown constant. Put this back into equation (7-62)

-- 2 2 (7-64)
"7 j=l 1 -- (#j/#O)

Put equation (7-63) into equation (7-61) and combine with equa-

tion (7-60), and we get the complete solution to the system of equa-
tions (7-57)

_-_ Llae -k"r _ L_ae kar rr_F "_e-r/tt°
Ii = 1 + Pikc_ + _--_ik_ + -_w 1 + (tti/#o) (7-65)

c_=l c_=l

As before, in order to bound the radiance as r _ co, We must require
that all the L r = 0, which leaves

--O

I i = -_oF 1 q- #iko

,_e- r / _o
+

1 + (_,Ut, o)
(%66)
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We apply the same boundary conditions at the top of the atmosphere--

the incoming diffuse radiation at r = 0 is zero along the rays -#i, and

we get the system of equations for the n remaining constants La.

n La _/ - 0 (7-67)
1 - #ika + 1 - (#i/#O)

c_--1

As a matter of comparison, note the difference between equation (7-67)

and equation (7-19) for the conservative scattering case. In equa-

tion (7-67) the c_-summation goes from 1 to n rather than from 1

to (n - 1), and there is no Q constant. As pointed out above, these
differences result from the fact that K = 0 is not a root. All the

solutions we need are contained in equation (7-67).

With _/ defined by equation (7-64), equation (7-67) again provides

us with n equations in the n unknowns La. We can solve this system

just as before to get the complete solution for the total radiation field.

However, if we only want the law of darkening for the emerging field at

the top of the atmosphere, this can again be expressed in terms of the

H-function, and we need not evaluate the La. However, to carry along
the numerical example, we will evaluate equation (7-67) for the n = 4

case we have been using. We will put arbitrarily & = 0.8 and get

f = 0.947722

L1 = 0.516131

L2 = 0.046078

L 3 = 0.246943

L4 = -0.402956

This source function for this problem in the Gaussian approximation

is, from equations (7-57),

n

J(r) -- l& _ ajIj + 4_zFe -rl"O

If we substitute equation (7-65) into the above and reduce,

J(r) = -_&F Lae -kar + fie -r/g°
_=1
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If we substitute this into equations (3-5) and (3-6) as before, with zero

boundary conditions on the incoming diffuse radiation, we get for the
complete solution to the radiation field at any T, tt

I(T,#) = -4w l + ks# + ttO + # (7-68)

L<, ",I(r,-#) = 4&F 1 ---kalz (e-kaY -- + 1 - IXll,t 0
oz= l

(7-69)
The law of darkening follows from equation (7-68) with r = 0

7_F -- La 2P--° '_ (7-70)
l + kal_ +#o+#]

We would like to write equation (7-70) in terms of the H-function as

we did before. Again guided by the form of the characteristic equation,

putting z = 1/k we write for equation (7-59)

a, ] ha,j=l 1- (-_lz_) =C_z2_ z2
j=l -- Pj

(7-71)

and define the continuous function

n

aj
T(z) = 1 -_z 2 _ z2 2 (7-72)

j=l -- #j

Obviously, this must vanish for z = 1/k, since k is a root of the

characteristic equation.

Now, T(z) is a polynomial of degree zero. Thus,

n

T(z) II ( z2 - tt_)
j=l

is a polynomial of degree n in z with roots +I/ks, a = 1, 2,..., n. The
polynomial

n

1-I ( 1- k2z2)
3"=1
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is also of degree n in z with roots ±l/kc_. Thus, as before, these two

polynomials can differ by at most a multiplicative constant

n n

j=l j=l

From equation (7-72) we see that T(0) = 1, and hence if we set z = 0

in equation (7-73)

and, thus, from equation (7-73) we can write T(z) as

(1 - k,_z) 2

T(z) (- lln_21_u_ 2 (_=I.... P'n "_

l-[(_- ;.)
a=l

n

H(i- k.z)l-[(,+k._)
= (-1In(ram 'u_? _=1 _=l

n

(-')" H ("o- z)H (.o+z)
(7-74)

But from the defining equation (7-49), this can be written

1

T(z) = H(z)H(-z) (7-75)

If we let z -- #0 in equation (7-72)

n Tt

aj _ aj
T(pO) = I -_o#_ E 2--_ --1-_° Z 1 2 2

j=l _0 -- #j j=l -- (#J/pO)

But this is exactly equal to the denominator of equation (7-64); thus,

we get
1

= H(P0)H(-/z0) (7-76)
_/- T(#0)

giving us the unknown constant "/in terms of the H-functions.

129



Introduction to the Theory of Atmospheric Radiative Transfer

Now, again repeating the earlier procedure, we can be guided by the

form of the law of darkening, equation (7-70), and with equation (7-76)
define the continuous function

n La H(;t0)H(-#0) (7-77)
S(;t)= _ 1-k.;t + 1-(#/#0)

o_=l

in which again S(#i) = 0, i = l, 2,..., n. The law of darkening becomes

I(0, g) = 4©FS(-g) (7-78)

which we want to write in terms of the H-functions. The function

72

(1- _)s(.) l-I (1- k_.) (7-79)
or----1

is a polynomial of degree n in ;t, which vanishes for ;t = #i because
S(#i) = O. Thus we can write

or

( _00) n n1 - g S(;t) H (1 - ka;t) = Kt H (;t- ;t_) (7-80)
c_=l c_=l

n

l-I (;t- ..)
Kl a=l (7-81)

S(g) : 1 - (g/g0) ]-_
(1 ka;t)

o_=1

Comparison of equation (7-81) with equation (7-48) shows that this is
almost in the right form. If we redefine the constant K'

K'= K (-1)n
glg2 " ' " ;tn

then equation (7-81) can be manipulated to the form

S(g)- KH(-;t)
1 - (;t/g0) (7-82)

in which we now need to evaluate K. From equation (7-77)

(") (1 - -_0 S(#) : 1 - _o 1 --ka;t + H(;t0)H(-;t°)
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and from this we can see that as/z approaches/x 0

lim (1- _o) S(#) : H(#o)H(-#O)#---*_0

while from equation (7-82)

lira (1- _oo) S(#) = KH(-#o)/z--_/z 0

and, thus, we find that K = H(/zo), and equation (7-82) becomes

S(#) = H(po)H(-#) (7-83)
1- (#/#o)

and the law of darkening, equation (7-78), becomes

I(o,#)= (7-84)

Recall Chandrasekhar's definition of the scattering function, equa-

tion (4-4)

_(0,#) = -_s(#, #o) (7-85)

(The _r comes in because of the way we have defined the incoming solar
ftux--Chandrasekhar defines it to be 7rF, while we have defined it as

just F.)

If we compare equation (7-85) with equation (7-84), we find

nF

4&r #o#O+ P H(vo)H(#) = 7-_S(#,#O)

or

+ S(p, #o) = &H(#0)H(#) (7-86)

which gives the scattering function in terms of the tabulated H-
functions.

Use of equation (4-10) allows the reflection function R(#,#0) also
to be written in terms of the H-function

(1+1) R(#'#O) = _--_--H(#O)H(#)4##O (7-87)
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We note that interchanging p and Po in equations (7-86) and (7-87)
gives

S(p, _o) = S(po, _)

R(#, #0) = R(p0, p)

which are examples of the law of reciprocity, a concept which occurs

frequently and is much used in theoretical analyses.

Applying our numerical example to equation (7-70), with g0 = 0.4,

= 0.8, and n = 4, we get the following comparison in table 7-6 with

Chandrasekhar's exact results for the reflection function. Again we note
that the n = 4 approximation is reasonably good, the maximum error

being about 1 percent at # -- 0.5.

TABLE 7-6. VALUES FROM EQUATION (7-70)

(,
1_ \ 7r_ /n=4 \ 7rr ]exact

0.0

.1
.2

.3

.4

.5

.6

.7

.8

.9

1.0

0.270783

.243725

.219711

.199753

.183164

.169225

.157331

.147081

.138144

.130277

.123693

0.272217

.248014

.222972

.202310

.185255

.170984

.158864

.148436

.139359

.131380

.124303

Similarity Relations

We can note from our earlier developments that the radiation field is

essentially characterized by three basic quantities--the phase function,

the single-scattering albedo, and the optical thickness. A change in

any of these quantities produces a change in the radiation field. The

question thus arises: Can we change these parameters simultaneously

in such a way that the radiation field remains at least approximately

fixed? In particular, can we relate a given set of parameters P(p, p'), _,
and r to an equivalent set of isotropic parameters?

The answer is obviously yes, or we would not have raised the question

here, and this section would not have been written. We have already
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seen one example of such transformations in the discussion of the delta-

Eddington method of chapter 6, in that equations (6-27) and (6-28)

give a transformation which relates the delta-Eddington solution to the

classical Eddington solution.

As pointed out by Sobolev (1975), the approximate similarity of
the radiation field in an atmosphere with anisotropic scattering to

the corresponding field in an atmosphere with isotropic scattering

will take place only after a large number of scatterings; i.e., large
optical thickness and & _ 1. Also, similarity can only be discussed in

connection with azimuthally averaged fields, since the isotropic radiance

is azimuthally independent.
The diffuse radiation field in a plane-parallel atmosphere follows the

now-familiar equation (2-29)

dI _ / I(T)P(cosO) di2 (7-88)

Suppose now we assume that the fraction r of the radiance is scattered

isotropically (i.e., P(cos0) = 1), and the remainder (1 - r) is approx-

imated by a Dirac delta function, so that we can write for the phase
function

P(cosO) = r + (1 - r)_ (7-89)

If we put equation (7-89) into equation (7-88)

#__T __ I_ _4___dI_z J/ I(r)[r + (1-- r)(_] dl_

¢5 f I(r) dl_ - &---(1 - r)41rI-- I- _-_rr 4r

--r I(r) df_= I[I - _(1- r)l - 4r

If we divide through by [I - &(1 - r)]

dI

# [I -- &(1-- r)] dT

and thus, by defining

and

r f I(r) df_=I- _l__(l_r)

r I = [1 - 0(1 - r)]r

¢3r

wI= 1-0(1-r)

(7-90)

(7-91)

(7-92)

(7-93)
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we can write equation (7-91) in the form

dI &l J I(r) d_I- 4-7 (7-94)

Equation (7-94) is therefore identical in form to equation (7-88) with
P(cos0) = l, which thus describes isotropic scattering. In this way,

equations (7-92) and (7-93) can be considered to be Mmilarity relations

which transform the anisotropic problem of equation (7-88) to the

equivalent isotropic problem of equation (7-94), under the assumption
in equation (7-89).

We now have to determine the quantity r in equation (7-89). The
more forward scattering we have, the smaller the value of r. We have

seen earlier that, in the Henyey-Greenstein phase function, the factor g
controls the size of the forward-scattering peak; the larger the amount

of forward scatter the more nearly g approached unity. Thus, if we
choose

then we get

and

r=l-g

rl =(1-gog)r

(7-95)

(7-96)

(7-97)&l -- aS(1 - g)
1 - &g

as our set of similarity relations.

The discussions in Sobolev (1975) and Irvine (1975) indicate that
equations (7-96) and (7-97) produce solutions that agree well with more

nearly exact solutions in most cases, the agreement generally being
better for integrated quantities, such as total albedo or the atmospheric

flux, rather than quantities such as radiance. Again, this is because the

integration, after multiple scattering, tends to smooth out the effects of
the phase function.

The similarity solutions for one of the cases given earlier for the two-

stream and Eddington methods are presented below and in figure 7-3.
The H(p0) were interpolated in the tables of H-functions at the end

of chapter 8. The similarity relations give the correspondences in

table 7-7. The correspondences in table 7-7 in turn give the values
for the reflection function shown in table 7-8.
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TABLE 7-7. CORRESPONDENCES

Q2

0.99 0.9802

.95 .9048

.90 .8182

TABLE 7-8. r(#o), SIMILARITY SOLUTIONS

#o & = 0.99 _ = 0.95 & = 0.90
0.0

.1

.2

.3

.4

.5

.6

.7

.8

.9
1.0

0.8593

.8285

.8048

.7835

.7635

.7447

.7268

.7098

.6971

.6772

.6616

0.6915

.6377

.6003

.5688

.5414

.5169

.4947

.4746

.4561

.4391

.4234

0.5736

.5121

.4718

.4392

.4116

.3877

.3667

.3479

.3311

.3159

.3020
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-- Similarity solution
---- Del ta-Eddi ngton
o Eddington

0.9_ . • Exact (doubling) method

T_.

N,,_.. .99

0.6 _. "_"_"_ ..

r(_o) _0\\ "__(_,.

o.__ ",.L.-_.,_ _._
_O" ".0

0.2 L i L i i
0 0.2 0.4 0.6 0.8 1.0

_0

Figure 7-3. The similarity relations equations (7-92) and (7-93) used for the same
case as figure 6-1.
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The Principle of Invariance

The principle of invariance is a very elegant concept that was
first put forth by Ambartsumyan (1958) and later perfected by Chan-
drasekhar and others. The principle is deceptively simple and will be
applied here to the case of a semi-infinite, homogeneous atmosphere. It
allows us to derive a single integral equation for a function which can be
identified with the H-function. This linear equation permits the exact
computation of the H-function. (The numerical solution is an iterative
one. Thus, it is exact only in the limit, but practically converges to 6
to 8 decimals in a few iterations for small values of the single-scattering
albedo. The convergence is slower as the single-scattering albedo ap-
proaches unity.)

The principle of invariance for an infinitely thick atmosphere can
be stated as follows: we are given the infinitely thick atmosphere with
certain reflection and absorption properties. If we add an additional
layer of the same optical properties to the top of the atmosphere, we do
not change the overall reflective and absorptance characteristics of the
atmosphere. By adding a thin layer, we can compute the differential
change in reflection and absorption and set these changes to zero. The
result is a linear integral equation for a function which we can relate to
the H-function derived in the last chapter.

We will follow essentially the development of Liou, and use his
definition of the reflection and transmission functions, and then relate
the final equation to the form developed by Chandrasekhar.

We assume that the added layer is so thin that at most a single
scatter can occur in it. Then, for a given photon which is reflected out
of the top of the atmosphere, only one of the five histories sketched in
figure 8-1 can occur:

1. The photon can penetrate the thin layer and be reflected from the
infinitely thick layer (ITL).

2. The photon can be singly scattered upward from the thin layer
before it reaches the ITL.
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(I) (2) '(3) (4) 5)

Figure 8-1. Sketch showing the five single-scatter scenarios between the added
thin layer and the infinitely thick layer (ITL).

3. The photon can be singly scattered downward by the thin layer,

then reflect upward from the ITL.

4. The photon can penetrate the thin layer, reflect from the ITL, and

then be singly scattered upward by the thin layer.

5. The photon can penetrate the thin layer, reflect upward from the

ITL, and then be singly scattered downward by the thin layer to be

once more reflected up and out by the ITL.

We assume that AT, the thickness of the thin layer, is << 1, and hence

only terms linear in Ar will be retained. The single-scattering albedo

determines the fraction of the incoming photons which are scattered.

In the thin Layer, it is assumed that there is no absorption along a path

which involves a single scatter, but that there is absorption along a path
which penetrates the thin layer and along which there is no scatter. In

other words, we assume that a given photon may be either absorbed or

scattered, but not both.

For azimuthal symmetry, Liou's definition for the reflection function

follows from equation (4-6)

_o 1I(O, #) = 2 R(p, p')I(O,-tt')#' d#' (8-1)

The reflection coefficient for an infinitely thin layer can be obtained

from the single-scattering solution given by equation (5-33b), which for
r* -- Ar << 1 reduces to

I(O, p) - _z Ar p(g, _p0)p0F0 (8-2)
4pp0

and hence, the reflection coefficient becomes

Ar
R(#,/z0) = -- P(#, -/_o) (8-3)

4##0
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For thin layers, the transmission function reduces to

Ar
e -hr/ta_ .._ 1

#

The simplest way the writer has found to derive the differential
changes in R due to the addition of the thin layer is to start with the
emergent beam and work backwards to the source. This will be done in
the five parts of figure 8-1 for each of the five scenarios sketched above.

In figure 8-1(a), reflection from the ITL,

I(-Ar, p) = (1 - Ar/#)I(O, p)
S(0, p) = Z(0, -p0)n(V, Po)

I(O,-PO) = (1 - Ar/#o)#oFo

_0_0 /I(-AT,_)

. -Ix 1J

T = -AT

"r=O

Figure 8-1(a). Sketch of the first event, reflection from the ITL.

Put all these together

I(-Ar, p) = (1 - ArlP)R(p, pO)(1 - ArlPo)poFo

Expand and retain only terms to first order in Ar

I(-Ar, P)lt_oFo = R(p, PO) - R(p,po)(ArlP + Ar/po)

But this is the new reflection coefficient, and hence the change in the
reflection coefficient due to this first event is

ARI(p, po) = -R(p,#o) Ar (l/po + l/p) (8-4)

In figure 8-1(b), single upward scatter from the thin layer,

I(-Ar, p) = R(p, Po)poFo
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(-AT,I])

T = -AT

T=O

Figure 8-1(b). Sketch of the second event, single upward scatter from the thin
layer.

_oFo / I(-a'_,U)

I(O,-_') _ I(O,_)

Figure 8-1(c). Sketch of the third event, single scatter from the thin layer followed
by a reflection from the ITL.

and from equation (8-3)

and hence,

I(-Ar,#)-- _ ATp(#,-po)#oF o
4#_o

AR2(#,#0)- oDATp(#,-/_0) (8-5)
4#/_0

In figure 8-1(c), single scatter from the thin layer followed by a
reflection from the ITL,

I(-AT, #) = (1 -- Ar/#)I(0,/z)

1(o,_) = n(_, _')z(o, -_')

I(0, -#') = \4#,#0 ] P(-#', -/_o)#0Fo
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But since all possible p_ must be included, we must use equa-

tion (8-1)

I(-AT, #) = 2 _ol p' d# ' ( I - -_-_ ) R(lt, #')yoFo_ P(-IJ, -#O)##

1----poFo _p 0 1 - R(u, p_)P(-# _,-#o) d#'

and so to order AT

_ _ Ar fo 1AR3(/t, Po) 2po R(#, tt')P(-p', -Po) dp' (8-6)

In figure 8-1(d), reflection from the ITL followed by an upward
scatter from the thin layer,

I(-Ar, #) = \_] P(U, #')I(O, If)

.(o, .') = R(u', -#o)I(o, -#o)
I(0,-#o) = (1 - Ar/#o)yoFo

IJ0 F0 I (-At, _)
l" = -AT

-POpo _ P
I(0, -

J
_=0

Figure 8-1(d). Sketch of the fourth event, reflection from the ITL fol]owed by an
upward scatter from the thin layer.

Again, using equation (8-1) we get

Ar (1 - AT 1/(--AT,#)- -2-_- #0F0 _ 7O) f0 R(#', -#o)P(#, #') d#'
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or

AR4(P,#0) - go Ar r/ _
2# Jo

R(p', -#0)P(it, it') dit' (8-7)

In figure 8-1(e), reflection from the ITL, followed by a downward

scatter from the thin layer, and a final reflection from the ITL,

I(--_T, it) : (1 -- _T/it)I(O, it)

I(O,_) = n(U, it')I(O, --/)

oFo I (-AT, lJ).J

' ]a'__

I(O, -_0 ) _ I(O, _)

I(0, _") I(O, _')

T = -AT

z=O

N ow,

and we can write I(0, it) as

go Ar . tg') 1
I(0, it) -- _7/ I(0, f0

and to order AT

go Ar I ,,. fl

I(-Ar, it) - i_-/7 (0, it ) ]0
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1I(0, it) = 2 #'R(it, it')I(0, -it') dit'

AT . I

I(0, it') - 4#,p,,,P(-p, p")I(0, #")

R(#, #,)p(_pt, #,,) dit'

R(#, it')P(-it', it") d#'

and hence, integrating over all/_,

Figure 8-1(e). Sketch of the fifth event, reflection from the ITL, followed by a
downward scatter from the thin layer, and a final reflection from the ITL.
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But now,

I(0,#") = [(0,-#o)R(/_",-#O) = 1 -_o R(/_',-tto)poFo

But this must be integrated once more, this time over all _", and we

get

/o' /o'I(-Ar, #) = 2(#0 F0) _.tld.II R(_/I, -._0) R(#, .I)P(-,ur, I_rl) dIJ

or, regrouping the integrals

/oI /o1ARs(_ u, P0) = _ AT R(_t, _t') d#' R(#", -#o)P(-#',

(s-s)
Now, according to the principle of invariance

AR1 + AR2 + AR3 + AR4 -+- AR5 -- 0 (8-9)

and so, from equation (8-4) to equation (8-8) in equation (8-9), we

divide out the AT and factor out _/4##0, and write

{ /o(1__0÷ -_1)R(.,.O ) ---4--_0C_ P(-.,IzO) + 2. P(-.',-I-to)R(.,.') dlJ

+ 2. 0 P(I_,.')R(#',.O) dlJ

+ [2./01R(.,.')d# ']

× [2#O j(o1P(-.',.')R(.",#o) d#"] } (8-10)

which is the desired integral equation for R(p,#0). Note that this

equation is nonlinear. The only restrictions on equation (8-10) are that

the atmosphere must be homogeneous, plane-parallel, and semi-infinite.

Now, let us consider the case of isotropic scattering. Then all of the

phase functions in equation (8-10) are equal to unity, and

_oo + R(#,/_o) =4---_o 1 +2. R(#,#') d_t' +2.0 R(#',#o) d#'

+ 4##o _l R(i.t, lz') dl.t' _l R(.'t,#o) d# ''] (8-11)
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If we interchange p and #0 in equation (8-11), we get the same expres-

sion, indicating that R(#, P0) and R(#0, p) both satisfy equation (8-11).

This does not prove, of course, that R(#, #o) = R(#0, p). As it turns
out, this is indeed equality, but since its validity can only be established

by a rather lengthy analysis (Chandrasekhar), we will accept without
proof

R(,, = R(,0,,)

as another manifestation of the principle of reciprocity.

Equation (8-11) can be factored to give

(8-12)

(1 1) _ [ _01 ] [ _01 ]_00 +_ R(.,_0)= 4--_ 0 1+2. R(.a,D')d.' 1+2.0 R(.',Po) d D,

(8-13)
Guided by the form of equation (7-87) we can define

1H(p) = 1 + 2# R(#, #') d#' (8-14)

and write equation (8-13) as

1 1) o3_00 + P R(#,#0) -- 4pp0H(_u)H(#0) (8-15)

and we see that equation (8-14) is another definition of the H-function.

Equation (8-14) is exact in that it does not involve any orders of
approximation.

If we write equation (8-15) as

R(#, _o) = (_ H(#)H(#o)
4 # + #o

(8-16)

and substitute equation (8-16) back into equation (8-14), we get

(O fO 1 H(p')d#'H(p) --- 1 + -_#H(p) _ + p,
(8-17)

which is the integral equation for H promised earlier. Equation (8-17)
can be solved iteratively to determine H(#) to any degree of accuracy.

Chandrasekhar presents a much more sophisticated derivation of

equation (8-13) and the succeeding relations, resulting in an equation

very similar to equation (8-11) for his scatter function; his equation
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can, of course, be obtained from our equation (8-11) by using the

correspondence equation (4-10). Once the physics of our derivation of

equation (8-11) is fully understood, it can be of great benefit to review
Chandrasekhar's analysis, from the point of view of gaining facility in

manipulating the fundamental definitions and using the integral form

of the RTE to develop our results.

The mean value of H(p), H0, is a useful starting point for the

iterative solution of equation (8-17). Define

1
Ho = H(#) dp (8-18)

Multiply equation (8-17) by d# and integrate

_01 _ _01 _01 H([£)H(_') #! dl2! d.U(#) d#: 1+ -_ P + #'

Interchange # and #' in the above and add the two results together

H(l_) d# = 2 + _ I_ + #'

fol fo' H(p')H(P) p d# d#']+ #,+p

I ]= 2 + -_ H(I_)H(#') dl_ d#'

or

HO: I + _ H 2
4

from which

1--

o2
(8-19)

We now write equation (4-17) for the planetary albedo for the model

atmosphere in terms of the H-functions

1r(#o) = 2 R(p, #o)l_ d#
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and using equation (8-16)

& 1 (1 #o/_) d#r(#o) = 7H(#o) _ H(.) #0 +

9

=_H(#o)[folH(p)d#-#Ofo --H(#) d#]#0 +# J

By use of equation (8-17) the integral can be eliminated to give, along
with equation (8-19)

r(#0) = 1 - g(#o)vfi -- 9 (8-20)

Equation (8-20) is plotted in figure 8-2 for various values of _. The
spherical albedo follows from equation (4-24)

/o1= 1 -2_ #oH(#o) d#o (8-21)

The first-moment integral in equation (8-21) was evaluated numerically
from the H-function tables, and _ vs. _ is plotted in figure 8-3.

We can get an approximate analytic form for the H-function, and
thus the reflection coefficient from the two-stream solution. For the

two-stream case, n = 1, # = 1/v_, al = 1, and the eigenvalues follow
immediately from equation (7-59)

= _/3(1 - 9)k

From the definition of the H-function, equation (7-49)

1 + #x/_

H(/_) = 1 + #X/_-_(1- 9) (8-22)

and thus the reflection function becomes

9 (1 -4-#x/3)(1 + #0V/3)

R(p,#O) = 4(# + #0)[1 + #X/3(1-9)] [1 +/_0_] (8-23)

If we evaluate H(#) for the n = 4 case used as our example, we get for
# = 0.5, 9 = 0.8, the data in table 8-1.

It can be seen that going from a two-stream to an eight-stream model
significantly improves the accuracy of evaluating the H-functions, and
hence also the reflection functions.
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r(_O)

loO -

.999

0.8

.99

0.6

.96

0.4

0.2

! !

0 0.2 0.4

.6

5

-°4

_°3

.2
I ]° l

0.8 l.0

Figure 8-2. Reflection coefficient for an isotropic semi-infinite atmosphere, com-
puted from the Chandrasekhar H-functions.

147



Introduction to the Theory of Atmospheric Radiative Transfer

1.0 , , , t

0.8 -

r

0.6

0.4

0.2

I I I |

0 .2 .4 .6 .8 1.0

Figure 8-3. Spherical albedo for isotropic scattering. Exact from H-function.
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# 2-Stream 8-Stream Exact
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.53803

.49378

.46589

.44759

.43529

.42689

.42112

.41717

.41450

.41276

.41169

0.56256

.52749

.48915

.45399

.42289

.39559

.37152

.35022

.33124

.31423

.29891

0.56528

.53645

.49607

.4595O

.42745

.39943

.37488

.35318

.33391

.31666

.30114

First-Order Solution for the H-Function

The zeroth-order solution for H(/z) is given by equation (8-19). If

we use this in the right-hand side of equation (8-17), as the first guess
of H(#), we get the first-order solution

2 /2+# I

HI(#) = 1 + _#H21n (1+ #_ (8-24a)
2 o \--_--- /

A somewhat better approximation can be obtained by first solving

equation (8-17) for H(p) to give

H(#) = [l_ 2# foI H(#t) d#'] -1#+'_ j

and then solving this by substituting Ho for H(#) on the right-hand

side. This gives

[HI(#) = 1 - g#H01n (8-24b)

For & -- 0.5, reflection coefficients computed from equation (8-20), using

the first-order solutions for H from both equations (8-24a) and (8-24b),
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are compared in figure 8-4 with the exact solution using the exact H-
functions tabulated at the end of this chapter. Both approximations

are adequate for large absorption (& ((1), but equation (8-24b) gives

decidedly better results for larger & (nearly conservative scattering).
Whether either approximation is adequate depends, of course, on the

application.

Equation (8-24a) or equation (8-24b) could, in turn, be resubstituted

into equation (8-17) and a second-order solution derived. The algebra,

however, becomes quite messy, and it is probably advisable to evaluate
the resulting integrals numerically if this order of approximation is

required.

Table 8-2 compares results computed for equations (8-24a) and
(8-24b) with the exact results.

TABLE 8-2. VALUES OF H1 (_)

P
0.0
0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9
1.0

Equation (8-24a)
1.00000
1.07935

1.11315
1.13281

1.14615

1.15721

1.16848

1.18146

1.19706

1.21578

1.23785

Equation (8-24b)
1.00000

1.07554
1.11727

1.14790
1.17202

1.19174

1.20826

1.22237

1.23459

1.24528

1.25473

Exact

1.00000

1.07241

1.11349

1.14391

1.16800
1.18776

1.20436

1.21858

1.23091

1.24171

1.25128

The iteration procedure for computing H(#) uses H0, equa-

tions (8-24), as the first guess and proceeds from equation (8-17). The

solution converges fairly rapidly for small _, but more and more iter-

ations are needed as _ _ 1. Tables of the H-function for isotropic

scattering are included at the end of this chapter (table 8-3).

If one uses equation (8-17) directly, the convergence proceeds some-

what as shown in figure 8-5.

Chandrasekhar, recognizing the slowness of the convergence of equa-

tion (8-17), gives an alternate integral equation form for H(#)

1 __A_2folkttH(# r) ,H(#) _7_7 d#
(8-25)

150



Chapter 8

r(_ O)

1.0 _ Exact Chandrasekhar H-function

F 0 First-order theory for H-function, equation (8-24b)• First-order theory for H-function, equation (8-24a)

0.8- • , , ,
_g = .99

0,6_ •

0.4 0 _ _"'_08 = .9

0.2 __ _ = .6

_= .3

I I I I I

0.2 0.4 0.6 0.8 1.0

_0

Figure 8-4. Selected single-scatter albedo solution from figure 8-2 showing the

accuracy of two of the approximate solutions, equations (8-24a) and (8-24b).
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H(1J)

No. of iterations

Figure 8-5. Sketch illustrating the iterative behavior of equation (8-17).

H(]a)

No. of iterations

Figure 8-6. Sketch illustrating the iterative behavior of equation (8-25).

By a straight application of equation (8-25), however, no signif-

icant improvement in the rate of convergence is noticed, although

Chandrasekhar claims that it is decidedly superior to equation (8-17).

Its convergence proceeds as sketched in figure 8-6. Convergence could
perhaps be speeded up somewhat if we take, for example, the mean of

the zeroth and first iterations as the second guess, the mean of the sec-

ond and third iterations as the fourth guess, etc. This was not tried by
the writer. Chandrasekhar's iterative procedure is not discussed in his
text, but perhaps this is the method he used to increase the rate of con-

vergence. The problem is, of course, academic, as numerical solutions

are available for all _, and the job is finished.
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TABLE 8-3. H-FUNCTIoNs FOR ISOTROPIC SCATTERING

p _=0.1 _=0.2 _=0.3 _=0.4 _=0.5
0.00

0.05

0.10

0.15

0.20
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.000000

1.007841
1.012385

1.015844

1.018645

1.020993

1.023006

1.024760

1.0263O6

1.027685

1.028922

1.030042

1.031O60
1.031991

1.032846

1.033635

1.034365

1.035043

1.035674

1.036264

1.036816

1.000000
1.016118

1.025632

1.032948

1.038919

1.043956

1.048296

1.052095

1.055459

1.058467

1.061177
1.063634

1.065875

1.067929

1.069820

1.071567

1.073187

1.074694

1.076099
1.077413

1.078645

1.000000

1.024902

1.039895

1.051553

1.061149

1.069300

1.076365

1.082581

1.088110

1.093072
1.097559

1.101641

1.105375

1,108805

1.111971

1.114903

1.117626
1.120165

1.122536

1.124758

1.126844

1.000000

1.034293

1.055387

1.071988

1.085784

1,097594

1.107899

1.117017
1.125169

1.132519

1.139192

1.145285

1.150876

1.156030
1.160799

1.165227

1.169352

1.173203

1.176810

1.180196

1.183380

1.000000

1.044428

1.072402

1.094720

1.113465

1.12o654
1.143889

1.156568

1.167971

1.178306

1.187734

1.196381

1.204347
1.211717

1.218559

1.224932

1.230885

1.236459

1.241693

1.246617

1.251259

Mean 1.026334 1.055728 1.088933 1.127017 1.171573

lstmom. 0.515611 0.533155 0.553122 0.576214 0.603486
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TABLE 8-3. Continued

tt
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
0.95

1.00

& = 0.6

1.000000

1.055513

1.091388

1.120454

1.145168

1.166734

1.185867

1.203043

1.218599

1.232788
1.245806

1.257807

1.268919

1.279244

1.288870

1.297870

1.306306

1.314234

1.321700

1.328745
1.335406

&=0.7

1.000000
1.067885

1.113078

1.150357

1.182519

1.210934

1.236418

1.259515

1.280617

1.300016

1.317943

1.334580
1.350077

1.364560

1.378134

1.390887

1.402899

1.414235

1.424955

1.435109

1.444745

=0.8

1.000000

1.082180

1.138860
1.186654

1.228642

1.266321

1.300586

1.332031

1.361086

1.388077

1.413259

1.436839
1.458986

1.479845

1.499537

1.518166

1.535825

1.552593

1.568540

1.583730

1.598217

1.38i966

& = 0.85
1.000000

1.090455

1.154176

1.208633

1.257015
1.300861

1.341086

1.378299

1.412937

1.445334

1.475753

1.504405

1.531467

1.557089
1.581397

1.604501

1.626499

1.647475

1.667505

1.686656

1.704989

03 = 0.90

1.000000

1.099980

1.172201

1.234933

1.291436

1.343268

1.391346
1.436276

1.478491

1.518322

1.556029

1.591821

1.625876

1.658340

1.689343
1.718996

1.747398

1.774634

1.800784

1.825916

1.850095

Mean 1.225148 1.292221 1.441651 1.519494

lstmom. 0.636634 0.678670 0.735817 0.774378 0.825317
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TABLE 8-3. Continued

p _ = 0.92 _ = 0.94 & = 0.96 _ = 0.98 _ = 0.99
1.0000000.00

0.05

0.10
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.000000

1.104330

1.180588

1.247339

1.307860

1.363707

1.415788

1.464702

1.510876

1.554634

1.596228

1.635867

1.673720
1.7O9935

1.744637

1.777935

1.809926

1.840696

1.870323

1.898876
1.926417

1.109161

1.190025

1.261434

1.326672

1.387286

1.444169

1.497907

1.548914

1.597502

1.643917

1.688357

1.730986
1.771944

1.811351

1.849314

1.885924

1.921266

1.955413
1.988434

2.020389

1.000000

1.114731

1.201077

1.278137

1.349186

1.415750

1.478699

1.538598

1.595842

1.650726

1.703480

1.754287
1.803301

1.850652

1.896449

1.940791

1.983763

2.025441
2.065896

2.105188

2.143376

1.000000

1.121700

1.215196

1.299801

1.378764

1.453571

1.525056

1.593750

1.660019

1.724130

1.786286

1.846650
1.905354

1.962507

2.018205

2.072528

2.125549

2.177330
2.227929

2.277398

2.325784

1.000000

1.126408

1.224940

1.314988

1.399768

1.480738

1.558707

1.634178

1.707496

1.778906

1.848594

1.916703
1.983349

2.048627

2.112617

2.175388

2.236997

2.297498
2.356936

2.415353

2.472787

Mean 1.559038 1.606492 1.666667 1.752201 1.818182

lstmom. 0.851467 0.883087 0.923548 0.981749 1.027182
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TABLE 8-3. Concluded

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Mean
1st mona.

= 0.995
1.000000
1.129618
1.231690
1.325628
1.414627
1.500122
1.582903
1.663460
1.742120
1.819117
1.894621
1.968765
2.041654

= 0.999
1.000000

1.133736
1.240491
1.339664
1.434417
1.526160
1.615664
1.703400
1.789679
1.874719
1.958680
2.041679
2.123810

2.113372
2.183989
2.253563
2.322145
2.389778
2.456500
2.522344
2.587341

2.205145
2.285743
2.365652
2.444913
2.523558
2.601616
2.679111
2.756066

1.867918 1.938693
1.061731 1.111331
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Additional Topics

There are a great number of problems contained in radiative transfer

theory that were not addressed at all in these notes. We will mention

just a few of these here as a conclusion to the text, describe them

briefly, and indicate some references which perhaps address them more

thoroughly.

Determination of Optical Parameters

All of the methods discussed in the text have assumed that the

optical parameters used in the equations, such as optical depth, phase

function, asymmetry parameter, single-scattering albedo, etc., were

all known. These parameters can be computed to an acceptable

degree of accuracy, in most cases, by the use of well established
numerical or theoretical methods or both. The complete repertoire of

procedures again consists of both "exact" and approximate methods,

but unfortunately, it would take another text larger than the present
one to describe them in sufficient detail.

For homogeneous atmospheres, the optical depth can be computed

for a single frequency and along a given slant path with little difficulty.

Unfortunately, all measuring devices measure radiation in a finite band

of frequencies, with a variable response across the band. The absorption

coefficient varies very rapidly with frequency, and at a single frequency,

many tens of nearby lines may contribute to the monochromatic ab-

sorption coefficient. Thus, a great deal of data concerning the positions

of line centers, line strengths, and line shapes must be available. Addi-

tionally, since the lines are generally spaced such that they overlap to

varying degrees, a very fine grid spacing in wavelength must be used

to get the total absorption in a given finite bandwidth. This prob-
lem is further complicated by the fact that the line optical parameters

vary strongly with altitude (i.e., pressure and temperature) and with

frequency, and hence, the absorption changes in a strongly nonlinear

fashion with these parameters. As a result, generally three nontrivial
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integrations are required to completely describe the absorption charac-

teristics of radiation; i.e., over wavelength, angle, and altitude.

Band model8 attempt to reduce the frequency integration to a

tractable problem. Some assumptions concerning the distribution of

line centers and the distribution of line strengths are made to reduce the

frequency integral to one which can be evaluated in terms of elementary

functions. This scheme has produced a number of popular band models

which have been used in a number of atmospheric physics applications,

such as climate modeling and studies of the thermal structure of the

atmosphere. Three excellent references for band model derivations and

applications are those by Goody (1964), Rodgers (1976), and Anding

(1969).

The scattering optical properties can also be determined, at least for

spherical particles. The scatter properties of particles which are very

small relative to the wavelength of the incident radiation (i.e., molecular
scattering) can be accurately described by the Rayleigh theory (Liou,

1980, van de Hulst, 1957), while for very large particles, ray tracing

techniques are generally used (Liou, 1980). Particles in the intermediate

size range are the ones which cause most of the computational problems.

The most general theory here is the Mie theory (Liou, 1980, van de

Hulst, 1957, Stratton, 1947). However, as stated earlier, this theory

is complete only for spherical particles, although some success with

cylinders and flat plate particles has been reported (Liou, 1980, van

de Hulst, 1957, Kerker, 1969). The optical properties such as phase
function, and scatter and absorption cross sections are functions of only

two parameters the ratio of the wavelength of the incident light to the

particle radius, and the complex index of refraction of the material

from which the particles are made--and are independent of pressure

and temperature.

If the particle size distribution is known (number density of particles

as a function of particle radius, for example), the overall properties of a

unit volume of scatterers (polydispersion) can be computed (Liou, 1980,

Deirmendjian, 1969). Since both the total number of particles per unit
volume and their size distribution may in general vary with altitude,

there is thus a strong altitude dependence built into the scattering

properties of a polydispersed conglomerate of particles.

As mentioned above, these computational procedures are well de-

fined and are used extensively in the literature, although the computa-
tional details are quite involved and time consuming, and in some cases

tax even the most modern of high-speed computers.

Some approximations to the Mie results have been reported in the
literature, and may be profitably used in studies in which the ultimate

in accuracy is not needed e.g., in studies of climate modeling and the
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effects of aerosols on global climate (van de Hulst, 1957, Penndorf, 1962,

Plass, 1966).

Finite Homogeneous Atmospheres

The discrete ordinates method (chap. 7) and the principle of invari-

ance (chap. 8), as discussed in the text, are applicable only to semi-

: infinite homogeneous atmospheres with isotropic scattering. Chan-

drasekhar (1960) and Sobolev (1975) extend these techniques in elegant
mathematical fashion to finite homogeneous atmospheres with arbitrary

(to some extent) phase functions.
The principle of invariance can be simply stated for a finite atmo-

sphere. If we add an infinitely thin layer of the same optical properties

: to the top of a finite atmosphere, then the changes in the reflection func-
tion and the transmission function for this incremented atmosphere can

be computed. Similarly, if we add an infinitely thin layer to the bot-
tom of the atmosphere, these changes can again be computed. The

two sets of change must be equal; equating them, one arrives at two

coupled nonlinear integro-differential equations for the reflection and

transmission functions for the finite atmosphere, equations quite simi-

lar to equation (8-10). By rearranging terms and factoring as we did

earlier, two functions can be defined which are similar in utility to
the H-functions. These are the famous X- and Y-functions of Chan-

drasekhar, which describe the reflection and transmission of isotropic

radiation in finite atmospheres. Further manipulation yields a coupled

set of integral equations for these functions similar to equation (8-17).

Then the angular distribution of the radiant energies from both the top
and the bottom of the atmosphere can be described in equations similar

to equation (7-84).
The X- and Y-functions can be computed and tabulated (see

Chandrasekhar), just as we did for the H-functions, for specific phase
functions.

As the thickness of the finite atmosphere increases, approaching the

semi-infinite case, the X-function approaches the H-function and the

Y-function goes to zero. Thus, the X-function is related to the reflection

properties of the finite atmosphere, while the Y-function is related to

its transmission properties.
For very thin atmospheres, the X-function approaches unity and

the Y-function approaches e -r*/_o, and the resultant equations for the

radiance reduce to the single-scattering solution we found in chapter 5.

Anisotropic Scattering

In chapter 1 it was pointed out that the phase function can in many
cases be described by a Legendre polynomial expansion in the scattering
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angle. In both the semi-infinite and finite atmospheres, if this is done

and the principle of invariance applied, the result is one (for semi-infinite

atmospheres) or two (for finite atmospheres) integral equations for an

H-function or for the X- and Y-functions, for each term of the Legen-

dre expansion, and these are in general horribly coupled. The numerical
problems thus generated are so enormous, that, to this writer's knowl-

edge, no one has generated general tables of these functions except for

isotropic scattering and some limited results for Rayleigh scattering.
However, even for the relatively simple cases of the two-term expansion

and the two-term Rayleigh expansion, the computational difficulties

are such that even Chandrasekhar only presents a limited number of
numerical tables.

Similarity may be applied in some cases. However, in general some

other numerical technique, such as the adding or doubling methods

to be described later, is usually used. The discrete ordinates method,

and the related spherical harmonics methods, have been successfully
applied numerically in some limited cases, even for nonhomogeneous

atmospheres, but it is generally conceded that the other procedures are

numerically and computationally superior for these applications.

Effect of Surface Albedo

In our analysis of the inclusion of surface effects in chapter 4, it

was assumed that the reflective surface was Lambertian (i.e., isotropic

scatter from the surface) and was the same for all parts of the surface

plane. This is in general not a realistic approximation, but again the

numerical results may be accurate enough for some applications. Little
work has been done on other than Lambertian surfaces, but some results

are available for specularly reflecting surfaces. See the thesis by Tanr_

and the paper by Deschamps et al. in Deepak, 1980.

Other Computational Techniques

There are a number of so-called "exact" methods available in the

literature, which are comparable to or somewhat better than the

discrete ordinates method for nonisotropic scattering. These methods

are exact in the sense of some limiting process as described with the

discrete ordinates method covered in chapter 7. A few of these methods
will be discussed in this subsection.

Adding and doubling methods. These methods are similar and are

both based on the following premise: suppose we have two slabs of opti-
cally active material, and suppose that we know the reflective and trans-

mission properties of each slab separately. If we place the two slabs to-

gether, face to face, then by considering the multiple transmissions and
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reflections between the two slabs, it is possible to determine the overall

transmission and reflective properties of the composite slab considered
as a unit. In its most fundamental form, we can show this as follows

in figures 9-1 and 9-2, where the slabs are shown separated for clarity

only. We let the reflectance and transmission coefficients be denoted by

R and T, respectively, with subscript 1 referring to the upper slab and

subscript 2 referring to the lower.

Figure 9-1. Illustration of the various orders of scattering between two finite thick
layers. The layers are shown separated for clarity only.

The following rays emerge from the top of the composite slab:

1. Ray 1 is simply the reflection from the upper slab, RI.
2. Ray 2 is a ray transmitted through the upper slab, reflected from

the lower slab, and transmitted through the upper slab, TIR2T1.

3. Ray 3 is transmitted through 1, reflected from 2, reflected back

down from 1, reflected again from 2, and transmitted out through

1, TIR2RIR2TI.

4. For the remaining rays,there are similarmultiple reflectionsbetween

i and 2 and transmissions through I.

Collectallthese together,and we have for the totalreflectionfrom

the top of layer I

R12 : R1 + T1R2T1 + T1R2R1R2T1 '}-T1R2R1R2R1R2T1 +""

and these can be collected to give

2 2
R12 = RI + TIR2TI(I + RIR2 + RIR2 + '")

Since R1R2 < 1 we can write this last as

R12 = R1 +
1 - RIR2

(9-1)
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Transmission is handled the same way, as shown in figure 9-2, and the
composite transmission function can be written

T12 = T1T2 + T1R2RIT2 + T1R2R1R2R1T 2 +...

2 2
= 7"17"2(1 + R1R2 + R1R 2 +"')

\

,3 L4

"/.////////

\5

Figure 9-2. Same as figure 9-1 except showing the various orders of scattering
involved in diffuse transmission.

or

TIT2
T12 -- 1 - RIR2 (9.2)

The similarity between equation (9-1) and equation (4-39) or equa-
tion (4-40) cannot have escaped the reader's attention.

In more realistic application, the order of multiplication in equa-

tions (9-1) and (9-2) must be preserved, and the simple products are

replaced by integral functions over all directions (see, e.g., Liou, 1980).
Another approach is to construct the R and T as matrices whose ele-

ments are in general integrals of sundry combinations of the directional

representations of the reflection and transmission coefficients. This ap-
proach is directly oriented toward computer application; see, for exam-

ple, the excellent paper by Twomey, Jacobowitz, and Howell (1966);
see also van de Hulst (1963), the highly mathematical series of papers

by Grant and Hunt (1968a, 1968b, 1969), and the paper by Hunt and
Grant (1969).

Both the adding and the doubling methods use the generalized form
of equations (9-1) and (9-2).

The doubling method is applicable to homogeneous atmospheres.

A very thin slab is selected, say Ar = 2 x 10 .2o or so, and the

reflection and transmission coefficients are computed by one of the thin-

atmosphere solutions covered in chapter 5, say the thin-atmosphere
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solutions, equations (5-16) and (5-19). Now, if we assume two slabs
of the same thickness and same R and T, then the generalized forms

of equations (9-1) and (9-2) can be used to compute R and T for the
thickness 2 At. These R and T then can be used in turn to compute a

pair of R and T for a thickness 4 Ar, 8 Ar, etc., doubling the thickness

with each application of equations (9-1) and (9-2) until the desired total

optical thickness is reached. Obviously, the doubling method can only

be used for homogeneous optical slabs.

The adding method is similar and can be used for inhomogeneous

atmospheres. Suppose the inhomogeneous layer is divided into a

number of thin layers, and the thin-atmosphere solution (or indeed,

the doubling method!) is used to compute the R and T for each layer

separately. Then, the appropriate forms of equations (9-1) and (9-2)
can be used to get R12 and T12. Then the third layer can be added to

this to yield R123 and T123, and then the fourth and succeeding layers
until the entire atmosphere is completed. Liou (1980) presents some

very useful tables of reflection and transmission coefficients computed
from both the discrete ordinates method and the doubling method.

Coakley, Cess, and Yurevich (1983) present an interesting method of

using reflection and transmission coefficients computed from the delta-

Eddington method with the adding and doubling methods.

The spherical harmonics method. The spherical harmonics method

is very similar to the discrete ordinates method; in fact, the discrete
ordinates method is a specialized form of the spherical harmonics

method. In this method, shown here for the azimuthally symmetric

case, it is assumed that the intenslty itself as well as the phase function
can be expanded in a series of Legendre polynomials

N

I(r,l_) = Z 2m +-----_lpm(P)Vm(T) (9-3)
47r

m=O

where the _)m(7") are coefficients which are functions of r only, and the

phase function is expanded as

N

P(/z, p') = Z (2n + 1)fnPn(P)Pn(P') (9-4)
n:0
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After substituting into the RTE and simplifying, one gets a system
of differential equations for the tm(r),

1) &bin+ 1 l(m + -_r + md_2-

= 47r(1 - (o)B(T)5om

-- + (2m - 1)(1 -&fm)_rn

(f0 = 1) (9-5)

where B(T) is the Planck function. For isotropic scattering, all the
fm = 0 except for f0 = 1. If one retains N terms of the expansion

equation (9-3) (the Pn-approximation), then equation (9-5) yields a set
of N + 1 simultaneous, linear ordinary differential equations for the

¢0, ¢1, "", tn (_bn+l is set to zero), which when substituted back

into equation (9-3), give the intensity at any T, #.

The boundary conditions for the Pn-method are difficult to satisfy
exactly, and in general some approximation must be used. We have seen

this earlier in connection with the Eddington method, and in fact the

spherical harmonics method with N = 0 and N = 1 yields precisely the
Eddington equations. See ()zisik (1973) for an elementary discussion

of the Pn-method and for some schemes for handling the boundary

conditions. See also the discussions in Kourganoff (1963) and Lenoble
(1977).

Monte Carlo method. This is perhaps the only method known

which can be applied to any radiative transfer problem regardless of

asymmetry, nonhomogeneity, or any other anomaly, and is the only

method which can really be called "exact." However, as in other

applications, there is no "free lunch," and one must pay a heavy price

in computer costs--mostly time--for this flexibility and general utility.

Basically, in the Monte Carlo method one injects a series of single
photons into the medium and follows one photon at a time in space and

time as it travels through the three-dimensional medium. Whenever

the photon encounters an absorber or scatterer, a suitable probability
is used to determine whether an actual interaction occurs and what

type. If the interaction is an absorption, the computations stop here

and the energy of the photon is used to increment the total energy of the
medium, and another photon is injected into the medium and followed.

If the interaction is a scattering, the direction into which the photon is
scattered is determined probabilistically from the phase function. The

photon is followed through ensuing scatterings or absorptions or until

it escapes through the top of the atmosphere. It is apparent that a

great many photons must be tracked (orders of hundreds of thousands)
to provide a reliable sample size from which to determine reflection,

transmission, and absorption distributions, and therefore a great deal
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of computer time is required. A number of computational schemes have

evolved to shorten the computational time and retain the accuracy of

this method, but the expense has precluded its wide application for
radiative transfer studies. Its utility seems to be in the areas where

absolutely nothing else works, and to provide some limited benchmark

results against which to compare the results of more rapid but perhaps
less precise analyses.

See the most interesting discussions of this method in Irvine and

Lenoble (1973) and in the paper by Hansen and Travis (1974). The

papers by Kattawar and Plass (1968) and P]ass and Kattawar (1968)

best describe the application of this method to radiative transfer

problems.

There are, of course, many other methods not mentioned here

for solving the RTE to greater or lesser degrees of approximation.
These include the method of successive orders of scattering, which is

an extension of the single-scatter method derived in chapter 5, the

eigenvalue expansion method of Case, the Gauss-Seidel method (a

numerical technique), and many others. Some of these are briefly

discussed in Irvine and Lenoble (1973), where specific references are

given, as well as in the paper by Hansen and Travis (1974), and the

text by C)zisik (1973). A much more comprehensive discussion is given

in Lenoble (1977), with many references and the basic equations.

Non-Homogeneous Atmospheres

Practically all of the methods discussed in the present text are

restricted to solutions in a homogeneous atmosphere. There has been

much more effort expanded in applying these methods approximately

to nonhomogeneous atmospheres. What is generally done is to divide

the atmosphere into a number of thin layers and treat each layer by, for
example, the discrete ordinates method. The main difference between

this technique and the approach we have taken is in the application of

the boundary conditions. Here, one can use the zero diffuse radiation

boundary condition only at the top of the uppermost layer and at the

bottom of the lowest layer. In between, the boundary conditions must

be set up to insure continuity of flux or energy across each boundary.

This procedure generally leads to a set of simultaneous algebraic
equations which must be solved for a set of constant coefficients for

each layer considered (e.g., the constants A and B of equations (5-69)

and (5-70) would be different in each layer). Liou (1973) has done this

using the discrete ordinates method, and Wiscombe (1977) has used

the delta-Eddington method in the same way. Comparisons with the

more nearly exact adding method indicate that good accuracy can be
obtained with these schemes.
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Other Problems

Finally, there are many other problems in radiative transfer theory

which are seldom mentioned in the literature. There is, for example,
the inclusion of horizontal inhomogeneities in the plane-parallel atmo-

sphere we have been using (e.g., finite clouds or actual differences in

optical properties due to climatic or meteorological effects), or the re-
vision of the plane-parallel assumption itself, i.e., considering spherical

atmospheres. Some of these problems have been addressed by neutron

physicists, since the travel of neutrons through absorbing and scattering
media is described by an equation very similar to our radiative transfer

equations--the main difference being that the neutrons can travel with

different speeds, while our photons all travel at the speed of light.

Other problems include the shadow effect, in which the shadowing

of one particle by another prevents the second particle from interacting
fully with the incident field--it is shielded to some extent by the

particles in front of it. This can occur, according to van de Hulst
(1957), if the mean spacing between particles becomes less than four

or five particle diameters. This problem practically never arises in

atmospheric applications of radiative transfer theory, but can arise in
neutron theory.

Another major problem area, which just over the last ten years or

so has begun to receive attention in the literature, is the problem
of the transfer of polarized radiation components and their use in

studying the properties of atmospheric components, and particularly
in the study of radiation from the surface of the oceans and clouds.

In most cases, this can be handled both numerically and analytically
by replacing the scalar equation we have been using with a vector

equation; i.e., the intensity scalar becomes a four-component vector

whose components are usually the Stokes parameters (see Deirmendjian,

1969, van de Hulst, 1957, Hansen and Travis, 1974), and the phase
function becomes a 4 x 4 phase matrix, whose components characterize

the polarization produced by a single act of scattering. Many of the

numerical techniques discussed in this chapter (adding, doubling, etc.)
can be used to analyze polarized fields, but little analytic work has

been done in this area (see Irvine and Lenoble, 1973, and Lenoble,

1977). Polarization for Rayleigh scattering has been considered by

Chandrasekhar (1960), and some work has been done by Sekera (see
Lenoble, 1977).
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