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J-INTEGRAL ESTIMATES FOR CRACKS IN INFINITE BODIES* 

N.E. Dowling 
Virginia Polytechnic Institute and State University 

Department of Engineering Science and Mechanics 
Blacksburg, Virginia 24061 

SUMMARY 

An analysis and discussion is presented of existing estimates of 

the J-integral for cracks in infinite bodies. Equations are presented 

which provide convenient estimates for Ramberg-Osgood type elasto-

plastic materials containing cracks and subjected to multi axial 

loading. The relationship between J and the strain normal to the crack 

is noted to be only weakly dependent on state of stress. But the 

relationship between J and the stress normal to the crack is strongly 

dependent on state of stress. A plastic zone correction term often 

employed is found to be arbitrary, and its magnitude is seldom 

significant. 

~erial also submitted to Enqineering Fracture Mechanics for 
publication. 
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INTRODUCTION 

Materials are considered which have a uniaxial stress-strain 

relationship of the form: 

c/c a/a + o{% )n 
000 

where a is stress, a , c , and a are constants more fully explained o 0 

later, and n is a constant generally called the strain hardening 

( 1) 

exponent. The first and second terms represent, respectively, elastic 

and plastic components of the total strain, c. 

Configurations of cracks in infinite bodies which are of interest 

are shown in Fig. 1. Two dimensional cases as in Fig. la may be either 

plane stress or plane strain, depending on the situation in direction 

3. Note that a stress, S, is applied remote from the crack in a 

direction normal to the plane of the crack. Remotely applied transverse 

stresses, T, are also considered. Figure Ib illustrates remotely 

applied axisymmetric loading of a circular crack. The stress normal to 

the plane of the crack is again S, and T is the stress in all radial 

directions in the plane of the crack. Edge or surface crack 

configurations correspond to bisecting either Fig. la or 1b along the 1-

3 plane. 

Some early_work related to this discussion is that of Shih [IJ and 

Shih and Hutchinson [2J, which established the general form of estimates 

of J for cracked members of Eq. 1 type material. The EPRI Elastic­

Plastic Fracture Analysis handbook [3] later pursued such estimates in 

considerable detail, but only for cracks in finite bodies. He and 

Hutchinson [4,5] have reported analytical results for infinite body 

cases as in Fig. 1 that figure prominantly in what follows. They 



considered multiaxial loading (various ratios T/S) and remote strains 

that are predominantly plastic, so that Eq. 1 reduces to: 

£/£ = a{a/a )n 
o 0 

(2) 

Numerical results for certain cases of uniaxial loading (T = 0) are 

also reported by Trantina et. ale [6,71 using Eq. 1. In addition, 

Wilson [81 has previously studied two-dimensional cases of uniaxial 

loading, considering not only Eq. 1 but also bilinear and piecewise 

power hardening. Also, I previously presented limited discussion of 

this subject in Appendices to two papers [9,101 that included use of 

such J-integral estimates in analyzing growth data for small fatigue 

cracks. 

It is the purpose of this paper to provide a useful analysis and 

discussion of J-integral estimates for cracks in infinite bodies of Eq. 

1 type materials. The estimates are reduced to a convenient form for 

application to engineering or research problems. Also, discussion is 

presented concerning certain important aspects of the estimates, 

including multiaxial effects, and a plastic zone correction term. 
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STRESS-STRAIN RELATIONSHIPS 

Before proceeding, it is useful to further explain the uniaxial 

stress-strain relationship, Eq. 1, and also to extend this to cases of 

multiaxial loading. 

Uniaxial Stress-Strain Curve 

Figure 2 illustrates a curve corresponding to Eq. 1. The curve 

gradually diverges from an elastic line having a slope: 

E = 00/£0 (3) 

Hence, (£0' 0
0

) is a point on the elastic line, not on the actual 

curve. The constant 00 may be thought of as a yield strength defined in 

the conventional manner by a plastic strain offset. Then (£y' 0
0

) is a 

point on the actual curve, where 

£ = (1 + CL)£ Y 0 

And the plastic strain offset is: 

£ = CL £ py 0 

Of the three constants £ , a , and CL, anyone of them may be o 0 

arbitrarily chosen, and then the other two fitted to the particular 

(4) 

curve of interest. For a given set of values of these constants, there 

is a family of curves, all passing through the point (£ , ry ), and each y 0 

corresponding to a different value of n. Hence, the value of n also 

needs to be fitted to the particular curve of interest. 

Of the three constants £ , a , and CL, the latter is the most o 0 

logical to be arbitrarily chosen. The constant a can be thought of as 

representing the relative magnitude of the plastic strain offset. 

3 



a = E IE = E Efa py 0 py 0 
(5 ) 

Conventional plastic strain offsets, such as Epy = 0.002 for engineering 

metals, generally correspond to a in the ~ange 0.1 to 1.0. 

Multiaxial Stress-Strain Relationships 

All of the equations to be used later involve only the stresses and 

strains remote from the crack. No remote shear stresses are applied and 

the material is assumed to be isotropic, so that the axes shown in Fig. 

1 are also the principal axes for both stress and strain. These 

principal stresses and strains will be denoted by n. and E., where 
1 1 

corresponds to anyone of the directions in Fig. 1. Subscripts j and k 

then indicate the remaining two directions. 

Strains may be separated into elastic and plastic components. 

e:. = e: • + E • (6) 
1 el p' 

where the subscripts e and p indicate these components. The stresses 

and the elastic strains are related by Hooke's law. 

1 
Eei = I lOi - v (OJ + ak)1 (7) 

where v is the elastic constant, Poisson's ratio. (A value of 

v = 0.3 is used throughout this paper as being typical for engineering 

metals). 

As only constant ratios TIS are considered, proportional remote 

loading applies~ and a total deformation plasticity theory can be used 

for the remote stresses and strains. In this context, stresses and 

plastic strains are related by: 

e: - 1 [ pi - r a. p , 
0.5 (u j + ok)] (8) 
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where 

Ep = o/£p 

The quantity a is the effective stress 

{o - 0 )2 + {o - 0 )2 + {o -
0=[ 1 2 2 3 3 

(
1
)2 1/2 

I 

and Ep is the effective plastic strain 

Ep = [~ {E
p1

2 + E .2 + E 2)11/2 p2 pJ 

Substituting Eqs. 7 and 8 into Eq. 6 gives the following 

relationship between stresses and total strains: 

E. = --E

1 [a. - V (u. + ak)1 
1 t 1 J 

where 

E
t 

= ~/-;. 

The quantity -;. is the effective total strain, given by: 

-;. = ~/E + E 
P 

and v is an effective Poisson's ratio. 

v 

\JU + 0.5 E-;' 
p 

E-;' 

(9) 

( 10) 

(11 ) 

(12) 

( 13) 

(14) 

(15) 

Note that as E is increased from predominantly elastic to predominantly 

plastic strain, v increase smoothly from v to 0.5, so that Eq. 12 

reduces to Eq. 7 in the former case, and to Eq. 8 in the latter case. 

Also, substituting the inverse of the three equations represented by Eq. 

12 into Eq. 10 gives an expression for c as a function of the principal 

total strains: 

5 



E = 
1 (E 1 - E2}2 + (E 2 - £3)2 + (E3 -
- [------------~-------

1 + V 

E
1
}2 1/2 

1 (16) 

For predominately plastic strains, where v = 0.5, Eq. 16 reduces to Eq. 

11. And for predominately elastic strain, where v= v, substitution of 

Eq. 7 into Eq. 16 gives Eq. 10. 

Effective stresses and plastic and total strains as defined above 

coincide with the corresponding quantities for the uniaxial case, so 

that Eq. 1 can be generalized to: 

- - - n 
e:/EO = 0/0

0 
+ a (a/ao) (17 ) 

Hence, the constants EO' a
O

' a, and n for use in Eq. 17 can be evaluated 

from a uniaxial stress-strain curve. 

For the particular cases of interest of Fig. 1, Eqs. 10 and 12 may 

be used to derive ratios between the effective stresses and strains and 

the corresponding stresses and strains in the direction normal to the 

plane of the crack. These ratios, which will be needed later, are given 

below. The loading in the plane of the crack is characterized in terms 

of the quantity R. 

R = T/S 

(a) Plane stress: 0 1 = S, a 2 = T, 0 3 = 0 

;/S = 11 - R + R2 

~/E = ;/S 
1 1 ~ - "R 

(b) Plane strain: 0 1 = S, 02 = T, £3 = 0 

;/S = /(1 + R)2 (1 - v + vl ) - 3R 

6 

(lS) 

( 19a) 

( 19b) 

(20a) 
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RESULTS OF HE AND HUTCHINSON FOR ELASTIC STRAINS SMALL 

In the work of He and Hutchinson (4,5) numerical results for the J­

integral, J p' for Eq. 2 type material are presented by tabulating values 

of hI = hl(n,R), 

where 

J 
hl(n,R) =--L 

O£a 

Various combinations of nand R = TIS were investigated for the 

configurations of Fig. 1. 

In addition, a perturbation approach was used 14,51 to obtain 

closed form estimates for the plane strain and axisymmetric cases. 

(22) 

These are as follows, with the obvious guess for plane stress also being 

included: 

(a) Plane stress: 

(b) Plane strain: 

(c) Axisymmetric: 

J 

~=hl' 
O£a 

f S 2 
- I 

= 1l/n (-_-) 
o 

'l 
J - f S 
-L = h I = 31l/n (_l_J 

l 4-O£a 0 

6 flS 
L = h 1= (--) _ I 

o£d 1\/1 + 3/n 0 

(23) 

(24) 

2 

(25) 

The factor fl = 1 for central or interior cracks as in Fig. 1. It 

is introduced so that cases of edge or surface cracks are included, with 

these being described by bisecting Fig. 1a or b along the 1-3 plane. 

Values of fl will be estimated from the linear elastic case (n = 1), for 

8 
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example, f, = 1.12 for two dimensional edge cracks formed by bisecting 

Fig. 1a. 

Figures 3-6 compare each numerical result from refs. 4 and 5 with 

the closed form estimate from one of Eqs. 23-25. Ratios of the 

estimated value h) I to the numerical result hi are plotted for each 

value of the strain hardening exponent, n, where there is a numerical 

result. The numerical hi values are either upper or lower bounds, with 

both bounds being available in only a few cases. Arrows are therefore 

shown in Figs. 3-6 to indicate that the true ratio hi '/h, may be above 

or below the value plotted, as appropriate in each case. 

Figure 3 gives the comparisons for central cracks under plane 

strain, where there are numerical results for TIS = 0, -1. and 0.5. 

Figure 4 gives comparisons for edge cracks under plane strain, and for 

central and edge cracks under plane stress, for which cases numerical 

results are available for TIS = 0 only. The ratio hi '/h for these cases 

deviates increasingly from unity as n is increased up to the highest 

value used of 7. Most of the values are within 10% of unity, and all 

are within 16%. 

Note that both bounds are available for central and edge cracks 

under plane strain with TIS = O. Here, hi '/h, for the middle of the 

bounds is below but within 5% of unity for central cracks, and above but 

within 11% of unity for edge cracks. As pointed out in Ref. 5, this 

implies that f, is actually not constant at the value of J.12, but 

decreases with n, perhaps approaching unity for large n. 

Figures 5 and 6 give hi '/h, ratios for the wide range of T/S values 

studied for the axisymmetric case. Lower bounds only are available from 

9 



Ref. 4 for n up to 10, and also for n = w. The figures show all but 

the n = 00 results, which are as follows: 

TIS a -1 -4 -9 .5 .67 .75 

hi I/hl 1.037 1.073 1.087 1.093 1.146 0.942 0.549 

For TIS ~ 0, the ratio h j I/hl is within 10% of unity for all n values. 

But for T/S > 0, the discrepancy is almost 50% for the combinations of 

large n and high ~/S value. 

If it is assumed that the numerical bounds on hI for the various 

cases of Figs. 3-6 are reasonably c16se to the actual values, say within 

10%, then the simple estimates from Eqs. 23-25 are suitable for most 

purposes. Note that the only large discrepancies occur for axisymmetric 

cases approaching triaxial tension (T/S = 1), which state of stress is 

rare in practical applications. Caution is obviously needed for large n 

values, and additional numerical results are needed to confirm or modify 

this tentative conclusion. 

10 
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ESTIMATES FOR ELASTO-PLASTIC MATERIALS 

Based on the work of Shih (1) and Shih and Hutchinson (2), J­

integral values for Eq. 1 type materials may be estimated as follows: 

J = Je + Jz + J p (26) 

where J p is the estimate of J for Eg. 2 type material which has a stress 

versus strain curve that is the same as the stress versus plastic strain 

curve for the Eq. 1 type material of interest. (This would be satisfied 

if the constants E , a , a. and n are the same.) 
o 0 

The term Je is calculated for a linear-elastic material with the 

same elastic modulus, E = ao/Eo' as the Eq. 1 type material. 

where 

EI E 

E'= E/(l - \)2) 

K2 CoTTS 2a 
J =-=-e EI 

(plane stress) 

(plane strain, and 
axisymmetric) 

(27) 

The quantity K is the Mode I stress intensity factor of linear 

elastic fracture mechanics, which is given by: 

K = f 1 f 2 Sha (28) 

Note that the geometry factor is separated into the product of a free 

surface correction factor, fl' as in Eqs. 23-25. and a residual geometry 

factor. f 2 • with values as follows: 

11 



Case f I f2 Co 

Fig. la - Central crack, plane stress 1.0 1.0 1.0 
or plane strain 

Bisected Fig. la - Edge crack, plane 1.12 1.0 1.25 
stress or plane strain 

Fig. Ib - Internal circular crack 1.0 2/11 0.405 

Bisected Fig. Ib - Half-circular 1.035 2/n 0.434 
surface crack 

From comparison of Eqs. 27 and 28, note that: 

C = f 2 f 2 o I 2 
(29) 

The values of fl and f2 are the well known values available from 

any good collection of linear-elastic fracture mechanics results, such 

as Ref. 11. As shown in Ref. 6 and previously elsewhere, fl for a half­

circular surface crack varies around the periphery of the crack, 

decreasing from about 1.2 at the intersection with the free surface to 

about 1.035 at the point of maximum depth. 

Note that J cannot be separated into elastic and plastic terms, Je 

and Jp' in a formal mathematical sense. This summation as in Eq. 26 is 

only a strategy adopted to obtain an estimate. It provides correct 

values at the limiting case of linear-elastic loading, that is, 

negligible plastic strain, where J = Je , and also at the limiting case 

of large plastic strain, that is, negligible elastic strain, where J = 

Jp• 

The term Jz of Eq. 26 is based on a plastic zone calculation and is 

used in Refs. 1 and 2 to smooth the transition between the limiting 

cases. Following Ref. 3, the linear-elastic solution, Eq. 27, is 

12 
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modified by replacing the crack dimension ~a" with an effective value, 

ae · 

a = a + cIir e y 
(30) 

where 
2 

r - 1 n-1 (K) (31a) y - c; (n+1) ~ 
2 0 

C = 2 2 (plane strain) (31b) 

C = 6 (plane strain, and (31c) 2 
axisymmetric) 

1 (31d) ~ = 1 + (PIP )2 
0 

The quantity PIPo is the ratio of the applied load to a limit or 

reference load based on the stress 0
0

• For cases of cracks in infinite 

bodies, and considering multiaxial loading, the following substitution 

is appropriate: 

PIP ala o 0 

The modified value of J e is: 

J I = J 
e e 

a + ~r y 
a 

and the increase of J lover J is defined as J e e z 

~r 

J =J 1 J =---Y.J z e e a e 

Combining Eqs. 28, 29, 31 and 34 gives: 

J CiS 2 ("0/ ,J )' 

--2=~(~)(_) 0 
J C n+l - 1 (-e 2 a + IJ I'r ) J o 

13 

(32) 

(33) 

(34) 

(35) 



It is convenient to normalize the estimated J from Eq. 26 to the 

elastic term. 

J/J = 1 + J IJ + J IJ e z e p e (36) 

Only Jp/Je remains to be evaluated. This is obtained by noting that the 

effective plastic strain is given by th~ second term of Eq. 17. 

Ep/£o = ~(alao)n (37) 

Also, E in Eq. 22 must be interpreted as equal to this Ep' as Jp is 

estimated for an Eq. 2 type material with negligible elastic strain. 

Then combining Eqs. 22, 27, 36, and 37 leads to: 

J Jz hlo EI 
-= 1 +-+=---;::-
J e J e Co ~E 

- 2 - n-l 
(E.) (~) 
S Go 

(38) 

Recall that alS is given by the appropriate one of Eqs. 19-21. The 

combination of Eqs. 35 and 38, when reduced to the limiting case of 

uniaxial loading (TIS = 0), is similar to Eq. 18 of the paper by Wilson 

(8). 

A simplified version of Eq. 38 which employs the estimates 

of hi from Eqs. 23-25 is as follows: 

J J 
J=I+f+h ~~ 

e e 0 E -

where, consistent with Eq. 14: 

And the expressions for ho are: 

h = In o 

£e = -:lIE 

14 

£ e 

(plane stress) 

(39) 

(40) 

(41a) 
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h - 3/n 
0-4 (plane strain) (41b) 

3 h ---
0 2/1 + 3/n 

(axisymmetric) (41c) 

In addition, it will be shown below that Jz/Je is often small, so that 

reasonable estimates are given by: 

J J=l+h ~~ 
e a E -

£ e 

(42) 

It is sometimes convenient to employ an equivalent K value which is 

modified from the elastic value based on the J-integral. Using Eqs. 27 

and 42 gives: 

Keq iJI' = K(l + h ~~) a E -
£ e 

1/2 

(43) 

Hence, from Eqs. 42 and 43, a correction factor can be applied to a 

Je or K value for the linear-elastic case, with this factor depending on 

the strain hardening exponent through ho and the relative degree of 

plasticity, as expressed by the ratio of the effective plastic to 

effective elastic strain. 

15 



DISCUSSION 

Discussion follows under three subheadings. First, there is a 

discussion of the trends in J-integral values with state of stress. 

Next, there are comparisons with existing analytical results for elasto­

plastic materials. Finally, the plastic zone correction term is 

discussed. 

State of Stress Trends 

A question of some importance is whether the J-integral has the 

potential of predicting fracture and fatigue of real materials where 

multiaxial loading affects the behavior (12). First, note that the 

elastic term, Eq. 27, is not affected by the in-plane stress, T, as it 

depends only on S. The plastic zone term, Eq. 35, is affected by T, but 

this is unimportant, as this term is seldom a significant fraction of 

the total J value. But the plastic term, such as the last term of Eq. 

38 or 39, is strongly affected ,by T. This occurs as a result of the 

effective stress and strain quantities which appear. 

Figures 7 and 8 illustrate the trends for the axisymmetric case for 

various ratios of the stresses T/S. Figure 7 plots J versus the 

principal strain in the direction normal to the crack, and Fig. 8 plots 

J versus the pri~cipal stress, 01 = S, in this same direction. These 

curves are based on typical values of n = 7 and v = 0.3, a value of 

a = 1 is arbitrarily chosen, and the plots apply for any choice 

of a and £. The approximate form represented by Eqs. 39 and 41c is 
o 0 

used, except that Eq. 38 with an interpolated numerical h\ value is used 

at T/S = 0.75. This is done as the approximation is less than ahout 5% 

except for T/S = 0.75, where it would have been about 25%. Note that 

16 
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Eqs. 2Ia and b were also employed in the calculations to obtain these 

curves. 

It is interesting that J is only weakly affected by state of stress 

when comparisons are made based on principal strain, but drastically 

affected for comparisons based on principal stress. In addition, the 

trend of higher J values for lower T/S values is at least qualitatively 

consistent with the empirical trends observed in fracture and fatigue 

response of materials. 

Consider a given material and a given choice among plane stress, 

plane strain, or the axisymmetric case. Equation 38 then gives a nearly 

unique relationship between J and either effective stress, 0, or 

effective strain, E, which is independent of the stress ratio T/S. 

Furthermore, if the approximations of Eq. 41 are used, and if the 

plastic zone term is omitted by the use of Eq. 42, the relationships 

between J and E, and between J and a, are exactly unique. 

Comparisons With Elasto-Plastic Analysis of Trantina 

References 6 and 7 present J-integral results from finite element 

analysis using an elasto-plastic stress-strain curve of the form of Eq. 

1. The approximation involved in summing separately computed elastic 

and plastic terms to obtain J is not necessary. Hence, these results 

provide a valuable comparison with the estimates presented above. 

All of the analysis in Refs. 6 and 7 is for uniaxial loading. 

Reference 6 considers the important three-dimensional case of a half­

circular surface crack, and Ref. 7 considers circumferential cracks 

growing from spherical and other voids. Figures 9 and 10 compare these 

analytical results with estimates from Eqs. 35 and 39. The various 

constants used in the estimates are as follows: 

17 



Fig. 9 estimates based on: Fig. 10 estimates 
circular crack 20 crack (circular crack) 

Co 0.434 0.434 0.405 

C2 6 6 6 

EI/E 1/(1-\)2) 1/ (1_\)2) 1/(1-\)l) 

hO 3/2/1+-3/n 3/"/4 3/211 + 3/n 

For a half-circular surface crack, estimates made based on ho for a 

circular crack give curve 1 in Fig. 9, which falls considerably below 

the analytical results. Note that this case is a complex three 

dimensional one, and the special situation existing for a circular crack 

under axisymmetric loading may not exist even approximately. The 

possibility exists that the behavior is closer to that for a two­

dimensional crack. Hence, an alternate estimate is made which is the 

same except that ho is taken from Eq. 41b, which applies for two­

dimensional cracks in plane strain. This yields curve 2 in Fig. 9, 

which is in excellent agreement with the analysis. 

Note that tIle comparisons with the analysis of Ref. 6 depend on the 

position around the periphery of the crack. The above comparisons are 

all for the point of maximum depth, and the appropriate value 

of fl = 1.035 is used in normalizing the values from Ref. 6 to obtain 

J/Je for plotting in Fig. 9. 

Reference 6 also contains limited analysis for n = 20. Similar 

comparisons were made, and similar results were obtained. In 

particular, ho for circular cracks (Eq. 41c) gives estimates which are 

low by more than a factor of 2 at £/£0 = 1.35. But use of ho for two­

dimensional plane strain (Eq. 41b) gives an estimate which is high by 

18 
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only 8% at £/£ = 1.35. o 
Figure 10 gives comparisons of analysis and estimates for a 

circumferential crack at a spherical void. The estimates are base~ on 

the assumption that this geometry is equivalent to a circular crack of 

radius a = R + £, where Rand £ are defined in Fig. 10. In other words, 

the crack tip is assumed to be sufficiently remote that there is no 

effect of the local stress concentration of the spherical void. 

Figure 10 shows reasonable agreement between estimates and analysis 

for n = 5, 10 and 20. The J values from analysis at the higher strains 

are 10 to 20% higher than the estimates. Note that, for linear 

elasticity (n = 1), the effect at £/R = 0.5 of the stress concentration 

of the spherical void is to elevate the value of f2 by a factor [131 of 

about 1.04, where the interpretation a = R + ~ is made for Eq. 27, so 

that: 
2 

Co = (1.04 X 2/n) = 0.438 

Since this new value of Co is used in normalizing the analytical results 

of Ref. 7 to obtain J/Je, the effect of the stress concentration has 

been removed from the comparisons to this extent. The fact that the 

analytical values are still higher than the estimates may indicate that 

the effect of the stress concentration on J/Je is greater for the higher 

n values. 

In preparing Fig. 10, it was necessary to know the £ value used in o 

Ref. 7. This value is £ = 0.005776 and was obtained from information a 

kindly provided to the author by Trantina. 

Note that the approximation using a simple circular crack of radius 

a = R + ~ is the long crack limiting case for the actual problem of a 

circumferential crack at a spherical void. For linear-elasticity, the 
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difference between this case and the actual solution becomes 

significant, say> 20% in K, around ~/R = 0.08. For small ~/R, the 

actual solution deviates drastically from the long crack limiting case 

and becomes dominated by the local stress field of the spherical void 

[13,14]. Similar behavior is expected for n > 1, so that estimates 

similar to those just described could not be reasonably applied to the 

analysis of Ref. 7 for ~/R = 0.1. 

To summarize, the comparisons of Figs. 9 and 10 provide 

encouragement that the proposed estimates are reasonable. However, no 

analytical results for an Eq. 1 type material appear to be available 

which allow the inaccuracies of the estimates to be isolated. The Fig. 

9 comparison is complicated by the three-dimensional nature of the ha1f­

circular surface crack, and the Fig. 10 comparison is complicated by the 

spherical void. 

Plastic Zone Correction Term 

In the estimates of J for an Eq. 1 type material provided by Eq. 38 

or 39, the elastic (first) term dominates at low strain, and the plastic 

(third) term dominates at high strain. The plastic zone (second) term 

makes its greatest relative contribution at intermediate values of 

strain. This is illustrated by Fig. 11, where Jz/J computed from Eqs. 

35 and 39 is plotted versus strain for an interior crack under plane 

strain with T/S = O. A typical value of n = 7 is chosen, and four 

different a values are employed. The strains plotted are normalized to 

a common val~e of yield strain rather than the individual EO values 

corresponding t~ each a. This common yield strain was chosen as 

the Ey value from Eq. 4 corresponding to a = 1, called cy Strains 
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normalized to this value are calculated from strains normalized to £ by 
o 

noting that: 

£y' = £0(1 + a'} (a'/a)1/(n-1) 

where a'=l is the chosen standard value. 

Two significant facts are observed from Fig. 11. First, the 

plastic zone correction term has the undesirable property of depending 

on the arbitrary coice of a. And second, for any reasonable choice 

of a, typically 0.1 to 1, the Jz term is never a significant fraction of 

the total J. For the case of Fig. 11, the Jz term is always less than 

10% of J, even for the extreme choice of a = 0.01. 

The dependence on a arises from the fact that, for a given stress­

strain curve, different choices of a result in different values of a • a 
The size of the estimated plastic zone decreases if a is increased, a 

which corresponds to increased a, with the result that Jz/Je 

decreases. This can be seen by studying Eqs. 3-5 and 35. 

Plots similar to Fig. 11 were made for a wide variety of cases, and 

the peak Jz/J values were noted for each case. The approximate 

estimates employing ho in Eq. 39 were used, except that Eq. 38 with the 

numerical hi value was used where this was known to gave a difference in 

the plastic (third) term exceeding 15%. Figure 12 summarizes the peak 

effect of the plastic zone correction as a function of n for uniaxial 

loading for both a = 0.1 and 1. The largest effect is for plane stress, 

and this never exceeds 15% for n up to 10. 

Figure 13 shows the effect of various degrees of in-plane loading 

on the axisymmetric case for n values up to 10. The plastic zone term 

is most significant for states of stress approching hydrostatic tension, 

;>1 



approaching 30% for TIS = 0.75 and n = 10. For plane stress and plane 

strain with n up to 10 and TIS up to 0.75, the estimated value of Jz/J 

seldom exceeds 10%. The exceptions are plane stress at TIS = 0, as 

shown in Fig. 12, and plane strain at TIS = 0.75, where Jz/J e is around 

20%. 

Accurate numerical analysis for Eq. 1 type material would be needed 

for critical cases where Jz/J is large to determine if the Jz/J 

correction term is necessary and to guide in the choice of u. However, 

at present it appears that the term is generally unnecessary, in 

addition to being arbitrary due to the effect of u. 
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CONCLUDING REMARKS 

Estimates of J from the relatively simple Eq. 42 appear to be 

suitable for most practical purposes. More specific estimates (Eq. 38) 

may be needed for axisymmetric loading which approaches triaxial 

tension. For nonaxisymmetric cases, such as two-dimensional plane 

stress and plane strain, caution is needed for high tension loads in the 

plane of the crack, and for large values of the strain hardening 

exponent, n, where analytical support for Eq. 42 is weak. 

The dependence of the plastic term of the J estimates on the ratio 

of effective plastic strain to effective elastic strain is 

significant. This corresponds to a dependence of J on state of stress 

which is quite large for a given value of stress normal to the crack. 

Additional work is needed on the complex three-dimensional, but 

practically important, case of a half-circular surface crack. 

Preliminary indications are that the J values exceed estimates based on 

the axisymmetric case. 

The plastic zone correction term is both small and arbitrary. It 

should be neglected until additional analysis establishes its need and 

removes its arbitrariness . 
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Fig. 1 - Cracked body configurations considered: (a) Two dimensional 
cases, either plane stress (03 = 0) or plane 
strain (£3 = 0). (b) Circular crack under axisymmetric 
loading. Bisecting (a) along the 1-3 plane describes cases of 
two dimensional edge cracks, and bisecting (b) along the 1-3 
plane gives d half-circular surface crack. 
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