
;

NASA Contractor Report 178117

MULTI-COLOR INCOMPLETE CHOLESKY CONJUGATE
GRADIENT METHODS FOR VECTOR COMPUTERS

Eugene L. Poole

UNIVERSITY OF VIRGINIA
Charlottesville, Virginia

Grant NAGl-242
May 1986

NAS/\
National Aeronautics and
Space Administration

NASA-CR-178117
19860019188

DEC 51986
. U,r~c.L[,(I\:::~EAKCH !;tIITER

UIJR:,RY, r~ASA
Ht.TM'TON, \'IfIGINIA

Langley Research Center
Hampton, Virginia 23665

111
NF00157

https://ntrs.nasa.gov/search.jsp?R=19860019188 2020-03-20T14:44:49+00:00Z

Table of Contents

1 Introduction ... 1

2 ICCG Methods 7

2.1 Point ICCG Methods 7

2.2 Block ICCG methods 9

2.3 Multi-color Block Incomplete Cholesky .. 11

2.4 Implementation of multi-color ICCG ... 13

2.5 ICCGE Implementation .. 15

2.6 m-step ICCG ... 18

3 Multi-Coloring to Vectorize ICCG ... 20

3.1 The Natural Ordering 23

3.2 The. Coloring Problem 37

3.3 The Continuous Coloring Rule ... 46

3.4 Multi-Coloring Examples from the Mixed Derivative Problem 49

3.5 Super Long Vectors in p-Color Matrices ... 54

3.6 Examples of Continuous Multi-coloring for Multiple Unknowns 57

3.7 Multi-Coloring for Three Dimensional Problems 61

3.8 Summary .. . 67

4 A Performance Model and Numerical Results ... 69

4.1 A Performance Model .. 69

ii

4.2 Multi-color ICCG Performance ... 80

4.3 Comparison to Natural Order ICCG Algorithms 83

4.4 Diagonal Ordered ICCG "for Laplace's Equation ... 87

5 Conclusions and Future Research Areas ... 94

5.1 Summary ... 94

5.2 Conclusions .. 97

5.3 Future Areas of Research ... 98

Appendix A Incomplete Matrix Multiplication by Diagonals 100

Appendix B Matrix Assembly by Diagonals .. 108

References .. 112

1.1

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

~ 3.12

3.13

3.14

3.15

3.16

List of Figures

Preconditioned Conjugate Gradient Algorithm ... 3

Multicolor Ordering for Mixed Derivative Model Problem 12

Solution of Lz - r for 4 X 4 Block Matrix ... 14

ICCGE algorithm 16

'Rectangular - like' Discretization 21

Grid Stencil and Connectivity Set for Laplace·s Equation 22

Plane Stress Problem .. 26

Grid Stencil and I('S for Mixed Derivative Problem 28

Natural Ordering of the Unknowns ... 28

Natural Ordering with (3.2)

Natural Ordering with (3.1)

7 Point Stencil for a Problem with k-3 Using (3.1)

7 Point Stencil for a Problem with k-3 Using (3.2)

30

31

34

36

Multi-Color Ordering Constraint ... 39

4 Color Ordering - Orr) Length Vectors ... 40

4 Color Ordering - O(NI4) Length Vectors .. 42

4 Color Ordering - O(rI4) Vector Lengths ... 44

Diagonal Ordering

P-Colored Matrix

45

48

Continuous 4-Coloring - Satisfies (3.8) .. 50

iii

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

4.1

4.2

4.3

4.4

4.5

4.6

4.7

"4.8

4.9

4.10

Continuous 4-Coloring - Violates (3.8)

Continuous 5-Coloring - Satisfies (3:8)

Continuous 4-Coloring - Add Extra Column

4 Colors - r - 4i + 2 .. .

3-Color Plane Stress Matrix

Plane Stress Matrix: u and v Alternate ~ •......•... ;

Plane Stress Matrix: u's First :

Diagonal Storage for· Plane Stress Matrices : ;

Space Truss Model Problem

Grid Colorings for 3-D Space Truss

Truss Matrix #1 According to Grid Stencil

Assembled Truss Matrix #1 .. .

Truss Matrix #2 according to Grid Stencil

Assembled Truss Matrix #2 .. .

Vector Instruction Timings

Number of Operations per Iteration ... ~

Predicted Execution Time per Iteration ;

ICCGE Execution Time per Iteration : ;

Performance Model Calculations .. .

Total Operations for I Iterations

Predicted Run Times for 1 Iterations

Experimental Results from 2 Pipeline CYBER 205

Comparison. of Results to Model Predictions

Laplace's Equation Results .. .

iv

51

52

53

56

58

59

60

61

62

63

64

65

66

67

73

73

74

75

77

78

79

81

82

85

v

4.11 Vectorized Preconditioning for ICCGD. ICCGDE .. 89

4.12 Comparison of ICCGC and ICCGD Preconditioners 90

4.13 Performance Model for ICCGD and ICCGDE ... 91

4.14 Iterations for ICCGN and ICCGC Convergence .. 93

A.l Matrix Multiplication by Diagonals ... 100

A.2 Matrix-Vector Multiplication .. 102

A.3 Matrix Multiplication Comparison ... 103

A.4 Matrix - Matrix Multiplication Algorithm ... 105

A.5 Data Structures for Mixed Derivative Problem ... 106

B.l 4 X 3 Grid of Unknowns ... 109

B.2 Row by Row Matrix Assembly .. 110

B.3 Plane Stress Problem With/Without Continuous Coloring Rule 111

"

A

N

M

L

D

R

p

J

K

R

x

r

c

l

k

Wi

Y

K

s

II

II
r I

List of Symbols

Symmetric Positive Definite Matrix

Dimension of Linear System

Symmetric Positive Definite Preconditioning Matrix ;.

Unit Lower Triangular Matrix ...•..........

Diagonal Matrix .. .

Error Matrix in Incomplete Cholesky Factorization

Number of Colors .. .

Set Used to Describe Non-Zero Structure of L

Matrix Used in Eisenstat Implementation of ICCG

Class of Problems with Rectangular Domains

Vector of Unknowns in Linear System A x = b

. Number of. Grid Points in a Row

Number of Rows in a Grid .. .

Number of Planes in a 3-Dimensional Grid

Number of Unknowns at Each Grid Point

The Unknowns at Each Grid Point

Connectivity Set

Elements in Set Y .. .

Number of Points in a Grid Stencil•....................................

Number of Elements in the Set Y .. .

Integer Rounding Function - Rounds Down

Integer Rounding Function - Rounds Up .. .

1

2

2

3

3

3

5

8

15

20

20

20

20

20

20

23

24

24

30

31

34

34

vi

ST

I

! T

IiJ

TiJ

$iJ

A

At

M

Mt

C

Ct

a

(3

vii

Set of Unknowns Used to Describe Multi-Color Ordering 37

Number of Iterations to Convergence .. 70

Execution Time per Iterations ... 70

Ratio of Iterations for Method i to Method j 70

Ratio of Execution Time per Iteration ... 70

Ratio of Total Execution Time for Method i to Method j 70

Matrix - Vector Product in PCG Algorithm 70

Execution Time for Matrix Multiply ... 70

Preconditioning Step in PCG Algorithm ... 70

Execution Time for Preconditioning Step ... 70

Remaining Calculations in PCG Algorithm ;............... 70

Execution Time for C ••••••••••••••••••••••••••••••...•••••••••••••.•••••••••••••••••••••••••• 70

Ratio of .Mt to At

Ratio of Ct to At

71

71

Acknowledgements

Many individuals contributed in various ways to this research. I wish to

thank Dr. James Ortega for his long hours of invaluable assistance which greatly

aided in both my research and in the writing of this dissertation. I would also like

to thank the rest of the faculty in the Engineering school at the University of Vir

ginia for their contributions to my academic endeavors.

I want to express my love to my wife. Annette. for her many unselfish

sacrifices during the past several years.

I want to thank the personnel at the NASA Langley Research Center who were

so helpful during my times at Langley. particularly Jay Lambiotte. Geoff Tennille.

and Lona Howser. Finally. I wish to thank NASA for the financial' assistance they

provided under grant NAG-1-242 and also Control Data Corporation for financial

assistance under the Pacer fellowship program.

viii

Abstract

In this research we are concerned with the solution on vector computers of

linear systems of equations. A x = b. where A is a large. sparse symmetric positive

definite matrix with non-zero elements lying only along a few diagonals of the

matrix. We solve the system using the incomplete Cholesky conjugate gradient

method (ICCG). an iterative method which has proven effective for a wide class of

problems on scalar computers. Following the suggestion of Schrieber and Tang

[1982]. we apply the multi-color strategy used by Adams and Ortega [1982] to

obtain p-color matrices for which an ICCG method is implemented on the Cyber 205

with 0 (N /p) length vector operations in both the decomposition of A and. more

importantly. in the forward and back solves necessary at each iteration of the

method. (N is the number of unknowns and p is a small constant) A p-colored

matrix is a matrix which can be partitioned into a pxp block matrix where the

diagonal blocks are diagonal matrices.

The ICCG method we use is the no-fill strategy of Meijerink and van der Vorst

[1977] applied to the p-colored matrices. Because of the block structure of p-color

matrices we implement the ICCG(O) method in a block fashion where if the matrix

is stored by diagonals the decomposition is carried out by multiplying N /p . dimen

. sion blocks together using the matrix multiplication by diagonals of Madsen.· et a1.

[1975]. Likewise the forward and back solves at each iteration are accomplished by

matrix-vector multiplication by diagonals of these N /p dimension blocks. For a

given problem it is necessary to find multi-color orderings which achieve the block

structure of p -color matrices but we also desire long vectors within the blocks.

Additionally. if the vectors across adjacent blocks line up. then some of the over

head associated with vector startups can be eliminated in the matrix vector multipli

cation necessary at each conjugate gradient iteration.

ix

x

We discuss the natural ordering of the unknowns as an ordering that minimizes

the number of diagonals in· the matrix and define multi-color orderings in terms of

disjoint sets of the unknowns. We give necessary and sufficient conditions to deter

mine which multi-color orderings of the unknowns correspond to p-color matrices.

We also indicate a process for choosing multi-color orderings. called the continuous

coloring rule which is easy to apply to a wide class of problems including more

difficult 3 dimensional problems and .which results in p-color matrices with the

desired long vector lengths within the blocks of the matrix.

A performance model is given which is used both to predict execution time for

the ICCG methods and also to compare an ICCG method to conjugate gradient

without preconditioning or another ICCG method. Results are given from runs on

the CYBER 205 at NASA's Langley Research Center for four model problems includ

ing a three dimensional space truss. developed in conjunction with NASA engineers

as a simplified model of an orbiting space platform. For all the model problems the

multi-color ICCG methods we implemented ran at near the maximum possible rate

on the· CYBER 205. Our results showed that these methods are competitive with

other vectorized ICCG methods in terms of overall speedup of execution compared to

conjugate gradient.

CHAPTER 1

Introduction

We consider in this thesis the solution on vector computers of linear systems of

equations. A x = b. where A is a large. sparse symmetric positive definite matrix

with non zero elements lying only along a few diagonals of the matrix: such

matrices arise in the solution of elliptic partial differential equations by finite

difference or finite element discretizations. We solve the system using incomplete

Cholesky conjugate gradient (ICCG). an iterative method that has proven effective for

a wide class of problems on scalar computers. The multi-coloring strategy described

by Adams and Ortega [1982] for the SOR iterative method is used to obtain a

matrix structure which yields long vectors. We address the question of choosing the

best coloring strategy for a given problem and present results for ICCG applied to

Laplace's equation. a more general elliptic partial differential equation. and two finite

element applications: plane stress in two dimensions and a three dimensional space

platform model.

Our primary interest is in memory to memory vector computers for which

efficient usage requires algorithms that consist mainly of operations on long vectors.

The CDC CYBER 205 is a vector computer of this type and its successor. the ETA-

10. will be to a somewhat lesser extent. The CYBER 205 has a clock cyCle time of

20 nanoseconds (ns) and using r vector pipeline units. results of a vector operation

are available every 20 ns. Thus. a CYBER 205 with 4 pipeline units can execute
r

floating point operations on contiguously stored operands at a maximum rate of 200

million operations per second (M1I.ops). For the 'linked triad' operation - vector plus

1

2

scalar times vector - this maximum rate is doubled. Half precision (32 bit)

arithmetic also doubles the maximum rate. However. associated with each vector

instruction is, a fixed overhead cost. the startup cost. which adds significantly to the

time required for vector operations on shor~ vectors. For a vector add. for example.

the time to add two vectors of length N on a 2 pipe CYBER 205 can be expressed

as T:::::: (1000 + 10N)ns. If N :::::: 100 only 50 percent of the maximum rate is

achievable while vector lengths of 10.000 will result in 99 percent of the maximum

rate.

The conjugate gradient method first was developed by Hestenes and Stiefel

[1952] and continues to be of great interest. The computational steps at each

iteration of the algorithm. consist of a matrix-vector multiply. two dot products. and

three linked triads and the CYBER 205 can potentially be used efficiently. For the

problems we are interested in. the number of unknowns. N. is very large and while

A is very sparse. the nonzero structure is such that diagonal storage of the matrix

and matrix multiplication by diagonals (Madsen. et al. [1976]) can be used to

achieve very high computation rates for matrix-vector multiplication. However. for

most problems of interest in scientific and engineering applications. the conjugate

gradient algorithm converges too slowly and so various 'preconditioning' strategies are

employed to reduce the number of iterations. Preconditioned conjugate gradient

methods are discussed in a number of places (see. e.g .• Evans [1983]). A standard

implementation of the preconditioned conjugate gradient algorithm (peG) is shown in

Figure 1.1 . where (.) denotes the usual inner product. The preconditioning is

carried out at each iteration by the solution of the system Mil'+1 = x-k+1. where M

is a symmetric. positive definite matrix that approximates A in some sense. If M is

the identity. the algorithm. reduces to the original conjugate gradient method. How

well a particular choice for M performs depends on the trade off between the extra

time it takes for the additional step in the algorithm and the number of conjugate

(1) Choose XO

(2) Set rO = b - A XO

(3) Solve M fO = rO

(4) Set pO = rO

(5) Loop k ... O.1.• kmax

(rt .~)
a) a" = (ll . A pk)

b) xHl = xl: + a"p"

c) ~+1 = rI: - a"A pIc

d) if
II rI:+1 112 .
II rO 112 ~ e then stop

e) Solve: M rt+1 = r"+1

_ (rt+1 • r"+1)
f)~,,- (P.r")

g) pHI = rt+l + ~"p"

Preconditioned Conjugate Gradient Algorithm

Figure 1.1

3

gradient iterations saved. For the CYBER 205. we desire that" the" formation of M.

if necessary. and particularly the solution of Mrt+1 = rIc+1 be accomplished with

suitably long vectors:

Dubois. et al. [1979]. Johnson. et al. [1983]. and Adams [1983b] have considered

preconditioned conjugate gradient methods on the CYBER 205 but not the ICCG

method. For the ICCG method. introduced by Meijerink and van der Vorst [1977].

M is chosen to be an incomplete Cholesky factorization of A. and can be represented

in the so-called root-free Cholesky form. which avoids costly square root

calculations, as M = LDLT. where L is unit lower triangular. D is diagonal. and

R = M - A ;c o. If R-o. then M is just the complete Cholesky factorization of A.

4

Complete Cholesky factorization of the large sparse matrices we are considering is

not practical. however. due to the large storage requirement from the fill that occurs

and the amount of time required to do the decomposition. In addition. the long

vector lengths r~quired for efficient use of the CYBER 205 cannot be achieved.

On serial computers. ICCG has been shown to be an effective preconditioned

conjugate gradient algorithm. for a wide class of problems. Kershaw· [1978] has

shown that incomplete ·Cholesky is advantageous over other prec·onditioners for

conjugate gradient for some very ill - conditioned problems. Manteuffel [1980]

considered incomplete factorizations for arbitrary symmetric positive definite sYstems.

extending the previous results of Meijerink and Van der Vorst [1977] on symmetric

M-matrices. Meijerink and Van der Vorst [1981] also discuss various incomplete

Cholesky conjugate gradient methods and the effectiveness of each on several model

problems. Block ICCG methods have been considered by Axelsson [1984] and

Concus. et al. [1985] and in some cases were more effective than point incomplete

factorizations. More details on various versions of ICCG are presented in the next

chapter.

There have also been several studies on the implementation of ICCG on vector

and parallel computers. Kershaw [1982] gives an implementation of ICCG on the

CRAY-1 vector computer by using a cyclic reduction technique applied to block

tridiagonal matrices. The vector lengths used in his algorithm are too· short.

however. for the CYBER 205. Lichnewsky [1983] discusses parallel and vector

implementations for ICCG but also mainly gives algorithms with vector lengths

better suited for the CRA Y computers. Meurant [1984] discusses vectorized block

preconditioned conjugate gradient methods applied to block tridiagonal systems where

the diagonal blocks are tridiagonal and of dimension 0 (IN) and gives results for

both the CRAY-1 and CYBER 205. Van der Vorst [1985] also gives results for the

CRA Y -1· and CYBER 205 for both a non-vectorized ICCG algorithm and a vectorized

5

version. Schrieber and Tang [1982] suggest the multicoloring approach we have used
I .

but little is given as to how to multi-color the unknowns to achieve the best

vectorization.

The multi-coloring technique was also used by Adams and Ortega [1982] to

. implement SOR for vector and parallel architectures. The main idea in multi-color'

orderings is to reorder the unknowns so that the resulting matrix is partitioned as in

(1.1) into blocks where the. diagonal blocks are themselves diagonal matrices. Such a

matrix will be called a p-colored matrix. Here. p is the number of colors used to

achieve the ordering.

Au A12 Alp
Af2 A22

A = (1.1)

T App lp

. If p = 2. this is the classical red/black ordering (Young [1971]). In general the

number of colors. p. will be small and the vector lengths within the Ai} blocks'

will be O(N/p). By using diagonal storage of A we will see that the

preconditioning step can be accomplished using vectors of length O(N /p). We

discuss criteria and algorithms for choosing multi-color orderings in chapter 3. We

also present a procedure to assemble finite element matrices row by row. using

diagonal storage.

The multi-coloring techniques we have developed are applied to four model

problems. The first problem is Laplace's equation

U"" + U71 = 0 (1.2)

on the unit square with Dirichelet boundary conditions on all four sides. To obtain

a more general differential equation we add a mixed derivative term and solve

(1.3)

6

on the same region. The usual second order finite difference discretizations are

applied to both (1.2) and (1.3). The third problem is a two dimensional plane

stress problem for a plate fastened to a rigid body on one side and loaded on the

other side. Here. linear basis functions are used in a finite element discretization.

Some preliminary results for this problem are given in Poole and Ortega [1984].

For the fourth problem a three dimensional space truss. developed in conjunction

with NASA engineers as a simplified model of an orbiting space platform. is

considered. Further details on these model problems will be given in subsequent

chapters.

In chapter 2 we discuss in more detail ICCG methods which have been used on

scalar and vector computers and then describe how multi-coloring is used to

vectorize ICCG with long vectors. In Chapter 3 we treat the coloring problem in

greater depth. We give necessary and sufficient conditions to obtain a p-color matrix

with a multi-color ordering. We also give a strategy which is easy to use on a

wide class of problems. including three dimensional problems with possibly more

than one unknown per grid point. to obtain p-color matrices containing long vectors.

In chapter 4 we present ~umerical results as well as a computational model and

compare our results with those reported in the literature for similar problems.

Finally. in chapter 5 we summarize the results and discuss future directions for

related research.

CHAPTER 2

ICCG Methods

In this chapter we di~cuss several versions of incomplete Cholesky factorization

which have been used as preconditioners for the conjugate gradient method. We

then describe multi-color block incomplete Cholesky and give two different

implementations which use long vector operations suitable for the CYBER 205.

2.1. Point ICCG Methods

An incomplete. root-free factorization of A is of the form M = LDLT where L

is unit lower triangular. D is diagonal. and R = M - A¢ O. For a complete

Cholesky factorization. the elements of Land D must satisfy

)

au = LIjJ;d"I)" i.j = l. ... n
"=1

which leads to the expressions

J-1

I,) = (a'J - LIjJ;d"IJ")dJ-
1

"=1
i-I

(2.1)

(2.2a)·

d, = Iudj = au - ,,'fl IJ,d" (2.2b)

Modifications of the equations (2.2) that limit the fill occurring in L define different

versions of incomplete Cholesky factorization. One modification. given by

Munksgaard [1980]. is to ignore elements of L if they are numerically small

compared to the diagonal elements of their respective row and column. This

strategy is not well suited for our purposes since it is not in general possible to

determine ahead of time which elements of L will be dropped and so the structure

of L cannot be determined in advance.

7

8

The usual modification used for incomplete Cholesky factorization is to allow

fill to occur during the formation of L only in pre-specified locations. The non-zero

structure of L is often described using a set J = { Ci.j)} of integer pairs where

lij = 0 if (i.j) (/. J. A simple choice for J is J = {(i.j) I al} ¢ O} and the ICCG(O)

method of Meijerink and van der Vorst [1977] calculates lij for (i .j) e J from

equ~tion (2.2a) : otherwise. lij = o. ICCG(O) is called the 'no-fill' strategy since L

will have the same non-zero structure as the lower triangular part of A. Partial

fill strategies can also be described by using a suitable set J and in Meijerink and

van der Vorst [1981] a class of incomplete decompositions denoted ICCG(h.k) is

given where the indices h.k indicate that fill is allowed· in L along h diagonals

adjacent to the main diagonal and k diagonals inside the lower band of A, The

problem considered in their paper arises in the solution of elliptic partial differential

equations in two dimensions using the five-point discretization.

Another modification to the basic point ICCG method. called MICCG. was

introduced by Gustafsson [1978] and involves using fill elements created in the

factorization process to modify the diagonal matrix. D. to improve convergence rates

for certain types of problems. However. Kightley and Jones [1985] note that the

unmodified ICCG method has a faster convergence rate on certain problems. For

further discussion of the MICCG method and the closely related 'column sum'

constraint used in modifying D. see Jackson and Robinson [1981].

A major concern in incomplete decompositions is instability. As opposed to

complete Cholesky decomposition of a symmetric positive definite matrix. incomplete

decompositions may not always be carried out. In (2.2b) if some d, is zero then

(2.2a) cannot be· computed. Likewise if any elements of D become negative. then

M will not be positive definite and cannot be used as a preconditioner for conjugate

gradient. Meijerink and van der Vorst [1977] showed that for symmetric M

matrices incomplete factorizations exist for any choice of J. Manteuffel [1980]

9

extended these results to H -matrices (A is an H -matrix if the matrix B with

b/i = failf and b i) = -fal} f is an M-matrix.) and goes on to describe a 'shifting

algorithm' for general positive definite systems whereby the diagonal elements of A

are increased before factorization to ensure that the decomposition can be completed.

He notes that for any A the new matrix obtained by increasing the main diagonal

elements can always be made diagonally dominant. and thus an H -matrix. so that

for any J an incomplete decomposition exists. It is not in general necessary to

make the shifted matrix diagonally dominant and a much smaller increase of the

diagonal elements may suffice.

Kershaw [1978] presents a different method to ensure that incomplete

factorizations exist for symmetric positive definite systems. He notes that for

incomplete factorizations defined by (2.2) and a set J as described above. the non-

zero entries of the error matrix. R. lie only in those places corresponding to zero

entries in A. If a non-positive element is computed for D he proposes setting that

element to some positive value and continuing with the decomposition. This causes

a non-zero entry in the corresponding diagonal element of R but if few of these

corrections are made it is hoped that the incomplete factors will. still give a good

approximation of A. This method has the advantage of not changing the entire

diagonal matrix D. as Mantueffel's shifting method does. but has the disadvantage of

requiring a· test for each element of D during the factorization. Robert [1982]

defines regular incomplete factorizations for positive definite matrices with respect to a

set J as described above. to have the property that riJ = 0 if Ci.j) E J . i ¢. j .

2.2. Block ICCG methods

We next consider block incomplete factorizations. Here the matrix A is

partitioned as in equation· (1.1). (with the diagonal blocks Aii not necessarily

diagonal). The block Cholesky form of (2.2) is

10

)-1

Li) = [Ai) - 1: LiJeDJcLJ,c] D)-1 (2.3a)
Jc=1

i-I

D; = Au - 1: LiJcDJcLb: . (2.3b)
Jc=1

where now the Li) and the D; are matrices. In this form the Lu are identity

matrices but the Di may be full. Hence. calculation of the L;) involves solving

systems with the D) as coefficient matrices. More importantly. the forward and

back solves at each iteration 'of ICCG become very costly on both scalar and vector

computers if the D) are dense. Incomplete block factorizations are used to deal

with this problem.

For incomplete block Cholesky methods the set J can describe the non-zero

structure of L in terms of its blocks. Li). or the nonzero structure of Lin terms

of the individual elements .Ii). of L. It is clear that in the former case the Li) do

not in general have the same non-zero structure as the corresponding blocks of A.

The incomplete block Cholesky factorization we will deScribe in the next section uses

J for· the individual elements.

In Concus. et al. [1985] and Axelsson [1984] incomplete block factorizations are

discussed for the case where A . is a block tridiagonal matrix. The focus of the

paper by Concus. et al. is on ways to approximate the inverses required in (2.3).

However. for the CYBER 205. block tridiagonal systems are not desirable since the

dimensio~ of the blocks are usually only o (.fii). Kershaw [1982] gives an

algorithm for a block ICCG method for the CRAY-1 which uses cyclic reduction and

vectorizes well with the shorter vector lengths but as noted above such a Strategy

on the CYBER 205 does not seem promising.

Van der Vorst [1982] discusses some block ICCG methods of a different kind

for block tridiagonal matrices. One method uses a truncated Neumann series to

approximate the inverses of bidiagonal matrices as part of the forward and back

solves for the Laplace problem. He also discusses [1983] a diagonal ordering of the

11

unknowns to vectorize the forward and back solves at each iteration of ICCG. Both

methods use vector lengths that are 0 (.IN) in the preconditioning step. We discuss

the diagonal ordering further in chapter 3 and give results for the Laplace problem

from a predicted performance model in chapter 4.

Lichnewsky [1983] alSo discusses block methods for vector and parallel

computers using a 'subdomain approach' to reorder the unknowns to increase

parallelism. For this method. the unknowns are decoupled into subdomains using

orderings which contain subsets of the unknowns called separators that are used to

break the problem into several smaller problems. These smaller problems can then

be solved independently and jomed together to form the final solution to the original

problem. This approach may be better suited for a parallel architecture but

Lic~ewsky also suggests applying the multi-color orderings we describe next within

the subdomains to vectorize the solution of the decoupled systems.

2.3. Multi-color Block Incomplete Cholesk.y

To derive a more appropriate ICCG method for the CYBER 205 we follow a

suggestion of Schrieber and Tang [1982] and use multi-color orderings. If A has a

block structure as in (1.1) and the Au are diagonal. we say that A is p-colored

(see Adams and Ortega [1982]). To give an example of how such matrices arise.

we consider the mixed derivative problem. equation (1.3). If we discretize (1.3) by

the usual second-order finite difference approximations. we can order the unknowns

so as to obtain the 4-colored matrix shown in Figure 2.1. In the grid below the

matrix in Figure 2.1 the numbers represent four colors and the matrix is assembled

by ordering the equations of color 1 left to right. bottom to top followed in like

manner by colors 2.3 and 4. The grid stencil below the matrix in Figure 2.1

indicates the coupling of unknowns by the finite difference discretization. For each

row in the matrix each non-zero coefficient corresponds to the unknown indicated by

12

'\,;c ILEA liN ~"I C X E A II N W B
C X E A II N Y W I

C E II N Y I
C X EA II N YW B

C X E A II N Y W B
C X E A II N Y W I

C E II N Y I
C X EA a N YW B

C X E A a N Y W B
C X E A II 1'1 Y W I

C E a NN Y B
C X EA II YW B

c(XxEJ: II" "-yW~
IWWB. "c :.t;E A A NN

YW • C X EA S 1'1
W C X A a 1'1

Y W • C X E A S N
Y W • C X E A a N

YW • C X EA S N
W C X A II 1'1

Y W B C X E A II N
Y W B C X E A II N

YW • C X EA a N
W C X A II N

YyWwB.! C X E A II 1'1
C X E A a N

YW" c(Xx E a ill
liN wWIIB I\,;c ~EAA

II 1'1 Y B C E a N YW B C IX EA
II 1'1 Y W B C X E A

II 1'1 Y W B C X E A
II 1'1 Y B C E

EA II 1'1 YW • C X
II N Y W B C X E A

II 1'1 Y W I C X E A
II N Y B C E

II 1'1 YW :II C X EA
II NjIi YyWWBJI C X E A

II C X E A
1111 YyW C[' X EE

£AA "1'1 "W " '\,;c
X E A I 1'1 ~yWWBI C

X E A II N C
X EA II 1'1 YW • c·

X A II N W C
X E A II N Y W I' C

X E A II 1'1 Y W • C
X EA 8 1'1 YW B C

X A 8 1'1 W C
X E A S N Y W • C

X E A II 1'1 Y W I C
X EA a NN YW • C x .~ II W C

XXEl 8
11 YyW" C['

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4
3 4 1 2 3 4 1 2
1 2 3 4 1 2 3 4

Grid Stencil ~rid 'Multi-COlor Ordering

Multicolor Ordering for Mixed Derivative Model Problem

Figure 2.1

the stencil element with the same letter. For example the unknown at the first grid

point corresponds to the first row in the matrix in Figure 2.1 and has non-zero

13

coefficients corresponding to the unknowns indicated by the C. N. E. and B points

in the grid stencil so that row one has the letters C. N. E. and B in the

appropriate places. In chapter three we discuss multi-coloring in more detail and we

will show that the particular coloring shown in Figure 2.1 is not the best choice for

this problem.

Incomplete decomposition of a p-colored matrix can be carried out using partial.

or incomplete. multiplication of the blocks of A and L in the block Cholesky

equations (2.3). Under a no-fill strategy. the blocks of the incomplete Cholesky

factors Land D will have the same non-zero structure as the corresponding blocks

of A. Partial fill strategies that allow fill along specified diagonals in the off

diagonal blocks can also be implemented: in either case no fill is allowed in the DJ

so that the DJ-
1 operation in (2.3a) is just a vector divide. A is stored by

diagonals. and we use matrix multiplication by diagonals as in Madsen. et al. [1976]

for the matrix-matrix multiplications required in the decomposition. Details of this

procedure are given in appendix A. Thus. the matrix-matrix multiplication corisists

of vector multiplies and adds. and we do only the vector operations which

contribute to diagonals in the allowed non-zero structure. The" same storage for A

allows the matrix-vector multiplication at each conjugate grad~ent iteration io be

carried out using long vectors. It is clear' from (2.3) that the first block column of

L equals the first block column. of A. Storage requirements for L are thereby

lessened and time is saved in the decomposition.

2.4. Implementation of multi-color ICCG

The first implementation we consider. ICCGC. is based on the usual PCG

algorithm (see Figure 1.1). Here the preconditioning step consists of solving Mr = r

where the incomplete Cholesky factorization M = LDLT is obtained as discussed in

the previous section. The solution of LDLT r = r at each iteration of the ICCGC

14

=

Solution of Lz =- r for 4 X 4 Block Matrix

Figure 2.2

method is carried out in the usual 3-step process:

Lz=r"

15

(2Aa)

(2Ab)

(2Ac)

Because of the structure of Land D described above. and with Lstored by

diagonals. the entire process can be carried out with O(N Ip) length vectors in (2Aa)

and (2.4c) and one vector divide of length N in (2Ab). Hence. the" cost is

essentially the same as the multiplication by A in the conjugate gradient iteration.

The forward solve (2.4a) for a 4-color matrix stored by diagonals is illustrated in

Figure 2.2. Details of this process will also be given in appendix A. The

effectiveness of this multi-coloring approach in achieving an ICCG method which

vectorizes well on the CYBER 205 is dependent upon finding orderings which achieve

p-colored matrices and which yield a structure that minimizes the number of

diagonals within each block of L. We discuss this question more fully in chapter

three.

2.5. ICCGE Implementation

A more efficient implementation for block ICCG can be derived following

Eisenstat [1981]. The algorithm. which we call ICCGE. is shown in Figure 2.3.

The idea behind this implementation is the following. As before. M = LDLT

is the incomplete Cholesky factorization. The ICCGE algorithm shown in Figure 2.3

is equivalent to a pteconditioned conjugate gradient method with a preconditioning
A

matrix M = D applied to the system

Ax = b A = L-IAL-T • X = LTx • b = L-1b (2.5)

A key consideration now is the efficient evaluation of Ail in terms of the original

matrix A. If we set K = L +LT -A. then

(1) Choose XO

(2) Set rO = L -1(b - AxO)

(3) Set pO = qO = D-1rO

(4) Loop k ... O.1 kmax

) ,. _ crt. qk)
a otk - (pk • A pk)

b) Xk+1 = Xk + Otk L -T pk

c) rt+1 = rt - at A pk

II rt+111
d) if

II rOil
then stop

e) Solve: D qk+1 = rt+1

,. _ (rt+1 • qk+l)
O{3k- (~.qk) .

g) pk+1 = qk+1 + ~"p"

ICCGE algorithm

Figure 2.3

16

A p = L-1(L +LT -K)L-Tp = L-Tp+L-1(p-KL-Tp) = t+L-1(il-Kt) (2.6)

where t = L -T p. Thus. the evaluation of A p requires a forward and back solve

plus the multiplication Kt. The forward and back solves are carried out as in

Figure 2.2. Note that since L -T P is required in (2.6). it can be used to update x".

as shown in Figure 2.3. so that we maintain the original x variables.
\

We now show how to make the matrix vector multiplication. Kt. less costly

than the corresponding A p" in the first implementation. . If we prescale A so that

its main diagonal is the identity. then the first Cholesky block is D 1 = I and the

first block column of L is Ln = An. i=1 •...• p. so that Ku = O. i = 1.·· . • p. For

a p-colored matrix A. the evaluation of Ap requires p2_ p block matrix-vector

17

multiplications while for Kt •. p2-3p+2 block matrix-vector multiplications are

required. Thus 2p -2 block matrix-vector multiplications are saved. although the

actual savings will depend on the number of non-zero elements in each of the Ail

blocks. We also note that this implementation of PCG for vector computers is not

attractive for any of the natural order based factorizations since one trades the

matrix multiplication by A during each iteration for the forward and back solves in

(2.6). It is the vectorization of the forward and back solves by multi-color ordering

that makes this implementation more efficient.

For matrices that can be 2-colored the ICCGE implementation is particularly

well suited as we now show. We first write A as

(2.7)

Note that Lu and L22 are symmetric. Note also that for this form of block

Cholesky the L/} are not multiplied by Dr1 as in (2.3). Now assume that we

prescale A so that its main diagonal is the identity. Since A is 2-colored. the

matrices Au and 422 of (2.7) are diagonal and thus the scaled matrix has the form

A I A21
A = A

21 I
(2.8) ~

AT

The decomposition (2.7) applied to A gives £u = I .. £21 = A 21• £21 = A 21•

£22 = I - A21A~1' and D = I .. Now both K in (2.6) and D in step d) of Figure

2.3 are identity matrices so that the ICCGE algorithm for 2-colored matrices costs

essentially the same as standard conjugate gradient.

Both block ICCG implementations described above for p-colored matrices are in

fact equivalent to the point ICCG(O) method of Meijerink and van der Vorst [1977]

applied to p-color matrices. In chapter 4 we examine the effect of multi-color

18

orderings on both the convergence rate of the ICCG method and the total execution

time.

2.6. m-step ICCG

Incomplete factorization may be viewed as a splitting. A = LDLT - R. and we

are led· to consider the iterative method defined by this splitting. Following Adams.

[1983b] we take m steps of the iterative method

(2.9)

as the preconditioning step at the k th conjugate gradient iteration and call this an

m-step ICCG method. With m-l. (2.9) reduces to ICCG as previously described.

An improvement of the m-step ICCG' preconditioning can be achieved using

polynomial preconditioning as suggested by Johnson. Micchelli. and Paul [1983] and

used by Adams [1983b].

Adams [1985] discusses m-step preconditioned conjugate gradient methods and

gives necessary and sUfficient conditions for the preconditioning matrix M to be

symmetric positive definite when M is given in terms of an m-step linear stationary

method defined by any splitting. A = P - Q. where P is a symmetric nonsingular

matrix. If K == p-IQ is the iteration matrix. M-I is given explicitly by

M-1 = (I + K + ... +Km-I)P-1 (2.10)

For incomplete factorization. P = LDLT and Adam's result can be stated as: For odd

m~ M is positive definite if .and only if LDLT is positive definite while for even m.

M is positive definite if and only if LDLT + R is positive definite. Assuming that

the incomplete factorization of A ensures that D is positive definite. then for odd

m. M will be positive definite. Since R is not explicitly known. the case of m

even is not so easily ascertained. One way to meet the conditions for M to be

positive definite for even m is to ensure that R is positive semi-definite. and Robert

[1982] gives an incomplete factorization with this property. The main drawback of

19

Robert's factorization method for the CYBER 205 is that the decomposition is

recursively defined, It also requires the formation of R which increases the storage

requirements significantly. Robert's results show that the shifting method of

Manteuffel is an alternate way of ensuring that R is positive semidefinite.

The major drawback in using (2.9) is that R is not explicitly formed during

the decomposition and if it is formed. it may take more storage than L. We can

compute the vector R rf-l by using R = LDLT - A but this requires a costly matrix

multiply. A rf-l. for m ~2 •. Since the cost of solving LDLT is nearly the same as a

matrix-vector multiply. the cost of m-step incomplete Cholesky preconditioning will

be approximately 2m-1 times the cost of a matrix-vector mUltiply so that even

though the number of iterations may decrease for m-step ICCGC. the execution time

may not. It remains an open question as to how to carry out an m-step ICCG

method in an efficient way.

Summary

In this chapter we have discussed point and block incomplete Cholesky

factorizations. We have shown how multi-color orderings are used to derive a block

incomplete Cholesky method suitable for the CYBER 205. An implementation was

given. based on a generalization of Eisenstat [1981]. which is superior to the usual

PCG form given in chapter 1. We also discussed m-step methods but noted that a

major drawback of these methods is the necessity of additional matrix-vector

mUltiplies. which make the process too costly,

CHAPTER 3

Multi-<:Oloring to Vectorize ICCG

In this chapter we discuss the multi-coloring technique used to vectorize the

·ICCG method. The multi-color orderings we describe can be applied to a wide class

of problems but for simplicity and clarity we shall restrict ourselves to a class of

problems we call class R. which arise from the solution of partial differential

equations using finite element or finite difference methods. We assume the domain

of a class R. problem to be rectangular in 2 or 3 dimensions with Dirichlet

boundary conditions impOsed along each side of the domain. To obtain a numerical

approximation to the exact solution of the partial differential equation. we discretize

the domain so that there are r points per row in l planes. each containing crows.

leading to the solution of a linear system of equations. A x = b. The vector x

contains the unknowns which are the approximate solutions to the partial differential

equation at the grid points. At each g~id point there will be k > 1 unknowns if

we are solving a system of partial differential equations. The size of the linear

system for a class R. problem is given by N = r X c X l X k .

Although class R. is limited to rectangular and rectangular parallelepiped

domains and Dirichlet boundary conditions. the results given in this chapter extend

to more general 2 and 3 dimensional problems. Figure 3.1 is an example of a non

rectangular region which has been discretized so that there are "rows" of equal

numbers of. grid points which can be ordered by the multi-color orderings we

describe in this chapter. Moreover. it is possible to· handle Neumann or other

boundary conditions. at least in certain cases.

20

'Rectangular -like' Discretization

Figure 3.1

21

Each row. i. in the matrix A contains the non-zero coefficients for the equation

for the unknown X,. For class R problems we will assume that the number and

location of non-zero coefficients is described by a uniform grid stencil; that is. the

same grid stencil is applied at each grid point. Note that at grid points near the

boundary of· the domain. any elements of the stencil associated with known

boundary conditions do not give rise to non-zero elements in the matrix A. For

example. the Laplace problem has a 5 point grid stencil shown in Figure 3.2.

indicating that the equation for the unknown at the ith interior grid point has non

zero coefficients for the unknowns to the east. west. north. and south in the grid

and of course. for the ith point itself. Equations for the unknowns associated with

the bottom row of interior grid points. however. will have no south grid point

coefficients.

22

Diagonals Stored
stencil I('s

i 0
i + 1 1
i - 1 -1
i + r r
i - r -r

Grid Stencil and Connectivity Set for Laplace's Equation

Figure 3.2

The coefficients for the N equations are assembled into an N X N matrix. For

problems with one .unknown per grid point. the structure of the assembled matrix is

determined by an ordering of the grid points. However. for problems with more

than one unknown per grid point there is more than one equation associated with

each grid point and so we need to define an ordering in terms of the unknowns.

rather than just the grid points. to determine the structure of the assembled matrix.

We shall hereafter refer to orderings in terms of the unknowns rather than the grid

points. The process of determining the structure of the assembled matrix given the

ordering of unknowns is described in Appendix B. Our interest in this chapter is in

choosing orderings which lead to efficient vectorization of bo~ the matrix-vector

multiplication in the conjugate gradient iteration and the forward and back solves in

the preconditioning step of the ICCG algorithm. We will give neccessary and

sufficient conditions to determine which p-color orderings of the unknowns

correspond to p-color matrices. as described in chapter 2. We also indicate a process

for choosing multi-color orderings which will maximize vector lengths within blocks

of the p-colored matrices for class R. problems and which is easy to apply for even

the more difficult 3 dimensional problems. Examples are given from the model

23

problems to indicate how the multi-coloring techniques are applied. We also discuss

the diagonal ordering which has been used to vectorize ICCG. showing why it is not

as effective for computers like the CYBER 205.

3.1. The Natural Ordering

For two dimensional problems. the natural ordering is usually described as a

left to right. bottom to top ordering of the grid points although several variants are

. equivalent. For example. orderings from bottom to top. right to left or right to left.

top to bottom can also be considered natural orderings. The natural ordering we use

will be the left to right. bottom to top ordering. For a three dimensional problem

the planes of grid points are ordered from bottom to top with the unknowns in

each plane ordered as described above. For problems with more than one unknown

per grid point the unknowns at each grid point may be ordered consecutively or

alternating. That is. we can order all the unknowns of one type consecutively

following the natural ordering and then order the unknowns of another type again

by the natural ordering and so on. or we can order the grid points by the natural

ordering and alternate the various unknowns at each grid point. If there are two

unknowns. u and v. at each grid point the two methods are :

consecutive: u .u.u .u.· ... • u.v .v .v .v v (3.1)

alternating; u.v.u.v.u.v.u.v.···.u.v (3.2)

Using (3.1) or (3.2) in conjunction with the natural ordering of the grid points. we

number the unknowns and will hereafter refer to these unknowns as the Wi ·s. The

main purpose for defining the unknowns. WI. in this way is to describe the position

of a given unknown in the· grid independent of the order in which these unknowns

appear in the linear system A x = b. For example.for a r X c grid with 3

unknowns per grid point. the second unknown associated with the fifth grid point in

the third .row is WI. where i = rc +2r +5 when (3.1) is used. and

24

, = 2(3r) + (4)(3) +2 when (3.2) is used. The Wi will be the components of the

vector x but not necessarily in the same order in which we have numbered the W,.
This is true. in particular. for the multicolor orderings to be discussed later.

For a given ordering of the unknowns WI. as discussed above. we now define a

connectivity set. Y. of integers. 1(. which indicate couplings between the Wi. Let P

be any interior grid point and let WI be one of the unknowns at P. Through the

differential equations and their discretizations. there is an equation in terms of W,
and the remaining unknowns which represents the approximate partial differential

equation at the grid point P. We say that W, is coupled to wJ if there is" a non-

zero coefficient of wJ in the equation for WI. We define the set Yp by

Yp = { I(I WHit is coupled to W, for all w, at p}

Then we define the connectivity set Y by

Y= UYp
p

where the union is taken over all interior grid points. We observe that. because of

the Uniform grid stencil. Y = Yp for any grid point Po at which the grid stencil

does not include a boundary point. Thus. we can obtain Y by calCUlating Y po for

any suitable Po. Y depends on the dimensions of the grid. the uniform stencil. the

number of unknowns at each grid" point. and the choice (3.1)' or (3.2) of numbering

these unknowns.

We now give an example for a class R. problem having k unknowns per grid

point on a r X c grid with a uniform stencil containing s points: note that there are

kr unknowns in each row of the grid. If we use (3.2) in conjunction with the

natural ordering of the grid points to number the unknowns. the north neighbors of

the leftmost. or first. unknown. which we denote by Wi. at some grid point are the

k unknowns Wi+b" Wi+b'+1.··· .wi+b'+k-l: the north neighbors of the second

unknown. denoted by wJ' at the same grid point are WJ+b'-l' wJ+b'.··· ,WJ+u+(k-2).

25

and the north neighbors of the kth unknown. Who at the same grid point are

Wh+kr-t+1.Wh+kr-t+2 • ••• • Wh+kr. Thus. the set Y will contain the 2k-1. integers

kr -k + 1. kr -k +2 •... .kr. kr.+ 1 •... .kr +k -1 corresponding to all of the north

coefficients for the unknowns at this grid point. In general. for each other grid

stencil point. for example. south. east. etc .• Y also will contain 2k-1 K'S. However.

the I('S arising from the s different grid stencil points need not all be different so

that the set Y. in general. will not contain s(2k-1) values. If (3.1) is used in

numbering the W, there are still 2k-1 K'S for each grid point but. for example. the

values of I(for the north neighbors are r-(k-1)rc, r-(k-2)rc • ... ,r. r+rc.

, r+(k-1)rc.

The above discussion has indicated how to obtain Y in general and we now

give two complete examples to illustrate how the set Y is obtained for a problem

with one unknown per grid point and one with two unknowns per grid point. We

consider first the Laplace model problem. Figure 3.2 shows the grid stencil for

Laplace's equation and lists the K'S corresponding to each non-zero coefficient in the

equation for W,. The grid stencil is derived from the finite difference equations us.ed

to approximate the solution of the differential equation and the K'S in Yare then

determined. using the number of points per row in the discretized domain. For

instance, the north neighbor of grid point i in a grid with r points per row is the

(i +r) th grid point so that the I(value for the north neighbor is r. Note that the

K for the north neighbor depends on the dimension, r, of the grid.

For an example of a system of partial differential equations, we consider a

plane stress problem described in Adams [1983a] in which a plate is fastened to a

rigid body along one side and a load is applied on the opposite side. A detailed

description of the finite element solution for this problem is also given in Becker, et

al. [1981]. The rectangular domain is discretized using triangular finite elements on

which linear basis functions are defined (see Figure 3.3). At each grid point, there

26

K.·s for Plane Stress Problem
j =2£-1 j =2£

unknown u v

C" 0 1
Cv 1 0
Nu 2r 2r-l
Nv 2r+l 2r
Su -2r -2r-1
Sv -2r+l . -2r

Grid Stencil Eu 2 1

Triangular Finite Elements Ev 3 2

lV" -2 -3
Wv -1 -2

A" 2r-2 2r-3
Av 2r-1 2r-2
Zu -2r+2 -2r+1
z" -2r+3 -2r+2

Plane Stress Problem

Figure 3.3

is a pair of equations for the displacements. u and v. in the x and y directions.

We order the grid points according to the natural ordering and use the alternating

pattern (3.2) for the u and v unknowns at each point. For this ordering. the u

unknowns are odd numbered and the v unknowns are even numbered. Since both

the u and v equations at each grid point are coupled to the u and v unknowns at

the grid points indicated by the grid stencil. Y contains values for both the ~ and

v unknowns. For example. the u unknown at grid point i is wJ. where j = 2i-1.

It is coupled to the north u and north v unknowns as shown by the grid stencil in

Figure 3.3. The north u unknown is the (j +2r)th unknown and the north v

unknown is. the (j+2r+1)st unknown. Similarily. the v unknown at grid point i is

WJ' where j =2i. Note. however. that the north u and v unknowns are now the

O+2r-1)st and O+2r)th unknowns. Thus. the set Y contains the values 2r-1.

27

2r. and 2r+1 for the coupling of the north and center points. Figure 3.3 lists all

the K'S for the plane stress problem. giving those associated with the u unknowns in

one. column and those associated with the v unknowns in another. Note that there

are duplicate K'S in each column but some values appear in only one of tl1e

columns. such as the 3 for· the Ev unknown in the u column and the -3 for the

Wu unknown in the v column. Combining the two columns. we see that there are

17 different values of K for the 7 point stencil shown in Figure 3.3. Although

there are 17 different values in the set Y. no more than 14 different values are

associated with anyone unknown. This is expected since there are only. 14

unknowns corresponding to the grid stencil at any grid point and thus the equation

for any Wj will contain at most 14 non-zero coefficients.

If. in the plane stress problem. we use the consecutive pattern (3.1) with the

natural ordering of the grid points to number the Wi. the set Y will contain

different values and a greater number of distinct values. For example. the north u

and v unknowns for the u unknown at grid point i. Wi. are now given by Wi +r

and Wi +rc +r while the north u and v unknowns for the v unknown at grid point

i. w). j = i + rc. are w)-rc+r and w) +r. The number of distinct values in Y for

this ordering is 21.

We now discuss. in general. the formation of the matrix A from the N

equations in the unknowns Wi. We number the unknowns as already discussed but

then the vector x in the linear system Ax = b is formed by assigning each Wj to a

particular x) in a one-to-one mapping. Having chosen a mapping of the Wi into x

the structure of A is determined as follows. Each row i in A corresponds to the

equation for the w) that is assigned to Xj. Row i in the matrix will contain the

non-zero coefficients for the equation for that w). For each w)+.oc that· has a non

zero coefficient in the equation for w) the position of w)+.oc in x. denoted x", is

determined. Then the entry in row i column k. ai,k. is the coefficient for unknown

stencil
C
E
A
N
B
W
Z
S
Y

Diagonals Stored
I('S constraints
o i ~ qp
1 i +1 ~qp

r-1 i +r -1 ~ qp
r i +r ¢ qp

r+ 1 i + r + 1 ~ qp
-1

-r+1
-r

-r-1

Grid Stencil and KS for Mixed Derivative Problem

SZ .
YSZ

YSZ
YSZ

Y8Z
YB

ANB
ANB

ANB

liZ
YSZ

ANB
AN

Y8Z
YSZ

YSZ
YS

Figure3A

NB
ANB

ANB
ANB

ANB

SZ
YSZ

YSZ

AN

YSZ
YSZ

YS

N.
ANB

ANB
ANB

ANB
AN

liZ
YSZ

Y8Z
YSZ

YIIZ
YB

NB
ANB

ANB
ANB

SZ
Y8Z

ANB
AN

YBZ
YSZ

YSZ
YS

NB
ANB

ANB
ANB

ANB
AN

SZ
YSZ

YSZ
YSZ

YSZ
YS

NB
ANB

ANB
ANB

ANB
AN

Mixed Derivative Problem - 6 X 7 Grid

Natural Ordering of the Unknowns

Figure 35

28

Wi +0:0 In the next section we discuss assignments of the WI'S to x which are called

29

multi-color orderings of the unknowns. In this section we define the ordering of x

by

Xi = Wi • 1 ~i ~ N (3.3)

If there is one unknown per grid point (3.3) defines the natural ordering of the

unknowns which leads to the natural ordered matrix for the given problem. We

illustrate the natural ordering for a problem with one unknown per grid point with

an example from the mixed derivative problem. The grid stencil for the mixed

derivative equation (1.3) is the 9 point star shown in Figure 3.4. The I('s in Y are

given for a grid with dimensions r X c ordered by the natural ordering as discussed

in section 3.1. The constraints refered to in Figure 3.4 are discussed in a later next

section. The 9 diagonal matrix shown in Figure 3.5 is the natural ordered matrix

for the mixed derivative problem. Because of symmetry the matrix can be stored in

5 diagonals of length 0 (N).

Figures 3.6 and 3.7 show the matrices for the plane stress problem where x

has been ordered by (3.3) and the unknowns. Wi at each grid point have been

numbered by the natural ordering of the grid. points and (3.2) and (3.1).

respectively. Recall that the set Y contained 21 elements for the (3.1) numbering of

the unknowns and 17 elements for the (3.2) numbering. Likewise. the matrix in

Figure 3.6 contains 21 diagonals and the matrix in Figure 3.7 contains 17 diagonals.

Let us now consider vectorization of the matrix-vector multiplication ... For this

operation we store the matrix by diagonals and use matrix multiplication by

diagonals. as previously stated. We want to choose an ordering of the unknowns.

Wi. in x which will result in the minimum number of diagonals to store the matrix.

thereby maximizing vector lengths. We will show that for class R. problems the

assignment (3.3) for problems with one unknown per grid point yields a matrix

with the minimum number of diagonals and for problems with more than one

unknown the number of diagonals in A is equal to the number of elements in the

set Y.

S8ZZ
S8ZZ

SSZZ
SSZZ

SSZZ
S8ZZ

5SZZ
SSZZ

88
58

NN
AANN
AANN

AANN
AANN

AANN
AANN

AANN

8SZZ
SSZZ

SSZZ

AANN

SSZZ
SSZZ
SSZZ

S5ZZ
IISZZ

58

NN
NN
AANN
AANN

AANN
AANN

AANN
AANN

AANN
AANN

NN
NN
AANN
AANN

AANN
AANN

AANN
AANN

AANN
8S

5SZZ
AANN

85ZZ
55ZZ
SSZZ

S5ZZ
SSZZ

SSZZ
SSZZ

S5
SS

IISZZ
SSZZ

SSZZ
S8ZZ

8SZZ
SSZZ

S5ZZ
SSZZ

SS

NN
NN
AANN
AANN

AANN
AANN

AANN
AANN

AANN
AANN

5S
SSZZ

5152 5354

11 U 1314

12 34

55$(;

1516

S6

5758

1718

78

S8ZZ
SSZZ
SSZZ

SSZZ

5960

1920

910

SSZZ
SSZZ
IISZZ

5S
liS

Plane Stress Problem - 5 X 6 Grid

Natural Ordering with (3.2)

Figure 3.6

NN
NN
AANN
AANN

AANN
AANN

AANN
AANN

AANN
AANN

30

For a class R problem with only one unknown per grid point and a uniform

gdd stencil with s points. the equation for any Wi for which the unknowns coupled

by the grid stencil are not boundary points will contain s non-zero coefficients and

IweE AN W~E AN
WCE AN WCE AN

WCE AN WCE AN
WC AN WC AN

SZ CE N SZ CE N
SZ WCE AN SZ WCE ·AN

SZ
SZ

S

IweE
WCE

WCE
WC

SZ
SZ

SZ
SZ

S

WCE AN SZ WCE AN
WCE AN SZ WCE AN

WC AN S WC AN
SZ CE N SZ CE N

SZ WCE AN BZ WCE AN
SZ

SZ
S

AN
AN

AN
AN

CE
WCE

WCE
WCE

WC
SZ

SZ
liZ

SZ
II

WCE AN SZ WCE AN
weE AN SZ WCE AN

WC AN S WC AN
IZ CE N SZ CE N

IZ WCE AN SZ WCE AN
liZ

IZ
I

N
AN

AN
AN

AN
CE
WCE

WCE
WCE

WC
IZ

liZ
SZ

liZ
II

WCE AN SZ
WCE AN IZ

WC AN I
IZ CE N

IZ WCE AN
liZ WCE AN
"~ W~~ A~N

liZ CE
SZ WCE

sz WCE~~ SZ WC
I W

~_eE AN
WCE AN

WCE AN
WC AN

SZ CE N
SZ WCE AN

liZ WCE AN
SZ WCE AN

S WC AN
N SZ CE
AN SZ WCE

AN SZ WCE
AN SZ WCE

AN II WC
CE N SZ
WCE AN SZ

WCE AN SZ
WCE AN SZ

WC AN S
liZ CE N

liZ weE AN'
IZ WCE AN
8~ W~~ A~l\

BZ CE
SZ WCE
S~Z W~~_!

S we

26 56 27 57 28 58 29 59 30 60

6 12 7 14 8 16 9 18 10 20

1 31 2 32 3 33 4 34 5 35

Plane Stress Problem - 5 X 6 Grid

Natural Ordering with (3.1)

Figure 3.7

WCE AN
WCE AN

WC AN
liZ CE N

SZ WCE AN
SZ WCE AN

liZ WCE AN
S WC AN

IZ CE
SZ WCE

liZ WCE
SZ WCE

S wc

N
AN

AN
AN

AN
CE N
WCE AN

WCE AN
WCE AN

WC AN
SZ CE N

SZ WCE AN
SZ WCE AN

liZ WCE AN
II WC AN

IZ CE
SZ WCE

BZ WCE
IZ WCE

S we

31

the number of elements in Y. 'II. is also equal to s. Hence. there are s coefficients

in every row in A corresponding to one of these WI and so there' will be at least s

diagonals in A. It is clear that this minimum number of diagonals. s. will not be

achieved by arbitrary orderings of the WI into x since the s non-zero coefficients in

32

succesive rows of A may not all lie along common diagonals. For class R. problems

with k > 1 unknowns per grid point. the minimum number of diagonals is not so

easily asertained. We have already seen that each grid stencil point corresponds to

2k-l K'S in Y so that JI ~ s(2k-l). Thus an upper bound on the number of

diagonals in A which contain the non-zero coefficients for the equations for the k

unknowns at any particular grid point is s(2k-l). The actual number of non-zero

coefficients in A for the k rows corresponding to any grid point may be. much less

than this bound for two reasons. First of all. in many problems several of the

coefficients indicated by the . grid stencil may be zero at every grid point. In the

space truss problem which we consider in a later section. the element matrices for

the truss elements that make up the finite element model for the 3 dimensional

truss are themselves sparse and so many of the coefficients indicated by the stencil

are zero. Secondly. it is generally the case that the K'S at each grid stencil point

are not all different from the K'S at other grid stencil points. as we have already

discussed in defining the set Y. In any case. we seek orderings of the unknowns for

which the number of diagonals in A is equal to the number of diagonals necessary

to store all of the non-zero. coefficients for the k equations of the unknowns at any

one interior grid point. Thus. the number of diagonals in A would be given by JI.

the number of elements in Y. The following theorem states this result for the

ordering of x by (3.3).

Theorem 3.1 :

Given a (2 or 3 dimensional) class R. problem with a uniform grid stencil

containing s points. the associated conectivity set Y containing JI elements. and x

ordered by (3.3). then

a) If there is one unknown per grid point and the unknowns Wi are numbered

by the natural ordering of the grid points. the number of non-zero diagonals

33

in the matrix A is v. and is equal to s. Moreover. v is the minimum

number of diagonals possible.

b) If there are k > 1 unknowns per grid point and (3.1) is used in conjunction

with the natural ordering to number the unknowns. then the number of

diagonals in A is given by v. and is less than or equal to

(2k -l)s (3.4)

c) If there are k > 1 unknowns per grid point and (3.2) is used in

conjunction with the natural ordering to number the unknowns. then the

number of diagonals in the matrix A is given by v and is less than or equal

to

(3.5)

where SR is the number of points in the grid stencil which come after the

center point in the stencil as defined by the natural ordering and which have

no left neighbor in the stencil.

Proof:

a) By (3.3).the unknown Wi corresponds to row i in the matrix and each

point in the grid stencil" described by a KEY corresponds to the unknown

Xi +Ie at grid point i +K. Therefore. each K gives rise to ""a diagonal in A of

non-zero coefficients of the form aU+1e .1~i.i +K~N. Since each grid

stencil point corresponds to one and only one KEY. the number of elements

in Y is s and there will be s diagonals in A. the minimum number possible.

b) Once again. by (3.3). Xi = Wi and each K in Y corresponds to a diagonal in

A with coefficients a/.i+Ie" so that the number of diagonals in A is v. To

derive the bound (3.4) on the number of diagonals in A it is sufficient to

consider only diagonals in A which lie above the main diagonal since A is

symmetric. We will show that the number of diagonals above the main

diagonal in A is

<L
(u+r-l)

<:£

34

(k -1)s + l s /2 J (3.6)

where l J and r 1 denote the integer rounding functions that round down or

up respectively if the quotient has any remainder. Since diagonals above the

main diagonal are of the form aU+It. 1(>0. we determine the number of I('s

in Y which are positive. Figure 3.8 represents 7 grid points coupled by a

7-point grid stencil in a two dimensional r Xc grid where there are 3

unknowns per grid point numbered by the natural ordering in conjunction

with (3.1). Each ellipse represents a grid point. and the smaller circles within

each ellipse are the three unknowns at each grid point. The center point. P.

contains the 3 unknowns u. v. and z and the expressions below each

unknown describe all the unknowns which are coupled to P and are

numbered after the particular unknown at P. Notice that since all of the

middle and rightmost unknowns at the grid points are numbered after all of

0 3> <L
(u+rc+r 1l(u+2rc+r-l) (u+r)

(v+r-l) (v+rc+r-l)
(z+r-l)

<t: 3> 0
(u)

{u+rc-lJ (u+2rc,....1)
(v+rc-l)

0 3>
(u+rc+r5 (u+2rc+r)

(v+r) (v+rc+r)
(z+r)

Grid Point p

0

(u+rc)
(v)

o

{u+rc rJ

3>
(u+2rc)
(v+rc)

(z)

3>
(u+2rc-r)
(v+rc-r)

<L
(u+1)

7 Point Stencil for a Problem with k=3 Using (3.1)

Figure 3.8

0 ~
(u+rc+l) (u+2rc+1)

(v+1) (v+rc+1)
(z+1)

o 03>
(u+rc r+l)(u+2rc r+l)

(v+rc-r+l)

35

the leftmost unknowns. the K'S corresponding to the coupling between point P

and all of the middle and right unknowns are positive and the coefficients

ai,i+1t all lie above the main diagonal. In general. for k unknowns per grid

point and s stencil points the number of non-zero coefficients corresponding· to

u for any grid point P is given by s(k-1). In addition. the leftmost

un~owns at the grid points to the right and above u also are numbered

after u and the corresponding coefficients lie above the main diagonal in A.

In general there are ls 12 J stencil points to the right and above the center

grid point . for a grid stencil that corresponds to a symmetric matrix.

Therefore. the totalnum'ber of diagonals above the main diagonal in A is

bounded by (3.6).· Now since A is symmetric the grid stencil will have an

odd number of points so that 2l s 12 J = s -1 and the total number of

diagonals in A is bounded by

2(k-1)s + 2ls12J + 1 = (2k -l)s

c) Again. by (3.3). each K ~ Y corresponds to a diagonal in A with coefficients

ai,HIt so there are II diagonals in A. As before. we count the number of

diagonals above the main diagonal by counting the number of positive K'S in

Y for a point P in the grid.· Figure 3.9 again represents 7 grid points

coupled by a 7-point grid stencil. as above. but whe;1'e the unknowns WI are

numbered by (3.2). Now all K'S for unknowns to the right and above u are

positive. In general. the number of unknowns to the right and above the

leftmost unknown at point P is

klsl2J-1 (3.7)

Notice. however. that in Figure 3.9 the expressions for the unknown v at P

include a K that was not among the K'S for u. namely the K for the

leftmost unknown in the top left grid point in Figure 3.9. v+r-4. The

coefficient indicated for this coupling lies in diagonal ai,I+r-4' a diagonal not

<C
(u+r-3)
(v+r-4)
(z+r-S)

<C

36

0 3> <!: 0 3>
(u+r-2J (u+r-l) (u+r) (u+r+lJ (u+r+2)
(v+r-3) (v+r-2) (v+r-l) (v+r) (v+r+1)
(z+r-4) (z+r-3) (z+r-2) (z+r-l) (z+r)

Grid Point p

<C 0 3> <C 0 3:>
0 3> (u) (u+D (u+2) (u+3) (u+4) (u+s)

(v) (v+1) (v+2) (v+3) (v+4)
(z) (z+1) (z+2) (z+3)

o o

7 Point Stencil for a Problem with k-3 Using (3.2)

Figure 3.9

counted in (3.7). In general. if there are k unknowns at each grid point.

then for every grid stencil element to the right and above the center grid

stencil point that does not have a left neighbor in the stencil. there are k-1

additional positive I('s in Y. These are the SR points in (3.5) and we note

that SR ~ l S /2 J. This completes the proof.

For class R problems. with only one unknown per grid point. Theorem 3.1

stateS that! we can do no better than the natural ordering for diagonal storage of the

matrix. For more than one unknown per grid point. the number of diagonals in A

is given by v. the number of elements in Y. Note that since SR ~ ls /2 J. (3.5) is

less than or equal to (3.4). Therefore. (3.2) in conjunction with the natural

ordering will always require no more diagonals than (3.1) with the natural ordering.

However. the miD.imum number of diagonals is not always the best' all around

37

choice: another consideration is the amount of storage required for each ordering.

Note that by (3.4) the number of diagonals in the plane stress matrix is less than

or equal to 21 whUe (3.5) indicates that using (3.2) with the natural ordering will

require no more than 17 diagonals. In Figures 3.6 and 3.7 the matrices shown do

contain 17 and 21 diagonals. respectively. However. in Figure 3.6 storing A in 17

diagonals requires that O(N /2) zeros be stored for many of the diagonals. for

example. the lower S diagonal. Thus. a total of O(9N) memory locations is

required if we store only the upper or lower triangular part of A. Alternatively.

one may chose not to store the alternating zeros. in which case execution time for a

matrix vector multiply is slowed considerably since costly gather-scatter operations

must be performed each time such a diagonal is used in the matrix vector multiply.

The matrix in Figure 3.7. on the other hand. shows that the (3.1) ordering requires

21 diagonals but only O(7.5N) memory locations.

3.2. The Coloring Problem

We now consider the more difficult problem of obtaining orderings of the WI

which result in p-color matrices as well as maximize vector lengths. A p-color

ordering can be described as a partitioning of the unknowns. Wi. into p disjoint sets.

ST' 1 ~ T ~ p. The unknowns in each STare assigned to x consecutively

beginning with the Wi'S in Sl. followed by S2 and so on. If the p-coloringhas the

property that no elements in ST are neighbors. as defined by the set Y. the

corresponding matrix will be a p-color matrix. that is. it will have the form (1.1)

with the diagonal blocks themselves diagonal matrices. Determining the coloring' of

the unknowns that corresponds to a p-color matrix for an arbitrary grid stencil

using the smallest possible number. p. of colors is a graph coloring problem which.

in general. is NP-complete. (See. e.g .• Horowitz and Sahni [1978]). For many

problems of interest in scientific and engineering applications. however. colorings have

38

been given which result in the desired p-colored matrices. (See. e.g .• Adams [1983a]

). In Chapter 2 we used 'a particular multi-color ordering to obtain a p-colored

matrix which was used to implement a block incomplete Cholesky preconditioning

with the desired long vector lengths. However. for a given problem with its

associated grid stencil. there may be several different coloring schemes that result in

p-colored matrices. and we wish to determine those orderings which maximize vector

lengths. Schreiber and Tang [1982] claim that the ordering chosen should achieve

,the p-color matrix' form with the smallest p possible. We will shoW that

additional factors must be considered and in fact that using more than the minimum

p colors may result in more efficient vectorization for some problems.

We now state and prove the following theorem. which gives necessary and

sufficient conditions to ensure that the matrix corresponding to a p-color ordering

will be a p -color matrix.

Theorem 3.2 : The P-COloring Theorem

Proof:

Given a (2 or 3 dimensional) class R. problem with connectivity set Y

associated with a given uniform grid stencil. and a p-color ordering of the

unknowns. Wi. (one or more per grid point) into p disjoint sets.

Sr. 1 ~ 'T ~p. the corresponding matrix. A. is a p-color matrix if and only if

the following condition is true for every unknown Wi:

if Wi e Sr then Wi +It (/. Sr for every IC e Y • IC ¢ 0 such that IC corresponds to an

unknown Wi+/t coupled to Wi.

'The matrix A ,is p-colored if and only if each diagonal block. AJJ • is

diagonal. If WHit e Sr for some Wi e Sr. and IC ¢ 0 then the row in Ar.r

corresponding to i will have a non-zero coefficient in an off diagonal position

so the matrix is not p-colored. Conversely. if the above condition is satisfied

39

for all i. then there will be no off diagonal entries in any of the AJJ •

1 ~ j ~ p. and the matrix will be a p-color matrix.

In the next section we give an example of a matrix which arises from a

multi-color ordering but is not a p-color matrix and we will see that it violates the

condition of Theorem 3.2.

We now consider the other important characteristic of p-color matrices that

makes the long vector operations in the forward and back solves in the

preconditioning step of ICCG possible. namely 0 eN I p) length vectors within the

blocks of A. Given a coloring which results in a p-color matrix. if we order the

Wi'S within the ST'S randomly. we will almost certainly not obtain OeN Ip) length

vectors in A. On the other hand. the ordering of the Wi in S 1 may be arbitrary as

long as the remaining Wi'S in the ST·S. 2 ~ T ~ p. correspond to the Wi'S in Sl in

the manner described in Figure 3.10.

Let us now consider an example of Theorem 3.2 and the condition in Figure

3.10. For the mixed derivative problem. we can write the Si explicitly as shown in

Figure 3.11 for a 4-color" ordering of a 7 X 6 grid The first 12 rows in the matrix

in Figure 3.11 correspond to the 12 unknowns in Sl. in the order shown. Likewise.

the next 9 rows correspond to the unknowns of S 2. and so on. For the 7 X 6 grid

the set Y is {0.1.6.7.8.-1.-6.-7.-8}.

For each K in Y. all of the unknowns. Wi+.oc. coupled to Wi'S in S 1 are in"
one and only one of the ST • T¢:1. which we denote by Sx. Furthermore.
the unknowns in SE denoted by wu. wk2 • •• '. which are coupled by a par
ticular K to unknowns in Sl. which we will denote as W.rl. W.r2.·· '. are
coupled in the following way:

Wki is coupled W.ri+h • h is a constant.

Multi-COlor Ordering Constraint

Figure 3.10

I"'C IW~E N lAD
C N AD

C W N A
C E S N Z D

C WE S N IY~ZA!D C WE S N
C W S N Y A

C E S N Z D
C WEr~ S N YZ AD

c
e Wv

,
N}I YZ AD , Y A

'i¥E I'"c I"'AD N
WE C AD N

WE C YZ AD S N
WE C YZ AD , N

WE C YZ AD S N
WE C YZ AD , N
W~E Cc YZ AD , N

YZ AD S N It, J'i
N Ih :D I,"c

W~E S N YZ AD C
S N Y A C W

S N Z D C E
S N YZ AD C WE

S YZ AD C WE
S N}I Y

z
A C W

S C E
S Y~~ C WE

S Y~ C W~ S C
Il yZ AAB S "'N 'i¥E C

YZ AD S N WE C
YZ AD S N WE C
Y~z A~E S S Nl'i WE C

WE C
YZ S WE C
Y~2 S WE C

S WE C

3 4 3 4 3 4 3

1 2 1 2 1 2 1

3 4 3 4 3 4 3

1 2 1 2 1 2 1

Mixed Derivative Problem -7 X 6 Grid

Sl = {l.3.5.7.15.17.19.21.29.31.33.35} • Sz = {2.4.6.16.18.20.30.32.34}

S3 = {8.10.12.14.22.24.26.28.36.38.40.42} • S4 = {9.11.13.23.25.27.37.39.41}

4 Color Ordering - O(r) Length Vectors

Figure 3.11

40

41

The fact that Theorem 3.2 is satisfied by t,he p-color ordering in Figure 3.11 is ,

evident from the picture of the grid. At any grid point. P. the surrounding

neighbors in the 9 point stencil are different colors and hence are not in the Si

. containing Wi. We can also apply the condition of Theorem 3.2 directly for each

unknown. For example. the equation for the first unknown has non-zero coefficients

corresponding to the N. B. and E grid stencil elements. The K.·s from the set Y

for the N. B. and E grid stencil elements are the integers 7. 8. and 1. To satisfy

the condition in Theorem 3.2. unknowns 8. 9. and 2 cannot be in the set S 1. Note

that at a grid point which has boundary points as neighbors. only thoseK.·s in Y
" .

which correspond to non-boundary points are used in the test. For example. if we

calculate the Z coefficient of grid point 7 for which K. = 8 we get WIS. This

unknown is in set S I which would violate the condition in Theorem 3.2. However

since grid point 7 does not have an Z coefficient due to the boundary of the

domain,' we do not test point 7 with K. = 8. For problems with more than one

unknown per grid point. we have already seen that some of the K.·s apply only to

one of the unknowns at each grid point while some apply to all of the unknowns.

Although the diagonals corresponding to the Nand S grid stencil elements line

up within each block of the matrix in Figure 3.11. the remaining diagonals for each

grid stencil element do not. For the unknowns in S 1. the coefficients corresponding

to the north grid stencil are all in S3 and each element in S3 is associated with the

elements in S I consecutively. Note that. in the notation described in Figure 3.10.

W,fi is coupled to Wki where k =3 and. here. h =0. The coefficients corresponding to

the east grid stencil element are all in S2 but the elements in S2 do not correspond

to consecutive elements in S 1. Note that the first 3 elements in S2 correspond to

the first 3 elements in S 1 (h =0) and the first E diagonal in block 1.2 of the matrix

in Figure 3.11 has length 3. However. the 4th thru 7th elements in S2 correspond to

the 5th thru 8th elements in S 1 (h =1) and the corresponding E diagonal in block

I~C IW.E' ~N Ih
C WE N AB

C W N A
C WE YZ N S AB

C WE YZ N I AB
C WE YZ N I AI

C E Z N I B
C WE~~ YZ N II AB

C(W\i YZ N~ II AB
Y II A

'WE I"'C I"AI N
WE C AB N

E C S B Z N
WE C I AB iY~Z NN WE C II AI

W C I A Y N
WE C II AD YZ N
W~J C

c
S AD YZ N

II ' AD YZ N
1111 AB lyZ !'IN C ~~E I AI YZ N C

I A Y N C W
I AB YZ N C WE

I
I A!D Y~Z Nl'I C WE

C WE
II Z C 'E'

II Y~~ C WE
IS Y

1
C W~ C

l'yZ "}II II "AB 'WE C
YZ }II II AD WE C

Z N II II E C
YZ N I All WE C
Y~ Nl'I I I A!

WE C
W C

YZ I WE C
Y~Z IS WE C

WE C

4 3 4 3 4 3 4

2 1 2 1 2 1 2

3 4 3 4 3 4 3

1 2 1 2 1 2 1

Mixed Derivative Problem - 7 X 6 Grid

Sl = {t.3.5.7.16.18.20.29.31.33.35} • S2 = {2.4.6.15.17.19.21.30.32.34}

S3 = {8.10.12.14.23.25.27.36.38.40.42} • S4 = {9.11.13.24.26.28.37.39.41}

4 Color Ordering - O(N /4) Length Vectors

Figure 3.12

42

43

1.2 lies below the first E diagonal. This shift of the E diagonals occurs because in

each row containing points colored 1 and 2 there is one more color 1 point than

color 2 points. The vector lengths of the E diagonals are 0 er /4) rather than the

desired OeN /4).

One solution to this problem is to change the coloring pattern as shown in

Figure 3.12. Row 3 now begins with color 2 and row 4 begins with color 4. This

4 row pattern is maintained throughout the grid. One can verify for each Sj shown

in Figure 3.12 that the condition in Theorem 3.2 is satisfied by this p-coloring.

Note that the E coefficients for the unknowns in S 1 are again in S2 and the first 3

unknowns in S2 correspond to the first 3 unknowns in Sl. The 4th unknown in S2

does not correspond to the 4th unknown in S 1 but the 4th unknown in S 1 is on

the right border of the grid and has no E coefficient. This extra element in S2

allows the 5th unknown in S 2 to correspond to the 5th unknown in S 1 and the

condition of Figure 3.10 is satisfied. As a result. the E diagonal in the first block

row of A is of length OeN /4). as desired. The same result is true for all of the

diagonals in Figure 3.12 and the vector lengths for this p-color matrix are all

OeN/4).

As a final example. we give in Figure 3.13 another multi-color ordering which

does not meet the conditions given in Figure 3.10 for the minimum number of

diagonals. Notice that here we color each row continuously but the pattern is not

continued from one row to the next. The alternating pattern in some of the

diagonals in the 4-color matrix in l"igure 3.13 are r /4 length diagonals which can be

stored contiguously if r /4 zeros are added between each r /4 vector. For instance.

the A. Y. and W diagonals in block row 1. can be stored in6 vectors of length

o eN /4) but 0 eN /4) zeros must also be stored for each vector. introducing undesired

overhead in storage and computations. Clearly. this matrix does not have the

minimum number of diagonals within each block.

I"
C I" EA N r.,y AI.

C Y E A II N Z W •
C Y E A • N Z W •

C E I N Z • C Y EA I N ZW • C Y E A II N Z W •
C Y E A I N Z W •

C E II Nil Z • C Y EA II ZW • Cc Y yEE I ZZW" II

'"wAl. "c I"'EAA "N

II

Y

3

1

3

1

ZW • C Y EA S N
W C Y A II N

Z W • C Y E A S
Z W • C Y E A II

N
N

II
II

I
li

"'AA
E A

Y E
Y

Y
Y

ZW • C Y EA S
W C Y A S

Zz WW·.B C Y E A
C Y E A

ZW\1 C Y E
C Y

W.o. I"c EAA
Z • C E

N ZW • C Y EA
N Z W • C Y E

N Z W • C Y E
N Z • C

II N ZW • C Y
II N}i ZZWWBli C

I C
I Z C

II ZW C

"N I"w" C
S N Z W • C

A II N Z W • C
EA S N ZW • C

Y

A II N W C
E A- S N Z W •

E A II N Z W •
Y EA S N}i ZW • Yy EA II W

S ZZW\'I YE S

4 1 2 3 4 1

2 3 4 1 2 3

4 1 2 3 4 1

2 3 4 1 2 3

Mixed Derivative Problem - 8 X 6 Grid·

4 Color Ordering - O(rI4) Vector Lengths

Figure 3.13

N
N

N
N

II N
II N

II
II

A-
A-

E
EA

Y E A-
Y E A

E
Y E

C
C

C
C

C
C

2

4

4

44

We now consider another type of ordering. called the diagonal ordering. which

can be considered a type of multi-coloring where p is no longer a constant

independent of the grid dimensions but. rather. is given by p = r + c - 1. This

45

"c I"NJ
,

w~ I"c
- (

"NE
'~h

fW:'i "c I"NE
c(N~!

"':'1
I"C I"HE

C NE
W~ C(N~l

"'.S I"C "NE
WI C NE

WS C N~~ W~ Cc Nil

rw~S I"C 'NE
c NE

WS C NE
WI Cc Nl ws

rw:'1
c ~~E C

WI C NE
w:'s C_t N~

'WII C ~~E WI C
WI c Nl ws c

'WI I"C IN~E WII C ws C 1'1

'WII C ~E ws C 1'1

'ws C
I!!J!

8 9 1 0 11 1 2 13

3 .4 5 6 7 8

2 3 4 5 6 7

1 2 3 4 5 6

Laplace Model Problem - 6 x 8 Grid

Diagonal Ordering

Figure 3.14

ordering. shown in Figure 3.14 for a 6 X 8 grid for the Laplace problem; has been

used to vectorize ICCG by several authors. for example. van der Vorst [1983] and

Schreiber and Tang [1982]. There are 13 colors and the 13 sets are formed by

46

assigning unknowns along diagonals in the grid to distinct sets. For example.

Sl = {W1}. S2 = {W7.W2}. S3 = {W13.wg.W3}. and so on. Since the grid stencil for

Laplace's equation does not couple any grid points along diagonals. it is obvious that

the matrix corresponding to the diagonal ordering will be a p-color matrix. This

fact can also be deduced from the condition in Theorem 3.2. One can also verify

that the condition in Figure 3.10 is satisfied by this ordering although in this case

the maximum vector lengths are only O(r). The main drawback of this ordering

for vector computers such as the CYBER 205 is that the vector lengths in the

matrix in Figure ;3.14 are of average length r /2 and the longest diagonal within any

block row is length min (r .c). For rectangular regions this length is particularily

bad but even on square regions the vectors are not long enough for efi'ecient

vectorization unless the problem size is very large. Another drawback of the

diagonal ordering is that it does not achieve p-color matrices for even slightly more

complex stencils and more complicated 'diagonal-like' orderings are needed. For

threee dimensional problems diagonal-like orderings are even more difficult to

construct.

3.3. The Continuous Col~ringRule

Theorem 3.2 gives necessary and sufficient conditions for a multi-color ordering

to yield ,a p-color matrix. We also discussed in the previous section a criteria

(Figure 3.10) to obtain O(N /p) length vectors within the block rows of the p

colored matrix. But these criteria do not suggest a strategy to follow to obtain this

result in general. We next describe a process we call the continuous coloring rule

which' is easy to use on any class R. problem in order to obtain p-color matrices

with 0 (N / p) length vectors in the blocks of A. In the continuous coloring rule for

p colors. we go through the grid points by the natural ordering assigning the p

colors to the unknowns as : 1.2.3 • p .1.2.3. . ..•. This is equivalent to forming

47

p disjoint sets

S,. = {1'.1"+p.1"+2p.1"+3p • ... }. l' = 1.2.···.p

where the grid points are ordered by the natural ordering with (3.2) used when

there is more than one unknown per grid point. If i = qp + 1". with 1 ~ 1" ~ p.

then unknown i is in set S,. and its position in S,. is q + 1. The east neighbor of

point i is in Sy where' ')I = (i -1) mod p + 1. the north neighbor is in Sy.

')I = (i + r -1) mod p + 1. and so on. Since the unknowns are partitioned by

assigning every pth unknown to the same set. the number of points in each set is

N / p if p divides N evenly.'. Otherwise the first N inod p sets will contain [N / p 1
unknowns and the remaining sets will contain IN / p J points. We can also express

the number of points in the set S,. as P,. = l(N -1' + P) / p J.
To determine the matrix row. j. corresponding to some unknown i = qp + 1". we

,.-1
sum the number of elements in each of the sets Sk • k < 1': I: Pk • The position of

k=1

unknown i within S,. is q + 1. Therefore. the unknown i = qp + 1" corresponds to

7'-1

row j = 1: P" + q + 1 in the multi-colored matrix. This. is illUstrated in Figure
k=1

3.15.

We will refer to multi-color orderings derived using the continuous coloring

rule as continuous color orderings. We now state and prove esssentially a corollary

of Theorem 3.2 which applies to continuous p-color orderings and gives necessary

and sufficient conditions for the matrix corresponding to a continuous color ordering

to be p-colored.

Theorem 3.3 :

Given a class R problem with connectivity set Y obtained by the continuous

coloring rule using p colors. the matrix corresponding to a continuous color

ordering of the unknowns is a p-colored matrix if and only if for K ¢ 0 in Y.

Proof:

.
1
1
I
1
1

1 1 1
1- __ - -- --1- ______ J, ______ J _____ _

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 ,I

I- - - - - - - -1- .,. _'~ ___ .J ______ .J _____ _
1 1 , 1
1 1 1

P , 1 1 ,I
.,. 1 1 1

j ~ , ~ ... ~ .•............
1 1 1 ______ ~ _______ .J ______ .J ______ •

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

P-COlored Matrix

Figure 3.15

Kmodp¢:O

48

(3.8)

If K mod p = 0 for some Key. then i +K is in the same S.,. as i so by

Theorem 3.2 the the matrix is not p-colored. Conversely if for each KEY.

K ¢O. (3.8) holds. then Ci +K)mod p ¢: i mod p for any i. Therefore i and

i +K are not in the same set and by Theorem 3.2 the matrix is p-colored.

We also observe that the condition in FigUre 3,10. given in the previous section

for obtaining O(N /p) length vectors in A. is satisfied by any continuous color

ordering. This is easily seen when we observe that every unknown that is colored

'" (i.e. is in set S.,.) has neighboring unknowns that are determined by the set Y as

(T+K-1) modp + 1 so that all the unknowns for a particular K that are coupled to

the Wi in set S.,. are in some SIr • K ¢: T. Furthermore the sets S.,. are formed

with the same sequencing of the unknowns 'within each set so the consecutive

..

49

correspondence of coupled unknowns for each I(is also ~atisfied.

For many problems. applying the constraint (3.8) makes the minimum p

necessary to achieve a multi-color ordering immediately obvious. For more

complicated stencils. and especially for 3 dimensional problems. an easy and effective

strategy to follow is to estimate a value for p and then apply (3.8) until a conflict

is noted. If a conflict occurs one can increase p and repeat the procedure. In our

experience the minimum pis. found quickly after a few trials.

3A. Multi-Coloring Examples from the Mixed Derivative Problem

We next give examples from the mixed derivative problem to illustrate how to

apply Theorem 3.3 to obtain a p-color matrix. We will discuss several strategies to.

use when the given dimensions of the grid do not fit the constraints given in (3.8)

of Theorem 3.3.

If we color the grid using p colors and the continuous coloring rule. the

constraints (3.8) of Theorem 3.3 are as shown in Figure 3.4. Note that for

symmetric matrices I(E Y implies that -I(E Y so that we need only consider positive

I('s to obtain a complete set of constraints. The 3 constraintS on r in Figure 3.4

require that p > 3 since for any integer q. one of the integers q. q+1. or q+2 is

always divisible by 3. If we chose p = 4 we have r ¢ 4q + 1 • r ¢ 4q • and

r ¢ 4q + 3 so by Theorem 3.3 a continuous 4-coloring exists for· the mixed

derivative problem if and only if r = 4q +2. Figure 3.16 is a 4-color matrix for

the mixed derivative problem for a 6 X 7 grid. Note that within each block of the

matrix. diagonals corresponding to each I(in the grid stencil have the same offsets

and thus can be stored contiguously as one vector. If we color the grid in the

same fashion with r = 4i +3 the resulting matrix shown in Figure 3.17 is not a p

color matrix. Note that the number of unknowns is the same for Figures 3.16 and

3.17 but the ordering in Figure 3.17 does not satisfy the constraints (3.8). The

"c "EA .roN ~;BB C Y EA , N
C E , N Z B

C Y EA , N ZW B
C Y EA , N ZW B

C E , N Z B
C Y EA ,

, Nl'i ZW ·B
C Y EA ZW B

cc yEE
,

Z Z_" ,
I"W• "c .. AA "N

ZW B C Y EA S N
ZW B C y' EA , N

W .c Y A S N
ZW B C Y EA S N

ZW •. C Y EA S N
W C Y A S
ZW.! c y EA S

ZWV Cc Y E ,
Y

S "N IZ D. C E
II N ZW • C YyE~A II N ZW 11 C

II N Z B C E , N ZW B C Y EA
I N ZW B C Y EA

II N Z B C E
'S -II ZW • C· Y

ZW C Y

y"EA S "'N ZW
D

•
I" C y A S N W C

Y EA S N ZW • C
Y EA S N ZW • C

Y A 8 N W C
Y EA 8 N ZW • ·C

Y EA I, NN ZW • C
Y

Y ~ !11 8

3 4 1 3 4

1 1 3 4 1 1

3 4 1 2 3 4

1 2 3 4 1 2

Mixed Derivative Problem - 6 X 7 Grid

Continuous 4-Coloring - Satisfies (3.S)

Figure 3.16

N
N

II

EA
E

C
C

50

diagonal blocks in Figure 3.17 are now tridiagonal and thus not suitable for the

multi-color ICCG algorithm we are considering. We will discuss possible uses for

this ordering in chapter 5 as an extension of the basic multi-color ICCG algorithm.

If we increase p to 5 colors. the 7 X 6 grid can be colored by the continuous

coloring rule and the 5-color matrix shown in Figure 3.18 is obtained. The vector

51

''"c''. L
E A ~;NN Y C • 8 E Z A

Y C • II E Z A W N
Y C • II E Z A W N

Y C 8 A W N.
Y C • II E Z A' W N

C • II E Z N
Z It YyCC! . 8 E 'W N

II
IIEE

Z
W" Y ·c Z

I"W N ,'"C".
L

E AA

W N Y C • S E Z A
W N Y C II A

W N Y C B II E Z A
N C • II E Z

W N Y C • S E Z A

WW~1i yyCC~. S E Z A
S 8~E Z A

W" yyC
C

Z
8

AA I"W"N '"c'"
Z A W N Y C • II E

Z N C B 8 E
Z A W N Y C • S E

Z A W N Y C • II E
Z A W N Y C • 8 E

Z A WW~.l'I Y C]I S E
Z It Y C S

W Y C S E

II"Z Z A in "'N C".
II Z Z A W N yyCC D • S E Z A W N

I E Z A W N Y C D
II·E Z A W N Y C D

II A WWNl'I Y C
II E Z A Y C D

II sEE Z C
Z " Y C

2. 3 4 1 2. 3 4

3 4 1 2. 3 4 1

4 1 2. 3 4 1 2.

1 2. 3 4 1 2. 3

Mixed Derivative Problem - 7 X 6 Grid

Continuous 4-COloring - Violates (3.8)

Figure 3.17

lengths are shorter than for 4 colors but for large N the difference is insignificant.

In general. for a given r we can find a p for which the continuous coloring rule

will result in a p-color matrix with the desired long vectors within the individual

blocks.

I" C
C

C

W
ZW

ZW
Z

II ". s
S

II

Y "N
Y

Y
Y

"'EA
E

2

5

3

1

"'EA N "B
~W EA Y N S B

EA Y N II B ZW
C A Y N II W

C EA Y Y Nl'I II B ZW
C EA II D ZW

Cc EE S ZZl' Y S

"c A "N
.JJ

C EA Y N I B
C EA Y N S B

C E N S B
ZW C E~~ Y Y NI'I S B

ZW C S B
ZW\I Cc Y II

Y II

Z "c I"'i "N
B ZW C EA Yy NN B ZW C EA • ZW C EA Y N
8

II]!
W C A Y

Y NI'I ZW C EA
II ZW C E Y

II "B ZW I"C ~iA
N II W C A

N 8 B ZW C EA
N II • ZW C

Y N1I '8 B]! Z C
Z!\I C

Y II C

Y "N II "B IZW I"C
N II B Z C

EA Y N II B ZW C
EA Y N II D ZW

EA Yy Nli II D ZW

J II ~\I Y II

3 4 5 1 2

1 2 3 4 5

4 5 1 2 3

2 3 4 5 1

Mixed Derivative Problem - 7 x 6 Grid

Continuous S-Coloring - Satisfies (3.S)

Figure 3.18

EA
E

C
C

EA
E

C
C

3

1

4

2

52

Another way to satisfy the constraints of Theorem 3.3 is to add additional

. dummy' rows or columns in the grid to meet the restrictions on r (or possibly c

also for 3 dimensional problems). Figure 3.19 illustrates how one dummy column

added to a 4i + 1 grid causes the vectors within blocks to line up. The "0" points

in the grid represent the dummy column and are considered to be the color dictated

I'"C I"EA. "}II ~;BB C Y EA I }II
C E I }II Z B

C Y EA • }II ZW B
C Y EA • N ZW I

C E II }II Z B
C Y EA S }II ZW •

C Y EA II N ZW I
C E S }II Z B

c_C YyEJ S N ZW •
S ZW

I" .. 1'"1 I
ZW • C lYyE~A S N

ZW • C II N
1

ZW • C Y EA • N
ZW • C Y EA • N

1
ZW I] C Y EA • N

ZW C Y EA S N

Z, 1C Y E II

• "If
Ii ".

I'"c 'E

• If ZW • C ~yE~A • If ZW I C • If Z • C E
II N ZW I C Y EA • }II zw • c Y EA • }II Z • C E

I. IfJl Z~WIJI C . Y EA
C • Z Z\1 C

I C

y"'EA I N ZW". C
1

Y EA S }II ZW • C
Y EA I }II ZW • C

1
Y EA I }II ZW •

Y EA I N ZW •
• JI YyE~ ZW B

I ZW

3 4 1 2 3 o

1 2 3 4 1 o

3 4 1 2 3 o

1 2 3 4 1 o

Mixed Derivative Problem - S x 8 Grid

Continuous 4-Coloring - Add Extra Column

Figure 3.19

Y EA.
E

Y

C
C

1
C

C

E

1

53

by the continuous coloring rule. For example. the 0 node in row one is color

number 2 while in row 2 the 0 node is color number 4. The equations ·for each

point are just the identity xJ = 0 and the zero rows consist of a 1 on the main

54

diagonal. Extra storage and useless calculations are required by this scheme so this

. method may not be as appealing as increasing the number of colors to satisfy the

requirements of (3.8).

3.5. Super Long Vectors in p-Color Ml!-trices

We have shown so far how to color the grid associated with the· stencil in

Figure 3.4 so that diagonals within the blocks of the p-color matrix line up into

vectors of length O(N /p). Another consideration in choosing an ordering for the

ICCGC algorithm is the matrix-vector multiplication which is required at each

conjugate gradient iteration. This process is described in Appendix A. . In the

natural ordering of the grid points for the mixed qerivative problem the matrix A

can be stored in· five O(N) length vectors. using symmetry. A matrix-vector

multiply using multiplication by diagonals would require nine vector multiplies and

eight vector adds. For the matrices in Figures 3.12 and 3.16 sixteen 0 (N /p) and

one O(N) le~gth vectors are stored. A matrix-v~ctor multiply now requires 32

O(N/p) and 1 O(N) length vector multiplies and 32 O(N/p) length vector adds.

The total number of operations remains the same as for the natural ordering but the

overhead r~ulting from startup cost~ for the vector operations is nearly quadrupled.

Since some of the vectors in the matrices in Figures 3.12 and 3.16 line up across

blocks. if we store them contiguously we can save some of the vector startups in

the matrix-vector multiplication.

Note that it may be necessary to add some zero storage as in the case of the

Y and Z vectors in blocks 1.3 and 2.4 of Figure 3.12 in order to treat the two

vectors as one in the matrix-multiply. Since the offset of the Y and Z diagonal is

o (~). this number of zeros must be added to the end of the first Y and Z

diagonals and included in the vector mUltiply and add operations associated with the

long Y and Z vectors in the matrix vector multiplication. Since the matrix is

55

symmetric. these long vectors are multiplied and added twice for a total of eight

vector operations and eight associated startup costs. By storing the two Y vectors

contiguously we save four startup costs or. put another way. we save the time it

takes to do 400 adds or multiplies. The extra storage and calculations will become

significant if r 14::::: 100. .This indicates that any savings from lining up vectors

across blocks is marginal for large problems and may even be detrimental for very

large problems. (i.e. ::::: 400 X 400) The main advantage of this strategy will probably

come in three dimensional problems where relatively small numbers of grid points

per row can still lead to very large matrices.

Returning to Figure 3.12. note that some of the vectors do not line up across

blocks and so a natural question we are led to consider is under what conditions

will the vectors lineup across blocks and can we order the grid so that all of the

diagonals in blocks of the multi-color matrix line up with diagonals in appropriate

blocks. We make the following conjecture.

If a class R. problem with connectivity set Y containing J) elements is ordered

by the continuous coloring rule, then the minimum number of diagonals to stOre

the matrix (provided appropriate NIp length diagonals are stored contiguously

and zeros added where neccessary), wiU occur if p divides N evenly.

Furthermore, the minimum number of diagonals necessary to store the matrix

iSJ).

This conjecture is illustrated in Figures 3.16 and 3.20. In Figure 3.20. N = 48

and the blocks in the 4-color matrix are all square. Note that if the diagonals are

stored in correct sequence all of the B vectors in the lower triangular part of A

can be stored as one vector. In like manner. the W. Z. N. and S diagonals below

the main diagonal can be stored contiguously in memory. requiring 8 vectors. Of

course. pointers must also be kept to allow the block structure for the forward and

56

"'c "EA "'N ~;BB C Y EA I 1'1
C E I N Z B

C Y EA • N ZW B
C Y EA I N ZW]I

C E • N Z]I
C Y EA I N ZW B

C Y EA • N ZW B
C E S • NN Z B

cc YyE~ ZW B
S ZW

'"W'" "'c ,A A "'N
ZW • C YyE~A S 1'1

ZW B C S N
W C Y A S N
ZW B C Y EA S N

ZW • C Y EA S N
W C Y A S N
Z~W·,E C Y EA S N

C Y EA S N

'i" Cc
y A S 1'1

Y E S

II 1'1 Z a. I'-C "i
II N ZW B C YyE~A II 1'1 ZW B C

II N Z B C E • N ZW]I C Y EA
II N ZW • C Y EA • N Z B C. E

I • 1'1101 Z~W]lJ C Y EA
C Y EA • Zu C E

I C Y E
Y EA S "'N liw"B C y A S N W C

Y EA II 1'1 ZW B C
Y EA S N ZW B C

Y A II 1'1 W C
Y EA II 1'1 ZW]I C

Y EA S N ZW]I C
Y A II

II NI'I W C
Y Y~~ ZW J C

S ZW" C
Y • C

3 4 1 3 4

1 2 3 4 1 2

3 4 1 3 4.

1 2 3 4 1 2

Mixed Derivative Problem - 6 X 8 Grid

4 Colors- r .. 4i + 2

Figure 3.20

back solves. In Figure 3.16. however. N = 42 and the off diagonal blocks of the

4-color matrix are rectangular. This does not affect the line up of vectors within

blocks but it does change the offsets of diagonals across blocks so that they no

57

longer all line up.

3.6. Examples of ContinuouS Multi-coloring for Multiple Unknowns

In section 3.4 we gave examples of different colorings using a single differential

equation. in which case one equation of the. discretized system is associated with

each grid point. We turn now to the more complicated case where more than one

unknown is to be calculated at each grid point. We consider again the plane stress

problem described in section 3.1. The grid stencil shown in Figure 3 .. 3 can be 3-

colored but since the center point contains two unknowns the matrix in Figure 3.21

is not 3-colored. IT we use diagonal storage of this matrix we will either have to

store many zeros or use expensive gather-scatter type operations to perform the

matrix vector multiplications and forward and back solves in the ICCG algorithm.

Instead we also color the u and v unknowns at each point so that they decouple.

that is. each grid point is associated with two colors. This is illustrated in Figure

3.22 where pairs of colors are associated with single gridpoints.

In Figure 3.22 the v unknowns alternate with the u unknownS in the ordering

sequence. This is the continuous coloring rule for problems with more than one

unknown per grid point. An alternative approach. shown in Figure 3.23. is to

follow (3.1). and order all the u unknowns first and then the v unknowns. For

both orderings vectors within blocks line uj?; however. the number of vectors which

line up across adjacent blocks is not the same. In Figure 3.24 a comparison of

storage requirements is given for the two orderings. Here we assume that wherever

possible vectors that line up across blocks are stored contiguously. The additional

storage noted in Figure 3.24 comes from storing vectors whose offsets within blocks

are O(r/p) as occurs. for example. in storing the N vectors beginning in block row

3 column 1 in Figure 3.22; It is important to note that some of the vectors in

Figure 3.23 do not line up in general. even though they do for the small test case

ICC I~~
CC
CC

ee II ee SI
ee ee

CC ce
ee ee ee

ee ec
ee

ec
. ee :~ g(

WW NN Icc

IS
S8

ww NN
WW NN
ZZWW NN
ZZWW NN

ZZ NN
ZZ NN

ZZWW NN
ZZWW NN

ZZWW NN

H::
EE
EE

IS
8S

II
SI

·ZZWW NN

EEAA
EEAA

EEAA
EEAA

II
II

II
II

II
II

ww NN
WW NN
ZZWW ~~ ZZWW N

ZZ
ZZ

Z~;:; ZZ

~
ZZ

AA
AA
EEAA
EEAA

EE
EE

I I EEA~

I I EEi~ II E
II E
. I I

18

11

22

33

11

NN
EEAA ~: NN EEAA NN

EEAA ZZWW NN
EEAA ZZWW NN

II AA ww NN
II AA WW NN

SI EEAA ZZWW NN
II EEAA ZZWW NN

II EE ZZ NN
SI EE ZZ NN

II EEAA ZZWW NN
II EEAA ZZWW NN

II EEAA ZZWW NN
IS EEAA ZZWW NN

II AA ww
SS tt WW

IS ZZWW
SS EE ZZWW

l~ff
CC AA ee AA

CC SS EEAA ee . S I EEAA ee SII EE
ce IS EE ec 51 EEAA ee SS EEAA

CC II EEAA ee III EEAA ce 1111 AA ce II AA ec II EEAA ee II EEAA
CC II EE
eCce II EE

III ee II
NN l:=:c

NN I" ee
NN ec

ZZWW NN ec
ZZWW NN ee

ZZWW NN ee
ZZWW NN CC

ww NN CC

22

33

1 1

22

WW NN
ZZWW
ZZWW

ZZ
ZZ

33

1 1

22

33

NN
NN

NI'I
I'IN

ZZWW ~~ zzww N
ZZWW
ZZWW~

.. . .
1 1

22

33

1 1

22

33

11

22

ee ee
ee

ee
ee

CC ee ce ee

3-Color Plane Stress Matrix

Figure 3.21

58

NN
NN

EE
EE

ec ce

illustrated. For example. the Z diagonal in block 3.2 lines up with the W diagonal

in block 4.3 but as the number of points on each row increases. the offset of the Z

diagonal increases while the W diagonal is unchanged. In general. the offsets of

A .N .s .and Z diagonals are a function of r while the E and W offsets are

.constants.

. ~

"

"'c "'c ,LEA LEA ~~I'(I'(~~I'(I'(C C S EA I EA'
C C I A I A W I'(W I'(

C C S EA • EA ZW I'(ZW I'(
C C I E • E Z I'(Z I'(

C C • EA • EA ZW I'(ZW I'(
C C • EA ~ I EA ZWW~.I'(ZW I'(

Cc C(• I j: s A W N
I E ZW ZW

"C ,"'C "EA I" EA ~~I'(~;I'(I'(C C • EA I EA ZW I'(
C C • A • A W N W N

C C S EA • EA ZW I'(ZW I'(
C C • E • E Z I'(Z I'(

C C • EA • EA ZW N ZW N
C C I EA • EA ZW N ZW I'(

C(Cc • I ~ S A W N W N
S E ZW ZW

W"'I'(I"W"'N I" C C I"" A I"'''A
ZW N

Z I'(
ZW N

ZW N

~WI'(!O
ZZl'

"W"N
ZW N

Z N
ZW N

ZW N

~WN~
ZZ,"

S"E
S EA

I EA
I A • EA

I E
• I~~

•
s"i • EA • EA • A

I EA • E
II .~~ •

ZW N C C S EA
Z I'(C C S E

ZW N C C • ZW I'(C C I

~WN~ C C
C C

ZZ" Cc C
C

'"W"N "'c I"' C ""A
ZW N C C S

Z· N C C S
ZW N C C

ZW I'(C C

~WN]\ C C
C C

ZZV C
c

C
C

S"E Ii "'I'(i "'I'(C • •

.... i
• •

EA
EA

I A
I EA

• E

EA
EA • • •

•• E~
I

Z

A
EA

E
• II~~

II

12
34

56

12

ZW I'(zw I'(
ZW N ZW I'(

W I'(W N
ZW N ZW N

ZZW~.]\
ZW~

ZZW~.~
ZW"

I'(Ii "I'(I"'
C

ZW I'(
ZW I'(

W I'(
ZW N

ZZW~.!o
ZW"

34

56

II

34

56

1 2

34

56

ZW N
ZW I'(

W I'(
ZW N

ZZW~.N
ZW"

12

34

56

1 2

34

56

12

34

EA
E

S •

C
C

C
C

EA
EA

I
I

S

EA
EA

I
I

S

C
C

C

C
C

C

5 x 6 Grid - 3 x 2 Color Ordering

Plane Stress Matrix: u and v Alternate

Figure 3.22

S EA
I E

I EA • EA
A I A
EA • EA

E • E
I E S E

'''A
S EA

I E
I EA

S EA
A S A
EA S EA

E S E
S E I E

C
C

C
C

C
C

C C
C C

C c

C
C

C
C

C
C

C C
C C

C C

59

For this problem the ordering in Figure 3.22. which follows the continuous

coloring rule. is superior for the matrix vector multiplications required in the

conjugate gradient iterations. For very large N the savings introduced by

eliminating vector startups is overcome by the time added by introducing additional

'''c
C

C
C

C
C

C
C,

I"W"N
ZW N

Z N
ZW l'f

ZW N
~WN~

ZZ"

S"'E
II EA

S EA
S A

I EA
I E
SSE~

S
, ... C

C
C

C
C

C
C

Cc

W"N
ZW N

Z N
ZW N

ZW N
~WNl'i

ZZ"

s"'i • EA • EA • A
I EA

I E

• I~~ II

I"'ZA Il!~N I\,;C '£EA
I EA ZW N C S EA

I A W N C I A
I ZA ZW N C I EA

I E Z l'f C I E
I EA ZW N C I EA

I EA ZWWN.~ C I EA
I II ~ C I A

ZW C I E
I" C ,£AA I"'W"N C

C II EA ZW N C
C I E Z N C

C I EA ZW N C
C I EA ZW N C

C I A ~WN~ C
C S EA C

C(S IE) Z Z\1 C
C

Z "N . I"
C S"'E Z "N

ZW N' C I EA ZW N
ZW N C S EA ZW N

·W N C S A W N
ZW N C I EA ZW N

Z N C S E Z N
ZW)i C S EA ZW N

ZW" Cc S E: ZW\1
S

LEA ~~NN
, ... C

EA
I EA C II EA

I A W N C I A
I EA ZW N C S EA

I E Z N C I E
It EA ZW N C I EA

S EA~ ZWW~.~ C S EA
I I .l C I A

ZW C I E
,"C ,"'AA W"N C

C S EA ZW N C
C I E Z N C

C • EA ZW N C
C II EA ZW N C

C • A ~WN~ C
C I EA C

C
c

I lEI Z Z\1 C
C

'z N , .. c ."'i Z "N
ZW N C I EA ZW N

ZW N C I EA ZW N
W N C II A W N
ZW N C II EA ZW l'f

ZZWN.~ C I E Z N
C IIIE~ ZW)'i

ZW" C
c

ZW\1
S

.. . .
14 25 36 1 4 25

25 36 14 25 36

36 14 25 36 14

14 25 36 1 4 25

5 x 6 Grid - 2 X 3 Color Ordering

Plane Stress Matrix: u's First

Figure 3.23

60

fwNN
W N
ZW N

Z N
ZW l'f

ZW N
W N
ZW

~A
S EA

I E
I EA

S EA
I A

S EA
I E

II E

C
C

C
C

C
C

C
C

C

~NN
W N
ZW N

Z N
ZW N

ZW N
W N
ZW

I'" A A
II EA • E

I EA
I EA

I A
I EA

I E
I E

""c
C

C
C

C
C

C
C

C

calculations in the matrix vector multiplication. This does not occur until the

offsets of vectors which line up is equal to the number of operations which can be

accomplished during a vector startup. ::::100. as discussed for the mixed derivative

problem. We also note that the number of rows must be chosen to ensure square

61

Matrix Storage by Diagonals for Figures 3.20 and 3.21

of Vectors of Length
N 2N 3N 4N 5N

N startut::uftor additional - -- - -- -- TTUZtrix i ply storage p p p p P

fig 3.20 10 3 2 3 1 1 (4)(19)+1 - 77 12!. - 5
p

fig 3.21 12 12 1 (4)(25)+1 - 101 8!. -4
p

Diagonal Storage for Plane Stress Matrices

Figure 3.24

blocks through out A as in the second model problem in order to maximize the

number of vectors which line up across blocks.

3.7. Multl-<:Oloring for Three Dimensional Problems

The real physical problems of interest in large scale scientific computing today

typically are three dimensional. and we now discuss multi-coloring for such

problems. Our model problem is a three dimensional space truss which is made up

of cube-like structures which are assembled arbirtarily in the x.y. and z directions.

(see Figure 3.25). The cube is diagonally braced on each face and made up of bar

elements each of which has three unknowns at each end. the displacements. u.v .and

w in the x.y. and z directions. With each element is associated a 6 by 6 element

matrix shown in Figure 3.25. which is assembled using finite element techniques into

a stiffness matrix. The problem is to solve for the displacements resulting from an

applied force with rigid body motions constrained.

The grid stencil for this problem is three dimensional and using 4 colors with

r = 4i + 1 and c = 4i + 2 will decouple the center point. but since there are three

unknowns at each node. 12 colors are needed to obtain a p-colored matrix. Theorem

3.3 allows us to easily obtain p-color matrices for this three dimensional problem.

z

AEX
L

Z2

x

1 = (X2 - xl)/L
m = (Y2-yJ/L
n = (i2 - Zl)/L

bar element

1m In ":"Z2 -1m -In

1m m2 mn -1m -m 2 -mn
In mn n 2 -In -mn -n2

_Z2 -1m -1m Z2 1m 1m

-m 2 -mn 1m m2 mn
-In -mn -n2 In mn n 2

bar element matrix

,. ,

I
I

I
I ,
I" __ ...

I" ... -
~ "'"

building block

,. ,.

3-D structure

Space Truss Model Problem

Figure 3.25

62

We color the three dimensional grid using both the continuous coloring rule and the

natural ordering with (3.1) to assign the p colors. The two different orderings are

illustrated in Figure 3.26. In a) we have used the continuous coloring rule: note'

that the last unknown in the bottom plane is color 6 and so the next plane begins

with color 7. If different dimensions are required than those given above for r and

c. the techniques discussed earlier. such as increasing the number of colors or adding

63

1O,1l,12 1,2,3 4,S,6 7,8,9 lo,u,u 4,8,12 1,5,9 2,6,l.0 3,7,11 4,8.1l

7,8,9· 1O,1l,12 1,2,3 4,5,6 7,8,9 3,7,11 4,8.1l 1,S,9 2,6,10 3,7,11

4,5,6 7,8,9 lo,u,u 1,2,3 4,5,6 2,6,l.0 3,7,11 4,8,1l 1,S,9 2,6,l.0

1,2,3 4,S,6 7,s,9 lo,u;u 1,2,3 1,S,9 2,6,l.0 3,7,11 4,8.1l 1,S,9

lo,u,u 1,2,3 4,5,6 7,s,9 lo,u,u 4,8,1l 1,S,9 2,6,l.0 3,7,11 4,8.1l

7,s,9 1O,1l,12 1,2,3 4,5,6 7,s,9 3,7,11 4,8.1l 1,S,9 2,6,l.0 3,7,11

next plane next plane

4,5,6 7,s,9 lo,u,u 11,2,3 4,5,6 2,6,10 3,7,11 4,8.1l 1,S,9 2,6,l.0

1,2,3 4,S,6 7,s,9 10,11,12 1,2,3 1,5,9 2,6,l.0 3,7,11 4,8,1l 1,5,9

lo,u,u 1,2,3 4,5,6 7,8,9 lo,u,u 4,8,12 1,5,9 2,6,l.0 3,7,11 4,8.1l

7,s,9 1O,1l,12 1,2,3 4,5,6 7,s,9 3,7,11 4,8.1l 1,S,9 2,6,l.O 3,7,11

4,S,6 7,s,9 lo,u,u 1,2,3 4,S,6 2,6,10 3,7,11 4,8.1l 1,S,9 2,6,l.0

1,2,3 4,S,6 7,8,9 10,11,ll 1,2,3 1,5,9 2,6,l.0 3,7,11 4,8,1l 1,S,9

bottom plane bottom plane

a) Truss Matrix #1 b) Truss Matrix #1

Grid Colorings for 3-D Space Truss.

Figure 3.26

'dummy rows', can be used. In Figure 3.26b we have used (3.1) and ordered all u

unknowns first, followed by the v's and then the w's. We still color the u

unknowns continuously throughout the grid, as well as the v and w unknowns.

For ~he space truss problem the element matrices themselves are often sparse and so

the non-zero structure indicated by the grid stencil is not representative of the

actual structure of the assembled matrix. Figure 3,27 shows the matrix structure

for the ordering (3.2) if the element matrices are full but Figure 3.28 shows the

actual non-zero structure for a 5 X 6 X 2 node model oriented along the x.y and z

"

u. v. and w Alternating (3.2) - 3 X 4 Coloring

Truss Matrix #1 According to Grid Stencil

Figure 3.27

64

axes. Figures 3.29 and 3.30 show the same results for the ordering (3.1). This

ordering. while not as good for the plane stress problem. appears better for the space

truss problem. We see that the grid stencil for a problem does not always predict

the actual non-zero structure. However. it can serve to bound the amount of storage

needed for the diagonal storage scheme.

~ c" , " ,
" , ,

,~ '"'
~ ~

..... ~, , .. ~ .. ~

" l" " I~' "
..... , '''' ~ , l'

~ ~

" .. ~ ... ~. -,
..... ,

l"
.....

I, '
, , ,

" r, I, ~,
.~ ,

I" I',
, I", , , , ,

..... :~
, .. ~ , ,

~'IIi: iii: , ""~ ,
~,

" "' (, " , ~ .. ~ . " , ~ .. ~
"'

, , ., ,
" I" _"'-

,
'" " I, :a...

~ 1--..

I" I',
,., i' ,., ,., ,' .. " ,~ . ,~ " , ,

~.oi

~ ~ "
,
~, l" "' I~' . ,~ .. ,~ , , ~ • Ai

"' " ~ I", 1'-
I"

,.~ --,
. . ., iA, .. ,

I' I' '. ,
..... ~~ ~~ ~~ .. ~~ I',

'" l"
" ,~

, ..
.... ~~

,...
.... ,' , .. , ~ ., ~~ ~ '"' "' f' l" I',

, .. , .. 1,-, ., ~" ~~ -,
'''! .~~ ,

r-.., "' "' I', I', l" I, , ~

'. , .~
' ..

u. v. and w Alternating (3.2) - 3 X 4 Coloring

Assembled Truss Matrix #1

Figure 3.28

65

There remains the problem of assembling the stiffness matrix for the plane

stress and the space truss problems. We present in Appendix B a row by row

assembly. process that forms the stiffness matrix with storage by diagonals. and with

the appropriate data structures to access the diagonals. For the three dimensional

coloring problem. obtaining 0 eN /p) vector lengths will require that the number of

66

u. v. w Consecutively (3.1) - 4 X 3 Coloring

Truss Matrix #2 according to Grid Stencil

Figure 3.29

. grid points on a row be some multiple of the number of colors divided by the

number of unknowns per grid point plus a constant (4£ + j. 1 ~j ~3 for the truss

problem) and that the number of rows in a plane also be chosen so that the

coloring pattern can continue onto the next plane without going out of sequence.

~.: .'

f

I.

67

" '"
.... , " "

..... ~
,~

... ,~, "'~ '" .. ~ .. ~ ,
l" I"" "''' I', -""-":. , ,

,:~ , , ~ '. .. "':
~ ... I", L" I~" ~ ... I'~ I", -.,.,

..:..~
.. ,

..:..~
.. ' .. , , ,

.... '~ ... ~ I~, l, ... ~ :, '~ I~,
,~

~ .. ~ ..
{II "'" {II ... , -,

"
.... ,

" l~'
.... ,

" "
,

..... ~ ...
~ .. ~ ., l,

I', ", " ~ l~' " " ~, , -, ~ , ~,
~

~ I', ~ ... " r" l~' "' ~. ,~ ..:..~ , ,
l' ... ~ I, .~, ... ~ '" K " ~, ~ .. ~ ..

~" ~"
.,

......
.... , -,

~
....

1'....' r--.. ' ,~ " , ~, l' "'\. , -, " ;..... " ~
, ,

.... .,. , , l, l' ~

'.

.. , ~, " ~, "' ~ " ~
.. ,

.. , ,
'" ., , '. l'

~~~ I~, " :'\., "Iii"~ 

i'..' ~. " ~ ... , , -, , , 
u. v. w ConSecutively (3.1) - 4 X 3 Coloring· 

Assembled Truss Matrix #2 

Figure 3.30 

3.8. Summary 

In this chapter we have discussed multi-coloring techniques used· to vectorize 

the ICCG method. We first defined a class of problems for which the multi-coloring 

techniques apply. Then we discussed the natural ordering. proving in Theorem 3.1 

that the matrices corresponding to natural orderings minimize the storage of the 



68 

matrix by diagonals and allow long vector operations for the matrix-vector 

multiplication operation. However to vectorize ICCG we desired p-color matrices 

and sought to extend the results of Theorem 3.1 to multi-color orderings. We gave 

necessary and sufficient conditions that determine if the matrix corresponding to a 

p-color ordering is a p-color matrix in Theorem 3.2. and also gave conditions which 

must be satisfied to minimize diagonal storage for general p-color matrices. 

We saw that Theorem 3.2 did not address the important question of how one 

obtains suitable multi-color orderings given a domain and a grid stencil and so we 

described a procedure that is easily applied to 2 or 3 dimensional problems which 

we called the continuous coloring rule. In Theorem 3.3 we gave necessary and 

sufficient conditions to obtain p-color matrices using the continuous coloring rule in 

terms of a constraint which is easily tested given a connectivity set associated with 

the given problem. We concluded by discussing examples from the model problems 

showing how to apply Theorem 3.3 to each problem and by discussing 'super'-length 

vectors obtained by lining up vectors across adjacent blocks of p-color matrices 

whenever possible. We saw that if N divides p evenly the maximum lineup of 

vectors occured but that the savings in execution time is minimal. 



CHAPTER 4 

A Performance Model and Numerical Results 

In this chapter we present a model which is used . to predict performance of 

both the standard multi-color ICCG. ICCGC. and the Eisenstat-like implementation. 

ICCGE. We compare the performance of these multi-color methods to several other 

methods including conjugate gradient. CG. without preconditioning. conjugate gradient 

with Jacobi preconditioning. JCG. where the matrix is scaled so that the main 

diagonal is the identity. and other ICCG methods such as ICCGN. natural order 

incomplete Cholesky and ICCGD. the diagonal ordered incomplete CholeskY· discussed 

in chapters 2 and 3.. We discuss the performance of the multi-color methods 

applied to the four model problems presented in previous chapters and note the 

effects of multi-color orderings on the convergence rate and execution time compared 

to the natural ordering. Timing results obtained from runs on the CYBER 205 at 

NASA's Langley Research Center are compared with results predicted 'by the 

performance model. Finally. we summarize the performance results and compare the 

effectiveness of the multi-color ICCG methods to other ICCG methods used on vector 

computers. 

4.1. A Performance Model 

In this section we first discuss a general performance model which is used to 

compare two different ICCG methods or to compare an ICCG method to conjugate 

gradient without preconditioning. We then give formulas that predict run times for 

each model problem. based on the number of iterations for convergence and the 

problem size. Two factors used in comparing ICCG methods are rate of convergence. 

69 



70 

usually ID:easured by the number of·· iterations required to satisfy the given 

convergence criteria. and the amount of time required for the preconditioning step. 

For method i we denote the number of iterations for convergence by I, and the 

execution time per iteration by T,. The total execution time for method i is then 

Ti Ii. To compare method i and method j we define the following terms: 

IiJ =1d IJ. TiJ = TdTJ • and SiJ = 1!(I'JT'J)' If method i is a preconditioned 

conjugate gradient method. then I,.cG is a measure of the effectiveness of the 

preconditioning in reducing the iterations. T,.cG is a measure of the increased time 

for each iteration due to preconditioning. and Si~G is a measure of the performance 

of method i compared to· conjugate gradient in terms of total execution time. 

Generally. we expect method i to decrease the number of iterations compared to 

conjugate gradient so I'~G < 1 while the time per iteration for method i will 

increase so that Ti •CG > 1. If the product I,.cG 7i.CG is less than one. an overall 

speedup in total execution time. given by Si,CG' will occur. We can also use the 

factors I. T. and S to compare two different ICCG methods in which case method i 

will be superior to method j if S'J > 1. Clearly the size of T will be greatly 

infiuenced' by the degree of vectorization possible in the preconditioning calculations. 

To describe our model we consider the computations involved for each iteration 

of the ICCG algorithm given in Figure 1.1. These computations can be divided into 

three parts: the matrix vector product in step a). A. the solution of Mrt+1 = ~+1 in 

e) • .M.and the remaining computations in a) through g). C. That is. the third part 

includes three linked triads and two inner products plus the convergence test. The 

convergence test we use calculates the· 2-norm squared of the residual. r. at each 

iteration and so an extra inner product is required except for the conjugate gradient 

method itself. We will refer to the time required for a matrix-vector multiply. A. 

as At. and likewise for .M and C. 



71 

The solution of Mrt+1 = ~+1 requires a forward and back solve and a diagonal 

scaling: as discussed in chapter 2. the amount of computation is the same as for a 

matrix-vector mUltiply. The execution time however may be drastically different. 

The matrix vector multiply is carried out using vector adds and multiplies when the 

matrix is stored by diagonals. For a 2-pipe CYBER 205 using 64 bit arithmetic the 

maximum rate for vector adds and multiplies is :::::: 100 M1lops. The forward and 

back solves in step e) are carried out in the same fashion if multi-color orderings 

are used. as described in chapters 2 and 3. but for the natural ordering the process 

is essentially scalar. 

As a measure of the degree of vectorization of the preconditioner we define 

O! = .Mt / At. the ratio of the time for carrying out the preconditioning to the time 

required for the matrix vector multiply. Note that O! = 1 on a scalar computer 

since the number· of operations for A and .M are the same. If the preconditioning 

step vectorizes as well as the matrix multiply. we will also have O! nearly equal to 

one. For multi-color methods we expect O!:::::: 1 while for the natural ordering 

O! :::::: 10 or higher might be expected. We also define {3 = Ct / At. the ratio of 

execution time per iteration for the linked triads and innerproducts to the time for a 

matrix vector mUltiply. The execution time for one ICCG iteration can now be 

expressed in terms of At as 

T = (1 + O! + (3) At (4.1) 

To compare execution time per iteration for ICCG method to method j. we 

compute 

(4.2) 

Finally. to compare the total execution time for convergence of method with 

method j we have 



72 

(4.3) 

Equation (4.3) serves to define the relationship between rate of convergence and 

computation time. For example. l~t us assume that At »C, in the conjugate 

gradient iteration so that {3 may be neglected. and let us compare ICCGN with 

ICCGC. If ot1CCGN = 10 and ot1CCGC = 1. we have 

l 1ccGC 2 
S1CCGN ;ecGC = I X -11 

1COON 

In other words. the natural order method must take 5.5 times fewer iterations than 

the· multi-color method in order. to achieve the same execution .time as ICCGC. If 

compared to conjugate gradient. the ICCGN method must reduce the number of 

iterations by a factor of 11 just to 'break even' in terms of execution time while 

for ICCGC the 'break even' point is to reduce the number of iterations by a factor 

of 2. 

We now derive timing formulas which allow us to predict performance of the 

multi-color ICCG methods and to compute estimates for the ratios 7iJ above. In 

developing these formulas all scalar arithmetic is ignored. Vector assignment 

instructions (e.g. a(1:L) = b(1:L) ) are not counted as operations but are included in . . 

the timing formulas. Execution times for vector instructions on the CYBER 205 are 

of the form s + ",/L where s represents the fixed startup cost independent of the 

vector length, "'/ is the incremental cost and L is the length of the vector. A 

summary of the timing assumptions used for vector instructions is given in Figure 

4.1. Using these v~tor timings, we derive timing formulas for the matrix vector 

mUltiply, A. the preconditioning step • .M. and the remaining computations. C. for one 

iteration. The predicted times are in nanoseconds (ns). We also give formulas for 

the number of adds and/or multiplies which we denote as operations in the tables 

that follow. For simplicity. we do not use the lining up of vectors across adjacent 

blocks as discussed in section 3.6 in the formulas that follow. Througho~t the 



73 

Cyber 205 2-Pipe 64 Bit Arithmetic 

vector instruction time (ns) operations 
s + yL 

linked triad 1660 + 10L 2L 

vector add 1020 + 10L L 

vector multiply 1040 + 10L L 

inner product 2320 + 20L 2L -1 

vector assignment 800 + 10L -

Vector Instruction Timings 

Figure 4.1 

tables. the grid size is r X c where r is the number of points in a row and c is 

the number of rows in the rectangular grid. For three dimensional problems. l is 

the number of planes. Figure 4.2 gives the formulas used for counting the number 

. of multiplies and adds· per iteration for CG and ICCGC for the foUr model 

problems. For the standard multi-color method. ICCGC. the operation counts for A 

and the .M step are the same as shown in Figure 4.2. 

Model A • .M (ICCGC) C (triads. inner products) total (ICCGC) 
Problem operations/iter operations/iter operations/iter 

Laplace 9rc-4r -4 12rc -3 21-8r-ll 

Mxdir 17rc -12r-8 12rc -3 46rc -24r -19 

Plane 
Stress 46rc - 24r -16 24rc -3 116rc -48r -35 

Space 75rcl-36rc - 186rcl-72rc -
Truss 36rcl-24 36rc -3 72r-51 

Number of Operations per Iteration 

Figure 4.2 



74 

Model At Ct (triads. inner products) .Mt (ICCGC) 
Problem time/iteration (ns) time/iteration (ns) time/iteration (ns) 

Laplace 90rc -4Or + 17480 90rc +11940 100rc -4Or + 18280 

Mxdir 170rc - 120r + 66880 90rc +11940 180rc -12Or + 67680 

Plane 
Stress 460rc -24Or + 136840 180rc + 11940 480-24Or + 137640 

Space 750rcl - 360rc - 780rcl - 360rc -
Truss . 360r + 297440 270rcl + 11940 360r + 298240 

Predicted ExeCution Time per Iteration 

Figure4.l 

Figure 4.3 gives the timing formulas for the 3 parts we have defined in our 

computational model used for the CG. JCG. and ICCGC methods. The general form 

used to predict the time for each part of the ICCG algorithm is 

time per iteration = startup + 10xnumber of operations 

For each method. the predicted time per iteration. T. is given by 

T = At + Ct + .Mt 

where Mt = 0 for CGand JeG. The startup cost depends on the number and type 

of vector instructions in each part. Note that the constant term in each timing 

formula comes from the vector startup times as well as from any constants in the 

expressions for the number of operations. For example. the code used to implement 

the matrix vector multiply using diagonal storage of A requires an initial vector 

multiply of length N and then for each diagonal stored two vector multiplies and 

adds are executed since each diagonal stored represents a diagonal above and below 

the main diagonal of the symmetric matrix A. The number of diagonals stored for 

the Laplace problem is 4 plus the main diagonal so using the timing information in 

Figure 4.1 the startup overhead is 

1040 + 4x2X(1040+1020) = 17,520ns 

The formula given for the time At in Figure 4.3 includes this startup overhead plus 



75 

ten times the number of operations given in Figure 4.2. The time Mt includes the 

time for a vector assignment statement which is 800+ lOre and is reflected in 

Figure 4.3 since the timing formulas for Mt differ from those given for At by this 

amount. In a similar fashion the formulas for the number of operations and the 

execution time per iteration for C are derived. The three dot products and three 

linked triads require a total of six vector instructions but since linked triad 

instructions accomplish two operations per clock cycle. the number of operations per 

instruction is double that for vector adds and multiplies. Thus the leading term for 

Ct in Figure 4.3 is 90re instead of 12Ore. 

For the Eisenstat implementation. ICCGE. there is no explicit matrix-vector 

multiplication. It is carried out by doing a forward and back solve and so for the 

purpose of applying the performance model to this implementation. the operations 

equivalent to a matrix-vector multiply are counted as A. the three linked triads and 

inner products are counted in calculating C and I3ICCGE. and everything else is 

counted as preconditioning. M. and used to calculate OlICCGE. Figure 4.4 gives 

formulas for the number of operations and execution times per iteration for the M 

portion of the ICCGE method. At and Ct are the same as in ICCGC so. that M 

Model ~ (ICCGE) Mt (ICCGE) 
Problem Operations/Iter Time/Iter (ns) 

Laplac 2re-2 30re +2840 .' 

Mxdir llre -6r-4 120re - 60r + 36800 

Plane 
Stress 3S.3re -16r -12 373.3re -16Or + 94420 

Space 
Truss 69rcl - 32re - 32r -164 720rcl - 320re - 320r + 250920 

ICCGE Execution Time per Iteration 

Figure 4.4 



76 

represents the remaining calculations in the ICCGE method and can be used to 

compare the cost of preconditioning for both methods. Also by arranging the 

calculations in this manner for the model. the term .Mt reflects the additional 

computation for the ICCGE method compared to CG. Since the residual in the 

ICCGE implementation is not the residual in the original variables. the convergence 

test for this implementatiion is not identical to the test used for the other methods. 

Weconipute the 2-norm· of r for the ICCGE implementation and our numerical 

experiments gave nearly identical convergence results as using the 2-norm of r in the 

ICCGC algorithm. For the Laplace problem the ICCGE implementation is represented 

in a different form from the other problems. Recall from chapter two that for 2-

colors the ICCGE implementation requires no preconditioning step if the matrix is 

scaled properly. Therefore. in Figure 2.3 q = r and we use the inner product 

calculated in step f) for the convergence test. The cost for the work at each 

iteration of ICCGE for the Laplace problem in addition to A and C is given in 

Figure 4.4. It includes one vector assignment and two vector adds which are not 

part of the standard CO implementation and so are counted as part of .M in the 

performance model.. Though not shown. the C terms for the ICCGE method for the 

Laplace problem contain only two dot products. 

Using the formulas in Figures 4.3 and 4.4. we can estimate the parameters 

ex = .Mt / At and {3 = Ct / At used in equations (4.2) and (4.3). Then. given the 

number of iterations for convergence for two methods to be compared. we can 

compute the ratio S'J which predicts that method i is faster than method j if S is 

greater than one. For large problems the dominant term in each formula in Figure 

4.3 is the leading term so we estimate the parameters using only the coefficients of 

the TC terms. In the next section we will compare these estimates with values based 

on actual run times. Figure 4.5 lists the parameters calculated from the formulas 

in Figures 4.3 and 4.4. We note that as the problems increase in complexity from 



Model 
Problem Algorithm ex f3 T fAt TLCG 

CO 0 1.0 2.0 1.0 

Laplace 
ICCOC 1.11 1.0 3.11 1.56 

ICCOE .33 .78 2.11 1.06 

CO 0 .53 1.53 1.0 

Mxdir 
ICCOC 1.06 .53 2.59 1.69 

ICCOE .71 .53 2.24 1.46 

Plane 
CO 0 .39 1.39 1.0 

Stress 
ICCOC 1.04 .39 2.43 1.75 

ICCOE .812 .39 2.20 1.58 

Space 
CO 0 .36 1.36 1.0 

Truss 
ICCOC 1.04 .36 2.40 1.76 

ICCOE .96 .36 2.32 1.70 

ex = .Mt fAt = ratio of preconditioning to matrix mUltiply time 
f3 = Ct fAt = ratio of basic CO computations to matrix multiply time 
T fAt = total time per iteration in terms of matrix mUltiply time 
Ti CG . = ratio of method i time to CO time 

Performance Model Calculations 

Figure 4.5 

77 

the simple five diagonal matrix for the Laplace problem to the 145 diagonal matrix 

for the Space Truss. f3 decreases. This is expected since the time for the matrix 

vector mUltiply and preconditioning step increasingly dominates. The important 

effect of this change is seen in the increase of Ti •CG • which is the ratio of execution 

time per iteration for method i to the execution time per iteration for CO. Using 

(4.1) we have 



_ (l+a+{3) 
Ti •CG - U+M 

78 

If (3»a. then T,.cG :::::: 1 while if a»{3. then T,.cG :::::: 1/(1+01). For a fixed a. the 

cost of preconditioning is greater when {3 is small compared to a and the value of T 

will increase as {3 decreases relative to a. The larger Ti •CG the greater is the 

requirement that the preconditioned method i reduce the number of iterations in 

order to achieve a reasonable speedup. Another effect noted from Figure 4.5 is that 

the ICCGE method is the best performer in terms of execution time but less so as 

the problem complexity increases. This is because the number of colors used for the 

Model 
Problem Algorithm Total Number of Operations 

CG.JCG (211)rc -(41)r -71-1 

Laplace 
ICCGC (301)rc -(8I)r -111-1 

ICCGE (211 +4)rc -(41 +2)r -61-3 

CG.JCG (291)rc -(121)r -111-1 

. Mxdir 
ICCGC (461)rc -(241)r -191-1 

ICCGE (401 +8)rc -(181 +6)r -151-5 

Plane 
CG.JCG (70I)rc - (24I)r -191 -1 

Stress 
ICCGC (116I)rc -(481)r -351-1 

ICCGE (105.3 + 22)rc -(401 + 12)r -311-9 

Space 
CG.JCG (1021)rcl-(36I)rc -(361)r -271-1 

Truss 
ICCGC (1771)rcl-(721)rc -(72I)r -511-1 

\ 

ICCGE (1711 +36)rcl-(681 + 18)rc -(681 + 18)r -431-11 

Total OperatiolU for I Iterations 

:Figure 4.6 



79 

four problems is increasing so that the savings realized by the Kt multiplication 

described in chapter 2 is diminished. 

Finally. Figures 4.6 and 4.7 give formulas for total operation counts and for 

predicting total execution time for each problem in terms of the problem size (r. e. 

l) and the number of iterations. I. These formulas are obtained by combining the 

appropriate terms in Figures 4.2. 4.3 and 4.4 and adding appropriate terms for 

initialization before the first iteration. We have factored each formula into terms 

that depend on the problem size. The general formula used for all of the methods 

Model 
Problem Al~orithm Predicted Run Time (ns) 

CG;CG (1801 + 30)re - (40I)r + 294201 + 2260 

Laplace 
ICCGC (2801 +30)re -(80I)r +477001 +2260 

ICCGE (1901 + 70)re -(401 +20)r +299401 + 10480 

CG.JCG (2601 + 30)re - (1201)r + 788201 + 2260 

ICCGC - (4401 + 30)re - (240I)r + 1465001 + 2260 
Mxdir 

ICCGE (3801 + 110)re - (1801 + 60)r + 1156201 + 18740 

Plane" 
CG.JCG (6401 +60)re -(240I)r + 148780+2260 

Stress 
ICCGC (11201 +60)re -(4801)r +"2864201 +2260 

ICCGE (1013.31 + 250)re -(4001 + 120)r +2432001 + 35140 

Space 
CG.JCG (10201 +90)rel-(3601)re -(360I)r +3085801 +2260 

Truss 
ICCGC (18001 +90)rel-(720I)re -(720I)r +6076201 +2260 

ICCGE (17201 +390)rcl-(680I)rc -(680I)r + 560300I + 125540 

Predicted Run Times for 1 Iterations 

Figure 4.7 



80 

is 

total time = startup time + iterations X (At + Ct +.Mt ) 

These predicted times will be compared with actual run times on the CYBER 205 in 

the next section . 

. 4.2. Multi-color ICCG Performance 

We now turn to actual performance results for multi-color· ICCG algorithms for 

the four model problems. Results are given for . the. standard multi-color 

implementation. ICCGC. as well as for the ICCGE implementation. Performance 

results are also given for the conjugate gradient methods. CG and JCG. so that 

speedups can be calculated for the ICCGC and ICCGE algorithms. Timing resul~ are 

compared with the predicted run times given in Figure 4.7 and the quantity ii,CG 

from Figure 4.5 is used with the actual iteration counts to predict the reduction in 

run ~ime. 

Results from CYBER 205 runs are given in Figure .4.8 for the four model 

problems. For each problem the problem size is given in terms of the grid size and 

number of unknowns. For example. the Laplace results given are for a 97 by 97 

grid or 9409 unknowns. For the plane stress problem there are two unknowns at 

each grid point so for an 80 by 81 grid there are 80x 81 x2 = 12960 unknowns. 

Likewise. the three dimensional grid is given for the space truss problem where there 

are three unknowns at each grid point. The four problems require 2.4.6. and 12 

colors. respectively. to achieve a p-color matrix as described in chapter 3 following 

the continuous coloring rule. The predicted times from the performance model of 

the previous section are given in Figure 4.8 in parentheses after the actual measured 

runtimes. 

For large problems. a good estimate of the maximum computation rates in 

Mflops (106 operations per second) is given by dividing the leading terms in Figure 



81 

Model 
Problem AI~orithm Iterations Time (sec) Operations Mflops 

Laplace 
CG 266 .495 (.486) 55.747.215 113 

JCG 259 .482 (.473) 54.280.183 107 

99x130 
ICCGC 130 .376 (.369) 38.891.709 103 

9999 ICCGE 131 .256 (.253) 27.494.382 107 

Mxdir 
CG 230 .700 (.688) 74.649.029 107 

JCG 230 .700 (.688) 74.649.029 107 

106 X 106 
ICCGC 87 .453 (.441) 44.743.490 99 

11236 ICCGE 88 .394 (.386) 39.470.743 100 

Plane 
CG 794 3.67 (3.40) 358.6i8.833 98 

Stress 
JCG 766 3.54 (3.38) 345.972.325 98 

80x81x2 
ICCGC 298 2.38 (2.24) 222.845.889 94 

12960 ICCGE 298 2.18 (2.02) 202,581.633 93 

Space 
CG 2506 9.83 (9.45) 960.732.737 98 

. Truss 
JCG 1989 7.80 (7.50) 762.528.896 98 

45x46x2x3 
ICCGC 784 5.40 (5.13) 484.283.855 90 

12,420 ICCGE 783 5.18 (4.95) 470.957.828 91 

Experimental Results from 2 Pipeline CYBER 205 

Figure 4.8 

4.2 by the corresponding leading terms in Figure 4.3 and multiplying by 1000. For 

the Laplace problem the estimated maximum rates for A. C. and M are 100 Mflops. 

133 Mfiops and 90 Mllops respectively. Using Figures 4.6 and 4.7. the predicted 

maximum computation rate for the Laplace problem is 117 Mflops. The predicted 

times in Figure 4.8 are uniformly less than the actual run times. as are the Mfiop 



82 

rates computed from the data in Figure 4.8. This is expected since all scalar 

arithmetic 'and overhead from subroutine calls. etc. is ignored. Since the largest 

amount of. computation for each method consists of vector adds and multiplies. we 

expect that computation rates of approximately 100 Mflops would be achieved if the 

method vectorizes well. The computation rates given· in Figure 4.8 show that the 

multi-color ICCG methods do achieve this degree of vectorization. Some rates over 

100 Mflops are given for the Laplace problem and for the mixed derivative problem •. 

reflecting the effect of the linked triad instructions in the conjugate gradient 

iterations. 

Figure 4.9 shows how accurately the performance model described in the 

previous section can predict the actual speedup in run times when the iteration 

Model predicted predicted actual 
Problem Algorithm 1· co T, co S,r.n S'.cG 

Laplace 
ICCGC .49 1.65 1.31 1.31 

ICCGE .49 1.06· 1.93 1.93 

Mxdir 
ICCGC .395 1.69 1.50 1.55 

ICCGE .395 1.46 1.73 1.78 

Plane 
ICCGC .375 1.75 1.53 1.54 

Stress ICCGE .375 1.58 1.68 1.68 

Space 
ICCGC .313 1.76 1.81 1.82 

Truss ICCGE .312 1.69 1.88 1.89 

Ii co = ratio of iterations for method i to CG 
T;,co = ratio of· predicted time per iteration for method i to CG 
Sj,CG·= Speedup in terms of execution time for method i compared to CG 

Comparison of Results to. Model Predictions 

Figure 4.9 



83 

counts are given for the two methods being compared. From Figure 4.8 we compute 

1/1;G and using the estimate Ti,cG from Figure 4.5. the predicted speedup for method 

i is given by SI,CG' Using the runtimes given in Figure 4.8. we calculate the 

actual speedup for method i given in the last column of Figure 4.9. 

4.3. Comparison to Natural Order ICCG Algorithms 

In this section we attempt to compare the performance of multi-color ICCG to 

other ICCG methods which have been used on vector computers. A major concern 

with using multi-color orderings is the effect on the rate of convergence of the ICCG 

algorithm .. We will address this concern by summarizing published results for 

convergence of ICCG methods based on the natural ordering. ICCGN. and by 

presenting our results for ICCGN for three of the four model problems. We also 

model an ICCG algorithm based on a diagonal ordering of the unknowns. ICCGD. for 

the Laplace problem and predict its performance on the CYBER 205. 

Several problems are encountered in comparing our results with published 

results. Although Laplace's equation is the standard model used to test the various 

algorithms. the problems chosen are not always identical. Convergence criteria are 

not the same for each problem and sometimes are not even given. Finally. the 

ICCG method is not always compared to conjugate gradient so that it is impossible 

to tell how much the given method reduces the execution time for the particular 

problem. 

A comparison of the number of iterations for convergence for several 

preconditioned conjugate gradient algorithms is given by Jackson and Robinson [1981] 

including the standard no-fill ICCG method. partial fill ICCG methods and MICCG 

methods using the column sum constraint in calculating the incomplete factors. No 

vector computer timings are given but the iteration counts are useful in comparing 

convergence rates of the various ICCG methods. Their results indicate lower 



84 

iteration counts for partial fill ICCG methods compared to standard ICCG and even 

better results for the MICCG methods. For a Laplace problem with 30 X 30 = 900 

unknowns the iteration counts ranged from 28 for standard ICCG to 10 for a block 

MICCG method which is based on the block tridiagonal structu~e of the Laplace 

matrix and uses the column sum constraint in approximating the inverse of the r Xr 

diagonal blocks by diagonal matrices. All of the methods they present are based on 

the natural ordering and do not vectorize well with the exception of the block 

incomplete method mentioned above which would vectorize with 0 (r) length vectors. 

Schrieber and' Tang [1982] give a few convergence results for the multi-color 

ICCG method for Laplace's equation using the red-black ordering and a 4-color 

ordering. For a problem with 2500 unknowns the standard ICCG method based on 

the natural ordering required 15 iterations to converge. The red-black ordering 

required 34 iterations and the 4-color ordering required 29 iterations. Their results 

suggest that the multi-color ICCG methods may require more iterations fOf 

,convergence but the increase was not substantial. 

Figure 4.10 summarizes some other published timing results for Laplace's 

equation on the CRAY-1 and CYBER 205 for various ICCG methods. We describe 

some, details of the algorithms and results below. 

Two vectorized versio~ of ICCG based on the natural ordering are discussed in 

van der Vorst [1985] and results are given from runs on both the CYBER 205 and 

CRAY compu~ers.The natural ordered matrix for Laplace'~ equation on a r Xr grid 

is treated as block tridiagonal. A straight' forward vectorization of ICCG(O) is 

carried out with vector lengths that are 0 (r) ,using special optimized scalar 

arithmetic software for the recursive equations necessary to solve lower and upper 

bidiagonal r Xr systems as part of the forward and back solves. Estimates are 

given for execution times of both the matrix vector multiply and the preconditioniIig 

step, in terms of the number of unknowns, N = r2, as 90N ns and 520N ns, 



85 

ICCG Preconditioning Methods for Laplace's Equation 

Author Iterations TiminJ! 

van der Vorst [1985] N =3541 ICCG (0) seconds 
ICCG(O) - 101 CRAY-l .392 

VICCG(O) - 104 CRAY X-MP .219 2.98 
CYBER 205 .512 11.87 

N=22500 V ICCG (0) seconds 
ICCG(O) - 246 CRAY-l .269 

VICCG(O) - 264 CRA Y X-MP .148 2.22 
CYBER 205 .218 3.71 

Kightley & N=2744 CRAY-l times (sec) 
Jones [1985] JCG - 32 .049 

ICCG - 17 .105 
VICCG - 17 .090 
LICCG - 23 .064 

N=15625 
JCG - 112 .94 
ICCG - 37 1.14 

VICCG - 37 .086 
LICCG - 98 1.34 

Meurant [1985] N=2500 CRAY-l 
ICCG(O) - 35 ICCG(O) 29 mfiops 
INV3(1) - 16 INV3(1) 31 mfiops 

Lichnewsky [1983] N=2500 CRAY-l 
VECGIC-2D - 34 29 mflops 

Laplace's Equation Results 

Figure 4.10 

respectively. for a 2-pipe CYBER 205. Note that this result agrees with the leading 

term in the timing formulas for At for Laplace's equation given in Figure 4.3. In 

terms of the model presented in section 4.1. the ratio of execution time for the 

preconditioning step to the execution time for the matrix vector multiply. at. is 5.8. 

considerably higher than for any of the multi-color methods. Based on the model 

we also estimate the ratio of the total time per iteration for ICCGN to the total 

time per iteration for CG. T. as approximately 3.9. Since the ICCGE algorithm for 



86 

the Laplace problem has the same cost as CG, this ICCGN method will be slower 

than ICCGE on the CYBER 205 unless it converges more than 3.7 times as fast as 

ICCGE. 

A modified ICCGN algorithm, VICCGCO), is also given by van der Vorst based 

on a truncated Neumann expansion of r Xr unit lower bidiagonal matrices and 

requires only 120Nns so that 0: would be only 1.33. In this case T would be 

approximately 1.6 for large problems. All of the methods presented by van der 

Vorst are carried out using vector lengths that are OCr) and so the parameter 0: is 

likely to be considerably higher th8;n 1.6 unless a very large grid is used. No. 

comparison to conjugate gradient is made in this paper but the results show that the 

ICCGCO) and VICCGCO) algorithms are nearly identical in terms of iterations for 

convergence and VICCGCO) outperforms ICCGCO) by a factor greater than 2. Note 

that this performance. result is predicted by the ratio of T1•cG computed above. 

Resulis for some three dimensional problems are given by Kightley and Jones 

[1985] for Poisson's equation on the unit cube with 2744 unknowns and for a fluid 

flow problem based on a Poisson-like matrix with mixed boundary conditions 

containing 15625 unknowns. The methods are standard ICCG based on the natural 

ordering, VICCG, as described above, and a 'long vector' truncated. ICCG method, 

LICCG, which uses a Neumann expansion to approximate the incomplete Cholesky 

factors using the sub diagonals of A which are of length OCN) rather than the 

shorter OCr) lengths used by Van der Vorst. These methods are compared to Jacobi 

preconditioned conjugate gradient (i.e. the diagonal scaling of A) and the results 

indicate that JCG was faster than all of the ICCG methods except for the VICCG 

method of Van der Vorst on the flow problem. The LICCG method is the only one 

which has the desired O(N). length vectors for the CYBER 205 but it does not do 

as well as VICCG in terms of· iterations for convergence. For the Poisson problem 

with 2744 unknowns LICCG_ was the fastest ICCG method even though the number 



87 

of iterations is greater. reflecting the greater degr~e of vectorization. These results 

also indicate that many of the ICCG methods are not competitive with simpler 

preconditionings on some problems. 

Vectorized versions of block preconditioners given by Concus. et. al.· [1985] are 

discussed by Meurant [1984] and performance results are given for both the CRA Y 

and CYBER 205. All of the block methods are based on the r xr block tridiagonal 

structure of the natural order matrix for the Laplace problem. They differ in the 

ways used to approximate the inverse of the tridiagonal blocks of the block diagonal 

matrix in the incomplete factorization. As such they all have the limitation of 

OCr) vector lengths and the Mflop rates given for the algorithms reflect this. Again. 

no comparison is made to no preconditioning but the results do show an 

improvement in convergence rates over standard no-fill incomplete Cholesky and the 

. claim is made that for a large class of problems block methods are to be preferred 

over point ones. For a good comparison of these block methods to both conjugate 

gradient without preconditioning and point ICCG methods. see Concus et. a1. [1985] 

Another approach. presented by Lichnewsky[1983]. reorders the unknowns by a 

'subdomain approach'· mainly applicable for multi-processor applications. He suggests 

that the multi-coloring strategy· of Schreiber and Tang could·· be used within the 

subdomains to achieve long vector lengths. He also gives results for a vectorized 

ICCG algorithm based on odd-even ordering by· lines on the entire domain. Again. 

the vector lengths are OCr) and results are only given for the CRAY-l. 

Comparisons to other ICCG methods, including those given by Meurant [1984], show 

similar convergence results. 

4.4. Diagonal Ordered ICCG for Laplace's Equation 

We turn now to an analysis of two ICCG algorithms based on diagonal 

orderings. The diagonal ordering is discussed by van der Vorst [1983] as a method 



88 

to vectorize the natural ordering but. as he' notes. this ordering is difficult to apply 

to a general. problem and requires twice as many vector operations (2r) for a 

problem on an r X r grid as well as expenSive gather and scatter o~erations. The 

advantage of the diagonal ordering is that the recursion in the forward and back 

solves is now vectorized. Moreover. the. convergence rate is the same as for the 

natural ordering since the same computations are performed by the diagonal order_ed 

method as for the natural ordered method. The main disadvantage for vector 

computers like the CYBER 205 is that the average vector length for ~CCGD is r/2 

(for rectangular regions the averag7 vector let:tgth is less than half the smaller 

dimension). Moreover. reordering of the solution vector is necessary at each iteration 

to preserve the vectorization of the matrix-vector multiplication. One solution to 

this problem. however. is to use the Eisenstat implementation disc~ssed previously. 

thereby avoiding the. need for reordering by eliminating the matrix-multiply at each 

step. Van der Vorst claims no savings using the diagonal ordering on the CYBER 

205 but significant savings were realized on the CRAY-l. 

We now compare multi-color ICCG methods to two different implementations of 

ICCG that use diagonal orderings. The diagonal ordering discussed in section 3.3 

occurs after the incomplete factorization and is used to vectorize the forward and 

back solves necessary at each· iteration. The first algorithm. ICCGD. is just the 

standard ICCG(O) method. The matrix-vector multiplication is carried out with the 

matrix A in the natural ordering stored by diagonals. The preconditioning step. 

therefore. must be prec~ded by a vector gather instruction and followed by a vector. 

scatter since the unknowns are ordered by"diagonals for the forward and back 

solves. The second algorithm. ICCGD~. uses the Eisenstat modification to eliminate' 

the need to do matrix-vector multiplies explicitly and. as in the red-black ICCGE 

method used for the Laplace problem. appropriate scaling of A saves additional 

operations. For ICCGDE t~ vector gather-scatter operations need only be carried 



89 

out at the outset and at the end of the computations. 

To derive timing formulas for ICCGD we consider the number of vector 

multiplies and adds for a forward and back solve on a r Xc dimension grid. Figure 

4.11 shows a psuedo code for the preconditioning for ICCGD. The ICCGDE 

algorithm has no preconditioning step but the forward and back solves are carried 

out in the same manner. A vector assignment statement initializes the forward 

solve while the vector multiply used to accomplish the diagonal scaling before the 

backward solve initializes the backward solve. The number of vectors used to store 

the lower triangular matrix L is 2(r +c -2). Since. for each vector. an add and 

multiply are executed. there are 4r + 4c - 8 vector instructions executed for one 

forward solve. The total number of operations for a forward solve is 4rc -2r -2c. 

The total number of operations for the preconditioning is 9rc -4(r +c) and the 

total time including the vector assignment is lOOrc + 8200 (r + c ) -14640. Note that 

set r=r 

forward solve 

for i = 1.r +c-2 
rei) = ret) - wet)* ret) 
rCi) = ret) - wCi)* rei) 

diagonal scaling ( D q = r ) 

backward solve 

for i-r +c -2.1 
reo = r(O - e(O * r(O 
rei) = rei) - n(i) * rei) 

LDLTr=r 

Vectorized Preconditioning for ICCGD, ICCGDE 

Figure 4.11 



90 

although the . number of operations is actually a little less than for the 

preconditioning in the ICCGC routine (see Figures 4.6 and 4.3) the main difference in 

the two timing results is due to the large positive coefficient of the r + c term in 

the ICCGD preconditioning. For rectangular grids the effect is even greater. 

The cost of preconditioning· for ICCGD increases greatly as the grid of 

unknowns' becomes elongated in one dimension. In Figure 4.12 we give a comparis9n 

of the two preconditioners on almost square grids and on very elongated grids. The 

timings given for ICCGn are estimates from timing formulas. No experimental 

results were obtained for this methQd but the timi~g formulas are believed to be 

accurate estimates of the actual run time. The multi-color method is clearly 

superior in execution time in all cases. particularly for the rectangular grids. 

We now compare the standard ICCGD algorithm with the Eisenstat 

implementation • ICCqDE. used earlier for the red-black ordering. We can predict 

overall, performance of these algorithms by applying the model described in section 

4.1. To compute at and (3 for each problem we use the time for a matrix-vector 

multiply for the natural ordering obtained from timing formulas derived as in 

earlier examples. The time for preconditioning for the ICCGn method includes the 

Grid ICCGn - Predicted Times ICCGC - Actual Run Times 

r c o~rations time (sec) mlloP5 operations time (sec) mlloP5 

99 101 89.191 (.0026) 34 89.595 .00101 88 
11 909 86.311 (.0085) 10 89.947 .00102 88 

49 51 22.091 (.00106) 21 22.295 .00027 84 
7 357 21.035 (.00322) 6.5 22.463 .00027 84 

Times per Iteration for Laplace Problem 

, Comparison of ICCGC and ICCGD Preconditioners 

Figure 4.12 



t 

Grid 
ICCGO ICCGOE 

Size at {3 T DCG at l! TJ2E.C(L 

99xl0l 3.46 1.0 2.73 2.90 1.00 1.95 

11 x 909 9.94 1.0 5.97 9.39 1.00 5.19 

49x51 5.10 1.00 3.55 4.54 1.00 2.77 

7x357 14.31 1.00 8.16 13.77 1.00 7.38 

Time per Iteration in Terms of Matrix-Vector Multiply for: 
at - preconditioning (ICCGO). diagonal matrix mUltiply (ICCGOE) 
{3 - remaining CG calculations 
T - ratio of ICCGO or ICCGOE to CG 

"1 

Performance Model for ICCGD and ICCGDE 

Figure 4.13 

91 

overhead of the gather and scatter operations which must be performed at each 

iteration and this is reflected in Figure 4.13 in the larger value of at for ICCGD 

compared to ICCGOE. We can also see the effects ofa change in dimensions of the 

problem on the various parameters. The ICCGOE method does not have an explicit 

matrix-vector multiply and in this case at is a measure of the time for the 

equivalent of a forward and back solve. a vector multiply and a vector assignment 

divided by the time for a matrix-vector. multiply for the natural ordering. Each {3 . 

represents the time per iteration for the usual dot products and three linked triads. 

For the' ICCGO algorithm. (4.1) and (4.2) are used to compute the values for TD ~G 

shown in Figure 4.13. The form used to calculate is 

TDE,CG = (atDE + (3DE )/ ( 1 + (3CG). 

The results of Figure 4.13 suggest that the ICCGO and ICCGOE algorithms may 

actually be slower than CG for many problems since preconditioning does not 

always reduce the number of iterations by a large enough factor. Nevertheless. it is 

important to remember that these performance results only give a comparison of the 

computation rates for these methods and a complete answer to the question of which 



92 

method is better requires knowledge of the convergence rates. Since CG and the 

ICCGE method have almost the same cost on Laplace·s equation (i.e. TE,cG = 1.06). a 

diagonal order based algorithm must reduce iterations by greater than the ratios. T. 

computed in Figure 4.13 in order to be faster than ICCGE. 

We turn finally to the comparison of convergence rates for ICCGC and ICCGE 

compared to ICCGN. Our results confirm the convergence results given by Schrieber 

and Tang [1982] which show some increase in the number of iterations for 

convergence for multi-color methods but not by a great deal. It is possible. 

however. to construct pathological problems where the ICCGN method appears far 

superior to the multi-color method. However. we do not feel that such problems 

are representative of real problems of interest. As an example. we consider the 

Laplace problem on a grid with. spacing between the grid points equal to h in one 

direction and' k in the other direction. Then the main diagonal of A is 

2( h 2 + k 2 )/ hk. the diagonals above and below the main diagonals are -k /h and the 

outer diagonals are -h/k. As the aspect ratio. h/k. is changed the entrieS in the 

matrix change but the condition number of the matrix remains the same. as can be 

shown using a Kronecker product representation of A. The conjugate gradient 

iterations first increase as the aspect ratio is increased but then decrease as the aspect 

ratio continues to increase. The ICCGN algorithm converges more rapidly. however. 

as the aspect ratio increases. For example. on the Laplace problem described in the . 

previous section with N = 97 X 97 = 9409. increasing the aspect ratio to 100 caused 

the number of iterations for ICCGN to drop from 70 to 6 while the ICCGC 

iterations increased to 108. For very high aspect ratios. however. the matrix 

becomes essentially a tridiagonal matrix since two of the off diagonals become very 

large and the 'other two become very small. Incomplete Cholesky decomposition of a 

tridiagonal matrix is exact so we expect that for these matrices the preconditioning 

by incomplete Cholesky would be very effective. 



Model 
Problem CG ICCGC ICCGN ICCGC/ICCGN 

Laplace 266 130 84 1.5 
N =9999 

Mxdir 230 87 45 1.9 
N =11236 

Plane Stress 794 298 223 1.3 
N =12960 

Iterations for ICCGN and ICCGC Convergence 

Figure 4.14 

93 

As a further comparison of ICCGN to ICCGC we programmed point ICCGN for 

the Laplace problem. the mixed derivative problem and the plane stress problem. 

No attempt was made to optimize the CYBER 205 code for maximum scalar speed 

and so the runtimes were extremely slow; Figure 4.14 summarizes only the iteration 

counts for three problems. The sizes for each problem were the same as in Figure 

4.8. Although the ICCGN algorithm does require fewer iterations. the improvement 

is not nearly enough to offset the negative effects of poor vectorization of the· 

preconditioning step. 

Summary 

. The. results presented in this chapter compare multi-color ICCG methods with 

both standard conjugate gradient and other ICCG methods. A performance model 

was given which accurately predicts the results obtained from experiments and can . 

also be used to compare other ICCG methods. For each model problem we saw that 

the ICCGC methods performed at high computation rates on the CYBER 205 and 

achieved modest speedups in execution time compared to conjugate gradient. 



CHAPTER 5 

Conclusions and Future Research Areas 

In this thesis we have examined multi-color orderings applied to the incomplete 

Cholesky conjugate gradient method. We sought to expand earlier results on multi

color orderings for application to a wide class of problems and to see what effect 

multi color orderings had on the rate of convergence of the basic ICCG method as 

compared to the natural order point ICCG method and other vectorized ICCG 

methods. We now summarize our work. draw conclusions about the experimental 

results. and discuss future research in related areas. 

5.1. Summary 

Following a discussion of the basic ICCG method and some commonly used 

modifications for both scalar and vector computers we described the multi-color 

ICCG method. ICCGC. based on reordering of the unknowns to obtain p -color 

matrices. The resulting block incomplete Cholesky method could be implemented with 

sufficiently long vectors so that the preconditioning step. requiring a forward and 

back solve of block lower and upper triangular systems. could be implemented with 

adds and multiplies of vectors of length OeN /p). Chapter 3 defined a class of 

probleins. class R. for which multi-color orderings could be applied. This class 

included two and three dimensional problems on rectangular domains with Dirichelet 

boundary conditions and with possibly more than one unknown per grid point and a 

uniform grid stencil. For the problems in class R we used storage of the matrix by 

diagonals and in Theorem 3.1 we proved that for problems with one unknown per 

grid point. the natural ordering of the grid points resulted in a matrix which could 

94 



95 

be stored in the minimum number of diagonals possible. In Theorem 3.1 we also 

proved that for problems with more than one unknown per grid. point. using the 

natural ordering of the grid points with either a consecutive (3.1)· or alternating 

(3.2) ordering of the unknowns at each grid pOint. the number of diagonals in the 

matrix was the same as the number of non-zero coefficients of the equations 

associated with aU of the unknowns at any interior grid point which had no 

boundary values as grid stencil neighbors. Furthermore. bounds were given for the 

number of diagonals in the matrices using these orderings. 

We then discussed multi-color orderings. defined in terms of p disjoint sets of 

the unknowns in the grid. and in Theorem 3.2 gave neccessary and sufficient 

conditions to ensure that a p-color matrix results from a given p-color ordering of 

the unknowns. We also identified a relationship between the ordering of the 

unknowns within the disjoint sets which would minimize the number of diagonals 

within each block row of the p-color matrix and illustrated the relationship with 

several examples. We presented a method of obtaining p-color orderings. called the 

continuous coloring rule. which is easy to apply to any class R. problem. In Theorem 

3.3 a condition was given which applied to all continuous color. orderings and 

satisfied the necessary and sufficient conditions of Theorem 3.2 to obtain p-color 

matrices .. The condition in Theorem 3.3 placed restrictions on the dimensions of the 

grid and we discussed ways to handle this problem including increasing the number 

of colors and adding extra 'dummy rows'. Increasing the number of colors seemed to 

be the most promising solution to this problem and examples were given of both 

solutions. We noted that the continuous coloring rule also gave matrices which 

contained the minimum number of diagonals within each block row and further 

noted that many of the diagonals lined up with diagonals in adjacent blocks so that 

a further savings could be achieved in the matrix vector mUltiply in the conjugate 

gradient step by storing theSe vectors contiguously. We conjectured that the 



96 

maximum lineup of vectors occurs when p divides N evenly. We saw that for a 

fairly general class of problems p-color orderings could be easily obtained which had 

the desirable long vectors suitable for vector computers such as the CYBER 205. To 

our knowledge such a wide application of p-color orderings has not been given and 

rio other easy to use method like the continuous coloring rule has been applied to 

obtain p-color' matrices. particularity to three dimensional problems like the space 

platform model problem. 

Having developed a method for obtaining p-color matrices. we tested the 

effectiveness of multi-color ICCG on four· model problems. We were interested in 

the degree of vectorization achieved by the ICCGC method but. more importantly. in 

the overall speedup of ICCGC compared to conjugate gradient. CG. We developed a 

performance model in chapter 4 which compared the time for a matrix-vector 

. multiply with the time for the preconditioning step. Since the two computations in 

the basic ICCG method have nearly the same number of operations the comparison 

of execution time of the two parts of the computation was a measure of the degree 

of vectorization of the preconditioning. We saw that ICCGC vectorized very well. 

with the preconditioning step nearly equal to the matrix vector multiplication in 

execution time. However. for the diagonal ordered ICCG method used on Laplace's 

equation we saw that the preconditioning step did not vectorize: nearly as well and 

on rectangular domains where one of the dimensions was much larger than the other 

in term of grid points the degree of vectorization was very poor. We also gave 

formulas to count the arithmetic operations and predict execution time for each of 

the model problems. The performance model predicted the actual speedups achieved 

by ICCGC compared to ICCG within one decimal place accuracy and sometimes even 

better. We .also gave results for the Eisenstat-like modification to the ICCGC 

algorithm showing that it does save execution time but less so as the number of 

colors increases. Finally, we modeled the performance of diagonal ordered ICCG and 



97 

compared the convergence of natural ordered ICCG for three of the model problems. 

noting that the multi-color orderings required a greater number of iterations to 

convergence. However. the increase in iterations for ICCGC compared to the natural 

ordering was small compared to the speedup due to the vectorization achieved by the 

multi-color orderings. 

5.2. Conclusions 

1) Multi-color orderings are an effective means to achieve matrix structures for 

which block methods can be carried out with long vector operations. Because of the 

structure of the p-color matrices the forward and back solves needed to carry out 

the preconditioning can be implemented with the desired long vector lengths. The 

multi-color ICCG methods we implemented ran at near the maximum possible rate 

on the CYBER 205. 

2) The continuous coloring rule provides an easy to use method for obtaining 

p-color matrices even for more complicated three dimensional problems. We gave a 

condition in Theorem 3.3 which could easily be used to determine the number of 

colors necessary to obtain a p-color matrix given a grid stencil and the dimensions 

of the grid. We also noted that for three dimensional problems a simple but 

effective strategy to follow to obtain the nuinber of colors was to chose p and then 

apply (3.8). repeating with the· next larger p if necessary until (3.8) is satisfied. 

3) Our results showed that the ICCGC methods are co·mpetitive with other 

vectorized ICCG methods in terms of overall speedup of execution time compared to 

conjugate gradient. We noted that often published results for vectorized ICCG 

methods do· not include a comparison to conjugate gradient without preconditioning 

and in some cases when such R. comparison is included. conjugate gradient was faster 

in overall execution time. 



98 

4) The performance model we have presented can be used to compare other 

preconditioning methods to ICCGC and CG and represents the proper way to compare 

methods implemented on vector computers by modeling both the degree of 

vectorization and the overall performance in terms of execution time. We were also 

able to note the effect of poorly vectorized preconditioners by measuring the time 

for the preconditioning step in terms of the matrix-vector multiply time. 

5.3. Future Areas of Research 

The speedups achieved by ICCGC are only modest and some method of 

improving the convergence of the method would greatly improve the results. We 

have so far only worked with basic ICCG and an open question is how much the 

ICCG convergence results can be improved by applying some of the modifications of 

the basic method to the multi-color ICCG method. It is a~o possible that multi

color orderings can be used in the context of other block iterative methods to 

improve vectorization of those methods. Some of these methods include allowing 

partial fill or adding column sum constraints. Anothe.r promising modification may 

be to allow fill in the D. blocks in the decomposition and apply the Neumann 

expansion to estimate the D.-I. Still another is to use matrices such as in Figure 

3.17 which are obtained by the contin(;>uus coloring rule but are not p-color matrices 

and apply some of the· commonly used methods for approximating the inverses of 

tridiagorial inverses to approximate the D.-I. 

More research related to the theoretical results we obtained in chapter 3 is also 

needed. The proof (or disproof) of the conjecture remains. as well as further results 

extending the general statement of conditions to achieve the minimum number of 

diagonals within the blocks of the p-color matrix when there is more than one 

. unknown per grid point. More theoretical results are also necessary to compare the 

properties of p-color matrices to their natural ordered counterparts. Research on the 



99 

convergence test used for ICCGC. particularily in the use of the two norm. of r. 
might further reduce the time and overhead spent testing for convergence. 

Finally. application of multi-color orderings to irregular domains is another 

important area of investigation. 

" 



APPENDIX A 

! 

Incomplete Matrix Multiplication by Diagonals 

In this appendix we discuss matrix multiplication by diagonals as applied to 

m'ulti-color ICCG methods. We adapt an. algorithm for matrix multiplication· by 

diagonals given by Madsen et al. [1976] for banded matrices. A general discription 

of the· problem is given first. followed by the actual implementation used in 

.. programs written for the CYBER 205 . 

. Recall that the main computation performed in the block incomplete 

factorization for ICCGC is incomplete matrix-matrix multiplication while matrix

vector multiplication is the main computation in the forvJard and back· solves in 

each iteration as. well as the formation of A p in the CG algorithm. The matrix-

vecto·r mul~iplication is ~he easier of the two operations and Figure A.1a illustrates 

the process. Here. a superdiago.nal multiplies the corresponding first positions of w 

while a subdiagonal multiplies the corresponding last positions of w. These 

(a)Aw=z 

1 
=1 

I 
1 
1 
1 
1 

(b)AB 

Matrix Multiplication by Diagonals 

FigureA.l 

100 



101 

contributions are added to the correct positions of the result vector z. 

The more difficult problem is the incomplete multiplication AB = C where A 

and B are qXq matrices. Each diagonal of the product is of the form 

C" = La1bJ 

where the al and bJ are qiagoIials of A and B and the summation is over all 

products which contribute to the product diagonal Ck. For the incomplete 

multiplication. we do only those calculations for diagonals ck . which are allowed to 

be non-zero. The programming problem is to determine the diagonals of A and B 

which contribute to a diagonal of C. the starting positions and lengths of the 

diagonal operands and the starting position of the result in the product diagonal. 

For example. in Figure A.lb. suppose that C-l. the first subdiagonal of C. is an 

allowed non-zero diagonal. Then a-2bl and a3b-4 contribute to c-l in the 

following way. The q-2 long vector a_2 multiplies the first q-2 positions of the 

q-l long vector· b1 and is stored in C-l beginning in the second position. Then the 

last q-4 elements of the q-3 long vector a3 multiply the q-4 elements of b-4 and 

the product vector is added to the first q-4 positions of C-l. 

We turn now to implementation details of the two processes described above. 

The data str~cture used for the programs to solve the four model problems was as 

follows. The lower triangular part of A is stored by diagonals in a one 

dimensional array. One table of integer pointers contains necessary information for 

each diagonal including the row and column in A where the diagonal begins. the 

length of the diagonal. the starting position of the diagonal in the array. and the 

offset of the diagonal within the block structure of the matrix. That is. the row and 

column information tells where the diagonal is located within the matrix A while 

the offset field tells where the diagonal is located within the particuliar block iIi 

which it is located in the multi-colored matrix. A second table of integers tells 

how many diagonals are located within each block of the multi-colored matrix and 



102 

which diagonal~ are located in each block. 

Matrix-vector multiplication by diagonals is easily implemented if for each 

diagonal of A the row and column in A where each diagonal begins and the length 

of the diagonal is known. Figure A.2 is a portion of the CYBER 200 FORTRAN 

subroutine used to do the matrix-vector multiplication in the conjugate gradient 

iteration. The first vector instruction multiplies the main diagonal of A by the 

input vector. The DO loop goes through the data structure containing the necessary 

integer pointers for each of the ND diagonals in A looking up the row. column. 

length. and· starti~g position for each vector. Each diagonal is Used twice since ihe 

matrix is symmetric. Note that the· row and column information is used directly to 

specify the starting positions in the input and resultant vectors and the t:oles of the 

row and column pointers are exchanged for the second vector instruction in the loop. 

accounting for symmetry of the matrix. Note also that the forward and back 

solves can be carried out in a fashiori very ·similar to the matrix":'vector multiply. 

using the row and column information to determine the starting positions in the 

appropriate vectors. An additional savings is possible in the formation of Ap if 

diagonals which line up across blocks ate stored contiguously and treated as one 

SUBROUTINE ATIMV(VIN.VOUT) 

VOUT(1 :N)-VIN(1 ;N)*A(IOST:N) 

DO 1 I - 1.NO 
. COL - IO(I. 1 ) 
ROW - 10(I.2) 
L - 10(1,3) 
1ST - 10(I.4) 
VOUT(ROW;L)- VOUT(ROW;L) + V·IN(COL:L)*ARRAY(IST:L) 
VOUT(COL:L) - VOUT(COL:L) + VIN(ROW:L).ARRAY(IST:L) 

CONTINUE 

Matrix-Vector MUltiplication· 

'FigureA.2 



103 

vector during the matrix-vector multiplication. Experimental results with the model 
, ' 

problems verified that this savings was most significant for smaller problems while 

for larger problems where vector lengths were long within blocks of the multi-color 

matrix the savings was insignificant. Figure A.3 gives some timing results for the 

plane stress problem comparing the execution time for A p with and without this 

savings for a problem with 840 unknowns and one with 12960 unknowns. Figure 

A.3 shows the time for one matrix-vector multiply as well as one ICCGC iteration. 

For the smaller problem. a savings in execution for ICCGC of approximately eight 

percent is realized while for the. hlrger problem a savings of just over one percent is 

achieved. Note the increase in operations required for the lineup of vectors. 

reflecting the extra zeros stored and used in the calculations. For this problem 

approximately half of the vector instructions can be eliminated by taking advantage 

of the vectors that line up. 

Matrix-Vector Multiply for Plane Stress Problem 

Grid Time Number of Vector Total ICCG 
Coloring (sec) Operations Instructions TimelIteration 

without 
line up .003159 296.144 133 .0080 

80 X 81 

with 
·line up .003105 297.000 69 .0079 
80 X 81 .. 

without 
line up .000393 18.824 133 .001001 

20 X 21 

with 
line up .000308 19.040 69 .000935 

20 X 21 

Matrix Multiplication Comparison 

FigureA.3 



104 

The matrix-matrix multiplication performed in the block incomplete factorization 
I : .. 

requires that blocks of A be treated as separate matrices and so the offset field 

mentioned above is used rather than the row a~d column fields for each diagonal. 

We wish to do computations of the form C =C -DE where the non-zero structure 

of C occurs along a few preselected diagonals and the multiplication DE is only 

carried out for those diagonals of D and E which contribute to the allowed 

structure cif C. To 'describe the implementation of this incomplete matrix-matrix 

multiplication we' use the following notation to describe a diagonal within D.E. or C. 

DJ'J +ot denotes all elements of D w~ich lie on a diagonal within D which isa units 

above (or below if a is negative) the main diagona1. Using this notation. and 

assuming that the matrices are not necessarily square. we can write the following 

expression for one of the vector multiplies contributing to the desired product. 

(A.l) 

It is easy to see that given any diagonill of C with some offset y. and any two 

diagonals of D and E having offsets a and {3. the two diagonals contribute to 

diagonal." of matrix C only if Ot+{3=.". If C is pXq. A is pXs and E is sXq. 

then the follQwing inequalities must be true for all allowable, values of j. 

(a) 1 ~ j ~.p 

(b) l~j+a~s 

(c) l~j+a+{3~p 

From these inequalities we can derive the following relation for j: 

max(1.1-a.l-a-{3) ~ j .~ m~(p.s-Ot.q-a-{3) 

(A.2) 

(A.3) 

Using (A.3) we compute the length of the vector multiply an4 add for each pair of 

diagonals ,of D and E. If we denote the left hand term in (A.3) as jmJn and the 

right hand term as j max. then the length for the vector instructions. l. is 

j max - j min + 1. Determining t~e starting positions for the two vector operands and 

the resultant vector is the more difficult problem. Recall that for each stor~ed 



for each ')' in C 

for each at in D 

for each ~ in E 

if at + ~ = ')' then do 

imln =MAX(O.-at.-ex-p) 

i max = MIN (p. s-at. q -ex-~) 

lth = imax- imln 

Dstart =IDD + irnln-MAX(O.-cx.) 

Estart = IDE + imln-MAX(-cx..-cx.-(3) 

Cnart =IDC + imln-MAX(O.-cx.-P) 

105 

. ARRAY(Cstart :lth) = ARRAY (Cstart :lth)-ARRAY(Dstart :lth)* ARRAY(Estart :lth) 

Matrix - Matrix Multiplication Algorithm. 

FigureAA 

diagonal we know the starting position but for particuliar values of at and ~ the 

starting position for one of the three vectors is shifted. The algorithm shown in 

Figure A.4 is used to determine the starting positions for each of the vectors given 

the starting locations of each vector. IDD. IDE. and IDe. and the offsets for each 

vector. 

We conclude with an example to illustrate the above discussion. Let us 

consider the mixed derivitive model problem on a 6 x 6 grid using four colors 

similiar to the 6 X 8 grid shown in Figure 3.20. Figure A.5 lists the integer 

pointers stored for this problem. The integer array ID(I.6) contains the row. 

column. length. starting location and offset for each of the 16 diagonals in this 

matrix. The fifth field (long) in ID contains a second length for use when one 

wishes to take advantage of diagonals which line up in A. For example. the first 



106 

100.6) Data Structure 

1 column row length start long Q 

1 3 10 7 1 25 2 
2 1 10 9 28 27 0 
3 1 11 8 SS 2S -1 
4 3 19 7 81 16 2 
S 12 19 7 10 0 2 
6 10 19 9 37 0 0 
7 1 20 8 99 17 -1 
8 10 20 8 64 0 -1 
9 12 28 7· 90 0 2 

10 3 28 7 116 7 2 
11 21 28 7 19 0 2 
12 2 28 8 125 8 1 
13 19 28 9 46 0 0 
14 10 29 8 108 0 -1 
15 19 29 7 73 0 -1 
16 1 29 8 134 8 -1 
17 1 1 9 142 36 0 
18 10 10 9 lSI 0 0 
19 19 19 9 160 0 0 
20' 28 28 9 169 0 0 

NT ABLE(1.J .K) Data Structure 

1 J K .. 1. 2 3 4 
1 1 1 17 
2 1 3 1 2 3 
2 2 1 18 
3 1 2 4 7 
3 2 3 5 6 8 
3 3 1 19 
4 1 3 10 12 16 
4 2 2 9 14 
4 3 3 11 13 IS 
4 4 1 20 

Data Structures for Mixed Derivative Problem 

FigureA.5 

vector stored is the B diagorial in Figure 3.20. block 2.1. The second vector in ID 

is the W diagonal in block 2.1 of the matrix in Figure 3.20 anel the third vector in 

ID is the Z diagonal in the same block. Each of these diagonals lines up with 

successive·B. W.· and Z diagonals respectively. Careful inspection of the Starting 

positions in the ID data structure in Figure A.5 reveals that these successive 

diagonals are stored so that they form continuous B. W. and Zvectors. Vectors 

with a zero in column 5 line up with some previous vector. Note that for the 



107 

mixed derivative problem using column 5 for the matrix-vector multiplication. A p. 

requires 4 X 8 = 32 vector instructions while using column 3 requires 4 X 16 = 64 

vector instructions with correspondingly shorter vector lengths. 

To illustrate the use of NTABLE we consider the calculation 

L3:Z = A3:Z - A 3•1 * L~.l which is a portion of the equation describing the calculation 

of L3:Z according to equation (2.4). From NTABLE(3.2.1) we see that L3:Z has 3 

diagonals and the 2nd. 3rd and 4th fields identify the diagonals as numbers 5. 6. 

and 8 in ID. The allowable non-zero structure of the incomplete multiplication 

described above will lie along the offsets O. 2. and -1 given by field 6 in ID. In 

similar fashion we find the diagonals of Au and L~.l to be 4. 7 and 1. 2. and 3. 

The offsets can also be looked up in ID but we must remember that L~.l is above 

the main diagonal and so we take the additive inverse of each offset for vectors 1. 

2. and 3. Finally we take all possible combinations of pairs of offsets from the 

two operand matrices allowing multiplications only where the sum of the pair is 

equal to one of the offsets of the diagonals in A 3,2' For this example diagonal 4 

will be multiplied by diagonals 1 and 2 while diagonal 7 will be multiplied by 2. 

and 3. Unnecessary multiplications are diagonal 4 times diagonal 3 and diagonal 7 

times diagonal 1. A partial fill· strategy. whiCh could be easily implemented. would 

allow fill in blocks of L· below the diagonal blocks by allowing all of the 

multiplications. Of course. one would have to alter ID and NTABLE accordingly. 



APPENDIX B 

Matrix Assembly by Diagonals 

We discuss now a· general procedure used to assemble matrices row by row 

using diagonal storage. This procedure was used to .assemble the matrices for the 

four model problems discussed in this dissertation. We store the lower triangular 

portion of each symmetric matrix. We assume a rectangular grid of unknowns in 

two or three dimensions with possibly more than one unknown at each grid point. 

For a grid with r points per row. c rows. and l planes with k unknowns at each 

point. then there are N = r X c X k equations and A is a symmetric N X N matrix. 

Associated with each unknown is an equation in N variables whose non-zero 

coefficients are described by a grid stencil. The structure of the matrix depends upon 

the grid stencil and the ordering of the grid points. 

To specify. the ordering used. two ordering vectors. ORD(I.1) and ORD(I.2). are 

formed. These N -long vectors are permutations of the integers 1· thru N. To see 

how these· vectors are used we consider an example for. a 4 x 3 grid. The 

unknowns will. be numbered from 1 to N from left to right. bottom to top as in 

the natural ordering. The first ordering vector. ORD(I.1). indicates which unknown 

is associated with row I in the matrix A. The second ordering vector. ORD(I.2). 

tells which row in the reordered matrix is associated with the Ith unknown. 

The information in the two ordering vectors is used as follows. Suppose we 

are assembling row· 7 for the grid in Figure B.1 for the Laplace problem. In the 

3-color ordering used. ORD(7.1) - 8 so the fourth grid point in row 2 of the grid 

is associated with equation 7 in A. To calculate the coefficients for this equation 

we use the 5 point stencil. The north. south and west neighbors are the· 12th. 4th 

108 



109 

11 8 12 
I ORDCI.1) ORD(I.2) 

3-color orderUng 4 
0 0 0 0 1 1 1 

"" natural orderUng 9 10 11 12 2 4 5 
3 7 9 
4 10 2 

3-color orderUng 6 10 3 7 5 2 6 
0 0 0 0 

natural ordering 5 6 7 8 6 5 10 
7 8 3 
8 11 7 

3-color ordering 1 5 9 2 9 3 11 
0 0 0 0 10 6 4 

natural orderUng 1 2 3 4 
11 9 8 
12 12 12 

4x 3 Grid of Unknowns 

Figure B.l 

and 7th grid points respectively. There is no east coefficient for this grid poUnt. To 

calculate where these coefficients are in A. however. we need to know which 

equation is associated with each point. For the west coefficient. ORD(7.2) ... 3. 

meaning a non-zero entry will occur in column 3 of row 7 in A. This coefficient 

will be stored Un the diagonal with offset -4. If this diagonal already has entries 

from previous rows. the new coefficient is added but if there is no diagonal with 

offset -4 a new diagonal is started and appropriate entries are made Un the data 

structure. Likewise. the south coefficient is stored in the diagonal with offset -5. 

However. for the north coefficient the offset of the diagonal in A is 5. This diagonal 

is above the main diagonal Un A and hence is not stored. 

We now summarize the overall procedure. Given the orderUng vectors and a 

grid stencil we proceed through the rows of A. At each row. using the stencil. we 

calculate the offset of each coefficient. If the offset is positive. we do nothing since 

that coefficient is above the main diagonal of A. If an offset is negative. we then 

compute its value and add it to the appropriate diagonal in A or create a new 

diagonal if necessary. Appropriate adjustments are made to the data structure so 



Find location of unknown 
associated with row I 

ORD(I,2) . 

Use grid stencil 
and ORD(I,2) to 

calculate oll'sets for 
each non-zero 

coefficient 

Calculate value 

of coefficient 

Add coefficient to 
appropriate diagonal or 

begin a new diagonal 

Row by Row Matrix Assembly 

Figure B.2 

110 

that when the last row is finished the number of diagonals is known and the 

starting positions, offsets. and lengths for each is stored. Figure B.2 gives a 

flowchart for the row by row assembly process. 

Using this row by row assembly process for each of the model problems. we 

were able to experiment with various multi-color orderings. noting the effect of 

changes in the orderings on the performance of the ICCGC algorithm. As an example. 

.'< 



111 

Ap cost per iteration 

grid time number of vector CG 
coloring (sec) operations instructions time/iteration 

. continuous 
coloring .00316 296.144 133 .00476 
80 X 81 

not 
continuous .00479 448.368 205 .00625 
81 X 80 

Plane Stress Problem WithlWithout Continuous Coloring Rule 

Figure B-3 

for the plane stress problem an 80 X 81 grid with two degrees of freedom per grid 

point can be colored with 6 colors following the continuous coloring rule discussed 

in chapter 3. If the grid is 81 X 80. 6 colors still decouple the equations into a 

6-color matrix but the continuous coloring rule cannot be followed and so more 

diagonals are required to store A. The effect on the storage requirements and 

execution times is summarized in Figure B.3. Both the storage required for A and 

the execution time for a matrix-vector mUltiply are increased by over fifty percent . 

.. 



References 

Adams, L. . [1983a]. "Iterative Algorithms for Large Sparse Linear Systems on 
Parallel Computers,'· Ph.D Dissertation. Department of Applied Mathematics. 
University of Virginia: also published as NASA CR-166027. NASA Langley 
Research Center. 

Adams, L. [1983b]. "An M-Step Preconditioned Conjugate Gradient Method for 
. Parallel Computation:' Proc. 1983 Int. Conf. Par. Proc .• pp.' 36-43. 

Adams, L. [1985]. "M-Step Preconditioned Conjugate Gradient Methods:' SIAM J. 
Sci. Stat., Comput .• 6~ pp. 452-463. 

Adams, L. and Ortega, J. [1982]. "A Multi-Color SOR Method for Parallel Compu
tation," Proc. 1982 Int. Conf. Par. Proc .• pp. 53-56. 

Axelsson, o. [1984]. "On Some Versions of Incomplete Block-Matrix Factorization 
Iterative Methods:' J. Lin. Alg. Appl .• S8. pp. 3-15. 

Becker, E., Carey, G., and Oden, J. [1981]. Finite Elements: An Introduction. 1. 
Prentice-Hall. Englewood Cliffs. New Jersey .• pp. 242-245. 

Concus, P., Golub, G. H., and Meurant, G. [1985]. "Block Preconditioning for the 
Conjugate Gradient Method," SIAM J. Sci. Stat. Comput .• 6. pp. 220-252. 

Dubois, P., Greenbaum.. A., and Rodrigue, G. [1979]. "Approximating the Inverse of 
a Matrix for Use in Iterative Algorithms on Vector Processors," Computing. 22. 
pp. 257-268. 

Eisenstat, s. [1981]. "Efficient Implementation of a Class of Preconditioned Conju
gate Gradient Methods:' SIAM J. Sci. Stat. Comput .• 2. pp. 1-4. 

Evans, D. (ed.) [1983]. Preconditioning Methods: Analysis and Applications, Gordon and 
Breach. New York. . 

Gustaffson, L [1978]. "A Class of First Order Factorization Methods:' BIT. 18. 
pp .. 142-156 .. 

Hestenes, M. and'Stiefel, E. [1952]. "Methods of Conjugate Gradients for Solving 
. Linear Systems:' J. Res. Nat. Bur. Standards Sect. B. 49. pp. 409-436. . 

Horowitz, E. and Sahni, S. [1978]. Funda.rnentals of Computer Algorithms. Computer 
Science Press. Rockville. Maryland .• pp. 343-347 .. 

Jackson, C. and Robinson, P. [1981]. "A Numerical Study of Various Algorithms 
Related . to the Preconditioned Conjugate Gradient Method:' AERE Harwell 
Report No. HL8213304 

Johnson, 0., Mitchelli, c., and Paul, G. [1983]. "Polynomial Preconditioners' for 
Conjugate Gradient Calculations:' SIAM J. Numer. Anal .• 20. pp. 362-376. 

112 



113 

Kershaw, D. [1978]. "The Incomplete Cholesky-Conjugate Gradient Method for the 
Iterative Solution of Systems of Linear Equations," J. Comp. Phys., 26, pp. 43-65. 

Kershaw, D. [1982]. "Solution of Single Tridiagonal Linear Systems and Vectoriza
tion of the ICCG Algorithms on the CRAY-l," Parallel Computations, G. Rodrigue 
(ed.), Academic Press, New York., pp. 85-99. 

Kightley, J. and Jones, L [i985]. "A Comparison of Conjugate Gradient Precondi
tionings for Three-Dimensional Problems on a Cray-l," Comp. Phy. Comm., 37, 
pp. 205-214. 

Uchnewsky, A. [1983]. "Some Vector and Parallel Implementations for Precondi
tioned Conjugate Gradient Algorithms," Proceedings of the NATO Workshop on 
High-Speed Computations, Springer-Verlag, Berlin. 

Madsen, N. K., Rodrigue, G. H., and Karush, J. I. [1976]. "Matrix Multiplication by 
Diagonals on a Vector/Parallel Processor," Inf. Proc. Letts., S, pp. 41-45. 

ManteuJreI, T. A. [1980]. "An Incomplete Factorization Technique for Positive 
Definite Linear. Systems," Math. Comp., 34, pp~ 473-497. 

Meijerink. J. A. and van der Vorst, H. A. [1977]. "An Iterative Solution for Linear 
Systems of Which the Coefficient Matrix is a. Symmetric M-Matrix," Math. 
Comp., 31, pp. 148-162. 

Meijerink. J. A. and van der Vorst, H. A. [1981]. "Guidelines for the Usage of 
Incomplete Decompositions in Solving Sets of Linear Equations as They Occur in 
Practical Problems," J. Comp. Phys., 44, pp. 134-155. 

Meurant, G. [1984]. "The Block Preconditioned Conjugate Gradient Method on Vec-
tor Computers:' BIT, 24, pp. 623-633. . 

Munksgaard, N. [1980]. "Solving Sparse Symmetric Sets of Linear Equations by 
Preconditioned Conjugate Gradients," ACM Trcm.s. Math. Software, 6, pp. 206-219. 

Poole, E. and Ortega, J. [1984]. Incomplete Clwlesky Conjugate Gradient on the CYBER 
203/205, Supercomputer Applications, R. Numrich(Ed.),Plenum Press., pp. 19-28. 

Robert, L [1982]. "Regular Incomplete Factorizations of Real Positive Definite 
. Matrices," J. Lin. Alg. Appl .. 48, pp. 105-117. 

Schreiber, R. and Tang, W. [1982].· "Vectorizing the Conjugate Gradient Method," 
Proc. Symp. Cyber20S Applications, Ft. Collins, Co. 

van der Vorst, H. [1982]. "A Vectorizable Variant of some ICCG Methods," SIAM 
J. Sci. Stat. Comput., 3, pp. 350-3S6. . 

van der Vorst, H. [1983]. "On the Vectorization of Some Simple ICCG Methods," 
Paper presented at the 1st Inter. CoIl. on Vector and Parallel Computing in 
Scientific Applications, Paris. 

van der Vorst, H. [1985], "The Performance of Fortran Implementations for 
Preconditioned Conjugate Gradients on Vector Computers," Report of the Dept. 
of Mathematics and Informatics no. 8S-09, Delft University of Technology. 

Young, D. [1971]. Iterative Solution of Large Linear Systems, Academic Press, New 
York .. pp. lOO-lOS. 



1. Report No. 2. Government Accession No. 

NASA CR-178117 
4. Title and Subtitle 

Multi-Color Incomplete Cho1esky Conjugate Gradient 
Methods for Vector Computers 

7. Author(s)· 

Eugene L. Poole 

3. ReCipient's Catalog No. 

5. Report Date 

Mav 1986 
6. Performing Organization Code 

S. Performing Organization Report No. 

I--------------------------~...., 10. Work Unit No. 
9. Performing Organization Name and Address 

University of Virginia 
Applied Mathematics Department 11. Contract or Grant. No. 

School of Engineering and Applied Science NAGl-242 
I-~C!.!.ha~r!...l!..!o~t::..!t~e:..:s~v.!.i...!.l.!:le=...!.., -'V~A.!.-..::2:.::2.:::.9.:::.0~1 _____________ ___i 13. Type of Report and Period Covered 

12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, DC 20546 

Contractor Report 
14. Sponsoring Agency Code 

505-90-:21-02 
15. Supplementarv Notes • 

ThlS report was prepared in partial fulflllment of the requirements for a Ph.D 
degree in Applied Mathematics from the University of Virginia. 
Langley Technical ~1onitor: John N. Shoo smith 

16. Abstract 

In this research, we are concerned with the solution on vector computers of 
linear systems of equations, Ax = b, where A is a large, sparse symmetric 
positive definite matrix. We solve the system using an iterative method, the 
incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color 
strategy to obtain p-color matrices for which a block-oriented ICCG method is 
implemented on the CYBER 205. (A p-colored matrix is a matrix which can be 
partitioned into a pXp bl~ck matrix where the diagonal blocks a~e diagonal 
matrices.) This algorithm, which is based on a no-fill strategy, achieves O(N/p) 
length vector operations in both the decomposition of A and in the forward and 
back solves necessary at each iteration of the method. 

We discuss the natural ordering of the unknowns as an ordering that minimizes 
the number o'f diagonals in the matrix and define multi-color orderings in terms of 
disjoint sets of the unknowns. We give necessary and sufficient conditions to 
determine which multi-color orderings of the unknowns correspond to p-color 
matrices. A performance model is given which is used both to predict execution 
time for the ICCG methods and also to compare an ICCG method to conjugate gradient 
without preconditioning or another ICCG method. Results are given from runs on 
the CYBER 205 at NASAls Langley Research Center for four model problems. 

17. Key WC)rds (Suggested by Author(s)) . 18. Distribution Statement 

vector computers, incomplete Cho1esky, 
conjugate gradient, p-co10red matrices, Unclassified - unlimited 
CYBER 205 

19. Security Oassif. (of this report) 

Unclassified 
·20. Security Classif. (of this page) 

Unclassified 

STAR Category - 64 

21. No. of Pages 

124 
22. Price 

A06 

N-305 For sale by the National Technical Information Service, Springfield. Virginia 22161 



End of Document 


