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The problem under investigation is about the 

IN: 

stationary positions of pairs of vortices of unequal intensity 
within the flow, behind a cylinder,modeling the asymmetric 
separation flow around a slender body at high angle.s of attack 
The calculation is being carried out for possible nen­
symm(~tric stationary positions of two vortices ana 'their 
stability is defined in the presence of small perturbations. 
The bifurcation flow fields are being analyzed in the course 
of change of the vortex intensity. The possible applications 
of the obtained results, pertaining to the calculations of 
the separation flows around a slender body, are being 
discussed. 
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FOI~TION OF ASYMMETRIC SEPARATED FLOW PAST SLENDER BODIES OF 
REVOLUTION AT LARGE ANGLES OF ATTACK 

M. G. Goman, A. N. Khrabrov 

Central Institute of Aerohydrodynamics 

" 'I'he' problem under investigation is about the stationary /1 * 
positions of pairs of vortices of unequal intensity within 
the flow, behind a cylinder, modeling the asymmetric separa-
tion flow around a slender body at high angles of attack. 
The calculation is being carried out for possible non-
symmet~ric stationary positions of two vortices and their 
stability is defined in the presence of small perturbations. 
The bifurcation flow fields are being analyzed in the course 
of change of the vortex intensity. The possible applications 
of the obtained results r pertaining to the calculations of the 
separation flows around a slender body, are being discussed. 

Of great interest in recent times is the appearance of con­

siderable lateral forces and moments exerted on slender bodies -

the missiles, elongated fuselage within the aircraft configuration, 

at high angles of attack and zero slip angle. The experimental data 

which has been reviewed in the studies [1, 2J indic~te: ~~atthe 

appearance of non-symmetric effect at the zero slip angle is associated 

with the development within a specific range of high angles of attack, 

of a stationary, asymmetric vortex structure. At small angles of 

attack, as the flow separates at the tip of a slender body, a sym­

metric pair of vortex flows is formed, which, as the angle of attack 

incrE?ases, becomes non-symmetric. The appearance of asymmetric 

vortex structure commences at the angles of attack which exceed the 

double halfangle of the tip for each particular body [3J. 

On; iE~ familiar with a model [4 J which explains the appe<:trance of 

the lateral loadvia'the development of several vorti~es, the position 

-_.,---------------
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of which in/ space is analogous to the pulse Karmann trail, swept 

along the longitudinal axis of the body. The reasons however remain 

unclear as to the cause of the appearance of asymmetry, for example, 

on the tip of the fuselage, where we have, during the separation flow, 

only two asymmetric vortices. There are several points of view in this 

rega.rd. One of them assumes ·that the cause of the asymmetry is the non­

symmetric flow separation which actually results in the development of 

non-symmet.ric vortices. According to another point of view, it is 

assumed that with the increa.se of the angle of attack, with the con­

current increase in the intensity of the symmetric pair of vortices, 

at some moment in time this vortex structure becomes unstable, with 

the development of non-symmetric structure. 

The results of the study [5J favor the latter point of view 

in which the authors, by assigning the a priori symmetric lines of /2 

separation at the cone, have obtained the non-symmetric solutions 

for a set of modeled vortices. 

In a number of cases, it is permissible to utilize the simplest 

flow diagram which describes a planar separation flow of an ideal 

noncompressible liquid around the cylinder. The separation zone in 

the wake of the cylinder is being modeled by two point vortices with 

different directional circulation. The possibility of the existence 

of such established separation flow, utilizing such approach is 

associated with the cases of stationary position of the vortices. 

Within the symmetric framework, when the vortices are equal in 

magnitude but opposite in the directional circulation, such problem 

was analytically solved in the study [6J. The details of this solution 

can be found in [7J. In the study [8J this model, on the assumption 

that: the methoo. of planar cross--section is valid, was utilized forthe approxi­

mate calculation of the symmetric separation flow around a slender 

body at high angles of attack. 

Let us consider this approach in its application to the flow around a 

cylinder wit.oout assuming that the }X>sition of the vortices is sYrrmetric and 
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that the magnitudes of directional circulation are equivalent. 

Let us assume that in the complex plane of variable z=x+iy, the 

position of vortices is assigned by zl and z2 values. The complex 

flow potential may be obtained by takihg into account the vortices 

with the reverse circulation at the l/z*l and l/z~ points, reflected 

with respect to the cylinder, the requirement which is necessary to 

satisfy the no-flow conditions at the cylinder: 

w (z) = Uoo (z + _I ) + i~t In Z - ~\ + i.-!L In 
Z 2 .. z-l/z

1
' 2 .. 

Z -.Z2 

Z - I/Z; , 
(1) 

where zi, z~ are the complex--conjugated quantities with respect 

to zl' z2 and r l and r 2 are the circulations of vortices. To 

calculate the speed of vortex movement, one should keep in mind 

that the vortex exerts no effect on itself and therefore, the 

complex-conjugated speed of motion of j vortex (j=l, 2) will be 

expressed as follows: 

dz; . (dW . Tj I ) -=ltm ----£-_ --.. 
dt z-z. dz 2" z- z, , (2 ) 

By introducing the dimensionless coordinates of vortices 
r· - I h· Uoo d' 1 t t J Z.=z. R, t e tlme ,= __ t an Clrcu a ory movemen y.= 2nU R' 

J J R J 00 

where R is the cylinder radius and U is the speed of incoming 
00 

flow, we will obtain the reiationships which define the vortices 

speed of motion as a function of their position: 

(3 ) 
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The differential equations (3) describe the position of 

vortices in time. This autonomous dynamic system is a Hamiltonian 

one, and the vortex coordinates along the 0 and 0 axes may be 
x y 

transformed into the canonically conjugated variables 

j= 1,2, 

where the Hamiltonian system of equations (4) 

H(x t, Yll x 2 , Y2; III -iz)=-iIYt(l- xi~Yi) + 

+'hY~(l- x;:Y~)+ 41 .. {~ln(Xi+Yt-l)+-;~ln(X~+Y~-l)+! 

[
(xi +- yi - I) (x~ +- )'~ - I) ]} 

+ 21112 1n 1 + (XI- X2)~ + (Yl - Y2)2 

(4) 

(5 ) 

defines the magnitude of kinetic energy, associted with the 

relative position of the vortices which is being preserved in the 

course of their movement. 

The stationary positions of the vortices correspond to the 

specific points within the dynamic system (4) for which . 

dx' dy' 
d; = d; = 0, j=l, 2, and coincide with the critical Hamiltonian 

point (5): VH=O. As one can see, the problem of finding the 

stationary positions of the vortices is reduced to the solution 

of a system of nonlinear algebraic equations. Within the non­

symmetric framework, it is not possible to obtain the analytical 

solution and therefore the calculation of possible stationary 

position of the vortices is accomplished numerically. 

The effective method of calculating a system of nonlinear 

equations which are parameter-dependent is the method of con­

tinuous extension of the solution. 
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In the course of a continuous change of one of the parameters, 

the solution also changes, forming within the expanded space of the 

phase variables and the parameter a continuous trajectory. The cal­

culation of such a trajectory in selecting its length as an indepen­

dent variable may be realized by integrating the corresponding system 

of differential equations, in the presence of starting conditions 

~-~()' u=u O which are the solution of the system of equations 

~(~O' uO)==O, which we are considering, where ~E~n, ~E.Rn, uE.R. 

The general concept of using such calculation method can be found 

in the study [lOJ. 

It is also possible to extend the continuous calculation through 

the points on the trajectory, limiting with respect to the parameter 

and corresponding to the bifurcation values of the parameter in which 

one has the sign inversion within the Jacobian system of equations 
aF 

det II ax II and the directiona.l change of the parameter. This makes 

it possible to handle the calculations which are ambiguous and 

obtain the solutions which are continuously interrelated within the 

expanded space of the variables and the parameter in question. 

In calculating the stationary positions of the vortices, we 

have considered the transformed, dimensionless parameters rand H 

which will be, according to the mean values of the dimensionless 

circulatory vortices and the relative magnitude of their asymmetry, 

f 11 1) "':, + ~'2 Th' as 0 ows: 1=2<11-12' anu '1,= e lnverse 
11- "'2 _ 

relationships are also valid 11 = 1 (1 + x), 12 = -1 (1 - y.). 

We are considering here the following regions of change in the 

selected parameters yE(O, ~) I ~e(-l, 1). The equations (3), and 

also the Hamiltonian (5) will not change when we replace H by -H if 

we replace the xl =x 2 , Yl =-Y2' x2=xl , Y2=-Yl' which reflect the /4 

coordinate position with respect to the Ox axis. Therefore, for 

the solution in question, it would suffice to handle only the 

positive H parameter. 
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Figure 1 shows the examples for calculation of lines for the 

stat~ionary position of vortices, as one changes the y and H para­

meters. As the y parameter changes and H=O, the stationary positions 

of the vortices move along the dashed lines which correspond to the 

symnetric solution. As y+O, the vortices get closer to the cylinder 

and as y+(~, they move towards infinity, along the asymptotes 
1 

y=± '2 H. 

Key: l. 
H=H

bif
; 

1. __ Clif'!itfempllUHblt pel11fllliP x cQ 

2,. -- jVt/JI(PAOIlUOHHMt· II = K5U~ 

Y 

U"" 4-----o;:i--

--.-J.._'/ 

Y =1 3 " 
o neptoR zp!/nno /leu/cllua nflu 0< x < X61/</> 

4. 4 '~IT/OPOR • •• 0< x< X 61i </> 

11 ~U¢!/flKUqUfJHHOe flel11eHUC x = X. 6/J<P 

5. 

Figure 1. 

Symmetric solutions H=O; 2. Bifurcational solutions 
3. First group of solutions for O<H<H

bif
; 

4. Second group of solutions O<H<H
bif

; 5. Bifurcational solution 

The change of H parameter for a fixed value of y=l results in 

the asymmetric displacement of vortices with respect to Ox axis. 

There is a limiting - bifurcational value of H=Hbif parameter, after 

which, during the continuous extension of the solutions, the H value 

begins to decrease. This branch corresponds to the second solutions, 

existing when O<H<Hbif . As H decreases, the stationary positions of 

the vortices move toward infinity, being displaced downward along the 
1 asymptote y=- '2 H. 



In the limiting case, when H~O, the vortices approach the 

stationary position, with the magnitude being the same and the 

directional circulation being opposite within a uniform flow, since 

the effect of the cylinde~ at some distance from it, is significantly 

less'pronounced. 

As the H values approach Hbif , the stationary position of the 

vortices pair gets closer and closer (1 and l' for H=O.25Hbif , 

2 and 2' for H=O.75Hbif ) and at H=Hbif -- they will merge. Figure 1 

shows the positional lines for a pair of vortices when H =Hbif and 

different values of y parame'ter. When H>H
bif

, the stationary 

position of vortices in the cylinder wake is absent. The magnitude 

of Hbif quantity depends on y parameter. Keeping in mind the 

possibility of having the non-·symmetric solutions in which -Hbif< H< 0, 

within the plane of dimensionless circulation of vortices Yl and Y2' /5 

there is a region of parameters for which there will be two different 

stationary positions of the vortices in the cylinder wake and there 

also will be a number of parameters in the presence of which there 

are no stationary positions of vortices in the cylinder wake (Figure 

2). The equations (3) will also have some other and special points, 

when the vortices may be on Oy axis, either on the same side of the 

cylinder or on both sides, and will also be found within the flow, 

in front of the cylinder. These solutions are not being considered 

since it is known a priori that they cannot be utilized for the 

description of separation flow. 

It is of interest to analyze the stability of motion of the 

vortices. As has been shown in [6J the symmetric solutions are 

stable if we are to consider only the symmetric perturbations and 

are unstable in the presence of small, non-symmetric perturbations, 

with respect to the stationary position of the vortices. 

The analysis of the perturbed motion of the vortices and its 

stability with respect to the non-symmetric stationary positions 

were conducted by numerical calculations of the roots of the 

characteristic equation within the set of linearized equations of 

7 



motion (4) in the vicinity of such specific points. The calculation 

of Jacobian nonlinear equations (4) in such special points, which 

is the matrix of equations for a linear approximation, is necessary 

for the development of continuous method in calculating the stationary 

positions. Therefore, in parallel with the calculatiQn of stationary 

solutions, it was also necessary to calculate the Jacobi numbers 

themselves. Since the dynamic system (4) is a Hamiltonian one, the 

range of these numbers is symmetric with respect to the real and 

imaginary axes. This property made it possible to control the 

accuracy in obtaining these numbers, in the course of calculations. 

1. 
PnL:.eHUft [5] 

o [J.S 

Figure 2. 

Key: 1. Solution 6 
3. No solutions 

Yf 

2. Two solutions; 

The eigennumbers for 

symmetric solutions are 

on an imaginary and real 

axis, and the absolute 

values of these numbers 

depends on y parameter 

(Figure 3, a). A pair of 

purely imaginary numbers 

Al ,2=±w correspond to the 

symmetric shape of the 

vortices perturbations, 

not increasing in time, 

and the presence of 

positive and real number 

A3 ,4=±E speaks of unstable 

motions in the presence of 

non-symmetric perturbations. 

As the circulatory motion increases, the spectrum is preserved 

qualitatively, approaching the beginning of the coordinates (Figure 

3, a). 

In the case of the first group of non-symmetric solutions, when 

O<H<Hbif , the spectrum of these eigennumbers is analogous to the 

spectrum of symmetric solutions. As the H paramet?r increases, the 
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eigennumbers move along the imaginary and real axes toward the 

beginning of the coordinates and at H=Hbif - we will have the 

quadruple zero root. Figure 3, b, shows the behavior of the 

eigennumber a s a function of H at '1=2. 

The other group of non-symmetric solutions qualitatively has 

another spectrum, which can be seen in Figure 3, b. The equilibrium 

positions also are not stable, but the instability nature is of 

oscillatory character and this is due to the presence of complex­

conjugated pair of eigennumbers Al,2=~±iwl part of which is positive 

and real. As the H paramete:t::" increases, the eigennumbers firs1: 

increase and then begin to decrease down to zero at H=Hbif (see 

Figure 3, b). 

b) 'u.s 
CI) 

-L 

t ---~ 

11 0.05 l( 

2. 
7-R .!pynnu pei:Jl'lfUU 

I~ 
J 'I Y 

u~ 
l_ 
, W 
I . 

~ 
[j 0.05 X 

Z--R 2P'!In,?U pOllelluu . 3. 

Figure 3. 
Key: 1. Non-symmetric solution; 2. 1st group of sOJ-utions; 

3. 2nd group of solutions 
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The stability considerations of the stationary separation 

flow within the framework of such simple planar system, unquestionably, 

cannot be transposed on the tridimensional separation flows, even 

within the range of the theory of a slender body. Nonetheless, this 

general concept as to the stability may turn out to be useful in 

considerin9 more complex flow systems. 

The different depiction of the flow fields will correspond to 

the stationary conditions in the equations (4). To comprehend the 

physical meaning of the obtained stationary solutions, it is necessary 

to have the general idea about, them. Therefore, it was necessary to 

calclllate and construct the most significant flow lines which define 

the general nature of the wake. Among these lines, one should first 

of all mention the flow lines along which the flow braking to zero /7_ 

velocity takes place. Such points may be found on the cylindersurf~ce 

as well as within the free flow. Their number and position define 

the qualitative structure of the flow field. 

The magnitude of the flow function which is an imaginary part 

of the complex potential W(z) (1): 1jJ(x, y)=Im W(z) remains constant 

along the flow lines. In constructing the special flow lines, the 

values of the flow function at the point of the flow braklng was 

determined, after which it was possible to construct the level of 

the lines along which the flow function will be computed. This made 

it possible to construct the flow lines which form within the flow 

field the saddle points. 

We shall consider different values of y and H parameters, in the 

presence of which the stationary flow around the object is possible. /8 

The constructed flow fields are shown in Figure 4. The upper series 

shows the cases of symmetric cylinder wake flow and a pair of vortices 

in the wake for different circulatory y(H=O). The cases which are 

considered topologically are analogous and are characterized by the 

presence of two centers at the points of the positioning of vortices, 

for half-saddles A, B, C, D on the cylinder and one saddle E within 
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the flow wake. In the symmetric case, all saddle points are at. the 

same level of the flow function 1jJ=0. 

As thE~ symmetry appears H> 0, the E point is elevated to a 
/\ 

certain level 1jJ=1jJ0>0, and as a result of this, in the wake of the 

flow~ one will observe a flow gap which is shaded in the picture. 

The C and D half-saddles begin to approach each other and as the 

bifurcation state approaches H=H
bif

, they will merge, forming one, 

degenerated half-saddle F. When the asymmetry parameter H increases, 

the E saddle first will be elevated, and the flow gap will expand. 

In the course of further increase of H, the gap begins to decrease. 

At the level of bifurcation H=H
bif 

and small y, the merging of C and 

D points will take place when the level of the flow function at the 

point E is still positive. For large y in the case of bifurcation 

solution at the point E the negative flow function will be displaced 

and the flow gap will be observed on the other side of the cylinder. 

There is an intermediate value of y=y*::0.57, when the bifurcation 

solution will have no flow gap: a zero flow line will pass through 

the saddle E. In the case when y>y*, the disappearance of the flow 

gap (the zero value of the flow function at the point E) occurs when 

the value of H is close to Hbif . The picture of such wake flow for 

such H is shown in 'the column for y>y* among the first non-symmetric 

solutions. 

The second non-symmetric solutions are topologically different 

from the first ones. They are characterized by the presence of two 

points of G and E saddle type within the flow, and the flow lines 

here are forming two isolated and closed regions, separated by the 

flow gap. Let us note that the structural difference in the first 

and second types of flows within the framework of non-symmetric 

solutions is accompanied by different stability spectra, applicable 

to these solutions. 

Let us consider the flows with closed vortex regions, adjoining 

the cylinder. In the case of small y parameter, there is only one 
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y<y* y''=y*<>: 0,57 
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y 
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A 
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y Y 
~ ~------

Figure 4. 
1. Symmetric solution; 2. First non-symmetric solutions; 

3. Bifurcation value; 4. Second non-symmetric solutions 
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synunetric solution. For the circulatory levels of y>y* - there are 

three solul:ions without flow gaps: one synunetric and two non­

synunetric - for H>O and H<O. It should be noted that the non-­

synunetric solutions, in a certain sense, are less "stable," something 

which is manifested in the lower positive real root (see Figure 3, b) 

when compared to the synunetric solution. 

The study [llJ presents the experimental data in regard to the 

flow field around the cylindrical body, with the ogive nose cone, 

in the course of appearance of non-symmetric separation flow. The 

non-symmetric position of vort:ices is associated with the separation 

of the flow line which emerges from the saddle point, within the flow, 

away from -the body. In this case, it embraces one of the vortices 

and is moved away along the flow gap. The flow fields observed in [llJ 

are similar to those which are considered in Figure 4. 

If one is to assume that in a real wake flow, the viscous flow 

effect will prevent the flow gaps, of all possible solutions, we 

could select the flows with closed vortex regions. At the tip of 

a slender body, where the circulatory motion of the vortices is 

small, something which is being observed experimentally, we have a 

symmetric vortex structure. As one moves further away from the nose, 

the vortex circulatory activity increases, and at a certain distance, 

the transition towards one of the non-symmetric solutions may become 

possible. 

The study [9] (page 102) which involved the slender rotational 

bodies, shows the dimensionless intensity of vortices rv/2naVOR as /9 

a function of the dimensionless parameter a(x-xO)/R which are 

introduced for considerations of similarity (r is the circulation 
v 

of vortices, a is the angle of attack, Vo is the speed of incoming 

flow, R is the radius of rotating body, x is the coordinate along 

the body, Xo is the coordinate of the point at which the vortex 

commences to move from the t:ip of the body) . 
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Within the framework of the flow diagrams under consideration 

and utilizing the method of planar bodies, Uoo=VOa. By assuming that 

xO~O, and by replacing x/R by liE, where E is the half-cone angle of 

the nose for a given body, the relationships presented in [9J may be 

represented as a linear dependence y=k~, where k~O.3 is a constant, 
E 

empirically determined from the curve. 

If the body is such that along all its length the dimensionless 

circulation of vortices y<y*, the appearance of asymmetric vortex 

structure, utilizing these assumptions, is impossible. If however, 

within a certain range of the angles of attack, the intensities of 

vortices toward the end of the body become greater than y*, one may 
ka be faced with asymmetry. This may take place when y = ->y* or if 

E 

the a.ngles of attack a> y; E. By substituting into this relationship 

the critical value of y* parameter y*zO.57 and the empirical value of 

k'" 0.3, we vvill end up with the development. of asymmetric vortex 

structure at the tail end of the body, in the form of a>1.9E. 

This correlates with the experimental data, indicating that the 

lateral loads will begin to appear when the angles of attack are 

greater than the double half-cone angle of a given body. 
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