
CREATION OF THE SELECTION LIST
FOR THE

EXPERIMENT SCHEDULING PROGRAM (ESP)

Prepared for:

G. C. Marshall Space Flight Center
Systems Analysis and Integration Laboratory

Marshall Space Flight Center, Alabama, 35812

by:

Dr. Bryan L. Deuermeyer
Dr. Robert E. Shannon
Alvin J. Underbrink, Jr.

Industrial Engineering Division /{]?£/*SJ f "^
Texas Engineering Experiment Station

Texas A&M University
College Station, TX, 77843

(N4SA-CR-1788£1) CREATION OF 1HE SELECTION N86-28004
LIST ICE THE EXPERIMENT SCHEEULING PROGRAM
JESP) Final Report (Texas ASK Univ.) 74 p
HC AOU/MF ftOI CSCL 05A Uaclas

G3/81 43165

FINAL REPORT

Contract No. NAS8-35972

Mav 15, 1986

https://ntrs.nasa.gov/search.jsp?R=19860018532 2020-03-20T14:08:40+00:00Z

CREATION OF THE SELECTION LIST
FOR THE

EXPERIMENT SCHEDULING PROGRAM (ESP)

Prepared for:

G. C. Marshall Space Flight Center
Systems Analysis and Integration Laboratory

Marshall Space Flight Center, Alabama, 35812

by:

Dr. Bryan L. Deuermeyer
Dr. Robert E. Shannon
Alvin J. Underbrink, Jr.

Industrial Engineering Division
Texas Engineering Experiment Station

Texas A&M University
College Station, TX, 77843

FINAL REPORT

Contract No. NAS8-35972

May 15, 1986

ABSTRACT

This report summarizes the efforts to develop a
new procedure to construct selection groups to augment
the Experiment Scheduling Program (ESP). Included in
this report is a User's Guide and a sample scenario to
guide the use of the software system that implements
the procedures developed under this contract.

Table of Contents

1.0 Project Summary 1
2.0 Background 2
3.0 Ranking Procedures 3
4.0 Ranking Procedures and ESP 5
5.0 A Hybrid Approach 8
6.0 Handling Sequencing Requirement 9
7.0 Cluster Analysis 11
8.0 Optimization Approach: Project Scheduling 17
9.0 Analysis Tasks 20
10.0 Conclusions 21
Bibliography 23
Appendix 1 — Literature Review 27
Appendix 2 — Glossary of Terms 30
Appendix 3 — Summary of Experimental Analysis 31
Appendix 4 — Cluster Analysis 37
Appendix 5 — User's Guide 40
Appendix 6 — Sample Dialogue 46
Appendix 7 — Sample Cluster Output 50

1.0 PROJECT SUMMARY

The primary goal of this project was to develop a procedure for creating the selection

list that serves as the input for the Experiment Scheduling Program (ESP). Currently, ESP

removes experiments from the selection list using either the top experiment, or a randomly

selected performance; The supporting software for ESP does not analyze the mission data

to construct a selection list — this task is left up to the engineers as part of the modeling

activity. The one major restriction imposed on the research team was that the internal

operation of ESP could not be modified. Thus, the research effort focused upon methods

for establishing a selection list that would work in harmony with ESP and yet would

create good timeline schedules in less time and effort than the present manual approach.

A secondary goal of the project was to create a new optimization procedure for solving a

subset of the experiment scheduling problem. This procedure could eventually be factored

into ESP to enhance its performance. The tasks performed to date are summarized in

the last section of this report. Appendix 2 provides a short glossary of terms used in this

report.

The culmination of this project is a software package that implements the hybrid

approach motivated and developed in this report. Appendix 5 provides a User's Guide to

the software. While this package is not integrated into the menu for ESP, it does access

and modify the ESP data structures and files through service routines provided by the

Marshall Space Flight Center. The envisioned usage is for the engineer to create selection

groups that are subsequently used by ESP for creating a time line.

The overall methodology developed and implemented during this project explicitly

categorizes experiments into three broad groups: (1) critical experiments and those exper-

iments that serve as predecessors for other experiments; (2) experiments with mandatory

and necessary concurrence; and (3) all other experiments. The most sophisticated and

automatic procedures apply only to group (1), which is also the most difficult to hand

schedule due to the sequencing requirements. The least automated but most flexible pro-

cedures, based upon clustering and ranking, apply to group (3). Methods for group (2)

are similar to those applied to group (3), except that random sequencing is recommended

for these experiments. Therefore, if an experiment file consists of experiments which pre-

dominately fall into groups (1) and (2), our methodology will produce very high quality

timelines with virtually no effort on the part of the engineer. On the other hand, if the

experiment file has little sequencing or concurrence requirements, much more of the burden

is shifted to the engineer.

2.0 Background

Our literature review consists of approximately 45 papers, taken from resource schedul-

ing, project scheduling and machine shop scheduling (Appendix 1 provides a detailed re-

view of this literature). After reviewing this literature, it quickly became apparent that the

experiment scheduling problem is more general and more complicated than the problems

reported. It is important to identify those features of the experiment scheduling problem

that give it such special character:

1. Each experiment to be scheduled may have multiple performances;

2. Each performance has a series of steps that must be accomplished in order;

3. Some steps have a minimum, as well as a maximum step duration, with the minimum

being mandatory. Ideally as much time as possible should be given to steps;

4. Mandatory, necessary and desirable concurrence must be considered;

5. Some experiments have sequencing requirements;

6. Some experiments/steps have target requirements and these translate to time window

requirements;

7. Both depletable and non-depletable resources must be considered;

8. Some performances of an experiment have a startup step and/or a shutdown step -

other performances do not have these steps;

9. Delays may be required between steps and/or performances;

10. Resources needed by one experiment may be created by other experiments;

11. The mission length is fixed, which implies that all experiments that are to be performed

must be scheduled within the mission window. In scheduling vernacular, the makespan

is fixed.

These features make the experiment scheduling problem far more difficult than the

job shop problems studied in the scheduling literature. Actually, the problem addressed by

ESP corresponds more closely with real-world production scheduling problems, not with

the more simplified situations modeled in the literature. However, the time complexity

of job shop problems, which can be viewed as subproblems of the experiment schedul-

ing problem, suggests that no optimum seeking approach will be computationally feasible.

Heuristics offer the only hope to approaching the problem; the experiment scheduling prob-

lem inherits this unfortunate property. Therefore, heuristics based upon ranking principles

appears to be the only practical way to approach the scheduling problem.

The initial phase of the project identified the following three approaches for creating

the selection list:

1. Utilize and develop ranking procedures.

2. Utilize techniques from production and computer system scheduling, as well as re-

source scheduling.

3. Develop an optimization model and heuristics.

After some work on the experiment scheduling problem it became apparent that this

problem has several features that distinguish it from both production and computer system

scheduling problems as well as resource scheduling problems found in the traditional liter-

ature. Also, it was determined that simple one-step ranking procedures will not perform to

the desired level of performance. Consequently, an alternative approach that augments the

simple ranking method with clustering was selected. Cluster analysis allows the engineer

to explicitly determine the experiments that have similar scheduling requirements to aid

in the construction of a selection list. Once clusters have been formed, they are ranked

and the ordered clusters of experiments are then placed into one or more selection groups.

3.0 Ranking Procedures

Almost any numerical ranking procedure can be expressed in the following manner.

Suppose there are N factors of interest, that factor j is given a numerical weight Oj, and

that Uij is the score given to factor j of experiment *. Then the ranking score for experiment

»is calculated by the expression

N

ajUij. (1)

The most straight forward method for setting up the selection list is to sort the ex-

periments into decreasing order of ranking score. At this point it is worthwhile to provide

some of the background behind ranking procedures and their application to scheduling

problems. In the most simplistic scheduling problem, a single resource is to be used to

perform one task on each of a collection of independent jobs. For many of the basic per-

formance measures (e.g. mean flow. time), the best schedules can be obtained by simply

sorting the processing times, due-dates, or ratios of processing times to costs. For other

criteria, such as mean tardiness, an optimal schedule cannot be identified in a straight

forward manner. As a result, heuristic procedures have gained popularity, both for prag-

matic as well as performance reasons. Most heuristic procedures are called dispatching

rules since the next task to perform at a processor (resource) is determined by looking at

the collection of tasks currently present, and selecting one based on a single attribute. For

example, one could select the task having the shortest processing time, the least amount

of work remaining, the largest critical ratio, etc. Once again, dispatching rules amount to

sorting tasks based upon a single criterion.

Many real scheduling problems do not have a single dominant criteria, and so no one

dispatching rule is capable of providing the desired performance. Attempts to circumvent

this shortcoming by assigning scores to each of the performance criteria for each job/task

and then computing a weighted average of the criteria have been proposed. Despite the

logical reasoning behind this approach, there has not been wide success with it. There are

several technical reasons for the lack of general success.

First, since performance measures are often conflicting, a schedule that works well for

one measure may be poor for others. Therefore, simply weighting the measures will not

necessarily produce a schedule that does even reasonably well for any measure. Desired

performance is only achieved by careful selection of the weights; and this frequently reduces

to ranking the importance of the measures and adjusting the weights to produce the desired

result.

Second, dispatching rules, and hence the ranking scores are typically computed at

each machine or operation. It is extremely difficult to estimate the down stream effects

of all of these local decisions. For example, if work is selected at machine 2 based upon

its current and future work content, it may well be that a task is selected for processing

because the queue at the next work station for this job may currently be empty. However,

several work stations may make the same decision for the same reason. A short time later

a serious bottleneck may result. To date, such simple approaches have not worked due to

the lack of ability to accurately predict overall shop loadings and to make this information

available to individual work stations. Hence, the real problem is one of properly addressing

resource availabilities and factoring this information into dispatching rules.

Third, as mentioned above, aggregate scoring techniques are highly dependent upon

the weights. It is usually not possible to settle on values for the weights that work uniformly

well for all job sets. Some degree of experimentation is necessary to yield the desired

performance.

Fourth, it is possible for two jobs to produce the same score due to entirely different

reasons. It may make sense to handle these jobs differently even though their scores are

equivalent.

4.0 Ranking Procedures and ESP

There have been two suggested ranking procedures offered for the experiment schedul-

ing problem. The first, called resource scoring (RS) , assigns a value to each resource,

number of performances, etc. and then computes a weighted average of the form given

by equation (1). Weights here reflect the desired importance associated with the factors.

The second, called difficulty scoring (DS), assigns a value to factors that should impact

the schedulability of the experiment. Weights are applied to each of these factors, again

reflecting importance of the factors. At least conceptually, the DS method is superior to

the RS method in that the focus is directly upon schedulability.

It turns out, however, that neither of these procedures can be expected to produce

good schedules all of the time. One of the most important reasons that ranking procedures,

such as the ones above, do not work well is that the weights are not usually dependent

upon the mission data. Thus, weights that work for one mission will probably not work

on another mission. There is no way to avoid experimentation to fine-tune the weights,

and it does not seem possible to provide general guidelines to govern this process. In the

end, one schedules by experimenting and learning what is important and what works on a

case by case basis. Of course, this defeats the reason for using a scoring method. A second

reason is that the time dependent availability of resources, sequencing requirements, and

other aspects of the problem require more than one rule to get good schedules.

Our research (Appendix 3 provides a synopsis of representative experimental runs

throughout the research project) has identified an alternative approach that appears to

work well with ESP; it is an approach that is generalizable and modifiable, and experience

from one mission to another can be factored into the approach. The early work on this

project attempted to access the applicability of these two approaches by trying to determine

how various measures of difficulty and resource utilization impact schedule performance.

The justification for this approach was that the ESP program and its logic were not to be

changed — only the selection group construction was to be addressed. In the beginning,

this seemed to be severe restriction; however, as the work progressed, two insights were

gained. First, ESP does a remarkably good job of scheduling given the selection list

and what ESP does is remarkably complicated. Second, much of the theory or reasoning

behind the scoring methods miss crucial aspects of the problem. Given that only selection

grouping was open to study, the DS approach (or more sophisticated variants to it) at

first seemed very reasonable. However, carefully constructed test groups revealed that no

single ranking procedure will work in general.

Let us take a closer look at what ranking procedures do and then see if a stronger and

more versatile approach is suggested. Numerical ranking methods assign a score to each

experiment and then the experiments are sequenced by value, so that the most difficult to

schedule experiments are given to ESP first. If you look at a selection list constructed in

this manner what you will find are groups of experiments with similar ranking scores —

like the results of an examination. As with examinations, you can see the A's, B's, etc.,

and it is these that are the groupings. In grading examinations, this approach is acceptable

because the purpose of the examination is to measure a student's mastery of the subject;

the groups identify classes of performance. It is important to recognize that the global

affect of a numerical ranking procedure is that it does identify classes of experiments just

as in the examination case. But, what are the implications of these classes?

First, the difficulty factors that are used in the weighting are not homogeneous — they

each impact timeline creation in a different way. As mentioned above, two experiments

may have the same score but achieve this score for different reasons. More generally,

experiments in the same scoring class (i.e. the A's, B's, etc.) may have distinctly different

impacts on scheduling.

Second, different numerical weights will create different experiment classes and prob-

ably different scheduling performance. When two missions differ significantly, it may be

necessary to conduct an extensive trial and error process to find the weights that produce

the desired performance.

Third, little overall insight can be gained from the trial and error approach because the

resulting classes and rankings are not explicitly available to the engineer. What is actually

needed is a method that forms the classes directly by similarity of categories. What is

meant here is that two experiments are in the same class if their vectors of categories (by

category we mean lists of characteristics such as those used in numerical ranking) are more

similar to each other than to experiments not in their class. Once such classes, called

clusters, have been created, the engineer would rank the clusters.

This discussion hopefully points out that numerical ranking methods do in fact pro-

duce ordered groups of experiments, but that membership in these groups is not well-

founded and the factors that govern the membership are inaccessible to the engineer. We

suggest using an explicit cluster analysis before ranking to allow the engineer more control

over the creation of the selection list.

Before moving on, it is important to point out that no ranking procedure can success-

fully address sequencing requirements. Therefore, we present an algorithm that directly

handles such requirements. The disscussion appears in sections 5 and 6.

Section 7 describes cluster analysis and how it can be used to provide an alternative

to the simple numerical ranking procedures discussed above.

5.0 A Hybrid Approach

This research has identified the follwing three classes of experiments and presents

techniques to address each class; the TAMU software package represents an implementation

of these techniques.

1. Experiments that are critical to other experiments because of sequencing requirements;

2. Experiments that have either mandatory or necessary concurrence requirements; and

3. All other experiments.

This partition of the mission file is in recognition of the distinct characteristics that

these classes have in terms of their scheduling requirements. Our experience with SPL.MOD

indicates that the quality of the overall timeline depends very heavily upon the quality

of the sequencing of the experiments in class 1; furthermore, this is the most difficult set

of experiments to hand schedule due to their down-stream impact. Class three consists

of such a wide variety of experiments that we are forced to consider some type of rank-

ing procedure, but the approach we offer is based upon clustering and interactive use by

the engineer as appdsed to the less direct numerical scoring techniques mentioned in the

previous two sections. We offer a clustering technique and interactive software support to

sequence class three.

The approach will be to create a minimum of three ESP selection groups, one for each

of the above classes, and then these three selection classes should be processed in order by

ESP. In the following sections of this report, we describe the methodologies that should be

used to partition the mission file into these three classes and to sequence the experiments

within each class.

Function [1] of the TAMU system creates the three classes and the associated three

(unsequenced) ESP selection groups, and prepares the necessary data structures to perform

the subsequent steps. Function [2] the sequences the experiments in the first selection

group, those experiments that must be completed as prerequisites for other experiments.

Functions [3] - [5] facilitate cluster analysis and the construction of the third class of

8

selection groups (for those experiments not being predecessors to other experiments nor

having concurrency requirements). Finally, function [6] prepares the selection groups for

access by ESP.

What remains to discuss is class 2, the set of mandatory and necessary concurrence

experiments. We can summarize our experience with SPL.MOD for class two as follows:

1. While we found that clustering offers a lot of assistance for this set of experiment, we

found that using ESP's random order sequencing rule to be very effective here. The

reason is quite simple: this rule schedules on a performance by performance basis.

Since the number of experiments is not large, ESP can schedule these experiments

quite quickly.

2. We did find that it makes sense to split this selection group if there are experiments

with a large number of requested performances; the second sub-selection group would

not be sequenced using the random order rule, and we recommend that this second

group be placed after the selection groups obtained from class three.

6.0 Handling Sequencing Requirement

The purpose of this section is to describe the approach for handling sequencing re-

quirements. This is a difficult problem and finding a good solution is both hard and critical.

Typically, a mission file contains a relatively small number of experiments that must be

performed as prerequisites for most of the remaining experiments. Unfortunately, these

critical experiments fall into independent classes such as depicted in Figure 1. Notice that

there are two "trees" one rooted at experiment number 26 and the other at experiment

133. Also notice that in terms of sequencing requirements, these two trees are independent.

The crux of the algorithm discussed in this section is a heuristic for ordering and merging

these trees.is a difficult problem because a mission file.

The first step is to search through the model file and assess the overall precedences

that must be followed. A convenient method to accomplish this is to determine a spanning

forest, consisting of the collection of trees describing the sequencing requirements. In

general, there will either be an empty forest, which occurs if there are no sequencing

requirements, or there will be several trees in the forest. Figure 1 provides a partial picture

X'
26

29

28-
• 59

•57
S8

60

63
64

133- ,143-
.142- .135-*136'

137
138

•139
140

Figure

of such a spanning forest. Therefore, the first pass of the algorithm (TAMU menu function

[2], and implemented in subroutine WEISS) must construct an internal representation of

this forest. In addition, the algorithm must identify those experiments that are leaves of

the spanning forest; these experiments are excluded from selection group 1.

For example, in the spanning forest rooted at experiment 133, notice that experiments

137-139, and 140 cannot be scheduled unless 133, 143, 142, 135 and 136 have already been

scheduled. For this reason, these last five experiments are assigned to class 1. The general

rule that we have developed is that any experiment having at least one successor is assigned

to class 1; all other experiments are assigned to class 2 if they have either mandatory or

necessary concurrence and to class 3 otherwise. There are two exceptions: any experiment

having mandatory or necessary concurrence with experiments in class 1 are also assigned

to class 1, and other critical experiments may also be assigned to class 1 to insure that

they have an opportunity to be scheduled. Experiments in this last group are judged to

be critical by the engineer based upon considerations beyond the scope of ESP.

This first pass accomplishes its task by first setting up an adjacency matrix (a matrix

which has a row for each experiment and each row lists the experiments that follow the

designated experiment). A depth-first traversal determines the leaves of the tree and

sets up the data structures for the second phase of the algorithm, which is to order the

experiments that fall into class 1.

Phase 2 of the algorithm is based upon a heuristic developed by Weiss (1981). The

idea is to view the current forest as a partially ordered collection of experiments. Edges

are added to the forest during successive steps of the algorithm until the forest becomes a

chain; that is, exactly one tree remains, and this tree is completely ordered.

The algorithm selects an edge based upon a pre-coded function C(i, j), which specifies

a "cost" of placing experiment t before experiment j, for experiments i and ; that are

not already ordered into a chain. The experiment with the smallest such function value

is selected and the corresponding edge is inserted into the forest. The algorithm next

updates the transitive closure (i.e. also adds any edges implied by the current forest as

a consequence of adding the new edge). This process is repeated until there is a total of

10

n(n+ll (n is the number of experiments in class 1) edges in the forest; at this point the

order experiment order is established.

Currently, experiments in class 1 axe assigned to selection group 1, and are sequenced

by experiment number. A further refinement makes use of the performance window size

and location to prioritize of these experiments. The hooks are present to allow the engineer

to code in a more general function, C, than we have used; this is documented in the code

for WEISS.FOR. ESP already schedules all of the experiments that we have placed into

selection group 1 except those experiments that have to be hand scheduled or that have

errors in their model. While this performance may depend upon the specific characteristics

of the test model file that we used, we do expect a high quality of performance on other

missions as well.

7.0 Cluster Analysis

The role of clustering in the scheduling problem is to provide the engineer with a

standard basis for grouping and scheduling those experiments that do not have either

sequencing requirements nor concurrency requirements. The approach discussed in this

section requires the engineer to write his own program to categorize the characteristics

of the experiments based upon those factors thought to be important. The philosophy

is to make it possible for the engineer to make maximum use of the knowledge that he

or she has concerning both the experiment data and using ESP. Successful application of

the method may require some trial and error when the engineer encounters a model file

(experiment file) that is a radical departure from previous cases. For example, if past

situations have included a lot of sequencing requirements, concurrence and targets and

a new case contains none of these, then experimentation is necessary to recalibrate the

method (i.e. determine which factors are critical to scheduling this new mission). Since

our overall hybrid scheduling procedure works best when sequencing requirements are

extensive, it is recommended that modeling be conducted with this in mind. Going a step

further, more can be accomplished from our system if more attention to scheduling issues

is paid during modeling.

11

Factor Definition

Perfl Number of performances < 5
Perf2 Number of performances > 5 and < 10
PerfS Number of performances > 10
Wsmall Window length < 72 hours
Wmedium Window length > 72 and < 144
Wlarge Window length > 144 and < 216
Whuge Window length > 216
Wmult More than one performance window exists
Tgtl N3F05, OPEN ATT, SEPAC, WAM-8 , SEPA1, X3 F
TgtII IVL60-80, LAT, MAG
TgtIII LMT222-2, NOONMDNT, 2QNIGHT, SHADOW,

MSHADOW
TgtIV DAY, NIGHT, SBAND, SUN, TDRS
TgtV A target is present, but not critical or no

target is required

Table 1 — Definitions for Cluster Factor

The clustering approach relies on the premise that a few factors are critical to the

ability for ESP to produce good schedules, and that the entire collection of experiments

to be scheduled fall into a few (on the order of 10) major groups. Furthermore, there is

a reasonable ordering of the groups based simply on what factors are present within the

groups. Below is a discussion of how to carry out the cluster analysis and to order the

clusters. Appendix 4 details the actual clustering algorithm.

Appendix 7 provides a sample listing of cluster analysis as applied to those exper-

iments in SPL.MOD that do not have either concurrency or sequencing requirements.

Three broad categories of factors were included: (1) Number of performances; (2) Window

width; and (3) Target requirements. Several levels of each factor were created within each

broad category to reflect varying degrees of criticality to scheduling. Table 1 provides the

definitions of the factors. Those targets in Tgtl were judged to be the most difficult to

schedule, while going from TgtII to TgtV are progressively easier to schedule — in terms of

targets alone. Similarly, Wsmall is the most difficult to schedule and Whuge is the easiest.

Wmult was included because there was a small number of experiments having multiple

performance windows.

12

These choices were made partly due to our experience with SPL.MOD and due to

consultation with personnel from Marshall Space Flight Center; the latter specifically

in categorizing the targets by criticality of scheduling. This choice produces 13 distinct

factors. Now, a preprocessor is required to loop through the model file and score each

experiment relative to the 13 factors. If a factor is present, then that factor receives a

score of 1, otherwise that factor receives a score of 0. (The preprocessor is accessed from

function [3] of the TAMU menu, and is transparent to the user. Appendix 6 discusses

this in more detail. However, the program ROUTMOD.FOR must be modified by the

user if different factors are desired.) To illustrate the scoring, consider experiment number

157. Factors Peril and Whuge receive scores of 1 and all other scores are set to 0. This

information is contained in the file PAK.RPT, obtained by selecting function [4] in the

TAMU menu and is the result of the first pass of the clustering algorithm.

The first pass of the clustering algorithm is to collect experiments into groups, called

packs, if they have exactly the same scoring vectors. Experiments falling into the same

pack are equivalent so far as clustering is concerned. The pack report is arranged into

three basic groups of columns. The first column lists the pack number, the second two

columns list the experiment numbers of the experiments contained in the pack and the

third group of columns lists the factors present in each of the experiments in the pack. For

example, Pack number 2 consists of experiments 2, 4, 5, 6, 7 and 91, and each of these

experiments use factors PerfS, TgtIV and Wsmall . The purpose of the packs is simply

to reduce the size of the problem to be considered by the clustering algorithm. Thus, out

of the 186 experiments there are only 32 packs. Once again, experiments within a pack

are judged to be equivalent (i.e. have the same set of requirements) so far as clustering is

concerned.

Before clustering can begin, the system must compute the similarity matrix, which

specifies a numerical value called the similarity index for each pair of packs. The larger

this value, the more similar the two packs; if there are no common factors, the index is

zero. Again, the reason for using packs is to minimize the size of this matrix.

Once the similarity indices have been computed, the clustering algorithm sets out

to create the clusters. To do this, the system repetitively takes a pack and compares

13

Pack No. Perfl Wmult TgtIV TgtIII

15 * *
16 * * *
19 * * *

it to previously determined clusters. If this pack is sufficiently similar to one of these

clusters, then it is added to the cluster it best fits; otherwise the experiment initiates

a new cluster. The actual details of how all of this is done and how the sensitivity of

the comparisons are controlled is described in Appendix 4. The outcome of the clustering

analysis is documented in the file CLU.RPT, produced by function [4] in the TAMU system.

To explain the cluster report, we consider its two main parts. The first is the three

lines at the beginning of the report. The threshold density is 2, representing a moderate

sensitivity, 32 packs were considered and 11 clusters were formed. The second part of the

report is a listing of each of the 11 clusters. For purpose of discussion, consider cluster

number 4.

This cluster contains packs 15, 16 and 19 and hence experiments 66, 73, 80, 67, 72,

and 78, in that order. The top line of this section lists Perfl, Wmult, TgtIV and TgtIII,

indicating that the experiments in this cluster have these factors. Below this information is

the component pack matrix. The columns of this matrix are in one-to-one correspondence

with the list of factors found at the top; an asterisk indicates that the factor is present.

To facilitate the discussion, consider the following expanded copy of the pack matrix.

Notice that all packs (i.e. sets of experiments) in this cluster have both Perfl and Wmult,

but they differ in what targets are required. At first it would appear that an ideal cluster

would be one where there is an asterisk in each position of the matrix; however, since this

condition is already treated in creating the packs, what is typically observed are clusters

similar to those in the table. Notice that as the cluster proceeds downward, the matrix

has the appearance of spreading out to the right. This affect is even more pronounced in

some clusters. While there are no absolutes, what we want to avoid is several clusters that

exhibit pronounced sparsity. The reason is that as packs are added, they are less and less

similar to the earlier packs. This behavior is generally caused by using too large a value

14

for the sensitivity parameter k. Reducing k forces the system to create a larger number,

although more similar, of clusters.

What have we accomplished so far? To begin with, we now only have to sequence the

11 clusters, which is easier to handle than the original number of experiments. Further-

more, we only need to keep track of 13 factors, and our ordering will be based on these

alone. Let us summarize where we have been and what yet needs to be done.

The clustering process (assuming factor categories have already been established)

requires three general steps:

1. Create packs and then clusters.

2. Analyze clusters and determine cluster ordering.

3. Create the selection group(s) (i.e. one or more hoppers labelled 3,4,...,11) for ESP.

We now detail these specific tasks that must be carried out to accomplish the steps

mentioned above, and include in this discussion the software support that is available.

Appendix 6 provides the complete dialogue of the sample session that created the pack

and cluster report provided in Appendix 7.

1. Select item [3] on the TAMU menu - this function automatically creates the packs

and clusters for those experiments that do not have either sequencing or concurrency

requirements. The system will prompt for a "k" value that selects the clustering

sensitivity. A value of 2 generally works best. (Smaller values of k produce more

clusters while larger values of k produce fewer clusters.) Once control is passed back

to the engineer, select function [4] from the menu to have the system create the cluster

report, which can then be viewed by a TYPE CLU.RPT command from operating

system level. Once a hard copy of the cluster report is in hand, proceed to the next

step.

2. Once the clusters have been formed and the cluster report is available, the next step

is to analyze the nature of the clusters and to use this information to sequence the

clusters. We have found that the order that the clustering analysis provides within

clusters works quite well, so the effort needs to be directed at ordering the individual

clusters. The method we had success with orders the clusters by repetitively placing

first the cluster having the most highly critical factors. The engineer should do this

15

Hopper Selection Group Cluster Sequence

1 3 1, 7, 9
2 4 11
3 5 6
4 6 2,3, 5
5 7 4,8, 10

based upon past experience, knowledge of the mission, or trial and error. The software

that supports this task is accessed by selecting function [5].

3. Once the clusters have been ordered, select function [6] from the menu to prepare

the experiment file for use by ESP. At this point, work with the TAMU software is

complete and it is time to go to ESP. Select function [7] to exit the system.

Step two, the ordering of the clusters deserves further discussion. The dialogue in

Appendix 6 provides an example where 5 hoppers are created from these 11 clusters. The

table below shows the hoppers created by this step, the selection group number used within

ESP, followed by the cluster sequence .within the designated hopper.

The ordering was produced by a very simple, yet effective scheme. First, the clusters

were arranged in the order such that Wsmall - Wmedium - Wlarge - Whuge - Wmult,

since we found that window width was the single most important factor (in SPL.MOD).

Wmult was placed last because there is more flexibility here than in the other cases. Next,

within this ordering, we put a bias on placing clusters containing Tgtl (the most critical

targets) first. Hopper 5 contains the clusters where Wmult is present, and these clusters

were arranged basically by smallest number of performances first.

The summary of experimental results provided in Appendix 3 is a representative

sample of our trial and error runs. We can summarize as follows.

1. Performance window length was most important among factors;

2. It is advantageous to use several hoppers as output of the clustering analysis due to

the excellent editing capabilities in ESP.

In conclusion, clustering provides a means to reduce the amount of information needed

and the size of the problem that the engineer must consider in order to sequence the

experiments that do not have either sequencing nor concurrency requirements. Ultimately

the engineer is forced to manually do the sequencing, but this should only involve a small

16

number of objects, the clusters. In this manner, individual experiments do not have to be

dealt with explicitly and the factors and cluster summary information makes it easier for

the engineer to work with the most critical aspects of the problem.

8.0 Optimization Approach: Project Scheduling

This section describes a parallel effort which sought to develop an optimization al-

gorithm for sequencing experiments within packs and clusters within hoppers. Suppose

that a set of activities related by transitive precedence relations is given. The duration of

each activity is assumed to be a known constant. In addition, information regarding the

starting and finishing times of each activity such as ready time, due date, and time delay

between two consecutive activities may also be available. In this case, constraints must

also be incorporated to ensure that these time requirements are met.

Activities require the use of certain resources during their execution. The number of

units of each resource type is necessary to perform each activity is assumed to be a known

constant as well as the number of units of each resource type available at each time period.

Other constraints such as concurrence may also be included, in which case some activities

are required to be performed simultaneously. Our approach builds upon the formulation

of Balas (1970).

Suppose that there are n pairs of disjunctive arcs in a graph. Let Xk be a variable

that indicates the state of disjunctive pair k. Let A' be the vector of variables representing

the states of all disjunctive pairs in the graph. A selection is given by one particular value

of X. Moreover, a selection is said to be complete if, for all disjunctive pairs, exactly

one of arcs is active. Having the above definitions, it is now possible to formulate the

project scheduling problem. For simplicity it is assumed that there are only precedence

and resource constraints and that resource availabilities are constant over time. Other

constraints as well as variable resource availabilities are easily incorporated into the model,

but at the expense of more complicated notation.

The following discussion will use the so called activity-on-node convention. In order

to illustrate the concepts discussed above, an example problem is presented in Figure 2.

Additional data is presented in Table 1, where r,-(j) is the usage of resource i by activity

17

Figure 2

A c t i v i t y

1
2
3
4
5
6
7
8

D u r a t i o n

2
5
4
2
1
3
2
0

r ^ J)

1
2
1
0
1
0
0
0

r 2 (J)

1
2
0
2
1
1
0
0

r 3 (j)

1
1
0
0
1
1
2
0

> = 2 and

Table 2

j and Ri is the availability of resource »'. Suppose, without loss of generality, that there is

one initial activity with no predecessors and one end activity with no successors. Suppose

also that all other activities have at least one predecessor and one successor. To each arc

leaving activity (node) i is associated the duration of activity t. Now, between all pairs of

activities which are not precedence related and which consume the same resource create

a disjunctive pair of arcs. Again, the parameter associated with each of the arcs is the

duration of the activity where the arc originates. For the set of disjunctive pairs so created,

a selection is said to be feasible if no resource conflict is present. Considering minimization

of project duration as the objective criterion, the project scheduling problem can now be

formulated as the problem of finding, among all possible feasible selections, the one which

minimizes the critical path in the network. One example of a feasible selection for the

problem presented in Figure 2 and Table 2 is given in Figure 3.

A Decomposition Procedure

The idea of a decomposition procedure comes as an effort to develop a more consistent

heuristic procedure. The basic idea is to divide the problem into a sequence of subproblems

which can then be solved, if possible, optimally. Decisions are made only as they become

necessary.

The procedure starts with a solution which provides a lower bound on the total project

duration. This solution can be obtained by deleting the resource constraints and computing

the earliest start time for each activity by means of a critical path analysis. The next step

in the procedure is to scan the time line until a resource infeasibility is found. At this

point a subproblem is constructed. The activities in the subproblem are the ones which

are involved in any resource conflict at the current point in time. Notice that all activities

involved in a resource conflict are not precedence related. The model will depend on the

criterion used to solve the subproblems. In this project, minimization of makespan is of

interest. For simplicity, it is also assumed that activities which are already initiated at the

current time are not considered for removal although the general case where any activity is

considered for removal could be considered. A theoretical reason for such an assumption is

that, in this case, the solution obtained for the global problem can be shown to be active;

18

Figure 3

A c t i v i t y

1
2
3
4

d u r a t i o n

4
2
5
3

r j (j

6
5
4
1

) r 2 (j)

2
1
3
3

r 3 (j)

2
5
4
5

r 4 (j)

6
1
3
5

Table 3

1 1
21

1 3
«

Figure 4

Figure 5

in other words, no left shifting of an activity is possible without increasing the completion

time of some other activities. As an example, consider the situation illustrated by Figure

4, where activities are arbitrarily labeled. Also, consider the data presented in Table 3.

Assume that the resource availabilities for the four resources are 10. The model for

minimizing makespan for this subproblem is given by the network in Figure 5, where nodes

0 and i are dummy nodes. Notice that, in this example, activity 3 was already started.

As a consequence, none of the other activities can precede activity 3. For this reason,

only the arcs leaving activity 3 are considered to become active. Notice also that the

parameter associated with the arcs leaving activity 3 is equal to the total duration of

actvity 3 subtracted by the portion already completed by time t.

In order to find the best feasible selection for each subproblem, a concept which is

reported in Bellman, Esogbue and Nabeshima (1982) is utilized. Suppose A is the set of

activities in subproblem 1. In the previous example, A = {1,2,3,4}. Create all subsets of

size 2 of set A such that no two activities in the same subset can possibly be scheduled

simultaneously. In the example, Al = {1,2} and A2 = {1,4}. Now, create all subsets

of size 3 of set A such that the three activities in a given subset can not be scheduled

simultaneously and such that the new subset of size 3 does not contain any of the subsets

of size 2. In the example, the only subset of size 3 is A3 = {2,3,4}. An interesting property

of the new subset so created is that, by creating exactly one precedence relation between

any two activities in the new subset, all resource conflicts among those activities in the

subset under consideration are resolved. The process is repeated by creating subsets of

greater size until no more subsets can be created.

Suppose the total number of subsets of set A so created is m. In the example, m

is equal to 3. Notice that for each pair of nodes appearing in the subsets Al,..., Am, it

corresponds to one disjunctive arc in the model. Now, suppose that exactly one pair of

nodes is selected from each of the subsets. By making exactly one of the arcs connecting

each pair active, the solution so generated will either be feasible or contain a circuit, in

which case the solution is discarded. Moreover, it can be shown that by generating all

possible combinations of pair of nodes, each pair belonging to one subset, all possible

feasible solutions will be investigated. This fact guarantees an optimal solution can be

19

obtained by examining only the feasible solutions to the subproblem. In the example, a

total of 16 solutions would have to be investigated. Implementation-wise, efficient recursive

procedures can be employed to generate the feasible solutions. Notice also the procedure

lends itself to the application of heuristics. For example, just a few of the combinations

could be generated and the best solution for these combinations determined.

Once one solution is obtained the new precedence relations established by this solu-

tion are added to the original network and the starting times are updated. The search

continues for the next time period where a resource conflict occurs and a new subproblem

is generated. The procedure repeats until all resource infeasibilities are resolved.

Although the procedure is still in its implementation phase and no significant tests

have been performed, it is expected that the procedure will be able to find good solutions

for problems of reasonable size. One problem having forty three activities has been solved

by hand. The solution obtained by the decomposition procedure provided a makespan of

81 time units against an optimal solution of 74 time units. The procedure could also be

further enhanced by allowing for user intervention in cases where critical activities must

be scheduled with higher priorities. In this case, the user could specify the time at which

such an activity must be scheduled.

9.0 Analysis Tasks

The following list of tasks summarizes the efforts and activities of the project:

1. Host and learn ESP.

2. Conduct literature review.

3. Begin work on heuristic-based optimization procedure.

4. Preliminary experimentation.

5. Fall briefing at MFSC: Application of cluster analysis and cluster scheduling.

6. Application of cluster analysis:

a) Develop software

b) Integration with ESP

c) Identify factors

d) Experiment with clusters and scheduling with ESP.

20

7. Develop software to implement the heuristic-based optimization scheduling procedure.

(At this point, the algorithm addresses a subset of the experiment scheduling problem.

This algorithm would have to replace some of ESP, or would have to be integrated

into the logic of ESP.)

8. Analysis of experimental results.

9. Handling sequencing requirements

a) Develop software to create depth-first spanning forest

b) Develop interface with ESP database.

10. Handling concurrence

a) Problems with selection groups (mandatory and necessary concurrence experi-

ments must be in the same selection group).

11. Developed a three phase approach to the problem.

a) Create three classes of experiments

b) Develop software to assign experiments to the classes

c) Develop a scheduling philosophy for'each class.

12. Develop software to accomplish intra-class scheduling.

13. Experimentation with hybrid approach.

14. Summarize results for October briefing at MFSC.

15. Final documentation for Optimization algorithm .

16. Integrate project software for easy use with ESP.

17. Prepare Final Report.

10.0 Conclusions

The work performed in this project has accomplished two major tasks. First, a proce-

dure was developed to prepare the selection lists that ESP needs so that it can produce an

effective time line with a minimal amount of experimentation and manual effort. Schedules

produced with our software produce schedules whose performance score is comparable with

the time line created at MSFC, and our procedure requires no manual manipulation of the

model file for the mission. The software has been integrated into a single menu-driven

21

package to facilitate selection group analysis, and the package operates directly upon the

ESP data structures.

Second, we have developed a new optimization model for the resource constrained

project scheduling problem, and this represents a direct contribution to the scheduling

literature. While this model and its algorithm do not directly apply to the experiment

scheduling problem, they do provide new insights into a special case of this problem and

will be useful in their own right.

There is much more that could be done to further improve the scheduling performance

of ESP, but most of this would involve integrating the selection list building with the inner

workings of ESP. It is very difficult to estimate the degree of improvement that could be

accomplished, especially in light of the anticipated significant increase in computational

times and added complexity of the overall procedure. Perhaps the most significant gains

in scheduling performance could be attained by standardizing the modeling process.

There is no question that the modeling process is somewhat of an art form; the

requirements of experiments and their nature make it very difficult to create a single model

template. That is, it seems impossible to convert the experiment specifications into the

ESP model without a substantial amount of interpretation and trickery. Different modelers

will surely produce different models, and the differences can be significant — especially in

their impact on scheduling. For example, window length and location, targets, sequencing

requirements, crew usage, resource usage and equipment usage are all very important in

scheduling, but different modelers may make use of these in differing ways. Therefore, a

standardized method to accomplish modeling that is designed to produce models that are

compatible with the selection list creator and ESP is essential.

22

BIBLIOGRAPHY

[Bales] Balas, E., "An Additive Algorithm for Solving Linear Programs with Zero-
One Variables," Operations Research, Vol. 13 (1965), 517-546.

[Balas] Balas, E., "Project Scheduling with Resource Constraints," Applications of
Mathematical Programming Techniques, E. M. L. Beale, ed., American Else-
vier (1970), 187-200.

[Bellman] Bellman, R., A. O. Esogbue and I. Nabeshima, Mathematical Aspects of
Scheduling and Applications, Pergamon Press (1982).

[Carruthers] Carruthers, J. A. and Battersby, A., "Advances in Critical Path Methods,"
Operational Research Quarterly, Vol. 17, 4 (1966),359-380.

[Cooper] Cooper, D. F., "Heuristics for Scheduling Resource-Constrained Projects:
An Experimental Investigation," Management Science, Vol. 22 (July 1976),
1186-1194.

[Davis] Davis, E. W. and G. E. Heidorn, "An Algorithm for Optimal Project Schedul-
ing under Multiple Resource Constraints," Management Science, Vol. 17
(August 1971), B803-816.

[Davis] Davis, E. W. and J. H. Patterson, "A Comparison of Heuristic and Opti-
mum Solutions in Resource-Constrained Project Scheduling," Management
Science, Vol. 21 (April 1975), 944-955.

[Fendley] Fendley, L., "Toward the Development of a Complete Multi-Project Schedul-
ing System," Journal of Industrial Engineering, Vol. 19 (October 1968),
505-515.

[Fisher] Fisher, M. L., "Optimal Solution of Scheduling Problems Using Lagrange
Multipliers: Part II," in the Proceedings of the Sympposium on the Theory
of Scheduling and Its Applications, North Carolina State University, May
15-17, (1972), 294-317.

[Fisher] Fisher, M. L., "Optimal Solution of Scheduling Problems Using Lagrange
Multipliers: Part I," Operations Research, Vol. 21, (1973), 1114-1127.

[Gorenstein] Gorenstein, S., "An Algorithm for Project (Job) Sequencing with Resource
Constraints," Operations Research, Vol. 20 (July/August 1972), 835- 850.

23

[Grone] Grone, R. D. and Mathis, F. H., "A Ranking Algorithm for Spacelab Crew
and Experiments Scheduling," NASA/ASEE Summer Faculty Fellowship
Program, (1980).

[Hastings] Hastings, N. A. J., "On Resource Allocation in Project Networks," Opera-
tional Research Quarterly, Vol. 23 (June 1952), 217-221.

[Held] Held, M. and Karp, R. M., "A Dynamic Programming Approach to Sequenc-
ing Problems," Journal of the Society for Industrial and Applied Mathemat-
ics, Vol. 10, 1 (1962), 196-210.

[Johnson] Johnson, T. J. R., An Algorithm for the Resource Constrained Project
Scheduling Problem , Unpublished Ph.D. Thesis, Sloan School of Manage-
ment, M.I.T., Aug. 1967.

[Kelley] Kelley, J. E., Jr., "The Critical-Path Method: Resources Planning and
Scheduling," Chapter 21 in Industrial Scheduling] (John F. Muth and Gerald
L. Thompson, eds.), (1963).

[Kurtulus] Kurtulus, I. and Davis, E. W.v "Multi-Project Scheduling: Categorization
of Heuristic Rules Performance," Management Science, Vol. 28, 2 (1982),
161-172.

[Lambourne] Lambourne, S., "Resource Allocation and Multi-Project Scheduling (RAMPS)-
A New Tool in Planning and Control," Computer Journal, Vol. 5, 4 (1-963),
300-304.

[Mathis] Mathis, F. H., "Mathematical Programming Techniques for Scheduling Space-
lab Crew Activities and Experiment Operations," NASA/ASEE Summer
Faculty Research Fellowship Program, (1981).

[Mize] Mize, J. H., A Heuristic Scheduling Model for Multi-Project Organizations ,
Unpublished Ph.D. Thesis, Purdue University, 1964.

[Pascoe] Pascoe, T. L., An Experimental Comparison of Heuristic Methods for Allo-
cating Resources , Unpublished Ph.D. Thesis, Cambridge University, 1965.

[Patterson] Patterson, J. H., "Project Scheduling: The Effects of Problem Structure on
Heuristic Performance," Naval Research Logistics Quarterly, Vol. 23 (March
1978), 95-123.

[Patterson] Patterson, J. H. and Huber, W. D., "A Horizon-Varying, Zero-One Approach
to Project Scheduling," Management Science, Vol. 20, 6 (1974), 990- 998.

24

[Patterson] Patterson, J. H. and G. W. Roth, "Scheduling a Project under Multiple
Resource Constraints: A Zero-One Programming Approach," AIIE Trans-
actions, Vol. 8 (December 1976), 449-455.

[Patterson] Patterson, J. H., "A Comparison of Exact Approaches for Solving the Mul-
tiple Constrained Resource Project Scheduling Problem," Management Sci-
ence, Vol. 30 (July 1984), 854-867.

[Petrovic] Petrovic, R., "Optimization of Resource Allocation in Project Planning,"
Operations Research, Vol. 16, 3 (1968),558-658.

[Phillips] Phillips, D. T. and Garcia-Diaz, A., Fundamentals of Network Analysis,
Prentice-Hall, Inc. (1982).

[Plebani] Plebani, L. J., Jr., "A Heuristic for Multiple Resource Constrainted Schedul-
ing," Production and Inventory Management, First Quarter (1981), 65-80.

[Pritsker] Pritsker, A. A. B., L. J. Waiters and P. M. Wolfe, "Multiproject Scheduling
with Limited Resources: A Zero-One Programming Approach," Management
Science, Vol. 16 (September 1969), 93-108.

[Schrage] Schrage, L., "Solving Resource-Constrained Network Problems by Implicit
Enumeration - Nonpreemptive Case," Operations Research, Vol. 18 (March
/ April 1970), 263-278.

[Slowinski] Slowinski, R., "Two Approaches to Problems of Resource Allocation among
Project Activities - A Comparative Study," Journal of the Operational Re-
search Society, Vol. 31 (August 1980), 711-723.

[Stinson] Stinson, J. P., E. W. Davis and B. M. Khumawala, "Multiple Resource Con-
strained Scheduling Using Branch and Bound," AIIE Transactions, Vol. 10
(September 1978), 252-259.

[Talbot] Talbot, F. B. and J. H. Patterson, "An Efficient Integer Programming Al-
gorithm with Network Cuts for Solving Resource Constrained Scheduling
Problems," Management Science, Vol. 24 (July 1978), 1163-1174.

[Talbot] Talbot, F. B., "Resource-Constrained Project Scheduling with Time- Re-
source Trade offs: The Nonpreemptive case," Management Science, Vol. 28
(October 1982), 1197-1210.

[Whitehouse] Whitehouse, G. E., and Tidwell, D., "Practical Computer Search Approaches
to Project Management with Resource Constraints," Proceedings of the 19SO

25

Spring Annual Conference of the American Institute of Industrial Engineers,
Atlanta, Georgia, 335-339. >

[Weiss] Weiss, H. J., "A Greedy Heuristic for Single Machine Sequencing with Prece-
dence Constraints," Management Science, Vol. 27, 10 (1981), 1209- 1215.

[Weist] Weist, J. D., "A Heuristic Model for Scheduling Large Projects with Limited
Resources," Management Science, Vol. 13, 6 (1967), B359-377.

26

APPENDIX 1

Literature Review

A wide variety of solution methods have been proposed for the solution of the resource
constrained scheduling problem. Researchers have focused attention on heuristic methods
which can easily generate feasible solutions to the problem. Kelley (1963) outlines two
basic single pass (once an activity is scheduled, it is never rescheduled) heuristic methods:
serial and parallel methods. The input is a list of activities ordered according to some
priority scheme. In the serial method the list is scanned one activity at a time and the
activity is scheduled in the first time slot for which all constraints are satisfied. The parallel
method, a group of activities, determined by some criteria, is scheduled simultaneously.
Several rules used to construct the priority list have been proposed. Most of them are based
on information drawn from a critical path analysis of the network representation of the
problem, and also on information concerning resources usage and availability. Grone and
Mathis (1980) applied a serial method combined with an intricate multi-attribute priority
scheme to the experiment schedule problem.

Whitehouse and Tidwell (1980) described an algorithm attributed to G.H.Brooks of
Purdue University. This procedure, which became known as Brooks'algorithm, is similar
in spirit to Kelley's (1963) parallel method. Activities are ranked according to the time
each one controls through the network. At each time, t, set, called an allowable set, is
denned containing activities that could potentially be scheduled based only on precedence
constraint requirements. Activities from the allowable set are selected according to their
ranks and as many activities as possible are scheduled. Time is then advanced to the
next completion time and the procedure is repeated until all activities are scheduled. In
addition, Whitehouse and Tidwell (1980) proposed changes in the ranking procedure in
order to take into account resource usage. Plebani (1981) suggests a generalization for the
case of multiple resources.

Several studies have been devoted to testing the effectiveness of priority rules. Cooper
(1976), Fendley (1966), Mize (1964), Pascoe (1965) and Patterson (1976) compared the
performance of several priority rules.' Davis and Patterson (1975) tested the effectiveness
of priority rules for a set of test problems when compared to optimal solutions. Unfortu-
nately, the results reported in the literature are not conclusive; sometimes they are even
contradictory. On one point, however, most researchers have agreed; the performance of
priority rules is very much problem dependent. Kurtulus and Davis (1982) and Patterson
(1976) developed regression type procedures which take into account the differences in
problem characteristics when assessing performance of heuristics.

Several computerized versions of heuristic methods have become commercially avail-
able. Early in the 60's, Lambourne (1963) reported on the development of RAMPS. Wiest
(1967) developed SPAR-1 and Phillips and Garcia-Dias (1981) describe several other sys-
tems.

While heuristic procedures are attractive from a practical standpoint, there is usu-
ally no way to guarantee the quality of the solution. This fact has led many researchers
to the search for optimization procedures. Several such procedures have appeared in the

27

literature. Perhaps the first integer linear programming formulation of the resource con-
strained scheduling problem was given by Wiest (1963). Pritsker, Waiters and Wolfe (1969)
presented a new integer programming formulation which accommodates a wide range of
real-world situations including due dates, activity preemption, resource substitutability
and concurrency. The major drawback of this kind of approach is the necessity to define a
0-1 variable for each possible combination of activity and completion time, implying that
even for small problems, a large number of variables must be defined. Each variable as-
sume a value 1 in the period its corresponding activity is started. Mathis(1981) presented
an adaptation of the previous model applied to the NASA experiment scheduling problem
concluding that millions of variables would have to be defined for such a problem.

Patterson and Huber (1974), using basically the same formulation proposed by Pritsker
et al. (1969), present three procedures: minimum bounding algorithm, maximum bound-
ing algorithm, and a search algorithm which combines the two previous procedures. In
the minimum bounding algorithm, an initial lower bound on completion time is obtained.
This value is decreased by one at each iteration, and a new 0-1 programming problem
is solved. If the current solution is feasible, it is also optimal. Otherwise the procedure
continues until feasibility is attained. Results based on a set of test problems showed that
the minimum bounding algorithm was the most effective among the three.

Again, considering a formulation similar to the one by Pritsker et al. (1969), Patter-
son and Roth (1976) developed an implicit enumeration procedure based on Balas'(1965)
additive algorithm. The procedure seeks minimization of the completion time of the last
activity scheduled. Variables are ordered according to activity label and time period, and
considered for augmentation according to that order. Only one of the variables associated
to activity i can assume the value 1 at a given time. Precedence constraints can easily be
handled by this scheme. Whenever a complete feasible solution which reduces the project
completion time by t time units is found, the t right-most variables corresponding to each
activity can be eliminated. A complete feasible solution is achieved whenever one of the
variables corresponding to activity n is set equal to 1. Optimality is attained whenever all
possible combinations are implicitly verified.

In a more recent version of this algorithm, Talbot and Patterson (1978) use the concept
of network cuts in a procedure to improve the fathoming process of partial solutions. Talbot
(1982) further modified the procedure by considering alternative modes of performing an
activity.

An attempt to employ pure linear programming to the resource constrained scheduling
problem was reported by Weglarz, Blazewicz, Cellary and Slowinski (1977). The formula-
tion, presented in detail in another paper by Slowinski (I960), has a serious shortcoming
since a pre-determined ordering for the start of each activity is assumed. In addition, pre-
emption is allowed in this formulation. In a subsequent paper, Slowinski (1981) generalized
the procedure for multi-objective criteria.

Other types of implicit enumeration procedures which avoid the use of binary variables
also exist. Johnson (1967) developed a branch and bound procedure for the one resource
problem which was later enhanced by Patton (1968) and, more recently, extended to the
multiple resource case by Stinson, Davis and Khumawala (1978). In these procedures, the
nodes in the branch and bound tree correspond to feasible partial schedules. Lower bounds

28

on project completion time can be determined based either on precedence constraints,
resource constraints, or a combination of both. Rules are developed which can be used for
dominance pruning. Other papers by Hastings (1975) and Schrage (1970) present methods
which are similar in spirit to Johnson's (1967).

In a procedure due to Davis and Heidorn (1971), the resource constrained scheduling
problem is reduced to rinding the shortest path in a network which the authors call A-
network. In order to construct such a network, all feasible subsets (set of activities such
that if activity i is in this set, all its predecessors also are) are systematically generated.
The nodes of the A-network correspond to feasible subsets.

Patterson (1984) performed a comparative study of the three methods developed re-
spectively by Davis and Heidorn (1971), Stinson, Davis and Khumawala (1978) and Talbot
and Patterson (1978). He concludes that each procedure was superior to the others on a
specific class of problems.

The first optimization procedure which attempts to exploit problem structure was
proposed by Fisher (1973). He assumed that a set of independent activities must be per-
formed, each activity being represented by a series of precedence related steps. Fisher
used Lagrange multipliers to dualize resource constraints and recognized that the result-
ing Lagrangean problem can be decomposed into independent problems for each activity,
since precedence constraints do not interact among activities. In another paper, Fisher
(1972) uses the solution to the Lagrangean problems as lower bounds in a branch and
bound procedure to obtain the optimal solution. In this procedure, nodes correspond to
derived Lagrangean problems and branching corresponds to updating the values of the
Lagrange multipliers. Unfortunately, the method only works for objective functions which
can be written as nondecreasing functions of the activity completion times. This restriction
eliminates the problem of minimizing the completion time of the last activity scheduled.

A very elegant formulation of the resource constrained scheduling problem was pro-
posed by Balas (1970). The idea is to take the network representation of the precedence
constraints and add pairwise disjunctive arcs (two arcs in reverse directions, at most one
being active at a time) between any two activities that share the same resource. Each pair-
wise disjunctive arc may be in one of the following states: forward arc is active, backward
arc is active, or both arcs are inactive. A selection is a set which indicates the state of
all disjunctive arcs. The problem reduces to finding the feasible selection which minimizes
the critical path in the network. Balas (1970) developed the concept of internal stability
which is used for testing feasibility. Gorenstein (1972) further developed the ideas of Balas
(1970) and showed that a maximun flow algorithm can be used as feasibility test. The most
attractive feature of Balas' formulation is that model size is independent of the number of
time periods in the planning horizon.

Perhaps the least successful optimization attempt to solve this problem has been dy-
namic programming. Some researchers (Held and Karp 1963 and Petrovic 1968) have
formulated different versions of scheduling problems, none of them applicable to the re-
source constrained scheduling problem.

29

APPENDIX 2

GLOSSARY OF TERMS

The terminology used here is adapted from that used within ESP, rather than that
used in the broader context of the experiment scheduling problem.

Experiment : A functional objective to be performed; is the same thing as a model.

Performance : An instance of an experiment. Each experiment has a requested number of
performances or instances.

Distinguished Steps : If an experiment has a start-up or shut- down step, these will be called
distinguished steps because these do not have to be accomplished by all performances.

Sequencing Requirement : An experiment has a sequencing requirement if it has a prede-
cessor experiment; that is, the experiment cannot be scheduled unless its predecessor has
already been scheduled.

30

APPENDIX 3

SUMMARY OF EXPERIMENTAL ANALYSIS

ESP Scheduling Data

Timeline File Name: TLA.DAT

Schedule Grade: 75.4

Selection Order Description: The first schedule produced came strictly from the sequenc-
ing procedure. The program SEQ.FOR builds precedence trees based on the sequencing
requirements set forth in the model file. The selection list is separated into three groups.
The first hopper contains those experiments with other experiments dependent upon them
being scheduled before they can be scheduled. The second hopper contains all experi-
ments with mandatory or necessary concurrence. The third, and last, hopper contains all
remaining experiments not in the previous hoppers.

All of the hoppers were selected by the fixed selection method.

ESP Scheduling Data

Timeline File Name: TLB, TLC, TLD.DAT

Schedule Grade: 75.4, 75.7, 74.9

Selection Order Description: These three schedules all use the random selection method
for the first two hoppers to schedule. The third hopper was selected by the fixed method.
Three different random, number seeds were used, all producing similar results. They were
29387, 81585, and 00001, respectively.

The purpose of this test was to determine the effects, if any, that the random number seed
might have on the schedule. It seems that different random number seeds do not effect the
result significantly.

ESP Scheduling Data

Timeline File Name: TLE.DAT

31

Schedule Grade: 77.6
6

Selection Order Description: Beginning with this schedule, The third hopper has been
processed further. The first two hoppers remain the same (ie., those experiments with other
experiments dependent upon them in hopper 1 and those with mandatory concurrence
requirements in hopper 2).

The last hopper has been run through the clustering software developed previously. The
experiments have been separated according to the number of performances required. Three
groups have been produced: experiments with less than five performances required, ex-
periments with five to ten required, and experiments with greater than ten required. This
results in a total of five hoppers selected from for the schedule. The intent here was to see
what effects grouping technology might have on the schedule. The only difference between
this schedule and the schedule for TLA.DAT is the manipulation of hopper three.

ESP Scheduling Data

Timeline File Name: TLF.DAT

Schedule Grade: 71.8

Selection Order Description: This schedule reverses the previous schedule run (TLE.DAT).
Those experiments with a large number of performances required run first (hopper 3),
descending down to those experiments with less than five performances required run last
(hopper 5). This showed how scheduling using the number of performances required by an
experiment as the main criterion for selection of the experiments to schedule first.

ESP Scheduling Data

Timeline File Name: TLG.DAT

Schedule Grade: 76.1

Selection Order Description: The third hopper from the set of three was again run through
the clustering software, but with a different grouping criterion. In order to test the im-
portance of crew selection requirements, the clustering was performed on this resource.
Crew selection was divided into three categories. Strict selection requirements, not strict
selection requirements, and no crew requirements. Strict selection requirements is defined
as those experiments that require specific crew members as resources. If some flexibil-
ity is possible (eg., of two crew members listed, pick one), the experiment was labelled

32

as having non-strict selection requirements. The last category was all those experiments
that required no crew members at all. ESP was run with the experiments with strict
selection requirements selected first, followed by the experiments with non-strict selection
requirements, and, lastly, the experiments with no crew requirements at all.

ESP Scheduling Data

Timeline File Name: TLH.DAT

Schedule Grade: 73.6

Selection Order Description: This schedule reverses the previous schedule produced (TLO.DAT)
by attempting to schedule those experiments with less strict selection requirements first,
followed by more and more strict selection requirements. There were a total of five groups
for crew selection, for a total of seven hoppers used for this resource test.

ESP Scheduling Data

Timeline File Name: TLI.DAT

Schedule Grade: 75.0

Selection Order Description: This and the next schedule separated resource requirements
according to required targets for the experiments. Again, the first two hoppers contain
the experiments with other experiment dependencies and with mandatory concurrence,
respectively. The targets were grouped according to six categories; the first five according
to specific targets and the last with no target requirements.

A list of targets considered critical was obtained from NASA. Five levels of criticality were
formed from this list that could be used for clustering purposes. This schedule selected
most critical targets first, less critical targets next, and so on, until all levels of target
criticality were scheduled.

ESP Scheduling Data

Timeline File Name: TLJ.DAT

Schedule Grade: 65.0

33

Selection Order Description: This schedule selected the experiments with less critical tar-
gets first, ascending to experiments with greater target criticality.

The great difference in scores between this schedule and the previous schedule indicates
some degree of importance in the selection order of experiments with target requirements.

ESP Scheduling Data

Timeline File Name: TLK.DAT

Schedule Grade: 71.2

Selection Order Description: This schedule and following schedules return to dividing
the third hopper into three hoppers according to the number of performances required.
Hopper three is now the experiments that require less than five performances, hopper
four is those that require five to ten, and hopper six is those that require more than
ten performances. The second hopper has also been refined further. It consists of those
experiments with mandatory concurrence. In this schedule, hopper two was also sorted by
number of required performances in ascending order. However, because of the concurrence
requirements, they must remain within one hopper.

ESP Scheduling Data

Timeline File Name: TLL.DAT

Schedule Grade: 77.6

Selection Order Description: This schedule is the same as the previous schedule (TLM.DAT),
with one exception. The random number used for the previous schedule failed to schedule
one of the experiments in hopper one; these are the experiments that must be scheduled
before others may succeed them. Thus, a different random number seed was used for this
run.

ESP Scheduling Data

Timeline File Name: TLM.DAT

Schedule Grade: 74.3

34

Selection Order Description: This schedule goes back to the original sequenced order
used in the first schedule (TLA.DAT). Without changing the third hopper as in previous
schedules, the second hopper is refined. Those experiments with mandatory concurrence
(ie, those in the second hopper) have been ordered according to the width of the time
windows. Those that have a very short time window to schedule are attempted first,
followed by those that do not have as strict window requirements.

ESP Scheduling Data

Timeline File Name: TLN.DAT

Schedule Grade: 69.2

Selection Order Description: This schedule has taken the previous scheduling technique
and expanded upon it. The second hopper has been divided into two hoppers. The first
attempt at scheduling the mandatory concurrence experiments requests only half of the
performances required by each experiment in the second hopper. The second half of the
required performances is requested in hopper four (after the remaining experiments have
been scheduled).

ESP Scheduling Data

Timeline File Name: TLP.DAT

Schedule Grade: 76.0

Selection Order Description: This and the next timeline (TLQ) go back to grouping the
third hopper as in timelines TLE through TLJ. The new clustering criteria is according to
the number and gap of the time windows in which an experiment can be scheduled. This
schedule ordered the windows by smallest window to largest and multiple windows last.

ESP Scheduling Data

Timeline File Name: TLQ.DAT

Schedule Grade: 74.8

35

Selection Order Description: This schedule changes the order of the windows from those
experiments with multiple windows first, followed by those with large windows descending
to those with the smallest windows last.

ESP Scheduling Data

Timeline File Name: TLR.DAT

Schedule Grade: 77.4

Selection Order Description: This and the next timeline order the third hopper according to
three properties used for clustering. The three properties are the number of performances,
the size of scheduling windows, and the targets used. The clusters were grouped into the
following hoppers: 1) 1, 2) 7,9, and 11, 3) 3,4,5, and 6, and 4) 2,8, and 10.

ESP Scheduling Data

Timeline File Name: TLS.DAT

Schedule Grade: 72.5

Selection Order Description: This schedule reverses the clustering order used in the pre-
vious schedule. The last five hoppers are simply in the reverse order of that used in
TLR.DAT.

36

APPENDIX 4

CLUSTER ANALYSIS

The first step in the cluster analysis is to compute the similarity matrix and to form
component packs. To compute the similarity matrix the factor vector of each pair of
experiments (i,j) are compared. If i and j use the same factors then these two experiments
are packed together. All experiments within a pack are considered as one experiment for
the remainder of the analysis. While the packing is performed, the similarity index SIM(i.j)
for each pair of experiments (i,j) is computed according to the rule:

.^ n°- factors in common
Total factors used by i and j

The next step in the process is to sort the packs in preparation for clustering. Based on
the requested value of k, the packs are sorted into descending order by their k-th largest
similarity indices. The sensitivity parameter k influences cluster formation in only an
indirect manner, k = 1 produces the most clusters because it is more difficult for packs
to be combined together to form clusters. As k increases, fewer clusters are formed at the
expense of forming more clusters. The analyst should experiment with different k values
to gain some insight into the properties and characteristics of the specific case study.

The actual cluster formation begins at this point. Packs are analyzed one at a time in the
order in which they have been sorted. Each pack is either assigned to a current cluster
(if this pack is relatively similar to those packs already in the cluster) or creates a new
cluster (if no relatively similar clusters exist). If a pack is sufficiently similar to two or
more existing clusters, these clusters may be combined into one large cluster. The following
steps specify the details of the clustering algorithm.

Step 1:

The highest ordered pack (KMIN), based upon its kth largest similarity index (PMIN) is
the next (or first) pack to be assigned to a cluster.

Step 2a:

If the packs similarity (PMIN) is greater than or equal to the largest inter-cluster similarity
between all existing clusters (DMIN = the maximum element in GRPSIM, the array of
inter-group similarities), then the pack will either start a new pack or be assigned to an
existing pack. Logically, KMIN is more similar to at least k other packs than are any
existing clusters to each other. Therefore, it should go toward packs similar to itself.

37

Step 3a:

Compare pack KMIN to all assigned packs and find the pack and its cluster with the
greatest similarity. This similarity must be larger than PMIN. If a pack (and cluster) is
found, then assign pack KMIN to that cluster. If a pack is not found, pack KMIN starts a
new cluster. Logically, there are k packs to which pack KMIN has a similarity of at least
PMIN. If one of these packs is found in a cluster, then pack KMIN can be assigned there.
The effect of the value of k is that a small value makes it more difficult to find a similar
pack; therefore encouraging the formation of new clusters.

Step 4a:

Since a new pack has been added to a cluster, the intra-group similarity and inter-group
similarities must be recalculated. The average intra-group similarity, TOT, for each cluster
is calculated as follows:

TOT(,) = X - SIH(KMIN,i)
number of packs in group g

The inter-cluster similarity, GRPSIM(ialc,i) between groups i and ialc, where ialc is the
cluster number that KMIN was assigned to.

GRPSIM(ialc, i) x (no. of packs in ialc)] + TOT(i}
' no. packs in ialc + 2

Step 5a:

GO TO STEP 8.

Step 2b:

If PMIN is less than the greatest inter-cluster similarity, DMIN, then the clusters creating
that value, DMIN, will be combined to form a single cluster. Logically, these clusters are
more similar to each other than the pack KMIN is to all but k other packs. Here, a large
k will tend to drive PMIN to a smaller value, and thus encouraging the aggregation of
clusters.

Step 4b:

Go to subroutine MCPAK to combine factors in the newly formed cluster.

Step 5b:

3S

Transfer the packs of the merging cluster into the receiving cluster.

Step 6b:

Since the clusters were fused, the inter-cluster similarities (in GRPSIM) must be recalcu-
lated. The new cluster's inter-similarity is calculated by condisering the previous inter-
similarity of each of the combined clusters with all other clusters and the number of packs
in each of the joined clusters. The calculation is given by:

[GRPSIM(altb) x (#o/ packs in al)] + [GRPSIM(a2,b] x (#packs in a.2]
#packs in al + #packs in a2

where a and b are cluster numbers, and al and a2 combined to form a.

Step 7b:

Go to step 8.

Step 8:

Find the two clusters with the greatest inter-cluster similarity (GRPSIM). Set this simi-
larity value to DMIN, which will be used to identify the need to combine clusters in future
iterations.

39

APPENDIX 5

USER'S GUIDE

The selection list sequencing software is a set of programs that may be used to modify
the selection order of experiments in an ESP model file. The software offers a flexible
and simple way to organize the experiments in such a way as to produce an experiment
schedule that grades very favorably when compared to previous methods of repeated trial
runs. After only one execution of the selection list sequencing software, a fairly "good"
schedule will result that may then be further optimized with the ESP selection list editor.
This greatly reduces the time required to produce a usable experiment schedule.

The entire selection list sequencing software is written in VAX-11 Fortran version 3.0.
With the exception of the menu program, the software programs are coded as subroutines
and are part of an object library used for linking purposes. The main (and menu) program
is the file ATM.FOR and the object library is CLSTR.OLB. The sequencing software is
integrated with parts of the ESS support package supplied by MSFC. Thus, the executable
code must also be linked with this object library.

The sequencing software is delineated into definite groups according to function. None of
the functions are required—all may be omitted if desired. However, those functions that
are executed must be processed in a required sequence.

There are six different options that exist in the selection list sequencing software. Each will
be discussed in turn, followed by remarks concerning the execution order requirements. A
description of the purpose of each function, how the code processes the data, and how to
execute the code is given. In conclusion, a brief discussion of problems with the software
that may arise in the future is included.

To execute the selection list sequencing software, simply run the program ATM.EXE from
the VAX/VMS command language prompt. A menu of the six available functions and an
exit option will be displayed on the terminal. The six options are [1] Create Sequenced
Hoppers, [2] Sequence Hopper 1, [3] Cluster Hopper 3, [4] Print Cluster Report, [5] Group
Clusters into Hoppers, and [6] Write Selection List to Model File.

40

[1] Create Sequenced Hoppers

If any of the selection list sequencing software functions are to be used, the sequencing
function (option 1) must be executed prior to any others. The models of the experiments
are constrained by default specifications in the model file. Certain models are required to
be scheduled before other, dependent models may be scheduled. This function accesses
the experiment model file and orders the models according to three categories. The first
category is those models that must precede one or more other models in the schedule.
The second category is those models with mandatory or necessary concurrences. This is
done in order to keep the concurrent models within the same hopper for scheduling. The
last category is any models not included in the first two categories. Note that any models
with precedence requirements as well as concurrence requirements will force the required
concurrent model into the first category.

The subprogram to carry out this funciton is SEQ.FOR. This program traverses a depth-
first spanning tree representing the sequencing structure of the entire model file. At each
node, a tally is kept of all models that will succeed that node. After one pass through the
file, all models with successors will have a non-zero tally. Another pass is then performed
that will decrement the tally of those nodes that have no successors and no concurrence
requirements.

At this point, the three categories have been defined. They are: (1) nodes, or models,
with positive tallies and having successors, (2) nodes with a tally equal to zero and having
mandatory or necessary concurrence constraints, and (3) nodes having negative tallies with
neither of the previous requirements. An array containing this information is then sorted
according to tally and, within tally, by experiment number.

A final pass is performed to write a file for each, category. The files correspond to the
categories defined above and are named HOP1.DAT, HOP2.DAT, and HOP3.DAT. As the
names imply, the files contain the experiment numbers of those models to be written into
the first three hoppers of the selection list.

These simple steps complete the "Create Sequenced Hoppers" function of the selection list
sequencing software. Once this function has been performed, the other optional functions
may be performed. The three files created here may be further processed at the user's
option upon returning to the menu.

41

[2] Sequence Hopper 1

The second function, "Sequence Hopper 1", is an optional function that further sequences
the experiments in hopper 1. These are the models that must be scheduled prior to other
models and are contained in the file HOP1.DAT.

The subprogram creates a matrix of n x n dimension, where n is the number of models
read in from the file. Each cell in the matrix is a Boolean value (0 or 1) that sets the
sequence dependency of the models in that row and column. A value of 1 in row i, column
j indicates the model in row i has precedence over the model in column j.

A precendence will be established for all models in the matrix. First, any default depen-
dencies (the same used in option 1) are marked, including transitive precendence. For
example, if y follows x and z follows y, then z must also follow x. The cells in row x,
columns y and z will be marked with 1.

If no default precedence exists, a precedence is determined from a cost function. A cost is
calculated for each model using some calculation. The calculation used in this version of the
software is simply the width of the smallest window available to the model for scheduling.
Other resource comparison calculations may be used by making minor changes to the
program.

After all sequencing dependencies have been established, the number of 1's in each column
is summed. The column tally with the lowest value is the new model to be scheduled first.
The next lowest value is the second model to be scheduled, etc. The subprogram writes
the new list of models back into HOP1.DAT to complete the sequencing for hopper 1.

[3] Cluster Hopper 3

The third option of the selection list sequencing software, "Cluster Hopper 3," groups
similar models into subgroups. The models listed in HOP3.DAT are grouped together
according to a similarity index value that is entered by the engineer. Options [4] and [5]
are subsequent steps of the clustering option and will be discussed later. The result of
these three steps will be the partitioning of HOP3.DAT into one or more hopper lists to be

42

written to the selection list. That is, this hopper will be subdivided into several hoppers
for ESP scheduling.

First, a file is built containing the model (or experiment) numbers from HOP3.DAT and
their respective "machines" used. The "machines" are names of resource categories de-
fined in the subprogram ROUTMOD.FOR. For example, if a model required five or less
performances to be scheduled, it was assigned the "machine" Perfl. If a model required
six to ten performances to be scheduled, it was assigned the "machine" Perf2. For eleven
or more performances, a "machine" of PerfS was assigned. Other machines, or resources,
used for categorization were targets and window sizes required by a model.

Using this machine file as input, a matrix of all models and the machines used by that
model is created. Another matrix is created that keeps track of which models require
identical sets of machines. These exact models are combined into what are known as
packs. An output listing of this file may be obtained by printing the file PAK.RPT from
VMS.

At this point, the engineer is prompted to input a "k" value. This is the similarity index.
The similarity index is used to combine the packs according to the degree of similarity of
the packs. For example, if a similarity index of two is used, all packs with at least two
identical machines will be combined into a cluster. Generally, the higher the k value used,
the fewer clusters will be formed. A cluster report file, CLU.RPT, is produced that should
be printed (option 4) and examined. Similar clusters will be further combined into hoppers
before being written to the model file selection list.

[4] Print Cluster Report

The cluster report file should be printed by the option "Print Cluster Report" immediatly
following option 3. This is a simple Fortran program that conveniently prints the cluster
report without leaving the selection list sequencing software menu. The file will be printed
to "LPAO:". If some other output device is desired, this logical name may be reassigned
in VMS.

This report should be examined by the engineer to determine which clusters should be com-
bined into hoppers. For example, all clusters using Perfl (for less than five performances)

43

might be grouped together. Once the grouping requirements have been established, the
clusters can be combined into hopper lists with option 5.

[5] Group Clusters into Hoppers

The third, and last, step of the clustering of hopper three is "Group Clusters into Hoppers."
This step allows the engineer to interactively assign the clusters to hoppers. To properly
complete this step, the engineer should have clustered the experiments in HOP3.DAT
(option 3) and printed the cluster report (option 4).

This subprogram will display upon the terminal a template showing the numbered clusters
and the current hopper to which the specified cluster will be assigned. The cluster numbers
will be displayed horizontally across the screen up to a maximum of twenty. The engineer
is expected to enter the number of a cluster to be placed into the hopper. As a cluster
number in entered, the models in that cluster will be written into a list. If a zero is
entered, a flag will be written to the list signifying the end of that hopper. The hopper
count is incremented so that new cluster numbers may be specified to be placed into the
new hopper. This process continues until all clusters have been assigned.

At this time, the list containing the model assignments to the different hoppers is written
back to HOP3.DAT. Although the filename still implies hopper three, the data is separated
into hoppers by flags in the file. This effectively has broken the single hopper into several
hoppers according to the resource requirements specified in the clustering process. The
clustering of hopper three is now complete.

[6] Write Selection List to Model File

This option is used to write the new selection list to the model file. The subprogram
was supplied by NASA and modified so that it could be integrated with the selection list
sequencing software.

The models are written to the selection list of the model file in the order HOP1.DAT.
HOP2.DAT, and HOP3.DAT. The first two files correspond to single hoppers while the
third may correspond to one or more hoppers. The subprogram reads the first two files

44

and writes them to the selection list. When the third file is read, a new hopper is created
each time the end-of-hopper flag is encountered. If no such flags exist (eg., HOP3.DAT
may not have been clustered), all models in the file will be included in the same hopper.

Execution Order

The execution order of the selection list sequencing software options is important. Option
1, "Create Sequenced Hoppers," must always be executed first. Option 6, "Write Selection
List to Model File," must always be executed last. If option 6 is not executed at all, no
updating of the selection list of the model file will occur at all. Thus, if the engineer is not
satisfied with some intermediate result, updating the model file may be omitted entirely.

Options 2 through 5 are used to further refine the sequencing in hoppers one and three.
Option 2 sequences hopper one and may be executed anytime after option 1 but before
option 6. Options 3 through 5 sequence hopper three and, if used, must be executed in
ascending order. Again, this set of options may be executed anytime after option 1 but
before option 6.

Future Problems

Specific problems that may arise with the software are difficult to anticipate; however,
it may be of some use to speculate. In most cases, no data of great importance will be
destroyed if a program aborts during execution. The user may simply restart the program
and try again. No extensive error checking is done in this software, so invalid data may
cause premature program termination. A value entered by the user is an example. The
software might exceed the bounds of some work array dimension. This software was tested
on only one data set. It is hoped that ample space has been reserved, but a large number
of experiments may cause problems.

If these or other problems do arise, the source code has been well-documented. In some
cases, each line of code in an entire program has its own comment. This will aid in the
modification of any of the source code should it become necessary.

45

APPENDIX 6

SAMPLE DIALOGUE

46

RUN ATM

* SELECTION LIST SEQUENCING SOFTWARE #
* Texas A?/.M University *

C13 Create Sequenced Hoopers
C23 Sequence Hopper 1
C33 Cluster Hopper 3
E43 Print Cluster Report
C53 Group Clusters into Hoppers
C63 Write Selection List to Model File
LED Exit from program

Enter Choice
1

DEFAULT MODEL FILE IS SPL.MOD
ENTER NEW FILE NAME>
SUCCESSFULLY OPENED DLAO:CESP.ESP3SPL.MOD:1

•*# •*•*#*•#•*•*#•«••»•#•«•#•#•»<••»••*#•»••«•«• ##*##*######*#### #**
* SELECTION LIST SEQUENCING SOFTWARE *
* Texas A&M University *

C1D Create Sequenced Hoppers
C2] Sequence Hopper 1
C33 Cluster Hopper 3
C43 Print Cluster Report
C53 Group Clusters into Hoppers
C63 Write Selection List to Model File
CE3 Exit from program

Enter Choice

DEFAULT MODEL FILE IS SPL.MOD
ENTER NEW FILE NAME>
SUCCESSFULLY OPENED DLAO:CESP.ESP 3SPL.MOD;

* SELECTION LIST SEQUENCING SOFTWARE •*
* Texas A?<M University *
##•«• •«••* •*##•&#•«••«••»•*• *•#•&#*«• «••«•#*•»•##*• •»***#•«••«•«•#•«••»••«••»

HID Create Seouenced Hoppers
C2] Sequence Hooper i
C3D Cluster Hopoer 3
L'4D Print Cluster Report
C53 Group Clusters into Hoppers
C6D Write Selection List to Model File
CE3 Exit from proaram

Enter Choice
3

DEFAULT MODEL FILE IS SPL.MOD
ENTER NEW FILE NAME>
SUCCESSFULLY OPENED DLAO:C ESP.ESP 3 SPL.MOD•1

Calculating Similarity Indices

For-mina Component Packs

Writina the pack report PAK.RPT to disk.

Input value of k (0 < k <= 32) :

Sorting to Find Kth Laraest Similarities

Formino the Clusters

#####•*###*#•»•«•###•**##**## *#•»#•»##*####»#*»*#•»•
* SELECTION LIST SEQUENCING SOFTWARE *
* Texas A?/M University *

C13 Create Seauenced Hoppers
C2D Seauence Hopper 1
C33 Cluster Hopper 3
C.43 Print Cluster Report
C5] Grouo Clusters into Hoppers
C63 Write Selection List to Model File
CE3 Exit from program

Enter Choice

SELECTION LIST SEQUENCING SOFTWARE
* Texas A?<M University

Cl] Create Seauenced Hoopers
C2D Sequence Hopper 1
C3D Cluster Hopper 3
C43 Print Cluster Report
C53 Group Clusters into Hoopers
E&l Write Selection List to Model File
CED Exit from program

Enter Choice

Grouc. Number 1 2 3 . 4 5 6 7 8 9 1C 11

Hooper used

Enter cluster number to include in Hooper 1
or 0 (zero) to end Hopper

1

Group Number 1 2 3 4 5 6 7 S 9 1O 11

Hopper used 1

Enter cluster number to include in Hopper 1
or 0 (zero) to end Hopper

7

Group Number 1 2 3 4 5 6 7 8 9 1C 11

Hopper used 1 1

Enter cluster number to include in Hopper 1
or 0 (zero) to end Hopper

9

Group Number 1 2 3 4 5 6 7 8 9 10 11

Hopper used 1 1 1

Enter cluster number to include in Hopper . 1
or 0 (zero) to end Hopper

0

Grout. Number- 1 2 3 4 5 6 7 8 9 1 0 1 1

Hopper used 1 1 1

Enter cluster number to include in Hopper 2
or O <zero) to end HOD per-

il

Group Number 1 2 3 4 5 6 78 9 1 0 1 1

Hopper used 1 1 1 2

Enter- cluster number to include in Hopper 2
or 0 (zero) to end Hopper

0

Group Number 1 2 3 4 5 & 7 8 9 10 11

Hopper used 1 1 1 2

Enter cluster number to include in Hopper 3
or O <zero) to end Hopper

6

Group Number 1 2 3 4 5 6 7 8 9 10 11

Hopper used 1 31 1 2

Enter cluster number to include in Hopper 3
or O <sero) to end Hopper

0

Group Number 1 2 3 4 5 6 7 8 9 10 11

Hopper used 1 31 1 2

Enter cluster number to include in Hopper 4
or 0 (zero) to end Hopper

Group Number 1 2 3 4 5 6 7 8 9 10 11

Hopper used 1 4 3 1 1 2

Enter cluster number to include in Hopper 4
or 0 (zero) to end Hopper

Group Number 1 2 3 4 5 6 7 3 9 10 11

Hopper used 1 4 4 3 1 1 2

Enter cluster number to include in Hopper 4
or 0 (zero) to end Hopper

5

Group Number 1 2 3 4 5 6 7 8 9 1 0 1 1

Hopper used 1 4 4 4 3 1 1 2

Enter cluster number to include in Hopper 4
or 0 (zero) to end Hopper

O

Group Number 1 2 3 4 5 6 7 8 9 1 0 1 1

Hopper used 1 4 4 4 3 1 1 2

Enter cluster number to include in Hopper 5
or 0 (zero) to end Hopper

4

Group Number 1 2 3 4 5 6 7 8 9 10 11

Hopper used 1 4 4 5 4 3 1 1 2

Enter cluster number to include in Hopper 5
or 0 (zero) to end Hopper

3

Group Number 1 2 3 4 5 6 7 8 9 1 0 1 1

Hopper used 1 4 4 5 4 3 1 5 1 2

Enter cluster number to include in Hopper 5
or 0 (zero) to end Hopper

10

Formation of cluster list complete.

* SELECTION LIST SEQUENCING SOFTWARE #
Texas A&M University *

C13 Create Seauenced Hoppers
C23 Sequence Hopper 1
C33 Cluster Hopper 3
C43 Print Cluster Report
C53 Group Clusters into Hoppers
C63 Write Selection List to Model File
CE3 Exit from proaram

Enter Choice

DEFAULT MODEL FILE IS SPL.MOD
ENTER NEW FILE NAME>
SUCCESSFULLY OPENED DLAO:CESP.ESPDSPL.MOD;1

* SELECTION LIST SEQUENCING SOFTWARE
* Texas AS<M University

C1D Create Sequenced Hoopers
C23 Sequence Hooper 1
C3] C1 ijster HoDoer 3
L43 Print Cluster Report
C5D Group Clusters into Hoppers
C63 Write Selection List to Model File
CE3 Exit from prooram

Enter Choice

APPENDIX 7

SAMPLE CLUSTER OUTPUT

PACK NO

COMPONENTS PACKS

r̂ ri'/iPi'î 'crMTC T'* D
'f̂ n ir wtXi—is i O J. i" i

Of POOR QIWWURR?

il/CS NEEDED

000000001
Per -P WSmsll

000000002
OOOOOOOO5

OOOOOOO07

000000004
OOGGOGO06

000000091
Perf3 WSmall

OOOOOOOO3
OOOOGOO27

000000034

Forf3 TgtIV wSma1i

OOOOOOOOS
000000010

O00000012

OOOGOC014

000000016

OOOO00013

00000002O

OGOOO0022

000000067

000000002

OOOOOOOS6

000000039

000000131

00000000?
000000011

OOOOOOO13

000000015

000000017

OOQOO0019

000000021

OOOOOOO63

GOOOO0070

OOOG00035

000000037

OOOOO014'1

P e r f l S-JSmall

OOGOOG02G
OOOQOOG6O

000000099

•000000151

000000182

QOGGGOQ24
OO0000093

OOOOGO132

OOOOOO165

OO0000133
Perf3 WHuqe

000000025
00000006-1

OOOOOOI45

000000062
OOOOOOOS3

OOOG00157 '
Perfl WHuoe

000000030
000000113

000000126

O00000032

OO0000033
000000052

O00000065

000000031
000000123

000000127

000000035
OOOOOOO53

GGOOOOOS1

OOOOGO131

Pevfl Tgt-IV WHuge

Perf2 TgtIV WMult

Perfl TgtIV WSmaii

10 OO0000036
OO0000039

OOOOGOO^! 1

COOOOO043

OO000003S
000000040

OO0000042

OO0000171
Per ft' TqtIV WSmall

ORIGSMAL P&GS-L',
OF POOR QUALFIY

OOO00009O .
Perf3 WHult

OOOOOO1O7
000000113

000000129

OOOOGO1O9
00000012-1

TgtIV WHuge

OOO00010S
OOOOOO115

000000114

PsrfS Tat 11 WHuqe

ooooooi10
OOOO00116

000000119

000000111
OOOOOOI]7

OOOOOOI25
Perfl TgtII WHuge

OOOOOG112
OCOOOOI76

000000173

000000170
OOOOOOI77

000000120 00000012̂

Perf2 Tgtl WHuge

TgtII. WHuge

000000.I-IS
OCOOOO153

OOOOOOI79

OOOOOOI 52

OOOOOOI 30
WHuge

ORIGINAL
POOR QUALITY

fs

11

13

000000044
OQOOOOJ.M?

000000054
00000007-1

000000079

000000053

OOOOQO045

000000071
00000007'5

Perfl TgtIV WLarge

Psrfl Tgtl11 WSmall

Perf3 Tot IV WMult

i 4- 000000061 OOOOUOO63

16

i /

IS

000000066
OOOOOOOSO

000000076

OOOOOOO73

OO0000067 O00000072

000000077 OG0000033

Per-P3 Tat IV WHuge

Perfl WMult

PerfJ TgtIV WMult

Perfl TatIV WMedum

Perfl Tgtl WSmall

000000073
Perfl Tgtl11 WMult

31

OOOOOO149

000000156

OQOOO0161

000000162

ORIGINAL PAGE IB
Of POOR QUALITY

OGOOOO15O OOOOOO155

Perfi TgtIII WLarge

Perfl TgtV WHuge

Perf2 TgtIII WHuge

Perfl WLarge

Perf2 WMult

000000172
000000174

000000173
000000175

Perf-3 Tgtl WHuge

NUMBER OF PACKS - 32

CLUSTER 3'JMHARY REPORT

THRESHOLD DENSITY, K= 2
NUMBER GF COMPONENT PACKS ANALYSED-
NUMBER OF GROUPS FORMED- il

CLUSTER NO. 1

H/CS USC-D:
Farfl WSmall TgtlV Tgtll.1 Tgtl

CCMPONENT PACK VERSUS MACHINE MATRIX

.!. 1''

it*

**«•

'** i'c

V--K- -it

CLUSTER MO. 2
ORIGINAL
OF POOR QUALITY

US["-D:
Forf3 WHuoe T q t I I T c j t T

COHPCN'ENT PACK VERSUS MACHINE MATRIX

CLUSTER f'-iG. 3

M/CS iJStD:
Perfl l-JHuge TgtIV Tgtll TgtV

CariPONENT PACK VERSUS MACHINE MATRIX

CLUSTER NO. 4 ORIGINAL
OF POOR QUALITY

M/C3 USLD:
Nilu l t T g t I V T g t I I I

COMPONENT PACK VERSUS MACHINE MATRIX

CLUSTER NO.

USfD:
Ps?r f2 WHuae Tqtl TgtII Tgtlll

COMPONENT PACK VERSUS MACHINE MATRIX

ORIGINAL PAGE IS
OF POOR QUALITY

CLUSTER WO. 6

ri/CS UOI.-D:
Psrf l WLargs TgtIV TgtIII

COMPONENT PACK VERSUS MACHINE MATRIX

30 ! * a-

CLU'STFTR NO. /

ri/CG-i USfrD:

Perf3 TqtIV WSmail

COMPONENT PACK VERSUS MACHINE MATRIX

ORIGINAL PAGE 'Eg
OF POOR QUALITY

CLUSTER Hu.

P c r f 2 T a 11 v W f•i u 11

COivlFOMENT ?ACX VERSUS MACHINE MATRIX

CLUSTER MQ. 9

M/CS USL-D:
Per-f2 TgtIV WSmall

CGMPGNENT PACK VERSUS MACHINE MATRIX

.1 (.! ! •;(• s- -s i
j !•:*#!

CLUSTER NO. 10

M/CS UStD:
Pei-f3 Tgtlv WMulfc

COMPONENT PACK VERSUS MACHINE MATRIX

.1 3 ! •:•*••»:•#!
20 ! «• * !

CLUSTER NO. 11

f-1/CS USE-D:
Parfl Tgt.IV WMedum

COMPONENT PACK VERSUS MACHINE MATRIX

17

MACHINES REQUIRING DUPLICATION:

citIV Tgtl Ferfl WHuge TgtII TgtIII Perf3 WSrna 11

e-r-Pr1 WMult

