@ https://ntrs.nasa.gov/search.jsp?R=19860019188 2020-03-20T14:44:49+00:00Z
O3 TT LN o 0,-[(' I

| [
NASA Contractor Report 178117

NASA-CR-178117
19860019188

MULTI-COLOR INCOMPLETE CHOLESKY CONJUGATE
GRADIENT METHODS FOR VECTOR COMPUTERS

Eugene L. Poole

UNIVERSITY OF VIRGINIA
Charlottesville, Virginia

Grant.NAGl-242
hay 1985 | - LIGRARY £09Y
» DEC & 1985 |

©LARGLEY RISEARCH CENITER
LIERARY, NASA
HAMPTON, VIRGINIA

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

[T

NF00157

3 Multi-Coloring to Vectorize ICCG

4 A Performance Model and Numerical Results

Table of Contents .

Introduction evessoesaracans

ICCG Methods

2.1 Point ICCG Methods

2.2 Block ICCG MELHOAS cuueeeeeeririsrcrerscrsecaesmsoneansserossessesssssssassssssssssssssssesarsssasssnnse

2.3 Multi-color Block Incomplete ChOleSKYccccvvereicsunisenseeessansssnessnnianesensannas

2.4 Implementation of multi-color ICCG ...rrivrverinnrncernnrennne

2.5 ICCGE Implementation

2.6 m-step ICCG

3.1. The Natural Ordering

- 3.2 The Coloring Problem

3.3 The Continuous Coloring Rule
3.4 Multi-Coloring Examples from the Mixed Derivative Problemc......

3.5 Super Long Vectors in p-Color Matricescceveersnens creeeressneniessaasanes

3.6 Examples of Continuous Multi-coloring for Multiple Unknowns

3.7 Multi-Coloring for Three Dimensional Problems ...

3.8 Suminary

4.1 A Performance Model

NEL - 380 ™

11
13
15

18

20
23
37
46
49
54
57
61

67

69

69

i

4.2 Multi~color ICCG Performancecccoccsierceecsssiesiiesiomerssssteesscsssrassssansanes 80
4.3 Comparison to Natural Order ICCG AlgOTithmSccccevveeireecineieecincennns 83
4.4 Diagonal Ordered ICCG for Laplace’s Equation verreetenesnaenrasarens 87
5 Conclusions and Future Research ATIeasciicecsescriccsiimsciesisessnsssnnssressansaeene 94
5.1 SUMMATY ciiriiicrertnricsnrersstissssssssassisssssesssssssesssssesessenss sesesseenssneresnsssantaae 94
5.2 Conclusions ceeeeeresssemsseennes ceens 97
5.3 Future Areas 0f ReSearchcccciirccreeiiiiinneneeneiiiisnenssennisissesscsssesconns 98
Appendix A Incomplete Matrix Multiplication by Diagonalsc..ccccvreccnrcrecnens 100
Appendix B Matrix Assembly by Diagonals cetreeateseneresarestrsanstsasaras 108

References easteessnsesnnnennnneonns . crreessesesterraavssessarassenesasenne 112

[AY

1.1

2.1
2.2

23

31
3.2
33
34
35
3.6
3.7
3.8
3.9
3.10
3.1
3.12
3.13
3.14
3.15

3.16

List of Figures

Preconditioned Conjugate Gradient Algorithm S -

Multicolor Ordering for Mixed Derivative Model Problemc.ccuuenee.

Solution of Lz = r for 4 X 4 Block MatriX ..ccccrercieemmicemnenceereccsrecceenonnsnnns

JCCGE algorithmccceeivecessnsccinescsnensoens

‘Rectangular - like' Discretization

...

Grid Stencil and Connectivity Set for Laplace’s Equationcc.cceceevcenens

Plane Stress Problemccceecerrecvnneeecenensne

Grid Stencil and «'s for Mixed Derivatjve Problem

...

Natural Ordering of the Unknowns

Natural Ordering with (3.2) ...

Natural Ordering with (3.1) ...ccveeneee
7 Point Stencil for a Problem with k=3

7 Point Stencil for a Problem with k=3

Multi-Color Ordering Constraint

4 Color Ordering - O(r) Length Vectors

...

Using (3.1) ..cverceeccsecnnnes o

Using (3.2) vceccveeerercerecreennnnnene

...

4 Color Ordering - O(N/4) Length VeCLOTS .ccocveeevereererrrerersssessesessesesnsesnns

4 Color Ordering - O(r/4) Vector Lengthsccovereuees

Diagonal Orderingcccceuee.

P-Colored MatriX .c.cccceeerereenreces

12
14

16

21
22
26
28
28
30
31
34
36
39
40
42
44
45
48

50

iii

3.17
3.18
3.19
320
3.21
322
323
3.24
325
3.26
327
3.28
3.29
3.30
41
42
43
4.4
45
4.6
4.7
4.8
49

4.10

Continuous 4-Coloring - Violates (3.8) ...cccoivicvresuececsnsensecsseneressesesesaseseans

Continuous 5-Coloring - Satisfies (3:8) .ccccvvrerrrcirrrsereccrsnsennsnerssssessssnsens

Continuous 4-Coloring - Add Extra Column

4 Colors ~ r = 4i + 2 ...

3-Color Plane Stress Matrix sesesnsanasesasasaaee cerersstesensenen st asrsaes

Plane Stress Matrix: u and v Alternatec.eu.... etesseraisasieninsesessenensrsenaneaee

Plane Stress Matrix: u's First eeeesteesesentesenseseseenssatetansanaasesensanensansnns

Diagonal Storage for Plane Stress Matricesc.ceeeen.

Space Truss Model Problem

Grid Colorings for 3-D Space Truss

Truss Matrix #1 According to Grid Stencil

Assembled Truss MAtrix #1 ...coicccccicieemmeeeesssiesessssersssessessessssssssessssessesassesans

‘Truss Matrix #2 according to Grid Stencil cestseversensnssserenes

Assembled Truss Matrix #2 . cerernnnrsoes

Vector Instruction Timingsccccecmeeuneee N

Number of Operations per Iteration ...

Predicted Execution Time per Iteration

ICCGE Execution Time per Iteration ' . rieanene

Performance Model Calculations evesesenevesesasesastassrasasneseeseasasasnesenesaeresrans

Total Operations for I Iterationscceceevceccnsenemcssssnnrissininimssssesssseessseses

Predicted Run Times for 7 I;erations eencorescsranrernnssnnens

Experimental Results from 2 Pipeline CYBER 205
Comparison of Results to Model Predictionsccoevecenreinncsvcnnsisesnsuescencans

Laplace’s Equation Resultscccevivennene eretastssen sttt bt ns s aees

iv

3

52

53

56

58

59

60

.61

62
63
64
65
66

67

73
73
74
75
77
78
79
81
82

85

4.11
4.12
4.13

4.14

Al
A2
Al
A4

AS

B.1
B.2

B.3

Vectorized Preconditioning for ICCGD, ICCGDE '

Comparison of ICCGC and ICCGD Preconditioners

Performance Model for ICCGD and ICCGDE ..

Iterations for ICCGN and ICCGC Convergenceceeceesvenene

Matrix Multiplication by Diagonalscceeineininininiisnennnes
Matrix~-Vector Multiplicationcccceiimniiieniensniicnieesnnseisans

Matrix Multiplication CompariSonccueeeiieceienisiessenssnessessaennes

.................

Matrix - Matrix Multiplication Algorithmceveinivucnas

Data Structures for Mixed Derivative Problemcccecvveecerrenes

4 X 3 Grid of UnKnownsccceusiecccssssnsscssasssssnens

Row by Row Matrix Assemblyceevnivccensensnnisannas

Plane Stress Problem With/Without Continuous Coloring Rule

89

90
91

93

100
102
103
105

106

109
110

111

N U N RO O

» RN

(]

]
[

List of Symbols

Symmetric Positive Definite Matrix

Dimension of Linear System creressassreernanees

Symmetric Positive Definite Preconditioning Matrix

Unit Lower Triangular Matrix

Diagonal Matrixccccceescmccseninnscnrcssnnccnns

.............................. bocesssccce

Error Matrix in Incomplete Cholesky Factorizationccceeeeeee

Number of Colorscceeeeeereenees

Set Used to Describe Non-Zero Structure of L ..ceevveevvvnncnnen.

Matrix Used in Eisenstat Implementation of ICCG reereereseesnnenenne

Class of Problems with Rectangular Domainsccccceeecercnrccciennees

Vector of Unknowns in Linear System A X=Dbceurecrvrnincnne

- Number of Grid Points in a Row

Number of Rows in a Grid ... eessaresserans

Number of Planes in'a 3-Dimensional Gridcceeeeceieeeeieeneevennnnnnns

Number of Unknowns at Each Grid Pointccceceeveeremneiirennnecennene .

The Unknowns af Each Grid Point
Connectivity Setcccccceiricercrscsrentessssansases
Elements in Set Y .ccvceeerereeeeresaesesssnases
Numbef of Points in a Grid Stencil

Number of Elements in the Set Y

...

Integer Rounding Function - Rounds DOWN eeeormmemmmssessann somsesasasasass

Integer Rounding Function - Rounds Up

...

15
20
20
20
20

20

20

23

24

24

30

31

34

34

vi

“y

Sz

Set of Unknowns Used to Describe Multi-Color Ordering

Number of Iterations to Convergence ...
Execution Time per Iterations
Ratio of Iterations for Method i to Method j

Ratio of Execution Time per Iteration

Ratio of Total Execution Time for Method i to Method j

Matrix - Vector Product in PCG Algorithm

Execution Time for Matrix Multiply

Preconditioning Step in PCG Algorithm

Execution Time for Preconditioning Stepc.cccccceevcriscerccnrivieccunees

Remaining Calculations in PCG Algorithm ...

Execution Time for C

Ratio of M, to 4,

Ratio of C; to 4,

vii

37

70

70

70

70

70

70

70

70

70

70

70

71

71

Acknowledgements

Many individuals contributed in various ways to this research. I wish to
thank Dr. James Ortega for his long hours of invaluable assistance which greatly
aided in both my research and in the writing of this dissertation. I would also like
to thank the rest of the faculty in the Engineering school at the University of Vir-

ginia for their contributions to my academic endeavors.

I want to express my love to my wife, Annette, for her many unselfish

sacrifices during the past several years.

I want to thank the persclmnel at the NASA Langley Research Center who were
so helpful during my times at Langley, particularly Jay Lambiotte, Geoff Tennille,
and Lona Howser. Finally, I wish to thank NASA for the financial assistance they
provided under grant NAG-1-242 and also Control Data Corporation for financial

assistance under the Pacer fellowship program.

viii

5%

Abstract

In this research we are concerned with the solution on vector computefs of
linear systems of equations, Ax =b, where A is a large, sparse symmetric positive
definite matrix with non-zero elements lying only along a few diagonals of the
matrix. We solve the system using the incomplete Cholesky conjugate gradient
method (ICCG). an iterative method which has proven effective for a wide class of
problems on scalar computers. Following the suggestion of Schrieber and Tang
[1982]. we apply the multi~color strategy used by Adams and Ortega [1982] to
obtain p-color matrices for _;vhich an ICCG method is implemented oh the Cyber 205
with O(N/p) length vector operations in both the decomposition of A and, more
importantly, in the forward and back solves necessary at each. iteration of the
method. (N is the number of unknowns and p is a small' constant) A p-colored
matrix is a matrix which can be Ipartitioned into a pXp block matrix where the

diagonal blocks are diagonal matrices.

The ICCG method we use is the no-fill strategy of Meijerink and van der Vorst
[1977] applied to the p-colored matrices. Because of the block structure of p-coior
matrices we implement the ICCG(0) method in a block fashion where if the matrix

is stored by diagonals the decomposition is carried out by multiplying N/p . dimen-

sion blocks together using the matrix multiplication by diagonals of Madsen, et al.

[1975]. Likewise the forward 5nd back solves at each iteration are accomplished by
matrix-vector multiplicationl by diagonals of these N/p dimension blocks. For a
given problem it is necessary to find multi-color orderings which achieve the block
structure of p-color matrices but we also desire long vectors withiﬁ the blocks.
Additionally, if the vectors across adjacent blocks line up, then some of the over-
head associated with vector startups can be eliminated in the matrix vector multipli-

cation necessary at each conjugate gradient iteration.

ix

We discuss the natural ordering of the unknowns as an ordering that minimizes
the nurhber of diagonals in'the matrix and define multi-color orderings in terms of
disjoint sets of the unknowns. We give necessary and sufficient conditions to deter-
mine which multi-color orderings of the unknowns correspond to p-color matrices.
We also indicate a process for choosing multi-color orderings, called the continuous
coloring rule which is easy to apply to a wide class of problems including more
difficult 3 dimensional problems and which resulté in p-color matrices with the

desired long vector lengths within the blocks of the matrix.

A pérformance model is given which is used both to predict execution time for
the ICCG methods and also to compﬁre an ICCG method to conjugate gradient
without preconditioning or another ICCG method. Results are given from runs on
the CYBER 205 at NASA's Langley Research Center for four model problems includ-
ing a three dimensional space truss, developed in conjunction with NASA engineers
~as a simplified model of an orbiting space platform. For all the model problems the
multi-color ICCG methods we implemented ran at near the maximum possible rate
on the CYBER 205. Our results showed that these methods are competitive with
other vectorized ICCG methods in terms of overall speedup of execution compared to

conjugate gradient.

CHAPTER 1

Introduction

We consider in this thesis the solution on vector computers of linear systems of
equations, Ax=Db, where A is a large, sparse symxﬁetric positive definite matrix
with non zero elements lying only along a few diagonals of the matrix; such
matrices arise in the solution of ellii)tic partial differential equations by finite
difference or finite element discretizations. We solve the system using incomplete
Cholesky conjugate gradient (ICCG). an iterative method that has proven effective for
a wide class of problems on scalar computers. The multi-coloring strategy described
by Adams and Ortega [1982] for the SOR iterative method is used to obtain a
matrix structure which yields long vectors. We address the question of choosing the
best coloring strategy for a given problem and present results for ICCG applied to
Laplace’s equation, 2 more general elliptic partial diﬂ'efential equation, and two finite
element applications: plane stress in two dimensions and a three dimensional space
platform model. |

Our primary interest is in memory to memory vectér computers for which
efficient usage requires algorithms that consist mainly of operations on long vectors.
The CDC CYBER 205 is a vector computer of this type and its successor, the ETA-
10, will be to a somewhat lesser extent. The CYBER 205 has a clock cycle time of

20 nanoseconds (ns) and using r vector pipeline units, results of a vector operation

are available every 270 ns. Thus, a CYBER 205 with 4 pipeline units can execute

floating point operations on contiguously stored operands at a maximum rate of 200

million operations per second (Mflops). For the ‘linked triad’ operation - vector plus

scalar times vector - this maximum rate is doubled. Half precision (32 bit)
arithmetic also doubles the maximum rate. However, associated with each vector
instruction is.a fixed overhead cost, the startup cost, which adds significantly to the
time required for vector operations on short vectors. For a vector add, for example,
the time to add two vectors of length N on a 2 pipe CYBER 205 can be expressed
as T = (1000 + 10N)ns. If N = 100 only 50 percent of the maximum rate is
achievable while vector lengtﬁs of 10,000 will result in 99 percent of the maximum
rate.

Th¢ éonjugate gra'dient method first was developed by Hestenes and Stiefel
[1952] ‘and continues to be of great interest. The computational steps at each
iteration of the algorithm consist of a matrix-vector multiply, two dot products, and
three linked triads and the CYBER 205 can potentially be used efficiently. For the
problems we are interested in, the number of unknowns, N, is very large and while
A is very sparse, the nonzero structure is such that diagonal storage' of the matrix
and matrix multiplication by diagonals (Madsen, et al. [1976]) can be used to
achieve very high cémputation rates for matrix-veétor multiplication. However, for
most probléms of interest in scientific and engineering applications, the conjugate
gradient algorithm converges too slowly and so various ‘preconditioning’ strategies are
employed to reduce the number of iterations. Preconditioned conjugate gradient
methods are discussed in a number of places (see, e.g.., Evans [1983]). A standard
implementation of the preconditioned conjugate gradient algorithm (PCG) is shown in
Figure 1.1 , where (.,) denotes the usual inner product. The preconditioning is
carried out at each iteration by the solution of the system M 4+ = pt+1 where M
is a symmetric, positive definite matrix that approximates A in some sense. If M is
the identity, the algorithm reduces to the original conjugate gradient method. How
well a particular choice for M performs depends on the trade off between the extra

time it takes for the additional step in the algorithm and the number of conjugate

(1) Choose x°
(2) Set r°=b—A4 x°

(3) Solve M £° =1r°

(4) Setp®=1r°
(5) Loop k = 0.1......kmax
_ @,
8 & = (.4 p%)

b) x**1=xt + o p*

: ¢) r*fl=rk —q, A p*

e,
d) if ——p5—— < € then stop
Hx? I, .
e) Solve: M tF+l =rktt

(FE+1, pk+1)
DB =y

g) ptHi=ttl 4 g ot
Preconditioned Conjugate Gradient Algorithm
Figure 1.1 ‘

‘gradient iterations saved. For the CYBER 205, we desire that the formadtion of M,
if '.n'ecessary, and particularly the solution of M = P4 pe accomplished with
suitably long vectors. N |

Dubois, et al. [1979), Johnson, et al. [1983), and Adams [1983b] have considered .
preconditioned éonjugate gradient methods on the CYBER 205 but not the ICCG
method. For the ICCG method, introduced by Meijerink and van der Vorst [1977].
M is cl.xosen to be an incomplete Cholesky factorization of A, and can be répresented
in the so-called root-free Cholesky form, which avoids costly square root
calculations, as M = LDLT, where L is unit lower triangular, D is diagonal, ax'xd

R=M-—-—A 0. If R=0, then M is just the complete Cholesky factorization of A.

Complete Cholesky factorization of the large sparse matrices we are considering is
not practical, however, due to the large storage requirement frpm the fill that occurs
and the amount of time required to do the decomposition. In addition, the long
vector lengths required for efficient use of the CYBER 205 cannot be achieved.

On serial computers; ICCG has been shown to be an effective preconditioned
conjugate gradient algorithm for a wide class of problems. Kershaw [1978] has
shown that incomplete Cholesky is advé.ntageous over other precbnditic_)ners for
conjugate gradient .for some very ill - conditioned problems. Manteuffel [1980]
considered incomplete factorizations for arbitrary symmetric positive definite sjrstems.
extending the previous results of Meijerink and Van der Vorst [1977] on symmetric
M-matrices. Meijerink and Van der Vorst [1981] also discuss various incomplete
.Ch-olmky conjugate gradient methods and thé effectiveness of each on several model
problems. Block ICCG methods have been considered by Axelsson [1984] and
Concus, et al. [1985] and in some cases were more effective than point incomplete
factorizations. More details on various versions of ICCG are presented in the next
chapter.
| There have also been several studies on the implementation of ICCG on vector
and parallel cémputers. Kershaw [i982] gives an impiementation of ICCG on the
CRAY-1 Qector computer by using a cyclic reduction technique applied to block
tridiagonal matrices. The vector lengths used in his algorithm are too .short,
however, for the CYBER 205. Lichnewsky [1983] discusses parallel and vector
_implementations for ICCG but alsb mainly gives algorithms with vector lengths
better suited for the CRAY computers. Meurant [1984] discusses vectorized block
preconditioned conjugate gradient methods applied to block tridiagonal systems where
the diagonal blocks are tridiagonal and of dimension O(VYN) and gives results for
both the CRAY-1 and CYBER 205. Van der Vorst [1985] also gives results for the

CRAY-1 and CYBER 205 for both a non-vectorized ICCG algorithm and a vectorized

version. Schrieber and Tang [1982] suggest the multicoloring approach we have used
buf little is given as to how to multi-color the unknowns to achieve the best
vectorization.

The multi-coloring technique was also used by Adams and Ortega [1982] to
implement SOR for vector and parallel architectures. The main idea in multi-color -
orderings is to reorder the unknowns so that the resulting matrix is partitioned as in
(1.1) into blocks where the _diagbnal blocks are themselves diagonal matrices. Such a
matrix will be called a p-coiored matrix. Here, p is the number of colors used to

achieve the ordering.

Ay A Ay

AT, Ax :
A= B o (1.1)

Ag‘p APP

If p=2, this is the classical red/black ordering (Young [1971]). In general the
number of colors, p, will be small and the vector lengths within the A;,V blocks
will be O(N/p). By using diagonal storage of A we will see that the
preconditioning step can be accomplished using vectors of length O(N/p). We
discuss criteria.and algorithms for c.h:oosing multi-color orderings in chapter 3 We
also present a procedure to assemble finite element matrices row by row . using
diagonal storage. .
The multi~coloring techniques we have developed are applied to four model
problems. The first problem is Laplace’s equation
Ue + Uy, =0 ' (1.2)
on the unit square with Dirichelet boundary conditions on all four sides. To obtain

a more general differential equation we add a mixed derivative term and solve

Use + 5Usy + Uy, = 4 (1.3)

on the same region. The wusual second order finite difference discretizations are
applied to both (1.2) and (1.3). The third problem is a two dimensional plane
stress problem for a plate fastened to a rigid body on one side and loaded on the
other side. Here, linear basis functions are used in a finite element discretization.
Some preliminary results for this problem are given in Poole and Ortega [1984].
For the fourth problem a three dimensional space truss, developed in conjunction
with NASA engineers as a simplified model of an orbiting épace platform, is
considered. Further details on these model probléms will .be given in subsequent
chapters. |

In chapter 2 we discuss in more detail ICCG methods which ixave been used on
scalar and vector computers and then describe how multi-coloring is used to
vectorize ICCG with long vectors. In Chapter 3 we treat the coloring problem in
greater depth. We give necessary and sufficient conditions to obtain a p-color matrix
with a multi-color ordering. We also give a strategy which is easy to use on a
wide class of problems, including three dimensional problems with possibly more
than one unknown per grid point. to obtain p-color matrices containing long vectors.
In chapter 4 we present nmerical results as well as a computational model and
compare our results with those reported in the litéi'ature for similar problems.
Finally, in chapter 5 we summarize the results and discuss future directions for

' reléted research.

CHAPTER 2

ICCG Methods

In this chapter we discuss several versions of incomplete Cholesky factorization
which have been used as preconditioners for the conjugate gradient method. We
then describe multi-color block incomplete Cholesky and give two different

- implementations which use long vector operations suitable for the CYBER 205.

2.1. Point ICCG Methods
An incomplete, root-free factorization of A is of the form M = LDLT where L
ié unit lower triangular, D is diagonal, and R =M —A #0. For a compiete

Cholesky factorization, the elements of L and D must satisfy

J
ay = k};lzi,,dkz,,, i.j=1..n Q.1

which leads to the expressions

lu = (d;} - kgllikdkljk)dj_l (2.2a)
i—1 ' ’
d =lyd; = ay — L 13d, (2.20)

Modifications of the equations (2.2) that limit the fill occurring in L define different
versions of incomplete Cholesky factorization. @ One modification, given by
Munksgaard [1980], is to ignore elements of L if they are numerically small
compared to the diagonal "elements of their respective. row and column. This
strategy is not well suited for our purposes since it is not in general possible to
determine ahead of time which elements of L will be dropped and so the structure

of L cannot be determined in advance.

The usual modification used for incomplete Cholesky factorization is to allow
fill to occur during the formation of L only in pre-specified locations. The non-zero
structure of L is often described using a set J= {(@.j)} of integer pairs where
I; =0 if (i,j)€J. A simple choice for J is J={(i,j)|a; == 0} and the ICCG(0)
method of Meijerink and van der Vorst [1977] calculates I; for (i.j) € J from
equation (2.2a) ; otherwise, §;; =0. ICCG(0) is called the ‘no-fill' strategy since L -
will have the same non-zero structure as the lower triangular part of A. Partial
fill strategies can also be described by using a suitable set J and in Meijerink and
van der Vorst [1981] a class of incomplete decompositions denoted ICCG(hk) is
given where the indices hk indicate. that fill is allowed in L along h diagonals
adjacént to the main diagonal and k diagonals inside the lower band of A. The
problem considered in their paper arises in the solution of elliptic partigl differential
equations in two dimensions using the five-point discretization.

Another modification to the basic point ICCG method, called MICCG, was
introduced >by Gustafsson [1978] and involves using fill elements created in the
factorization process to modify the diagonal matrix, D, to improve convergence rates
for certain types of problems. However, Kightley and Jones [1985] note that the
unmodified ICCG method has a faster convergence rate on certain problems. For
further discussion of the MICCG method and the closely related ‘column sum'’
constraint used in modifying D, see Jackson and Robinson [1981].

A major concefn in incomplete decompositions is ‘instability. As opposed to
complete Cholesky decomposition of a symmetric positive definite matrix, incomplete
decomposition§ may not always be carried out. In (2.2b) if some d; is zero then
‘(2.2a) cannot be compﬁted. Likewise if any elements of D become negative, then
M will not be positive definite and cannot be used as a preconditioner for conjugate
gradient. Meijerink and van der Vorst [1977] showed that for symmetric M-

matrices incomplete factorizations exist for any choice of J. Manteuffel [1980]

extended these results to H-matrices (A is an H-matrix if the matrix B with
bi =layl and by =—la;| is an M-matrix.) and goes on to describe a ‘shifting
algorithm’ for general positive definite systems whereby the diagonal elements of A
are increased before factorization to ensure that the decomposition can be completed.
He notes that for any A the new matrix obtained by increasing the main diagonal
elements can always be made diagonally dominant, and thus an H-matrix, so that
for any J an incomplete decomposition exists. It is not in general necessary to
make the shifted matrix diagonélly dominant and a much smaller increase of the
diagonal elements may suffice. |

Kershaw [1978] ;rwents a different method to ensure that incomplete
factorizations exist for symmetric positive definite systems. He nofes that for
incomplete factorizations defined by (2.2) and a set J as described aﬁove. the non-
zero entries of the error matrix, R, lie only in those places corresponding to zero
entries in A. If a non-positive element is computed for D he proposés setting that
element to some positive value and continuing with the decomposition. This causes
a non-zero entry in the corresponding diagonal elément of R but if few of these
corrections are made it is hoped that the incomplete factors will sfill give a good'
approximation of A. This method has the advantage of not changing the entire
diagonal matrix D, as Mantueffel’s shifting method does, but has tﬁe disadvantage of
requiring a.test for each element of D during the factorization. Robert [1982]
defines regular incomplete factorizations for positive definite matrices> with reépéct to a

set J as described above, to have the property that ry; =0 if (i,j) €J,is%j.

2.2. Block ICCG methods
We next consider block incomplete factorizations. Here the matrix A s

partitioned as in equation (1.1), (with the diagonal blocks A; not necessarily

diagonal). The block Cholesky form of (2.2) is

10

J-1
Ly =4y - k§1 LyDyLL1D;? (2.3a)
i-1
Dy =Ay— X LyDpLf . (2.3b)

where now the L; and the D; are matrices. In this form the L; are identity
matrices but the D; may be full. Hence, calculation of the L; involves solving
systems with the D; as coefficient matrices. More import.antly.' the forward and
back solves at each iteration of ICCG become very costly on both scalar and vector
c:.omputers if the D). are dense. Incomplete block factoriza;ions are used to deal
with this préblem. |

For incomplete block Cholesky methods the set J can describe the non-zero
strﬁcture of L in terms of its blocks, L;;, or the nonzero structure of L in terms
of the individual elements ./;;, of L. It is clear that in the former case the L; do
not in general' have the sarﬁe non-zero structure as the corresponding blolcks of A.
The incompleté block Cholesky factorization we will describe in the next section uses
J for the individual elements.

In Concus, et al. {1985] and Axelsson [1984] incomplete block factorizations are
discussed for the case whefe A is a block tridiagonal matrix. The focus of the
paper by Concus, et .al. is on ways to approximate the inverses required in (2.3).
However, for the CYBER 205, block tridiagonal systems are not desirable since the
dimensions of the blocks are usually only O(YN). Kershaw [1982] gives an
algorithm for a block ICCG method for the CRAY-1 which uses cyclic reduction and ‘
vectorizes well with the shorter vector lengths but as noted above such a strategy
on the CYBER 205 does not seem promising.
| Van der Vorst [1982] discusses some block ICCG methods of a different kind .
for block tridiagonal matrices. One method uses a truncated Neumann series to
approximafc the inverses of bidiagonal matrices as part of the forward and back

solves for the Laplécg: problem. He also discusses [1983] a diagonal ordering of the

11

unknowns to vectorize the forward and back solves at each iteration of _ ICCG. Both
methods use vector lengths that are O(N) in the preconditioning step. We discuss
the diagonal ordering further in chapter 3 and give résults for the Laplace problem
from a predicted performance model in chapter 4. ' |
Lichnewsky [1983] also discusses block methods for vector and pﬁrallel
computers using a ‘subdomain approach’ to reorder the unknowns to incfease
pafallelism. For this method, the unknowns are decoupled into subdomains using
orderings which contain subsets of the unknowns called separators that are used to
break the problem into several smaller problems. These smaller problems can then
be solved independently and joined together to form the final solution to the original
problem. This approach may .be better suited for a paraliel architecture but
Lichnewsky also suggests applying the multi-color orderings we describe next within

the subdomains to vectorize the solution of the decoupled systems.

2.3. Multi-color Block Incomplete Cholesky

To derive a more appropriate ICCG method for the CYBER 205 we follow a
suggestion of Schrieber and Tang [1982] and use multi-color orderings. If A has a -
block structure as in (1.1) and the A; are diagonal, we say that ‘A is p-colored
(see Adams and Ortega [1982]). To give an example of how such matrices arise,
we consider the mixed derivative problem. equation (1.3). If we discretize (1.3) by
the usual second-order finite difference approximations, we can order the unknowns
so as to obtain the 4-colored matrix shown in Figure 2.1. In ihe grid below the
matrix in Figure 2.1 the numbers represent four cplors and the matrix is assembled
by ordering the equations of color 1 left to right. bottom to top followed in like
manner by colors 2,3 and 4. The grid stencil below the matrix in Figure 2.1
indicates the coupling of unknowns by the finite difference discretization. For each

row in the matrix each non-zero coefficient corresponds to the unknown indicated by

12

T E X v
C EA N]
C X A s N
c X E A s N Y W B
c E s N
c X EA] N YW B
c X A s N Y W B
c X E A s N Y W B
c E s N
c X EA 8 N YW B
C X A 8 N Y W B
c X E A s N Y W B
c E 8 N
C X EA 8 N YW B
C X E 8 Y W
LW X 8 Y
) T T A N
W B c E A N
YW 3B c X~ EA s N
w c x A s N
Y W B c X E A s N
w B c X E A 8 N
YW B c X EA 8 N
w c X A 8 N
Y W3 C X E A s N
Y W B c X E A 8 N_
YW B c X~ EA 8 N
w c x A] N
Y W B c X 2 A 8 N
Y W c X E A 8 N
Yw c X E 8
[u X)
N < A
N w B c A
s N 3 c E
8 N YW B c X EA
8 N Y WD c X A
s N Y W B c X E A
s N Y B c]
[N YW 3B c X EA
s N Y W B c b A
s N Y W c X2 A
s N Y B c]
s N Y B c X ZA
s N Y W c x A
] N Y w c X E A
s Y c]
8 W [o X E
TA N X (»
A N w c
X £ A s N Y W B c
X E A s N Y W B c
X EA s N YW B c
X A 8 N w c
X E A 8 N Y W B c
X E A 8 N Y W B c
X EA 8 N YW B c
X A s N W c
X E A 8 N Y W B c
X B A s N Y W B c
X EA s N YW B c
X s M C
X E s Y w c
X 5 C

1 2 3 4 1 2 3 4

i 2 3 4 1 2 3 4

3 4 1 2 3 4 1 2

1 2 3 4 1 2 3 4
- Grid Stencil Grid Multi-Color Ordering

Multicolor Ordering for Mixed Derivative Model Problem
Figure 2.1
the stencil element with the same letter. For example the unknown at the first grid

point corresponds to the first row in the matrix in Figure 2.1 and has non-zero.

13

‘coéﬂicients corresponding to the unknowns indicated by the C, N, E, and B points
in the grid stencil so that row one has the letters C, N, E, and B in the
appropriate placeé. In chapter thrée we discuss multi-coloring in more detail and we
will show that the particular coloring shown in Figure 2.1 is not the best choice for
this problem.

Incomplete decomposition of a p-colored matrix can be carried out using partial,
or incomplete, multiplication of the blocks of A and L in the block Cholesky
equations (2.3). Under a no-fill strategy, the blocks of the incomplete Cholesky
factors L and D will have the same non-zero structure as the corresponding blocks
of A. Partial fill strategies that allow fill along specified diagonals in the off
diagonal blocks can also be implemented: in either case no fill is allowed in the D;
so that the D,'l operation in (2.3a) is just a vector divide. A is sfored by
diagonals, and we use matrix multiplication by diagonals as in Madsen, et al. [1976]
for the matrix-matrix multiplications required in the decomposition. Details of this
procedure are given in appendix A. Thus, the matrix-matrix multiplication consists
of vector multiplies and adds, and we do only the vector operations which
contribute to diagonals in the allowed non-zero structure. The same storage for A
allows the matrix-vectof multiplication at each conjugate gradient iteration to be
carfie;d out using long vectors. It is clear' from (2.3) that the first block column of
L eéuals the first block column. of A. Storage requirements for L are thereby

lessened and time is saved in the decomposition.

2.4. Implementation of multi-color ICCG

The first implementation we consider, ICCGC, is based on the usual PCG
algorithm (see Figure 1.1). Here the preconditioning step consists of solving Mi=r
where the incomplete Cholesky factorization M = LDLT is obtained as discussed in

the previous section. The solution of LDLTT =r at each iteration of the ICCGC

RS
21 !
z? r?
7] r’
e 4

) .
. | V r]
2} il . \ 2| _ \ z2
L 3 L 32
z4 r4 - Zl - \ zz - \
L 41 L 4.3 L 43

7

Solution of Lz =r for 4 X 4 Block Matrix

Figure 2.2

14

15

method is carried out in the usual 3-step process:

Lz=r (2.42)
z=D"1z (2.40)
LT=2% (2.4¢)

Because of the structure of L and D described above, and with L stored by
diagonals, the entire process can be carried out with O(N/p) length vectors in (2.4a)
and (2.4c) and one vector divide of length N in (2.4b). Hence, the. cost is
essentiélly the same as the multiplication by A in the conjugate gradier;t iteration.
The forward solve (2.4a) for a 4-color matrix stored by diagonals is illustrated in
Figure 2.2. Details ot" this process will also be given in appendix A. The
effectiveness of this multi-coloring approach in achieving an ICCG method which
vectorizes well on the CYBER 205 is dependent upon finding orcierings which achieve
p-colored matrices and which yield a structure that minimizes the numbér of
diagonals within each block of L. We discuss this question more fully in chapter

three.

2.5. ICCGE Implementation

A more efficient implementation for block ICCG can be derived following
Eisenstat [1981]. Tke algori.thm. which we call ICCGE, is shown in Figure 2.3.

The idea behind this implementation is the following. As before, M = LDL”
is the incomplete Cholesky factorization. The ICCGE algorithm shown in Figure 2.3

is equivalent to a preconditioned conjugate gradient method with a preconditioning

matrix M =D applied to the system

-~

Ag=b ; A=LUALT ,%=L"x , b=L"" (2.5)
A key consideration now is the efficient evaluation of AAf) in terms of the original

matrix A. If we set K =L +LT—A, then

16

(1) Choose x°
- (2) Set £°=L7Y(b - Ax?)
(3) Set p° =q° =D~'¢°
(4) Loop k = 0.1,......kmax
& . g%

A v 5]
b)xtt=xt + 4, LT f)k
) PFH=pF —5FA4 pt
0x L <
then stop

e) Solve: D qttl =g+l

- (i:k+1 , . E+1)

g) pEH = gt + ékﬁk
ICCGE algorithm
Figure 2.3

Ap=L UL +LT—K)LTHp=LTH+L ' P—KLTP) =t+L (G—K1t) (2.6)

where t=L~TH. Thus, the evaluation of AP requires a forward and back solve
plusi the rhultiplication Kt. The forward and back solves are carried out as in
Figure 2.2. Note that since L™ p is required in (2.6), it can be used to update x*,
as shown in Figure 2.3, so thalt we ‘maintain the original x variables.

We now show how to make the matrix vector multiplication, K't, less costly
than the corresponding Ap* in the first implementation. ' If we prescale A so that
its main diagonal is the identity., then the first Cholesky block is D; =71 and the
first block column of L is Lj; = A;;, i=1,..p, so that K;; =0, i =1,---,p. For

a p-colored matrix A, the evaluation of Ap requires p?—p block matrix-vector

17

multiplications while for Kt,. p2—3p+2 block matrix-vector multiplications .are
réquired. Thus 2p—2 block matrix-vector multiplications are saved, although the
actual savings will depend on the number of non-zero elements in each of the A;
blocks. We also note that this implementation of PCG for vector computers is not
attractive for any of the natural order based factorizations since one trades the
matrix multiplication by A during each iteration for the forward and back solves in
(2.6). It is the vectorization of the forward and back solves by multi-color ordering
that makes this implementation more efficient.

For matrices that can - be 2-colored the ICCGE implementation is particularly

well suited as we now show. We first write A as

4= n A%
T Ay A

where L11=A11. L21=A21. L22=A22—A21A1_11A51. D1=L1_11. and D2=L2_21.

Ly
T L2y L2

D, Ly, LY

Ly

D, (2.7)

Note that Lj; and L,; are symmetric. Note also that for this form of block
Cholesky the L;; are not multiplied by D;! as in (2.3). Now assume that we
prescale A so that its main diagonal is the identity. Since A is 2-colored, the
matrices A1; and Azé of (2.7) are diagonal and thus the Scalec_i matrix has the form

I A%

(2.8)
a 1

A=

The decomposition (2.7) applied to A gives Lyu=1, Ly=A,. Ly=A,.

Lpp=1—AyAL, and D =1. Now both X in (é..6) and D in step d) of Figure

2.3 are identity matrices so that the ICCGE algorithm for 2-colored matrices costs
essentially the same as standard conjugate gradient.

Both block ICCG implementations described above for p-colored matrices are in

fact equivalent to the point ICCG(0) method of Meijerink and van der Vorst [1977]

applied to p-color matrices. In chapter 4 we examine the effect of multi-color

18

orderings on both the convergence rate of the ICCG method and the total execution

time.

2.6. m-step ICCG _

Incomplete factorization may be viewed as a splitfing. A =LDLT — R, and we
are .led- to consider the iterative method defined by this splittir_xg.' Following Adams,
[1983b] we takeb m steps of the iterative method

LDLTfF =Rl 4x* , BE=0, '1 cee.m 2.9) .

as the prebondiiioning step at the kth conjugate gradxent iteration and call this an

m-step ICCG method. With m=1, (2.9) reduces to ICCG as previously Adwcribed.

| "An impro4vement of the m-step ICCG preconditioning can be achieved usth

polynomial preconditioning as suggested by Johnson, Micchelli, and Paul [1983] and
used by Adams [1983b].

Adams [198 5] discusses m-step preconditioned conjugate gradient methods and
gives necessary and sufficient conditions for the préconditioning matrix M to be
symmetric positive deﬁnlte when M is given in terms’ of an m-step linear stationary
method defined by any sphttmg, A =P —(Q, where P is a symmetric nonsingular
matrix. If K = PQ is the iteration matrix, M1 is given explicitly by -

| M= +K+ - +Km)pt ’ (2.10)
For incomplete factorization, P = LDLT and Adam’s result can be stated as: For odd
m, M is positive definite if and only if LDLT is positive definite while for even m,
M is positive definite if and only if LDLT + R is positive definite. Assuming that
the incomplete factorization of A ensures that D is positive definite, then for odd
m, M will be positive definite. Since R is not explicitly known, the case of m
even is not so easily ascertained. One way to meet the conditions for M to be
positive deﬁnite for even m.is to ensure that R is positive semi-definite, and Robert

[1982] gives an incomplete factorization with this property. The main drawback of

19

Robert’s factorization method for the CYBER 205 is that the decomposition is
ret.:ursively deﬁned. It also requires the formation of R which increases the storage
requirements signiﬁcantly.v " Robert’s results show that the shiftihg method of
Manteuffel is an alternate way of ensuring that R is positive semidefinite.

The major drawback in using (2.9) is that R is not explicitly formed during
the decomposition and if it is formed, it may take more storage than L. We can
compute the vector R, by using R = LDLT — A but this requires a costly matrix
multiply, A ££,, for m>2. Since the cost of solving LDLT is nearly the same as a
matrix-vector multiply, the cost of m-step incomplete Cholesky preconditioning will
be approximately 2m-—1 times the cost of a matrix-vector mui;iply so. that even
though the number of iterations may decrease for m-stép ICCGC, the execution time
may not. It remains an lopen question as fo how to carry out ‘an 'm-s.tep ICCG

method in an efficient way.
Summary

In this chapter we have discussed point and block incomplete. Cholesky
factorizations. We have shown how multi-color orderingé are used to derive a block
incomplete Cholesky method suitable for the CYBER 205. An inipleméntation was
given., based on a generalization of Eisenstat [1981], which is superior to the usual
PCG form given in chapter 1. We also discussed m-step methods but noted that a
major drawback of these methods is the neceésity of additional matrix-vector

multiplies, which make the process too costly.

CHAPTER 3

Multi-Coloring to Vectorize ICCG

In ihis chgpter we discuss the multi-coloring technique used to vectorize the
'ICCG method. The multi-color orderings we describe can be applied to a wide class
of problems but for simplicity and clarity we shall restrict ourselves to a clas§ of
problems we call class R which arise from the solution of partial differential
equations using finite element or finite difference methods. We assume the domain
of a class R problem to be rectangular in 2 or 3 dimensions with Dirichlet
boundary conditions imposed along each side of the domain. To obtain a numerical
approximation to the exact solution of the partial differential equation, we discretize
the domain s§ that there are r points per row in [planes, each containing ¢ rows.
leading to the solution of a | linear system of equations, Ax =b. The vector x
contains the unknowns which are the approximate solutions to the partial differential
equation at the grid points. At each grid point there will be & > 1 unknowns if
we are solving a system of partial differential equations. The size of the linear
system for a class R problem is given by N =r Xc¢ X1 Xk . |

Although class R is limited to rectangular and rectangular parallelepiped
domains and Dirichlet boundary conditions, the results given in this chapter extend
to more general 2 and 3 dimensional problems. Figure 3.1 is an example of a non-
rectangular region which has been discretized so that there are "rows" of équal
numbers of . grid points which can be ordered by the multi-color orderings we
describe in this chapter. Moreover, .it is possible t6 “handle Neumann or other

boundary conditions, at least in certain cases.

20

21

‘Rectangular - like’ Discretization

Figure 3.1

Each row, i, in the matrix A contains the non—iero coefficients for the .equation
for the unknown x;. For class R problems we will assume that the number and
location of non-zero coefficients is described by a uniform grid stencil: that is, the
same .grid stencil is applied at each grid point. Note that at grid points near the
boundary of the domain, any elements of the stencil associated with known
boundary conditions do not give fise to non-zero elements in fhe matrix A. For
example, the I;aplace problem has a 5 point grid stencil shown in Figure 3.2, .
indicating that the equation for the unknown at the ith interior grid point has non-
zero coefficients for the unknowns to the east, west. north, and south in the grid
and of course, for the ith point itself. Equations for the unknowns associated with
the bottom row of interior grid points, however, will have no south grid point

coeflicients.

22

9 Dié.gonals Stored

stencil K's

i 0

O—(—) i d
i-1 -1

| 1+r r

i-r -r

(&)
Grid Stencil and Connectivity Set for Laplace’s Equation
Figure 3.2 |

The éoeﬁicients for t;he N equations are assembled into an N x N matrix. For
problems with one unknown per grid point, the structure of the assembled matrix is
determined by an ordering of the grid points. However, for problems with more
than one unknown per grid point there is more than one equation associated. with
‘each grid point and so we need to define an ordering in terms of the unknowns,
rather than just the grid points, to determine the structure of the assembled matrix.
We shall hereafter refer to orderings in terms of the unknowns rather than the grid
points.‘ ‘The process of determining the structure of the assembled matrix given the
ordering of unknowns is described in Appendix B. Our interest in this chapier is in
choosing orderings which lead to efficient vectorization of both the matrix-vector
multiplication in the conjugate gradient iteration and the forward and back solves in
the preconditioning step of the ICCG algorithm. We will give neccessary and
sufficient éondifions to determine which p-color orderings of the unknowns
cdrreséond to p-c.olor matrices, as described in chapter 2. We also indicate a process
for chqosirig multi-color orderings which will maximize vector lengths within blocks
of the p-colored matrices for class R problems and which is easy to apply for even

the more diﬁicult 3 dimensional problems. Examples are given from the model

23

problems to indicate how the multi-coloring techniques are applied. We also discuss
the diagonal ordering which has been used to vectorize ICCG, showing why it is not

as effective for computers like the CYBER 205.

3.1. The Natural Ordering

For two dimensional problems, the natural ordering is usually described as a
left to right, bottom to top ordering of the grid points although several variants are
" equivalent. For example, orderings from bottom to top, right to left or right to left,
top to bottom can also be considered natural orderings. The natural ordering we use
will be the left to right, bottom to top ordering. For a three dimensional problem
the planes of grid points are ordered from bottom to top with the unknowns in
each plane ordered as described above. For problems with more. than one unknown
per grid point the unknowns at each grid point may be ordered consecutively or
alternating. That is, we can order all the unknowns of one type consecutively
following the natural ordering and then order the unknowns of another tYpe again
by the natural ordering and so on, or we can order the grid points by the natural
ordering and alternate the various unknowns at each grid point. If there are two

unknowns, ¥ and v, at each grid point the two methods are :

consecutive; UMMM UV VYV, Y (.1

alternating; u.vuvuvuy, - uyv : (3.2)

" Using (3.1) or (3.2) in conjunction with the natural ordering of the grid points, we
number the unknowns and will ﬁereafter refer to these unknowns as the w;’s. The
main purpose for defining the unknowns, w;, in this way is to describe the position
of a given unknown in the. grid independent of the order in which these ‘uhknowns
appear in the linear system Ax=b. For examplefor a r Xc grid with 3
unknowns per grid point, the second unknown associated with the fifth grid point in

the third row is w;, where i=rc+2r+5 when (3.1) is wused, and

24

i= 2(3r)+(4)(3)+2 when (3.2) is used. The w; will be the components of the
vector X but not necessarily in the same order in which we have numbergd the w;.
'Thi_s is true, in .pax;ticular. for the multicolor orderings to be discﬁssed later.

- For a given ordering of the. unknowns w;, as discussed above, we now define a
connectivity set, Y, of integers, x, which indicate couplings between the w;. Let P
be any interior grid point and let w; be one of the unknowns at P. Through the
differential equations and their discretizations, there is an equation in terms of w;
and the remaining unknowns which represents the approximate partial diﬂ"erex_ltié.l
equation at the grid point P. We say that w; is coupled to w; if there is' a non-
zero coefficient of w; in the equation for w;. We define the set Yp by

Yp = { k1 w4 is coupled to w; for all w; at P}
Then we define the connectivity set Y by '
Y= L}g Yp

where the union is taken over all interior grid points. We observe that, because of
the uniform grid stencil, Y =Yp for any grid point Py at which the grid stencil
v does not include a boundars' point. Thus, we can obtain Y by calculating Yp, for '
any suitable Po. Y depends on the dimensions of the grid, the uniform stencil, the
number of unknowns at each grid point, and the choice (3.1) or (3.2) of numbering
these unknowns. | .

We now give an example for a class R problem having k¥ unknowns | per grid
point on a r Xc grid with a uniform stencil containing s points; note that there are
kr unknowns in each row of the grid. If we use (3.2) in coﬁjunction with the
natural ordering of the grid points to numﬁer the unknowns, the north neighbors of
the leftmost, or first, unknown, which we denote by w;, at some grid point are the
k unknownsA wiﬂ.}. Witkr+1> ° °° Witkr+t~1. the north neighbors of the second

unknown, denoted by w;, at the same grid point are Wjirre1. Wisr. * * ° W)atr +(k—2)»

25

aﬁd the north neighbors of the kth unknown, w,, at the same grid point are
Whakr =k +1Wh +kr—k 425 * ° " Wha+kr- Thus, the set Y will contain the 2k—1; integers
kr—k+1,kr—k+2, - kr kr+1,--- kr+k—1 corresponding to all of fhe north
coefficients for the unknowns at this grid point. In general, for each other grid
stencil point, for example, south, east, etc., Y also will contain 2k—1 K's. | However,
the k's arising from the s different grid stencil points need not all be different so
that the set Y, in general, will not contain s(2k—1) values. If (3.1) is used in
numbering the w; there are still 2k—1 x's for each grid point but, for example, the
values of « for the north neighbors are r—(k—1rc, r—(k—=2)c, --- ., r, rtre,
| , r+(k—=1re.

- The above discussion has indicated how to obtain Y in general and we now
give two complete examples to illustrate how the set Y is obtained for a problem
with one unknown per grid point and one with two unknowns per grid point. We
consider first the Laplace model problem. Figure 3.2 shows the; grid stencil for
Laplace’s equation and lists the K's corresponding to each non-zero coefficient in the
equation for w;. The grid stencil is derived from the finite difference equations used
to approximate the solution of- the differential equation and the «'s m Y are then
determined. using the number of points per row in the discretized doﬁain. For
instance, the north neighbor of gfid point i in a grid with r points per row is the
G+r)th grid point so that the k value for the north neighbor is . Note that the
x for the north neighbor depends on the dimension, r, of the grid.

For an example of a system of partial differential equations, we consider a
plane stress problem described in Adams [1983a] in which a plate is fastened to a
rigid body along one side and a load is applied on the opposite side. A detailed
description of the finite element solution for this problem is also given in Becker, et
al. [1981]. The rectangular domain is discretized using triangular finite elements on

which linear basis functions are defined (see Figure 3.3). At each grid point, there

26

k's for Plane Stress Problem

j=2i—1 j=2
unknown u v
C. 0 1
C, 1 0
N, 2r 2r-1
N, 2r+1 2r
Sy -2r -2r-1
. S, -2r+1 2r
Grid Stencil E, 2 1
. . .. E, 3 2
Trxapgular Finite Elements W, 2 3
W, -1 -2
A, 2r-2 2r-3
A, 2r-1 2r-2
Z, 2r+2 -2r+1
Z, -2r+3 -2r+2
Plane Stress Problem

Figure 3.3
is a pair of equations for the displacements, ¥ and v, in the x and y directions.
We order the grid points according to the natural ordering and use the alternating
pattern (3.2) for the u and v unknowns at each point. For this ordefing. the u
‘unknowns are odd numbered and the v unknowns are even numbered. Since both
the ¥ and v equatiohs at each grid point are coupled to the v and v unknowns at
the grid points indicated by the grid stencil. Y contains values for both the u and
v unkno§vns. For example, the © unknown at grid pdint i is w;, where j=2i-1.
It is coupled to the north u and north v unknowns as shown by the grid stencil in
Figure 3.3. The north u unknown is the (j+2r)th unknown and the north v
unknown is the (j+2r+1)st unknown. Similarily, the v unknown at grid point i is
w;, where j=2i. Note, however, that the north © and v ﬁnknowns are now the

(j+2r—1)st and (j+2r)th unknowns. Thus, the set Y contains the values 2r-—1,

27

2r, and 2r+1 for the coupling of the north and center points. Figure 3.3 lists all
the ks for the plane stress pfoblem. giving those associated with the u unknowns in
one .c-olumn and those associated with the v unknowns in another. Note that there
are duplicate «'s in each column but some values appear in oniy one of the
columns, such as the 3 for the E, unknown in the u column and the -3 for the
W. unknown in the v column. Combining the two columns, we see that there are
17 different values of x for the 7 point stencil shown in Figure 3.3. Although
there are 17 different values in the set Y, no more than 14 different values 'are
associated with any one unknown. This is expected since there are only 14
unknowns corresponding to the grid stencil jat any grid point and thus the equation
for.any w; will contain at most 14 non-zero coefficients.

If, in the plane stress problem, we use the consecutive pattern (3.1) with the
nat}lral ordering of the grid points to number the w;, the set Y. will contain
different values and a greater' number of distinct values. For example, tﬁe north u
and v unknowns for the u unknown at grid point i, w;, are now given by w;,,
and W;4+,c4+ While the north ¥ and v unknowns for the v.'unknown at grid point
i, .w,, j=i+re, are wjc4r and wj4,. The number of distinct values in Y for
this ordering is 21.

We now discuss, in general, the formation of the matrix A from the N
equations in the unknowns w;. We number the unknowns as already discussed but
then the Vector X in the linear system Ax =Db is formed by assigning each w; to a
particular x; in a one-to-one mapping. Having chosen a mapping of the w; into x
the structure of A is determined as follows. FEach row i in A corresponds to the
equation for the w; that is assigned to x;. Row i in the matrix will contain the
non-zero coefficients for the equation for that w;. For each w4, that has a non-
zero coefficient in the equation for w; the position of w;4 in x., denoted x;., is

determined. Then the entry in row i column %k, a;4. is the coefficient for unknown

28

constraints

Diagonals Stored
K's

stencil

i #=gp

i+1 #gp
i+r—1 =gp
i+r Zqp
i+r+1=gp

0

1
r-1
r

-1
-r+1
-r
-r-1

r+1

Om<zZmaz Ny >

Grid Stencil and «’s for Mixed Derivative Problem

Figure 3.4
Mixed Derivative Problem - 6 X 7 Grid

Natural Ordering of the Unknowns

Figure 3.5

In the next section we discuss assignments of the w;’s to x which are called

Witx-

29

multi-color orderings of the unknowns. In this section we define the ordering of x
by -

x=w , 1Si <N (3.3)
If there is one unknown per grid point (3.3) defines the natural ordering of the
unknowns which leads to the natural ordereci matrix for the given problem. We
illustrate the natural ordering for a problem with .one unknown per grid point with
an example from the mixed derivative problem. The grid stencil for the mixed
derivative equation (1.3) is the 9 point star shown in Figure 3.4. The «'s in Y are
given for a grid with dimensions » X ¢ ordered by the natural ordering as discussed
in section 3.1. The cor;straiﬁts refered to in Figure 3.4 are discussed in a later next
section. The 9 diagonal matrix shown in Figure 3.5 is the natural ordered matrix
for the mixed derivative problem. Because of symmetry the matrix can be stéred in
5 diagonals of length O(N). &

Figux_-es 3.6 and 3.7 show the matrices for the plane stress problem Where x
has been ordered by (3;3) and the unknowns, w; at each grid point have been
numbered by ‘the natural ordering of the grid . points and (3;2) and (3.1),
respectively. Recall that the set Y contained 21 elements for the (3.1) numbering of '
the unknowns and 17 elements for the (3.2) numbering. Likewise, the matrix in
Figure 3.6 contains 21 diagonals and the matrix in Figure 3.7 contains 17 diagonals.

Let us now consider vectorization of the nﬁatrix-vector multiplication. " For this
operation we store the matrix by diagonals and use matrix multiplication by
diagonals, as previously stated. We want to choose an ordering of the upknowns.
w;, in X which will result in the minimum npmber of diagonals to'store the matrix,
thereby maximizing vector lengths. We will show that for class R problems the
assignment (3.3) for problems with one unknown per grid point yields a matrix
with the minimum number of diagonals and for problems with more than one

unknown the number of diagonals in A is equal to the number of elements in the

30

5152 5354 5586 5758 5960

1112 1314 1516 1718 1920

.

34 56 78 910

12

Plane Stress Problem - 5§ X 6 Grid

Natural Ordering with (3.2)

36

Fi

set Y.

For a class R problem with only one unknown per grid point and a uniform

grid stencil with s points, the equation for any w; for which the unknowns coupled

by the grid stencil are not boundary points will contain s non-zero coefficients and

31

Hence, there are s coefficients

535

918 1020

816

333 434

Figure 3.7

714
232

612

2656 2757 2858 2959 3060
131

Plane Stress Problem - 5 X 6 Grid
Natural Ordering with (3.1)

the number of elements in Y, v, is also equal to s.

to one of these w; and so there will be at least s

ing

A correspond

in every row in

imum number of diagonals, 5, will not be

is min

It is clear that th

diagonals in A.

achieved by arbitrary orderings of the w; into x since the s non-zero coefficients in

32

succesive rows of A may not all lie along common ciiagonals. For class R problems
with & > 1 unknowns per grid point, the minimum number of diagonals is not so
easily asertained. We have already seen that each grid stencil point corresponds to
2k—1 ks in Y so that ¥ € s(2k—1). Thus an upper bound on the number of
diagonals in A which contain the non-zero coefficients for the equations for the &
unknowns at any particular grid point is s(2k—1). The actual number of non-zero
coefficients in A for the £ rows corresponding to any grid point may be .much less
than this bound for two reasons. First of all, in many problems several of the
coefficients indicated by the grid stencil may be zero at évery grid point. In the
space truss préblem which we consider in a later section, the element matrices for
the truss elements that make up the finite element model for the 3 dimensional
truss are themselveé sparse _and so many of the coéﬁiciehts indicated by the stencil
are zero. Secondly, it is generally the case that the x's at each grid stencil point
are not all different from the k's at other grid stencil points, as we have already
discussed in defining the set Y. In any case, we seek orderings of the unknowns for
which the number of diagonals in A is equal to the number of diagonals necessary
to store all of the non-zero. coefficients for the k equations of the unknov;ms at any
one interior grid point. Thus, the number of diagonals in A would be given by v,
the number of elements in Y. The following theorem states this result for the

ordering of x by (3.3).

Theorem 3.1:
Gi;'en 'a (2 or 3 dimensional) class R problem with a uniform grid stencil
containing s points, the associated conectivity set Y containing v elements, and x
ordered by (3.3), then
a) If there is one unknown per grid point and the unknowns w; are numbered

by the natural ordering of the grid points, the number of non-zero diagonals

33

in the matrix A is v, and is equal to s. Moreover, v is the minimum
number of diagonals possible. |

b) If there are ¥ >1 unknowns per grid point and (3.1) is used in conjunction
with the natural ordering to number the unknowns, then the number of
diagonals in A is given by », and is less than or equal to

2k —1)s (3.4)

c) If there are £k > 1 unknowns per grid point and (3.2) is used in
conjunction with the natural ordering to number the unknowns, then the
number Qf diagonals in the matrix A is given by » and is less ‘than or equal
to

E(s+1)+2(k—1)sp + 1 (3.5)
where sp is the number of points in the grid stencil which come after the
center point in the stencil as defined by the natural ordering and which have
no left neighbor in the stencil. |

Proof :

a) By (3.3),the unknown w; corresponds to row i in the matrix and each .
point in the grid stencil described by a k € Y corresponds to the unknown
x;+x at grid. point i +«. Therefore, each K. gives rise to a diagonal in A of
non-zero coeﬁicier;tS of the form a;;4+, ,1Ni,i+xSN. Since each grid
stencil point corresponds to one and only one k€Y, the number of elements
in Y is 5 and there will be s diagonals in A, the nﬁnimum number possible.

b) Once again., by (3.3), x; =w; and each k in Y corresponds. to a diagonal in
A with coefficients émﬂ_ so that the number of diagonals in A is v. To
derive the bound (3.4) on the number of diagonals in A it is sufficient to
consider only diagonals in A which lie above the main diagonal since A is
symmetric. We will show that the number of diagonals above the main :

diagonal in A is

34

(k—=1)s + |s/2] (3.6)

where || and [] denote the integer rounding functions that round down or
up respectively if the quotient has any remainder. Since diagonals above the
main diagonal are of the form a;;4x, k>0, we determine the number of «'s
in Y which are positive. Figure 3.8 represents 7 grid points coupled by a
7-.-point grid stencil in a two dimensional r Xc¢ grid where there are 3
unknowns per grid point numbered by the natural ordering in conjunction
with (3.1). Each ellipse represents a grid point and the smaller circles within
eaéh ellipse are the three unknowns at each grid point. The center point. P,
contains the 3 unknowns u, v, and z and the exprwsiéns below each
unknown describe all the unknowns which are coupled to P and are
numbered after the particular unknown at P. Notice that since all of the

middle and rightmost unknowns at the grid points are numbered after all of

(u+r—1) (u+rc+r—1){u+2ret+r—1) (u+r) (utrc#r) (u+2rc+r)
(v+r—1) (v4rc+r—1) (v+r) (v+rc+r)
(z+r—-1) (z+r1)
' Grid Point P
(-] -]) (-] [)
< _ T +°_1) % —1) W (u+rc) {u+2rc) (u+1) (utrc#l) (u+2rc+1)
e : +:cc—._1)) (v+rc) v+1) (v4rc+1)
v @ (z+1)
‘o (-] o (-] -] o
utrc—r) (u+2rc—r) u+rc—r+1) (u+2re—r-+1)
(v+rc—r) (v4rc—r+1)

7 Point Stencil for a Problem with k=3 Using (3.1)

Figure 3.8

35

the leftmost unknowns, the «'s corx-'&sponding to the coupling between point P
and all of the middle and right unknowns are positive and the coefficients
a;i+x all lie above the main diagonal. In general, for £ unknowns per grid
point and s stencil points the number of non-zero coefficients corresponding to
u for any grid point P is given by s(k—1). In addition, the leftmost
unknowns at the grid points to the right and above u also are numbered
after v and the corresponding coefficients lie above the main diagonal in A.
In general there #re [s/2] stencil points to the fight Vand above the center
grid point for a grid stencil that corresponds to a symmet_rié matrix.
.Therefore. the: total number of diagonals abéve ‘the main diagonal in A is
bounded .by (3.6)." Now since A is symmetric the grid stengil. will bhave Az.a,n
odd number of points so that 2|s/2]=s5—1 and the iotai number of
diagonals in A is bounded by
2(k—1)s +2|s/2]+1=Qk — 1)s
c) Again, by (3.3), each k € Y corresponds to a diagonal in A with coefficients
@; i+« SO there are v diggonals in A. As before, we count the number of
diagonals above the main dfagonal by counting the numbex; of positiﬂle K's in
Y for a point P in the grid. Figure 3.9 again represents 7 .grid points
coupled by a 7-point .grid stencil, as above, but where the unkndwns w; are
numbered by'(3.2). Now all ks for unknowns to ihe right and above u are
positive. In general, the number of‘ unknowns to the right and above the
leftmost unknown at point P is
kls]-1 (3.7)
Notice, however, that in Figure 3.9 the expressions for the unknown v at P
include a x that was not among the ks for u, namely the k for the
leftmost unknown in the top left grid point in Figure 3.9, v+r—4. The

coefficient indicated for this coupling lies in diagonal @;;4 4, a diagonal not

(u+r—3) (utr=2) (utr—1) (u+r) (u+r+1) (u+r+2)
(vir—4) (v+r-3) (v+r-2) (v+r-1) (v4r) (v+r+1)

(z4+r—5) (z+r—4) (z4+r—3) (z+r—2) (z4r—1) (z+1)

Grid Point P

< > (w (u+D) (u+2)
') 07) (v+1)
@

7 Point Stencil for a Problem with k=3 Using (3.2)

Figure 3.9

36

(u+3)
v+2)
(z+1)

(u+4) (u+5)
(v+3) (v+4)

(z+2) (z+3)

R

counted in (3.7). In general, if there are ¥ unknowns at each grid point,

then for evgry‘ grid stencil element to the right and above the center grid

stencil point that does not have a left neighbor in the stencil, there are k—1

additional positive ks in Y. These are the s points in (3.5) and we note

that s € |s/2]. This completes the proof.

For class R probléms ~with only one unknown per grid point, Theorem 3.1

states that' we can do no better than the natural ordering for diagonal storage of the

matrix. For more than one unknown per grid point, the number of diagonals in A

is given by », the number of elements in Y. Note that since sp € |s/2). (3.5) is

less than or equal to (3.4). Therefore, (3.2) in conjunction with the natural

ordering will always require no more diagonals than (3.1) with the natural ordering.

However, the minimum number of diagonals is not always the best all around

37

choice; another consideration is the amount of storage required for each ordering.
Note that by (3.4) the number of diagonals in ‘the plane stress matrix is less than
or equal to 21 while (3.5) indicates that using (3.2) with the natural ordering will |
require no more than 17 diagonals. In Figures 3.6 and 3.7 the matrices shown do
contain 17 and 21 diagonals, respectively. However, in Figure 3.6 storing A in 17
diagonals requires that O(N/2) zeros be stored for many of the diagonals, for
example, the lower S diagonal. Thus, a total of O(9N) memory locations is
required if we store only the upper or lower triangular part of A. Alternatively.
one may chose not to store the alternating zeros, in which case execution time for a
matrix vector multipl3; is slowed considerably since costly gather-scatter operations
must be performed each time such a diagonal is used in the matrix vector multiply.
The matrix in Figure 3.7, on the other hand, shows that the (3.1) ordering requires

21 diagonals but only O(7.5N) memory locations.

3.2. The Coloring Problem -

We now consider the more difficult problem of obtaining orderings of the w;
which result in p-color matrices as well as maximize vector lengths. A p-color
ordering can be described as a parti;ioning of the unknowns, w;, into p disjoint sets,
S; . 1S7S<p. The unknowns in each S, are assigned to X consecutively
.beginning with thg w;'s in §;, followed by S, and vso on. If the p-coloring has the
property that no elements in S, are neighbors, as defined by the set Y.n the
corresponding matrix will be a p-color matrix, that is, it will have the form (1.1)
with the diagonal blocks themselves diagonal matrices. Determining the coloring of
the unknowns that corresponds to a p-color matrix for an arbitrary grid stencil
using the smallest possible number, p, of colors is a graph coloring problem which,
in general, is NP-complete. (See, e.g.. Horowitz and Sahni [1978]). For many

problems of interest in scientific and engineering applications, however, colorings have

38

been given which result in the desired p-colored matrices. (See, e.g.., Adams [1983a]
). In Chapter 2 we used ‘a particular multi-color ordering to obtain a p-colored
matrix which was used to implement a block incomplete Cholesky preconditioning
with the &esired long vector lengths. However, for a given problem with its
associated grid steﬁcil, there may be several different coloring schemes that result in
p-colored matricés. and we wish to determine those orderings which maximize vector -
lengths. Schreiber and Tang [1982] claim that the ordering ch'osen should achieve
_the p-color matrix form with the smallest p poséil'ale. We will show that
additional factors must be conside_re-d and in fact that using more than the minimum
p colors may result in more efficient vectorization for some problems.

We now state and prove the following theorem, which gives necessary and
sufficient co'.nditions to ensure that the matrix corresponding to a p-color ordering

will be a p-color matrix.

Theorem 3.2 :‘Thve P-Coloring Theorem
Given a (2."017 3 dimensional) class R problem with connectivity set Y
associated with a given uniform grid stencil, and a p-color ordering of the
unknowns, w;._‘ (one or more per grid point) into p | disjoint sets,
Sr., 1S7<p, the c;orresponding matrix, A, is a p—éolor matrix if and only if
the follbwing condition is true for every unknown w;:
if wi € Sy then wiyx €Sy for evernyY.x#Osuchthathorrespondstoc_zn
unknown w4, coupled to w;. |
Proof :
- 'The matrix A .is p-colored if and only if each diagonal block, A,;, is
diagonal. If w;4x € S, for some wi.‘ €S, and k¥ 0 then the row in A,
corresponding to i will have a non-zero coefficient in an off diagonal position

so the matrix is not pA-colored. Conversely, if the above condition is satisfied

39

for all i, then there will be no off diagonal entries in any of the A;;,
1 < j € p, and the matrix will be a p-color matrix.

In the next section we give an example of a matrix which arises from a
multi-color ordering but is not a p-color matrix and we will see that it violates the
condition of Theorem 3.2.

We now ~consider the other important characteristic of p-color matrices that
makes the long vector operations in the forward and back solves in the
preconditioning step of ICCG possible, namely O(N/p) length vectors within the
blocks of A. Given a coloring which results in a p-color matrix, if we order the
w;'s within the S,’s rahdomly, we will almost certainly not obtain O(N/p) length
vectors in A. On the other hand, the ordering of the w; in S; may be arbitrary as
long as the remaining w;’s in the S,s. 2 £ 7 < p, correspond to the w;’s in S; in
the manner described in Figure 3.10. |

Let us now consider an example of Theorem 3.2 and the condition in Figure
3.10. For the mixed derivative problem, we can write the S; explicitly as shown in
Figure 3.11 for a 4-color ordering of a 7 X 6 grid The first 12 rows in the matrix
in Figure 3.11 correspond to the 12 unknowns in S;, in the order shown. Likewise,
the next 9 rows corrwpond.to the unknowns of Sz, and so on. "For the 7 X 6 grid -

the set Y is {0.1,6.7.8,—1,—6.—7.—8}.

For each x in ¥, all of the unknowns, w;4,. coupled to w;’s in §, are in-

one and only one of the S, . 7#£1, which we denote by Sx. Furthermore.

the unknowns in Sx denoted by wgy, w2, © -+, which are coupled by a par-

ticular x to unknowns in S;, which we will denote as wgy, w,a, -+, are
" coupled in the following way:

wg; is coupled wg4s . A is a constant.

Multi-Color Ordering Constraint

Figure 3.10

Mixed Derivative Problem - 7 X 6 Grid

S, ={1,3,5.7,15,17.19.21,29.31,33,35} ., S, = {2,4.6,16,18.20,30,32,34}

S5 = {8,10,12,14,22,24,26,28,36,38,40,42} , S, = {9.,11,13,23,25,27,37,39.41}

4 Color Ordering - Or) Length Vectors

Figure 3.11

40

41

The fact that Theorem ?.2 is satisfied by the p-color ordering in Figure 3.11 is
evident from the picture of the grid. At any grid point, P, the surrounding
neighbors in the 9 point stencil are different colors and hence are not in the S;
‘containing wi. We can also apply the condition of The;)rem 3.2 directly for each
unknown. For example, the equation for the first unknown. has non-zero coefficients
corresponding to the N, B, and E grid stencil elements. The x's from the set Y
for the N, B, and E grid stencil elements aré the integers 7, 8, and 1. To satisfy
the condition in Theorem 3.2, unknowns 8, 9, and 2 cannot be in the set Si1.. Note
that at a grid point which has boundary points as neighbors, only those «'s in Y
which correspond to n:c;n-boundary points are used in the test. For example, if we
calculate the Z coefficient of grid point 7 for which «=8 we get wys. This
unknown is in set S3; which would violate the condition in Theorem 3.2. However
since grid point 7 does not have an Z coefficient due to the' boundary of the
domain, we do not test point 7 with x =8. For problems with more than one
unknown per grid point, we have already seen that some of the K's.apply only to

one of the unknowns at each grid point while some apply to all of the unknowns.

Although the diagonals corresponding to the N and S grid stencil elements line
up within each block of the matrix in Figure 3.11, the remaining diégonals for each
grid stencil element do not. For the unknowns in S;. the coefficients corresponding
to the north grid stencil are all in S a;nd each element in. S3 is associated with the ‘
elements in S; consecutively. Note that, in the notation described in Figure 3.10,
ws is coupled to wp; where £=3 and, here, A=0. The coefficients corresponding to
the east grid stencil element are all in S but the elements in S, do not correspond
to consecutive elements in S 1- Note that the first 3 elements in Sz correspond to
the first 3 elements in S; (A=0) and the first £ diagonal in block 1,2 of the matrix
in Figure 3.11 has length 3. However, the 4th thru 7th elements in S, correspond to

the 5th thru 8th elements in S; (h=1) and the corresponding E diagonal in block

R
WE C A
WE

Mixed Derivative Problem - 7 X 6 Grid

S; = {1,3,5,7.16,18,20,29,31,33,35} , S, = {2.4.6,15,17,19,21,30,32,34)}

S3= {8._10.12.14.23,25.27.36.38.40.42} » S4= {9.11.13.24.26.28.37.39.41}

4 Color Ordering - O(N/4) Length Vectors

Figure 3.12

42

43

1,2 lies below the first £ diagonal. This shift of the E diagonals occurs because in
each row containing point?s-'colored 1 and 2 there is one more color 1 point than
color 2 points. The vector"lengths of the E diagonals are O(r/4) rather than the
desired O (N /4). |

One solution to this problem is to change the colorihg pattern as shown in
Figure 3.12. Row 3 now begins with color 2 and row 4 begins with color 4. This
4 row pattern is maintained throughout the grid. One can verify for each §; shown
in Figure 3.12 that the condition in Theorem 3.2 is satisfied by this p-coloring.
Note that the E coefficients for the unknowns in S; are again in Sz and the first 3
unknowns in S corr;spond to the first 3 unknowns in §;. The 4th unknown in S>
does not correspond to the 4th unknown in S; but the 4th unknowh in S; is on
the right border. of the grid and has no E coefficient. This extra element in S2
allows the Sth unknown in S2 to correspond to the 5th unknown in S and the
condition of Figure 3.10 is satisfied. As a result, the E diagonal in the first block
row of A is of length .O(N /4), as desired. The same result is true for all of the
diagonals in Figure 3.12 and the vector lengths for this p-coloi' matrix are all
O(N/4).

As a final example, we give in Figure 3.13 another multi-color ordering which
does not meet the conditions given in Figure 3.10 for the minimum number of
diagonais. Notice that here we color eachi row continuously but the pattern is not
continued from one row to the next. The alternating patfern in some of the
diagonals in the 4-color matrix in Figure 3.13 are r/4 length diagonals which can be
stored contiguously if r/4 zeros are added between each r/4 vector. For instance,
the A, Y, and W diagonals in block row 1.can be stored in 6 vectors of length
O(N/4) but O(N/4) zeros must also be stored for each vector, introducing undesired
overhead in storage and computations. Cle.arly. this matrix does not have the

minimum number of diagonals within each block.

44

[EA N W B
(o] Y E A s N B .
[Y E A] N Z W DB
[E s N B
C Y EA s N ZW B
C Y A 8 N W B
[Y E A 8 N Z W3
c E] N z 3
[Y _EA 8 N ZW B
Cc YYE ls zzww
W B T jTA N
C E A N
ZW_ B [+ Y EA S N
o] Y A 8 N
Z W B C Y E A 8 N
B [Y E A 8 N
ZW__ B Cc Y EA s N
w Cc Y A L} N
Z W B (o Y E A] N
zZ W c Y E A 8 N
W [Y E -]
W Cj Y 8
N W5 T E_X
N W B C E A
s N z B c E
8 N ZW - B c [Y EA
8 N Z W B [Y E A
[} N Z W B o Y E A
s N B C E
8 N ZW 3B [Y EA
s N Z W DB c Y E A
8 N [Y E_A
] z C E
-] kAL C Y E
EX N B —'ﬂ
A N w c
Y E A 8 N Z W B C
Y E A 8 N Z W B [
Y EA] N ZW B Cc
Y A 8 N (o]
Y E A 8 N Z WD (o]
Y E A -] N Z W B C
Y E -] N ZW_ B Cc
Y A 8 w [
Y E] W [
Y H 8 Z C
3 4 1 2 3 4 1 2
1 2 3 4 1 2 3 4
3 4 1 2 3 4 1 2
1 2 3 4 1 2 3 4

Mixed Derivative Problem - 8 X 6 Grid’
4 Color Ordering - O(r/4) Vector Lengths
Figure 3.13
We now consider another type of ordering, called the diagonal ordering, which
can be considered a type of multi-coloring where p is no longer a constant

independent of the grid dimensions but, rather, is given by p =r +¢ —1. This

45

‘
&
W a N
s Ju N &
wd c | Ng
N
3 | *f N &
wsJ c NE
w Cc ‘NE
W N
3 [¥
W§ c NE
ws c NE
\ c NE
C NE
3 L*g) N E
WS c NE
ws c NE
ws c NE
ws c NE
d N
S |¥ N E
ws c NE
ws c NE
ws c NE
ws c NE|
ws (o N
> (% &
8 c NE
ws c NE
ws c NE
ws c NE
] C N
. > 1
| ws c E
ws c NE
ws c NE
ws c N
S (o E
ws c_ [NE
w§ ¢ | NE
ws o N 1|
-3
ws I'c INE
w cl N
S [E
wsl ciN
I]
8 9 10 11 12 13
3 4 5 6 7 8
2 3 4 5 6 7
1 2 3 4 5 6

Laplace Model Problem - 6 X 8 Grid
Diagonal Ordering
Figure 3.14
ordering, shown in Figure 3;14 for a 6 X 8 grid for the Laplace problem. has been
used to vectorize ICCG by several authors, for example, van der Vorst [1983] and

Schreiber and Tang [1982]. There are 13 colors and the 13 sets are formed by

46

assigning unknowns along diagonals in the grid to distinct sets. For example,
S1={wi}, Sa={wswsz}, S3={wi.wsws}, and so on. Since the grid stencil for
Laplace’s equation does not couple any grid points along diagonals, it is obvious that
the matrix corresponding to the diagonal ordering will be a p-color matrix. This
fact can also be deduced from the condition in Theorem 3.2. One can also verify
fhat the condifion in Figure 3.10 is satisfied by this ordering although in tﬁis case
the maximum vector lengths are only O(r). The main drawback of this ordering
for vector computers. such as the CYBER 205 is that the vector lengths in the
matrix in Figure 3.14 are of average length r/2 and the longest diagonal within any
‘block row is length min(r.c). For reétangular regiohs this length is particularily
bad but even on square regions the vectors are not long enough for effecient
vectorization unless the problem size is very large. Another drawback of the
diagbngl ordering is that it does not achieve p-color matrices for even slightly more
complex stencils and more complicated ‘diagonal-like’ orderings are needed. For
threee dimensional problems diagonal-like orderings are even more difficult to

" construct.

3.3. The Continuous Coloring Rule

Theorem 3.2 gives necessary anli sufficient conditions for a multi-color ordering
to yield a p-color matrix. We also discussed in fhe previous section a criteria
(Figure 310) to obtain O(N/p) length vectors within the block rows of the p-
colored matrix. But these criteria do not suggest a strategy to follow to obtain this
result in general. We next describe a pi'ocess we call the continuous coloring rule
which is easy to use on any class R problem in order to obtain p-color matrices‘
-with O(N/p) length vectors in the blocks of A. In the continuous coloring rule for
p colors, we go through the grid points by the natural ordering assigning the p

colors to the unknowns as : 1,2,3, --- ,p,1,2,3,--- ,. This is equivalent to forming

47

p disjoint sets
S,={r.r+p.7+2p.7+3p, -+ }, T=1,2,--+p

where the grid points are ordered by the natural ordering with (3.2) used when
there is more than one unknown per grid point. If i =gp+7, with 1 <7<p,
then unknown i is in set S, and its position in S, is ¢ +1. The east neighbor of
point i is in S, where y=(—1)mod p +1, the north neighbor is in S,
y=@G+r—1)mod p+1, and so on. Since the unknowns are partitioned by
assigning every pth unknown to the same set, the number of pdints in each set is
N /p if p divides N evenly. Otherwise the first N mod p. sets will contain [N /p]
unknowns and the remaining sets will contain |N/p| points. We can also express
the number of points in the set S, as P, = |(N—7+p)/p|.

‘To determine the matrix row, j, corresponding to some unknown { =gp +7, we

-1
sum the number of elements in each of the sets S; . k < 7: kgll’k. . The position of

unknown ¢ within S, is ¢ +1. Therefore, the unknown i{ =gp + 7 corresponds to
-1

row j = kZ_ZI Py +¢ +1 in the multi-colored matrix. This. is illustrated in Figure
3.15.

We will refer to multi-color orderings. derived ﬁsing the continuous coloring
'rule as continuous color orderihgs. We now state and prove esssentially a corollary
of Theorem 3.2 which applies to continuous p-color orderings and gives necessary
and sufficient conditions for the matrix corresponding to a continuous color ordering
to be p-colored.

Theorem 3.3 :

Given a class R problem with connectivity set Y obtained by the continuous

coloring rule using p colors, the matrix corresponding to a continuous color

ordering of the unknowns is a p-colored matrix if and only if for k = 0 in Y,

48

=~

- b

R E.

P-Colored Matrix

Figure 3.15
kmod p # 0 (3.8)
Proof : '

If xmodp =0 for some kK €Y, then i+x is in the same S, as i so by
‘Theorem 3.2 the the matrix is not p-colored. Conversely if for each x€Y,
k 20, (3.8) holds, then (i +k)modp # i modp for any i. Therefore i and

i +k are not in the same set and by Theorem 3.2 the matrix is p-colored.

We also observe that the condiiion in Figﬁre 3.10, given in the previous section
for obtaining O(N/p) length vectors in A, is satisfied by any continuous color
orderihg. This is easily seen when we observe that every unknown that is colored
7 (i.e. is in set.S,) has neighboring unknowns that are determined by the set Y as
(r4+k—1) mod p + 1 so that all the unknowns for a particular x that are coupled to
the w; in set S, are in some Sx , KX # r. Furthermore the sets S, are formed

with the same sequencing of the unknowns within each set so the consecutive

49

correspondence of coupled unknowns for each k is also §atisﬁed.

| For many problems, applying the constraint (3.8) makes the minimum p
necessary to achieve a multi-color ordering immediately obvious. For more
complicated stencils, and especially for 3 dimensional problems, an easy and effective
strategy to follow is to estimate a value for p and then apply (3.8) until a conflict
is noted. If a conflict occurs one can increase p and repeat the procedure. In our

experience the minimum p is found quickly after a few trials.

3.4. Multi-Coloring Exampies from the Mixed Derivative Problem .

We next give examples from the mixed derfvative prob}em to‘ illustrate how to
| apply Theorem 3.3 to obtain a p-color matrix. We will discuss several strategies to
use when the given dimensions of the grid do not fit the constraints given in (3.8)
of Theorem 3.3.

If we color the grid using p colors and the continuous coloring rgle. the
" constraints (3.8) of Theorem 3.3 are as shown in Figure 3.4. Note that for
symmetric matrices x € Y implies that —x € Y so that we need only consider positive
K's to obtain a complete set of .constraints. The 3 constraints on r in Figure 3;4
require that p > 3 since for any integer q. one of the integers q. q+1, or q+2. is
always divisible by 3. If we chose p =4 we have r ®#4g+1 , r #4g , and
r#4+3 so by Theorém >3.3 a continuous 4-coloring exists for' the m}xéd
deri\./ative problem if and only if r =4g +2. Figure 3.16 is a 4-c01§r matrix for
the mixed derivative problem for a 6 X 7 grid. Note that within each block of the |
matrix, diagonals corresponding to each k in the grid stencil have the same offsets
and thus can be stored contiguously as one vector. If we color ‘the grid in the
same fashion with r = 47 +3 the resulting matrix shown in Figure 3.17 is not a p-
color matrix. Note that the number of unknoWns is the same for Figures 3.16 and

3.17 but the ordering in Figure 3.17 does not satisfy the constraints (3.8). The

50

L4 & N Lvl
[EA N
[Y EA] N ZW B
[+ E 8 N z
c Y_EA 8 N ZW B
C Y EA] N ZW B
[+ E] N z
[Y_EA] N AR
C Y EA s Nﬂ ZW B
(o] E s
d Y g_:r s z
W B T 2,
c A N
ZwW B C Y EA S N
AR] Cc Y EA] N
w (o Y A 8 N
ZW B C Y_EA 8 N
ZW B . c Y_EA 8 N
C Y A 8 N
zw c Y_EA 8§ N
W C Y E 8
W ci Y s
N w I i LA
s N B c E
] N ZW B Cc Y EA
8 N ZW B c Y EA
8 N zZ_ B c E
L] N W B (o} Y EA
8 N ZW B C Y EA
8 N z Cc E
8 N ZW_ 3B c Y_EA
8 4 C Yy &
LA N L] -
Y EA s N ZW_3B c
Y A .8 N w C
Y _EA 8 N IW B c
Y EA s N ZW B [
Y A 8 N Cc
Y _EA -] N ZW B C
Y EA 8 N ZW B c
Y A 8 N W“I C
Yy H] z C
.
.
.
3 4 1 2 3 4
1 2 3) 1 2
3 4 1 2 3 4
1 2 3 4 1 2

Mixed Derivative Problem - 6 X 7 Grid
Continuous 4-Coloring - Satisfies (3;8)
Figure 3.16
diagonal blocks in Figure 3.17 are now tridiagonal and thus not suitable for the
multi-color ICCG algorithm we are considering. We will discuss possible uses for
this ordering in chapter 5 as an extension éf the basic multi-color ICCG algorithm.
If we increase p to 5 colors, the 7 X 6 grid can be colored by the continuous

coloring rule and the S-color matrix shown in Figure 3.18 is obtained. The vector

51

[
4

- 0
C B A W N
Y. C 3 E Z A W N
Y C B 8 E Z A W N
Y C 3B 8§ E Z A W N
Y C 8 A W N
Y C B Z A W N
C B 8 E z
Y € 8 E Z A W N
Y C S E z w
Y 8 F Z
W N C— B X
W N C B E A
W N Y C B S E Z A
W N Y _¢C 8 A
W N Y C B Z A
N C B 8 z
W N Y C B 8 E Z A
W N Y C DB 8 Z A
w Y C 8 Z A
w Y C 8 E Z
Y
x X B T
A W N [
Z_ A W N Y C B 8 E
Z N C B 8§ E
Z A W N Y C B 8§ E
Z A W N Y C B3 8 E
Z A W N Y CB 8§ E
Z A W N Y C B 8 E
A W N Y C]
Z w Y C 8 E
X X T [C. B
] z C B
8 E Z A W N Yy C B
8 Z A Y C B
8 E Z A W N Y C B
8 E Z A Y C B
8 A W N Y C
Z A Y C B
8 E Z (o]
85 H Z W Y C
.
.
2 3 4 1 2 3 4
3 4 1 2 3 4 1
4 1 2 3 4 1 2
1 2 3 4 1 2 3

Mixed Derivative Problem - 7 X 6 Grid
Continuous 4-Coloring - Viblates (3.8)
Figure 3.17
lengths are shorter than for 4 colors but for large N the difference is. insignificant.
In general, for a given r we can find a p for which the continuous coloring rule
will result in a p-color matrix with the desired long vectors within the individual

blocks.

52

T E N B
C EA N B
C EA Y N S B YAL4
Cc EA Y N] B W
C A Y N 8 w
C EA Y N 8 B w
C EA Y N] B W
C E] z
q H Y 8 W
\u T EA N B
w C A N
w [¢] EA \ 4 N S B
w C EA Y N 8 B
C E N 8 B
w C EA Y N 8 B
W C EA Y] B
W C E Y 8
W Qg Y 8
X \id T EX N
] B [E N
8 B AL C EA Y N
] B AL [EA Y N
8 B zw C . EA Y N
-] ﬂ C A Y N
] w Cc . EA Y N|
] ZwW C E| Y
R B \ig T EX
Y N] B W C EA
Y N 8 w o] A
Y N 8 B w C EA -
Y N 8 B W [EA
N s B 1 [E
Y_ N 8 BP zw [EA
Y § FAL C E
EX N B W
EA Y N 8 B ZW C
E N 8 B z [+
EA Y N] B v [
EA Y N] B w C
EA Y N 8 B A C
A Y s w [+
H Y] ZW C
2 3 4 L 1 2 3
5 1 2 3 4 5 1
3 4 5 1 2 3 4
1 2 3 4 5 1 2

Mixed Derivative Problem - 7 X 6 Grid
Continuous 5—Coloring - Satisfies (3.8)
._Figure 3.18
Another way t§ satisfy the constraints of Theorem 3.3 is to add additional
‘"dummy’ rows or 'coh.lmns in the grid to meet the restrictions on r (or possibly ¢
also for 3 dimensional problems). Figure 3.19 illustrates how one dummy column
added to a 4i + 1 grid causes the vectors within blocks to line up. The "0" points

in the grid represent the dummy column and are considered to be the color dictated

53

T 7 X T
c EA N
[+ Y EA [] N ZW B
C E] N Zz B
C Y _EA [] N ZW B
(o Y EA 8 N ZW B
C) 8 N Z
[Y EA 8 N W 3
Cc Y EA 8 N ZW 3B
(4 E] N z
c leA ls Nl zgrwm
L] 3\:—1 EEA N
ZW B C Y _EA S N
W B Cl Y EA 8 N
AR | (o Y EA [. |
ZW B Cl Y EA] N
ZIW B c Y EA 8 N
Iw Cl Y EA 8 N
ZW (e Y E 8
N W B EX
] N Z B C E
| . | ZW B [Y EA
[] N W B C Y EA
8 N z B [¢] E
s N ZW B C Y _EA
] N W B [+ Y EA
8 N Z B [E
] N ZW B [Y EA
8 N W [+ Y EA
8 Z [E
] Z C Y E
TX N ;4 IC
Y EA 8 N ZW B Cl
Y EA s N ZW B (o]
Y EA] N ZIW B Cl
Y EA] N ZW B Cc
Y EA |- 8 N ZW B Cl
Y_E 8 ZW B Cc
Y] 1 v (:1
3 4 1 2 3 0
1 2 3 4 1 0
3 4 1 2 3 0
1 2 3 4 1 0

Mixed Derivative Problem - 5 X 8 Grid
Continuous 4-Coloring - Add Extra Column
Figure 3.19 |
by the continuous coloriﬁg rule. For example, the 0 node in row one is color
number 2 while in row 2 the 0 node is color number 4. The equations for each

point are just the identity x; =0 and the zero rows consist of a 1 on the main

54

diagonal. Extra storage and useless calculations are required by this scheme so this
"method may not be as appealing as increasing the number of colors to satisfy the

requirements of (3.8).

3.5. Super Long Vectors in p-Color Matrices
.We have shown so far how to color the grid associated with the stencil in
Figure 3.4 so that diagonals within the blocks of the p-color matrix line up into
vectors of length O(N /p). Another consideration in choosing an ordering for the
ICCGC algorithm is the matrix-vector multiplication which is required at each
conjugate gradient iteration. This process is described in Appendix A. In the
nﬁ_tural ordering of the grid points for the mixed derivative problem the matrix A
can be stored in five _O(N) length vectors, using symmetry. A matxix—vectof
multiply using multiplication by diagonals would require nine vector multiplies and
éight vector adds. For the matrices in Figures 3.12 and 3.16 sixteen O(N/p) and
one O(N) length vectors are stored. A matrix-vector multiply now requireé 32
O(WN/p) and 1 O(N) length vector multiplies and 32 O(N/p) length vector adds.
The total number of operations remains the same as for the natural ordering but the
overhead resulting from startup costs for the vector operations is nearly quadrupled.
Since some of the vectors in the matrices in Figures 3.12 and 3.16 line up across
block_s.- if we store them contiguously we can save some of the vector startups in
t'he matrix-vector multiplication. |
Note that it may be necessary to add some zero _storagé as in the case of the
Y and Z vectors in blocks 1,3 and 2.4 of Figure 3.12 in order to treat the two

vectors as one in the matrix-multiply. Since the offset of the ¥ and Z diagonal is
0(%—). this number of zeros must be added to the end of the first ¥ and Z

diagonals and included in the vector multiply and add operations associated with the

long ¥ and Z vectors in the matrix vector multiplication. Since the matrix is

55

symmetric, these long vectors are multiplied and added twice for a total of eight
vector operations and eight associated startup costs. By storing the two Y vectors
contiguously we save four startup costs or, put another way, ‘we save the time it
takes to do 400 adds or multiplies. The extra storage and calculation;s will become
'signiﬁcant if r/4= 100. This indicates that any savings from lining up vectors
across blocks is marginal for Jarge problems and may even be detrimental for very
large problems. (i.e. = 400 X 400) The main advantage of this strategy will probably
come in three dimensional problems where relatively small numbers of grid points
per row can still lead to very large matrices.

Returning to Figﬁre 3.12, note that some of the vectors do not line up across
blocks and so a natural question we are led to consider is under what conditions
will the vectors lineup across blocks and can we order the grid so‘ that all of the
diagonals in blocks of the multi{olor matrix line up with diagonals in appropriate

blocks. We make the following conjecture.

If a class R problem with connectivity set Y containing v elements is ordered

by the continuous coloring rule, then the minimum n;umber of diagonals to store

the matrix (provided appropriate N /p length diagonals are stored contiguously

and zeros added where neccessary), will occur if p divides N evenly.

Furthermore, the minimum number of diagonals necessary to store the matrix

isv.

This conjecture is illustrated in Figures 3.16 and 3.20. In Figure 3.20, N = 48
and the blocks in the 4-color matrix are all square. Note that if the diagonals are
stored in correct sequence all of the B vectors in the lower triangular part of A
can be stored as one vector. In like manner, the W, Z, N, and S diagonals below
the main diagonal can be stored contiguously' in memory, requiring 8 vectors. Of

course, pointers must also be kept to allow the block structure for the forward and

56

T E N WH
C EA N R
C Y EA] N ZW B
C E 8 N Z
[Y _EA s N ZW B
C Y EA [} N ZW B
Cc E 8 N z B
C Y EA] N ZW B
C Y EA 8 N ZW B
[¢] E -] N Z
[Y_EA 8 N| ZW B
q Y]
W B C X N
C A N
W B [Y EA] N
ZW B [Y EA 8 N
[Y A 8 N
IW B c Y EA 8 N
AR | C Y EA -] N
C Y A 8 N
ZW B C Y_EA 8 N
ZW_ P c - Y EA] N
ZW cC YY ?: s! N
N W B JL JLK
-] N B [E_~
8 N ZW B [Y EA
8 N ZW B c Y EA
] N z B C E
[] N ZW B (o Y EA
8 N ZwW B Cc Y EA
8 N Z B C E
s N ZW B C Y EA
8 N zw C Y EA
8 Z [E I
8 Z C Y E
EA N x: 3 "1
Y EA s N ZW B C
Y A .] N w [
Y EA 8 N ZW B c
Y EA s N ZW B - C
Y A -] N w (<3
Y EA 8 N ZW B [+
Y EA 8 N ZW_B i [¢]
Y A 8 N w C
Y E 8 N ZW B [
Y 8 v C
Y 8 C
L] L[] - . . .
L] . L] . . [
3 4 1 2 3 4
1 2 3 4 1 2
1
3 4 1 2 3 4
1 2 3 4 1 2

Mixed Derivative Problem - 6 X 8 Grid
4 Colors-r=4i+2
Figure 3.20
back solves.. In Figuré 3.16, however, N =42 and the off diagonal blocks of the
A—color matrix are rectangular. This does not affect the line up of vectors within

blocks but it does change the offsets of diagonals across blocks so that they no

57
longer all line up.

3.6. Examples of Continuous Multi-coloring for Multiple Unknowns

In section 3.4 we gave examples of different colorings using a single differential
equation, in which case one equation of the discretized system is associated with
each grid point. We turn now to the more c.omplicated case where more than one
unknown is to be calculated at each grid point. We consider again the plane stress
problem described in section 3.1. The grid stencil shown in Figure 3.3 can be 3-
colored but since the center point contains two unknowns the matrix in Figure 3.21
is not 3-colored. If we use diagonal storage of this matrix we will either have to
store many zeros Or use expensive gather-scatter type operations to perform the
matrix vector multiplications and forward and back solves in the ICCG algorithm.
Instead we also color the ¥ and v unknowns at each point so that they decouple,
thgt is, each grid point is associéted with two colors. This is illustrated in Figufe
3.22 where pairs of colors are associated with single gridpoints. |

In Figui-e 3.22 the v unknowns alternate Qith the z unknowns in the érdering
sequence. This is the continuous coloring rule for problems with more than one
unknown per grid point. An alternative approach, shown in I%igure 323, is to
follow (3.1), and order all the u unknowns first and then the v unknowns. For
both orderings vectors within blocks line up; however, the number of vectors which
line up across adjacent blocks is not the same. In Figure 3.24 a comparison of
storage requirements is given for the two orderings. Here we assume that wherever
possible vectors that line up across blocks are stored contiguously. The additional
storage noted in Figure 3.24 comes from storing vectors whose offsets within blocks
are O(r/p) as occurs, for example, in storing the N vectors beginning in block row
3 column 1 in Figure 3.22: It is important to note that some of the vectors in‘

Figure 3.23 do not line up in general, even though they do for the small test case

58

ee X
ee

.o v
«e vt

ce)
s

e @y
e e}

oo i
T

th the W diagonal

ines up wi

33
11
22

22
33
11

11
22
33

Figure 3.21

33
11
22

3-Color Plane Stress Matrix

22
33

11
For example, the Z diagonal in block 3,2 I

illustrated.

block 4,3 but as the number of points on each row increases, the offset of the Z

in

In general, the offsets of

diagonal increases while the W diagonal s unchanged.

ANS.and Z diagonals are a function of r while the £ and W offsets are

constants.

59

ooy o) 19 N
c c_. EA EA N
Cc [8 EA 8 EA ZW N ZW N
[(o 8 A 8 A w w
[c 8 EA 8 EA ZW N ZW N
c [8 E 8 E N z
[(o 8 EA 8 EA ZW N ZW N
[c 8 EA 8 EA ZW N ZW N
c °d__ il tt i %
T sC' E t N N
c c EA J EA W N N
c [+ 8 EA 8 XA ZW N ZW N
[C S A 85 A w w
c c 8 EA 8 EA ZW N ZW N
[[8 E 8 F zZ N N
[(o 8 EA 8 EA ZW N ZW N
c c 8 EA 8 EA IW N ZW N
c ‘d % & s & w '
W N j‘rn C !':lﬁ EX X
W N c c A r A
ZW N ZW N [+ c S EA S EA
Z N (o C 8 E 8 E
ZW_N IW N c [of 8 EA 8 EA
ZW N ZW_ N C (o} 8 EA 8 EA
W N c C 8 A] A
ZW N ZW N c C 8§ EA 8 EA
z (o C S E 8 E
ZW W C C| 8 E 8 E
W_N W N o1 'Tc. EX - X
W N W N c [A r A
ZW N ZW N [of [S EA 3. EA
Z N [c 8 E 8 E
ZW N IW N c c 8 EA 8 EA
ZW N ZW N [+ c 8 EA 8 EA
c [o 8 A -] A
ZW N 2ZW N c (o 8§ EA 8 EA
c C 8 E 8 E
ZW AL Ci C 8 E 8 E
EX “LX W N C
8 E s E Z Z N Cc (o}
8 EA 8 EA ZW N ZW N C Cc
8 EA 8 EA ZW N ZW N [C
] A 8 A W N W N (o c
8 EA 8 EA iwW N ZW N [+ [+
S E 5 E z z C C
8 EAN 8 EA w ZW_ N C C
s § s'f w z c c
[] 8 C C
& A %A N
S E 5 z c (o
8 EA 8 EA ZW N ZW N [« (o
8§ EA 8 EA IW N ZW N [c
L} A [A W N w [c
8 EA 8 EA ZW N ZW N c Cc
8 K 8 E Z z c [+
5 EA 8 EA w ZW N c [+
L} l‘ 8 H tA w c [
8] C C
[.«
‘. . . N e
12 34 56 12 34
34 56 12 34 56
56 12 34 56 12
12 34 56 12 34

5 X 6 Grid - 3 X 2 Color Ordering
Plane Stress Matrix: z and v Alternate
Figure 3.22
For this problem the ordering in Figur_e 3.22, which follows the continuous
coloring rule, is superior for the matrix vector ‘ multiplications required in the
conjugate gradient iterations. For very large N the savings introduced by

eliminating vector startups is overcome by the time added by introducing additional

60

[P P C Y
s A v -
N e WD e
th A e
W N e W
A U & -
= W N e
S O A
N s W e
h H O Wme-

5X6Grid-2 X 3 Color Ordering
Plane Stress Matrix: «'s First
Figure 3.23
calculations in the matrix vector mtilfiplication. This does not occur until the
offsets of vectors which line up is equal to the number of operations which can be
accomplish_ed during a vector startup, =100, as discussed for the mixed derivative

problem. We also note that the number of rows must be chosen to ensure square

61

Matrix Storage by Diagonals for Figures 3.20 and 3.21
of Vectors of Length
N 2N 3N 4N 5N startups for |additional
r P 7 P P matrix iply | storage
fig 320 | 10 3 2 3 1 1| @9+ =77 12':7 -5
fig 321 | 12 12 1 (4)(25)+1 = 101 8-;- —4

Diagonal Storage for Plane Stress Matrices
Figure 3.24
blocks through out A as in the second model problem in order to maximize the

number of vectors which line up across blocks.

3.7. Multi-Coloring for Three Dimensional Problems

The real physical problems of interest in large scale scientific computing today
typically are three dimensional, and we now discuss multi-coloring for such
problems. Our model problem is a three dimensional space truss which is made up
of cube-like structures which are assembled arbirtarily in the x,y, and z directions.
(see Figure 3.25). The cube is diagonally braced on each face and made up of bar
elements each of which has three unknowns at each end, the displacements. u.v.and
w in the x,y, and z directions. With each element is associated a 6 by 6 element
matrix shown in Figure 3.25, which is a:ssembled using finite element techniques into
a stiffness matrix. The problem is to solve for the displacements resulting from an
applied force with rigid body motions constrained. |

The grid stencil for this problem is three dimensional and using 4 colors with
r=4i+1 and c =4i +2 wili degouple the center point, but since there are three |

unknowns at each node, 12 colors are needed to obtain a p-colored matrix. Theorem

3.3 allows us to easily obtain p-color matrices for this three dimensional problem.

62

(x2y2:22)
/ ™
L i \\
2 / ’l : \\f\
. . .
. N .
(x1y1.29) Il ————pfe
/ -
7 l=(5(32—x1)§/LL ,I ,l p -
K m= -— -
Sy prGna
x
bar element building block
B2 m 2 —m -ln
Im m? mn -lm -m? —mn
AE lin mn n? -in —mn -n?] []
TX|12 atm =t 2 m im STy N N
—im -m2 —mn Im m?® mn ' g
~in —mn —n? In mn n? -
’
bar element matrix 3-D structure
Space Truss Model Problem
Figure 3.25

We color the three dimensional grid using both the continuous coloring rule and thé
natural ordering with (3.1) to assign the p colors. The two different orderings are
illustrated in Figure 3.26. In a) we have used the continuous coloring rule; note
that the last MOW in the bottom plane is color 6 and so the next plane begins
with color 7. If different dimensions are required than those given above for r and

c, the techniques discussed earlier, such as increasing the number of colors or adding

00112 123 456 189
7897 10U 123 456
456 189 101112 123
123 456 739 101112

0112 123 456 189
789 WIL12 123 456

next plam;
456 789 10aL12 (123
123 456 189 w0012

104112 123 456 189
789 10112 123 456
456 189 10112 123
123 4,56 789 10,1112

bottom plane

a) Truss Matrix #1

10,1112

789

456

10,1112

789

455

101112

789

48,12
371

26,10

371

2,6,10

4512
3,711
2,6,10

159

159 2610 3711

4812 159 2610

2610 3711 4812

159 2610 371
next plane
3711 4812 159

2610 3711 4812

159 2610 3711

4312 159 2610

3711 4812 159
2610 3711 4512
bottom plane

b) Truss Matrix #2

Grid Colorings for 3-D Space Truss.

Figure 3.26

4812
ERATE

26,10

3nu

2610
159

4812
37

26,10

63

‘dummy rows’, can be used. In Figure 3.26b we have used (3.1) and ordered all u

unknowns first, followed by the v’s and then the w's. We still color the u

unknowns continuously throughout the grid, as well as the v and w wunknowns.

For the space truss problem the element matrices themselves are often sparse and so

the non-zero structure indicated by the grid stencil is not representative of the

actual structure of the assembled matrix. Figure 3.27 shows the matrix structure

for the ordering (3.2) if the element matrices are full but Figure 3.28 shows the

actual non-zero structure for a 5 X 6 X2 node model oriented along the x,y and z

64

'

Fdr 4
s
o
7
e
o
4

’,.
'
'j !
> ’yj

2

Fyﬁ
v
5

| [xﬁ,‘;j&}ax}xx}w [R lE]
' Xﬁ \\J\i . _‘%‘-_ ;‘E;.j %&xﬁf@. \x_%
ERERORGRG \
R b N %;;.Axn N
y Ay, [N N
RS N YRR R N "j
DWW n\ ;‘3:3‘\ o B
ki‘g.x“\\q A %,E\}\Q’}J ‘:\L ﬁ‘}.
X HERORE
NN \\ _ IR

PV
a4
ydVdVid

2

NN 7
S Naavar Y

}f

<
#
3
¢
Fd

'?fi i

07
A

i
f"
jg

27
Sl

X
A x‘?

BN

>V
v
at
S

¢ f'j/ ‘
?') ?'} ﬁL?
; .L:‘_ Kt
Y
Tl
e
7
¥
s
::r
-
2

4
’ »

u, v, and w Alternating (3.2) - 3 X 4 Coloring

Truss Matrix #1 According to Grid Stencil

Figure 3.27 | :
axes. ‘Figures 3.29 and 3.30 show the same results fér the ordering (3.1). This
ordering, while not as good for the pléhe'stress problem, appears better for the space
truss problem. We see that the grid stencil for a problem does not always predict

the actual non-zero structure. However, it can serve to bound the amount of storage

needed for the diagonal storége scheme.

65

| X. ‘ x« k;x 1 “};‘. “};‘n \:‘ ‘\‘xx
NEN M [R
.\\\ w0 | B R 1N .
SN ™ o a) Ny L |
> ":\ N LN Py [[
‘\ N S EYESY
xﬁxﬁ xﬁ -\ . \ \l % l‘ “ ‘ﬁkl ‘*§I
NS RN
e i O N O e Wl
S S N \\ | | Y
:ﬁ e \A x‘ ‘\ }i }k R 3 \1
HED Ca, A ' &)
S‘:h,h anl Y \ \ 5 x% »
A ,‘5 \.‘i‘ in ’\ .\
AR RN
> ENE SR " .
% . \x ::‘ Y > = ke "x\ - :"‘ |
» o ' &?x. ig;“ Y A _
1 W oa s x\\\x}
“‘5‘ i-\l \ b h
s, 2 % \\\
,'A., . '\a, S -\m\ ' .."‘.‘h "*.\\\ Y)
1% ™, [s | N ™

u, v, and w Alternating (3.2) - 3 X 4 Coloring
Assembled Truss Matrix #1
Figure 3.28
There remains the problem of assembling the stiffness matrix for the plane
stress and the space truss problems. We present in Appendix B a row by row
* assembly. process that forms the stiffness matrix with storage by diagonals, and with
the appropriaté data structures to access the diagonals. For the three dimensional

coloring problem, obtaining O(N/p) vector lengths will require that the number of

66

P P R P LB SN ORI

G A
0% xu\ e e Lm\ %
o e e (e
S, ﬁm@vﬂ LA
mm.m...,. ,..,x., .Ruumwf xx.. mnufw,mw&x.
R i Lo o [
7
A YA A
L
mﬁﬁxm\iﬁmﬁa\w\hm w\ . xsﬁ\ﬁm
.\ux. iw&hxﬁ. L e A
AW TAVA VMV

u, v. w Consecutively (3.1) - 4 X 3 Coloring

Truss Matrix #2 according to Grid Stencil

Figure 3.29

. grid points on a row be some multiple of the number of colors divided by the

number of unknowns per grid point plus a constant (4i + j, 1€j<3 for the truss

problem) and that the number of rows in a plane also be chosen so that the

coloring pattern can continue onto the next plane without going out of sequence.

67

SSWCHE 5N N a]
™ S ‘.:“1 “:‘} X . U ™, \ N
N R S, N N
LY A v i
;«Lﬁ}i KI‘ :i‘ A X\.. eR X“‘\ 8
Anl's, }‘\ | 4l A S N
a \a,“}. £y 5% Y | Y
RN & xX\ b " ™)
N [[>
\x B }x kN V.
Ny, . M .
) “al \\x ol N
\5‘ .\ . }55‘ A\A x‘ \ x:—\ .
%‘1 N any \\. s,
5\‘ -\ ’;\A \ xn x:\
ARG "
™ ‘\‘n ‘ \ %’L x‘)."‘ “.Hs
\ﬁ'x ':\ ::;: \‘::X IR \x‘x
h i ¥ ™ . |
s | ™ w, a, \\x N
s .‘5\ 1"& NR) x‘ .‘ﬁ.‘
™, M i N B O N Y
R A R PR N
S e Py |

u, v, w Consecutively (3.1) - 4 X 3 Coloring’

Assembled Truss Matrix #2
Figure 3.30
3.8. Summary
In this chapter we have discussed multi-coloring techniques ﬁsed' to Vvectorize
the ICCG method. We first defined a class of problems for which the multi—cdloring
techniques apply. Then we discussed the natural ordering, proving in Theorem 3.1

that the matrices corresponding to natural orderings minimize the storage of the

68

matrix by diagonals and allow long vector operations for .the matrix-vector
mﬁltiﬁlicati_on operation. However to vectorize ICCG we desired p-color matrices
and sought to extend the results of Theorem 3.1 to multi-color orderings. We gave
necessary and sufficient conditions that determine if the matrix corresponding to a -
p-color -ordering is a p-color matrix in Theorem 3.2, and also gave conditions which
must be satisfied to minimize diagonal storage for general p-color matrices.

We saw that Theorem 3.2 did not address the important question of how one
obtains suitable multi-color érderings given a domain and a gr'id stencil and so we
described a procedure that is easily applied to 2 or '3 dimensional problems which
we called the continuous coloring rule. In Theorem 3.3 we gave neceséary and
sufficient conditions to obtain p-color matrices using the continuous coloring rule in
‘terms of a constraint which is easily tested given a connectivity set associated with
the given problem. We concluded by discussing examples from the model problems
showing how to apply Theorem 3.3 to each problem and by discussing ‘super’-length
vectors obtained by lining up vectors across adjacent blocks of p-color matrices
whenever possible. We saw that if N divides p evenly the maximum lineup of

vectors occured but that the savings in execution time is minimal.

CHAPTER 4

A Performance Model and Numerical Results

In this chapter we present a model which is used to predict performance of
both the standard multi-color ICCG, ICCGC, and the Eisenstat-like implementafion.
ICCGE. We compare the performance of these multi-color methods to several other
methods including conjugate gradient, CG, without preconditioning, conjugate gradient
with Jacobi preconditioning, JCG, where the matrix is scaled so that the main
diagonal is the identity, and other ICCG methods such as ICCGN, natural order
incomplete Cholesky and ICCGD, the diagonal ordered incomplete Cholesky discussed
in chapters 2 and 3. We discuss the performance of the multi-color methpds
applied to the four model prdblems presented in previous chapters and note the
effects of multi-color orderings on the convergence rate and execufion time compared
to the natural ordering. Timing results obtained from runs on the CYBER 205 at
NASA’s Langley Research Center are compared with results predicted by the
performance model. Finally, we summarize the performance results ahd compare the
effectiveness of the multi-color ICCG methods to other ICCG methods used on vector

computers.

4.1. A Performance Model

In this section we first discuss a general performance model which is used to
compare two different ICCG methods or to compare an ICCG method to conjugate
gradient withoﬁt preconditioning. We then give formulas that predict run times for
each model problem, based on the number of iterations for convergence and the

problem size. Two factors used in comparing ICCG methods are rate of convergence,

69

70

usually” measured by the number of ~iterations required to satisfy the given -
convergence criteria, and the amount of time required for the preconditioning step.
For method i we denote the number of iterations for convergence by I; and the
execution time per iteration by I;. The total execution time for method i is then
T;Li. To compare method i and method j we define the following terms:
Ly =1 /I,},i Tiy =Ti/T;, and S;; =1/(L;;Tiy). If method i is a preconditioned
conjugate -gradient method, then Ii'cc is a measure of the effectiveness of the
- preconditioning in redu'cing the iterations, T;c¢ is a measure of the increased time
for each iteration due to preconditioning, and S;ce is a measure of ‘the performance
of method i compared to conjugate gradient in terms of total execution time.
Generally, we gkpect method i to decrease the number of iterations compared to
conjugate gradient so J;c6 <1 while the time per iteration for method i will
increase so that T;@ > 1. If the product I;‘,CG Ticc is less than one, an overall
speedup in total execution time, given by S;ce. will occur. We can also use the
factors I, T, axid S to compare two different ICCG methods in which case method i
will be supéri_or to method j if S;; > 1. Clearly the size of T will be greatly
influenced by the degree of vectorization possible in the preconditioning calculations.

_To describe our model we consider phe computations involved for each iteration
of the ICCG algbrithm given in Figuré 1.1. These coxﬁputations can be divided into
three parts: the matrix vector product in step a), 4, the soluti§n of Mt =yt jn
e), M, and the remaining computations in a) through g), C. That is, the third part
includes threei linked triads and two inner products plus the convergence test. The
con\'/ergen_ce‘ test we use .caiculatw the 2-norm squared of the residual, r, at each
iteration and so an extra inner product is required except .fqr the conjugate gradient
method itself. We will refer to the time required for a matrix-vector multiply, 4,

as A,. and likewise for M and C.

71

The solution of M&**! =r**! requires a forward and back solve and a diagonal
scz;.ling: as discussed in chapter 2, the amount of computation is the samé as for a
matrix-vector multiply. The execution time however may be drastically different.
The matrix vector multiply is carried out using vector adds and multiplies when the
matrix is stored by diagonals. For a 2-pipe CYBER 205 using 64 bit arithmetic the
maximum rate for vector adds and multiplies is = 100 Mflops. The forward and
back solves in step e) are carried out in the same fashion if multi-color orderings
are used, as described in chapters 2 and 3, but for the natural ordering the process
is essentially scalar.

As a measure of the 'degree of vectorization of the preconditioner we define
o« =M,/A,. the ratio of the time for carrying out the preconditioning to the time
4required for the matrix vector multiply. Note that « =1 on a scalar éomputer
since the number ‘of operations for 4 and M are the same. If the p’rééoxiditioning
step vectorizes as well as the matrix multiply, we will also have « nearly equal to
one. For multi-color methods we expect o = 1 while for the vnatural ordering
a =10 or higher might be expected. We also define B = C./A,. the ratio of
execution time per iteration for the linked triads and innerproducts to the time for a
matrix vector | multiply. The execution time for one ICCG iteration can now be
eipressed in terms of A, as

T=(A+a+p)A4, (4.1)

To compare execution time per iteration for ICCG method i to method j. we
compute

T, i _ 1+ a; + B;
T J) 1+ aj + Bj

Finally, to compare the total execution time for convergence of method i with

Ty = (4.2)

method j we have

72

1 . I) 1+a, +ﬁj
S, = = e X
iJ ri,jv Ti.} .I‘ X 1 +ai + 3i _ (4.3)

Equation (4.3) serves to define the relationship between rate of convergence and
computation time. For example, let us assume that A; >>C, in the conjugate
gradient iteration so that B may be neglected, and let us compare ICCGN with

ICCGC. If accey = 10 and oyeege = 1, we have

Iiccee 2

| Srccon focee = X 1T ‘
In other words, the natural order method must take 5.5 times fewer iterations than
the multi—colof method in order. to achieve the same execution time as ICCGC. If
compared to. conjugate gradient, the ICCGN method must reduce the number of
itérations by a factor of 11 just to ‘'break even' in terms of execution time while
for ICCGC the ‘break even’ point is to reduce the number of iterations by a factor
of 2.

We now derive timing formulas which allow us to predict performance of the
multi-color ICCG methods and to compute estimates for the rﬁtios T;y above. In
developing tﬁese formulas all scalar arithmetic is ignored. Vector assignment
instructions (e.g. a(1:L) =b(1:L)) are not counted as operations but are included in
the timing formulas. Execution times for vector instructions on the CYBER 205 are
of the form s 4_-7L where s represents the fixed startup cost independent of the
vector length, y is the incremental cost and L is the length of the vector. A
summary of the timing assuniptions used for vector instructions is given in Figure
4.1. | Using these vector timings, Qe derive timing formulas for the matrix vector
multiply, 4, the preconditioning step, M, and the remaining computations, C, for one
iteration. The predicted times are in nanoseconds (ns). We also give formulas for
-the number of adds and/or multiplies which we denote as operations in the tables
that follow. For simplicity, we do not use the lining up of vectors across adjacent

blocks as discussed in section 3.6 in the formulas that follow. Throughout the

73

Cyber 205 2-Pipe 64 Bit Arithmetic
vector instruction time (ns) operations
s+vyL
linked triad 1660 + 10L 2L
vector add 1020 + 10L - L
vector multiply 1040 + 10L L
inner product 2320 + 20L 2L -1
vector assignment 800 + 10L -
Vector Instruction Timings
Figure 4.1

tables, the grid size is r X ¢ where r is the number of points in a row and ¢ is
the number of rows in the rectangular grid. For three dimensional problems, { is
the number of planes. Figure 4.2 gives the formulas used for counting the number
-of multipliés and édds- per iteration for CG and ICCGC for the four model
problems. For ihe standard multi~color method, ICCGC, the operation counts for A

and the M step are the same as shown in Figure 4.2.

Model A, M (ICCGC) C (triads,inner products) total (ICCGC)
Problem operations/iter operations/iter operations/iter
Laplace 9rc—4r —4 12r¢ —3 21—-8r—11
Mxdir 17r¢ —12r —8 12r¢ —3 46rc —24r —19
Plane ‘ .
Stress 46rc —24r —16 24rec —3 116rc —48r —35
Space 75rcl —36rc — 186rcl —72rc —
. Truss 36recl —24 36rc —3 72r —-51

Number of Operations per Iteration

Figure 4.2

74

Model A4, C, (triads,inner products) M, (ICCGC)
Problem time/iteration (ns) time/iteration (ns) time/iteration (ns)
Laplace 90rc —40r + 17480 90rc + 11940 100r¢c —40r + 18280
Mxdir 170rc —120r + 66880 90rc + 11940 180rc —~120r 467680
Plane |
Stress 460rc —240r 4+ 136840 180r¢ + 11940 480—240r +137640
Space 750rcl —360rc — 780rcl —360rc —
Truss . 360r +297440 270rcl +11940 360r 4298240

Predicted Execution Time per Iteration
Figure 4.3
Figure 4.3 gives the timing formulas for the 3 parts we have defined in our
computafional model used for the CG, JCG, and ICCGC methods. The general form
used to predict the time for each part of the ICCG algorithm is

time per iteration = startup + 10X number of operations

For each method, the predicted time per iteration, I', is given by
‘ T=4+C + M,

where M, =0 for CG and JCG. The startup cost depends on the number and type
of vector instructions in each part. Note that the constant term in each timing
- formula comés from the vector startup times as well as from any constants in the
expressioné for the number of operations. For example, the code used to implement
the matrix vector multiply using diagonal storage of A requires an initial vector
multiply of length N and then for each diagonal stored two vector multiplies and
adds are executed since each diagonal stored represents a diagonal above and below
the main diagonal of the symmetric matrix A. The number of diagonals stored for
the I.aplacé problem is 4 plus the main diagonal so using the timing information in
Figure 4;1 the startup overhead is

_ 1040 + 4x2 x(1040+1020) = 17,520ns .
The formula given for the time A, in Figure 4.3 includes this startup overhead plus

75

ten times the number of operations given in Figure 4:2. The time M, ipclud_es the
time for a vector assignment statement which is 800+ 10rc and is reflected in
Figure 4.3 since the timing formulas for M, differ from those given for 4, by this
amount. In a similar fashion the formulas for the number of operations and the
execution time per iteration for C are derived. The three dot products and three
linked triads require a total of six vector instructions but since linked triad
instructions accomplish two operations per clock cycle, the number of operations per
instruction is double that for vector adds and multiplies. Thus the leading term for
C. in Figure 4.3 is 90rc instead of 120rc.

For the Eisenstat implementation, ICCGE, there is no explicit matrix-vector
multiplication. It is carried out by doing a forward and back solve and so for the
purpose of applying the performance model to this implementation, the operations
equivalent to a matrix-vector multiply are counted as A, the three linked triads and
inner products are counted in calculating C and Brcge. and everything else is
counted as preconditioning, M, and used to calculate ayccge. Figure 4.4 gives
formulas for the number of operations and execution times per iteration for the M

portion of the ICCGE method. #; and C, are the same as in ICCGC so . that M

Model M (ICCGE) 1 M, (ICCGE)

Problem Operations/Iter Time/Iter (ns)
Laplac 2rc —2 30rc +2840
Mzxdir 11rc —6r —4 120rc —60r + 36800
Plane » T
Stress 35.3rc —16r —12 373.3rc —160r +94420 .
Space » ,
Truss 69rcl —32rc —32r — 164 720rcl —320rc —320r +250920

ICCGE Execution Time per Iteration

Figure 4.4

76

represents the remaining calculations in the ICCGE method and can be used to
compare the cost of preconditioning for both methods. Also by arranging the
calculations in this manner for the model, the term M, reflects the additional
computation for the ICCGE method compared to CG. Since the residual in the
ICCGE implementation is not the residual in the original variables, the convergence
~ test for this implementatiion is not identical to the test used for the other methods.
We compute the 2-norm of T for the ICCGE _implementatiox; and our numerical
éxperinients gave nearly identical convergence results as using the 2-norm of r in thé
ICCGC algorithm. For the Laplace problem the ICCGE implementation is -représented
in a different form from the other problems. Recall from chapter two that foi- '2-
colors the ICCGE implementation requires no preconditioning step if the matrix is
scaled properly. Therefore, in Figure 2.3 q=T and we use the inner product
calculated in step f) for the convergence test. The cost for the work at each
iteration of ICCGE for the Laplace problem in addition to A and C is given in
Fiéure 4.4. It includes one vector assignment and two vector adds which are not
part of the stancia:d CG implementation and so are counted as part of M in the
performance modél._ Though not shown, the C terms for the ICCGE method for the
Laplace problem contain only two dot products. |

Using the formulas in Figures 4.3 and 4.4, we can estimate the parameters
a=M /A and B=C,/A, used in equations (4.2) and (4.3). Then, given the
number of iterations for convergence for two method§ to ﬁe compared, we can
compute the ratio S;; which predicts that method i is faster than method j if § is
gteamr than one. For large problems the dominant term in each formula in Figure
4.3 is the leading term so we estimate‘ the parameters using only the coefficients of
the 7¢c terms. In the next section we will compare these estimates with values based
on aétual_ run times. Figure 4.5 lists the parameters calculated from the formulas

in Figures 4.3 and 4.4. We note that as the problems increase in complexity from

77

Model ' ‘
Problem | Algorithm o B T/4 Tica
' ~ CG 0 1.0 20 | 10
. ‘. . 1.5
Laplace ICCGC 1.11 1.0 3.1 . 6
ICCGE .33 .78 2.11 1.06
CG 0 3 1.53 1.0
Mxdir ICCGC 1.06 53 2.59 1.69
ICCGE 71 53 2.24 1.46
_ CG 0 .39 1.39 1.0
Plane
ICCGC 1.04 .39 2.43 1.75
Stress 4
ICCGE 812 .39 - 2.20 1.58
e
CG 0 .36 1.36 1.0
Space
ICCGC 1.04 36 2.40 1.76
Truss
ICCGE .96 .36 2.32 1.70
a= M,/A, = ratio of preconditioning to matrix multiply time
B =C,/A, = ratio of basic CG computations to matrix multiply time
T/A, = total time per iteration in terms of matrix multiply time
Tice =

ratio of method i time to CG time
| Performance Model Calculations
Figure 4.5
the simple five diagonal matrix for the Laplace problem to the 145 diagonal mé.trix
for the Space Truss, B decreases. This is expected since the time for the matrix
vector multiply and preconditioning step increasingly dominates. The important
effect of this change is seen in the increase of T;cs. which is th_e ratio of execution

time per iteration for method i to the execution time per iteration for CG. Using

(4.1) we have

78

T = (+atp)
. i CG W
If B>>a, then T;c6 = 1 while if a>>B, then T;c¢ = 1/(1+a). For a fixed «, the

cost of preconditioning is greater when B is small compared to o and the value of T
will increase as B decreases relative to a. The large;' Ticc the greater is the
requirement that the preconditioned method i reduce the number of iterations in
order to achieve a reasonable speedup. Another effect noted from Figure 4.5 is that
the ICCGE method is the best performer in terms of execution time but less so as

the problem complexity increases. This is because the number of colors used for the

Model
Problem | Algorithm Total Number of Operations
CG,JCG Q1re—@I)r—-71-1
Laplaée ICCGC s GBODre—(@I)r—-11I-1
ICCGE il QII+Drc -1 +2)r ~61—3
CG,ICG Q9I)re —(121)r —11I —1
Mxdic ICCGC (461)rc —(24I)r —19I —1
ICCGE (407 +8)rc — (181 +6)r —15I —5
CG.JCG (701)rc —(24I)r —19I —1
Plane
ICCGC (1161)rc — (481 —351 —1
Stress .
ICCGE (105.3 +22)rc — (401 +12)r —3171 —9
i CG,JCG (102I)rel — (361)rc —(361r —27I—1
Space
. ICCGC 77Drcd — (721)re —=(72I)r —51I —1
Truss .
' ICCGE (1711 +36)rcl — (687 +18)rc —~ (68 +18)r —431—11

Total Operations for I Iterations

Figure 4.6

79

four problems is increasing so that the savings realized by the Kt multiplication
described in chapter 2‘ is diminished.

.Finally. Figures 4.6 and 4.7 give formulas for total operation counts and for
prediéting total execution time for each problem in terms of the problem size (r; c.
1) and the number of iterations, I. These formulas are obtained by combining the
appropriate terms in Figures 4.2, 43 and 4.4 and adding appropriate terms for
initialization before the first iteration. We have factored each formula into terms

that depend on the problem size. The general formula used for all of the methods

Model
Problem | Algorithm ' Predicted Run Time (ns)
CG.JICG (1807 +30)rc —(401)r +29420I +2260
ICCGC (2807 +30)rc — (801)r +477001 +2260
Laplace
ICCGE (1907 + 70)rc — (401 +20)r +299407 + 10480
CG.JCG (2601 +30)rc — (120)r + 788207 +2260
. ICCGC - (4407 +30)rc — (2401)r + 1465001 +2260
Mxdir
ICCGE (3807 +110)rc — (1807 +60)r + 1156201 + 18740
Plane CG.JCG . (640I +60)rc —(240I)r + 148780+ 2260
ICCGC (11207 + 60)rc —(480I)r +2864201 +2260
Stress -
ICCGE (1013.37 +250)rc — (4001 + 120)r +2432007 + 35140
Space CG,JCG (10201 +90)rel — (3601)rc —(360I)r + 3085801 +2260
Truss ICCGC (1800 +90)rel — (720)rc —(720I)r + 6076201 +2260
ICCGE (17201 + 390)rcl —(680I)rc —(680I)r + 5603007 + 125540

Predicted Run Times for [Iterations

Figure 4.7

80
is
total time = startup time + iterations X (A, +C, + M,)

These predicted times will be compared with actual run times on the CYBER 205 in

the next section.

.4.2. Multi-color ICCG Performance

We now turn to actual performance results for multi-color ICCG algorithms for
the four‘ ;godel problems. Results are givenj) 'for.‘ -the . standafd m'ulti—coldr
implementation, ICCGC, as well as for the ICCGE .implementation{ Perforz_naﬁce
results are also given fc.>r the conjugate gradient methods, CG anci JCG, so that
‘speedups can be cdlcﬁlated fof the ICCGC and ICCGE algorithms. Timing resulf_s are‘
compared with the predicted run times given in Figure 4.7 and the quantity T;cg
from Figuré 4.5 is used with the actual iteration counts to predict the reduction in
run time.

Results from CYBER 205 runs are given in Figure .4.8 for the four model
prc.>ble£ns. For each problem the problem size is given in terms of the grid size and
number of unknowns. For example, the Laplace results given are for a 97 by 97
gfid or 9409 unknowns. “For the plane stress problem theré are two unknowns at
each. grid point so for an 80 by 81 grid there are 80X81X2 = 12960 unknowns.
Likewise, the tﬁree dimensional grid is given for the space truss problem where there
are three unknowns at each grid point. The four problemé require 2,4,6, and 12
. colors, respectively. to achieve a p-color matrix as 'described. in chapter 3 fouoﬁling
- the continuous. coloring rule. The predicted times from thé performance model of
the previous section are given in Figure 4.8 in parentheses after the actual measured
.-runtimes.

For large problems, a good estimate of the maximum computation rates in

Mflops (10% operations per second) is given by dividing the leading terms in Figure

81

Model
Problem Algorithm || Iterations Time (sec) Operations Mflops
CG 266 .495 (.486) 55,747,215 113
Laplace
JCG 259 482 (.473) 54,280,183 107
99% 130 ICCGC 130 376 (.369) 38,891,709 103
9999 ICCGE 131 256 (.253) 27,494,382 107
Mx dir CG 230 .700 (.688) 74,649,029 107
ICG 230 .700 (.688) 74,649,029 107
106 X 106 ICCGC 87 453 (.441) 44,743,490 99
11236 ICCGE 88 .394 (.386) 39,470,743 100
CG 794 3.67 (3.40) 358,618,833 98
Plane .
JCG 766 3.54 (3.38) 345,972,325 98
Stress
80X 81X2 ICCGC 298 2.38 (2.24) 222,845,889 94
12960 ICCGE _ 298 2.18 (2.02) 202,581,633 93
' CG 2506 9.83 (9.45) 960,732,737 98
Space
: _ JCG 1989 7.80 (7.50) 762,528,896 98
.Truss
'45x46x2‘x3 ICCGC 784 5.40 (5.13) 484.,283.855 90
12,420 ICCGE 783 5.18 (4.95) | 470957828 91

Experimental Results f rom" 2 Pipeline CYBER 205

Figure 4.8 . .

4.2 by the corresponding leading terms in Figure 4.3 and multiplying by 1000. For
the Laplace problem the estimated maximum rates for A, C, and M are 100 Mflops,
133 Mflops and 90 Mflops respectively. Using Figures 4.6 and 4.7 the .predicted
maximum computation rate for the Laplace problem is 117 Mflops.

The predicted

times in Figure 4.8 are uniformly less than the actual run times, as are the Mflop

82

rates computed from the data in Figure 438, This is expected since all scalar
* arithmetic ‘and overhead from subroutine calls, etc. is ignored. Since the largest
amount of .computation for each method consists of vector adds and multiplies, we
expect that computation rates of approximately 100 Mflops would be achieved if the
method veétorizés well. The computation rates giQen‘ in Figure 4.8 show that tﬁé
multi—col_or. vICCG methods dé achieve this degree of vectorization. Some rates over
100 Mfops are given for the Laplace problem and for the mixed derivative problem,
.. reflecting thé eﬁ'eét' of the linked triad .instructions in the con}ugate gradient

iterations. ‘
Figuré 4.9 shows how accurately the performance model described in the

previous section can predict the actual speedup in run times when the iteration

Model predicted | predicted | actual
Problem Algorithm || I; g Tice Sicg Sg cg
- ICCGC 49 1.65 1.31 1.31
Laplace :
ICCGE || .49 106 | 193 1.93
e —— — e ——
. ICCGC 395 1.69 1.50 1.55
Mxdir
ICCGE 395 1.46 1.73 1.78 -
ICCGC 375 | 175 1.53 1.54
Plane
Stress ICCGE 375 1.58 1.68 1.68
ICCGC 313 1.76 1.81 1.82
Space .
Truss ICCGE 312 1.69 1.88 1.89
Jic = ratio of iterations for method i to CG
Tice = ratio of predicted time per iteration for method i to CG
Sicc = Speedup in terms of execution time for method i compared to CG

Comparison of Results to Model Predictions

Figure 4.9

83

counts are .given for the two methods being compared. From Figure 4.8 we compute
I c¢ and using ‘the estimate Tice from Figure 4.5, the predicted speedup for method
i is given by S;cs. Using the runtimes given in Figure 4.8, we calculate the

actual speedup for method i given in the last column of Figure 4.9.

4.3. 'Comparhon to Natural Order ICCG Algorithms

In this section we attempt to compare the performance of multi-color ICCG to
other ICCG methods which have been used on vector computers. A major concern
with using multi-color orderings is the effect on the rate of convergence of the ICCG
algorithm. = We will address this concern by summarizing published results for
convergence of ICCG methods based on the natural ordering, ICCGN, and by
presenting our results for ICCGN for three of the four model problems. ‘We also
model an ICCG algorithm based on a diagonal ordéring of the unknowns, ICCGD, for
the Laplace problem and predict its performance on the CYBER 203.

Several problems are encountered in comparing our results with published
results. Although Laplace’s equation is the standard model used to test the various
algorithms, the problems chosen are not always identical. Convergence criteria are
not thé same. for each problem and sometimes are not even given. Finally, the
ICCG method is not always compared to conjugate gfadient so that it is impossible
to tell how much the given method reduces the execution time for .the parﬁcular
problem.

-A comparison of the number of iterations for convergence for several
preconditioned conjugate gradient algorithms is given by Jackson. and Robinson [1981]
_including the standard no-fill ICCG méthod. partial fill _ICCG methods and MICCG
methods using the column sum coﬁstraint in calculating the incomplete factors. No
vector computer timings are given but the iteration counts are useful in comparing

convergence rates of the wvarious ICCG methods. Their results indicate lower

84

iteration counts for partial fill ICCG methods compared té standard ICCG and even
better results for the MICCG methods. For a Laplace préblem with 30X 30 = 900
unknowns the iferation counts ranged from 28 for standard ICCG to 10 for a block
MICCG method Which is based on the block tridiagonal structure of the Laplace
matrix and uses the column sum constraint in approximating the inverse of the » Xr
diagonal blocks by diagonal matrices. All of the methods they present are based on
the natural orderirig. and do not vectorize well with the exception of the block
incomplete method mentioned above ‘which would vectorize with O(r) length vectors.

Schrieber and 'Tang [1982] give a few convergence results for the ‘multi-color
ICCGl method for Laplace’s equation using the red-black ordering and a 4-color
ordering. For a problem with 2500 unknowns the standard ICCG niethod based on
the natural ordering required 25 iterations to converge. The red-black ordering
require_d 34 iterations and the 4-color 6rdering required 29 iterations. Their results
suggest that ,the: multi-color ICCG methods may require more iterations ‘i.'or'
~convér'gence but. the increase was not substantial.

Figure 4.10 summarizes some other published timing results for Laplace's
equation on the CRAY—I and CYBER 205 for various ICCG methods. We describe
some details of the algorithms and results below.

Two vectorized versions of ICCG based on the natural ordering are discussed in
van der Vorst [1985] and results are given from runs on both the CYBER 205 and
-CRAY computers. The natural ordered matrix for Laplace'é equa:tioh on a r Xr grid
lis treated as block tridiagonal. A straight forward vectorization of ICCG(0) is
carried out with vector lengths that are Of(r) -using special optimized scalar
. arithmetic softwaré- for. tho; recursive equatiohs necessary to solve lower and upper
bidiagonal r Xr systems as part of the forward and back solves. Estimates are
given for execution times of both the matrix vector multiply and the preconditioning

step in terms of the number of unknowns, N = r?, as 90Nns and 520Nns,

ICCG Preconditioning Methods for Laplace’s Equation

Author Iterations Timing
van der Vorst [1985] N =3541 ICCG (0) seconds
: ICCG(0) - 101 CRAY-1 .392
VICCG(0) - 104 | CRAY X-MP .219 2.98
CYBER 205 .512 11.87
N=22500 VICCG(0) seconds
ICCG(0) - 246 CRAY-1 .269
VICCG(0) - 264 | CRAY X-MP .148 222
CYBER 205 .218 3.71
Kightley & N =2744 CRAY-1 times (sec)
Jones [1985] JCG - 32 049
ICCG - 17 .105
VICCG - 17 .090
LICCG - 23 .064
N =15625 _
JCG - 112 94
ICCG - 37 1.14
VICCG - 37 .086
LICCG - 98 1.34
Meurant [1985] - N=2500 CRAY-1
ICCG(0) - 35 ICCG(0) 29 mflops
INV3(1) - 16 INV3(1) 31 mflops
Lichnewsky [1983] N =2500 CRAY-1
VECGIC-2D - 34 29 mflops

85

Laplace’s Equation Results
Figure 4.10
respectively, for a 2-pipe CYBER 205. Note that this result agrees with the leading
term in the timing formulas for A, for Laplace’s equation given in Figure 4.3. In
“terms of the model presented in section 4.1, the ratio of execution time for the
preconditioning step to the execution time for the matrix vector ﬁ:ultiply. «, is 5.8,
considerably higher than for any of the multi-color methods. Based on the model

we also estimate the ratio of the total time per iteration for ICCGN to the total

time per iteration for CG, T, as approximately 3.9. Since the ICCGE algorithm for

86

the Laplace prdblem has the same cost as CG, this ICCGN method will be slower
than ICCGE on the CYBER 205 unless it converges more than 3.7 times as fast as
ICCGE.

A modified ICCGN algorithm, VICCG(0), is also given by van der Vorst based
on a truncated Neumann expansion of 7 Xr unit lower bidiagonal matrices and
requires only 120Nns so that a would be only 1.33. In this case T would be
approximately 1.6 for large problems. All of the methods presented by van der
Vorst are carried out using vector lengths that are O(r) and so the parameter « is
likely to be considerably higher than 1.6 unless a very large grid is used. .No_
comparison to conjugate gradient is made in this paper but the results show that the
ICCG(0) and VICCG(O) algorithms are nearly identical in terms of iterations for
convergence and VICCG(0) éutpérforms ICCG(0) by a factor gx;eater than 2. Note
that this perforﬁaance_ result is predicted by the ratio of T;ce computed above.

Results vfor some three dimensional problems are given by Kighﬂey and Jones
[1985] for Poisson’s equation on the unit cube with 2744 unknowns and for a fluid
. flow proiylem based on a Poisson-like matrix with mixed boundary conditions
containing 15625 unknowns. The methods are standard ICCG based on the natural
ordering, VICCG, as described above, and a ‘long vector’ truncated ICCG method,
LICCG, which uses a Neumann expans'ion to approximate the incomplete Cholesky
factors using the sub diagonals of A which are of length O(N) rather than the _
shortér O(r) lengths used by Van der Vorst. These methods are comfared to Jacobi
preconditioned conjugate gradient (i.e. the diagonal scaling of A) and the results
indicate that JCG was fas_ter' than all of the ICCG methods except for the VICCG
method of Van der Vorst on the flow problem. The LICCG method is the only one
vvwhiéh has the dsired O(N) length vectors for the CYBER 205 but it does not do
" as well as VICCG in terms of- iterations for convergence. For the Poisson problem

" with 2744 unknowns LICCG.was the fastest ICCG method even though the numbgf

87

of iterations is greater, reflecting the greater degree of vectorization. These.‘ results
also indicate that many of the ICCG methods are not competitive with simpler
preconditionings on some problems.

Vectorizéd versions of block preconditioners given by Concus, et. al..[1985] are
discussed by Meurant [1984] and performance results are given for both the CRAY
and CYBER 205. All of the bloék methods are based on the r Xr block tridiagonal
structure of the natural order matrix for the Laplace problem. They | differ in the
ways used to approximate the inverse of the tridiagonal block's‘ of the block diagonal
matrix in the incomplete factorization. As such they all have the limitation of
O(r) vector lengths and tim Mflop rates given for the algorithms reflect this. Again,
no comparison is made to no preconditioning but the results do show an
improvement in convergence rates over standard no-fill incomplete Cholesky and the
. claim is made that for a large_ class of problems block methods are to be preferred
over point ones. For a good comparison of these block methods to both conjugate
gradient without preconditioning and point ICCG methods, see Concus et. al. [1985]

Another approach, presex.xted' by Lichnewsky[1983], reorders the unknowns by a
_'subdomain approach’ ‘mainly applicable for multi—processbr applications. - He .suggests
that the multi-coloring strategy - of Schreiber and Ta.ng‘ could be used within the
"subdomains to achieve long vector lengths. He also gives results for a vectorized
ICCG. algorithm based on odd-even ordering by lines on the entire doﬁlaiﬁ. Again,
the vector lengths are O(r) and results are only given for the CRAY-1.

Comparisons to other ICCG methods, including those given by Meurant [1984], show

similar convergence results.

4.4. Diagonal Ordered ICCG for Laplace’s Equation
We turn now to an analysis of two ICCG algorithms based on diagonal

orderings. The diagonal ordering is discussed by van der Vorst [1983] as a method

88

to vectorize the ‘natural ordering buf. as he notes, this ordering is diﬂic_ult to apply
to a general problem and requires twice as many vector operations (2r) for a
problem on an r'><r grid as well as expensive gather and scatter operations. The
advantage of the diagonal ordering is that the recursion in the forward and back
solves is now vectorized. Moreover, the convergence rate is the same as for the
natural ordering. since the same computations ﬁre performed by thé diagoqal orde;_ed
method as for the natural ordered method. The main disadvantage for vector
computers like the CYBER A20.5 is that the average vector length for ICCGD' is r/2
(for rectangular regions the; ‘average vector. length is less than half the smaller
dimeﬁsion). MoreoVér, reordering of the solution vector is necess'ary.at each iteration
to preserve the vec;brization of the matrix-vector multiplication. One solution to
this problem, however, is to use the Eisenstat implementation discussed pre\}iously,
thereby avoiding the need for reordering by eliminating the matrix-multiply at each
step. Van der Vorst claims no savings using the diagonal ordering on the CYBER
205 but sfgniﬁcant savings were realized on the CRAY-1.

We now compare mtﬁllti—color ICCG methods to two different implementations of
ICCG that use diagonal orderings. The diagonal ordering discussed in section 3.3
occurs after -tﬁq inéompléte factorization and is used to vectorize .the forward and
back solves necessary at each -iteratioﬁ. The first algorithm, ICCGD.. is just the
standard ICCG(0) method. .The matrix-vector multiplication is carried out with the
matrix A in the natural ordering stored by diagonals. The preconditioning step,
therefore, must be preceeded By a vector gather instruction and followed by a vector .
scatter since the unknowns are ordered by’ diagonals for the forward and back
solves. The second algorithm, ICCGDE, uses ‘the Eisenstat modification to | eliminate
the need to do matrix-vector multiplies explicitly and, as in the red-black ICCGE
method used for the Laplace problem, appropriate scaling of A saves additional

operations. For ICCGDE the vector gather-scatter operations need only be carried

89

out at the outset and at the end of the computations.

;To derive timing formulas for ICCGD we consider the number of vector
multiplies and adds for a forward and back solve on a r Xc dimension grid. Figure
4.11 shows a psuedo codé for the preconditioning for ICCGD. The ICCGDE
algorithm has no preconditioning step but the forward and back solves are carried
out in the same manner. A vector assignment statement initializes the forward
solve while the vector multiply used to accomplish the diagonal scaling before the
backward solve initializes the backward solve. The number of vectors used to store
the lower triangular matrix L is 2(r +c¢ ~2). Since, for each vector, an add and
xﬁultiply are éxecuted, there are 4r +4c—8 vector .instruétion—s executed for one
forward solve. The total numbex; of operationé for a forward solve 1s 4rc —2r —2c.
The total number of operations for the preconditioning is 9r¢ —4(r +¢) and the

“total time including the vector assignment is 100rc +8200(r +¢c)—14640. Note that

set T =r
forward solve
fori=1r+c-—2
(@) =2G) - w()*r@)
r(@) =£G) — w()*r@)
diagonal scaling (Dgq =%)
f=fxp-l :
backward solve
for i=r +c¢—2,1
r(i@)=1G)—eG)*rG)
@) =rG)—nG)*xG)
LDLTf=r
Vectorized Preconditioning for ICCGD, ICCGDE

Figure 4.11

90

although the number of operations is ‘ actually a little less than for the
preconditioning in the ICCGC routine (see Figures 4.6 and 4.3) the main difference in
the two timing results is dug to the large positive coefficient of the r +c term in
the ICCGD preconditioning. For reqtangulér grids the effect is even greatei-.

The cés»t 'pf »preconditioning' for ICCGD increases greatly as the grid of
unknowns becomes elongéted in one dimension. In Figure 4.12 we give a comparison
of thé two preconditioners on almost square grids and oﬁ very elongated grids. The
timings giveh for ICCGD are estimates from timing formulas. No experimental
results were obtﬁined for this method but the timing formttxlas. are believed to be
" accurate estimates of the actual run time. The multi-color method is clearly
superior in execution time in all cases, particularly for the rectangular grids.

.We now compare the standard ICCGD algorithm with the Eisenstat
implementation , ICCGDE, used earlier for the red-black ordering. We can predict
overall performapce of these algorithms by applying the model described in section
4.1. To compute a and .B, for each problem we use the time for a matrix-vector
xﬁultiply f‘or. the natural ordering .obtained from timing formulas derived' as in

earlier examples. The time for preconditioning for the ICCGD method includes the

Grid ICCGD - Predicted Times ICCGC - Actual Run Times

r | ¢ operations | time (sec) | mflops || operations | time (sec) | mflops
99 101 89.191 (.0026) 34 89.595 00101 88
11 909 86,311 (.0085) 10 89,947 00102 88
49 51 22,091 (.00106) 21 22,295 00027 84
7 357 21,035 (.00322) 6.5 22,463 00027 84

Times per Iteration for Laplace Problem
Comparison of ICOGC and ICCGD Preconditioners

Figure 4.12

91

Grid ICCGD I(;CGDE

Size a B Tpca o 8 Tprce
99x101 || 3.46 | 1.0 273 | 290 | 100 | 195
11x909 1 9.94 | 1.0 5.97 939 | 1.00 5.19
49X 51 N 510 | 1.00 | 3.5 454 | 1.00 2.77
7x357 || 1431 | 100 | 816 | 1377 | 1.00 7.38

Time per Iteration in Terms of Matrix-Vector Multiply for:
o — preconditioning (ICCGD), diagonal matrix multiply (ICCGDE)
B — remaining CG calculations
T — ratio of ICCGD or ICCGDE to CG
Perfo;na.nce Model for ICCGD and I]CCGDE
Figure 4.13
overhead of the gather and scatter operations which must be performed at eachb
iteration and this is reflected in Figure 4.13 in the larger value of o« for ICCGD -
compared to ICCGDE. We can also see the effects of 4 change in dimensions of the
problem on the various paraméters. The ICCGDE method ‘does not have an explicit
'matrix—vector multiply and in this case a is a measure of the time for the
equivalent of a forward and back solve, a vector multiply and a vector assignhent
divided by the time for a matrix-vector mulfiply for the natural ordering. Each B .
represents the time per it.eration for thg usual dot products and three linked triads. 4
For thAeA ICCGD algorithm, (4.1) and (4.2) are used to compute the values for Tb G
shown in Figure 4.13. The form used to éalculate Toeco is
Toe.ce =(apz +Bpe) (14 Bco).
The results of Figure .4.13 suggest that the ICCGD and ICCGDE algorithms vmay

actually be slower than CG for many problems since breconditioning does 'nof.
always reduce the number of iterations by a large enough factor. Nevertheless, it is

important to remember that these performance results only give a comparison of the-

computation rates for these methods and a complete answer to the question of which

92

method is better requires knowledge of the convergence rates. Since CG and the
ICCGE method have almost the same cost ori_Laplace's equation (ie. Tgce = 1.06), a
diagonal ordér based algorithm must reduce iterations by greater than the ratios, T,
computed in Figure 4.13 in ‘order to be faster than ICCGE. ’

We turn finally to the comparison of convergence rates for ICCGC and ICCGE
compared to ICCGN. Our results confirm the convergence results given by Schrieber
and Tang .[1982] which show some increase in the number of iterations for
coﬁvergence for multi-color methods but not by a great deal. It is possible,
however, to construct pathological problems where the ICCGN method appears far
superior to the multi—color. method. However, we do not feel that such problems
afe represenﬁative of real problems of interest. As an example, we consider thé
Laplace problem on “a grid. with spacing between the grid points equal to A~ in one
direction and % lin the other direction. Then the ﬁaain diagonal of A is
2(h2+k2)/ hk the diagonals above and below the main diagonals are —k/h and the
outer diagonals are —h/k. As the aspect ratio, h/k, is changed the entries- in the
matrix chénge but the condition number of the matrix remains the same, as can be
shown using a Kronecker product representation of A. The conjugate gradient
iterations first increase as the aspect ratio is increased but then decrease as the aspect
ratio continues to increase. The ICCGN algorithm converges more rapidly, however,
as the aspect ratio increases. For example, on the Laplace problem described in the -
previous bsection with N = 97x97 = 9409, increasing the aspect ratio to 100 caused
the number of iterations for ICCGN to drop from 70 to 6 while the ICCGC
iterations increased to :108. For very high aspect raﬁios. however, the matrix
becomes e'ssentiall}; a tridiagonal matrix since two of the off diagonals become very
large a'nd"the ‘other two become very small. Incomplete Cholesky decomposition of a
tridiagonai matrix is exact so we expect that for these matrices the preconditioning

by incomplete Cholesky would be very effective.

93

Model
Problem CG ICCGC ICCGN ICCGC/ICCGN
Laplace 266 130 84 1.5
N =9999
Mxdir 230 87 45 1.9
N =11236 '
Plane Stress 794 298 223 1.3
N =12960

Iterations for ICCGN and ICCGC Convergence
Figure 4.14 |
As a fufther compa;ison of ICCGN to ICCGC we programmed point ICCGN for
the Laplace problem, the mixed derivative problem and the plane stress problem.
No attempt was made to optimize the CYBER 205 code for maximum scalar speed
and so the ?untimes were extremely slow; Figure 4.14 summarizes only the iteration -
counts for three problems. The sizes for each problem were the same as in Figure
4.8. Although the ICCGN algorithm does require fewer iterations, the improvement
is not nearly enough to offset the negative effects of poor vectorization of the . '

preconditioning step.
Summary

" The résults presented in- this chapter‘ éonipa;e multi-color ICCG methods with
Both Siandard conjugate gradient and other ICCG methods. A performance x’nbdel
was given which accurately predicts the results obtained from experiments and can
also be used to compare other ICCG methods. For each model problem we saw that
the ICCGC methods performed at high computation rates on the CYBER 205 and

achieved modest speedups in execution time compared to conjugate gradient.

CHAPTER 5

Conclusions and Future Research Areas

In this thesis we have examined multi-color orderings applied to the incomplete
Choiesky conjugate gradient method. We sought to expand earlier results on multi-
color orderings for appiiéation tb a wide class of ﬁroblems and to see what effect
multi color orderings had on the rate of convergence of the basic ICCG method as
compared t6 thé natural order point ICCG method and other vectorized ICCG
methods. We now summarize our work., draw conclusions about the experimental

results, and discuss future research in related areas.

5.1. Summary

Following a discussion of the basic ICCG method and some co@only used
modifications for both scalar and vector computers we described the multi-color
ICCG method, ICCGC, based Aon reordering of the unknowns to obtain p-color
matrices. The resulting block incomplete Cholesky method could be implemented with
sufficiently loﬂg vectors so that the preconditioning step, requiring a forward and
back sol\)e of block lower and upper triangular systems, could be implemented with
addé and multiplies of vectors of length O(N/p). Chapter 3 defined a class of
problems, ‘class R, for which multi-color orderings could be applied. This class
included tv)o and three dimensional problems on rectangular domains with Dirichelet
boundary conditions and with possibly more than one unknown per grid point and a
uniform grid stencil. For the problems in class R we used storage of the matrix by
diagonals and in Theorem 3.1 we proved that for problems with one unknown per

grid point, the natural ordering of the grid points resulted in a matrix which could

94

95

be stored in the minimum numbef of diagonals possible' In Theorem 3. 1 we also
proved that for problems with more than one unknown per grid point, using the
natural ordering of the grid points with either a consecutive (3.1) or a.lternatmg
(3.2) ordering of the unknowns at each grid point, the number of diagonals in the
matrix was the same as the number of non-zero coefficients of the equations
associated ‘ with all of the unknowns at any interior grid point which had no
bdundary vélues as grid stencil neighbors. Furthermore, bounds were given for the
number of diagonals in the matrices using these orderings.

We then discussed multl—color orderings, defined in terms of p disjoint sets of
the unknowns in the grid, and in Theorem 3.2 gave neccessary and sufficient
conditions to ensure that a p-color matrix results from a given p-color ordgrmg of
the unknowns. We also identified a relationship between the ordering of . the
unknowns within the disjoint sets which would minimize fhe number of diagonais
within each block row of the p-color matrix and illustrated the relationship with -
several examples. We presented a method of obtaining p-color 6rderings. called the
continuous coloring rule, thch is easy to apply to any class R problem. In Theorem
3.3 a condition was given which applied to all continuous color orderings and
satisfied the necessary and sufficient conditions of Theorem 3.2 to obtain p-color
matrice_ﬁ. - The condition in Theorem 3.3 placed restrictions on the dixxiensions of the
grici and we discussed ways to handle this problem including increasing the number
of colors and adding extra ‘dummy rows’. Increasing the number of colors seem'e'd‘ to‘
be the most promising solution to this problem and examples were given of both
solutions. We noted that the continuous coloring rule also gave matrices which
contained the minimum number of diagonals within each block row and further
noted that many of the diagonals lined up with diagonals in adjacent blocks so that
_-a further savings could be achieved in the matrix vector multiply in the cbnjﬁgate'

gradient step by storing these vectors contiguously. We conjectured that the

96

maximum _lineup of vectors occurs when p divides N evenly. We saw that for a
fairly general class of problems p-color orderings could be easily obtained which had
the desiréble long vectors suitable for vector computers such as the CYBER 205. To
our knowledge such a wide application of p-color orderings has .not been given and
no other easy to use method like the continuous coloring rule has been applied to
obtain p-color matrices, particularily to three dimensional problems like the space
platform model prbblem;

Hdving developed a method for obtaining p-color matrices, we . testved' the
effectiveness of multi-color ICCG on four model problems. We were interested _.in
the degree of vectorization achieved by the ICCGC method but, more importantly, in
the overall speedup. of ICCGC compared to conjugate gradient, CG. We developed a
performance model in chapter 4 which compared the time for a matliix-vector
-multiply with fhe time for the preconditioning step. Since the two computations in
the basic ICCG method have nearly the same number of ‘operations the comparison
of execution time of the two parts of the computation was a measure of the degree
of \-/ectorization‘ of the preconditioning. We saw that ICCGC vectorized very well,
with the preconditioning step nearly equal to the matrix vector multiplication in
execution time. However, for the diagonal ordered ICCG method used on Laplace’s
equation we saw that the preconditioning step did not vectorize nearly as well and
on rectangular domains where one of the dimensions was much larger than the other
in term of grid points the degree of vectorization was very poor. We also gave
| formulas to count the arithmetic operations and predict execution time for each of
the model problems. The performance model predicted the actual speedups achieved |
by ICCGC compared to ICCG within one decimal place accuracy and sometimes even
better. We also gave results for the Eisenstat-like modification to the ICCGC
algorithm showing tﬂat it does save execution time but less so as the number of

colors increases. Finally, we modeled the performance of diagonal ordered ICCG and

97
compared the convergence of natural ordered ICCG for three of the model problems,
noting that the multi-color orderings required a greater number of iterations to
convergence. However, the increase in iterations for ICCGC compared to the natural

ordering was small compared to the speedup due to the vectorization achieved by the

multi-color orderings.

5.2, Conclusions

1) Multi-color orderings are an effective means to achieve matrix structures for
which block methods can be carried out with long vector operations. Because of th'é
" structure of the p-color matrices the forward and back solves needed to carry out _
the preconditioning can be implemented with the desired long vector Iengths. The
multi-color ICCG methods we implemented ran at near the maximum possible rate
on the CYBER 205. | |

2) The continuous coloring rule provides an easy to use method for obtaining
p-color matrices even for more complicated three dimensional problems. We gave a
condition in Theorem 3.3 which could easily be used to determine the number of
~ colors vx'lecessa.ry to obtain a p-color matrix given a grid stencil and the dimensions
of the grid. We also noted that for three dimensional problems a simple but

eﬁ’ective strategy to follow to obtai;x the number of colors was .to chose p and then

apply (3.8). repeating with the next larger p if necessary until (3.8) is satisfied. ,A

3) Our results shoWed that the ICCGC methods are competitive with otﬁer
- vectorized ICCG methods in terms of overall speedup of execution time compared ‘t.o
conjugate gradient. We noted that often published results for vectorized ICCG
methods do not include a comparison to conjugate gradient without precondifiohing
and in some cases when such a comparison is included, conjugate gradient was faster

in overall execution time.

98

4) The performance model we have presented can be used to compare other
preconditioning methods to ICCGC and CG and represents the proper way to compafre
methods implemented on vector computers by modeling both the dégree :o'f
vectorization and the overall performance in terms of execution time.k We were also

able to note the effect of poorly vectorized preconditioners by measuring the time

for the preconditioning step in terms of the matrix-vector multiply time.

5.3. Fu.ture Areas of Research

The speédups achieved' by ICCGC are only modest .and some method of
~ improving the convergence of the method | would greatly improve the results. ’We
have so far only worked with basic ICCG and an open question is how much the
ICCG convergence results can be improved by applying some of the modifications of
the basic method to the multi;color ICCG method. It is also possible that multi-
jcdlor ‘oraerings can be used in the context of other block iterative methods to
imprové vectbri_zatiqn ' of those methods. Some of these methods include allowing
partial fill or adding column sum constraints. Another promising modification may
be to allow fill in the D; blocks in the decomposition and apply the Neumann
expansion to estimate the D;7l. still another is to use matrices such as in Figure
3.17 which are obtained by the éontin;;)uus coloring r,uie but are not p-color matric&
and apply some of the commonly used methods for appréximating the inverses of
tridiagonal inverses to approximate the D;l.

More research related to the theoretical results we obtained in chapter‘ 3 is also
needed. The proof (or disproof) of the coﬁjecture remains, as well as further results
extending the general statement of conditions to achieve the minimu_ni number of

»diagonals within the - blocks of the p-color matrix when there is more than one
"unknown per grid point. More theoretical results are also necessary to compare the

properties of p-color matrices to their natural ordered counterparts. Research on the

99

convergence test used for ICCGC, phrticularily in 't.he use of the two norm of T,

might further reduce the time and overhead spent testing for convergence.
Finally, application of = multi-color orderings to irregular domains is another

important area of investigation.

APPENDIX A

1 ' '
Incomplete Matrix Multiplication by Diagonals

In this .appendix we discuss matrix multiplication by diagona}s as applied - to
m‘ulti—_color‘ ICCG methods. We adapt an algorithm for matrix multiplication by
diagonals given by Madsen et al. [1976] for banded matrices. A general vdis_cription
of . the ' problem is given ﬁfst. followed by the actual | .impleAmentat_ivonv used in
- programs written for the CYBER 205. |

.‘ Recall that the main computation performed in the block incomplete
factorization for ICCGC is incomplete matrix-matrix multiplication while matrix-
vector multiplication is the main computation in the for&\ﬁrd and back ' solves in
eﬁch iterat_ion_ as .well as the formétion of Ap in the_ CG -algorithm. Tl}e matrix-
vector mult_iplicatioh is the easier of the two operatio.ns‘ and Figure A.la illustra@
the process. Here, a superdiagonal multiplies the corresponding first pésitions of w

while a subdiagonal multiplies the corresponding last positions of w. These

as b,

by

(A Aw=z ' (b) AB
Matrix Multiplication by Diagonals

Figure A.1

100

101

contributions are added to the correct positions of thg result vector Z.
, Tixe ‘more difficult pxioblem is the incomplete multiplication AB=C where A-
and B are gXg matrices. Each diagonal of the product is of the form
e = Ea‘b, '
where the a; and b, are diagonals of A and B and the summation is over all
products which contribute to the product diagonal c¢;. For the inpomplete
multiplicatibn. we do only those calculations for diagonals ¢; which afe allowed to
be non-zero. The programming problem is to determine the diagonals of A and.B
which contribute to a diagonal of C. the starting positions and lengths of the |
diagonal operands and the starting position of the result in the product diagonal.
For example, in Figure A.lb, suppose that c.;, the first subdiagonal of C. is an
allowed non-zero diagonal. Then a_b; and a3b_4 contribute to c-; in the
following way. The g—2 long vector a—, multiplies the first q;-2 positions of the
g—1 long vector. b; and 1s sto_red in ¢_; beginning in the second position. Then the
last.' g—4 elements of tllle. g—3 long vector a3 multiply the g—4 elements of b_4 and
the product vector is added to the first g—4 positions of c;. .'
We turn now to implem_enta;tion details of the twé processes described above.
The data structure used for the programs to solve the four model problems was aé
follows. The lower triangular part of A is stored by d-ié.gonals in é one
dimensional érray. One table of integer pointers contains necessary information for
each diagonal including the row and column in A where the diagonal begins, the
leﬁgth of the diagonal, the starting positién of the diagonal in the array, and the
offset of the diagonal within the block structure of the matrix. That is, fhe row and
column information tells where the diagonal is located within the matrix A while
the offset field fells where the diagonal is located within the particuliar block in
which it is located in the multi-colored matrix. A second table of integers tells

how many diagonals are located within each block of the multi-colored matrix and

102

which diagonals are located in each block.

Matrix-vector multiplication by diagonals is easily implemented if for each
diagonal of A the row and column in A where each diagonal begins and the length
of the diagonal is known. Figure A2 is a portion of the CYBER 200 FORTRAN
subroutine used to do the matrix-vector multiplication in the conjugate gradient
iteration. The first vector instruction multiplies the main diagonal of A by the
input vector. The DO loop goes through the data structure co'ntair_xing the necessary
integer pointers for each of the ND diagonals in A looking up the row, column,
length, and starting position for each vector. Each diagonal is tsed twice since the
matrix is symmetric. Note that the row and column information is used directly to
specify the starting positions in the input and resultant vectors and the roles of the
row and column pointers are exchanged for the second vector instruction in the loop,
accounting for symmetry of the matrix. Note also that the forward and back
solves can be carried out in a fashion very similar to the matrix-vector multiply,
‘using the row and column information to determine the starting positions in the
appropriate vectors. An additional savings is possible in the formation of Ap if
diagonals which line up across blocks are stored contiguously and treated as one

'SUBROUTINE ATIMV(VIN,VOUT)
VOUT(1;N)=VIN(1;N)*A(IDST;N)
DO 1 I =1,ND

‘coL = I0(I,1)

ROW = 1D(I,2)

L = ID(I1.3)

IST = ID(I,4) v '

VOUT(ROW;L) = VOUT(ROW;L) + VIN(COL;L)tARRAY(IST;L)

VOUT(COL;L) = VOUT(COL;L) + VIN(ROW;L)$ARRAY(IST;L)

1 CONTINUE
‘Matrix-Vector Multiplication

Figure A.2

103

vector during the matrix-vector ;nilltiplication. Expgrimen;al fesults with thel model
problems verified that this savings was most significant for smaller problems while
for larger problems where vector lengths were long within blocks of t_he multi-color
matrix the savings was insignificant. Figure A.3 gives some timing results for the
plane stress problem comparing the execution time for Ap with and without this
savings for a problem with 840 unknowns and one with 12960 unknowns. Figure
A.3 shows the time for one matrix-vector multiply as well as one ICCGC iteration. .
For the smaller problem, a savings in execution for ICCGC of approximately. eight
percent is realized while for the larger problem a savings of just over one percent is
achieved. Note the increase in operations required for the lineup of vectors,
reflecting the extra zel;os stored and used in the calculations. For this problem
approximately half of the vector instructions can be eliminated by taking advantége |

of the vectors that line up.

Matrix-Vector Multiply for Plane Stress Problem
Grid Time Number of Vector Total ICCG
Coloring (sec) Operations Instructions Time/Iteration
without
line up || .003159 296,144 133 .0080
80 X 81 :
| with , .
-line up 003105 297,000 .69 0079
80 X 81
without
line up .000393 18.824 133 ©.001001
20 X 21 = '
with . :
line up .000308 19,040 69 000935
20 X 21

Matrix Multiplication Comparison

Figure A.3

104

The matrix-matrix multiplication performed in the block incomplete factorization
requires that blocks of A be treated as separate matrices and so the offset field
nﬁéntioned ;a.bove is used rather than the rov;/ and cqlumn fields for each diagonal.
‘We wish to do compﬁtations of the form C=C—DE where the non-zero structure
of C occurs along a few preselected diagonals and the multiplication DE is only
carried out for those dxagonals of D and E which contrlbute to the allowed
structure of C. To describe the 1mplementat10n of th1s incomplete matrix-matrix
multiplication we use the following notation to describe a diagonal within D,E,or C.
Dy j+a denotes all elements of D which lie on a. diagonal within D which is « units.
above (or | below if o is negative) the main diagonal. Using this notation, and
assuming that the matrices are not necessarily square, we can write the following
expressioé for one of the vector multiplies contributing to the desired product.

Cpyvats = Cpyrass = D+ Ejrogtatp A
It is easy to see that given any diagonal of C with some offset y, and any two
diagonals of D and E having offsets a and B, the two diagonals contribute to
diagonal y of matriﬁ: C'only if a+B=y. If C is pXq. A is pXs and E is s Xq,

then the following inequalities must be true for all allowable values of j.

(a) 1sjsp - | (A2)

(b) 1S j+asSs

(c) 1< j+a+BSp _

A From these inequalities we can derive the following relation for jv:
max(1,1—a,1—a—B) € j € min(p,s —a,g —a—B) (A.3)

Using (A.3) we ‘compute the length of the vector multiply and add for each pair of

diagonals of D and E. If we denote the left hand term in (A.3) as jgm, and the

right hand term as fm.x.- then the length for the vector insfruction& l, is

Jmax— Fmint 1. V Determiniﬁg the sta.rting positions for the two vector operands and

the resultant vector is the ﬁnbre difficult problem. Recall that for each storg&

105

for each ¢ in C
for each o in D
for each 8 in E
if a+B=vy then do
Fomin=MAX(0,~a,—a—P)
jmix=MIN (p,s—a,g—a—P)
lth = jmax— Jmin
Dot =IDD + jpyn—MAX(0,—a)
E,.: =IDE + jm,,,—MAX(—a. —a—B)
Citart =IDC + jpin—MAX(0,—a—B)

ARRAY (Ciqr¢ :Uth)=ARRAY (Ciers i th)— ARRAY (Dyyy :Uth)* ARRAY (E oy, i Uth)

Matrix - Matrix Multiplication Algorithm
Figure A4
diagonal we know the starting position but for particuliar values of a and B the
starting posit'ion for one of. the three vectors is shifted. The algorithm shoWn in
vFigure A.4 is used to determine the starting_ i)ositions for each of the vectors given
the starting loc_ations Qf eéch vector, IDD, IDE, and IDé. and the offsets for e;ach
vector. ‘

We conclude with an example to illustrate the above discuss.ion. Let us
consider the mixed derivitive model problem on a 6 X6 grid using four colors
similiar to the 6 X8 grid shown in Figure 3.20. Figure A.5 lists the integer
pointers stored for this problem. The integer array ID(I,6) contains the row,
column, length, startirig location and offset for each of thé 16 diagonals in this
matrix. The fifth field (long) in iD contains a second length for use when one

wishes to take advantage of diagonals which line up in A. For example, the first

106

ID(1,6) . Data Structure

1 column { row len_gth start lonL a
1 3 10 7 1 25 2
2 1 10 9 28 27 0
3 1 11 8 55 25 -1
4 3 19 7 81 16 2
s 12 19 7 10 0 2
6 10 19 9 37 0 0
7 1 20 8 99 17 -1
8 10 20 8 64 0 -1
9 12 28 7 90 0 2
10 3 28 7 116 7 2
11 21 28 7 19 0 2
12 2 28 8 125 8 1
13 19 28 9 46 0 0
‘14 10 29 8 108 0 -1
15 19 29 7 73 0 -1
16 1 29 8 134 8 -1
17 1 1 9 142 36 [V}
18 10 10 9 151 0 0
19 19 19 9 160 0 0
20° 28 28 9 169 0 0

NTABLE(I,JLK) Data Structure

I J. ” K=1.]-2 | 3 | 4

1 1 1 17

2 -1 3 1 2 3

2 2 1 18 :

3 1 2 4 7

3 2 3 5 6 8

3 3 1 19

4 1 3 10 12 16

4 2 2 9 14

4 3 3 1 13 15 :

4 4 1 20 i

Data Structures for Mixed Derivative Problem
| Figure A.S
vector stored is the B diagonal in Figu;'e 3.20, block 2,1. The second vector in ID
is the W diagonal in block 2.1 of the matrix in Figure 3.20 and the third vector in
ID is the Z diagonal in the same block. FEach of these diagonals lines up with
successive B w. and Z diagonals rwpectivély. Careful inspection of the starting
positions in the ID data structure in Figufe A.5 reveals that these successive
diagonals are stored so that they form continuous B, W, and Z vectors. Vectors

with a zero in column 5 line up with some previous vector. Note that for the

107

mixed derivative problem using column 5 for the matrix-vector multiplication, Ap.
requires 4xX8=32 vecéor instructions while usiﬂg column 3 requires 4 x-16 = 64
vector instructions with correspondingly shorter vector lengths.

To illustrate the wuse of NTABLE we consider the calculation
Lis=Aj3, —A3,1*L§,1 which is a portion of the equation describing the calculation
of L3z according to equation (2.4). From NTABLE(3.2.1) wé see that L3, has 3
diagonals Vand the 2nd, 3rd and 4th fields identify the diagonals as mimbers 5, 6,
and 8 in ID. The allowable non-zero structure of the incomplete multiplication
described above will lie along ‘the offsets O, 2, and -1 given by field 6 in ID. In
similar fashion we find ;he diagonals of A3; and Lg,l to. be 4, 7 and 1, 2, and 3.
The offsets can also be looked .up in ID but we must remember that L{l is above
the main diagonal and so we take the additive inverse of each offset for vectors 1,
: 2, and 3. Finally we take all possible combinations of pairs of offsets from the
two operand matrices allowing multiplications only where the sum of the pair is
equal to one of the offsets of the diagonals in Aj;. For this example diagonal 4
will be multiplied by diagonals 1 and 2 while diagonal 7 will be multiplied bly 2.
and 3. _Unnecessary multiplications are diagonal 4 times di‘agonal' 3 and diagonal 7
times diagonal 1. A partial fill strategy, which coﬁld be easily implemented. .wvc')uld
~allow fill in blocks of L below the diagonal blocks by allowing all of the

multiplications. Of course, one would have to alter ID and NTABLE accordingly;

APPENDIX B

Matrix Assembly by Diagonals

' We discuss now a geﬁeral procedure used to assemble matrices row by row
using diagonal storage. 'This procedure was used to .assemble the matrices for the
four model problems discussed in this dissertation. We store the lower triangtlax ,
portion of each symmetric matrix. We assume a rectangular grid of unknowns in
two or three dimensions with possibly more than one unknown at each grid point.
For a grid with r points per row, ¢ rows, and { planes with ¥ unknowns at each
point, then there are N =r Xc¢ X k equations and A is a symmetric N X N matrix.
Associated with each unknown is an equation in N variables whose non-zero
coefficients are described bsr a grid stencil. The structure of the ﬁatrix depends upon
the gxlid stencil and the ordering of the grid points. .

To sp'ecify: the ordering used, two ordering vectors, ORD(I.1) and ORD(I,2), are -
formed. These N Tldng vectors are permutations of the integers 1’ fhru N. To see
how the;é “vectors are used we consider an example for. ai 4X3 grid. The
unknowns will. be numbered from 1 to N from left to right, bottom to top as 'in
the natural ordering. The first ordering vector, ORD(L1), indicates which unknown
is associated with row I in the matrix A. The second ordering vector, ORD(1.2),
tells which row in the reordered matrix is associated with the Ith unknown.

»T'he information in the two ordering vectors is used as follows. Suppose we
are assembling row 7 for the grid in Figure B.1 for the Laplace problem. In the
3-color ordering used, ORD(7,1) = 8 so the fourth grid point in row 2 of the gri&
is associated With equatién 7 in A. To calculate fhe coefficients for this equation

we use the 5 point stencil. The north, south and west neighbors are the- 12th, 4th

108

109

ORD(1.1) ORD(12) .

3—color ordering 11 4 8 12 I
. o o o o 1 1 1
natural ordering 9 10 " 11 12 o2 4 5
3 7 9
4 10 2
3-color ordering ¢6, 1:) 2 Z 5 2 6
natural ordering 5 6 7 8 6 5 10
7 8 3
8 11 7
3-color ordering 1 5 9 2 9 3 11
. . o o o o 10 6 4
natural ordering 1 2 3 4 11 9 8
12 12 12

4 X 3 Grid of Unknowns
Figure B.1

and 7th grid‘ points respectively. " There is ho east _coefﬁcieﬁt for this grid point.- To
calculate where these coefficients are in A, however, we need to know which
equation is associated with each point. For the west coefficient, ORD(7,2) = 3,
meaning a non-zero entry will occur in column 3 of | row 7 .in A. This coefficient
will be stored in the diagonal with offset -4. If this diagonal already has entries
from pfevious rows, the new coefficient is added but if there is no diagonal with
offset -4 a new diagonal is started and appropriate entries are made in the data
structure. Likewise, the south coefficient is stored in the diagonal with offset -5.
However, for the north coefficient the offset of the diagonal in A is 5. This .diagonal

is above the main diagonal in A and hence is not stored. |
We now summarize the overall procedure. Given the ordering vectors and a
grid stencil we proceed through the rows of A. At each row, using the stencii. we
calculate the offset of each coefficient. If the offset is positive, we do nothing since
ttlxat' coefficient is above the main diagonal of A. If an oﬁ's»et is negative, we then
compute its value Vand add it to the appropriate diagonal in A or create a new

diagonal if necessary. Appropriate adjustments are made to the data structure so

110

For each Row
in A do

Find location of unknown
associated with row I
ORD(1,2)

!

Use grid stencil
and ORD(1,2) to
calculate offsets for
each non-zero
coeflicient

For each negative
offset do

Calculate valué
of coefficient

'

Add coemcient.to
appropriate diagonal or
begin a new diagonal

Row by Row Matrix Assembly
Figure B.2
that when .the' last row. is - finished the number of diagc;nals is known and the
starting positioﬁs. offsets, and lengths for each is stored. Figure B.2 gives a
flowchart for the .row by row assembly process.
| Uéing this row by row assembly process for each of the model problems, 'IWe
were able to experiment with various multi-color orderings, noting the effect of

changes in the orderings on the performance of the ICCGC algorithm. As an example,

AP cost per iteration
grid time ‘number of vector CG
coloring (sec) operations instructions time/iteration
continuous
coloring .00316 296,144 133 00476
80 X 81 '
not .
continuous 00479 448,368 205 00625
81 X 80 ' ' :

Plane Stress Problem With/Without Continuous Coloring Rule

Figure B.3

111

for the plane stress problem an 80 X 81 grid with two degreés of freedom per grid

point can be colored with 6 colors following the continuous coloring rule discussed

in chapter 3. If the grid is 81 X 80, 6 colors still decouple the equations into a

6-color matrix but the continuous coloring rule cannot be followed and so more

diagonals are required to store A. The effect on the storage requirements and

execution times is summarized in Figure B.3. Both the storage required for A and

“the execution time for a matrix-vector multiply are increased by over fifty percent.

References

- Adams, L. [1983a]. “Tterative Algorithms for Large Sparse Linear Systems on
Parallel Computers,” Ph.D Dissertation, Department of Applied Mathematics,
University of Virginia; also published as NASA CR-166027, NASA Langley
Research Center.

Ada.ms, L. [1983b]. “An M—Step Preconditioned Conjugate Gradient Method for
Parallel Computation,™ Proc. 1983 Int. Conf. Par. Proc., pp. 36-43.

~ Adams, L. [1985). “M-Step Preconditioned Conjugate Gradient Methods,” SIAM J.
" Sci. Stat. Comput., 6, pp. 452-463.

Adams, L. and Ortega, J. [1982]. “A Multi-Color SOR Method for Parallel Compu-
tation,” Proc. 1982 Int. Conf. Par. Proc., pp. 53-56.

Axelsson, O. [1984]. “On Some Versions of Incomplete Block-Matrix Factorization
Iterative Methods,” J. Lin. Alg. Appl., 58, pp. 3-15.

Becker, E., Carey, G, and Oden, J. [1981). Finite Elements : An Introduction, 1,
Prentxce—Hall Englewood Cliffs, New Jersey., pp. 242-245.

Concus, P., Golub, G. H., and Meurant, G. [1985]. “Block Preconditioning for the
Conjugate Gradient Method,” SIAM J. Sci. Stat. Comput., 6, pp. 220-252.

Dubois, P., Greenbaum, A., and Rodrigue, G. [1979]. ‘““Approximating the Inverse of
a Matrix for Use in Iterative Algorithms on Vector Processors,” Computing, 22,
Pp- 257-268.

Eisenstat, S. [1981]. “Efficient Implementation of a Class of Preconditioned Conju-
gate Gradient Methods.,”” SIAM J. Sci. Stat. Comput., 2, pp. 1-4.

~ Evans, D. (ed.) [1983]. Preconditioning Methods: Analysis and Applications, Gordon and
- Breach, New York.

Gustaffson, I. [1978). “A Class of First Order Factorization Methods,” BIT, 18,
pp- 142-156.

Hestenes, M. and Stiefel, E. [1952]). “Methods of ConJugate Gradients for Solving
' Linear Systems,” J. Res. Nat. Bur. Standards Sect. B, 49, pp. 409-436.

Horowitz, E. and Sahni, S. [1978]. Fundamentals of Computer Algorithms, Computer
Science Press, Rockville, Maryland., pp. 343-347..

Jackson, C. and Robinson, P. [1981]). “A Numerical Study of Various Algorithms
Related to the Preconditioned Conjugate Gradient Method,” AERE Harwell
Report No. HL82/3304

.Johnson, 0., Mitchelli, C., and Paul, G. [1983]. “Polynomial Preconditioners- for
Conjugate Gradient Calculations,” SIAM J. Numer. Anal., 20, pp. 362-376.

112

iy

113

Kershaw, D. [1978]. “The Incomplete Cholesky-Conjugate Gradient Method for the
Iterative Solution of Systems of Linear Equations,” J. Comp. Phys., 26, pp. 43-65.

Kershaw, D. [1982]. “Solution of Single Tridiagonal Linear Systems and Vectoriza-
tion of the ICCG Algorithms on the CRAY-1,"” Parallel Computations, G Rodrxgue
(ed.), Academic Press, New York., pp. 85-99.

Kightley, J. and Jones, I. [1985]. “A Comparison of Con]ugate Gradlent Precondi-
tionings for Three-Dimensional Problems on a Cray-1,” Comp. Phy. Comm., 37,
pp. 205-214.

Lichnewsky, A. [1983]. “Some Vector and Parallel Implementations for Precondi-
tioned Conjugate Gradient Algorithms,” Proceedings of the NATO Workshop on
High-Speed Computations, Springer-Verlag, Berlin.

Madsen, N. K., Rodrigue, G. H., and Karush, J. I. [1976]. “Matrix Multiplication by
Diagonals on a Vector/Parallel Processor,” Inf. Proc. Letts., 5. pp. 41-45.

Manteuffel, T. A. [1980). “An Incomplete Factorization Technique for Positive
Definite Linear Systems,” Math.Comp., 34, pp. 473-497.

Meijerink, J. A. and van der Vorst, H. A. [1977]. “An Iterative Solution for Linear
Systems of Which the Coefficient Matrix is a. Symmetric M-Matnx. Math.
Comp., 31, pp. 148-162. :

Meijerink, J. A. and van der Vorst, H. A. [1981]. “Guidelines for the Usage of
Incomplete Decompositions in Solvmg Sets of Linear Equations as They Occur in
Practical Problems,” J. Comp. Phys., 44, pp. 134-155.

Meurant, G. [1984]. “The Block Preconditioned Conjugate Gradient Method on Vec-
tor Computers,” BIT, 24, pp. 623-633.

Munksgaard, N. [1980]. “Solving Sparse Symmetric Sets of Linear Equations by
Preconditioned Conjugate Gradients,” ACM Trans. Math. Software, 6, pp. 206-219.

Poole, E. and Ortega, J. [1984]. Incomplete Cholesky Conjugate Gradient on the CYBER
203/205, Supercomputer Applications, R. Numrich(Ed.),Plenum Press.. pp. 19-28.

Robert, I. [1982]. “Regular Incomplete Factorizations of Real ‘Positive Definite
' - Matrices,” J. Lin. Alg. Appl., 48, pp. 105-117.

Schreiber, R. and Tang, W. [1982]. “Vectorizing the Conjugate Gradient Method,"
' Proc. Symp. Cyber205 Applications, Ft. Collins, Co.

van der Vorst, H. [1982]. “A Vectorizable Variant of some ICCG Methods. SIAM
J. Sci. Stat. Comput., 3, pp. 350-356.

van der Vorst, H. [1983]. “On the Vectorization of Some Simple ICCG Methods,”
Paper presented at the 1st Inter. Coll. on Vector and Parallel Computing in
Scientific Applications, Paris.

van der Vorst, H. [1985]. “The Performance of Fortran Implementations for
Preconditioned Conjugate Gradients on Vector Computers,” Report of the Dept.
of Mathematics and Informatics no. 85-09, Delft University of Technology.

Young, D. [1971). Iterative Solution of Large Linear Systems, Academic Press, New
York., pp. 100-105. :

. Report No. 2. Government Accession No. 3. Recipient’s Catalog' No.

NASA CR-178117

. Title and Subtitle 5. Report Date

4
Multi-Color Incomplete Cholesky Conjugate Gradient May 1986 _ .
Methods for Vector Computers 6. Performing Organization Code

7. Author(s)- ’ 8. Performing Organization Report No.

Eugene L. Poole

10. Work Unit No.

. Performing Organization Name and Address

University of Virginia
Applied Mathematics Department

11. Contract or Grant. No,

School of Engineering and Applied Science ' NAG1-242
Charlottesville, VA 22901 ‘ 13. Type of Report and Period Covered
12. Sponsoring Agency,Name_ and Address : Contractor RGDOY“t
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, DC 20546 v 505-90-21-02

15._Supplementary Notes

This report was prepared in partial fulfillment of the requirements for a Ph.D

degree in Applied Mathematics from the University of Virginia.

Langley Technical Monitor: John N. Shoosmith

16.

Abstract

~In this research, we are concerned with the solution on vector computers of
linear systems of equations, Ax = b, where A 1is a large, sparse symmetric
positive definite matrix. We solve the system using an iterative method, the
incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color
strategy to obtain p-color matrices for which a block-oriented ICCG method is
implemented on the CYBER 205. (A p-colored matrix is a matrix which can be
partitioned into a pXp block matrix where the diagonal blocks are diagonal
matrices.) This algorithm, which is based on a no-fill strategy, achieves 0(N/p)
length vector operations in both the decomposition of A and in the forward and
back solves necessary at each iteration of the method.

We discuss the natural ordering of the unknowns as an ordering that minimizes
the number of diagonals in the matrix and define multi-color orderings in terms of
disjoint sets of the unknowns. We give necessary and sufficient conditions to
determine which multi-color orderings of the unknowns correspond to p-color
matrices. A performance model is given which is used both to predict execution
time for the ICCG methods and also to compare an ICCG method to conjugate gradient
without preconditioning or another ICCG method. Results are given from runs on
the CYBER 205 at NASA's Langley Research Center for four model problems.

Key Words (Suggested by Author(s)) ~ 18. Distribution Statement

17.
vector computers, incomplete Cholesky, o o
conjugate gradient, p-colored matrices, Unclassified - unlimited
CYBER 205

' STAR Category - 64
19. Security Classif. (of this report) '20. Security Classif. (of this page) - 21. No. of Pages 22. Price
Unclassified Unclassified 124 A06

N-305 For sale by the National Technical Information Service, Springfield, Virginia 22161'

End of Document

