
NASA Technical Memorandum 88235 

NASA-TM-88235 19860018586 

VOlriex Simulation of Forced 
Mixing Layers 
Osalmu Inoue and Anthony Leonard 

June 1986 

NJ\S/\ 
National Aeronautics and 
Space Administration 

liBRARY COpy 

"-ANGLEY RESt::ARCH CENTER 
LIBRARY, NASA 

l-!,o.~.~~TON, VIRGINIA 

1111111111111 IIII 11111 11111 IIIII 11111 IIII 1111 
NF00945 

https://ntrs.nasa.gov/search.jsp?R=19860018586 2020-03-20T14:19:06+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42840682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NASA Technical Memorandum 88235 3 1176 01344 2703 

Vortex Simulation of Forced 
Mixing Layers 
Osamu Inoue, 
Anthony Leonard, Ames Research Center, Moffett Field, California 

June 1986 

NASI\ 
National Aeronautics and 
Space Administration 

Ames Research Center 
Moffett Field, California 94035 

r 



This Page Intentionally Left Blank 



NOMENCLATURE 

A Amplitude of forced periodic disturbance 

b Mixing layer thickness, b = YO.95 - YO.l 

f Frequency of forced periodic disturbance 

fp Predominant frequency 

L Half width of a duct 

Distance between two neiboring vortices upstream of the origin 

Nup Number of vortices upstream of the origin 

r Velocity ratio, r = U2 /U1 

t Time 

U1 , U2 Freestream velocities (U 1 > U2 ) 

Uc Convection velocity, Uc == (U 1 + U2 )/2 

u Velocity in x direction 

v Velocity in Y direction 

x Streamwise coordinate 

X max Downstream distance beyond which vortices are deleted 

Xtest Downstream distance of the test section 

Y Normal coordinate 

z Complex representation of (x,y), z = x+iy 

r Circulation 

bt Time step 

Ow Vorticity thickness 

~U Velocity difference, ~U = U1 - U2 

f. Core radius 

e Momentum thickness 
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() e Energy thickness 

>. Modified velocity ratio, >. = (U1 - U2 )/(U1 + U2 ) 

Subscript 

n n-th vortex 

f forced ( Isturbance 
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Vortex Simulation of Forced Mixing Layers 

OSAMU INOUE 1 AND ANTHONY LEONARD 2 

NASA Ames Research Center 
Moffett Field, CA 9403[, 

ABSTRACT 

Two-dimensional, spatially growing, turbulent mlxmg layers are simulated nu-

merically by a vortex method and the results are compared with those determined 

experimentally. The effects of artificial forcing on flow development are also studied. 

Many of the flow features which have been observed experimentally are reproduced, 

and good quantitative agreements between experiments and computations are ob-

tained. 

INTRODUCTION 

Vortical flow structures of turbulent mixing layers are now well recognized, and 

the vortex method has been applied to simulate these vortical flows (Saffman and 

Baker, 1979; Aref, 1983; Leonard,1985). Though time-developing flows have been 

frequently treated with computations because of their relative simplicity, simula-

tion of spatially growing mixing layers is preferably accomplished by quantitative 

comparison with experiments. 

Ashurst (1979) simulated a spatially growing mixing layer for the first time by 

a vortex method. He showed that vortex pairing plays an important role in the 

development of a turbulent mixing laY8r, which is consistent with experimental 

observations. Mansour (1985) simulated a spatially growing mixing layer using a 
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2Present address: Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, 
CA 91125. 



hybrid numerical scheme. which is a combination of a Lagrangian vortex method 

with an Eulerian finite-difference method. He simulated mixing layers with and 

without forcing. and obtained the entrainment ratio numerically for the first time. 

One of the authors, Inoue (1985a,b), also simulated a spatially growing mixing layer 

with and without forcing by a vortex method. He showed by using passive markers 

that entrainm nt is an important mechanism for growth of the mixing layer. 

In spite of such contributions, it is not yet clear how well two-dimensional (2D) 

vortex methods simulate turbulent mixing layers, the reason being the small number 

of calculated data which are quantitatively comparable with experimental data. 

One of the goals of this study was to add new data to our knowledge concerning 

the applicability of a vortex method to simulate mixing layers. We also wanted to 

increase our understanding of a turbulent mixing layer. The numerical method we 

used is an adaptation of that used by Inoue (1985b). 

First, we take the effect of walls into consideration because many of the experi­

ments have been performed in a wind tunnel. It is known that an infinite number 

of rows of image vortices satisfy the wall condition that normal velocity vanishes on 

the wall. In actual computations, this method is very expensive. We consider three 

simplified treatments of the walls. In Model A. two rows of vortices are located at 

image positions with respect to the upper and lower walls. These image vortices 

have the opposite sense of circulation and half the strength of the real vortices. 

This ensures that the total circulation of the flow field remains zero. In Model B, 

two rows of vortices as in Model A have the opposite sign to and the strength of 

half of the real vortices, but are aligned with a fixed distance I between each of the 

neighboring vortices, respectively, on a line at y = 2L and y = -2L, where L is the 

distance between the splitter plate and a wall. The number of vortices on the lines 

is adjusted at each time so that total circulation of the flow field vanishes. In Model 

C, two vortex sheets are used instead of two rows of discrete vortices in Model Band 

2 



the length of the vortex sheets is adjusted so that total circulation vanishes. Strictly 

speaking, the normal velocities on "our walls" do not satisfy the wall condition in 

either case. However, the normal velocities on our walls are very small when the 

distance between the walls is sufficiently larger than the mixing layer thickness. 

Second. we delete vortices from the computation when they are sufficiently far 

downstream. This treatment ensures that the maximum number of discrete vortices 

in the computational domain is within a certain limit, and thus allows a calculation 

to be made for a period long enough that statistics can be measured. In most of 

the cases to be presented, velocities were averaged over 200 ::::: t ::::: 1,400 in our 

time units, which is 12 times longer than the averaging time used by Inoue (1985b), 

that is 120 ::::: t ::::: 220. In our longest calculation, velocities were averaged over 

200 :::; t ::::: 11,000. The average number of vortices existing in the computational 

domain was about 2600. 

Incr.easing attention has been given to forced mixing layers, because forcing may 

provide possible turbulence control (Ho and Huerre, 1984). Zaman and Hussain 

(1980) imposed disturbances using sound from a loudspeaker. The results showed 

that reduction of turbulence intensity can occur under certain conditions of forcing 

disturbances. Ho and Huang (1982) imposed disturbances on a flow by controlling 

flow rate. Their results showed that the spreading of a mixing layer can be efficiently 

manipulated at very low forcing frequency, if the mixing layer is perturbed near a 

subharmonic of the response frequency. Oster and Wygnanski (1982) generated 

disturbances using a small vibrating flap installed downstream of the trailing edge 

of a splitter plate. They found that the growth of the mixing layer depends both 

on the amplitude and the frequency of the forced disturbances. All these experi­

ments showed that the flow features of a mixing layer strongly depend on the forced 

disturbances. In this paper, the effect of forcing on the development of a mixing 

layer is also examined. There are a variety of methods by which forcing is applied 
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numerically (Inoue, 1985a; Mansour, 1985; Mclnville, Gatski, and Hassan, 1985). 

One of the simplest methods is to impose velocity disturbances of a sinusoidal form 

at the end of a splitter plate (Inoue,1985a). This is the method adopted for this 

study. 

MATHEMA TICAL FORMULATION AND NUMERICAL PROCEDURE 

The flow model and numerical method we considered are similar to those used 

in previous studies (Inoue, 1985a,b), except that the effect of walls is taken into 

consideration. First, we consider an unbounded flow produced by an infinite row of 

discrete vortices with the same sign and the same strength which are moving along 

the x-axis with a constant velocity. Let the circulation of each vortex be denoted 

by r, the fixed distance between the two neighboring vortices by l, the constant 

velocity of the vortices by Uc, and the upper- and lower-side velocities of the flow 

far from the x-axis by U1 and U2 , respectively. Then the following relations are 

satisfied. 

r = /:}.U·Z (1) 

(2) 

(3) 

Next, let us suppose that at an initial instance, t = 0, vortices on the right (x > 0) 

are suddenly removed. At all subsequent times the vortices on the left (x < 0) are 

assumed to move along the x-axis with the convection velocity Uc . After reaching 

the origin (x = 0), each vortex with x > 0 is assumed to move under the influence 

of the potential field induced by individual vortices including the upstream (x < 0) 

vortices, in addition to the contribution of the convection velocity. Our main interest 

lies in the motion of the discrete vortices on the right side. To accurately simulate 

a flow produced in a wind tunnel, the effect of walls which bound the mixing layer 
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at y =: ±L should be taken into consideration. An infinite number of rows of image 

vortices are necessary to satisfy the wall condition that the normal velocity vanish 

on the wall. In actual computations the evaluation of the effect of the infinite 

number of rows of image vortices is very time-consuming. Furthermore, we plan to 

extend this calculation to three dimensions, in which case an image system with an 

infinite number of vortex filaments is not feasible. In this paper, the effect of walls is 

approximated by two rows of vortices only (Models A and B) or by two vortex sheets 

(Model C). These vortices have circulation - r / 2 and are located either at the image 

positions with respect to the upper and the lower walls (Model A, see figure 1) or on 

the lines at y = ±2L with the distance I between each neighboring vortices (Model 

B). In Model C, vortex sheets are located at y = +2L. Note that the strength of 

these vortices or the vortex sheets is prescribed such that total vorticity of the flow 

field is zero. Strictly speaking, normal velocities on our walls do not vanish. As 

will be seen, normal velocity on the walls is very small when the distance between 

the upper and lower walls is sufficiently larger than the mixing layer thickness. In 

Model A and Model B the complex velocity potential, I, which governs the flow 

development for N vortices, is given by 

N r N r N r 
I =: Ucz + i '" -log(z - zn) - i '" -log(z - Zu n) - i '" -log(z - Zl n) (4) ~ 27f ~ 47f ,~ 47f ' 

n=l n=l n=l 

where z = x+iy, and the subscripts u and t denote the upper- and lower-image 

vortices, respectively. The velocity components u in the x-direction and v in the 

y-direction are given by 

. al u - zv = -az 
In Model C, the velocity components are given by 

N 
. . '" r 1 . r (Zmax,u - z) . r (Zmax,l - z) u - w = Uc + z ~ ----- + z-log ---- + z-log 

n=l 27f Z - Zn 47ft zup.u - Z 47ft Zup,l - Z 
(5) 

where Zmax and zup denote the downstream and upstream positions of the vortex 

sheets, respectively. The time development of an individual vortex is determined 
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from the relation 

As is well known, the numerical algorithm employed here requires evaluation of N 2 

order terms per time step and therefore is very time consuming for large N. To save 

computation time, we assume a test section in which reliable results are expected 

to be defined: .3 0 < X < Xtest, and vortices far downstream (x 2: Xmax > Xtest) of 

the test section are deleted. 

In cases where forcing is applied, each new discrete vortex that appears at the 

origin is assigned the velocity 

in addition to the velocity induced by individual discrete vortices (Inoue, 1985a). 

Periodic disturbances of the form 

v f(t) = Asin{27r It) 

are assumed. 

In this simulation, the first-order Euler scheme is employed for time integration. 

After a number of preliminary tests, the simulation parameters were prescribed as 

follows 

Uc = 3.2, bt = 0.1, Xtest = 250.0 

r = U2 /U 1 = 0.3, 0.46, 0.6 (6) 

1=0.0, 0.08, 0.16, 0.32, 0.64 

The above velocity ratios were selected by taking into consideration the experiments 

of Oster and Wygnanski (1982) and Mehta and Westphal (1985). The distance 

between two neighbouring vortices upstream of the origin was prescribed to be 
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l = Ucht(=0.32), and therefore vortices are shed one by one at every time-step lit 

from the origin. In this calculation as in the previous ones (Inoue, 1985a,b), the 

following core function was used. 

u ex: (7) 

Four additional parameters must be fixed in addition to those simulation parame-

ters described earlier in (6). These are the core radius E, downstream distance, X max , 

beyond which vortices are deleted. half width of a duct L, and number of vortices 

N up upstream of the origin. The effects of these parameters on flow features are 

slight. The difference of calculated results among Model A, Model B and Model C 

is also very small. Therefore, most of the calculations were performed using Model 

A with.E = 0.61, Xmax = 500.0, L = 50.0, and Nup = 1000. 

RESULTS AND DISCUSSION 

Mixing Layers Without Forcing 

Motions of discrete vortices at the initial stage of time development are presented 

in figure 2. At the initial stage, vortices leaving the origin roll up into concentrated 

swirls, as shown in figure 2(a). These swirls grow with time, and move into the lower-

speed flow region,as shown in figures 2(b) and 2(c). In contrast to unbounded mixing 

layers, further movement of the swirls toward the lower-speed flow side is prevented 

by the image vortices, and the swirls are convected downstream along the wall with 

a velocity approximately equal to U c (figures 2( d) and 2 (e)). After sufficient time, 

it appears that the state of the mixing layer in the test section is independent of the 

effect of the initial roll up. In our calculations, a quasi-steady state of the mixing 

layer is achieved in th~ test section, 0 :S x :S 250, after approximately t = 140 (figure 

2 (f)). Measurements of velocity fields are started at t = 200 when the initial swirls 
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have passed the location x = 500 (figure 3). This downstream location is prescribed 

in most cases of this calculation as the maximum value, X max , beyond which vortices 

are deleted from the computation. Velocities are measured at twelve stations of x 

from 20 to 240, and 51 points of y from -20 to 20 at each x-station. The mean flow 

quantities and turbulent statistics are obtained by averaging instantaneous values 

over the perioc 200 :S t :S 1,400 in most cases. A much longer calculation performed 

over 200 :S t :S 11,000 confirms that the shorter averaging time is enough to obtain 

accurate values of lower-order statistics like the Reynolds stress (-u'v'). Figures 

4-7 are graphs of mean flow quantities obtained in these calculations. The actual 

data are shown in table 1 (case 1 and case 2). Examples of flows in a quasi-steady 

state are presented in figure 8 for three different velocity ratios, r = 0.6, 0.46, and 

0.3. 

For this study, we measured several characteristic thicknesses of the mixing layer. 

These are presented in figures 9 and 10 for r = 0.6. The various thicknesses are 

momentum (0), mixing layer (b), vorticity (ow), and energy (Oe). These have been 

calculated as shown below. 

b = YO.95 - YO.1 

All thicknesses presented show linear growth for x > 60. In the figures, for 

example, the symbol YO.5 denotes the location at which U = U2 +0.5(U1 - U2 }. The 

locus of YO.5 is also linear for x > 60, but the values are negative as the location of 

YO.5 moves toward the lower speed flow region (Oster and Wygnanski, 1982). 

Time averaged profiles of the mean velocity, fluctuation velocities, the Reynolds 

stress, and third-order moments are presented in figures 11-14 for r = 0.6 of the 

longer averaging time. The velocities were made dimensionless by Ll U. The modified 
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mean velocity, ii = (U - U2 ) / flU, is plotted in figure 11, instead of the mean velocity, 

U. The coordinate rJ is defined as (y - YO.5)/(). All the mean quantities plotted in 

figure 11 are similar in shape. We observed that some features of the calculated 

results differed from those of the experimental results. First of all the maximum 

value of r.m.s. u' is smaller than that of r.m.s. v' (figure 12), which contradicts 

experimental results at high Reynolds number. Second, the profile of r.m.s. u' is 

deformed in shape if it is compared with the profiles obtained experimentally (for 

example, Oster and Wygnanski, 1982). The profile of r.m.s. v' is smooth and quite 

similar in shape to experimental results. Third, the profiles of both ul3 and {t'v, 2 

in figure 14 show bumps near the boundaries of a mixing layer, which have not 

been observed in the experimentally determined profiles. There is some evidence 

that the discrepancy between our calculation and experimental value of the relative 

magnitude between r.m.s. u' and r.m.s. v' and the deformed shape of r.m.s. u' may 

be a result of the three dimensionality existing in actual flows. We discuss this point 

later in relation to the effect of forcing. Both Ashurst(1979) and Mansour (1985) 

also found similar results, that is, a deformed profile of r.m.s. u' and r.m.s. u' values 

less than r.m.s. v'. 

The effects of velocity ratio r on flow features are plotted in figures 15-20. Figures 

15 and 16 show that the mixing layer grows more rapidly with decreasing r. In these 

figures the results of the longer calculation are also plotted for r = 0.6. One can 

see that the difference of mixing layer growth caused by different averaging times is 

slight (see table 1). In figures 17-20, the profiles at five stations in the x-direction, 

x=120, 140, 160, 180 and 200, are plotted with the same symbol for each velocity 

ratio. Figure 17 suggests that the similarity profile of the modified mean velocity ii 

is independent of the velocity ratio r. The other quantities presented in figures 17-20 

show that the peak values of the similarity profiles are approximately independent 

of r, at least for the first- and second-order moments. Note that the maximum value 
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of r.m.s. '/1,' in the experiment of Oster and Wygnanski (1982) was approximately a 

constant independent of the velocity ratio. 

A comparison of the calculated data (Model A with L = 50.0) with the exper­

imental data is presented in table 2. In the table the mixing layer thickness b is 

defined, according to Oster and Wygnanski (1982), as b = YO.95 - Yo.] for both 

r = 0.6 and r - , 0.3 while according to Mehta and Westphal (1985) as b = YO.9 - YO.1 

only for r = 0.46. The maximum values of r.m.s. '/1,', r.m.s. v' and of the Reynolds 

stress, -'/1,'V', are obtained from their respective similarity profiles. The agreement 

between the calculated and experimental is good, except for the peak values of 

r.m.s. v' which are twice as high as the experimental values. It is important to 

realize that Mehta and Westphal (1985) performed their experiment without walls 

and that our calculation is in good agreement with their results. This .agreement is 

achieved even with the wall effect of our calculation. 

A number of tests were performed to study effects of parameters on flow features. 

The parameters tested are core radius ((;), half width of a duct (L), the downstream 

distance beyond which vortices are deleted (x max ), and the number of vortices which 

are aligned upstream of the origin (Nup). Some of the results are presented in table 1 

for r = 0.6. The mean quantities are obtained by averaging instantaneous values over 

the shorter time period except for Case 1 when the longer averaging time was used. 

The computational condition of Case 1 is identical to Case 2 except for the averaging 

time. Comparison of Case 1 with Case 2 indicates that the shorter averaging time 

is sufficient in determining the low order moments as presented in table 1. This 

conclusion is supported by figures 4-7. The effect of the parameters on the mean 

flow quantities is slight, except for a very narrow wall width (Case 7 in table 1) 

where the Reynolds stress -'/1,' v' did not show similarity for the shorter averaging 

time. The effect of L on the mixing layer thicknesses is plotted in figures 21 and 22 

for r = 0.6. Except for the case of the narrow duct width (L = 30.0), the effect of 
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L on the mixing layer thicknesses is negligible. However. the momentum thickness. 

(). shortly downstream of the splitter plate shows a small difference between the 

cases of L = 50.0 and L = 70.0. The peak value of r.m.s. u' is smaller than that of 

r.m.s. v' in every case. even in Case 8 where the effect of walls is not considered. The 

difference between this result and the result of Inoue (1985b), r.m.s. u' > r.m.s. 1:'. 

may be caused by insufficient averaging time in the calculation, 120 :S t :S 220. The 

results obtained using Model B and Model C are presented in table 1. The difference 

between Case 11 and Case 12 and between Case 13 and Case 14 is the wall width 

L. The difference between the calculated results of the three models used is small. 

Mixing layer thicknesses and statistical quantities for all three models with L := 50.0 

are shown in figures 23-28. In figures 25 to 28, only the values at x = 200.0 are 

plotted as typical for Model A, while for Models Band C, the values from x = 120.0 

to 200.0 are plotted with the same symbol. 

The effect of parameters on the normal velocity V on our walls is summarized 

in figures 29 and 30. The velocity V is normalized by b..U. Figure 29(a) shows 

that when L is fixed the magnitude of the normal velocity V on the walls becomes 

larger with decreasing velocity ratio r. Figure 29(b) shows that when r is fixed, the 

magnitude of V on the walls has a tendency to become larger with increasing L. This 

is ironical because the calculated results show better agreement with experiments 

with a large L than with a small L (see table 1). With a very large L, the effect of 

walls is negligible and in such cases the linearity of the centerline Yo.S of the mixing 

layer may not hold. In fact, Yo.S does not show linearity without walls (Case 8 in 

table 1). The normal velocity V on the walls shows very little variation among the 

three models as confirmed by the same \alues of both rand L (see figure 30). The 

velocity V on the walls was less than 1.6 percent of b..U and the r.m.s. v' on the 

walls was less than 0.5 percent of b..U in our calculation. This result, coupled with 

good agreement between experimental and calculated values in Table 2, indicates 
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that the wall models adopted here provide no practical problems. 

Forced Mixing Lavers 

The effects of periodic forcing on the flow features were investigated using Model A 

under the conditions of r = 0.6, Vc = 3.2, bt = 0.1, (= 0.61,xmux = 500, L = 50, 

and Nup = 1010. In the experiments of Oster and Wygnanski (1982) the predomi· 

nant frequency I p of the unforced mixing layer with r = 0,6 satisfied the following 

relation near the trailing edge 

(11) 

This relation can also be obtained by stability analysis (Michalke, 1965). In our 

calculation, VI + V 2 = 2Ve = 6.4, and the momentum thickness, Oi, obtained near 

the start of linear growth of the unforced mixing layer is approximately equal to 004, 

as seen in figure 9. Therefore the predominant frequency, i p , may be determined 

from the above relation as Ip ~ 0.32. 

The dependence of the mixing layer thicknesses on forcing frequency is presented 

in figures 31 and 32. The difference among flows caused by the variation of forcing 

frequency is shown in figure 33 with t = 1000.0. For unforced cases mixing layers 

grow linearly with x, as seen in figures 31 and 32. For a low frequency forced flow 

(J = 0.16), all mixing layer thicknesses show that growth of the mixing layer is 

enhanced downstream of the origin, 0 < x < 80; the growth rate of the mixing layer 

in this region is higher than the unforced mixing layers (Hereafter, this region is 

referred to as Region I). The plot of discrete vortices in figure 33 (c) indicates that 

vortex amalgamation is enhanced in this region if compared with the unforced case. 

With further increasing downstream distance, say 80 < x < 160, the growth of the 

mixing layer slows down or even stops (Region II). The plots of discrete vortices 

in this region show that lumps of discrete vortices or large eddies are aligned and 

no vortex pairing occurs in this region. Further downstream, 160 < x, the mixing 
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layer recovers its growth with increasing x (Region III), as seen in figures 31 and 32. 

The behavior of discrete vortices in this region are quite similar to that in unforced 

mixing layers and the vortex pairing process was observed everywhere in this region. 

For a lower-frequency forced flow (J = 0.08), growth rate of a mixing layer is larger 

than that in the case of j = 0.16. The length of Region I when j = 0.08 is about 

twice the length than when j = 0.16, say 0 < x < 180. 

Velocity profiles of a low-frequency forced mixing layer (J < jp) are shown in 

figures 34 and 35 for j =0.16. In the figures, the solid line indicates the similarity 

profile of the corresponding unforced mixing layer. We can see from figure 34 that 

the profiles of the mean velocity il are reasonably similar in all three regions owing 

to the choice of the similarity parameter 1] (Oster and Wygnanski, 1982). We can 

also see from figure 34 that the Reynolds stress is small everywhere in Region II 

and for sufficiently large forcing amplitudes it becomes negative across the mixing 

layer, indicating the occurrence of contra-gradient diffusion. The Reynolds stress is 

positive both in Region I and Region III. Figure 35 shows that the profiles of T.m.s. u ' 

are double-peaked in Region II where lumps of discrete vortices are aligned (figure 

33( c)). The maximum value of the profile in the lower-speed region is approximately 

0.15 which is in agreement with the value obtained by Oster and Wygnanski (1982). 

The profiles of T.m.s. v' in figure 35 show that the peak values of T.m.s. v' of 

forced mixing layers are larger than those of unforced mixing layers. The maximum 

value of T.m.s. v'is about 0.3 and this value does not depend very much on the 

forcing amplitudes (see figure 36). Oster and Wygnanski (1982) determined the 

maximum value of T.m.s. v'to be about 0.3 for the same velocity ratio, r = 0.6. The 

agreement between the calculation and the experiment is very good. It should be 

remembered that the difference of the T.m.s. v' of unforced mixing layers between the 

calculation and the experiment is about twice (see table 2). Oster and Wygnanski 

(1982:) showed that the flow becomes more two-dimensional when two-dimensional 
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forcing is applied. It is also interesting to note that in the experiment of a mixing 

layer with low Reynolds number, conducted by Browand and Weidman (1976), the 

results showed T.m.S. u' < T.m.S. v' and also the deformed shape of T.m.S. u'. In 

low Reynolds number flows, small-scale streamwise vortices which are superimposed 

on large-scale spanwise vortices in high Reynolds number flows may be absent or 

at least weab led by the viscous effect, and thus low Reynolds number mixing 

layers could be more two-dimensional. Thus, the two-dimensional computational 

result T.m.S. u' < T.m.S. v' and the deformed shape of T.m.S. u', both of which are 

contradictory to experimental results when the Reynolds number is high, may be 

improved when the three-dimensional effects can be accounted for in the numerical 

simulations. 

For a high frequency forced case (f = 0.64) which is about twice the predominant 

frequency Jp , the growth rates of all mixing layer thicknesses are much lower, in the 

region x < 120, than the growth rate of the unforced mixing layer: the growth of 

the mixing layer is suppressed (see figures 31 and 32). Suppression of a mixing layer 

for a high-frequency forcing was found numerically by Mansour (1985). The plot of 

discrete vortices in figure 33 (e) shows that clusters of discrete vortices or large eddies 

are formed immediately downstream of the origin where no large eddies are formed 

for low frequency forced or unforced mixing layers. This flow feature is evident 

in figure 33(d) where the forced frequency, J = 0.32, is equal to the estimated 

predominant frequency, Jp. These large eddies do not show vortex pairing in the 

region where the growth rate of the mixing layer is suppressed. Further downstream, 

say 160 < x, the forced mixing layer grows at nearly the same rate as that of the 

unforced mixing layer (see figures 31 and 32). In this region we can see vortex 

pairing process: the growth of a mixing layer is closely related to the vortex pairing. 

Velocity profiles of a high-frequency forced mixing layer (f > Jp ) are presented 

in figures 37 and 38 for f =0.64. The profiles of the mean velocity fl in figure 37 are 
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similar because of the choice of the similarity parameter rJ, as in the case of a low­

frequency forced mixing layer (figure 34). Figure 37 also shows that the Reynolds 

stress -u'v' is smaller than the values of unforced mixing layer in the region where 

the growth of the mixing layer is suppressed (x < 120), while it is larger in the 

region where the mixing layer grows at nearly the same growth rate as that of the 

unforced mixing layer. In comparison with the values of the unforced mixing layer. 

both r.m.s. u' and r.m.s. v' are small in the region where growth of the mixing layer 

is suppressed (see figure 38). With increasing downstream distance, both values of 

r.m.s .. u' and r.m.s. v' increase and seem to attain the profile close to the similarity 

profile of the unforced mixing layer. 

Effect of forcing frequency on the mean velocity profile is presented in figure 39. 

The velocity profile appears to be independent of the forcing frequency. 

The effect of forcing amplitude on the development of a mixing layer is presented 

in figures 36 and 40-42 with I := 0.16. The difference of flows caused by the variation 

of forcing amplitude is shown in figure 43 with t = 1000.0. The effect of the forcing 

amplitude is not so drastic as is the effect of the forcing frequency (see figures 40 and 

41). The profile of the mean veloCity il in figure 36 shows that the profile appears to 

be independent of the forcing amplitude. Here it may be of interest to note that the 

profile of the mean velocity, il, is approximately independent of both the velocity 

ratio r (figure 17) and the forcing frequency I (figure 39). Figure 42 shows that the 

defect of r.m.s. u' and the negative value of the Reynolds stress in Region II become 

larger with increasing forcing amplitude. 

Oster and Wygnanski (1982) systematically investigated the effect of initially 

forced periodic disturbances on the development of the turbulent mixing layers. 

Disturbances were imposed by an oscillating flap slightly downstream of the trailing 

edge of a splitter plate. The forced frequencies (from 20 to 100 Hz) were much 

smaller than the predominant frequency (400B z < 17' < 600B z) measured near 
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the trailing edge. They found that the development of the flow indicates different 

behavior in three regions. The first is the initial region in which the mixing layer 

grows with increasing x more. rapidly than the unforced mixing layer. The second 

is the resonance region in which the growth of the layer slows down or even stops. 

The third is the downstream region in which the layer again grows at nearly the 

same rate as : 1 the initial region. In the initial region the growth rate becomes 

larger with increase in amplitude of the forced disturbances, and the length of this 

region appeared to be inversely proportional to the frequency of the forced periodic 

disturbances. In the resonance region a single array of large, quasi-two-dimensional 

vortex lumps exists, which do not interact with one another. The double-peaked 

shape of r.m.s. u' and the negative Reynolds stress are observed in the resonance 

region. The length of the resonance region is given by 1 ::; >./ x/V c ::; 2, where>. is 

defined as >. = (V} - V2 )/(V} + V2 ). 

Most of the flow features of forced mixing layers observed experimentally by Oster 

and Wygnanski (1982) are reproduced here for the cases of low-frequency forcing 

(J < 11')' The three regions observed by Oster and Wygnanski (1982) correspond 

to the Regions I through III in this calculation. The criterion for the length of the 

resonance region is also satisfied. For example, the resonance region is 80 ::; x ::; 160 

for / = 0.16, as seen in figures 31 and 32, and>' = 0.25, Vc = 3.2 in this calculation. 

Zaman and Hussain (1980) imposed disturbances on the origin of a mixing layer 

using sound from a loudspeaker. Their results showed that turbulence suppression, 

or reduction of turbulent intensity, occurs when the forcing frequency / is larger than 

the predominant frequency /p. Zaman and Hussain (1980) speculate that turbulent 

suppression is a consequence of earlier transition, induced by the forcing, of the shear 

layer vortices which otherwise naturally grow to larger sizes and undergo successive 

pairing in the corresponding unforced flow. Our results shown in figures 33( d), (e) 

and figure 38 indicate that turbulent suppression is related to inhibition of vortex 
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pairing and thus are consistent with the observation of Zaman and Hussain (1980). 

Recently, Bell and Mehta (1985) investigated the effect of initial, periodic distur­

bances on a 2D mixing layer. Disturbances are provided at the trailing edge of the 

splitter plate using an oscillating flap. Their results showed, consistent with our 

calculated results, that vortex pairing is enhanced shortly downstream of the split­

ter plate for low-frequency forced cases while suppressed for high-frequency forced 

cases. 

Finally, both the effects of forcing amplitude and forcing frequency on the normal 

velocity V on the walls are shown in figure 44. Clearly, both forcing amplitude and 

forcing frequency have little influence on the normal velocity. 

SUMMARY AND CONCLUDING REMARKS 

Spatially growing, turbulent mixing layers with and without forcing were simu­

lated numerically by a 2D vortex method. Many of the flow features which have been 

observed experimentally are reproduced, and good quantitative agreement between 

experiments and computations is obtained. The main conclusions of this study are 

as follows. First, the time-averaged flow quantities up to third-order moments show 

similarity for unforced mixing layers. The peak values of both r.m.s. u' and -u'v' 

are in agreement with experimental values. while the peak values of r.m.s. v' are ap­

proximately twice as high as the experimental ones. The peak values of third··order 

quantities are approximately two times the value of those found experimentally. Sec­

ond, the peak value of r.m.s. u' is smaller than r.m.s. v' in every case of unforced 

mixing layers treated in this paper. This result is contradictory to experimental 

results obtained when the Reynolds number is high. The result for forced mixing 

layers suggests that three dimensionality existing in actual flows may be responsible. 

Third, the profiles of both ul3 and u'vI2 show bumps near the boundaries of a mix­

ing layer, which have not been observed in experiments. Along with the deformed 

shape of r.m.s. u' which has been observed in a low Reynolds number mixing layer, 
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these problems may also be associated with the three dimensionality of the flow, 

though further confirmation is needed. Fourth, the calculated results are consistent 

with experiments for forced mixing layers. 

This study suggests that vortex methods may be quite effective and useful to 

simulate turbulent mixing layers, and that studying the effect of three dimensionality 

on flow featurE, will be an important continuation of this work. 
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Case 

No. 

Case 1. 

Case 2. 

Case 3. 

Case 4. 

Case 5. 

Case 6. 

Case 7. 

Case 8. 

Case 9. 

Case 10. 

Case 11. 

Case 12 

Case 13. 

Case 14. 

Table.I. Effect of parameters on mean flow quantities at r=O.6 'md Uc=3.2. 

Parameters Results 

t:. db/dx u'l AU v' I t1u - 2 x L N -u 'v' I AU max up 

Long Calculation 500 ± 50 0.61 1000 0.049 0.198 0.254 0.012 

Standard case 500 ± 50 0.6~ 1000 0.049 0.194 0.250 0.012 

Effect of core (£) 500 ± 50 0.3Q 1000 0.048 0.204 0.257 0.014 

Effect of core (f.) 500 ± 50 0.15~ 1000 0.046 0.204 0.262 0.012 

Effect of wall (L) 500 ± 70 0.6! 1000 0.049 0.198 0.250 0.012 

Effect of wall (L) 500 ± 30 0.6£ 1000 0.047 0.192 0.250 0.012 

Effect of wall (L) 500 ±10 0.61 1000 0.043 0.182 0.250 not similar 

Without wall 500 - 0.6/. 1000 0.046 0.192 0.250 0.014 

Effect of N 500 up ! 50 0.6/. 500 0.052 0.200 0.245 0.015 

Effect of x 350 ~ 50 0.61 max 1000 0.047 0.200 0.250 0.013 

Model B (1) 500 ! 50 0.61 1000 0.049 0.196 0.256 0.013 

Model B (2) 500 ! 30 {J .6~ 1000 0.049 0.198 0.250 0.013 

Model C (1) 500 ! 50 o .6J, 1000 0.047 0.202 0.250 0.013 

Model C (2) 500 ! 30 o .6J,. 1000 0.051 0.199 0.250 0.013 



Tableo2. Comparison of this study with experiments for Model A with L = 50.0. 

LIST OF FIGURES 

Velocity 
db/dx dB/dx de /dx dYO.S/dx u'/llU Vi /AU - 2 

ratio Source -u 'v' /~U e 

r ;: 0.6 Oster & Wygnanski "(1982) 0.04S 0.009 - 0.004 0.180 0.153 0.013 
Yule' (1971) 0.054 0.173 " 0.16 0.013 

Spencer (1970) 0.17 0.14 0.011 

Spencer & Jones (1971) - 0.005 0.19 0.12 

This study (200~t~1,400) 0.049 0.010 0.015 - 0.006 0.194 0.25 0.012 

This study (200~t~11,000) 0.049 0.010 0.015 - 0.006 0.198 0.254 0.012 
N 
~ 

r ;: 0.46 Mehta & Westphal '(1) TST 0.054 0.012 0.179 0.118 0.011 
(l985~ 

(2) TSU ,.... " .. " 0.187 0.126 0.012 Mehta & estphal 0.063 u.U!.) 
(1985) 

0.198 0.25 0.012 This study 0.061 0.013 0.021 - 0.012 

r = 0.3 Oster & Wygnanski-(1982) 0.100 0.019 - 0.026 0.179 

Spencer & Jones (1971) - 0.020 0.19 0.13 0.013 

This study 0.105 0.020 0.031 - 0.024 0.191 0.25 0.012 

** b = YO•95 - YO•1 for r = 0.6 and 0.3, while b = YO•9 - YO.l for r = 0.46. 
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Fig.42. Effect of forcing amplitude on r.m.s. u' and -u'v' in Region II. x=140. 
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