@ https://ntrs.nasa.gov/search.jsp?R=19860019237 2020-03-20T14:45:12+00:00Z

NASH Tht- §F45

=

NASA-TM-88439 19860019237

NASA TECHNICAL MEMORANDUM " NASA TM-88439

THE ROLE OF SPINNING ELECTRONS IN PARAMAGNETIC PHENOMENA

Bose, D.M.

Translation of "Die Rolle des Kreiselelektrons bei
paramagnetischen Erscheinungen," Zeitschrift fir Physik,
Vol. 43, No. 8, 1927, pp. 864-882.

p vt o TR i
L O R Ld, . i
LxL por G Gun H %Y w4

IERT s _&m_:?:;\
JULTT b

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

LT

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 JUNE 1986



STANDARD ViTLE pye

—

1. Repert Neo,

NASA TM-88439

2. Cevermment Accedsion Ne,

—
> Reclplant’s Catalog Mo, 'l

& Tide end Subiitle

THE ROLE OF SPINNING ELECTRONS IN
PARAMAGNETIC PHENOMENA

Repatt Date T

June 1986

Paslerming Orgenitetien Cade +

7. Aucele}

D.M. Bose, University of Calcutta

——

Paslecmling Ocgenisetion Repacy Ne,

10.

———

Weck Unlt Ne.

9. Pudtarm:ng Orcaniiation Neme ond Alliens
Leo Kanner Associates, Redwood City,
California 94063

1.

Contract o¢ Crant Neo.

NASW-4005

12, Joontenny Agancy Neme end Addrease
National Aeronautics and Space

Administration, Washington, DC. 20546

13

g
Type of Repoct end Patiod Covared

Translation

Spensertag Asency Cole

1S, S¢szlementeey Notes

Translation of "Die Rolle des Kreiselektrons bei para-

magnetic field.

ssumed to be responsible.
Langévin law and the magnetic moments of ions are
given .as a function of the number of electrons 'in an
An explanation of Gerlach's
experiments with iron and nickel vapors is attempted.
An explanation of magnetoémechanical experiments with
ferromagnetic elements is given.

inner, incomplete shell.

magnetischen Erscheinungen, " Zeitschrift flr Physik,
! vol. 43, No. 8, 1927, pp. 864-882. -
160 £%1eiger )

An attempt to explain paramagnetic phenomena without
assuming the orientation of a molecule or ion in a
Only the spin angular momentum is

A derivative of the Gurie-

1

17, Koy Noede (Scicctea by Author(e))

18, Digtetbutien Stoteasent

Unclassified -~ unlimited

2

17, Secvaiy Clasetl, (of inle esgert)

Unclassified

20, Secwrity Clesil, (of thie gege)
Unclassified

. Mo, of Pagee | 22

Nt~ 28 709#
/V’/5%%/C27




THE ROLE OF SPINNING ELECTRONS IN PARAMAGNETIC PHENOMENA

Bose, D.M.
University College of Science, Calcutta

/864"

To explain Curie's observations on the change in the mass
susceptibility of oxygen with temperature, Langevin made the
fundamental assumption that a paramagnetic molecule as a whole
can re-orient itself in a magnetic field. In the quantum theory
of this phenomenon, derived by Pauli, Sommerfeld and others, this
assumption is accepted with the restriction that the magnetic
axes of the molecule can only assume a discrete number of
orientations with respect to the field. Langevin's assumption
has been seriously attacked primarily for two reasons: 1.
Because the Langevin-Weiss formula also reproduces the suscepti-
bility of paramagnetic crystalline solid bodies, in which a
rotation of molecules or ions is impossible; and 2. Because all
experiments to test the optical and electrical consequences of
the orientation of paramagnetic gas molecules in a magnetic field
produced negative results. The present article attempts to
explain paramagnetic phenomena from assumptions not requiring the
orientation of a molecule or ion in a magnetic field. It is
assumed that of the two angular momentums of an electron moved in
a closed orbit, namely the spin angular momentum characterized by
the quantum number s and its orbital angular momentum character-
ized by 1 = k - 1, only the former is responsible for paramag-
netic effects. Furthermore, the axes of rotation of these
electrons may be oriented either parallel or antiparallel to the
magnetic field, and the resulting magnetic moment of an atom or
ion with an incomplete inner shell is equal to the algebraic sum
of the spin angular momentums of all electrons that can orient
themselves in the magnetic field. Using these assumptions, 1. a

*Numbers in the margin indicate pagination in the foreign
text.



derivative of the Curie-~Langevin law and 2. the magnetic moments
of ions are given as a function of the number of electrons in an
inner, incomplete shell; 3. an explanation of Gerlach's experi-
ments with iron and nickel vapors is attempted and 4. an explana-
tion of magnetomechanical experiments with ferromagnetic elements
is given.

Introduction

It is well known that at present there is no logically
satisfactory theory of paramagnetic phenomena that simultaneously
reproduces all known phenomena guantitatively. Before we proceed
to present a new theory, we want to list the theories proposed to
explain the known phenomena of paramagnetism, and see how
theoretically satisfactory they are and how well they can
represent experimental fact.

Langevin's theory of paramagnetism was introduced to explain
the relationship that Curie discovered between the mass /865
susceptibility x of oxygen and temperature T, namely:

1 T = const.

Langevin assumed that each oxygen molecule possesses a
magnetic moment u and that such molecules, when brought into a
magnetic field, strive to orient themselves parallel to the
direction of the field, unless hindered by collision with other
molecules. It is furthermore assumed that the molecules do not
reciprocally affect each other. With these assumptions, it can
be shown using Boltzmann's theorem that

2o ctg hyp .u---—l— = L (f)with z =
[ . £ o

>®.
s

m = mean moment of a molecule, and
. : .
Y o e e e e
L (x) 3 .
for small values of x.
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For small values of x, we can set

2
™= kT
which can also be put in the form

M
=7 =3RT
where xy is the molar susceptibility, M is the magnetic moment
per gram molecule, and M, is the magnetic moment when all
nmolecular axes are parallel to each other. Thus

M '

This is Langevin's formulation of Curie's law.

It can be shown in general that for small values of

’ ﬂr e ST 03 . |
%’i‘.\ wr=5a |

where e is the angle between the magnetic axis of a molecule and
the direction of the field. By classical theory, all directions
are equally probable and thus cosle = 1/3.

Now it was found that Langevin's formula applies not only
for paramagnetic gases, but also for diluted solutions of
paramagnetic salts and even for crystal powders. For the /866
latter, Weiss proposed a modification of Curie's formula:

1
'

=g

Weiss ascribed the correction term A to the presence of an
intermolecular magnetic field. Weiss' hypothesis of the magnetic
origin of this field has not been confirmed, and therefore at
present there is no satisfactory explanation for the term A. 1In
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1911 Weiss reported that the molecular magnetic moment M, of
salts of paramagnetic elements as well as iron and nickel, in a
state of full saturation, at 0° abs. or at temperatures above the
Curie point, could be written as a whole multiple of a unit known
as the Weiss magneton My = 1123.5 Gauss‘cm, i.e., M, = nyMy. The
value of M, was derived from the formula M, = ./ 3KC.

Critique of Langevin's Orientation Hypothesis

The fundamental assumption of Langevin's theory is that a
molecule with a magnetic moment rotates as a whole in a magnetic
field. This would be possible if molecules were rigid bodies
like magnetic needles. But we know that an atom or a molecule is
composed of certain positive nuclei around which a number of
electrons move in closed orbits, and the moment of the molecule
is the sum of the moments of these orbits. If they are brought
into a magnetic field, these orbits perform precessional move-
ments around the direction of the field, and the molecule will
not want to rotate as a whole in the magnetic field. Even if
such an orientation were possible for the molecules of a gas or
solution, difficulties develop in the attempt to apply the idea
to the case of a paramagnetic crystalline solid body obeying
Curie's law xy(T - A) = ¢. From x-ray analysis of crystals we
kriow that free rotation of the molecules is impossible, and if to
avoid difficulties we assume that the atom can rotate, we run
into new difficulties. For according to the theoretical deriva-
tion of Curie's law we would then have to require the energy of
the thermal rotation of these atoms to have the amount given by
the law of equipartition. But our knowledge of the specific
heats of single-atom gases tells us that such an assumption is
inaccurate. /867

It is interesting that Langevin's assumption was used by
Debye to express the dielectric mass susceptibility of a sub-
stance e—1 1

Xe = 4z Q:
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in the form e= A +-IB-;.

where the second term arises from molecules with permanent
electric dipoles that can orient themselves in an electrical
field. It develops that the second term is missing for solid
dielectrics, and consequently the rotation of an electric dipole
is impossible in a solid dielectric. Many experiments have been
undertaken to test the optical and electrical consequences of the
hypothesis of the orientation of molecules in a magnetic field,
all with negative outcomes [1].

This yielded the need for a derivative of the Curie-Langevin
formula that did not use the assumption of rotation of molecules
in a magnetic field. The first attempt was made by Lenz [2], who
assumed that the magnetic molecules of a solid body can flip over
either parallel or antiparallel to the direction of the field.

According to him,

1'=tshypm\ o= BH
6 | with kT
and for small values of x, ™ _ af .
I kT’

-~ a formulation of Curie's law, but not in Langevin's form.
This formula, as well as one proposed by Ehrenfest, was used by

"
Debye [3] to represent ;j values for Gd,(SO4)3 for large values

of x. Neither formula can yield the experimental findings.

Another error in the Lenz theory is the lack of any picture
of how the molecular moments of the various paramagnetic ions



change as a function of the distribution of electrons in them --
this point is very important and will be considered below.

The quantum theory of paramagnetic phenomena also assumes
that paramagnetic molecules can orient themselves in a magnetic
field, but that the magnetic axes have a discrete number of /868
positions with regard to the direction of the field; accordingly,
criticism of Langevin's orientation hypothesis is equally
directed against the present form of the quantum theory of
paramagnetic phenomena.

Quantum Theory of Paramagnetic Phenomena

The development of the quantum theory of serial spectra by
Bohr, Sommerfeld and others introduced a new unit of magnetic
moment, namely the Bohr magneton xj, into theoretical physics:

__¢ch
M= Sxme

is the magnetic moment of an electron moving in the first quantum
orbit. The magnetic moment per gram atom of an element contain-
ing a Bohr magneton is given by Mz = Nu; = 5584 Gauss‘'cm = 4,97

MW.

The first successful attempt to represent the magnetic
moments of paramagnetic molecules as whole multiples of the Bohr
magneton, and thus to take into account the spatial quantization
of such molecules, was undertaken by Pauli [4] in 1920. If we
proceed from the general formula

CR

M == ——

we can set M, equal to either nyMy; or ngMp, where ng is the
number of Bohr magnetons contained in M,. Then we have

‘1[0 = ”"'Mw = 3RC



according to Langevin's theory and

according to quantum theory, or

= 3‘}%»» Veos'® = 197 ny V"c&f"é;". ‘

Thus by the above formula we can calculate the number of Weiss
magnetons corresponding to a given number of Bohr magnetons. To
calculate cos2e, Pauli makes the simple assumption that the
molecule contains a whole number of Bohr magnetons, and that the
component of the magnetic moment of the molecule in the direction
of the magnetic field likewise is a whole multiple of the Bohr
magneton. Furthermore, he excludes the state in which the /869
magnetic axis is perpendicular to the direction of the field.
Then one gets

V3eeie = |Par DER+ D
BRANEL i

and

nw = 197 V(g + D (p+ 'y !

on the other hand, Sommerfeld [5] assumes that the number of
possible orientations of an atom with the inner quantum number j
in an outer field is 2j + 1 and that the magnetic moment is

p = jg, where g is the Landé factor of the anomalous Zeeman
effect. This formula is based on other possibilities for
calculating u, which we will describe further below. Sommerfeld

calculates the value of cos?e for various values of j and finds

that 2 4
e — 171




and therefore . N reremrre |
my = 4979 VjG + 1) |

He furthermore makes the special assumption that the paramagnetic
ion is in the s state, corresponding to the value g = 2; if we
then set u = npu;, we get the relationship np = 2j. If we then
insert the value for j in the above formula, we find:

wy = 497 Vnpmp + 2 | ’

But optical examination reveals, as we will see below, that
Sommerfeld's assumption that the ion is in the s state is
untenable.

Gerlach, Epstein and Sommerfeld [5] have attempted to
express the magnetic moments of the ions of the iron group in
Bohr magnetons. It develops that when one expresses the moments
of these ions in Weiss magnetons [6], one gets an accumulation
around figures corresponding to whole multiples of the Bohr
magneton. This indicates that there is good justification to
assume that the magnetic moment of these ions is a multiple of
the Bohr magneton.

The Stern-Gerlach experiment, which shows that after passing
through a non-homogeneous magnetic field, a beam of evaporated
silver atoms precipitates in two separate strips, is considered
the most direct proof of spatial quantization. It was /870
furthermore found that the magnetic moment of a silver atom is
equal to one Bohr magneton, within an error of 5%. It is
interesting that the largest observed number of separate strips
precipitating from the atoms of any element is three, and occurs
with nickel. This contradicts the number one would expect from

8



spectroscopic p determinat.ions.

The Spectroscopic Method of u Determination

Sommerfeld was the first to show that using the formula
p = jg it is possible to calculate the magnetic moment of the
atoms of various elements from spectroscopic data alone. From an
analysis of spectral terms, using the anomalous Zeeman effect,
one can determine the values for j and g for the term correspond-
ing to the unexcited state of the atom, and from this p = jg can
be calculated for the unexcited atom. We calculate the values
for p and j of the three elements Fe, Co and Ni from spectro-
scopic data [7], and compare the figures they lead us to expect
with the figures yielded by Gerlach's experiment:

Fundsmentals § b Zabi der Streifen L
Element term barechnet

a lcerwartet hsofunden Cerwartet Idgohaden

Fe. . ... . D 4 9 1 8 0
Co. . ... . ¢F 9/2 10 - ] —

Ni..... Ja 4 9 3 - 5 2

Key: a. calculated b. number of strips

c¢. expected d. found

The observed and calculated values for u and for fhe number
of strips precipitating in the Stern-Gerlach experiment are thus
completely different.

The Hund Method [7] to Calculate the Magnetic Moment of Ions

Hund has reported a very interesting method for the theore-
tical calculation of various spectroscopic terms corresponding to
the electron distribution in one or more incomplete shells.

Below we summarize this theory in Sommerfeld's notation [8]. The
state of each electron in a given orbit is characterized by two
quantum numbers s and I. s can assume the values + 1/2, and



until recently the meaning of this number was one of the secrets
of the atom's structure. Goudsmit and Uhlenbeck extensively /871
clarified our understanding by identifying this number with the
presence of a spin angular momentum in the electron having the
value 1t A

' 22%x

together with a magnetic moment equal to one Bohr magneton. The
relationship of the magnetic to the mechanical moment of such an
electron equals e/mc, i.e., half the value one gets for the
orbital movement of the electron. If several valence electrons

are present, we set:
i =|Z&| = |2}l

From s one determines the multiplicity r = 2s + 1 of the term.
The other number characterizing the electron is 1 = k - 1, where
k is the azimuthal quantum number of the electron orbit. If
several valency electrons are present, then each of then is
additionally determined by the magnetic quantum number m;, where
1 > my > -1, and these combine into the group quantum number

I = Zm;. The inner quantum number j is composed of 5 and I in
such a way that 1 + 3 > 7 > |1 - 5|. Hund furthermore assumes
that of all terms constructed in this way, the fundamental term
is characterized in that 1. it has the highest multiplicity, and
2. for regular terms it has the smallest value for j = Ii - 3|,
and for inverted terms it has the maximum value for j = I + 5.
For example,, for z electrons in a level, the highest value for s
is z/2; the corresponding multiplicity is r = z + 1; if z < 21 +
1, then

i

- —1 ‘
i s(l—iT %

I

and

10 J




For z > 21 +1, j = s, and after Pauli we must replace z in

+
the formulas for 1 and 5 with z’ = 2(21 + 1) - z, so that

j= @+ =s(—5+1)- [

Oon the basis of Hund's theory, a great many spectral terms have
been calculated theoretically and tested experimentally. Hund
himself used his results to calculate the number of magnetons
corresponding to various electron numbers in the incomplete
shells of ions from Sc to Ni, using the formula

= 1+ 1jG+D+7E+D --i(ﬂ‘-l):j
g=1I+3 o HES 1) oot g8

/872

The corresponding number of Weiss magnetons of these ions is then
calculated using the equation

wy == 497 ng V ‘-’.-1*’,'—3

In this way, Hund [9] calculated the number of Weiss magnetons
contained by the trivalent ions of the rare-earth group, and
found a remarkable coincidence between calculated and experimen-
tally determined values. But if one applies the method to the
bi- and trivalent ions of the iron group, the two values abso-
lutely do not coincide.

Sommerfeld and Laporte [10] have shown that in this group of
elements, the sublevels belonging to a fundamental term have
energies that differ by amounts on the order of 0.01 volts.

Hence in calculating s according to these, we must consider not
only the contribution of the sublevel with the lowest energy, but

11



also the contribution of other sublevels belonging to the same
term. For their expression for ny calculated in this way, they
consider the two limiting cases 1. T = 0, which corresponds to
the Hund formula; and 2. T = «, It develops that although the
experiments agree better with the second formula, the agreement
is still not satisfactory.

I have attempted [11l] using an empirical equation to map the
magneton number of these ilons as a function of an assumed
electron distribution, on the Stoner sublevels M3, and M33; but
the formula is not based on any theoretical consideration.

Magnetomechanical Anomaly

If a rod of ferromagnetic material such as Fe, Ni, Co, etc.,
is suspended vertically in a solenoid through which a magnetiza-
tion current flows, and if the direction of the flow is changed,
one finds that the rod suddenly undergoes a rotation around its
vertical axis. According to theory, the relationship of the
magnetic to the mechanical moment of the rod is:

‘n

9

M .
T e _.1

Mo
N

where 0 is the speed of rotation of the rod around the vertical
axis and H is the strength of the magnetic field. /873

According to this formula, the value for M/I in various
substances should behave like the value for g. The experiments
of Arvidson, Beck, Chattock and Bates on ferromagnetic substances
have yielded for all cases the value g = 2 within the limits of

experimental error.

Thus we see that any comprehensive theory of paramagnetic
phenomena must satisfy the following conditions:

12



l. It must derive the Langevin-Curie law in the form
modified by quantum theory, without assuming the rotation of
paramagnetic molecules in a magnetic field.

2. It must provide a formula that satisfactorily reproduces
the magneton number of paramagnetic ions as a function of the
number of electrons in an incomplete shell (i.e., the M3 shell in
the iron group).

3. It must be able to explain the Stern-Gerlach results
with ferromagnetic elements.

4. It must provide an explanation of the magneto-mechanical
‘anomaly observed in experiments with ferromagnetic substances.

A Newly Proposed Theory of Paramagnetic Phenomena

It has been shown that the theory of atomic structure, which
has been developed for the theoretical derivation of the spectral
terms belonging to any electron distribution in a shell, assumes
that an electron can have two kinds of angular momentums, 1. one
corresponding to the rotation of the electron around its own
axis, characterized by the quantum number s, and 2. the one
corresponding to its orbital movement, characterized by 1 =
k - 1. The present paper will show that the paramagnetic
phenomena of the iron group can be explained by the assumption
i=o0, i.e., only the spin angular momentum of the electrons
comes into consideration for magnetic effects.

I, Derivation of the Curie-~Langevin Law

We assume that z electrons are present in the incomplete ¥
shell of the iron group; of these, each has a magnetic moment

Fn;‘ eh
= Zxwmo!
we it STHANAS } 13




deriving from its rotation around its own axis.

Furthermore, we will assume that in an external magnetic
field these electrons can orient their axes of rotation parallel
or antiparallel to the direction of the field. We will /874
consider two cases separately: 1. when z < 21 + 1 and 2. when

z>21+1with 1 =k - 1,

l. z < 21 + 1. If u is the magnetic moment of an ion, then
the numbers of the ions oriented in the two directions will be

related as uH _uH
CektT andiCe *T

i

and their relative contributions to the entire magnetic moment

will relate as
L pH
[ 3

pCe+7 and'— yCe ™ ¥T|

If all axes of rotation have the same orientation, the ion has
achieved its maximum magnetic moment x4 = zu;. The following
table combines the possible arrangements of the axes of rotation
of z electrons of an ion in a magnetic field with the resulting
moments: _ .

a Angahl der }}
|

parallel xam Felde z z-1 z-2 ... 2 1 (0

gerichteten -

b Angahl der

antiparallel zum 0 1 2 N z-2 z-1 z
Felde gerichteten }.

Rl | P [ P R Y O L R

C des lons

Key: a. number oriented parallel to the field
b. number oriented antiparallel to the field
c. total moment of the ion

14



Then, if @ is the mean moment of an ion,

m ==

s H =N H - = H sueH |
cgie FT +(#—ue T 4o —(z—2pue tT ez T
s H G—p H =N H  —smH '
ekT +c kT +...+c ) RT +¢ T
and divided by uo= zplz ’
s uH o9 s—=0pH s—SuH . nlk'
I 4+ S kit s SR dk Pt T S
m _Z i ¢’ + ¢ f ——;e-'
w TRH il R TY: QYT { )
elkT.*_oc 3T+....+e s k1'+ tk ’
For small values of %5? this yields
)
E_E_’IE "2:-—215)’ for,._'é“
- kT s =
and
. s~x
» _pH2 —2m
. =T A3 12.(’ 2B for ;_'_‘2’:;‘-‘1”1

It can be shown for both cases that

/875
m _ pH1g+2
T kT 3
or # £
J[__ M} 242
H — 3RT ¢
2. z > 21 + 1. We know that for z = 2(21 + 1), the
resulting magnetic moment of the shell is zero, and thus accord-
ing to Pauli's rule, the highest magnetic moment that an ion can

have for z > 21 + 1 is u = z’y;, Where z’ > 2(21 + 1) - z.
According to the view presented here, this means that of the

15



2{21 + 1) electrons which a shell can accept, no more than
(21 + 1) can orient their axes of rotation the same way.

Here we have

orxr

The highest magnetic moment that an ion can ever have is
p = zpj Or u = z’'p;, depending on whether z < 21 + 1 or
z > 21 + 1. If we identify this with ngu;, the number of Bohr
magnetons found experimentally in the ion, we get

M np+-2.

|
tuT = 335 e !

and if ny is the corresponding number of Weiss magnetons, then
nw == 497 Yng(ns + 2). \

This is the Sommerfeld formula (6) for calculating the
number of Weiss magnetons in an ion with ng Bohr magnetons if the
ion is in the s state. The essential difference between
Sommerfeld's quantum theory and the position presented here is as
follows: According to Sommerfeld, the magnetic moment of an atom
or ion is an unchangeable value p = ngu;, and in a magnetic
field, the atom as a whole can orient itself in certain discrete
directions relative to the field, given by the condition that the
component of the moment parallel to the field must be a whole
multiple of the Bohr unit. By the interpretation explained here,

16



the magnetic moment of the atom or ion is not an unchangeable/876
number and there is no adjustment in the magnetic field. The
moment is composed of the algebraic sum of the rotational moments
of the electrons in an incomplete shell, some of them parallel
and the rest antiparallel to the direction of the field. The
state in which all axes of rotation are parallel to the direction
of the field is the most probable for any given temperature, and
corresponds to the lowest magnetic energy. For H = « or T = 0,
all atoms or ions are in this state.

II. Calculation of the Number of Bohr Magnetons Contained in an
Ion as a Function of the Number of Electrons in the M Shell

Hund [12] calculated the values for j and g under the
assumption that both the spin angular momentum and the orbital
angular momentum have effects.

In our opinion, only the spin angular momentum comes under
consideration; we can derive our equations for j and g from those
of Hund by setting I = 0 in equations (7) and (8), whence it
follows that

L ! .
J=s=15 for s=21+1 with £ = 2RI+ ) —=x |

If we insert these values for j in (9), we see that

g == ?_, |
and therefore -
p=j.g==4 or z,

depending on whether z < 21 + 1 or z > 21 + 1.

The corresponding number of Weiss magnetons contained in

17



these ions is determined by the formula

- -.]'/' T
wy == 4,97 g5 "—:—:--—- l

For the present case j = z/2, g = 2, therefore,

or

ny = 497Yz(s + 2) }
sy = 497Vs (¢ + 2).

/877
Comparison with Experimental Findings

In Fig. 1, using formula (13), we have graphed the number of
Weiss magnetons corresponding to various occupations of the M
shell. The same curve contains the experimentally found numbers
of Weiss magnetons present 1. in various simple salts of paramag-
netic elements and 2. in quadruple complex compounds of the

¥ Bis

]

|
|
|
§

Fig. 1. Number of Weiss magnetons

Key: a. calculated theoretically

b. found experimentally for simple salts

c. found experimentally for quadruple complex compounds
elements Fe, Co and Ni. These latter values are from measure-
ments recently performed at this institution by H.G. Bhar with
compounds produced by P. Ray. They will be published later in
detail. One can see that in the first part of the curve, i.e.
for elements with regular spectra, the theoretical and experi-

18



mental values are in good agreement, but a considerable differ-
erice exists between the calculated values for Fett, cott and Nitt
and the values found experimentally for simple salts of these
elements. By contrast, the values from the measurements in
quadruple complex compounds of these elements produce far better
agreement. These elements are characterized in that their
spectra are of the inverted type, in which Pauli's reciprocity
equation is used to calculate the number of electrons effectively
contributing to the magnetic moment of the ion. In these, only
z’ = 2(21 + 1) - z of the available z electrons are oriented in
the direction of the magnetic field, while the remainder z - z-’

= 2[z - (21 + 1)] are unable to do so. It may be that the
discrepancy for the bivalent ions of Fe, Co and Ni, discussed
here, comes from the fact that these z - z’ electrons do not
fully neutralize each other in pairs, and therefore contribute
somewhat to the magnetic moment. This point will be /878
addressed later in connectiion with the number of magnetons in
complex compounds.

Complex Compounds

An earlier article [13] showed that the number of Bohr
magnetons contained in any complex compound can be derived simply
from a knowledge of the effective atomic number n’ of the central
atom. This number defined by Sidgwick gives the number of
electrons in the central atom plus the number of electrons whose
orbits the central atom shares with the atoms or molecules in the
coordinative bond. In the cited article, to determine n’ I gave

the formula
W =A—-P42C

where A is the atomic number of the element, P is its main
valency in the coordination compound, and ¢ is the number of
coordinative bonds.

19



Moreover, the article shows that the number of Bohr magne-
tons contained in the complex compound is

Np == B — W

where n is the atomic number of the noble gas terminating the
group of paramagnetic elements, equal to 36 for the iron group.

If we then turn to the quadruple compounds, we can assume
that the central atom has as many electrons in the M3 shell as
the corresponding simple ion plus eight shared electrons on the
N; and N, level, i.e., in the case of the bivalent Fett ion, we
have the following electron distribution:

ENENE

a Einfaches Salg . ., . . . . .6 ! — ‘ -— \
b Vierfache Verbindung. . . | 6 | [2 | 6 |
R |
Key: a. simple salt b. quadruple compound

The eight electrons have a resulting moment of zero, and we
can therefore expect the quadruple compound to have the same
number of magnetons as the simple salt with the same valency.
The following table gives the number of magnetons of the quad-
ruple compounds of bivalent Fe, Co and Ni, produced and studied
by P. Ray and H.G. Bhar; the numbers are published here with

their permission: /879
a ) iy beobachtet b i e 3
Verbindung A{ Einfache C; Viertache d || "W berechmet
! | Verbindung . Komplexverbinduny| |
Fe(NaH),JCly o o . . . . .. | o—27 24,1 Y 244 |
Co(NyH),]80,+H,0 . . . ! 25 i 21,3 ‘i 19,2
Ni(NgHo)giCly . . . . . . .. l (! 14,86 |
Ni(NgH),[80y . . . . . . .. e—17 b 14,96 } 14,1
[Ni(Ny By (NO)s .+« - L L. 3 || 147
Key: a. compound b. observed
c. simple compound d. quadruple complex compound

e. calculated
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One can see that in each case the number of magnetons of the
quadruple coordination compound agrees much better with the
theoretical value than does that of the corresponding simple
salts. It seems as though with ions having inverted spectra, the
eight electrons in the N; and N, level have a stabilizing
influence on the orientation of the electrons in the incomplete
M3 shell.

Sextuple Compounds

In these compounds, the central atom has not only the
electrons in the simple ion but twelve shared electrons, eight of
them with the N; and N3 level, and the remaining four of which

must be set in the incomplete M; shell.

Examples of such distributions follow:

B a  Zahl der Elektrones P)Zﬁl«:Mun«n ‘
1 p : :
on i My | N i Ny 104, 0’;1 LJ:} sy (8w beach, C ‘
Cr*** einfach d 38 - = - 1 3 - -— .
. komplexe., . & 7 2 - 8 19,2 189 ';
Fet** einfach 4. . | § - — .3 - -— !
» Lkomplexe, .| 9 2 - 1 88 10 |
Fet* einfach 4. . . 6 R - - 4 - - ‘
. komplexge. . ! 10 | %7 il — oo 0 |
Ni** einfach .. ] 8 | =TT 4 — o2 | — | — 1
» lkomplexe. .| 8 918 4 2 | 41| 189
Key: a. number of electrons b. number of magnetons
c., observed d. simple

e. complex

In each case, the number of magnetons contained in a complex
compound can be calculated from the Pauli rule for equivalent
orbits: pu = 2z’ = 2(21 + 1) - z = 10 - z, where z is the number
of electrons in the M3 shell. The case of sextuple nickel

21



compounds presents certain peculiarities. There is no room in
the M3 shell for four extra electrons, and we therefore assume

that they are in the 0;; and 0,, orbits. /880
The Experiments of Stern and Gerlach [14]

Here we are dealing with the magnetic moments of paramag-
netic atoms obtained from the corresponding bivalent ions when
We will explain the
magneton number of these elements by assuming that from iron

one adds two electrons to the N; level.

upward, six electrons in the M3 shell together with two in the »N;
shell form an octet with a magnetic moment of zero. We have seen
that the six electrons alone in the M3 level do not form a
momentless configuration, but rather that two electrons in the w;
level must be added to produce Fe atoms with a magnetic moment of
zero. This may be the reason for Stoner's subdivision of the M3
shell into the two sublevels M3, and M33, with six resp. three
electrons. It is known that the presence of these sublevels
cannot be derived from optical data.

electron distribution in the three ferromagnetic atoms:

We give a scheme for the

P Y P S|

. i Zahl der
Atom {! a Zahl der Elektronen “ Bohrschen Magne

3 Ny | N lc berechmet | Cbeohachtet-
A ;

Fe . ...... : { ] o 0

Co .. ..... ' ! ) 1 -

.. h ' j .

Ni. LoLo ... ' 2 % i 2 2

Key: a. number of electrons b. number of Bohr magnetons
c. calculated d. observed

For nickel, this scheme is interesting in connection with

Gerlach's experimental results.

He got three strips, one

undeflected and two deflected by the same amount to either side.
From the size of the deflection he concluded that the nickel atom

contains two Bohr magnetons.

22

According to our scheme, the



magnetic moment must be ascribed to the two spinning electrons
that may orient themselves in the field, with the following
possible configurations

¥ 111 b '\

0 —2p

The undeflected strip stems from atoms in which the two spin
axes are oppositely oriented, and not from the magnetic axis /881
of nickel being perpendicular to the direction of the field.

Magneto-Mechanical Anomaly

The general formula for the relationship of the magnetic to
the magnetic angular momentum for a rod with which the experiment
is performed, is

X e |
—_— 2——-———”69.‘

To date, all experiments have been performed with ferromagnetic
substances, for which according to (12) g = 2 and therefore M/I
becomes = e/mc, in accord with the experimental results.

According to Hund [15], in calculating magnetic moment,
p = jg must be taken into account for the various ions of the
rare-earth group, as well as the spin angular momentum and the
orbital angular momentum for the electrons. It would be inter-
esting to see whether gyromagnetic experiments with paramagnetic
rare earth compounds provide a g value that differs from the one
found for the ferromagnetic elements.

Conclusion

It has been shown that the magnetic properties of the iron
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group can largely be explained on the basis of the simple
assumption that only the spin angular momentum of the electron
contributes to the magnetic moment, and that the atom or ion as a
whole is not oriented in the magnetic field. On the other hand,
Hund has very successfully explained the experimentally found
numbers of Weiss magnetons in the ions of the rare earth group by
saying that both the spin angular momentum and the orbital
angular momentum are influential, and that these ions can adjust
themselves in quantally determined orientations in a magnetic
field.

This raises the question of the behavior of ions in the
other transitional groups of the elements. In our laboratory, P.
Ray and H.G. Bhar have performed preliminary measurements on the
trivalent salts, both simple and complex, of Mo (42). This
element belongs to the second transitional group and corresponds
to chromium (24) in the first long period.

They found that KjMoClg + 2 Hy0, a double salt, has 18.1
Weiss magnetons, while the sextuple complex compound
[MO(SCNg) J[(NH4)3 + 4 Hy0 has 18.4. The nearest whole number of
Bohr magnetons is 3, corresponding to 19.2 Weiss magnetons. /882
The electron distribution for Mottt is consequently:

Mor++ ﬁ Yoo | o
2 Einfach. . 3 _ ' —
b Komplex . 7 2 | 6
Key: a. simple b. complex

Here the magneton number can be calculated by the formula we
used for the ions of the first transitional group, and conse-
quently here too the spin angular momentum of the electron is
responsible for the magnetic moment.
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