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Abstract -----
This paper discusses the application of param­

eter estimation to highly unstable aircraft. It 
includes a discussion of the problems in applying 
the output error method to such aircraft and 
demonstrates that the filter error method elimi­
nates these problems. The paper shows that the 
maximum likelihood estimator with no procElss noise 
does not redUCE! to the output error method ~Ihen the 
system is unstable. It al so proposes and demon-
st rates an ad hoc method that is si mi 1 ar inform 
to the filter Elrror method, but applicable to 
nonl inear problems. Fl ight data from the X··29 
forward-swept-wing demonstrator is used to illus­
trate the prob'lems and methods discussed. 
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Introduction 

The output error method of parameter estima­
tion 1 is the most widely used means of estimating 
aircraft stability and control derivatives from 
flight data. There is a large body of experience 
in applying this method to real fl ight data. 2 
Like all methods, it has some shortcomings, but it 
has proven practical for obtaining good results in 
a timely manner in real flight test and research 
environments. It is the standard method used for 
routine application at the Dryden Flight Research 
Facility of NASA Ames Research Center. 

One area where output error methods have 
severe difficulty is in application to highly 
unstable systems. For aircraft such as the X-29 
that are highly unstable in open loop, it has 
proven difficult and expensive (in labor and com­
puter time) to obtain acceptable results with the 
output error method. 

Equation error methods are not subject to the 
same problems as output error methods with unsta­
ble systems. We generally prefer to avoid equa­
tion error because of the problems associated 
with the accurate state reconstruction that it 
requires. l Some authors have successfully applied 
equation error methods to aircraft stability and 
control estimation,3 but in this paper, we inves­
tigate other approaches. 

It is widely known that filter error methods 
have stabilizing properties, whiCh should allow 
them to be easily applied to unstable systems. 
However, little if anything seems to have been 
published oh this subject. 

In this paper, we first describe the dif­
ficulties of applying output error to highly 
unstable aircraft. We then show how the filter 
error method alleviates these difficulties. We 



illustrate these discussions with flight data from 
the X-29 forward-swept-wing demonstrator. Finally, 
we discuss some practical limitations of the fil­
ter error method and suggest an alternative ad hoc 
method of stabilizing output error estimators. 
The alternative method is similar in computational 
form to the filter error method, but its ad hoc 
derivation allows broader applicability. 

Output Error Method 

The output error method applies to dynamic 
systems of the form: 

x(O) XO(~) 

x(t) f[x(t) ,u(t) ,;] 

z ( til g[ x (t i ) ,u (t i ) ,~] + n i 

(la) 

(lb) 

=l, ... ,N(lc) 

The input vector u is assumed to be known as a 
function of time. The response vector z is meas­
ured at the discrete time points ti. The measure-
ment noise n is assumed to be a sequence of inde­
pendent Gaussian vectors with mean zero and non­
singular covariance GG*. Throughout this paper, 
we will assume that GG* is known; the extension 
for unknown GG* is easy but irrelevant to the 
issues of this paper. The objective is to esti­
mate the values of the unknown parameters in ~. 

The output error method uses the cost function: 

N 
J(~) D L [Z(ti) - Z~(ti)]*(GG*)-l 

i "'1 

x [z(tn - Z~(ti)] (2) 

where i~ is obtained by integrating the system 
equations using the appropriate value of ~ and 
ignoring the noise •. Hence, 

xf,;( 0) os xo ( 0 (3a ) . 
X((t) f[x((t) ,u(t) .~] 

idti) 9[Xdti),U(ti),(] 

(3b) 

1, ••. ,N (3c) 

The output error estimate of ( is the value that 
minimizes this cost function. If the system is 
stable, this is the maximum likelihood estimate 
of~. The Gauss-Newton algorithm is suitable for 
numerically finding the minimizing value of (. 

We have two computer programs that implement 
output error parameter estimation: the modified 
maximum likelihood estimator program, version 3 
(MMLE3),4 which is designed for batch ~sage on 
linearized systems, and the more recent parameter 
estimation program (pEst), which is designed for 
interactive usage on nonlinear systems. (Formal 
documentation for pEst is not yet available.) 
This paper uses results from both programs. 

Difficulties With Output Error 

For the aircraft stability and control appli­
cation, we use a model in which the input u to the 
system consists of control surface positions such 
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as elevator, aileron, and rudder. The response 
consists of measurements from rate gyros, accel­
erometers, and other sensors. Thi s model, there­
fore, considers only the open-loop response of the 
airframe to the control surface inputs. Any feed­
back control system or shaping of the pilot's 
inputs is external to the analysis model; Fig. 1 
illustrates this situation. 

This choice of analysis model allows us to con-' 
cent rate on the aerodynamics, which are what we 
want to estimate; it avoids the extensive compli­
cations of modeling the control system, which is 
peripheral to our objectives. The control system 
i nfl uences the desi gn of maneuvers to befl own for 
stability and control derivative estimation, but 
it does not explicitly enter into the estimation 
process. Maneuvers obtained with the control 
system feedback turned off usually give better 
parameter estimation results, but this is not 
always practical. This rationale is further elab-
orated by Maine and Il iff (1986).2 Output error 
using such open-loop models has been routinely 
applied to numerous aircraft with feedback con-
trol systems. 

Alternatively. closed-loop characteristics can 
be estimated using equivalent system models that 
are adequate for some applications. Such equiva­
lent system models do not allow estimation of the 
pure aerodynamic characteristics that are required 
for many applications. . 

When the open-loop airframe is highly unstable, 
the output error method requires numerical inte­
gration of the unstable equations of motion in 
Eq. (3) with various values of (. The closed-
loop airplane will presumably be stable or nearly 
so (otherwise. the project will be mercifully 
short), but the stabilization achieved through the 
feedback system is not reflected in the open-loop 
analysis model. In principle. the output error 
is applicable to unstable models. but there are 
severe practical difficulties when the model is 
highly unstable • 

The most obvious difficulty is that the inte­
grated solution is quite likely to exceed the 
limits of the machine or program,. causing the 
analysis program to terminate. Unless the pro­
gram is extremely cautious about detecting and 
recovering from such problems, the termination 
is likely to be an abrupt abort, destroying the 
information about any progress previously made 
toward a solution. Such behavior makes analy­
sis extremely time consuming. 

For aircraft as unstable as the X-29, the 
integration of the equations of motion is.ex­
tremely sensitive to even minuscule changes in 
"unimportant" parameters. Figure 2 shows a 
longitudinal maneuver of the X-29 and a match 
obtained (with much effort) using an output 
error method. For the GG* that we were uSing, 
the cost function value corresponding to this 
match is {l.6161. Figure 3 shows the same maneu,. 
ver and 'the computed response that resul ted from 
changing the initial condition of the angle-of­
attack state by 0.01 o. Thi s small change causes· 
the sol ution to diverge severely. T~e cost func­
tion value corresponding to this match is 754,150. 



In some simulated data cases, we had difficulty 
saving and restoring the match because the deriva­
tives were saved only to 10 significant figures; 
restoring the derivative values changed in the 
tenth significant digit caused changes of several 
orders of magnitude in the cost function value. 
These simulated cases were based on actual X-29 
flight conditions. 

In the most extreme cases, it is possible that 
no parameter values exist within the finite reso­
lution of the computer that give a nondivergent 
solution to the equations of motion. We did not 
encounter any cases quite this extreme, but the 
possibil ity is real. 

The pEst program detects and recovers from 
extreme state values before they cause overflow 
aborts. This avoids the time-consuming process 
of restarting the program and retracing prior 
steps every time that the solution diVerges. It 
does not, however, provide constructive progress 
toward minimization of the cost function. It 
simply recovers to a place where the engineer can 
choose an alternative approach to the minimiza­
tion. This process is slow and labor intenSive. 

We experimented with and successfully imple­
mented schemes for automatically minimizing the 
cost function, even when the initial attempts to 
evaluate the cost function failed. Although some 
of these SChemE!S .worked better than others, all 
used excessive amounts of computer time. 

A second difficulty is that the huge calcu­
lated response is usually far beyond the bounds 
within which approximations of linearity in the 
paraml~ters are reasonable. This is a problem even 
when the response is small enough to avoid over­
flow. Efficient minimization algorithms invari­
ably work best in the regions where the response 
is approximately linear in the parameters (and 
thus the cost function is approximately quad­
ratic). Algorithms robust enough to reliably 
minimize the cost starting frbm excessively poor 
points tend to be ~xcruciatingly slow. 

A third difficulty is that the extreme 5en~ 
sitivity in some directions of the parameter plane 
causes several numerical roundoff problems. It 
can be difficult to do such simple operations as 
computing gradients by finite differences. This 
is because there is no overlap between the range 
of perturbations small enough to give linearity 
(a basic assumption of finite difference c6mpu­
tation) and perturbations large enough to avoid 
underflow and roundoff error. Slngularity and 
ill-conditioning may also be encountered in 
methods that involve matrix inversions. 

Figure 4 shows isoclines of the cost function 
of an X-29 flight maneuver. In order to reduce 
the data to an easily presentable form, these iso­
clines are based on the cost function only as a 
function of the two parameters Cmq and Cm Q • The 
remaining parameters are all constant at their 
estimated values. The minimum cost function value 
is 1.584; the outer isocline shown in Fig. 4 is 
for a value of 50,000. The isoclines are extremely 
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eccentric to the extent that we cannot reasonably 
show a fully closed isocline on the figure; even 
the isocline for a cost function value of 2 extends 
well beyond the edges of Fig. 4. 

The broadening of the valley toward the lower 
left of Fig. 4 reflects the trend of the cost 
toward a constant asymptote in the direction of 
higher stability, In most directions, the cost 
grows rapidly and without bound. However, as 
the parameters become very stable, the computed 
response trends toward zero. Thus, the cost stays 
bounded for a large distance in this direction. 
Because the analysiS is done in discrete time, the 
system frequencies eventually approach the Nyquist 
frequency, near which the numerical integration 
method becomes unstable. Figure 5 shows the iso­
clines of the same cost function on a much larger 
scale; the line of instability is graphically 
apparent as all i socl i nes suddenl y' bend inward. 

Maximum Likelihood Estimator 

Maximum likelihood estimators for dynamic 
systems are often divided into three categories. 
For models with both process and measurement 
noise, the filter error algorithm is obtained. 
When there is measurement noise but no process 
noise, the filter error algorithm simplifies to 
the form of output error as a special case. When 
the states can be measured with no measurement 
noise, the estimator reduces to some form of an 
equation error algorithm. All three algorithms 
are discussed in Maine and Iliff (1985).1 

The categories mentioned above follow the 
conventional wisdom and do not appear obviously 
affected by the issue of the system stability. In 
particular, .it is easy to derive the output error 
algorithm directly, with no reference to filter 
error, and the issue of stability never arises. 

In this paper, we will look at output error 
as a limiting case of filter error and discover 
an overlooked ·subtlety. The mathematical results 
are not new. The basic issues are studied in some 
detail for the one-dimensional case in Maine and 
Iliff (1985)1 and in Balakrishnan (1984)5; these 
studies elaborate on the stability and uniqueness 
conditions derived in Kalman and Bucy (1961).6 
However, the connection between these theoret­
ical results and practical appl ication of param­
eter estimation methods does not seem to have 
been explored. 

The filter error algorithm is practical only 
for linear systems. The general form of a linear 
dynamic system model is 

x(O) = xO 

x(t) Ax(t) + Bu(t) + n(t) 

Cx(t) + Du(t) + Tli 

(4a) 

(4b) 

i = 1 , .•. ,N (4c) 

The system matrices are functions of ~; although 
this is not indicated in Eq. (4). The process 
noise n is a white noise process with spectral 
density FF*. The measurement noise n ;s a 



sequence of independent Gaussian vectors with 
mean zero and nonsingular covariance GG*. 

The maximum likelihood estimator for this 
system minimizes the cost function: 

N 
J(I;) = I [z(ti) - i~(ti)J*R-l 

i =1 

x [Z(ti) - it;(ti)] (5) 

where R is the innovation covariance matrix and i~ 

is computed from the Kalman filter. We are i~ter­
ested in the steady-state form of the filter. 

Xt;(to) = xO (6a) 

x~ (ti) <!>x(ti-1) + 'i'Bu(ti-1/2) (6b) 

idti) CXt;(ti) + Du(ti) (6c) 

xdti) Xt;{ti) +K[z(ti) idti) ] (6d) 

The steady-state Kalman gain matrix K is given by 

K = QC*(CQC* + GG*)-l (7) 

where Q is the steady-state covariance of the pre­
dicted state, given as the limit of the discrete­
time Riccati equation 

01+1 = 4>[Oi - OiC*(CQiC* + GG*)-lCQiJ<I>* + FF* 

(8) 

If all unstable modes of the system are (A,F)­
controllable and (A,C)-observable, then Eq. (8) is 
guaranteed to converge to a unique steady-state so­
lution independent of the initial covariance. The 
resulting filter is also guaranteed to be stable. 

We consider the 11mit as FF* approaches zero. 
Substitution verifies that Eq. (8) has a constant 
solution of Qi equals zero when FF* equals zero. 
This is the solution that reduces to the special 
form of output error. When all modes of the sys­
tem are stable, Eq.( 8) converges to zero from any 
starting covariance. Furthermore, the steady­
state solutions for nonzero FF* smoothly approach 
zero as FF* approaches zero. Thus, for stable 
systems with no process noise, the filter error 
algorithm clearly reduces to output error. The 
continuity of the solutions ensures that output 
error is also a good approximation for cases where 
the process noise is negligible, but nonzero. 

For unstable systems with FF* equal to zero, 
the zero solution is still valid, but it is not 
unique. Let us assume that all unstable modes 
are (A,C)-observable and that there are no modes 
with precisely neutral stability. In this case, 
there is also a nonzero steady-state solution and 
this solution yields a stable filter. Any start­
ing covariance that is not exactly zero converges 
to the nonzero steady-state solution. The steady­
state solutions for nonsingular FF* are unique 
and smoothly approach the same n~nzero steady­
state solution. 
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In short, the zero solution is anomalous. 
N~thing close to the output error method is 
obtained unless the process noise covariance is 
exactly zero and the initial covariance is exactly 
zero. The output error algorithm is not a close 
approximation for cases with nonzero process 
noise, no matter how negligible the covariance. 
The error in such approximation depends on the 
degree of instability, rather than on the magni­
tude of the covariance. Insomuch as few models 
are absolutely without error, the output error 
algorithm is difficult to justify for highly 
unstable systems. 

Implementation of the filter with nonzero 
covariance is trivial in any program already 
implementing the filter error algorithm. This is 
nothing but a particular case of filter error and 
does not require any special handling. The MMLE3 
program previously tested whether F was zero and 
bypassed the filter computations in that case. 
For stable systems, the omitted terms were all 
zero and this special handling saved computer 
time. To implement our proposed algorithm, we 
added an option to do the full computation whether 
F was zero or not. Nothing was changed in the 
code that does the computation, just in the code 
that decides whether to do it. 

The MMLE3 program uses a form of Potter's 
method7 to solve the steady-state Riccati equa­
tion. If the unstable modes are all observable 
and there are no neutrally stable modes, this 
method works well with F equal to zero. The 
observability conditions are reasonable and 
necessary for a stable filter. If there are 
neutrally stable modes, the stable filter may 
not have a steady-state form; this is typically 
manifested by a defective Hamiltonian matrix, 
for which the eigenvalue determination fails. 

Figures 6 and 7 show results from a set of 
X-29 flight data analyzed using both output error 
and the algorithm with nonzero covariance. Fig­
ure 6 shows results from the pEst program using 
output error. Obtaining these results required 
extensive engineering effort and computer time 
from a series of interactive sessions. Figure 7 
shows corresponding results from a single batch 
run of the MMLE3 program USing the nonzero covar­
iance. Convergence was rapid and monotone in 
every case; most cases converged within tight 
bounds in five or six iterations, and the worst 
case required seven iterations. 

Although there are detectable differences in the 
individual estimates, the results from the two 
methods show the same trends and scatter magni­
tudes. Unfortunately, the currently obtainable 
X-29 data are of marginal quality for parameter 
estimation for reasons peripheral to this paper 
(primarily control system limitations on the 
maneuver design). The results are adequate only 
to show major trends. The two methods appear 
equally able to show these trends within the 
limitations imposed by the available data. 

Stabil i zat i on by Arbi trary Feedbacks 

There are several practical complications in 
applying the filter error method to real data. 



One of the most obvious problems is that the 
fi 1 ter error method is only practical for 1 inear 
systems. In most cases~ it is reasonable to lin­
earize the system to obtain an approximation to 
the des ired fil ter; butthi s can be a substantial 
complication. Application of the output error 
method to nonlinear systems is straightforward. 

Efficiency considerations further constrain 
the practical application of filter error methods. 
Efficient implementation requires the use of the 
steady-state form of the filter. This implies 
that the system must be time-invariant and that 
the data must be at a constant sample rate. The 
sample rate requirement is a minor nuisance ac­
cepted in severell programs; it primarily affects 
the handling of data dropouts. However, the time­
invariilnce requirement is quite restrict"ive in the 
ai rcraft stabll tty and control appl ication; it 
requires dynamic pressure and other flight condi­
tion parameters to be held constant throughout a 
maneuver. Analysis programs without such restric­
tions have proved far more useful in application. 

We would like to obtain the benefits of the 
filter error method without such narrow restric­
tions on the form of the system equations. Toward 
this end, we consider the filter error method from 
a purely mechanistic viewpoint rather than a sta­
tistical one. We are primarily interested in the 
benefits of stability and improved convergence. 
Our prl~sumption is that the parameter values from 
the output error ~ethod are reasonable, but they 
are too difficult to obtain. 

The filter error method differs from the out­
put error method only in the addition of a feed­
back term. This feedback stabilizes the filter, 
which results in improved convergence character-
i st i c s of the algorithm. The feedback is propor­
tional to the fit error; therefore, an idealized 
case with zero fit error would give identica'\ 
results with output error and filter error methods. 
For a case with small, random fit errors, the dif­
ferences between output error and filter error 
methods should be small. 

This feedback in the filter should not be con­
fused with any feedback that may be in the air­
craft control system. The filter feedback helps 
stabilize the analysis algorithm and need not bear 
any relation to the control system feedbacks that 
help stabilize the aircraft. 

We can easily implement a stabilizing feed­
back of the fit errors without reference to sta­
tistical methods. Such a stabilization need not 
be restricted to 1 inear systems (except insomuch 
as it might be difficult to design a stabilizing 
feedback for a complicated nonlinear system). 
As long as the feedback error term is small, we 
would expect little change from the output error 
estimates. If the feedback term is large, we 
anticipate substantial changes in the esti­
mates. The validity of such results would be 
seriously doubtful. 

Although such arbitrary stabilizations do 
not have the strong theoretical basis of the 
filter error method, they are more flexible in 
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easily accommodating nonlinearities and other 
complications. They also allow more direct con­
sideration of practical engineering judgment to 
improve the results. Naturally, poor exercise 
of that judgment can degrade the results. In 
some cases, we can rationalize the arbitrary 
feedbacks by the observation that they approx­
imate the feedbacks that the filter error method 
would have with some covariance matrix. 

We implemented user-specified stabil izations 
in the pEst program,and applied them to the X-29 
data. ~lthough we experimented with several feed­
backs, our final choice was to-use only a feedback 
of the pitch rate signal to the pitch rate state 
(effectively augmenting the damping). The main 
reason for this choice was that we had substan­
tially higher confidence in the pitch rate meas­
urement than in the ang1e-of-attack measurement. 
We were dubious about the wisdom of corrupting 
the integration by feeding back the questionable 
angle-of-attack measurements. Feedback of other 
measurements such as normal acceleration is a 
little more complicated because of variables in 
their observation equations. 

Our initial implementation of the feedbaCk 
added it to the system differential equations. 
~lthough this continuous-time feedback worked 
sucessful1y, we found it more convenient to use 
an alternative implementation as a discrete cor­
rection at each 'measurement time point. This 
alternative implementation closely parallels the 
form of the discrete-time Kalman filter. The 
primary benefit of the discrete-time implemen­
tation is that high feedback gains can be used 
without introducing stability problems in the 
numerical solution of the differential equations. 
In fact, if all states have discrete-time feedback 
with a gain of one (which corresponds to infinite 
gain in the continuous-time implementation), the 
method transforms into a form of equation error. 

Figure 8 shows cost function isoclines for 
several values of the discrete-time feedback gain. 
These isoclines are based on the same data as used 
for Fig. 4, which corresponds to a feedback gain 
of zero. The feedback removes the highly eccen­
tric isoclines and steep gradients of the cost 
function. The isoclines in Fig. 8 show the cost 
function to be approximately quadratic over a 
much larger portion of the parameter space when 
feedback is used. This implies better conver­
gence characteristics. The minimum point of the 
cost function moves very slightly as a function 
of the feedback gain. ~t higher gains than indi­
cated in Fig. 8, the change in the minimum is 
more Significant. 

Figure 9 shows results from applying a 
discrete-time pitch rate gain of 1.0 to the same 
data as used in Figs. 6 and 7. These results were 
obtained from a single batch sUbmittal. Conver­
gence in all cases was very rapid with this high 
feedback gain; most cases converged in two itera­
tions. The results are similar to those shown 
in Figs. 6 and 7. Figures 6 and 9 are the two 
extreme cases for the feedback gain; interme­
diate gain vJlues should give results between 
those shown in these two figures. 



There is little basis for choosing among the 
data in Figs. 6, 7, and 9. The differences are 
generally within the accuracy of the data, par­
ticularly considering the marginal quality of 
the available maneuvers. The output error method 
shows significantly smaller Cramer-Rao bounds than 
the other methods, but comparison of the Cramer­
Rao bounds among different methods can be mislead­
ing. (The bounds are most useful for comparing 
different maneuvers or different parameters from 
a single analysis method.) In particular, the 
Cramer-Rao bounds from the output error method 
are of dubious validity for unstable systems; 
the instability invalidates the arguments used 
to justify the approximations in the derivation 
and computation of the bound. These problems do 
not affect the other two methods. 

Concluding Remar~s 

Direct application of the output error method 
to highly unstable systems such as the X-29 is 
extremely difficult. We have shown that the 
appropriate maximum likelihood estimator for 
unstable systems is not the output error method, 
but the filter error method, which has nonzero 
gain even when the process noise covariance is 
zero. We have demonstrated that the filter error 
method does remove the problems associated with 
the instability. 

The strictly defined filter error method is 
limited in its applicability. However, it is easy 
to implement a simple ad hoc method of stabilizing 
the output error method. The ad hoc method has a 
form similar to that of filter error and gives 
essentially the same results, but is applic~ble 
to many more situations. The main difference is 
how the feedback gains are obtained. We currently 
favor the ad hoc method as more readily applicable 
to our needs, but either method is usable. Both 

Pilot 
input 

the ad hoc method and the strict filter error 
method work well with the X-29 test data. 
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Fig. 4 Isootinee of output error cost function. Fig. 5 Isootinee over lArge regi on. 
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