;

٢.

NASA-TM-84897 19860018604

A Reproduced Copy

OF

NOV 1 2 1986

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

Reproduced for NASA

by the

NASA Scientific and Technical Information Facility

: : 1.

FFNo 672 Aug 65

NASA Trohnical Memorandum 84897

(HASA-TH-84897) HASTRAN/FIEXSIAB PROCEDURE FOR SUATIC AEFOELASUIC ANALYSIS (HASA) 21 p FC A02/HE K01 CSCL 01C

Unclas G3/05 43220 of 25

Copy

N86-28076

ds NC 473657

NASTRAN/FLEXSTAB Procedure for Static Aeroelastic Analysis

Lawrence S. Schuster

September 1984

Review for general rolease June 30, 1983

N84-28076#

NASA Technical Memorandum 84897

NASTRAN/FLEXSTAB Procedure for Static Aeroelastic Analysis

.....

Lawrence S. Schuster NASA Ames Research Center, Dryden Flight Research Facility, Edwards, California 93523

1934

Ś

National Aeronautics and Space Administration Amos Research Center Dryden Flight Research Facility Edwards, California 93523

SUIHARY

Presented is a procedure for using the FLEMSTAB External Structural Influence Coefficients (ESIC) computer program to produce the structural data necessary for the FLEMSTAB Stability Derivatives and Static Stability (SDSSS) program. The SDSSS program computes trim state, stability derivatives, and pressure and deflection data for a flexible airplane having a plane of symmetry. The procedure uses a NASTRAN finiteelement structural model as the source of structural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are boundary conditions and the NASTRAN substructuring technique.

INTRODUCTION

Large modern aircraft structures are frequently quite flexible and produce large flexibility effects on aircraft stability derivatives and aerodynamic loads. This situation makes the design of such aircraft difficult because the techniques used for the analysis of these structures must be able to accommodate the effects of flexibility on the analytically derived loads and stability derivatives.

Definitions

4

Some of the concepts used in the NASTRAN/FLEWSTAB procedure are aerodynamic and structural models, structural nodes and GRID points, slender and thin bodies, and flexibility matrices. Aerodynamic and structural models are mathematical descriptions of the airplane. Aerodynamic models are used by the FLEXSTAB program to compute the aerodynamic pressures on each part of the airplane at a given set of flight conditions. Structural models are used by the NASTRAN program to compute the deformations of the airplane that result from an applied lead distribution (such as the aerodynamic pressures computed by FLEXSTAB). Structural nodes (used in FLEXSTAB) and GRID points (used in NASTRAN) are geometrical points located on the structural model of the airplane. When loads are applied to these points, the structure will deform in a predictable and calculatable way. Structural nodes will allow translational deformation of the structure in three orthogonal directions, whereas GRID points will allow these translational deformations and will also allow rotational deformations about these three directions. Slender bodies are used in the aerodynamic model to describe parts of the airplane that resemble a body of revolu ion, such as fuselages, nacelles, and external stores. Thin bodies are used to describe the relatively flat parts of an airplane, such as wings, fins, and tails. The flexibility matrix is a square matrix that contains the structural deformations of all structural nodes that result from unit loads applied individually at each structural node of the airplane.

Assumptions and Recommendations

This procedure requires that the reader has some familiarity with the FLEXSTAB and NASTRAN computer programs and that FLEXSTAB aerodynamic models and NASTRAN structural models of an aircraft are available for use. These models can be quite independent of each other, but there should be structural elements in NASTRAN for all aerodynamic bodies in the FLEXSTAB model and the same coordinate systems should be used for both. A source of distributed mass data should be available. It is reconmended that all bodies with significant mass or structural properties be present in the models, even if they are not usually necessary for the type of analysis performed. For example, the vertical tail should be included, even in a symmetric-only analysis, to properly account for the inertial forces caused by its mass.

The FLEXSTAB system of aercelastic analysis programs parmits the analysis of flexible aircraft structures. This system has a structural modeling capability of its own; but because it is relatively simple. FLEXSTAB also allows use of an alternate structural modeling technique using matrices to describe the structural properties of an aircraft. Any structural analysis method may be adopted to generate the structural matrices. This report explains how to use NASTRAN structural models to produce the necessary matrices and how to incorporate this structural information into the FLEXSTAB system.

COMPUTER PROGRAM DESCRIPTIONS

FLEXSTAB is a system of computer programs used for modeling aircraft aerodynamics and structure and for analyzing aircraft stability and loads (ref. 1). Aerodynamic modeling is accomplished by defining geometry and then deriving aerodynamic influence coefficients by using the FLEXSTAB Geometry Definition (GD) program and the FLEXSTAB Aerodynamic Influence Coefficients (AIC) program. Structural modeling is accomplished by generating flexibility and mass distribution information by using NASTRAM and other non-FLEXSTAB programs; and then defining structure and deriving structural influence coefficients by using the FLEXSTAB External Structural Influence Coefficients (ESIC) program. Aircraft stability derivatives, surface prossures, and structural deformations are obtained by using the FLEXSTAB Stability Derivatives and Static Stability (SDSS) program.

NASTRAN is a general-purpose, finite-element computer program for structural analysis (ref. 2). It is especially suitable for analyzing complex aircraft structures because it is designed to handle very large structural models. The user-oriented modeling system is an important characteristic of the program. NASTRAN can produce flexibility matrices for both symmetric and antisymmetric boundary conditions, and if the structural model is accurately sized, NASTRAN can produce most of the mass-distribution data required by FLEXSTAD.

ESIC INPUT REQUIREMENTS

A comparison of the FLEXSTAB accodynamic model geometry with the WASTRAN structural model geometry is necessary to select a set of structural nodes for ESIC. ESIC structural bodies are defined in the same order as their corresponding aerodynamic bodies in the FLEXSTAB GD program. A set of GRID points extending approximately from the nose to the tail of the WASTRAN fuselage should be selected as ESIC structural nodes for the fuselage slender body. For some models, it may prove convenient to define a set of extra GRID points along the fuselage mean centerline, and connect these points to the fuselage structure using multi-point constraint (MPC) cards. Multi-point constraints cause a specified point to deform in a particular direction based on the deformations of several other points.

1 Same Land

The ESIC structural representation for thin bodies consists of structural nodes and a method of connecting these nodes to form either triangular or quadrilatoral panels. GRID points along leading and trailing edges and along main spars should be selected as ESIC structural nodes for thin bedies, using about the same number of structural nodes as there are acrodynamic panels.

The choice of triangular or quadrilatoral structural panels is dictated by structural rather than acrodynamic considerations; i.e., the chape of structural panels is completely independent of the chape of acrodynamic panels. Unusually large structural panels should be split into a number of smaller panels by the addition of a few more structural nodes wherever possible, and panels that are considerably larger in one dimension than in another should be avoided.

Each body has its our local coordinate system in which the geometry of the body is defined. Slender-body and are all parallel to the FLEXSTAB basic coordinate system. The m-amin is a horizontal vector pointing from the nose toward the tail. The y-amin is a horizontal vector perpendicular to the m-amin and pointing from the plane of symmetry toward the right wing tip. The m-amin is perpendicular to both m- and y-ames and points up (right-hand rule). The m-coordinates of the slander-body nodes are input from the smallest to the largest value; the y- and m-coordinates of the slender body are the same for all nodes on the body.

ð

For thin bodies, the x-anis is a horizontal vector in the lifting plane of the thin body that is parallel to the plane of symmetry and points from the leading edge toward the trailing edge. The y-axis is a vector in the lifting plane perpendicular to the x-anis and pointing toward the tip of the thin body. The z-axis is perpendicular ular to both the x- and y-axes and is therefore normal to the lifting plane. Its positive direction is found by use of the right-hand rule. The nodes on thin bodies can be in any order; their x- and y-coordinates are input in pairs; the z-coordinate is zero.

Selection of Degrece of Freedom

The geometry of the body and the translational degrees of freedom are defined in the local-axis system for each body, but rotational degrees of freedom must be excluded. Each structural node can have up to three degrees of freedom, but all nodes on a body must have the same number and type of degrees of freedom.

For bodies on the plane of symmetry, the flexibility matrix should include only those degrees of freeden for the desired type of motion: symmetric or antisymmetric. The degrees of freedom for slender and thin bodies must be ordered d_x , d_y , d_z for each node, in the same order as the structural node locations. All degrees of freedom required for both types of symmetry should be included in the ESIC degrees of freedom set; the ESIC program automatically eliminates invalid degrees of freedom for all nodes on the plane of symmetry for each of the symmetry conditions.

The degrees of freedom used in the analysis are as follows:

1. On the plane of symmetry: For the symmetric flexibility matrix, the FLEX-STAB d_z degrees of freedom are used for slender bodies and d_y degrees of freedom are used for thin bodies, whereas for the antisymmetric flexibility matrix, d_y degrees of freedom are used for slender bodies and d_z degrees of freedom are used for thin bodies.

2. Not on the plane of sympetry: For both symmetric and antisymmetric flexibility matrices, d_y and d_z degrees of freedom are used for slender bodies and d_z degrees of freedom are used for thin bodies.

The degrees of freedom used in ESIC are those which appear in either or both of the flexibility matrices. The degrees of freedom used for each body in ESIC are specified in the \$DEGREES OF FREEDOM cand set for each ESIC body. The degrees of freedom that become part of the flexibility matrix are controlled by NASTRAN ASET cards.

Constraints

For clamped flexibility matrices, ESIC requires NASTRAN constraints that resist rigid-body motions of the aircraft. The clamp point is the GRID point that has all six degrees of freedom set equal to zero by a single-point constraint (SPC) card. Single-point constraints cause a specified point to deform a known amount in a particular direction. It is generally advisable to clamp the model at a single GRID point near the center of gravity on a relatively stiff part of the structure. However, a GRID point can instead be located exactly at the center of gravity, and its deformation can be defined by using NPC cards. This extra point can then be used as the clamp point.

Boundary conditions for symmetric or antisymmetric motion require two different sets of SPC cards for GRID points on the plane of symmetry. For symmetric motion all out-of-plane degrees of freedc a of GRID points on the plane of symmetry are set equal to zero, whereas for antisymmetric motion all in-plane degrees of freedom of GRID points on the plane of symmetry are set equal to zero. Thus, two separate executions of HASTRAN are required to produce both symmetric and antisymmetric flexibility matrices.

Flexibility Matrices

ESIC always requires a clamped flexibility matrix representing the reactions of the aircraft structure to symmetric loads, a separate flexibility matrix is often recessary for representing reactions to antisymmetric loads. The FORTHAN program, NASTY, converts flexibility matrices from the internal degree-of-freedom ordering of NASTRAN to the order required by ESIC.

NASTRAN STRUCTURAL DATA

Two important types of structural data can be obtained from NASTRAN: the flexibility matrix and the mass matrix. Both of the matrices are available from Rigid Format #1, commonly called STATICS, a program that produces static reactions of a structure to applied loads. STATICS is requested in the NASTRAN executive control dock. Generally, the NASTRAN order of the degrees of freedom for the flexibility matrix is from the smallest GRID point number to the largest, with the degrees of freedom for each GRID point in the following order: T1, T2, T3, R1, R2, and R3 (or 123456). A listing showing the NASTRAN order of the degrees of freedom can be obtained with the DIAG card in the executive control dock. Two NASTRAN executions are required to produce the symmetric and the antisymmetric flexibility matrices, whereas the mass matrix (if present) can be produced during either execution. The diagonal of the flexibility matrix should be examined for unusually large values (greater than about

Start and a second without a long time

0.10 for relatively flexible aircraft; greater than about 0.010 for stiffer aircraft). The mass matrix can only be obtained if the NASTRAN model is dimensionally detailed and if mass densities have been specified for all elements. The diagonal of the mass matrix is the data of interest for input to ESIC.

NASTRAN SUBSTRUCTURING MOTES

When an airplane structure is too large to put into the computer as a single structural model, the structure may be divided into smaller parts (substructures) and entered into the computer separately. The substructure technique requires two types of executions. The Phase 1 executions enter the data from each substructure. The Phase 2 execution then combines this data from all substructures to form the entire airplane structure. In Phase 1 executions, the ASET cards must include all FLEXSTAB degrees of freedom desired for the flexibility matrix and all unconstrained boundary (or substructure connection) degrees of freedom. All degrees of freedom in the Phase 2 analysis set are in the NASTRAN basic coordinate system, which is a parallel system to the FLEXSTAB basic coordinate system. For thin bodies with considerable dihedral (+ cr -), a transformation of the Phase 2 matrices may be required to provide degrees of freedom in the FLEXSTAB local-axis system. The flexibility matrix is output from the Phase 2 NASTRAN execution.

ESIC DATA PREPARATION

The data needed for ESIC are a set of point masses for the vehicle, a NASTRAN structural model, and a FLEXSTAB aerodynamic model. The FLEXSTAB aerodynamic model is composed of one or more slender (shell) bodies, and one or more thin (lifting surface) bodies. These bodies are numbered differently in the GD and the ESIC decks (figs. 1 and 2):

Body Name	Eody	Number
	GD	ESIC
Fuselage	1	1
Interference body	2	-
Lower vortical tail	3	2
Upper vertical tail	4	3
Inner wing	5	4
Outer wing	6	5
Horizontal tail	7	6

In ESIC, the interference body is ignored. The following sections present a step-bystep procedure for generating the necessary input to the ESIC module. A simplified ESIC model (fig. 3) is used to generate the entries in tables 1 through 3.

ESIC Node Identification

For ESIC node identification, it is necessary to generate a plan view of the NASTRAN model with numbered GRID points, such as in figure 4, and select a set of GRID points for each ESIC body. The selected set should have about the same density

as the aerodynamic paneling used in the FLEXSTAB GD model (see fig. 1). For some cases, where the structural model is somewhat simpler than the aerodynamic model, extra GRID points and structures must be added to the NASTRAN model to achieve a reasonable density of structural nodes. On thin bodies the selected points must be connected to form structural panels. All panels on each body should be of about the same size. Output coordinate-system axes for NASTRAN GRID points should be oriented parallel to the ESIC local-coordinate-system axes for each body. A list should be made of the selected GRID points (table 1) specifying:

1. FLEXSTAB body number: Monotonically increasing, starting from one with one number for each alender or thin body.

2. Component node number: Monotonically increasing, starting from one, for each body. Nodes on the boundary between two ocdies must be included with the lower-numbered body.

3. ESIC degree-of-freedom number: Monotonically increasing, starting from one, including all bodies in their FLEXSTAB order. Degrees of freedom for each node are listed in d_x , d_y , d_z order.

4. NASTRAN GRID ID number: From NASTRAN model plot or listing.

5. NASTRAN degree-of-freedom: 1, 2, or 3 for x, y, or z, respectively.

6. NASTRAN order number: From NASTRAN DIAG 21 output.

7. x- and y-coordinates of the nodes in the local coordinate system of each body: These entries are entered on ESIC card sets 23 and 29 (see App. A).

ESIC Panel Identification

For ESIC panel identification, the component node numbers (table 1) should be marked on the NASTRAN plan-view plot and a list of ESIC panel corner numbers should be made (table 2). The ESIC panels may be quadrilateral or triangular, but no strange shapes (i.e., panels with angles greater than about 160° or less than 20°) should be generated. The component node numbers should be listed in either clockwise or counter-clockwise order around the perimeter of each panel in the four columns (table 2). If the panel is triangular the last column is left blank and if any of the nodes used to define a panel on a body are from an adjoining body, the number of the adjoining body should be noted in parenthesis behind the node number. The entries in table 2 are entered on the ESIC card set 31 (see App. A).

Flexibility Matrix Generation

To produce the flexibility matrix, NASTRAN ASET cards (table 3) should be generated by entering the NASTRAN GRID ID numbers and degrees of freedom on NASTPAN ASET cards. Insert the ASET cards in the NASTRAN bulk data deck and add the following DMAP ALTER cards to the NASTRAN executive control deck:

> ALTER 73 \$ SOLVE KLL, /ELL/ \$ DIAGONAL ELL/EDIAG/ \$ MATRPN ELL, EDIAG, , // \$

OUTPUT2 ELL, ... //C, N, -1/C, N, 11/C, N, FLEXMAT \$ OUTFUT2 ,,,,//C, N, -9/C, N, 11/ \$ ENDALTER \$

Finally, insert a DIAG 21 card in the NASTRAN executive control deck, and insert the following card in the system control cards before the NASTRAN execution card to create a disk file to contain the flexibility matrix to be generated:

DEFINE(UT1=FLEXMAT)

Ø

The flexibility matrix will be generated by NASTRAN and written on the disk file FLEXMAT. The matrix and its diagonal will be printed in the NASTRAN output for use in checking individual data of interest.

Matrix Reordering

To be compatible with ESIC, the flexibility matrix generated by the procedure in the previous section must be reordered as follows:

1. List the ASET order number (column A from the DIAG 21 printout) as the NASTRAN order number in the ESIC node identification list (table 1).

2. Funch a deck of monotonically increasing numbers, FORMAT (I3), one per card, for each ESIC degree-of-freedom number (table 1). Sort the deck of ESIC degree-of-freedom numbers, using the EASTRAN order numbers, and run the FORTRAN program MASTY (w/MASCON), using this deck as input (the deck setup is shown in appendix B).

ESIC Deck Setup

Follow the instructions of reference 1, pages 11-1 to 11-49. For static aeroelastic loads analysis, the following card sets are used:

> \$CASE \$GDTAPE \$OPTION \$DEGREES \$SLENDER \$SCALE \$THIN \$SCALE \$END \$EXIT

Mass Data Generation

Masses are located at structural nodes and are input in the same order as the structural nodes. Generally, the mass data available will not coincide with the ESIC node locations. FORTRAM programs FUMAS and REMAS are used to produce the appropriate mass cards for \$SLENDER and \$THIN data groups, respectively. To produce slender-body

mass data cards for ESIC, an input dock is set up for FUNAS as follows (the deck setup is shown in appendix C):

1. Take the SSLENDER deck for ESIC.

- 2. Remove the \$SLENDER card.
- 3. Add the number of input marses, FORHAT (F10.0), to columns 31-40 of ESIC card 22.
- 4. Add the input mass deck, FORMAT (2F10.0), with each mass magnitude and its x-coordinate paired on a single card, to the end of the input deck.

If the program is executed for each slender body, this will produce punched ESIC mass cards for each slender body, due to its own mass.

To produce thin-body mass data cards for ESIC, an input deck is set up for REMAS as follows (deck setups are shown in appendices D and E):

- 1. Punch the number of ESIC bodies for REMAS on the first card, FORMAT (I1).
- 2. Add the \$SLENDER deck for ESIC (except for mass and \$SCALE cards) and the \$THIN deck for ESIC (except for mass and \$SCALE cards).
- 3. Add a card with the nucker of input masses, FORMAT (I3).
- 4. Add the input wass deck, FORMAT (3F10.0), with each mass magnitude, and xand y-coordinate on a single card, to the end of the input deck.

This will produce punched ESIC mass cards for both slender and thin bodies, due to thin-body masses.

The mass cards for the slender body, punched by both REMAS and FUNAS, are for the same set of slender-body nodes. The mass in each field of each card punched by KEMAS must be added to the mass in the same field of the corresponding card punched by FUMAS. The resulting total mass for each node must be punched into the same field on the corresponding new cards for input to ESIC.

ESIC EXECUTION

To execute the program, insert the mass cards produced from the procedures described in the previous section into the \$SLENDER and \$THIN sections of the ESIC input deck and make an initial run using the RIGID option. The flexibility matrix file (NASTAP) is not required. This execution of ESIC will produce the total mass, center-of-gravity location, and total vehicle moments of inertia for the distributed masses input. If necessary, adjustments to the fuselage masses are made to adjust the x-location of the center of gravity, and, if desired, adjustments can be made to the z-reference location of the fuselage to correct to the z-location of the center of gravity. When the mass distribution produces an acceptable center-of-gravity location, execute ESIC using the STATIC-ELASTIC option to produce the necessary input to FLEXSTAB SD&SS for the aeroelastic analysis.

ORIGINAL PASE 18 OF POOR QUALITY

APPENDIX A

ESIC CARD SETS

	FSIC card image (***** represents the point meas values)
1 4 5 6 7 6 9 10 12 12 13 14 15 16 12 13	\$ 19 20 21 22 23 26 25 26 27 78 29 19 11 12 13 14 15 16 19 19 19 10 10 10 16 16 16 16 16 16 16 16 16 16 16 16 1
STREAD-FLEZSTAD	1941(3)2)F(A)212 (2)A(A)2(P)(12)
S SCRIDSITES	<u>╞╎╏╞</u> ┝╏╎┨╽┥╎┥╎╎╎╎┾╊┝┿╅╎╘╿┽┼┽╎┥╤┇┟┋╎┎┽┾╋┊┍┼╎
PITITS FOR ELASTI	
ATIS-ELASTIC	
	625. 1 1955. 1 1250. 1 16C0.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	╇╌┲╋╗┿╍┿┽┿┲╎╪╸┝╼┲┝┥┽╷┊┿┲╼┼╴┼╎╴┲╵┼┷╷┼┪╸┥╴╋┫╼┥┤┿╸╎┶╎╵┾
ska els els 1923/2020	
у с у с у д то вред и в и и и	
оок 	
<u>хахала</u> газана на парада на пара Парада на парада на пара	
1. И. 1. 3.43471 Вленкаки 1. 1. 3 1. 2 Г.А.Т. 1 3.43471 Вленкаки 1 3.43471 Г.А.Т. 1 3.43471 Γ.Α.Τ. 1 3.43471 Γ.Α.Τ. 1	
3.4.3.4.1 21.1 1. 3.4.3.4.1 21.1 1. 3.4.3.4.1 23.1 1. 3.4.3.4.1 23.1 1. 3.4.3.4.1 23.1 1. 3.4.3.4.1 23.1 1. 3.4.1 1.3.1 1.1 3.4.1 1.3.1 1.1 3.4.1 1.4.7 1.0 3.4.1 1.3.1 1.1 3.4.1 1.3.1 1.1 3.4.1 1.3.1 1.1 3.4.1 1.3.1 1.1 3.4.1 1.3.1 1.1 3.4.1 1.3.1 1.1 3.4.1 1.3.1 1.1 3.4.1 1.3.1 1.1	1 1
Сана Сана	21. 1
3 3 3 3 3 3 1 3 3 3 1 1 1 3 4 4 1 1 1 3 4 5 1 1 1 1 3 4 5 1 2 1	2. 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
3 4 5 6 7 7 1 3 4 3 7 1 1 1 3 4 3 7 1 1 1 3 4 3 1 1 1 1 3 4 3 1 1 1 1 3 4 3 1 1 1 1 3 4 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>1 1</td>	1 1
1	1 1
3 4 3 1 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 1 1 1 3 4 3 1 1 1 1 1 1 3 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>1 1</td>	1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. 1. <td< td=""></td<>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 3 1	2. 1. 1. 1. 2. 1. 1. 1. 2. 2. 1. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 1. 2. 3. 3. 3. 3. 3. 4. 4. 4. 4. 3. 2. 1. 1. 3. 3. 2. 1. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 5. 4. 4. 4. 4. 4. 5. 4. 4. 4.
1. 1.<	2. 1. 1. 1. 2. 1. 1. 1. 2. 2. 1. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 2. 2. 1. 3. 3. 3. 3. 3. 4. 3. 3. 3. 3. 3. 4. 3. 3. 3. 3. 3. 4. 3. 3. 3. 3. 3.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. 1
3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 2 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 3 2 1 1 2 3 2 1 1 3 1 2 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 <td>2. 1</td>	2. 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. 1
3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 3 4 1 1 3 4 5 4 5 1 3 4 5 4 5 1 3 4 5 4 5 1 3 4 5 4 6 1 4 3 1 1 1 3 1 2 3 1 1 4 3 1 1 1 4 3 1 1 1 4 3 1 1 1 4 3 1 1 1 4 3 1 1 1	1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>1 1</td>	1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. 1. <td< td=""></td<>

APPENDIX A - Concluded.

i

ORIGINAL PAGE 19 OF POOR QUALITY

/

10

「「「「「「「「」」」

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX B

NASTY INPUT DATA AND NASCON INPUT DATP

4

APPENDIX C

ي الماري وي الاستريك كم المارية الما المارية المارية المارية المارية المارية المارية المارية المارية ا

::::::

PUMAS INPUT DATA DECK

ORIGINAL PAGE ID OF POOR QUALITY

FUMAS cord Imagos ESIC cord action State State

12.

T T

APPENDIN D

ORIGINAL PAGE IS OF POOR QUALITY

RIVAS INPUT DATA DECK; VENTICAL TAIL MASSES

THE PARTY

ł

.

ORIGINAL PAGE IS OF POOR QUALITY

والمتركبة فتقد بمتركب ومقربته ومقربها

いいかう ないまいのんちかい たいいの ちょう

「「「「「「「」」」というで、「」」」

Ĩ

and the second second

and the second second

 $\mathcal{M}_{\mathcal{M}} = \mathcal{M}_{\mathcal{M}} =$

APPENDIX E

REMAS INPUT DATA DECK; WING AND HORIZONTAL TAIL HASSES

ĺŁ

PLEXSTAB bcdy nuabor	Component node number	ESIC degree- of-freedea number	HASTRAN GRID ID number	NASTRAN degree-of freedom	NASTRAN order nutber	x- coor- dinate	y- coor- dinate
1	1	1 - E - E - E	3000	3	23	55.0	
	2	2	3053	3	24	348.0	
	3	3 .	3113	3	26	625.0	
	4	4	5293	3	39	969.0	
1	5 .	5	5173	3	38	1250.0	
	6	· 6	5133	- 3	37	1400.0	
	7	7	5000	3	36 •	1595.0	
2	1	8	4270	3	35	1469.0	136.0
	2	9	4250	3	34	1562.0	136.0
1	3	10	4180	3	33	1679.0	136.0
~		11	4150	3	22	1577.0	225.0
3	1	10	4130	3	21	1654 0	206 0
	2	12	4130	2	31	1702 0	203.0
	3	13	4060	2	20	1647 0	282.0
	4 'e	40	4020	3	20	1701.0	282.0
l	5	10	4020	3	20	1727.0	282.0
	5	10	4010	3	2.7	1727.0	20200
4	1	17	3110	3	25	625.0	78.01
1	2	18	1490	3	10	969.0	145.0
	3	19	1320	3	8	1231.0	149.0
5	1	20	1450	3	9	976.0	233.0
Ĩ	2	21	1290	3	7	1152.0	305.0
	3	22	1210	3	5	1273.0	356.0
		23	1240	3	6	1341.0	222.0
		24	1130	3	3	1400.0	409.0
	6	25	1160	3	4	1456.0	298.0
i	7	26	1010	3	1	1564.0	477.0
Į	8	27	1040	3	2	1618.0	405.0
6	ę	28	2270	2	21	1489.0	11.0
C		20	2270	2	27	140510	
		29	2270		19	1693.0	11.0
	2	21	2200	2	20	103310	1
]		30	2090	5	15	1638.0	173.0
		33	2090	3	16	1	
		34	2120	2	17	1730.0	109-0
		35	2120	3	18		
	5	36	2010	2	11	1726.0	269.0
	5	37	2010	3	12		
ļ	6	38	2040	2	13	1789.0	269.0
	6	39	2040	3	14		
i	1		I	l	{	Į]

TABLE 1. - ESIC NODE IDENTIFICATION LIST

Body number	Component no	de numbers	(adjoining b	ody numbers)
	Node A	Node B	Node C	Node D
2	6(1) 7(1)	7(1) 3	2 2	1 -
3	1(2) 2(2) 1 2	2(2) 3(2) 2 3	2 3 5 6	1 2 4 5
4	3(1) 4(1)	4(1) 5(1)	2 3	1 2
5	1(4) 2(4) 3(4) 4 6	2(4) 3(4) 4 6 8	1 2 3 5 7	- 1 2 3 5
6	1 3	2	4	3 5

TABLE 2. - ESIC PANEL IDENTIFICATION LIST

TABLE 3	- ASE	r CARDS	FOR	THE	NASTRAN	DECK
---------	-------	---------	-----	-----	---------	------

ASET	3000	3	3053	3	3113	3	529	3
ASET	5173	3	5133	3	5000	3	4270	3
ASET	4250	3	4180	3	4150	3	4130	3
ASET	4100	3	4060	3	4020	3	4010	3
ASET	3110	3	1490	3	1320	3	1450	3
ASET	1290	3	1210	3	1240	3	1130	. 3
ASET	1160	3	1010	3	1040	· 3	2270	23
ASET	2200	23	2090	23	2120	23	2010	23
ASET	2040	23						

16

1.5.1

Ĵ

. در در

Figure 4. NASTRAN beam network model.

Presented is a procedure for using the PLENSTAD External Structural Influence Coefficients (ESIC) computer program to produce the structural data necessary for the PLENSTAD Stability Derivatives and Static Stability (DERS) program. The CDISS pro- grem computes trim state, stability derivatives, and pressure and deflection data for a flexible structural nodel as the source of utructural data in the form of flexibility entrices. Selection of a set of degrees of freedom. Also distribution of existing point mans data are among the topics discussed. Also discussed are bound- ary conditions and the UNSTRAN substructuring technique. 7. Key Word (Suggested by Author(s)) 18. Unmituden Summent Structural modeling Doundary conditions Symmetry and antisymmetry Degrees of freedom	17.	Key Words (Suggested by Author(s)) Flexibility matrix Structural modeling Doundary conditions Symmetry and antisymmetry Degrees of freedom		18. Distribution Sta	\$ment	tribution are bound-
Presented is a procedure for using the FLENSTAD Enternal Structural Influence Coofficients (ESIC) computer program to produce the structural data necessary for the FLENSTAD Stability Derivatives and Static Stability (SDESC) program. The SDESS pro- gram computes trim state, stability derivatives, and pressure and deflection data for a flexibile simplane having a plane of symmetry. The procedure uses a HESTRAH finite- elegent structural nodel as the source of utructural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Alno discussed are bound- ary conditions and the UNSTRAN substructuring technique. 7. Key Words (Suggested by Author(s)) 18. Distribution Statement Plexibility matrix Structural endeling 18. Distribution Statement	7.	Key Words (Suggested by Author(s)) Flexibility matrix		18. Distribution Sta	sment	tribution are bound-
Presented is a procedure for using the FLEMSTAD Enternal Structural Influence Coofficients (ESIC) computer program to produce the structural data nonsectary for the FLEMSTAD Stability Derivatives and Static Stability (SDESS) program. The SDESS pro- gram computes trim state, stability derivatives, and pressure and deflection data for a flexible sirplane having a plane of symmetry. The procedure uses a H257SHH finite- element structural nodel as the source of structural data in the form of flexibility statices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are bound- ary conditions and the HASTRAN substructuring technique.	7.	Key Words (Suggested by Author(s))		18. Distribution Sta	£men1	tribution are bound-
Presented is a procedure for using the PLEMSTAD External Structural Incluence Coefficients (ESIC) computer program to produce the structural data necessary for the PLEMSTAD Stability Derivatives and Static Stability (SDESS) program. The CDESS pro- gram computes trin states, stability derivatives, and pressure and deflection data for a flexible simplane having a plane of symmetry. The procedure uses a NASTEAH finite- elegent structural nodel as the source of structural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are bound- ary conditions and the NASTEAN substructuring technique.						tribution are bound-
Presented is a procedure for using the PLEMSTAB Enternal Structural Influence Coefficients (ESIC) computer program to produce the structural data nanegary for the PLEMSTAB Stability Derivatives and Static Stability (SDESS) program. The SDESS pro- gram computes trim state, stability derivatives, and pressure and deflection data for a flexible sirplane having a planu of symmetry. The procedure uses a NDSTAN finite- element structural model as the source of utructural data in the form of flexibility entrices. Selection of a set of degrees of freedom, definition of structural modes and panels, reordering and reformating of the flexibility matrix, and redistribution of existing point mans data are among the topics discussed. Alno discussed are bound- ary conditions and the NASTRAN substructuring technique.						tribution are bound-
Presented is a procedure for using the FLEXSTAD External Structural Influence Coefficients (ESIC) computer program to produce the structural data nanegary for the FLEXSTAD Stability Derivatives and Static Stability (SDESS) program. The SDESS pro- gram computes trim state, stability derivatives, and pressure and deflection data for a flexible simplane having a plane of symmetry. The procedure uses a NANTENH finite- element structural model as the source of structural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural modes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are bound- ary conditions and the NASTRAN substructuring technique.				111-9 U.C. 1940 8		tribution are bound-
Presented is a procedure for using the FLENSTAD External Structural Influence Coefficients (ESIC) computer program to produce the structural data necessary for the FLENSTAD Stability Derivatives and Static Stability (SDESS) program. The SDESS pro- gram computes trim state, stability derivatives, and pressure and deflection data for a flexible simplane having a plane of symmetry. The procedure uses a NESTADH finite- element structural nodel as the source of utructural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are bound- ary conditions and the NASTRAN substructuring technique.				1113 Colonia (200 B		tribution are bound-
Presented is a procedure for using the PLENSTAB Enternal Structural Influence Coofficients (ESIC) computer program to produce the structural data necessary for the PLENSTAB Stability Derivatives and Static Stability (SDESC) program. The CDESS pro- gram computes trim state, stability derivatives, and pressure and deflection data for a flexible simplane having a plane of symmetry. The procedure uses a NESTANH finite- element structural nodel as the source of utructural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are bound- ary conditions and the NASTRAN substructuring technique.				ang coomitiques		are bound-
		Presented is a proc Coefficients (ESIC) com FLEXSTAD Stability Deri grem computes trim stat a flexible sirplane hav element structural mode matrices. Selection of and panels, reordering of existing point mass ary conditions and the	edure for using the puter program to pr vatives and Static c, stability deriva ing a plane of symm l as the source of a set of degrees of and reformatting of data are among the NASTRAN substructur	PLEASTAD Trie oduce the stru Stebility (SDs tives, and pre- atry. The pro- atry. The pro- atry. The pro- atry. The pro- tructural dat f freedon, def. the flexibili tepics discuss- ing technics.	mal Structural Infl stural data necessar 30) program. The SD baure and deflection sedure uses a NASSAN in the form of fle inition of structura by matrix, and redis ad. Also discussed	uence y far the SES pro- data Jor H finite- xibility 1 nodes
	15.	Supplementary Notes			an in danga 2 Antoi an ana an	in a subset of the subset of t
15. Supplementary Notes		Washington, D.C. 20546	e MURTHIFLEGIION	•	14. Sponsoring Agon RTOP 505-33	cy Code -61
Nachington, D.C. 20546 Hashington, D.C. 20546 15. Supplementary Notes	12.	Sponsoring Agency Name and Address	a Iduániaturki		13. Type of Heport Yochaical H	and Period Coveres
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Stochalcal Herorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Hashington, D.C. 20546 14. Sponsoring Agency Code 15. Supplementary Notes 15. Supplementary Notes		NASA Amas Research Center Dryden Plight Research Facili P.O. Box 273 Edwards, California 93523	ty	. •	11. Contract or Grad	nt No.
NASA Ames Research Center Dryden Plight Research Facility P.O. Eox 273 Edwards, California 93523 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Hashington, D.C. 20546 15. Supplementary Notes	9.	Performing Organization Name and Address	1		10. Work Unit No.	
9. Performing Organization Name and Address 10. Work Unit No. 10. Work Unit No. 11. Contract or Grant No. 11. Contract or Grant No. 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covere National Aeronautics and Space Edministration 14. Sponsoring Agency Code 15. Supplementary Notes 15. Supplementary Notes	7.	Author(s) Lawrence S. Schuster			0. Performing Orgu H-1223/A-93	nizetion Report No 103
7. Author(s) 0. Performing Organization Report Notes 9. Performing Organization Name and Address 10. Work Unit No. 10. Work Unit No. 11. Contract or Grant No. 11. Contract or Grant No. 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 11. Type of Report and Period Covere 12. Sponsoring Agency Name and Address 11. Sponsoring Agency Code 13. Type of Report and Space Administration 14. Sponsoring Agency Code 14. Sponsoring Agency Notes 15. Supplementary Notes		HASTRAN/PLEXSTED Procedure fo	r Static Aarcelisti	c Analysic	B. Performing Orga	nization Coda
HASTRAN/FLEXSTED Procedure for Static Aeroslastic Analysic September 1985 Author(s) 8. Performing Organization Code Lawrence S. Schuster 9. Performing Organization Name and Address HASA Apas Research Center 10. Work Unit No. Dryden Plight Research Facility 11. Contract or Grant No. Procession Agency Name and Address 13. Type of Report and Period Course National Aeronautics and Space Administration 14. Sponsoring Agency Code Hashington, D.C. 20546 15. Supplementary Notes		Title and Subtitle		ر های وربی را محمد اندر هرم «تگاه»	5. Noport Date	

200 A

